The views, conclusions, or recommendations expressed in this document do not neces-

“, sarily reflect the official views or policies of agencies of the United States Government.
This document was produced by SDC and III in performance
7N of contract AF 19(628)-5166 with the Electronic Systems

7 Division, Air Force Systems Command, in performance of
e ARPA Order TT73 for the Advanced Research Projects Agency

- Information Processing Techniques Office, and Subcontract
65-10T7.

TeeH memo B

a working paper
System Development Corporation / 2500 Colorado Avenue / Santa Monica, California 30406
Information International Inc./ 11161 Pico Boulevard / Los Angeles, California 90064

Syntax of LISP 2 Tokens

_ m ‘ ABSTRACT

"[[’M]a 2710/210/00
Amnoaﬁmw

Donng, Firth
8%&*@4/&'
S L. 'Ka.me14

TECHNICAL - (; -
%
Y :

S. L. Kamen

RELEASE

(U e%ﬁ (s

for J, I Eﬁmlﬁﬂf

DATE PAGE 1 OF_——__PAGES
8/25/66

defines the syntax of LISP 2 at the token
level. Tokens are parsed by a finite state machine and
then used to construct source language or S-expressions.

25 August 1966 B - MM-2710/210/00

FOREWORD

LISP 2 is a joint development of SDC and III. The
idea for LISP 2 as a language combining the properties
of an algebraic language like ALGOL and the list-

- processing language LISP was conceived by M. Levin of
“MIT. Development of the concepts of LISP 2 was carried
forth in a series of conferences held at MIT and
Stanford University. Contributions in concepts and
detail were made by Prof. John McCarthy of Stanford
University, Prof. Marvin Minsky of MIT, and the LISP 2
project team consisting of M. Levin, L. Hawkinson,

R. Saunders and P. Abrahams of III, and S. Kameny,

- C. Weissman, E. Book, Donna Firth, J. Barnett and

V. Schorre of SDC. '

For the implementation of LISP 2, it was decided to
define a standard, computer-independent, LISP-like
intermediate language and to define the LISP 2 source
language in terms of its trenslation into the inter-
mediate language. :

This document describes the syntax of tokens.

N

N

/‘\

~ 7

.

O
25 August 1966 3 ' TM-2710/210/00

(page b4 blank)

CONTENTS

Section Page
1. Introduction . « & ¢ & ¢ ¢ ¢ v ¢ 6 ¢ o o o o s b o o o o o o o
2. Characters‘. c o o o o o s s o e o o 4 e o o 4 o o o

2.1 Character ClasSeS. . . « « o & s s o o o o o 5 o o o o o o o o

3. Notation .. L] ‘\ L] * L L] L] . L] * . .‘ . L] [] - L] * L L] * L] . L] . * .

L, Special Characters . . ¢« « ¢« ¢« ¢ o o ¢ o o o o o o o o o o o «

5 . Character M&Pping L] L] L] L] . L] . L L] L] - L] L] . . L] L] L] L] - . - L]

. 6] . Tokens . L] . L] L] L] L] L] . L] . . . L] L] L] L] . L] L] L] . - L] . . . L]

' 6.1 Basic Alphabet . « « &« v v o & o o o o ¢ ¢ o o o o o s o o o o
O . 6 L] 2 Syntax Of Tok?ns L] . L] L] * . L] . . L] L] L] . L] - o .]]
T

. S-expressions at the Token Level . . . ¢ ¢« ¢ ¢ o o ¢ o o o« o« &

®
O~ O O WV i\l o\ ln

]
o

N

77N
AN

O

25 August 1966 5 TM-2710/210/00

1. INTRODUCTION

Tokens are the units from which S-expressions and source language are constructed.
A token has no internal structure as do atoms or lists; it exists momentarily
when the finite state machine stops; further existence depends upon the use

made of it by the S-expression reader, the syntax translator, or the token
reader.

2, CHARACTERS

"The LISP 2 character set is the 128 characters of the revised ASCII standard.l

Character mapping (Section 5) is also available so that non-graphic characters
may be entered, or the limitations of certain input devices circumvented. All
characters shown in token syntax are assumed to be the result of character
mapping which takes precedence when used.

2.1 CHARACTER CLASSES

Tokens are formed by combining character classes rather than individual
characters. All 128 characters belong to the class named character with sub-
classes as in Section 6.1. A basic alphabet of 58 graphic characters, a

space (¥), and 6 non-graphic characters is used in this document. The class
assignment of the remaining 63 characters is implementation-dependent. Class
membership can be dynamicelly c¢hanged within the LISP 2 system when a user so
desires. The finite state machine which parses tokens is also changeable when
languages other than source language or S-expressions are being read, although
a change may not be required.

If the lower case letters are assigned to the class letter, the question of the

equivalence of such sequences as 'BEGIN' and 'begin' arises. The answer to this
question will depend on implementation.

3. NOTATION

The symbols | { } * , the use of italics, and the form of syntax equations
conform to the usage in TM-2710/220/01, LISP 2 Intermediate Language. The

" characters shown in the basic alphabet stand for themselves (in the ASCII

scheme) except for + « \ which are assigned for each implementation, and the
non-graphic characters which are written as ¥ for space, CR for carriage

return, NUL for null, etc.

lE. Lohse, ed., "Proposed Revised American Standard Code for Information
Interchange," Comm. ACM, Vol. 8, No. 4, April 1965, pp. 207-21k.

25 August 1966 | 6 TM-2710/210/00

Other symbols used are the superscript o’ which means that the entity so
designated is not a part of the token which is formed, the negation sign~ ,
and superscripts referring to footnotes which are not part of the syntax .
equations themselves. In all token syntax equations in Sections 4 through 6,
space is explicitly indicated in the equations. 1In Section T, spaces are
implicit in the definition of s:expressions as token sequences.

b, SPECIAL CHARACTERS

The class escape:character has one member which will usually be % although this
is changeable as are all other class assignments. The use of escape:character
has the highest precedence in token parsing. At present it is used for creation
of unusual identifiers, character mepping, remarks, and hyphenators. The
hyphenator is actually a special case of character mapping. The syntax of
hyphenator is given with the basic alphabet because it maps onto the single
character NUL.

NUL and hyphenator constitute the null:elass which is a character class com-

pletely invisible in token parsing except when preceded by a prime in string
context. Outside of this special context the following is always true:

*
character null:class character = character character

The occurrence of null:class is not shown in token syntax; it may occur at any
point in a character sequence with an effect as above.

5. CHARACTER MAPPING

The meaning of escape:character is always governed by the following character.
When the eseape:character itself is intended it is followed by an I. This is
the identity mapping and is the only way that the escape:character can mean
itself. The characters I, ¥, R, G, #, ;, CR, US, RS, and C have special meaning
in token syntax when they follow the escape:character. The use of

escape :character C is a general form of character mapping, as follows:

cardinal = unsigned:integer | unsigned:octal (see Section 6.2)
character = escape:character C ca}dinal .

The character resulting from this mapping is the one whose numeric code is the
same as the cardinal. For example, %Cl01Q. means A. Character mapping is
recursive, consequently %%C103Q.101Q. also means A. In this latter example
the character following the % is C and not another % because of the precedence
of character mapping previously mentioned.

7N

SN

3

O

A

25 August 1966 T TM-2T710/210/00

The use of ¥, R, G, #, ;, CR, US, and RS following the escape: character is given
in Sections 6.1 and 6.2; the meaning of any character other than these mentioned
will depend on 1mplementat10n.

The use of the characters DEL (delete) and BS (backspace) may cause a form of
character mapping, but these also are implementation dependent.

6. TOKENS

All tokens but one are explicitly defined below. The one exception is
unrecognizable. This is defined by default to mean any character sequence which
does not satisfy one of the syntax equations for the other tokens. Examples of
unrecognizable are:

#AYFS 1.E10A 5E6. #('FS;1ZEM

6.1 BASIC ALPHABET
ec = E
‘ge % G
qc = Q
re = R

letter = A|B|c|D|E|F|c|H|I|J|K|L|M|N|o|P|Q|R]|S|T|U|V|W|X]|Y|Z
oetal:digit = 0|1|2|3]4|5|6|T

digit = octal:digit|8|9

mark = *|:|/|\|<]>|=|<|+

pimark = ()|U11],|$]%[+|-].|¥

ordinary = letter|digit|mark|p:mark

prime

fence = #

semi:colon =

25 August 1966 8 | _ TM-2710/210/00

pertod = .
spacé =¥
plm = +|-

usmark = ,|_$|%|'|;

Ipar = (

rpar =)

lbrac = [

rbrac =] .

boundary = CR|US|RS
data:separator = FS|EM

termin = semi:colon|boundary

escape :character termin|
escape :character space{ordinary|prime| fence} termin

hyphenator
null:class = EU_L.Ihyphenator
6.2 SYNTAX OF TOKENS

remark = escape :character re {ord‘mary |prime]| fence} termin
*
string:spelling = fence {ordinary|prime character® |semi :colonlboundarya} fence

- alpha = letter|digit|period

literal = letter alpha* t~alpha}°®

" dotted:literal = period{letter|period} alpha* {~alpha)°

operator = mark mark” {~ mark}°|plm {~{period|digit})°

string:name = escape:character string:spelling

'gen:spelling = escape:character ge {literal|string:name|operator|dotted:literal}
fn:delimiter = ~{ Zetterlperiod}

decimal = digit dzgzt

 he effect of prime character is to enter the chargcter in the token and to

discard the prime. This character may be any character at all, including
boundary, data:separator, and null:clagss. This is the only place in which
null:class is meaningful.

Iy
~ 7

VRS

9

O

25 August 1966 9 TM-2710/210/00

unsigned:integer = {decimal ec decimalIdécimal}n:délimitero
octal:spelling = octal:digit octal:digit* qe

{octal:spelling decimaZ|octal:speZZing}n:deZimitero

unsigned:octal

exponent = ec{plmm decimal|decimal}

mantissa = deeimal period decimal|decimal period|period decimal
unsigned:real = {mantissa exponent|mantissa}n:delimiter®

sign = plmi{period|digit}°

spacer = space space*|boundary

dot = period {~alpha}°

token = remarkl|string:spelling|ZiteralIdotted:litera12|operatar|string:name|

gen:spelling|unsigned:integer|unsigned:octal |unsigned:real |spacer|
dot|lpar|rpar|lbrac|rbrac|sign|u:mark|data:separator |unrecognizable

lA remark may occur in SL or IL wherever a spacer may be used. In IL commas
are not optional. See Section T.

®The definitions of dot and dotted:literal prevent the character period from
being a dotted:literal. »

25 August 1966 : 10 T™-2710/210/00 N~

T. . S-EXPRESSIONS AT THE TOKEN LEVEL

Occurrences of words such as FUNCTION, REAL, etc., denote the token that was a
literal with the same character representation,

octal = sign unsigned:octal|unsigned:octal
integer = sign unsigned:integer |unsigned:integer
real = sign unsigned:real|unsigned:real

number = octal|integer|real

spaces = spacer|remark
1 #
empty~ = spaces |
false = FALSE|NIL|Ipar rpar
boolean = TRUE|false
string = string:spelling ' <; /

identifier = ZiteralaIdbtted:literalIstring:nameIoperatorlgen:epelling|u:mark

fmame = lpar identifier dot <identifier rpar

value:type = literal

fetype = literal

astype = f:typel|lpar frtype {LOC|VALUE} rpar

i:type = lIpar fitype {LOCIVALUElempty} INDEF rpar

functional:constant = Ibrac , FUNCTION finame Ipar value:type '
a:type {i:type |empty} rpar rbrac

numeric:row = Llbrac {nunber number*l numeric:row numeric:row* } rbrac

real:array = Ilbrac REAL {number* Inumeric:row* '} rbrac

lempty means either a sequence of gpaces or nothing. It has no semantic effect

on the g:expression. By the definition of sign in Section 6.2, no spacer or

remark can occur between a sign and an unsigned number; in all other s:expressions ,
which are token sequences empty may occur between tokems.

2The character representation is not TRUE, FALSE or NIL.

<:j:> 25 August 1966 11 TM-2710/210/00
' (1ast page)

. * ‘ . *
integer:array = Ilbrac INTEGER {number | numeric:row } rbrac

* *
octal:array = Ilbrac OCTAL {number |numeric:row } rbrac
numeric:array = real:array|integer:array|octal:array
boolean:exp = s:expression

*
boolean:row = Ibrac {boolean:exp boolean:exp |boolean:row
boolean:row* '} rbrac
. : . A
boolean:array = Ibrac BOOLEAN {boolean:exp lboolean:row* } rbrac
symbol:element = boolean|number|string|identifier|list|
dot {array | functional:constant}
*
symbol:row = lbrac {symbol:element* symbol:element
| symbol:row symbol:row rbrac
. »* *
symbol:array = Ilbraec SYMBOL {symbol:element | symbol:row } rbrac
' *
(::\) functional:row = Lbrac {functional:constant £Vnctional:constant]
o funetional:row funetional:row } rbrac
*

functional:array = Ibrac FUNCTIQNAL {functional:constant |

. *
functional :row } rbrac

array? = boolean:array |numeric:array|symbol:array | functional :array

simple:datun = boolean|number |string |array |functional:constant

atom = simple:datum|identifier

list = lpar s:expression. s:expresaion* {dot s:expression|empty} rpar
s:expression = atom|list

l'I‘his notation is used for arrays or functional constants that are elements of
the symbol:array and not for sub-elements. For example:
[SYMBOL A (B C) .[REAL 1.0 2,0]]
, [syMBoL [A (B ¢) .[INTEGER 1 2]] [(x) #(# (E . F)]]
require the notation but
[SYMBOL A (B [REAL 1.0 2.0])]
g does not. In the last example use of dot would make the element into a dotted
: pair,

<:::>' 2The rows of a multi-dimensional array must have the same number of elements.

25 August 1966

i'tistribution

. #arancik

.
N
"
5
L,

v
N

1o

Marsha Drapkin(2)

D
1,
.

N
XY

B-
3.
R,
R.
M.

I".

O F

o o

Rarnett

. Herman

Hook
Rosak
Rurger
Drukey

Fei n:‘tol d
Pirth

SHowarid

Howell
Irvine
Jacobs
Jones

Kameny'(gb)

Long
Martin
Myer
yerstein
Perry
Schorre
Sfehwartz
Cimmons
Srefferud

. Vorhaus
Weissman{10)

Wolfson

Hawkinson(III)
Crandel (IIT)

-

2105
2025
4317
2332
2013
9919
2105
9723
9525
2310
2042
9912
9627
234bL
P23l
2009
9913
2228
2227
23L)
2042
2330
2103
9L39
973k
2013
021k
2368

9720
9721

Anschultz (IIX)9721
Saunders (III) 9721

Stygar (III)

9721

(92)

TM-2710/210/00

N

N

