
The views, conclusions, or recommendations expressed in this docurr.ent ,,' not neces·
sarily reflect the official views or policies of agencies of the United States Government.

This document was produced by SOC and III in performance of contract _--.:.::;;SD:;;..-.... 9~7.L..-___ _
and subcontract 65-J err

System Development Corporation I 2500 Colorado Avenue I Santa Monica, California 90406

Information International Inc. I 200 Sixth Street I Cambridge, Massachusetts 02142

LISP II INTERMEDIATE LANGUAGE

ABSTRACT

for D. L. Drukey
DATE PAGE l' OF ~PAGES
4 November 1965

This document describes the syntax and semantics of the
LISP II Intermediate Language, and constitutes the basic
defini tion of LISP II. All LISP II source language
programs are converted into the Intermediate Language
before compilation. The Intermediate Language can be
input directly to LISP II.

4 November 1965 2 TM-2710/220/00

FOREWORD

LISP II is a joint development of SDC and III. The
idea for LISP II as a language combining the properties
of an algebraic language like ALGOL and the list
processing language LISP was conceived by M. Levin of
MIT. Development of the concepts of LISP II was
carried forth in a series of conferences held at MIT
and Stanford University. Contributions in concepts
and detail were made by Prof. John McCarthy of Stanford
University, Prof. Marvin Minsky of MIT, and the LISP II
project team consisting of M. Levin, L. Hawkinson,
R. Saunders and P. Abrahams of III, and S. Kameny,
C. Weissman, E. Book, Donna Firth, J. Barnett and
v. Schorre of SDC.

For the implementation of LISP II, it was decided to
define a standard, computer-independent, LISP-like
intermediate language and to define the LISP II source
language in terms of its translation into the Inter
mediate Language.

This document describes the syntax and semantics of the
Intermediate Language.

r~
\ !

4 November 1965 3 TM-2710/220/00

CONTENTS

Section Page

1. Introduction 4
2. Constants 5
3. Top Level Operations 6
3.1 The Section-Declaration 7
3·2 Section-Level Declarations 8
3·3 Free-Declaration 10
3.4 Function-Definition 13
3·5 Dummy-Function-Declarations 14
3.6 Macro-Definition 14
3.7 Instructions-Definition 15
3.8 lAP-Definition 15
4. Expressions 15
4.1 Assignment-Expression, Locatives 16
4.2 Conditional and Boolean Expressions 19

(\ 4.3 Evaluation of Fonns 20
"-J 4.4 Functional Arguments 20

4.5 Fonnal Variables 21
4.6 Argument Transmission 22
4.7 Type Conversion 23
4.8 LISP II Arithmetic 25
5. Block 27
5.1 Block Variables 28
5.2 Go-Statement, label, and Switch 29
5.·3 Conditional-statement 30
5.4 Return-Statement 30
5.5 Code-Statement 31
5.6 For-Statement 31
5.7 Simple Expression Used as a Statement 35
5.8 Try-Statement and Exit-Expression 35

Index to Syntax Equations 36

4 November 1965 rrYl-2710/220/00

LISP II INTERMEDIATE lANGUAGE

1. INTRODUCTION

The LISP II Intermediate Language (or IL) is a complete LISP-like language
that serves three separate functions in LISP II:

The semantics of LISP II are completely defined in terms
of the IL.

Source Language is defined in terms of its translation
into IL. The compilation of LISP II programs is
accomplished by translating source language into IL,
then compiling and operating the resulting IL program.
Macro expansion and saving of LISP II programs is
performed in terms of IL.

Programs can be input directly in IL, and the entire
system can be operated completely in IL if desired,
once the system has been informed properly.

The LISP II operating system is designed for on-line use. The executive
program is called LISP and takes two arguments, which specify the input and
output media. At entrance to the system, the function LISP is called auto
matically in the form (LISP NIL NIL).* The function LISP accepts a series
of operations and performs them until the particular command (STOP) is
encountered. (STOP) causes exit from the innermost LISP. The (STOP) command
has no particular effect unless the LISP function has been called explicitly
by the user, since after receiving a (STOP) at the outermost level, the system
calls (LISP NIL NIL) again.

The term top-level as used in this document allvays refers to the series of
ouerations given to the LISP function. The semantics of the IL as given here
applies either to operations input to the system in IL after the system has
been so informed by the oueration:

*

IL();

(IL)

in source language or

in internal language

The NIL arguments mean that the standard teletype file (i.e., the one on which
the user is logged in) is to be used for both input and output. The values of
these parameters in general are quoted names of files corresponding to such
input-output devices as teletypes, disc, and magnetic tape.

(\
\)

\

,~

4 November 1965 5 1JlI1-2710/220/00

or else applies to the stream of IL generated by the Syntax Translator from
input in the Source Language form. However, since IL permits a wider range
of expressions than any actual Syntax Translator will produce, the description
of IL applies more completely to a stream of o~erations input directly in IL.

2. CONSTANTS

LISP II data types are an open-ended set of things called datum. The first
implementation '"i 11 consist of

constant = simple-datum
quoted-expression
function-specifier

simple-datum = Boolean
number
array
string

Boolean = TRUE
false

false = FALSE
NIL
()

number = octal
integer
real

array real-array
integer-array
symbol-array
formal-array
Boolean-array
octal-array

atom = simple-datum
identifier

dD.tw:1 = S-expression

S-expression = atom
* (S-expression S-expression f. S-expression\empty})

quoted-expression (QUOTE S-expression)

4 November 1965 6 rm.2710/220/00

Semantics

A datum has a particular representation in the computer, and an external
input/output representation in the LISP II character set. In some cases,
there may be several different input representations for the same datum.
If so, the output representation is arbitrary but consistent.

For example:

FALSE
NIL
()

all represent the same datum. As a Boolean, it will print as FALSE. As a
symbol, it vQll print as (). On the other hand, NIL can be input and means
the same datum. Similarly,O.0003 and 3.E-4 represent the same numerical
datum, which will print out in a standard vTay, probably as 3.0E-4.

A quoted-expression represents a datum in Expression context. It is like
QUOTE in LISP 1.5 , except for the existence of a wider spectrum of atoms.
The printed representation of the value of a quoted expression (QUOTE !)
is s.

The syntax of tokens and representation of constants for the Q-32 implementation
of LISP II is given in TM-2710/2l0/00 entitled "The Syntax of Tokens."

TOP LEVEL-OPERATIONS

The LISP IL is written as a series of operations in S-expression format.

operation = declarative
expression

declarative = section-declaration
free-declaration
function-definition
dummy-function-declaration
macro-definition
instructions-definition
LAP-definition

Of the operations input at the top level, expressions constitute command~ to
the system to evaluate tne expression and print out the resulting value (if
any) • Declarati ves are simply absorbed by the system ,,,i th some degree of
error-checking being performed; thus a section-declaration is simply accepted;
a free-declaration or a dummy-function - declaration must be checked for
consistency and be absorbed if correct; a function, macro-, or instructions-

/\,
/

('1
\

o

:,]

4 November, 1965 7 TM-27l0/220/00

definition must be checked for syntax and consistency and then must be
compiled. A definition to be compiled consists of an expression plus some
declaration information. This section describes declarations made at the
section level~, The subjects of expressions and their evaluations are covered
in sections 4 and 5.

3.1 THE SECTION-DECLARATION
* section-declaration = (~CTION fsection-name I (section-name)1 type-option)

section-name =

type-option =

type =

simple-tYFe =

array-type =

f-type

identifier
NIL

type
empty

simple-type
array-type
formal-type

BOOLEAN\INTEGER\OCTAL\REAL\SYMBOL

(ARRAY f-type)

FORMAL
simple-type

(FOm~L value-type * formal-type = indef-par-type parameter-type)

value-type = NOVALUE
f-type

indef-par-type= (f-type transmission-mode INDEF)
empty

transmission-mode = LOC
empty

parameter-type = f-type
(f-type transmission-mode)

Semantics

The section-declaration can be done only at top level of LISP. Whenever the
function LISP is called, the section-name and section-type are initialized to
NIL and SYMBOL, respectively, unless an explicit section-declaration is
encountered. A new section-declaration replaces the old, and at exit from
the function LISP, the previous section-declaration is restored.

4 November 1965 8 TM-27l0/220/00

The use of an identifier as a section-name cannot conflict vli th any other
uses of that identifier.

If the section-declaration contains only the single section-name NIL, then the
current section is NIL and there are no default sections. If the section
declaration has a single section-name other than NIL, the section-name
constitutes the current section, and NIL is the default section.

If the section-declaration contains a list of section-names, the first name
in the list is the current section, and the remaining names on the list are
taken in succession as default sections, with section NIL assumed as the final
default section if it does not appear earlier on the list.

The current section is an implicit parameter of section-level declarations.
The current section and default sections are used to determine the declarations
for free-variables, as described below.

The type-option is a default declaration for all functions and fluid-variable
declarations. Empty t.ype-oution implies SYMBOL by default. Example of the
scope of section declarations is given in Fig. 1.

The type information contained in f-type and used in parameter-type, formal
type, array-type and vA.IU!~-type is a collapsed form of the more specific
lni'ormation contained in type. For every occurrence of array-type in type,
SYMBOL is used in f-type. J!'or every occurrence of formal-type in type.
FOfu~L is used in f-type. The complete speCification of type occurs only in
section declarations and in actual variable declarations. The abbreviated
form f-type is used in durnmy-function-declarations, valll~-type, and as sub-type
information inside of array-typ~ and formal-type.

SECTION-LEVEL DECLARATIONS

Declarations, made at section level, establish type and transmission mode for
variables.

variable = untailed-variable
tailed-variable

untailed-variable = f-name

tailed-variable = (EXTERNAL f-name)
(EXTERNAL f-name section-name)

f-name = identifier

(\
)

4 November 1965 9 TM.-27l0/220/OO

-}
this is section () of default-type SYMBOL

(SECTION NIL REAL)

-}
still section () but default type is REAL

(SECTION AA INTEGER)

-}
section AA, default-type INTEGER

(SECTION BB SYMBOL)

-}
section BB, default-type SYMBOL

(SECTION AA SYMBOL)

-J
back in section AA, but default-type is SYMBOL

(LISP input output)

-}
section (), default-type SYMBOL

(SECTION AA REAL)

-} section AA, default-type REAL

(STOP)
--~

\

'J -j return to -section AA, default-type SYMBOL

Figure 1 ~ections and default-ty"pes

4 November 1965 10 W!-27 10/220/00

A simple untailed-variable declared at section level refers to a variable
declared in the current section. The tailed form (EXTERNAL f-name) ahlays
refers to a variable declared in section NIL. The tailed form (EXTERNAL
f-name section-name) refers to a variable in the named section. ThUs, through
use of the tailed forms, variable declarations can be established in sections
other than the current one.

A declared variable must belong to one of the following, mutually-exclusive
classes:

fluid-variable
mID-variable
function-name
macro-name
instructions-name

Once the declaration for a variable is in effect, a subsequent declaration for
the same variable is permitted only if it agrees in type with the previous
declaration, or if there are no references to that variable from assembled
code or synonyms.

Variables "\"hich are not yet declared at the section level in one of the above
classes constitute a pool of available names "\'lhich can be used at section level
to name fluid variables, O"lID variables, functions, macros and instructions.

3.3 FREE-DECLARATION

* free-declaration = (DECLARE free-variable-declaration)

free-variable-declaration = variable
(variable type-option free-storage-mode

[LOC I empty})
free-var-preset-decl
synonym-declaration

free-var-preset-decl = (variable type-option free-storage-mode expression)
(variable type-option free-storage-mode LOC

full-locative)

free-storage-mode = OWN
storage-mode

storage-mode = FLUID
empty

synonym-declaration = (variable MEANS variable)

(\
/

('\

4 November 1965

Semantics

free-variables:

11 'JlIJ.-2710/220/00

A free-variable-declaration is required for all variables used free; a variable
is used free if it is referred to within a function or functional expression~
or used in an expression at section level, without being bound as a block
variable or as an argument of the function or functional expression.

For any untailed variable used free within a section, the declarations of the
current section take precedence in determining type and storage mode. If more
than one declaration has been made for this variable in the current section,
the last declaration applies. The type of the variable is that specified in
the free-variable-declaration, except that if no type is given in the free
variable-declaration, the section-type is used as a default.

If the variable has no free-variable-declaration in the current section, but
has been declared in a default section, the variable acts as a tailed-variable
belonging to the section in ,.hich it was declared. (If the variable has been
declared in more than one default section, then the declaration used is that in
the section whose section-name occurs first on the section-list.)

A tailed-variable belongs to the section named by its tailing, and must have a
declaration in that section.

fluid-variables:

Storage-mode FLUID means that all uses of this variable are fluid, and all
bindings of the variable within a block or function are fluid, whether or not
the variable is explicitly declared FLUID within the function or block.
Storage-mode empty means that the section-level declaration (and this fluid
binding) applies only in functions or blocks in vlhich the variable is explicitly
declared to be FLUID. In either case, all free uses of the variable refer to
the most recent setting of the fluid variable.

fluid binding:

Fluid binding is applied to a fluid variable that is used as a block-variable
or as a parameter of a function whenever that function or block is entered.
Fluid binding of a variable is accomplished by first saving its previous value
on the pushdown list and then setting it (the fluid variable) .to the corres
ponding argument in the case of a function, or to the preset value in the case
of a block. All uses or settings of the fluid variable wi thin the function (or
block) refer to or affect the value of the fluid variable. Exiting from the
function or block in any manner causes the previous value to be obtained from
the pushdOl-ffi list and restored to the fluid variable.

4 November 1965 12 rnA-2710/220/00

OWN variables:

The free-storage mode mm in a free-variable declaration means that this
variable can be set and used as a free variable but can never be bound by a
block or function. Variables declared as FUNCTION, MACRO, or INSTRUCTIONS
behave as OWN when used free. (The use of a variable as an mill, FUNCTION,
MACRO, or INSTRUCTIONS variable does not conflict ylith the use of a lexical
variable of the same name. See section 3.4.)

free-var-preset-decl:

A free variable preset declaration contains declaration information for a
variable together with an expression or full-locative to be used to preset the
variable. It is equivalent in effect to a free-variable-declaration made with
out a preset, followed by a setting of the variable to the value of the expres
sion contained in the free-var-preset-decl.

locatives:

The transmission-mode LOC in a free-variable-declaration means that this
variable is never used to hold a value directly, but instead alYlays holds a
locative pointer to a value of the specified type. The expression used to
preset a locative free-variable must be a full-locative, Ylhich is an expression
that evaluates to a locative pointer (see section 4.6).

synonym-declaration:

The synonym-declaration (aa MEANS bb) means that variable aa is another name
for variable bb. The synonym-declaration is legal only if -a declaration
already existS-for bb. If a declaration is already in effect for aa, then aa
and bb must agree intype. Synonym declarations are transitive anddynamic-.
The effect of the two synonym declarations

(bb MEANS cc)

(aa MEANS bb)

is the same as the effect of

(bb MEANS cc)

(aa MEANS cc)

In other "lords, if the variable on the right hand side of a synonym is itself
a synonym, it is replaced by its meaning. Hence, the state of a variable at
any time is reflected by a synonym relationship that is only lIone deep."

A synonym-declaration va th the same variable on both sides of MEANS, i.e.;

(aa 1<lEANS aa)

is treated as a special case. If aa W'aS a synonym, the synonym relationship
is removed, and aa now means itself: If aa was not a synonym, nothing happens.

(---
\

I~ 4 November 1965 13 rrPL-27 10/220/00

Synon;ym declarations are dynamic. The meaning of a variable depends upon the
last operated synon;ym declaration for that variable.

FUNCTION-DEFINITION

function-definition = (FUNCTION [variable 1 (variable value-type)}

par-list expression)

* par-list = (indef-param param)

indef-param = (indef-name type-option transmission-mode (INDEF par-name)

empty

par-name = variable

param = par-name
(par-name type-option storage-mode transmission-mode)

Semantics

A function-definition in \·rhich type is not specified assumes the default-type
~ of the section. All functions have an expression as a body.

In general, the value of the expression, converted to the proper type, is the
value of the function. In NOVALUE functions, the value of the expression is
not used.

Each parameter or param on the par-list represents an argument for the function
being defined. The par-name is the name of the variable, and has only local or
lexical significance unless storage-mode is FLUID or a FLUID free-variable
declaration exists for this variable. The type of a parameter is either speci
fied in type-option, or if the type-option is empty, the parameter-type is
obtained by default from the value-type of the function, or, if the function is
NOVALUE, the section-type is used as the parameter type.

A function may have an indef-param as its first argument. An indef-param
represents an indefinite number of arguments all of the same type. The indef
name in the indef-param is a variable used within the function, and must be a
lexical variable. (Note that the indef-param does not contain storage-mode.)
The par-name, following the word INDEF, is always a lexical variable of type
INTEGER, and represents the number of arguments. When the function is called,
the arguments supplied for the indef-param are stored sequentially on the push
dOliU list, and the function receives as parameters a locative corresponding to
the number of indef arguments and then all subsequent arguments. Within the
function, the indef-name must always be subscripted to obtain the indef argument
values.

4 November 1965 14 fJlIJ.-27l0!220/00

In any parameter, the transmission-mode LOC means that this parameter is to be
transmitted by location rather than value (see section 4.6). If no FLUID mode
has been designated at the section level and none is given in the function
definition, the variable is strictly local and its value is not available
outside of the function itself.

A local or lexical variable is simply a name for a temporary storage cellon
the pushdown list, and the binding of an argument to a lexical variable used
as a parameter of a function is accomplished by storing the argument on the
pushdown list. The use of a variable as a lexical variable cannot conflict
with its use as an OWN variable. A tailed-variable is never a lexical variable.

A FLUID declaration made at the function-definition level causes FLUID binding
of that variable to occur at entry to the function, as discussed in section
4.4. A fluid-declaration of a variable in a function-definition establishes
the type and transmission-mode for the variable, and is equivalent to a free
variable-declaration of the form (variable type).

3.5 DUMMY-FUNCTION-DECLARATIONS
dummy-function-declaration = (FUNCTION (variablel (variable value-type)}

* (par-list \ (indef-par-type parameter-type)))

A dummy-fUnction-declaration provides information to the compiler sufficient
to set up the calling sequence and value conversion. The actual function
definition must be consistent vdth all dummy-function-declarations.

Dummy-function-declarations contain transmission-mode information but do not
contain storage-mode information. The correspondence between the type
information in a dummy-function~declaration and the actual function-definition
is given in section 3.1.

MACRO-DEFINITION

macro-definition = (MACRO variable (par-name) expression)

A macro-definition behaves like a function-definition of type SYMBOL and with
one argument of type SYMBOL. If M is a macro name, then wherever the form
(M •••) is to be compiled, the value of the macro-definition of M, applied to
the argument (M •••), is compiled in its place.

Macros must be defined before use. Consequently, macros cannot be recursive,
although a macro may be defined using a subsidiary, recursive function.

n

4 November 1965 15 T'M-2710/220/00

3.7 INSTRUCTIONS-DEFINITION

instructions-definition = (INSTRUCTIONS (variable NOVALUE) () expression)

An instructions-definition generates LAP code for the function it defines. The
expression is intimately associated 'Hith the compiler, and makes use of the
fluid variables and functions of the compiler. (See document on LISP II
Compiler_-TM-2710/320/00).

LAP-DEFINITION

LAP-definition = (LAP listing d-list section-name)

* listing = (desc-type (f-name value-type) par-list item)

desc-type = FUNCTION
HACRO
INSTRUCTIONS

item is as defined in the LAP II memo.

LAP and its use is described in TM- 271(/250/00. A LAP-definition may be used
to define a function, macro or instructions, depending upon the value of desc
type.

4. EXPRESSIONS

Expressions are the basic building block of LISP II. Syntactically, LISP II
IL is 'l-iTitten as a series of S-expressions, defined in section 2. An expression
is the basic semantic unit of the language, and is one of a restricted set of
S-expressions. Unlike declaratives, '\·rhich are used at the top level, expressions
are consistent at all levels of the LISP II language.

expression = simple-expression
conditional-expression
block-expression

simple-expression = constant
variable
fonn

This section • .Jill describe only simple-expressions and conditional-expressions.
Block-expressions are described in section 2.

Constant Has covered in section 2. A constant is a simple-datum or quoted
expression. The value of a constant is the datum it represents.

4 November 1965 16 TM-27l0/220/00

The value of a variable is the most recent setting of that variable at the
level at uhich the evaluation takes place. Setting of variables at the top
level is accomplished by declaring the variable FLUID or ovm and then using an
assignment expression, by evaluating an expression in which the variable is
used free and set, or by means of a free-variable-preset-declaration.

Syntactically,

* form = (form-name argument)

argument = expression
functional

Semantically, the value and effect of a form depends upon the form-name.

form-name = array-variable
function-name
macro-name
instructions-name
formal-variable
indef-name

These are semantic distinctions only and depend upon prior history, definitions
and local context.

The following description of semantics of forms will cover assignment expressions,
locatives, conditional and Boolean expressions, general evaluation of forms,
and functional arguments.

4.1 ASSIGNMENT-EXPRESSION, LOCATIVES

assignment-expression = (SET locative expression)
loc-assignment-expression

locative = i-Tord-locative
list-locative

,·,ord-loca ti ve = full-loca ti ve
(CORE subscript)
(BIT subscript subscript word-locative)

subscript = expression

list-locative = (PROP expression)
(CAR expression)
(CDR expression)

(\

4 November 1965 17

full-locative = variable *
(array-name subscript subscript)
loc-assignment-expression

TM-2710/220/00

loc-assignment-expression = (LOCSET loc-variable full-locative)

loc-variable = variable

The value of an assignment-expression is that of the expression contained
,.,i thin. An assignment-expression has the crucial side-effect of planting
the value of the expression into the location specified by the locative,
after making any necessary conversion, where such conversion is possible.

A word-locative represents a designated portion (possibly all) of a word
of memory. When a word-locative is used as the first argument of an
assignment-expression, the assignment expression causes the converted and
possibly truncated value of its second argument to replace the designated
portion of that word.

A subscrip~ is an arithmetic expression which is evaluated to produce an
integer value. Subscripts are used to specify particular elements of an
array or indef-param.

The word-locative (CORE subscript) refers to a particular location in core
storage whose address is equal to the subscript value, and can be used to
obtain data from or store into a particular core location. Its value is of
type OCTAL.

The word-locative (BIT subscript subscript w) is used to designate a portion
of a word~, a word-locative of type OCTAL.

The first subscript in BIT specifies the right-most bit starting with ¢. The
second subscript specifies the number of bits. Nested BIT modifiers are
applied sequentially from inside out, the outer working on the portion
remaining after the inner has had effect.

Thus:

(BIT 2 5 (BIT l¢ 8 w) = (BIT 12 5 w)

When it is used as an expression rather than a locative, the value of the BIT
modified expression is of type OCTAL and equal to the selected portion o~
word~, right justified.

4 November 1965 18 fJ1II-2710/220/00

List-locatives ivork on identifiers and list structure. The expression used
as the argument of a list-locative must produce a value of type SYMBOL. If
(CAR X) is defined then (SET (CAR X) B) replaces the symbol (CAR X) by t~e
symbol value of B. Similar results apply for CDR and the general c{AID} R
functions. .

The expression given as an argument to PROP must evaluate to an identifier.
The value of (PROP expression) is the property list of the identifier. As
a locative, PROP may be used to set the property list.

A loc-assignment-expression is used to change the locative pointer in the
loc-variable to the full-locative value of the second argument. A loc-variable
is a variable vlhich has a transmission mode of LOC. The value of the
loc-assignment-expression is the full-locative, which must agree in type with
the loc-variable.

("-.
\ ,

..

J

4 November 1965 19 TM-2710/220/00

4.2 CONDITIONAL AND BOOLEAN-EXPRESSIONS

Conditional and Boolean expressions are special forms having a unique method
of evaluation.

* conditional-expression = (IF logical-expression flogical-expressionl

fexpression\empty1)

logical-expression = expression

A logical-expression is an expression ,.,hich is subject to Boolean evaluation.
The value of a logical-expression is FALSE if it evaluates to FALSE or the
empty list (), and is equivalent to TRUE otherwise.

In evaluating the conditional-expression (IF PI e l P2 e2 ••• Pn en eo)' the

logical expressions P. are evaluated in turn from left to right until one, say
-1

p., is found that is TRUE (not FALSE). The value of the conditional expres
.1

sion is the value of the corresponding expression e .• If none are true, then
J

the value is e. If e is absent, and no logical-expression is true, the o 0

conditional expression is undefined and vdll cause a run-time error.

Except for any side effects that may occur in the evaluation of the p., the
1

entire conditional-expression has the same effect as if it were replaced by

the single e. or e vThich is its value.
J 0

* Boolean-expression = (AND logical-expression)
(OR logical-expression*)

(Alf.D PI P2 •.. Pn) is TRUE if all Pi are TRUE (i.e., not FALSE) and FALSE

otherl·Tise. The expression is evaluated from left to right only far enough

to determine its value, i.e., if any p. is FALSE, the remaining p. for j > i
1 J

are not evaluated. (AND) is TRUE.

(OR PI P2 ••• Pn) is FALSE if all Pi are FALSE, and TRUE otherwise. The ex

pression is evaluated from left to right only far enough to determine its

value, i.eo, if any p. is TRUE, the remaining p. for j > i are not evaluated.
1 J

(OR) is FALSE •

4 November 1965 20 TM-2710/220/00

4.3 EVALUATION OF FORMS

* For normal forms (function-name arg), where all of the arguments are expres-
sions, the evaluation of the form is done by evaluating all arguments, then
passing the arguments to the function and operating the function. The order
of evaluation of arguments is not guaranteed.

4.4 FUNCTIONAL ARGUMENTS

functional = (FUNCTION [NIL\ variable \ ([variable\NIL} value-type)}

p-list expression funarg-variables)

formal-expression

(FUNCTIONAL formal-expression funarg-variables)

formal-expression = function-name
expression

funarg-variables

Semantics

= (variable *)
empty

A functional is a formal-valued expression. A functional must be used
as the argument of a function which requires a formal-type parameter, or to set
or preset a formal variable; it may also be used wherever an arbitrary symbol
is permitted.

The first format shown above creates a local function definition. The functional
need have no name (i.e., can be of form (FUNCTION NIL •••) if it is not
recursive. If the functional is used in setting a formal variable, presetting
a formal variable, or as a formal argument of a function, there need not be any
type information given in the functional, since the full type information is
available to the compiler. Any applicable FLUID storage mode information for
parameters must be supplied, however.

For example, given the dummy functional declaration

(FUNCTION (FF SYMBOL) SYMBOL (FORMAL INTEGER REAL (REAL LOC))

then in the form

(FF A (FUNCTION B (X FLUID) Y)))

the functional B has value-type INTEGER and params (X REAL FLUID) and
(Y REAL LOC).

If the functional is used for setting a symbol type variable or a formal' array
element, then full parameter type information is required.

(~
I ,I

.,

"

4 November 1965 21 fJlJI.-27 10/220/00

A fo.rmal-expressien is any expressien vThese value is a ferma1. Any
functien-name is autematically a fermal expressien.

Funarg-variables is an eptienal list ef fluid variables, which sheuld be cem
pesed ef variables that are used free within the functienal. A variable is
placed en the list if it is desired to. save the binding ef the variable at
the peint at which the functienal is evaluated fer later resteratien when the
fernal (value ef the functienal) is applied to. arguments. This assures that
free use ef the fluid within the functienal will net be affected in any way by
any pessible rebinding ef the variable eccurring between the peint ef evalua
tien and peint ef applicatien ef the functienal. This is usually, but not
always, the desired interpretation for the free variable.

Fer example, censider

(FUNCTION (MAPCAR SYMBOL) ((X FLUID) (FN (FORMAL SYMBOL SYMBOL)))

(IF (NULL X) NIL (CONS (FN (CAR X)) (MAPCAR (CDR X) FN)))

(FUNCTION (JX SYMBOL) (L (X FLUID))

(MAPCAR L (FUNCTION () (K) (CONS K X) (X))))

(JX (QUOTE (A BCD» (QUOTE M»

Here, the use ef the funarg-variable (X) was necessary in the definition ef JX,
to. assure that the functienal argument uses the value ef X beund in JX, so.
that the result is ((A • M) (B • M) (C • M))

Witheut the funarg-variable declaratien, the call to. MAPCAR, as defined here
"lvi th (X FLUID), weuld cause the binding ef X in MAPCAR to. be seen wi thin the
functienal, and the result weuld be ((A ABC D) (B BCD) (C C D) (D D»
independent ef the secend argument ef JX.

Altheugh this example is artificial in that MAPCAR dees net require (X FLUID),
the principle applies to. ether cases ef functienal arguments.

4.5 FORMAL VARIABLES

A fermal variable is a variable which has been declared fermal so. that it can
receive a dynamic functienal setting. After having been given a preper
setting, a fermal variable can be used in the same manner as a functien-name.
The fermal-type declaratien inferms the cempiler ef the value-type and .
parameter-types ef any functienal to. which the fermal variable can be set.

Once its type has been declared, a fermal variable can accept enly these
functienal bindings whese value-type and parameter-types match these ef the
fermal.

4 November 1965 22 ~-27l0/220/00

In LISP II, unlike LISP 1.5, a functional expression cannot be applied to its
arguments directly. Instead, the functional argument must first be set into
a formal variable, and the formal variable then applied.

To operate a program at the top level of LISP II, one uses a formal variable
and a functional expression where one would have used a LABEL or LAMBDA expression
and *FUNC in Q-32 LISP 1.5. For example:

(DECIARE (FF (FORMAL SYMBOL SYMBOL SYMBOL)))

(SET FF (FUNCTION () (A B) (PLUS (TIMES A A) (TIMES B B))))

(FF 3 4)

ivould result in a printout of the value 25.

4.6 ARGUMENT TRANSMISSION

The arguments of a function are characterized by type and transmission mode.
The expression that is used as the argument to a function must be consistent
in type and mode with the argument declaration as follOi-lS:

Locative transmission:

In general, a variable must_be declared LOC if the full
locative used as its argument is to be set as the variable
itself is set. An expression used to supply the value of
that argument must be a full-locative of the same type.

For example:

(FUNCTION (REALSET REAL) «X LOC) Y) (SET X Y))

is a function of two arguments (X REAL LOC) and (Y REAL) that
sets the locative X to the value of the expression Y.

It is possible to call FN as follows:

(REALSET A 3.5) (which sets A to 3.5), or

(REALSET (AA i) 3.) (which sets the ±th element of AA to 3.5),
where A is a variable of type REAL and AA is a real array,
but (REALSET 3.¢ 3.5) would be illegal and meaningless.

- - ------

f\
, /

'.

4 November 1965 23 rsJ!J.-27l0/220/OO

A variable of array type must be declared Loe if the entire
array is to be set by an assignment statement but not if
only single cells in the array are to be changed. For example:

(FUNCTION (ARRAYSET SYMBOL) «X (ARRAY REAL) LOC) (Y (ARRAY REAL)))

(SET X Y))

"lhich sets a real array variable X to a real array Y, must have
a LOC declaration on X, since its result :is to make the array
variable specified by X point to an array Y.

HO"lever,

(FUNCTION (ARRAYSETl SYMBOL) «X (ARRAY REAL)) (Y REAL))

(BLOCK «M INTEGER)

(FOR M (N STEP-l UNTIL 1) (SET (X 1<1) Y))

(RETURN X)))

'·Thich sets N elements of the real array X to the value Y,
does not require that X be LOC, since X will end up
pointing to the same array at the end, but the values of
the elements of the array i-Till have been changed.

Arguments transmitted by value:

For arguments transmitted by value, any expression may be
supplied in the function call, provided that the types are
interconvertible.

Type conversion is discussed in section 4.7.

4.7 TYPE CONVERSION

Type conversion is required whenever the value type of an expression differs
from the type expected at the point at which the value is used. The penni tted
conversions are described in Table 1.

4 November 1965 24

Table I

Type Conversion

rm-27l0/220/00

TYPE
\ -\TO

FROM B I 0 R S a-t f-t

BOOLEAN X - - - X - -
INTEGER TRUE X IO IR S - -
OCTAL TRUE OI X OR S - -
REAL TRUE RI RO X S - -.,
SYMBOL P SI SO SR X SA SF

Array-type TRUE - - - X A -
Formal-type TRUE - - - X - F

Remarks:

x

S
TRUE
p

A
F
IO
IR
OI
OR
RI
R'O
SI
SO
SR
SA

SF

= exact, no conversion needed
= not permitted
= symbol of appropriate type transmitted
= all non- Boolean values are TRUE
= predicate evaluation: () FALSE, else TRUE
= array-types must agree, else illegal
= formal-types must agree, else illegal
= integer-to-octal conversion, exact, except -¢ +¢
= integer-to-real conversion, done by floating the integer
= octal-to-integer converSion, exact
= octal-to-real conversion, done by floating the equivalent integer
= real-to-integer conversion, rounded
= real-to-octal conversion, rounded
= if symbol is a number, convert to integer, else illegal
= if symbol is a number, convert to octal, else illegal
= if symbol is a number, convert to real, else illegal
= if symbol is an array and array types agree, transmit the

value, else illegal
= if symbol is a formal-type and formal-types agree, transmit

the formal, else illegal

:

('\,
J

..

I \
~

4 November 1965 25 TM-27 10/220/00

If it is desired (for system work only) to suppress automatic type conversion,
"cheater fUnctions" can be employed. A cheater-fUnction changes the apparent
type of a value "In thout actually converting the value. The available cheater
fUnctions are given in Table II.

Table II

Cheater Functions

Name Argument Type Apparent value type

B20. BOOLEAN OCTAL

120. INTEGER OCTAL

R20. REAL OCTAL

S20. SYMBOL OCTAL

F20. FORMAL OCTAL

02B. OCTAL BOOLEAN

02I. OCTAL INTEGER

02R. OCTAL REAL

02S. OCTAL SYMBOL

02F. OCTAL FORMAL

By the use of tvo "cheater-functions" any f-type can be converted to any
other apparent type. CAUTIONl

4. 8 LISP II ARITHMETIC

Arithmetic fUnctions in LISP II IL consist of the primitive INSTRUCTIONS forms
PillS, TTI-1ES, MINUS, and DIFFERENCE which cannot be defined as functions,
together "In th a set of primi ti ve fUnctions such as QUOTIENT, IQUOTIENT,
RID~INDER, SIGN, etc., which are well-behaved.

In LISP II, arithmetic using PLUS, TIMES, MINUS, and DIFFERENCE is guaranteed
to produce the same numeric values when any or all arguments are real or
integer, as they vlould if all arguments were of type symbol. MINUS has one
argument and produces a result of the same type as its argument, except that
an octal input produces an INTEGER output. PLUS and TIMES take an indefin~te
number of arguments. DIFFERENCE takes two arguments.

The type of the results of PLUS, TIMES, and DIFFERENCE of two arguments is
related to the types of its input arguments by the folloVTing table:

4 November 1965 26

Table III

fJ.M-27l0/220/00

Results of PillS, TIMES or DIFFERENCE of tvTO Arguments

~ Argument INTEGER OCTAL REAL SYMBOL-IO SYMBOL-R

INTEGER INTEGER INTEGER REAL SYMBOL-I SYMBOL-R

OCTAL INTEGER INTEGER REAL SYMBOL-I SYMBOL-R

REAL REAL REAL REAL REAL REAL

SYMBOL-IO SYMBOL-I SYMBOL-I REAL SYl-mOL-I SYMBOL-R

SYl-mOL-R SYl,mOL-R SYMBOL-R REAL SYMBOL-R SYMBOL-R

In the table SYMBOL-IO means either SYMBOL INTEGER or SYMBOL OCTAL; SYl<mOL- I
means SYI;mOL-INTEGER, and SYMBOL-R means SYMBOL-REAL.

The output tj1?G of PillS and TIMES of more than t"10 arguments can be obtained
by successive applications of the table to the partial sums or products.

The order of combination of the arguments in PLUS and TllvlES is not guaranteed.

The function QUOTIENT in LISP II has arguments and value of type REAL.

IQUOTIENT and REMAINDER have arguments and value of type INTEGER.

The logical expressions

(EQUAL x y) meaning is X = Y

(GR x y) meaning is X > Y

(18 x y) meaning is X < Y

(GQ x y) meaning is X ~ Y

(LQ x y) meaning is X ~ Y

(NQ x y) meaning is X ~ Y

are all exact. The forms GR, LS, GQ, and LQ work on numeric arguments only,
while EQUAL and NQ work on all ty~s of arguments. The compiler compiles these
logical-expressions open and produces efficient code for them where possible.

..

I

f\
. J

(~
,)

".

--------------- -----

4 November 1965 27 'lM-2710/220/00

BLOCK

* * block-expression = (BLOCK (block-declaration) flabel\statement})

block-declaration = switch-declaration
bloclc-variable-declaration

label = identifier

statement = compound statement
block-statement
go-statement
conditional-statement
return-statement
code-statement
simple-expression
(LABEL label statement)

* * compound-statement = (BLOCK (switch-declaration) flabellstatement1)

* block-statement = (BLOCK block-stat-decls flabel\statement1)
for-statement
try-statement

* block-stat-decls = (block-declaration block-variable-declaration

* block-declaration)

block = block-statement
block-expression

Semantics

A block-expression is a block or compound-statement used where an expression
is called for, and in general evaluated to produce a value. Statements occur
only inside of block-expressions.

A block-statement differs from a compound-statement only in that a bloc1\:
statement must contain at least one block-variable-declaration, "'hile a
compound-statement can not contain any block-variable-declarations. Other
forms of block-statements are for-statement, ivhich is macro-expanded into a
block-statement that may contain a block-variable-declaration (see section
5.6) and try-statement (see section 5.8).

4 November 1965

BLOCK-VARIABLES

block-variable-declaration

var-preset-declaration =

Semantics

28 TM.-2710/220/00

= variable
(variable type-option storage-mode)
var-preset-declaration

(variable type-option storage-mode expression)
(variable ASSIGNED expression)
(variable type-option storage-mode LOC fUll-locative)

Block variables, or variables declared at the block level, are initialized at
entrance into the block. If type-option is empty, and the variable has not
been declared FLUID at the top level(by means of a free-variable-declaration),
then the type is the default-type of the function or section, as in the case
of parameter declarations. If a FLUID free-variable declaration is in effect
for the variable, the type is detennined by that declaration, and the block
level declaration must be consistent in type with the free-variable declaration.

Ini tialization of a FLUID variable causes fluid binding to occur; namely, the
old value of the fluid variable is stored on the pushdovm list and the nev'
binding is put into effect. 'Vlhen the block is exited in any manner, the
bindings of all FLUID variables are restored to the previously stored values.

A variable ivhich has previously been declared O'VlN cannot be bound as a fluid
variable.

All variables that are bound at block level are preset upon entrance to the
block. If a var-preset-declaration is given, the preset value is the value
of the expression given in the declaration. Variables Vlhose transmission-code
is LOC must be preset to a fUll-locative.

If no preset expression is given, a variable is set to NIL, zero, or a fonnal
trap at the entrance to the block.

The fonn (variable ASSIGNED expression) requires a preset. The variable,
which must be local, is set to the same type as the value of the expression
used to preset it.

Lexical variables, (Le., those not FLUID or Olm) are visible only vTithin the
block in i·,hich they are declared and \·Tithin all inner blocks in lvhich they are
used free. They cannot be used in functional a.rguments, and cannot conflict
",ith fluid variables of the same name. When a variable is found free "Tithin
an expreSSion, the most recent setting (FLUID, O'VlN, or lexical) is used.

· .

. /~ .)

f\
\)

·0

4 November 1965 29

5.2 GO-STATEMENT, lABEL, AND SWITCH

go-statement = (GO label)
s1-li tch-call

* swi tch-declaration = (sm tchname S'l-lITCH s-label)

s"li tchname = identifier

s-label = label

sl'li tch-call = (GO (sm tchname subscript))

Semantics

A label or s1-1itchname must be unique ll1i thin the single fUnctional or 'Id thin
the single top-level expression or definition in ,vhich it resides. However,
the use of an identifier as a label or switchname cannot conflict vlith any
other use of that identifier.

A label is regarded as a symbolic name for the first statement that follows it,
and is used to transfer control to that statement. A label located after the
last statement in a block or compound-statement is used to cause control to
"fall through."

The scope of a label consists of all statements contained ,dthin the innermost
block in '<lhich the label occurs, but excluding all expressions contained within
the block. It is possible to IIgo to" a label (Le., (GO label) is legal)
from anyi'There vii thin the scope of the labe 1.

A s"li tch-declaration can contain a label only if it lies wi thin the scope of
that label. The scope of a switch is the same as that of a label at the top
level of its block or compound-expression.

Apart from binding of variables, the evaluation of a block or compound
statement consists of operating each statement in turn, until either the
control "falls through II after the final statement in the block or compound
statement, or until a go-statement, return-statement, or an exit-expression is
encountered.

If the control "falls through" in a block-expression, the value of the block
expression is NIL. If the control IIfalls through" a block-statement or
compound-statement, control passes to the next statement outside of that block
statement or compound-statement.

4 November 1965 30 'lM-27l0/220/00

A go-statement encountered within a block or compound-statement causes control
to be transferred to the label contained in the go-statement. If the label
lies outside of a block-statement, a block-exit is performed before the control
is actually transferred. The scope definition for label permits "going out of"
a block but prohibits "going into" a block.

A switch-call causes a transfer of control to one of the labels in a switch
declaration. The s-labels on a switch-declaration can be any labels in "I"hose
scope the switch-declaration occurs.

When a s"lntch call is encountered, the subscript expression is evaluated to yield
an integer, and the integer is used to select one of the s-labels in the svdtch.
The s-labels in the switch declaration correspond to subscript values 1, 2, •••
n. If an s-label exists for the particular value of the subscript, then the
effect of the switch call is the same as (GO s-label). If no s-label exists,
i.e., if subscript < 1 or subscript> n, then the sintch call is not defined.

5.3 CONDITIONAL-STATEMENT
conditional-statement = (IF logical-expression statement [logical expression

"

* ~ statement 1 [statementlemptyl)

Semantics

A conditional-statement is evaluated by evaluating the logical-expression from
left to right until the first TRUE (non-NIL) predicate is found. If one is
found, the following statement is operated. If all logical-expressions are
FALSE, the final statement is operated, or if there is no final statement,
nothing is operated.

Any top-level statement inside of a conditional-statement may be labelled by
the form (LABEL label statement). Such a label is visible at the same level
as that of the conditional-statement itself. If control is transferred into
a conditional-statement by (GO label), the statement immediately following
the label is operated, and (if it was not a go-statement or a return-statement)
control "falls through" to the next dynamic statement outside of the
conditional-statement.

5.4 RETURN-STATEMENT
return-statement = (RETURN expression)

Semantics

The hierarchy of statements in LISP II assures that every return-statement
lies inside of a block-expression (i.e., one which is being used and evaluated
as an expression). f\

)

4 November 1965 31 rnA-27l0/220/00

Whenever a return-statement (RETURN expression) is encountered in the flow
of control within a block or compound-expression, the effect is the follo'YTing:

1. The expression is evaluated.

2. Exit is made from all compound-statements and block-statements
in ifhich this return-statement occurs, with restoration of
fluid variables occurring at each level, until the block
expression is reached.

3. The value of the evaluated expression, appropriately converted
to the proper value type, is the value of the block-expression.

5.5 CODE-STATEMENT

* code-statement = (CODE item)

item = label

Semantics

instruction
pseudo-instruction

Instructions and pseudo instructions and the use of code-statements are
defined in the LAP II document TM-27l0/250/00.

Code-statement are used to enter machine coded instructions into a program.
The labels that occur within code-statements are visible at the same level
as the code statement itself.

5.6 FOR-STATEMENT

* for-statement = (FOR variable for-element for-element statement)

for-element = «(a-expr\ empty} STEP a-expr (UNTIL a-exprl empty} term-element)
«(expression\empty1 (RESET expression\emptyl term-element)
(fIN\ON} expression term-element)

tenn-element = ImILE logical expression
UNLESS logical-expression
empty

a-expr = expression

An a-expr is an expression whose value is numeric.

4 November 1965 32 'lM-27 10/220/00

Semantics

1. A for-statement is a statement, not an expression. The variable in
the for-statement can be any variable bound at a higher level. The
statement which forms the body of the for-statement may be any
statement, including another for-statement.

2. A single for-statement with more than one for-element is exactly
equivalent to a sequence of primitive for-statements having the
same variable and statement body, e.g.,

(FOR v fl f2 f3 ••• fn s)

where! is a variable, f l , f2 ••• fn are for-elements,

and s is a statement, is precisely equivalent to the sequence of
for-statements:

(BLOCK () (FOR v fl s) (FOR v f s) ••• (FOR v f s»
2 n

The semantics of any for-statement can therefore be described in
terms of the primitive for-statement (or p.f.s.)

(FOR v f s)

which depends upon the for-element f as shown in 3, 4, and 5.

3. If f = (expression), then the p.f.s. is equivalent to

(BLOCK () (SET v f) s)

.f>

(~
\)

(~
\ /

4 November 1965 33 rnA-2710/220/00

4. If f = ([al' empty 1 STEP a2 UNTIL a 3 ([WHIIE ! UNIESS} pI empty1) ,

"There a l , a2 , and a3 are a-expr, then the p.f.s. is equivalent to:

(BLOCK «g ASSIGNED v))

(SET v al)lempty1

~l (IF (NOT p)\pl (GO £2))lemptYl

s

(SET v (PLUS v (SET g a2)))

(IF (LQ (TIMES (SIGN g) (DIFFERENCE v a3)) 0)

(GO 1,1))

the f.p.s. is equivalent to:

(BLOCK ()

[(SET vel)\empty1

P'l (IF f (NOT p) \ p 1 (GO Q,2)) \ empty 1

s

f(SET v (PLUS v a2))I(SET v e2)lempty1

(GO P'l)

Q'2)

where .el and P'2 are generated labels and (NOT p) corresponds to

WIITIE. If none of the terms STEP , RESET, WHIm, or UNIESS are

present in f, the statement (GO t 1) is not generated.

4 November 1965 34

6. If f = ([INION) e l [WHILE plUNLESS plempty)),

the p.f.s. is equivalent to

(BLOCK ((g SYMBOL e l))

,e 1 (IF (NULL g) (GO 1,2))

(SET v [(CAR g) 19})

[(IF ((NOT p)lp) (GO i.2))\empty)

s

(SET g (CDR g))

(GO P'l)

t2)

TM-2710/22 0/00

Where i.l , t2 and g are generated identifiers, and IN corresponds
to (CAR g), ON to g and the three choices in the conditional
statement correspond to the WHILE/UNLESS/empty cases.

The compiler will actually implement most forms of for-statement
by means of macro expansion similar to that indicated below.

,,-----
(\

)

------- ---~ - --------------------

o 4 November 1965 35 rnA-2710/220/00

STh1PLE EXPRESSION USED AS A STATEMENT

Any expression can be used as a statement. The expression used in this
itTay is evaluated and the value discarded. Thus this form of statement
is useful only if it produces side effects, such as setting variables
and performing input-output functions.

(Syntactically, only simple-expression is included in the definition of
statement, since compound-expression and conditional-expressions are already
subsumed as special cases of compound-statements and conditional-statements.)

TRY-STA~~NT AND EXIT-EXPRESSION

try-statement = (TRY statement full-locative statement)

exit-expression = (EXIT expression)

Semantics

A try-statement is a block containing titlO statements and a full-locative.

The first statement is executed normally unless an exit-expression is
encountered itTi thin it. If no exit is encountered, the second statement is
bypassed, and if the first statement "falls through," the try-statement
"falls through."

If an exit-expression is encountered, control reverts to the innermost try
statement in \,rhich the exit-expression occurs, and the effect is that of
operating the block.

(BLOCK ()

(SET full-locative expression) statement),

,vhere full-locative and statement are those given in the try-statement, and
the expression used is that given in the exit-expression.

The full-locative used in the try-statement should be of type SYMBOL, so that
it can accept the value of the expression.

4 November 1965 TM-27l0/220/00 ()

INDEX TO SYNTAX EQUATIONS

Section Page Section Page

a-expr 5.6 31 full-locative 4.1 17
argument 4. 16 funarg-variables 4.4 20
array 2. 5 function-definition 3.4 13
array-type 3.1 7 functional 4.4 20
assignment-expression 4.1 16
atom 2. 5 go-statement 5·2 29

block 5 • 27 indef-par-type 3.1 7
block-declaration 5· 27 indef-param 3.4 13
block-expression 5 • 27 instructions-definition 3·7 15
block-statement 5· 27 item 5·5 31
block-stat-decls 5· 27
block-variable-declaration 5·1 28 label 5. 27
Boolean 2. 5 LAP-definition 3.8 15
Boolean-expression 4.2 19 listing 3.8 15

list-locative 4.1 16
code-statement 5·5 31 loc-assignment-expression 4.1 17
conditional-expression 4.2 19 loc-variable 4.1 17 (\ conditional-statement 5.3 30 locative 4.1 16 \ /

compound-statement 5· 27 logical expression 4.2 19
constant 2. 5 macro-definition 3·5 14

datum 2 • 5 number 2. 5
declarative 3· 6
desc-type 3.8 15 operation 3· 6
dummy-function-declaration 3.5 14

param 3.4 13
exit-expression 5.8 35 parameter-type 3.1 7
expression 4. 15 par-list 3.4 13

par-name 3.4 13
f-name 3.2 8
f-type 3.1 7 quoted-expression 2. 5
false 2. 5
for-element 5.6 31 return-statement 5.4 30
for-statement 5.6 31
form 4. 16 s-label 5.2 29
form-name 4. 16 S-expression 2 5
formal-expression 4.4 20 section-declaration 3·1 7
formal-type 3.1 7 section-name 3,,1 7
free-declaration 3·3 10 simple-datum 2. 5
free-storage-mode 3.3 10 simple-expression 4. 15
free-var-preset-decl 3.3 10 simple-type 3.1 7
free-variable-declaration 3·3 10 statement 5. 27 f\

,I

() 4 November 1965 37 rn4-27l0/220/00

INDEX TO SYNTAX EQUATIONS (Cont'd.)

Section Page

storage-mode 3.3 10
subscript 4.1 16
swi tch-call 5.2 29
switch-declaration 5·2 29
switchname 5.2 29
synonym-declaration 3·3 10

tailed-variable 3·2 3
term-e lement 5.6 31
transmission-mode 3.1 7
try-statement 5.8 35
type 3·1 7
type-option 3·1 7

untailed-variable 3·2 8

value-type 3·1 7
variable 3·2 8
var-preset-declaration 5.1 28

word-locative 4.1 16

4 November 1965 '18 'IM-2710/220/00 f\
)

INDEX TO SYNTAX EQUATIONS (Cont' d.)

Section Page Section Page

AND 4.2 19 lABEL 5. 27
ARRAY 3.1 7 LAP 3.8 15
ASSIGNED 5·1 28 LISP 1. 4
B20. 4.7 25 LOC 3.1 7
BIT 4.1 16 3·3 10

BLOCK 5· 27 5.1 28

BOOLEAN 3.1 7 LOCSET 4.1 17

CAR 4.1 16 MACRO 3·5 14
CDR 4.1 16 3.8 15
CODE 5·5 31 MEANS 3.3 10

CORE 4.1 16 MINUS 4.8 25

DECLARE 3·3 10 NQ 4.8 26
DIFFERENCE 4.8 25 NIL 2. 5

NOVALUE 3·1 7
EQUAL 4.8 26 3·7 15
EXIT 5.8 35 4.7 EXTERNAL 3·2 8 02B 25

02F 4.7 25 /\ F20. 4.7 25 02I 4.7 25 (J

FALSE 2. 5 02R 4.7 25
FLUID 3·3 10 02S 4.7 25
FOR 5.6 31 OCTAL 3·1 7
FORMAL 3.1 7 ON 5.6 31
FUNCTION 3.4 13 OR 4.2 19

3·5 14 OWN 3·3 10
3.8 15

PLUS 4.8 4.4 20 25
FUNCTIONAL 4.4 20 PROP 4.1 16

GO 5.2 29 QUOTE 2. 5
GQ 4.7 25 QUOTIENT 4.8 25
GR 4.7 25 R20. 4.7 25
I20. 4.7 25 REAL 3·1 7
"IF 4.2 19 RESET 5.6 31

5 3 30 REMAINDER 4.8 25
IL 1. 4 RETURN 5.4 30
IN 5.6 31 S20. 4.7 25
INDEF 3.1 7 SECTION 3·1 7

3.4 13 SET 4.1 16
INSTRUCTIONS 3·7 15 SIGN 4.8 25

3.8 15 STEP 5.6 31
INTEGER 3·1 7 STOP 1. 4
IQUOTIENT 4.8 25 SWITCH 5·2 29
LQ 4.8 26 SYMBOL 3.1 7 ~)
LS 4.8 26

Q 4 November 1965 39 'lM-2710/220/00
(last page)

INDEX TO SYNTAX EQUATIONS (Cont I d.)

Section Page

TIMES 4.8 25
TRUE 2. 5
TRY 5.8 35
UNLESS 5.6 31
UNTIL 5.6 31
vmIlE 5.6 31

o

:~

	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000001_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000001_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000002_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000002_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000003_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000003_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000004_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000004_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000005_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000005_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000006_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000006_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000007_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000007_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000008_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000008_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000009_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000009_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000010_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000010_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000011_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000011_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000012_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000012_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000013_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000013_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000014_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000014_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000015_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000015_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000016_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000016_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000017_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000017_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000018_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000018_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000019_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000019_b
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000020_a
	Kameny_Hawkinson-LispII_IntermedLang-TM2710.220.000020_b

