
The views, conclusions, or recommendations expressed in this 90cument do not neces
sarily reflect the official views or policies of agencies of the UQited States Government.

=... This d(~cument was produced by SDC in perfOrmaltCe of contract
AF 19(628)-5166 with the Electronic Systems D:.vision, Air Force
Systems Command, in performance of ARPA Order'773 for the

\A.dvanced Research Projects Agency Information Processing

\

jTechniqueB Office, and Subcontract 65-107. @[Wi J

l~~~ I~I~ aworkingpaper
System Development Corporation / 2500 Colorado Avenue / Santa Monica, California 90406

Information International Inc. I 200 Sixth Street I Cambridge, Massachusetts 02142

LISP II INTERNAL STORAGE CONVENTIONS

ABSTRACT

This document presents a description of the
internal structures end allocations of the
core storage for LISP II and the internal
representations of data for the Q-32 imple
mentation of LISP II. In general, the
storage area is composed of Fixed Program
Space, Character Atoms, Triples, Pushdown
Stack, Binary Progran:. Space, Array Space,
and List Space. The 'core map that is in
use at any specific time is indicated by a
pushdown pointer used in conjunction with
a set of OWN variables in LISP II in section
SIS.

for D _ I, Drnke¥ i

DATE PAGE l' OF -liPAGES
21 December 1965

21 December 1965 2 'IM-27 10/570/00

FOREWORD

LISP II is a. joint development of' SDC and III. The
idea f'or LISP II as a language combining the properties ,
of' an algebraic language like ALGOL and the list-
processing l.a.ngu.a.ge LISP was conceived by M. Levin of'
MIT. Developnent of' the concepts of' LISP II was
carried f'orth in a series of' conferences held at MIT
and Stanford University. Contributions in concepts
and detail were made by Prof'. John McCarthy of' Stanford
Uni versi ty, Prof'. Marvin Minsky of' MIT, and the LISP II
project team consisting of' M. Levin, L. Hawkinson,
R. Saunders and P. Abrahams of' III, and S. Ka.meny,
C. Weissman, E. Book, Donna Firth, J. Barnett and
V. Schorre of SDC.

(\ , /

/~
/

21 December 1965 '3 TM-2710/570/00

CONTENTS
Page

Section 1- General Organization of Core Storage • · · · · -3

2. Core Areas • • • · • · • • · • 3
2.1 Fixed Program Space • · · · · · • · · · · 3
2.2 Character Identifier • · • · · • • · · · • · • 3
2.3 Triple Space • · • • · · • • • • • · · • · • 3
2.4 Pushdown Stack · · • • • · • • • • • • · • • · 6
2·5 Binary Program Space · • • · • · · · • • • · 8
2.6 Array Space--Representation of Data • • · 0 • 9
2.7 List Space · • • • • • • · • • • • • • • 0 • 10

3· Type and Structure Indicators · • • • • 0 • 13
4. Detailed Use of Triple-Space Structure · 0 · 13
4.2 Quote Cell • · · · • • • • • • • • · • · 0 · 16
4.3 Identifier Triples • • · • • • • • • • • 0 • 16
4.4 Fluid Cells and Own Cells · • · • · • • • • 16
4.5 Own Formal • · • • • • • • • • • • • · • 20
4.6 Function Descriptor • • • • • • • · · 0 • 20

,~ ,

~

FIGURES

Figure 1- LISP II Core Allocation • · • · • • · • 4
2. Character Identifier · • · · • • · • • • · 5
3. Triple Space Structure-General • · • • · · • 5
4. Buckets and v-f-chains • • • • • • · · · · · 7
5. Assembled Function · · • · · · · • 8
6. Array Space Structures • • • • • • · 0 • · • 11
7· Full-locative • · • • • · · • • 12
8. Identifier · · • · · · · • · 17
9· Pname of Identifiers • · · • · • · 18

10. Fluid Cell and Own Cell · · · · • · · • · · 19
11. Function Descriptor (first word of own cell) 21
12. Type Information · · · · · · · · · · · · 23

TABLES
Table I. Type Indicators • · · · · · · · · • · • · · 14

21 December 1965 4 TM-2710!570/00

1. GENERAL ORGANIZATION OF CORE STORAGE

The general organization of core storage in LISP II is, as shown in Figure 1,
composed of seven different areas called Fixed Program Space, Character Atoms,
Triples, Pushdown Stack, Binary Program Space, Array Space, and List Space.
The pushdown pOinter, PDP, kept in Index Register 8, together with a set of
OWN variables, defined in section SYS, serves to define the current core map at
any point in time. Each of the fluid variables is of type OCTAL and contains a
core address whose meaning is shown in :figure 1. The core address contained in
each variable is just higher than the corresponding boundary of the core map.
Thus, Fixed Program Space, which is built toward higher addresses, starts at
location FPO and extends to the cell just lower than the location FPP. Similarly,
the Pushdown Stack, which is built towards lower addresses, starts at the address
just lower than location BPO, and extends appropriately to the location PDP. The
boundaries FPO, CHO and TRO are fixed in the system and cannot be changed except
by reassembling the entire system; all other boundaries are movable. Garbage
collection reclaims Triple Space, Array Space, and List Space, and repacks Array
Space and List Space. Binary Program b~ace is also reclaimable, compactable,
and usable.

2. CORE AREAS

2.1 FIXED PROGRAM SPACE

Fixed Program Space, which starts at the fixed program origin (FPO) is used to
hold fixed, non-relocatable constants and subroutines. Only those essential
elements of the system which cannot be deleted should be put here, using LAP with
an ORG pseudo-instruction (see LAP II memo for further details).

2.2 CHARACTER IDENTIFIER

Character identifiers, which start at the character origin (CHO) are all iden
tifiers whose print names consist of a single character. The character whose
print name has the ASCII code aa is located at aa + CHO. The structure of a
character identifier is shown in Figure 2. ---

2.3 TRIPLE SPACE

Triple cell space, organized in groups of three cells, is used for the storage
of identifiers, fluid cells, own cells (including function descriptors) and quote
cells. Triple cell space starts at location TRO (immediately after the character
identifiers). The triple cell pointer TRP points to the first higher address not
occupied by triple cells. The triple cell maximum TRM points to a movable
boundary between triple cell space and the pushdown list. "t<Tithin triple cell
space, structures are never moved, but if a triple cell is abandoned it is con
verted to an empty triple cell and linked onto the (possibly empty) free-triple
chain, TRL. TRL is an OWN OCTAL variabl~ in section SYS. A new triple cell is
taken from the free-triple chain or if the free-triple chain is empty, the triple
cell is placed at the end of triple cell space, and the boundary TRP is moved.
If moving the boundary TRP would cause TRP to equal TRM, the garbage collector is
called to reclaim triple cells. TRM is moved when necessary.

(

, /-\
'~

I'

..

(\
iV

21 December 1965 5 TM-21l0/510/00

OWN OCTAL variables in section SYS

FPO~~~----------------------------~~ _______ fixed ~rogr.am origin
Fixed Program Space

FPP ~-------fixed program pointer

I /

I

CHO ,--- character origin Character Atoms ~~

TRO --- triple cell origin

TRP triple ce 11 pointer

T triple ce 11 maximum

--- pushdown pointer (PDP)
(Index Register 8)

Pushdown Stack

BPO
Binary progl Space ~~ binary program origin

BP ~- I inary program pointer I

ARO--~JrL-4-~~~~~--~~--~~~--I~~--__ ~array space origin

ARP /

LSP ---

LSO-~

!
I

High addresses
f LISP II /

!

/
,I

rray space pointer
I

I
I

list space pointer

~------list space origin

Figure 1. LISP II Core Allocation

21 December 1965 6 TM-2710!570!OO

¢7 I v-f-chain I property
list

t = 6¢ for alphabetic characters A-Z (identifier with standard spelling)

t = 7¢ for other characters (identifier with unusual spelling)

Figure 2. Character Identifier

- contents depends on structure . _ .. .-::::::"" first cell

-----7 = 1 t!g
second cell

link third cell

No. of bits 6 18 6 18

-----=> ... link or symbol pointers

~==-~~-.non-identifier reference from binary program
"/ space or formal array

Figure 3. Triple Space Structure-General

(

,
1 1

o

21 December 1965 fJ}/J.-2710/570/00

I

A triple space structure consists of three consecutive cells in memory, as
shown in Figure 3. Pointers in general go to the second cell of a triple.
These pointers include the link pointer and symbol pointers. This is shown
by the single arrow :> in the figure.

References to non-identifier triples from binary program space, particularly
direct or indirect load and store instructions and BUC indirect instructions
use the address of the first cell, as shown by the double arrow »in
the figure.

Triple cells other than quote cells are organized into a free-triple chain
plus a series of "buckets." The free-triple chain is a chain of empty triples
pointed to from variable TRL in section SYS. The chain is tied together through
the link pointer of the third cell, with NIL in the last link. Each non-empty
"bucket" is a chain of identifiers of which the first identifier is in (pointed to
by) the OBIJ:s.r, an OWN SYMBOL array in section SYS. The bucket; is tied together
through the link pointer. Each identifier is tied through the v-f-chain in the
left half of its second word to a variable-and-function chain composed of those
fluid cells and own cells having it as a name. The v-f-chain is a circular
list strung by means of the link pointer, with the last triple in the chain
pointing back to the identifier. An identifier also contains a property-list
pointer. The property-list is by convention a list containing any mixture of
flags and property pairs. A flag is any atom, while a property pair is a
dotted pair whose CAR is the property name (an atom) and whose CDR is the
property value (any symbol).

The structure of buckets and v-f-chains is shown in Figure 4.

Quote cells, also contained in triple cell space, have no linked structure.

Genids, or generated identifiers, are generated by the function GENID of no
arguments in section NIL. Genids have the same structure as identifiers except
that they have a genid indicator bit in the tag. They are not strung on the
OBLIST. Genids are produced by GENID with no pname, i.e., the first word is
all zero. The first time that a specific genid is printed out, it is supplied
a name by the function GENPNAME in section SYS, and this name perSists for the
life of the genid. Genids are normally printed in the form %Gname. where
% is the escape character. The LISP II READ program prints genids to be read
in in this form and converted inter.nally to genids of no name.

2.4 PUSHDOWN STACK

The pushdown stack and its organization are given in the lAP II doctmlent.

21 December 1965

OBLIST

-------..-'
""-'''/~.

(~~ identifier

\,

..... _--------

8

OBLIST ARRAY --
~

.. ~
~.:::::;:/

---, -

property
list

-','

identifier

--
---.

property
list

TM-2710!570!OO

buckets

(empty bucket)

identifier

~~~~--+-+---~ > 
.J' ,-

v-f-chain 

------------~,,-~ one bucket's contents 

v-f-chain 

for a single 

identifier 
, 

containipg fluid 

cells and own cells 

Figure 4. Bucketa and v-f-chains 

, 
-- i 

property 
list 

, \ , 
/ 



o 

I , 

! 

o 

21 December 1965 9 rrM.-27l0/570/00 

BINARY PROORAM SPACE 

Binary program space consists of a packed series of assembled functions, each 
of which consists of a header word, assembled code, and relocation information, 
as shown in Figure 5. 

The size contained in the header word is the total length of the assembled
function, including the relocation information. The relocation information, 
two bits per word of assembled-function, is packed from left to right into a 
series of words starting with the last word and working toward the header 
word of the assembled-function. The two bits refer to the left half and the 
right half of words of assembled code, beginning with the header word and 
extending to the cell immediately preceding the relocation information. The 
coding employed is the following: ¢ Ineans no relocation or count, 1 means 
that if the address lies within this assembled-function it is a relocatable 
address. If the address does not lie within this assembled-function, then it 
points into triple cell space. The 1 in this latter sense means that the 
count in the triple referred to is to be incremented when this assembled
function is loaded and decremented when the function is excised. 

¢¢ I size I ¢l/ 
pointer from _~ 

function-descriptor 

~. pointer to function
descriptor 

assembled code 
; 

----------------1 
Relocation 

Information 

size = total number of cells 

Figure 5. Assembled Function 



21 December 1965 10 TM-2710/570/00 

2.6 ARRAY8PACE--REPRESENTATION OF DATA 

Array space is used to hold arrays, numbers, formals, and strings, the last three 
of which may be regarded as special cases of arrays. The four structures are shown 
in Figure 6. One-dimensional arrays containing n elements have size = n + 1. (An 
empty array has size = 1.) The self-pointer, WhIch is always contained in an array 
header word, is used by the garbage collector. Bit t24 of the tag portion of the 
header is used by the garbage collector for marking the array structure during 
garbage collection and t24 = ¢ otherwise. The meaning of the structure indicator 
is given in Table 1. 

Arrays 

Each element of an array having structure indicator 2¢, 21, 22, 23, 24, or 25 is a 
datum of the appropriate type (SYMBOL, BOOIEAN, OCTAL, INTEGER, REAL, FORMAL, 
~spectively). An array with structure 3¢ is used to hold full-locative pointers. 

Number 

A number structure contains a single nunieric datum. The numerical value contained 
in a number is a real number for structure indicator ¢4, an octal for structure 
indicator rjJ2, and an integer for structure indicator ¢3. The numerical value is 
right-justified and occupies the entire second word of the number structure. 

Formal 

A formal structure, denoted by structure indicator ¢5, holds a single fomal datum. As 
shown in Figure 6, a fonnal datum contains a code-pointer in its address field, a 
symbol pointer in the decrement, a zero prefix, and has the indirect bit set in its 
tag to permit indirect addressing through the formal datum. The symbol contained 
in the fomal datum points in general either to a full-locative array or to NIL. 
(The full locative-array is used in fun,~tionals to hold funarg variables.) 

String 

A string structure, denoted by structure indicator ¢6, contains a single string. 
Strings contain six 8-bit ASCII character bytes per word, filled from the left 
end, as shown by cl , c2! c3 ••• n (Figure 6). Unused bytes are filled with the 
null-character ¢¢16. The tag portion of the array header shows the number of 
characters in the last word of the array. An empty string consists of the single 
header cell having a prefix of ¢6, size 1, tag ¢6, and a self-pointer. 

Full-locative 

A full-locative, which can occur only in a full-locative array, or as the first 
word of a fluid cell, is a full word containing a pointer to a cell containing a 
datum. The cell pointed to may be an array element or it may be the first word 
of an own cell, or a cellon the.pushdown list. As shown in Figure 7, the address 
(CDR) portion of the full-locative contains the address of the cell pointed to, 
while if the cell is an array element, the decrement (CAR) portion of the full- f\ 
locative points to the array head. ) 



-~ 

u 

i : 

() 

21 December 1965 11 

One dimensional array AA 

I str:t1cW:re -, I indicator 
Size i ¢ I self-pointer 

I datum full-locati ve I or 
I 

, 
I 
! 
I 

structure indicator = 2~, 21, 22, 23, 24, 25, 3¢ 

number 

!stnrtu:re 
;indicator 

structure 

fomal 

I 

I ¢ 5 

I ¢ 

string 

¢ 6 I 
Cl 

2 

2 

symbol 

Size 

C2 

se If -pointer 

numeric value 

~ 
self-pointer 

2 ¢ code-pointer 

I t¢ n I self-pointer 

C3 C4 C5 

TM.-2710/570/00 

C6 

size = n+l 

(AA 1) 

(AA 2) 

(AA 3) 

(AA n) 

n = no. of 
characters 
in last 
word 

L :'7 _ e~c ~ _____________ .i. ____________ ~ 

Figure 6. Array Space Structures 



21 December 1965 .2 'IM-2710!570!OO 

Datum 

A datum as shown above is one of the following: 

number - represented by its numeric value 

Boolean - represented by 1 for TRUE, ¢ for false 

formal - represented by a symbol-pointer in the CAR, 
a code-pointer in the CDR, and the indirect 
bit of tag set (a tag of 2¢) 

symbol - a symbol datum can represent a string, array, 
formal, Boolean, number, or a symbolic 
expression (identifier or list). The represen
tation of a symbol is one of the following: 

NIL, represented by ¢¢¢¢¢¢ 

TRUE, represented by ¢¢¢¢¢l 

An octal number q in the range ¢Q~ q ~ 177777Q, 
represented by q + 2Q5 

An integer n in the range -2Q5 < n < l77777Q, 
represented by n + 6Q5 

• A pointer to a list node, an array head, or a 
character identifier 

A pointer to an identifier, fluid cell, quote 
cell, or own cell in triple space. Symbol 
pointers always point to the second word of 
a triple. 

When used as a datum or supplied as the parameter to 
or value of a function, a symbol is always right
justified into the address (CDR) portion of a word. 

2.7 LIST SPACE 

List Space consists of a series of list nodes, each of which contains two 
symbols corresponding to the car and c4r as shown in the following figures: 

I ¢¢ I symbol I ~aJ symbol 

t = ¢ except during garbage collection, when t24 is used for marking nodes. 

-. 

( '\ . : 



i. 
f 
! 

I . 
I --

1° 
i 

i 

~ 
t 

r 
i 

I ~ 
[. 
i' 
r 

I 

,-" 
[.J 

t 
r 

21 December 1965 

¢ 

13 

..--.- .-~-.- .. 

¢ 

array 
element 

'fM-2710/570/00 

- .. ':::::-.. 

pointer to cellon 
1-----_-,::>,;;;. pushdown list or 

array 

I'¢¢ 
~--~----------~--~--------~ pointer to first word 

of own cell 

Figure 7. Full-locative 



21 December 1965 14 'JlIJ.-2710/570/00 

TYPE AND STRUCTURE INDICATORS 

Type and structure indicators are six-bit codes. Type indicators are used to 
record type declaration information for variables and functions. Structure 
indicators are used as identification tags to distinguish types of storage 
structures. Given a legitimate pointer to a data structure, one can determine 
its type by looking at the structure indicator. 

The current assignment of values for type and structure indicators is given 
in Table 1. Dashes indicate values which are currently unassigned. 

In general, within type declaration information, the coding is as follows: 
the basic range ¢¢ - ~r is used for simple types. To each simple type, l¢ is 
added to indicate LOC, 2¢ is added to indicate ARRAY, and 4¢ is added to show 
sub-specification. Since functions and FOHMAL variables must be sub-specified, 
their declarations are described by a sequence of type indicators, as detailed 
in Section 4. 

4. DETAILED USE OF TRIPLE-SPACE STRUCTURE 

Triple-space structures include empty triples, quote cells, identifiers, fluid 
cells, and own cells. Each triple cell structure is identified by the structure 
indicator and the tag portion of its second word. The structure indicator 
values of ¢7, l¢, 11, 12 and 13 distinguish identifiers, quote cells, fluid 
cells, own cells, and empty triples, respectively. 

The tag occupies bit positions 24 through 29 in the word (counted from ¢ at 
the left end). (Tag-bits will be designated t24 through t29 left to right.) 

Of these bits, t24 is used only by the garbage collector and is normally ¢. 
The remaining bits t25 through t29 are used in differing fashion depending upon 
the structure indicator. 

4.1 EMPrY TRIPLES 

The contents of an empty triple as shown in the figure below is empty (all ¢), 
except for the link portion of the third word and the structure indicator 13 
in the second word. 

link 

!\ 
) 

o 
! 



I 
I I . 
, 
I : . 
I 

,--.... 
'u 

I I 

I ~-

! 
( 

'0 

21 December 1965 

Table 

Octal Value 

¢¢ 
¢l 

¢2 

¢3 

¢4 

¢5 
¢6 

¢7 
l¢ 
11 

12 

13 
14 

15 
16 

17 

2¢ 
21 

22 

23 

24 

25 
26 

27 

3¢ 
31 

32 

15 TM-27l0/570/00 

1. Type and structure Indicators 

Meaning as structure Meaning as Type 
Indicator Indicator 

list node SYMBOL 

BOOIEAN 

octal OCTAL 

integer INTEGER 

real REAL 

fomal FORMAL 

string 

identifier 

quote cell (SYMBOL LOC) 

fluid cell (BOOlEAN LOC) 

own cell (OCTAL LOC) 

empty triple (INTEGER LOC) 

(REAL LOC) 

(FORMAL LOC) 

symbol arr:3.y (ARRAY SYMBOL) 

boolean array (ARRAY BOOlEAN) 

octal array (ARRAY OCTAL) 

integer array (ARRAY INTEGER) 

real array (ARRAY REAL) 

fonnal array (ARRAY FORMAL) 

full-locative arra~ «ARRAY SYMBOL) LOC) 

« ARRAY BOOIEAN) LOC) , 

«ARRAY OCTAL) LOC) 



21 December 1965 

Octal Value 

33 

34 

35 
36 

37 

4~-44 

45 
46-54 
55 
56-74 
77 

16 

Table 1 (Cont ' ci.) 

Meaning as structure 
Identifier 

fJlfl-2710/570/00 

Meaning as Type 
Declaration 

( (ARRAY INTEGER) LOC) 

(ARRAY REAL) LOC) 

(ARRAY FORMAL) LOC) 

NOVALUE or INDEF 

FORMAL sub-specified 

FORMAL LOC sub-specified 

stop code 

( \ 



o 

o 

o 

. 21 December 1965 17 TM-27 10/570/00 

4.2 QUOTE CELL 
A quote cell contains a single symbol datum in its first word, a structure indic~
tor of l¢ and a count of ¢l in it second word, and all zeros in the third word, as 
shown in the figure below. 

I~I 
¢ I s~bol I I:: ==r1 

4.3 JUENTIFIER TFTPLES 

The structure of an identifier triple is shown in Figure 8. It is a triple whose 
second word resembles a character identifier, except that t25 is ¢ 

other bits of the tag are used to designate genids and to describe the relationship 
of the first word to the printname (pname) of the identifier. The third word 
contains a link used, as described in Section 2, to chain the identifier buckets 
together. It also contains a count of the number of assembled code references to 
the identifier. The identifier can be reclaimed by the garbage collector if, at 
any garbage collection~ the count is zero, the property list is NIL, the v-f-chain 
is empty (self-pointer), and the identifier is not pointed to from collectable 
list structure. 

If t = ¢, the pname of the identifier. is contained in the first word, and the tag 
of tn~ third word contains the number o~ characters in the pname. If t27 = 1, only 
the first three characters of the pname are in the first word, and the pname is a 
string pointed to by the first word, as shown in Figure 9. 

The bit t 26 of the tag is used to indicate an identifier of unusual spelling, i.e., 
FALSE, NIL, TRUE, or any identifier whose print name is not a letter followed by a 
sequence of letters, digits and dots. T,he identifiers FALSE, NIL, and TRUE, which 
must be input as "/o#FAI.SFi/I=, %/fNII.i/I=, and ajo/fTPJJF;#, respectively (where "/0 is the escape
c~aracter) have a count ~ 1 so they cannot be collected by the garbage collector, 
and have bit t 26 set. The "empty string" identifier m has bit t 26 set and has ¢ 
in its first word and a tag of ¢ in the third word. An identifier can be protected 
from garbage collection by means of the count. 

4.4 FWID CELLS AND OWN CELLS 
An identifier can have on its v-f-chain at most one fluid cell or own cell 
for any given section. Fluid cells and own cells are shown in Figure 10. 
Fluid cells are used to hold fluid bindings, particularly function descriptors. 
A fluid cell contains a full-locative in its first word, and a structure 



21 December 1965 18 TM-2710/570/00 

Character identifier 

v-f-chain I t tag 
property 
list 

t24 = 1 (permanently tagged for use by garbage collector) 

t25 = 1 meaning character identifier 

t 6 = ¢ for A-Z (identifiers with standard spelling) 
2 1 for other characters (identifiers with unusual spelling) 

Identifier triple 

all pointers 

1 
print-name-information 

-- ¢7 v-f-chain 
t property - tag list 

¢¢ count ¢n link 

t24 used by garbage collector, normally ¢ 

= ¢ meaning not character identifier 

¢ for identifier with standard spelling 
1 for unusual spelling 

= ¢ pname in triple (no p-name array) 
1 p-name array exists (pointer in first word) 

t29 = 1 for genid (generated identifier) 
¢ for normal identifier 

¢n = number of characters in first word if t27 = ¢ 

Figure 8. Identifier 

first word 

second word 

third word 

./\ 
/ 



I 
I 

I • 

I , 

! f 

21 December 1965 'nA-2710!570!00 

identifier pname ~ 6 characters 

I I I 

I ¢7 v-f-chain 
t property 
tag list 

I ¢¢ count ¢n link 

n = no. of characters in pname (0 for unnamed GENIDs) 

t27 = ¢ 

Ci for i > n are all ¢'s 

identifier pname > 6 characters 

Cl C2 C3 ¢¢ 
pname 
array 

¢7 v-f-chai t propert t = 1 
list 27 

count link 

,./~ 
" 

n = no. of characters 
in last word 

Size 

etc. 

self
pointer 

i 

I I 
---------------1 

Figure 9. Pname of Identifiers 

in 
array 
space 



21 December 1965 20 TM-2710/570/00 

Fluid Cell 

-

Own Cell 

. - full-locative 
---.~ - -:;::::>' 

first 1-lOrd 

- 11 I section I ~g count -- second word 

type information link third word 

t24 used by garbage collector, normally ¢ 

= 1 if FLUID declarative exists, ¢ otherwise 

= 1 means never collectable by garbage collector 
¢ means garbage collection possible 

-- .~ ---- -- ~ 
datum 

- 12 I section I ~ag count -
type information link 

t24 used by garbage collector, normally ¢ 

1 means never collectable by garbage collector 
¢ means garbage collection possible 

•. ,=_.-=_.='_.""'. __ ""' .. ""'~ ==,..~ = reference from code 

___ ---.-.-----> = symbol or liclc pointer 

Figure 10. Fluid Cell and Own Cell 

/~ 



, 
I 6 
1 
: . 
I b 

10 
! 

o 

21 December 1965 21 TM-2710/ 570/00 

indicator of 11 in its second word. An own cell contains its datum directly 
in its first word, and a structure indicator of 12 in its second word. The 
contents of the second and third words are similar for both kinds of triples. 

The second word contains the structure indicator of 11 or 12, the secuion name 
(NIL or an identifier), and a count of the number of code references to this 
fluid or own cell. The tag bits are not used, except for t 24, which is used 
by the garbage collector; t 25, used to designate a variable for which a top
level FLUID declarative exists; and t 26 , used to designate a fluid or own 
cell which is never collectable by the garbage collector. 

The third word contains type information and a link. 

The contents of a full-locative are shown in Figure 7. A full-locative may 
point to a word on the pushdown list or to the first word of an own cell, in 
which case it consists of a single pointer. Alternatively, a full-locative 
may point to an element of an array, in which case it contains two pointers. 
In particular, the full locative contained in a fluid cell of a variable 
whose transmission mode is not LOC) is initialized at the top level to point 
to the first element of a unique one-element array of the same type as the 
variable. ,This array is used to hold top-level free settings of the fluid 
variable. 

4.5 OWN FORMAL 
An OWN FORMAL cell contains a formal pointer as datum in its first cell (see 
Figure 7), and so has a prefix of ~¢ in the datum, which distinguishes an 
OWN FORMAL from a function descriptor.: 

4.6 FUNCTION DESCRIPTOR 

The function descriptor contained in the fir~t word of an own cell can exist 
in one of three states, as shown inFigure 11. A normal function in ready state, 
i.e., one than can be operated directly, contains a code pointer in the 
address portion of the function descriptor, e tag of ¢, a decrement of ¢, 
and a prefix of I for a FUNCTION, 2 for a MACRO, or 3 for an INSTRUCTION. 

A function with a formal trap, e.g., a function that is being traced, has the 
code pointer in its decrement, a formal trap in its address portion, and the 
indirect bit in the tag is set, so that branches through the function 
descriptor will go indirectly to the formal trap. A formal trap is simply a 
pointer to another function descriptor. The prefix of IS indicates this 
condition, with S having the same meaning as for a ready function. 



21 December 1965 

¢ I ¢¢ I ~~~~ter r 
function in ready state 

I I code 
lSpol.nter 

function wi th trap 

2S symbol 

unready function 

S = 1 for FUNCTION 

2 for NACRO 

formal 
trap 

2¢ i fOImal 
trap 

3 for INSTRUCTIONS 

fJM-2710/570/00 

assembled function 

/~------------~ 

Figure 11. Function Descriptor (first word of 'own cell) 



u 21 December 1965 23 TM-2710/570/00 

The third case of a function descriptor, for an unready function, has a prefix 
of 2S and a symbol in its decrement portion. The prefix 2S is used by the 
garbage collector to indicate that tte left half of this word is to be marked 
during garbage collection. The symbol is used to hold information as to the 
location of symbolic code for this fttnction, and the formal trap points to 
another function which is to be used to obtain or compile the unready function. 
S has the same meaning as for a ready function. 

Type Encoding 

Type encoding is contained either directly in the third word of a fluid or own 
cell or indirectly in an array or triple cell pointed to by the type information. 
The various possibilities are distinguished by the value of the prefix, as 
shown in Figure 12. 

A prefix of ¢¢ indicates a type other than FORMAL where no sub-specification 
is required. In this case, a single type indicator, contained in the tag of 
the word, is used. The rest of the world is ¢ except for the link. 

The prefix ¢2 is used to indicate that the fluid cellar own cell is a synonym. 
In this case, the decrement of the third cell contains a pointer to another 
fluid cell or own cell, in which the type and value are to be found. 

A fluid or own FORMAL, or an own cell used as a function descriptor, and used 
for a function of fewer than 3 arguments has its type information encoded 
directly in the third word. The prefix of 45 shows that a sub specified 
FORMAL is to be represented. The coding fl f2 f3 f4 is used to specify the 
type. 

The prefix ¢t. is used for fluid or own FORMALs and own cells which require more 
than five type indicators to encode their type information. In this case, the 
decrement of the third word contains a pointer to an octal array (structure 
identifier = 22) which then contains the type coding. 

The type coding of a formal or function is as follows: 

f¢ is 45 for a function or FORMAL 
55 for a FORMAL LOG 

fl specifies value-type 

37 means NOVALUE 

¢¢ - ¢5 mean SYMBOL, BOOLEAN, OCTAL, INTEGER, REAL, FORMAL 

f2 specifies type of first argument 

77 means no arguments 
37 means INDEF with type given by f3 

¢¢ - ¢5, l¢ - 15 mean parameter type, according to Table 1. 

I 



21 December 1965 24 TM-27l0/570/00 , 

Fluid or own cell of other than FORMAL type 

link 

Synonym 

link 

I-----:::>~pointer to fluid cell or own cell 

'F.J..uid FORMAL or own function descriptor or own FORMAL (~, 1, or 2 args) 

f~ = 45 for function or FORMAL 
55 for FORMAL toe 

link 

Fluid FORMAL or own function descriptor or own FORMAL (3 or more args.) 

link 

7 221 Size I ~~ I self-pointer 

f~ fl f2 f3 f4 f5 f6 

f7 f8 etc. 

Figure 12. Type Information ~ 
) I 



21 December 1965 25 
(last page) 

f 3, f4 ••• may be 

¢¢ - ¢5, 1¢ - 15, which mean parameter types, 
according to Table I. 

rrM-2710/570/00 

The stop code 77 means that there are no more arguments. Hence a fUnction 
of n arguments requires n + 3 fls if the first argument is INDEF, or n + 2 
fls if the first argument is not INDEF. However, the stop code is not re
quired if the type information completely fills its allotted space. Hence, 
the third word of a triple can encode a formal or function containing up to 
3 arguments (2 if INDEF), and an array of n cells can store type information 
for a function of 6n - 8 arguments (or 6n - 9 if INDEF). 




	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000001_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000001_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000002_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000002_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000003_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000003_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000004_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000004_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000005_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000005_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000006_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000006_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000007_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000007_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000008_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000008_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000009_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000009_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000010_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000010_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000011_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000011_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000012_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000012_b
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000013_a
	Kameny_Hawkinson-LispII_InternalStor-TM2710.570.000013_b



