
(TM Series)

The original version of this paper was prepared for
presentation at the Fall Joint Computer Conference,
November 8 through 10, 1966, San Francisco, California.
This paper reflects certain minor changes that have
been made to the language since the earlier publication.

INTERNATIONAL by DEVELOPMENT

INC. 111 BDC CORPORATION

11161 PIC0 BLVD. Paul W. Abraharns Jeffrey A. Barnett 2500 COLORADO AVE.
Lowell Hawkinson Erwin Book

LOS ANGELES Michael I. Levin Donna Firth SANTA MONICA
Robert A. Saunders Stanley L. Kameny

CALIFORNIA Clark Weissrnan CALIFORNIA

September 26, 1966
90406

The views, conclusions or recommendations expressed in this document do not neces-
sarily reflect the official views or policies of agencies of the United States Government.

The research reported in this paper was sponsored
by the Advanced Research Projects Agency Infor- @
mation Processing Techniques Office and was monitore
by the Electronic Systems Division, Air Force Systems
Command under contract ~1962867~0004 with the System
Development Corporation.

@ Copyright System Development Corporation and
Information International Incorporated 1966.

26 September 1966

ABSTRACT

LISP 2, which is based on LISP 1.5, is a new programming
language for manipulating complex data structures and
performing lengthy arithmetic calculations, As in LISP
1.5, programs can be treated as data, and storage can be
regained through "garbage collect ion. " The LISP 2 Source
Language (SL) , which resembles ALGOL, is the standard input ;
the LISP 2 Intermediate Language (IL), which resembles LISP
1.5, is used for programs that are to be treated as data.
Type declarations are available for efficient compilation
of arithmetic operations, LISP 2 includes bit operators
and an open subroutine capability. The most general form
of a datum is a symbolic expression; other forms include
numbers, functions, strings, and integer-indexed arrays.
All of the system programs are themselves written in LISP 2.
The 1/0 package transforms input into a stream of characters
which are converted into tokens by the finite state machine.
The supervisor controls the various LISP 2 operations. SL
is translated into IL by the syntax translator; IL is trans-
lated into assembly language by the compiler; and assembly
language is translated into machine language by the LISP 2
assembler, LAP. Machine mobility is achieved through core
image generation.

26 September 1966

ACKNOWLEDGMENTS

LISP 2 is being developed jointly by Information International, Incorporated
and System Development Corporation, with contractual support from the Advanced
Research Projects Agency of the Department of Defense. Personnel actively
participating in this program include:

Dr. Paul W. Abrahams (111)
Mr. Jeffrey A. Barnett (SDC)
Mr. Erwin Book (SDC)
Mrs. Donna Firth (SDC)
Mr. Lowell Hawkinson (111)

Dr. Stanley L. Kameny (SDC)
Mr. Michael I. Levin (111)
Mr. Robert A. Saunders (111)
Mr. Clark Weissman (SDC)

In addition, we wish to acknowledge the voluntary support and contributions
received from Professor Marvin Minsky and his associates at MIT; Professor
John McCarthy and his associates at Stanford University; Dr. Daniel G. Bobrow
of Bolt, Beranek and Newman; and many others.

26 September 1966 iii

CONTENTS

Page

INTRODUCTION . 1

Tokens . 3
 data................................. 5

Expressions . 8

. constants 8 . Variables 8 . Operational Forms 9 . Other Expressions 10

. Blocks and Statements 12 . mnct ions 1 4

. FunctionalData 15 Functions of an Indef in i te Number of Arguments 15

. sect ions 16 . Supervisor Level Operations 17

. Input-Output 17 F i l e Activation and Deactivation 18 . F i l e s e l e c t i o n 18 . Other 1 /0 Functions 19

Examples . 19

. THE PROGRAMMING SYSTEM 20

. SystemOverview 20 . Memory Management 22 Syntax Translator and META Compiler 23 . F i n i t e S t a t e Machine 24 . LISP2Compiler 24

Analyzer . 24 . Optimizer 25 . User Control F a c i l i t i e s 26

26 September 1966

CONTENTS (Cont ' d)

Page

LISP 2 Assembly Program. 26

REFERENCES

Figures

1. System Organization. 4

. 2. System Components and Information Flow Paths 21

26 September 1966

INTRODUCTION

LISP 2 is a new programming language designed for use in problems that require
manipulation of highly complex data structures as well as lengthy arithmetic
operations. Presently implemented on the M/FSQ-32V computer at the System
Development Corporation in Santa Monica, California, LISP 2 has two components:
the language itself, and the programming system in which it is embedded. The
system programs that define the language are accessible to and modifiable by
the user; thus the user has an unparalleled ability to shape the language to
suit his own needs and to utilize parts of the system as building blocks in
constructing his own programs.

While it provides these capabilities to the do-it-yourself prograslmer, LISP 2
also provides the complete and convenient programming facilities of a ready-
made system. Typical application areas for LISP 2 include heuristic programming,
algebraic manipulation, linguistic analysis and machine translation of natural
and artificial languages, analysis of particle reactions in high-energy physics,
artificial intelligence, pattern recognition, mathematical logic and automata
theory, automatic theorem proving, game-playing, information retrieval, numerical
computation, and exploration of new programming technology.

The primary source materials on LISP 2 are the LISP 2 Primer [I], which provides
an introduction to the language for those with little or no programming experi-
ence, and the LISP 2 Reference Manual [2], which provides a complete specifi-
cation of the language.

The LISP 2 programming system provides not only a compiler, but also a large
collection of run-time facilities. These facilities include the library
functions, a monitor for control and on-line interaction, automatic storage
management, and communication with the monitor system of the machine on which
the system is operating.

A particularly important part of the program library is a group of programs
for bootstrapping LISP 2 onto a new machine. (~ootstrapping is the standard
method for creating a LISP 2 system on a new machine.) The bootstrapping capa-
bility is sufficiently powerf'ul so that the new machine requires no resident
programs other than the standard monitor system and a binary loader.

LISP 2 includes and extends the capabilities of its ancestor, LISP 1.5 [3].
LISP 1.5 has been notable for its mathematical elegance and symbol-manipulating
capabilities. It is unique among programming languages in the ease with which
programs can be treated as data, in its "garbage collection" approach to
reclaiming unused storage, and in its ability to represent programs organized
as a collection of small, easily understood function definitions. Full
recursion without special user provisions is a natural outgrowth of the
structure of the language. However, LISP 1.5 lacks a convenient input language
and efficiency in the treatment of purely arithmetic operations.

26 September 1966

LISP 2 was designed to maintain the advantages of LISP 1.5 while remedying its
deficiencies. The first major change has been the introduction of two distinct
language levels : Source Language (SL) and Intermediate Language (IL) . The two
languages have different syntaxes but the same semantics (in the sense that for
every SL program there is a computationally equivalent IL program). The syntax
of SL resembles that of ALGOL 60 [4] , while the syntax of IL resembles that of
LISP 1.5. IL is designed to have the same structure as data, and thus to be
capable of being manipulated easily by user (and system) programs. An advan-
tage of the ALGOL-like source language is that the ALGOL algorithms can be
utilized with little change.

The second major change has been the introduction of type declarations and new
data types, including integer-indexed arrays and character strings. At a
future time, packed data tables, which can presently be simulated through pro-
gramming techniques, will be added. Type declarations are necessary to obtain
efficient compiled code, particularly for arithmetic operations, but by using
the default mechanisms, a programmer may omit type declarations entirely
(albeit at the cost of efficiency).

The third major change has been the introduction of partial-word extraction and
insertion operators. Further, an IL-level macro expansion capability has been
included, which makes possible the definition of operations in terms of a basic
set of open-coded primitives. These changes made it possible to write the entire
system in its own language without loss of efficiency. Also, the compilations
of user programs are more economical of time, and to some extent of space, than
they would be without these facilities. Furthermore, the knowledgeable user
can trade space against time through appropriate redefinition of system functions.

A fourth major change, the introduction of pattern-driven data manipulation
facilities, along the lines of COMIT [5] and METEOR [6], is still in the process
of implementation. Because of the open-ended nature of LISP 2, these facilities
can be added without disrupting the existing system structure. We mention this
facility here, despite the fact that it does not yet exist, because it is an
integral part of the over-all design of the language. Since the specifications
are not final as of this writing, however, we shall not discuss them further.

To orient the reader toward the exposition of the language, we present a short
example at this point. Further examples will be given later. The following
program [7] is written in SL:

%R RANDOM COMPUTES A RANDOM NUMBER IN THE INTERVAL (A, B)
DECLARE (Y) INTEGER OWN Y:
REAL FUNCTION RANDOM(A ,B) REAL A ,B :
DO Y+3125*Y;

~+~\6710-864;
RETURN (~/67108864.0 * (B-A)+A)

END ;

26 September 1966

The only significant difference between this program and the ALGOL original is
the use of the reverse slash (I1\") to indicate the computation of the remainder.
The corresponding program in IL is:

(DECLARE (Y OWN IITEGER))
(FUNCTION (RANDOM REAL)

((A REAL) (B REAL))
(BLOCK NIL (SET Y (TIMES 3125 Y))
(SET Y (REMAINDER Y 67108864))
(RETURN (PLUS (TIMES (QUOTIENT Y 6.7108864000~+7)

(DIFFERENCE B A 1) A))))

The process of converting SL programs into compiled code is shown in Figure 1.
SL is first translated into IL by a syntax translator. IL is then translated
into assembly language by a compiler. Finally, the assembly language is trans-
lated into machine language by an assembly program. The process is entirely
accessible to the user, in that he can write programs in IL or assembly
language if he so chooses.

The remainder of the paper is divided into two parts, one dealing with the
language and the other with the implementation. Certain aspects of the language
that were intended primarily as implementation tools, e.g., open subroutines,
are discussed in connection with the implementation.

In discussing the language, we shall present simultaneous discussions of the
syntax of SL and IL, accompanied by discussion of the semantics of both. In
this way the semantic equivalence of SL and IL will become apparent. It should
be borne in mind that the primary use of SL is for programs written by people,
while the primary use of IL is for programs written by machines. Thus the
syntax of SL is designed for convenience in writing, while the syntax of IL
is designed to reflect in its form the structure of the program that it repre-
sents.

THE LISP 2 LANGUAGE

TOKENS

Tokens are the smallest units of input or output data with which LISP 2 programs
ordinarily deal; they are significant because of their role in defining the
standard input-output conventions with regard to both programs and data. The
major categories of tokens are:

(1) Delimiters
(2) Numbers
(3) Simple strings
(4) Identifiers
(5) Operators

SL = SOURCE LANGUAGE
I L = INTERMEDIATE LANGUAGE
AL = ASSEMBLY LANGUAGE

Figure 1. S y s t e m Organization

AL
)

SL
b

IL
) SYNTAX

TRANSLATOR
COMPILER LISP 2

ASSEMBLY

COMPILED
CODE

b
DATA

STRUCTURES

26 September 1966

The del imi ter tokens are :

Numbers as tokens may be e i t h e r signed o r unsigned i n IL, but must be unsigned
i n SL since a preceding sign is in terpre ted as an operator. Some examples of
unsigned numbers are :

unsigned in teger 1 2 335

unsigned o c t a l 12Q 1 4 ~ 6

unsigned r e a l .87 12. 4.535 2.3-10

Signed numbers a re l i k e these , but a r e preceded by a sign, Other examples of
tokens are:

i d e n t i f i e r AB H21 GO. TO

operat o r * / = + > = \ + c

A s t r i n g consis ts of a sequence of chaxacters delimited a t each end by "#".
The character " ' " ins ide a s t r i n g causes t h e character following t o be entered
i n the s t r i n g , Some examples of s t r ings are :

An i d e n t i f i e r may be created from a s t r i n g by preceding it with t h e escape
character . This character i s changeable within t h e system but w i l l usually be "%". I f "%11 i s t h e escape character , t h e following i s an i d e n t i f i e r :

An i d e n t i f i e r created i n t h i s way i s sa id t o have an "unusual spell ing,"
s ince , i n general, such i d e n t i f i e r s w i l l be created only when they cannot be
wri t ten i n any other way unambiguously.

DATA

The most general form of a LISP 2 datum i s an S-expression, where t h e S stands
f o r "symbolic." S-expressions a r e b u i l t up from atoms, which may be numbers,
s t r i n g s , i d e n t i f i e r s , function spec i f i e r s , and arrays. A s i n LISP 1.5, t h e
c l a s s of S-expressions i s defined recursively as follows:

(1) Every atom i s an S-expression.
(2) If el and e2 a r e S-expressions, then

26 September 1966

(el e2)

is an S-expression. Thus, for instance,

((A . B) . (C D))

S-expressions of the form:

(el . (e2 (en . NIL) ... 1)

are known as lists, and can be written in the abbreviated form:

The e. are called the elements of the list. The two notations may be inter-
1 mixed ; thus

is an S-expression in the form of a list, but the elements of the list are not
themselves in the form of lists. The atom NIL can also be written in the form
() , and designates the empty list.

Basic Functions

The LISP functions CAR, CDR, and CONS are defined by:

CAR applied to (el . e2) yields el
CDR applied to (el . e2) yields e2
CONS applied to el and e2 yields (el . e2)

In terms of the list notation, CAR finds the first element of a list and CDR
removes the first element from a list. Thus CAR applied to the list (A B C D)
yields A, and CDR applied to the same list yields the list (B C D). CDR applied
to a list of one element yields the empty list () . The function NULL has value
TRUE for the empty list () (also represented as NIL) and value FALSE for any-
thing else. The function CONS of two arguments can be used to add an element
at the head of a list; thus CONS applied to the element A and the list (B C D)
yields the list (A B C D). CONS is the basic operator used for constructing
lists .
I L programs are written in the form of S-expressions, and therefore can be
treated as data. The ability to treat programs as data in a natural way is
an essential feature of LISP. SL programs can also be treated as data,

26 September 1966 7

because of the existence of strings; however, this is not nearly so natural as
it is with IL.

Arrays are atoms because CAR and CDR are not defined for them. Constant arrays
are written by enclosing their elements in brackets. For example:

[INTEGER 2 5 -1 41

is a one-dimensional array of integers, and:

is a two-dimensional array of S-expressions.

Data Types

Although every LISP 2 datum is an S-expression, it is useful to pick out certain
subsets of the set of all S-expressions and to designate these subsets by data
type names. The data type names and the subsets they denote are:

BOOLEAN Truth value data, represented by TRUE and FALSE.
The empty list () , the atom NIL, and the Boolean
value FALSE are regarded as synonymous.

INTEGER Signed integers.

OCTAL Another form of integer, basically regarded as unsigned,
that prints in an octal output format.

REAL Floating-point decimals.

FUNCTIONAL LISP 2 function.

SYMBOL The entire set of S-expressions. Strings and identifiers
must be of this type.

type ARRAY An array whose elements are of the specified type, where
type is either BOOLEAN, INTEGER, OCTAL, REAL, FUNCTIONAL,
or SYMBOL.

The different data types are not mutually exclusive, in that the class of data
of type SYMBOL includes all other classes of data. Except for SYMBOL, all of
the data classes include atomic data only.

26 September 1966

EXPRESSIONS

An expression is a designation of a datum. The datum designated by an expression
is the value of the expression. The elementary components from which expressions
are built up are constants, variables, and operational forms. We shall first
discuss these, and then show how they are combined to form more complex expres-
sions.

Constants

A constant is a datum appearing in a program context that denotes itself, i.e.,
its representation is both its name and its value. Consequently, a constant
can not change value during the execution of a program. A symbolic constant
is denoted by a quoted S-expression. In SL, an S-expression is quoted by
preceding it with a single prime, e.g., 'ALPHA or '(~1 ~2). Quotation is
necessary only for identifiers and lists to prevent them from being inter-
preted as variables or operational forms.

Variables

A variable is also an elementary designation of a datum. However, the value of
a variable may be changed during the execution of a program. A variable is
normally denoted by a single identifier. Associated with every variable is a
collection of bindings, each of which is a location containing a value. Bindings
are created by declarations, which may appear in blocks, in functions, or on the
supervisor level (see below). Blocks and functions are the two different kinds
of program units. At execution time, a program unit may be activated either by
the supervisor or by another program unit; thus there is a hierarchy of active
program units.

When execution of a program unit commences, a binding is created for each
variable declared by the program unit. When execution of the program unit is
completed, these bindings disappear. Thus, each active program unit has a
set of bindings associated with it, and the hierarchy of bindings corresponds
to the hierarchy of active program units. In general, the value of a variable
is the value attached to the most recently created and still existing binding
of that variable. It is possible to use an assignment action to change the value
associated with the current binding of a variable.

Associated with every variable is a type, a storage mode, and a transmission
mode. The type of variable restricts but does not necessarily determine the
types of the data that are its values at different times. In particular, a
variable whose type is SYMBOL may assume values of any type whatsoever.

There are three storage modes for variables: fluid, own, and lexical. A fluid
variable can be referred to from outside the program unit that binds it, while
a lexical variable can not. Thus, fluid variables are more general but are also
more prone to conflicts of names. Fluid variables are primarily used as a means

26 September 1966

of communication among separately compiled programs. An own variable is like
a fluid variable except that only one binding can exist for it, and that binding
must be made by a supervisor action. Own variables are designed primarily for
communication with non-LISP 2 programs.

A variable may designate a datum either directly or indirectly. If the variable
designates the datum directly, then it designates the actual value of the datum;
if the variable designates the datum indirectly, then it designates the location
in which the value is stored. This distinction is significant chiefly when a
datum is being passed as an argument to a function; the transmission mode of the
argument variable indicates whether a value or a location of a value is being
passed. If a location is being passed, then the transmission mode is said to be
locative; otherwise the transmission mode is said to be by value.

O~erational Forms

An operational form is used to apply a lnction to its arguments, to invoke a
macro transformation, to alter the flow of a program, or to locate an element
of an array. An operational form in SL is written:

where f is the form operator and the e are its operands. In IL the operational
form is written as: i

If the form operator designates a function, then to obtain the value of the
operational form, the operands are first evaluated, and then the function is
applied to the values so obtained. An array is handled similarly; the sub-
scripts are treated as arguments of a function that finds the desired element
of the array.

Each function has associated with it a value type and a set of argument types.
Any argument that is not of the expected type is converted to that type when
the conversion is legal. The value type restricts the type of the result of
the evaluation in the same way that the type of a variable restricts the values
that the variable may assume.

In general, the order of evaluation of the operands of an operational form is
not guaranteed. This is a departure from most other problem-oriented languages,
but leads to improved compiled code. Also, with the advent of parallel-proces-
sing computers, it may be desirable to have several arguments evaluated simulta-
neously. If evaluating an operand has any side effect on the evaluation of any
other operand, then the results of the evaluations will be unpredictable.
However, the operator ORDER applied to an operational form will cause the oper-
ands to be evaluated in order of appearance.

26 September 1966

Macros may be used to effect transformations of a program after it has been
translated from SL to IL and before it has been compiled. When a macro name
appears as a form operator, the effect at compile time is to cause the entire
operational form to be replaced by a new form. The new form is calculated by
a function associated with the macro; the argument of this function is the
IL version of the operational form. Much of the task of compilation is
achieved through the use of macros that are invisible to the user; however,
the user can also define his own macros. The use of macros is discussed
further in connection with the user control facilities of the compiler.

Other Expressions

Elementary expressions (i . e . , constants , variables, and operational f oms) may
be combined in SL by means of prefix and infix operators. Thus, all of the
usual arithmetic and Boolean expressions are permitted in the usual algebraic
notation. The symbolic operators CAR m d CDR are also prefixes, which help to
reduce the accumulation of parentheses. If a, b, and c are any expressions
in SL, the relational expression:

and all similar forms have the same meaning in SL as they do in mathematics.
Any number of relational operators can be combined in a relational expression,
and different operators can be used in the same expression.

Infix and prefix operators can not be used in IL, and must be replaced by
corresponding operational forms. For example:

is written in IL as:

(PLUS (TIMES A B) 3 (MINUS (EXPT ALPHA 2)))

A similar notation is used for relational expressions. Conditional expressions
in SL have the form:

IF p1 THEN el ELSE IF p2 THEN e2 ELSE ... IF pn THEN en ELSE en+l
The final ELSE clause need not be included (unlike ALGOL). The corresponding
form in IL is:

The pi, which are Boolean expressions, are evaluated in turn from left to
right until a true one is found. The value of the corresponding ei is then
used as the value of the entire expression. Conditional expressions have the
useful property that evaluation proceeds only as far as necessary to determine
the outcome.

26 September 1966

A block expression i$ a block (see below) that appears in a context where an
expression is required. A block expression is used to write a program as a
sequence of statements to be executed and ultimately to produce a value. The
value of a block is ordinarily specified by a RETURN statement (see below).
LISP 2 differs from ALGOL in permitting a block to be an expression as well as
a statement.

A CASE expression is written in the form:

in SL, and in the IL form:

where s is an integer-valued expression known as the selector. If the value
of the selector, s, lies in the range 1 r s I n, then the expression e is
evaluated and is the value of the CASE expression. If s * 1 or s > n,sthe
value is e . n

An assignment expression is written in the form:

in SL, and in the form:

in IL.

If v is a variable and e is an expression, the assignment expression has the
effect of evaluating the expression e and assigning its value to v. The value
of the entire expression is the value of e. Assignment expressions, like all
other expressions, can be used as arguments in operational forms; in particular,
they can be nested to achieve simultaneous assignment of value to several
variables.

The general form of the left side of an assignment expression is a locative
expression. A locative expression designates a part of a data structure or
variable structure. A variable is a particular case of a locative expression.
Locative expressions can be used to designate the current binding of a variable,
an element of an array, part of a list structure, or particular bits of a word
of memory, Thus, the two assignments:

A + '(MARY DOE) ;
CAR A + 'JOHN ;

will cause the value of A to become:

26 September 1966

BLOCKS AND STATEMENTS I

A block may be e i t h e r a block expression, a block statement, o r a compound
statement. A l l t h ree of these a r e wri t ten i n the same form and a r e evaluated
i n the same way. Whether a block is a block expression, a block statement, o r
a compound statement depends on both t h e context of the block and what i s con-
ta ined within the block.

In SL, a block i s wri t ten i n the form:

BLOCK(P, k2, . . . kk) al; a2 . . . a : sl; s2; . . . s END m n

where the k. a re block parameters (e i t h e r variables or variables with p rese t s) ;
t h e a . a r e aeclara t ions of a t t r i b u t e s fo r those parameters which a re bound
whilelthe block i s ac t ive; and the s a re statements. The corresponding form
i n I L with the block parameters and k t t r ibu tes combined as the declarat ions d
i s : i

A statement i s an ac t ion t o be taken. Any expression (o ther than a var iable)
can be used a s a statement, but not every statement can be used a s an expression.
When an expression appears i n a context where a statement i s expected, the
expression i s evaluated, but t h e value i s discarded. A statement may have one
o r more l a b e l s associated with it; these a r e refer red t o i n GO statements (see
below) and indicate where t o t r a n s f e r control . Variables can not be s t a te -
ments because of the conf l i c t with labels .

When evaluation of a block begins, bindings a r e simultaneously created f o r
each i n t e r n a l parameter speci f ied by a block declarat ion. These bindings
remain i n existence u n t i l t h e evaluation of the block is completed, a t which
time they disappear. Each binding contains a value f o r the var iable t h a t it
binds. The nature of the binding i s speci f ied by the block declarat ion t h a t
crea tes it. After t h e bindings have been made, execution of the statements i n
t h e block begins. The statements a re executed i n tu rn unless t h e sequence of
control is a l t e r e d by a GO statement o r by a RETURN statement. Execution of
the block is terminated e i t h e r by executing a RETURN statement o r by executing
t h e l a s t statement of the block without a t r a n s f e r of control .

Each of the a t t r i b u t e declarat ions a . i n SL i s i n the form:
1

Here v. a r e names of var iables and the p a re words describing t h e type and
1 i storage mode. Lexical s torage is specif ied by omission. If t h e type i s omitted,

o r no a t t r i b u t e i s given f o r a var iable , a default type i s used. Each of t h e di
given i n t h e SL block heading is e i t h e r the name of a var iable , o r one of the
two prese t forms,

26 September 1966 13 TM-3163

In the first form, e is an expression giving an initial value for the variable
v, and designates that the variable is transmitted by value. No preset on a
variable means that transmission is by value, and a default value, depending
on type, is used for a preset. The second form designates a variable trans-
mitted by location and initializes the variable by location,

In IL, each declaration specifies the properties of one and only one variable;
thus, in the translation from SL to IL, it is necessary to break up each
declaration that declares more than one variable into a sequence of declarations
(with appropriate factoring of properties). An IL declaration is in the form:

where one of the properties is the initial value, if any,

The various types of statements and their effects may be summarized as follows:

(1) GO statement--transfers control to the named statement.

(2) RETURN statement--terminates evaluation of a block and determines
the value of a block expression,

(3) Compound statement--permits the insertion of a sequence of statements
in a context where only a single statement is expected, A compound
statement is in the form of a block with no declarations.

(4) Conditional statement--selects one of several possible statements
to be executed on the basis of the truth or falsity of a sequence
of Boolean expressions.

(5) Simple expression--causes the evaluation of the expression; the value
is discarded,

(6) FOR statement--causes an iteration to be performed for a sequence of
values of a named variable,

(7) TRY statement--causes control to be returned to itself if an exit:.
condition is detected during the execution of a statement within
the TRY statement,

(8) Block statement--like a compound statement, except that internal a

parameters may be declared in the same manner as in a block
expression,

26 September 1966

(9) CASE statement--selects one of several possible statements to be
executed on the basis of the value of an integer-valued expression.

(10) Empty statement--can be used to place a label; contains nothing and
makes no action.

The FOR statement has some unusual features that merit further discussion.
The statement :

FOR v IN x : s

causes the statement s to be executed for each element of the list x, with v
assuming the successive elements as its value in each execution of s. If ON
is used instead of IN, v first assumes as values the entire list x, then its
successive terminal segments CDR x, CDDR x, etc., until the list x is exhausted,
The clause:

UNLESS b

may be inserted as part of a FOR statement to inhibit execution of the state-
ment s whenever the Boolean expression b is TRUE. The UNTIL clause of ALGOL,
used in conJunction with STEP, is replaced by a relational operator and an
expression; iteration continues until the variable of iteration no longer
satisfies the specified relation. This approach avoids the need to recompute
the sign of the increment for each iteration.

FUNCTIONS

A function definition is a specification of a computational procedure; the
procedure itself is a function. A function definition in SL is in the form:

t FUNCTION n (xl, x2, . . . , xn) dl; . . . %: e
where t is the type of the value of the function, n is the name of the function,
the x. are dummy variables that stand for its arguments, the d. are declarations

1 governing the arguments, and e is an expression whose value is the value of the
function.

The corresponding form in IL is:

where a declaration is given for each argument. Thus the declarations not only
give the properties of the arguments but also name them. If the value type of
the function is omitted, then the name n can be written without parentheses and
the default type will be used.

26 September 1966

The argument parameters a r e used t o denote the values of the ac tua l arguments
within t h e body of the function def in i t ion . The body of the function de f in i t ion
e is the expression t h a t defines the value of the function. The argument
declarat ions specify the type, transmission mode, and storage mode of the
argument s ,

Functional Data

A function may be used i n e i t h e r of two ways: a s an operator o r a s a datum.
We have already seen how functions can be used as form operators. An example
of the use of a function a s a datum would be the input t o a numerical in te-
gra t ion rout ine; the input i s the function t o be integrated, and the output
i s the integrand. An example oriented more closely t o symbolic data processing
would be t h e use of the LISP function MAPCAR, whose arguments a r e a l i s t t o be
transformed and a transformation function. The output of MAPCAR is t h e trans-
formation l i s t . Thus

MAPCAR(' (2 5 4 9) , FUNCTION ADDER(J) INTEGER J : J+2)

would be evaluated t o the l i s t :

Since a function i s i t s e l f a datum, it can be used i n any context where a datum
is expected. Thus, functions can themselves be used as arguments of other
functions, and functions can be values of var iables , A function can be desig-
nated by i t s def in i t ion , by i t s name, or by a var iable having the function a s
i t s value.

There a r e two contexts i n which a function may be referenced--as a datum, as
we have jus t sa id , and a s a form operator. When a function i s used a s a form
operator , it must be designated e i t h e r by a functional var iable e , a
var iable whose values a r e functions) or by a function name. The e f f e c t of
using a function de f in i t ion a s a form operator can be achieved by assigning
t h e function de f in i t ion t o a functional var iable (which i s legi t imate , s ince
t h e function de f in i t ion then appears i n a data context) and then by using the
functional var iable a s the form operator.

Functions of an Indef in i te Number of A r m e n t s

It i s possible t o define functions t h a t expect an indef in i t e number of arguments.
In defining such a function, the re i s no way t o enumerate t h e names of the argu-
ments; therefore an argument vector , i . e . , a one-dimensional ar ray having a
s ingle var iable name v , designates the s e t of arguments. The length of the
vector i s specif ied by a second var iable k, In the argument l i s t , t h e argument
vector (which must be the first argument) i s designated by writ ing v (k) i n SL
and (v INDEF k) i n I L . When the function is entered, the value of v i s the
vector of arguments, and t h e value of k i s the length of t h i s vector. The
d i f fe ren t elements of the argument vector can then be refer red t o within the
body of t h e de f in i t ion by subscripted occurrences of v.

26 September 1966

For example, t h e function SUMSQUARE might be wri t ten t o take t h e sum of t h e
squares of i t s arguments. We would then define it i n SL a s follows:

REAL FUNCTION SUMSQUARE (X(I)) :
BLOCK (J ,Y) INTEGER J ; REAL Y:
FOR J+1 STEP 1 UNTIL > I :
Y+Y + X(J) + 2;

RETURN Y
END

Here X i s t h e argument-vector parameter and I i s i t s length. The corresponding
I L de f in i t ion is:

(FUNCTION (SUMSQUARE REAL) ((X INDEF I))
(BLOCK ((J INTEGER) (Y REAL))

(FOR J (STEP 11 GR I)
(SET Y(PLUS Y (EXPT (X ~ 1 2))))

(RETURN Y)))

An ac tua l use of SUMSQUARE might look l i k e :

SUMSQUARE (2 , 7 , 4)

i n SL, and:

i n I L .

SECTIONS

A sect ion i s a col lec t ion of declarat ions and def in i t ions t h a t operate a s a
u n i t . Dividing a large program i n t o sect ions makes it possible t o wri te dif-
f e ren t p a r t s of t h e program independently without name conf l ic ts . It a l s o
makes it possible f o r one user t o r e f e r t o programs wri t ten by another user
without name conf l i c t s . A sect ion i s designated by i t s sect ion name, which
i s an i d e n t i f i e r . Each sect ion i s associated with a s e t of var iables t h a t
designate the various e n t i t i e s defined within the sect ion. A t any given time
there i s a s ingle ac t ive sect ion, which is known as the current sec t ion; a l l
other sec t ions a re external sect ions. A var iable i n a pa r t i cu la r sec t ion,
whether current o r not , can be refer red t o by t a i l i n g (of ten ca l l ed "qualifying"),
e . g o , "JOE$SAM" r e f e r s t o t h e var iable JOE i n sect ion SAM.

The sect ion mechanism permits p a r t s of LISP 2 programs t o be wri t ten and checked
out independently. A t merge time, a t t en t ion need be paid only t o variables used
f o r names of common functions and communication variables. Since the system
programs a r e i n a specia l sec t ion, the user need not worry about name conf l i c t s ;
a t the same time, t h e system programs a re accessible t o t h e user through t h e
t a i l i n g mechanism. Thus t h e user can, i f he chooses, t r e a t t h e system p r o g r q s
as an extension of h i s own program ra the r than as a black box.

26 September 1966

SUPERVISOR LEVEL OPERATIONS

LISP 2 is controlled by a supervisor program that is itself named LISP and that
can be called as a function. When the user starts up the LISP system, the
supervisor is called immediately. The supervisor accepts commands to perform
various operations. The actions taken by the supervisor in response to these
commands are known as top-level operations. The following top-level operations
are possible:

(1) hraluate an expression.

(2) Establish a current section with given name and default type.

(3) Create a fluid or own variable of specified type and transmission
mode.

(4) Define a function.

(5) Define a dummy function (used to establish type information in
certain cases).

(6) Define a macro.

(7) Define an instruction sequence to be used in compilation.

(8) Define an assembly-language program.

(9) Declare a variable to be synonymous with another variable.

The user can specify the input and output devices to be used; the on-line
typewriter is taken as the default case. After each operation, the system
sends any necessary output to the output device and proceeds to the next
operation.

Input -Output

One of the primary design aims in LISP 2 I/O has been the maintenance of as
much machine independence as possible. This is accomplished by distinguishing
user interfaces from system interfaces and insulating the user from the system
interfaces. This effect is achieved by creating machine-independent data
aggregates called "files," and permitting the user to operate with files by
means of LISP 2 functions.

To the user, a file is a source or sink for information, which is filled on
output and emptied on input. A file itself is both device- and direction-
independent. The relationship of a file to an external device is determined
by the user at run time, when he specifies whether the file is to be an input
file, an output file, or both.

26 September 1966

To t h e system, a f i l e consis ts of a sequence of records, represented in te rna l ly
a s an ar ray of type OCTAL if the f i l e is binary, and as a s t r i n g if t h e f i l e is
composed of characters . (ASCII 8-bit characters a r e used in te rna l ly throughout
LISP 2.) To reduce buffer storage overhead, only one record f o r a given f i l e
can be i n main memory a t a time. S t r ing records a re fu r the r s tructured i n t o
l i n e s . The number of characters per l i n e and l i n e s per record may be specif ied
by t h e user , but must be consistent with the conventions used by t h e external
monitor system.

When a record i n a f i l e i s moved from an external device i n t o core, it i s trans-
formed i n t o a LISP 2 s t r ing . The transformation may involve character code
conversions and inser t ion o r delet ion of control characters. The transformation
i s governed by a col lec t ion of control words associated with t h e f i l e . During
output, t h i s transformation, known as "s t r ing gost-processing," i s reversed.

F i l e Activation and Deactivation

A f i l e may be e i t h e r ac t ive or inactive; an ac t ive f i l e , i n tu rn , may be e i t h e r
se lec ted o r deselected. No record i s kept within LISP of inact ive f i l e s ; how-
ever, many f i l e s may be ac t ive concurrently.

A f i l e i s ac t ivated by evaluating t h e function OPEN which es tabl ishes a l l
necessary communication linkages between LISP 2 and the monitor. The f i l e is
named by an i d e n t i f i e r t h a t is i t s referent throughout i t s ac t ive l i f e . The
user fu r the r spec i f i e s t h e desired f i l e descript ion a t t h i s time. This descrip-
t i o n i s given only once and consis ts of a l i s t of f i l e propert ies desired by t h e
user , such as t h e un i t (tape , d i sc , te le type , CRT, e t c .), form (binary, ASCII,
BCD , e t c .) , format (l i n e and record s i z e s) , and various protect ion and i d e n t i f i -
c a t ion parameters.

Deactivation of a f i l e i s achieved by evaluating t h e function SHUT. SHUT breaks
a l l t h e communication linkages and dele tes a l l in te rna l s t ructures such a s
ar rays , s t r i n g s , and variables t h a t were dynamically established by OPEN. The
user may specify t h e disposi t ion of the f i l e , e.g., t h e saving of t h e tape o r
t h e inse r t ion of t h e f i l e i n d isc inventory. The external monitor i s informed
of such ac t ions by LISP 2.

F i l e Select ion

A t any given time, exactly one f i l e is selected f o r input and one f o r output;
a l l other ac t ive f i l e s a r e deselected. The LISP 2 reading functions a l l operate
on t h e current ly se lec ted input f i l e ; t h e pr in t ing functions a l l operate on t h e
current ly se lec ted output f i l e . The functions INPUT and OUTPUT are used f o r
se lec t ing t h e input f i l e and the output f i l e , respectively.

When a new f i l e i s se lec ted , t h e record, l i n e , and column controls f o r t h e de-
se lec ted (replaced) f i l e a r e preserved, and the new f i l e record, l i n e , and
column controls a r e re-established. Once a f i l e is selected, a l l 1 /0 primit ives

26 September 1966 19 TM-3163

act only on that file. Thus it is possible to write a LISP 2 program that is
independent of form, format, and device by supplying the name of the file as
an argument of the program at run time. This scheme allows a LISP program to
be debugged with files generated on-line and subsequently run with bulk data
from tape or disc files simply by changing the selected file.

Other 1/0 Functions

A variety of 1/0 functions are available for reading and writing binary and
symbolic data. There are character-level primitives that permit testing,
printing, reading, and transforming characters. Other functions allow reading
and printing at the token and S-expression levels. Character mappings permit
LISP 2 to communicate with restricted character-set devices.

EXAMPLES

An example is now given of a complete SL program. The example includes not
only the program itself but also the control actions necessary to test it:

SYMBOL SECTION EXAMPLES, LISP:
%R LCS FINDS THE LONGEST COMMON SEGMENT OF TWO LISTS L1 and L2
FUNCTION LCS (~1,~2) :

BLOCK (x, Y, BEST, K + 0, N, LX +. LENGTH(L~)) INTEGER K, N, LX:
FOR X ON L 1 WHILE LX > K :
BLOCK (LY LENGTH (L2)) INTEGER LY :

FOR Y ON L2 WHILE LY > K:
DO N + COMSEGL (x,Y);

IF N <= K THEN GO A;
K + N;
BEST + COMSEG (X ,Y) ;

A: LY LY -1;
END ;
RETURN BEST;

END,

%R COMSEGL FINDS THE LENGTH OF THE LONGEST INITIAL COMMON SEGMENT OF
%R TWO LISTS X AND Y.

INTEGER FUNCTION COMSEGL (X ,Y) :
IF NULL X OR NULL Y OR CAR X /= CAR Y

THEN 0 ELSE COMSEGL (CDR X, CDR Y) + 1,

%R COMSEG FINDS THE LONGEST INITIAL COMMON SEGMENT OF TWO LISTS X AND Y
SYMBOL FUNCTION COMSEG (X, Y) :

IF NULL X OR NULL Y OR CAR X /= CAR Y
THEN NIL ELSE CAR X COMSEG(CDR X, CDR Y) ,

26 September 1966

%R LENGTH COMPUTES THE LENGTH OF L
INTEGER FUNCTION LENGTH (L) :

BLOCK (K, ~ 1) INTEGER K:
FOR L1 I N L : K + K + 1;
RETURN K;

END,

LCS (' (A B C B C D E) , ' (B C D A B C D E F));
machine: (B C D E)

This example i l l u s t r a t e s t h e use of l i s t processing c a p a b i l i t i e s combined with
in t ege r a r i thmet ic and i t e r a t i o n . The operator "<=" means " l e s s than o r equal
t o , " and t h e operator "I=" means "not equal to ." The LISP opera tors CAR, CDR,
and NULL a r e a l l used a s p r e f i x operators without parentheses. The dot i n t h e
t h i r d l i n e of COMSEG is an i n f i x operator t h a t s tands f o r t h e LISP funct ion
CONS. The statement "FOR X ON L1" causes i t e r a t i o n t o take p lace on t h e
successive te rminal segments of L1. Thus, i f L1 i s t h e l i s t (A B C D) , then
i t e r a t i o n t akes place successively on (A B C D), (B C D) , (C D) , and (D) . The
funct ion LENGTH, defined here , i s ava i l ab le a s a system f'unction and i s rede-
f ined only as an i l l u s t r a t i o n .

THE PROGRAMMING SYSTEM

SYSTEM OVERVIEW

A diagram of t h e LISP 2 system, which shows t h e r e l a t ionsh ips among i t s d i f f e r -
en t components, i s shown i n Figure 2. Information en te r s t h e system v i a t h e
110 package i n e i t h e r SL o r IL. The I / O package transforms t h e input i n t o a
stream of characters--the input t o t h e f i n i t e s t a t e machine--which i n t u r n
generates a stream of tokens. Among o ther th ings , t h e f i n i t e s t a t e machine
performs t h e t a s k of l inking up a newly received i d e n t i f i e r with a previous
copy of t h e same i d e n t i f i e r . The token stream produced by t h e f i n i t e s t a t e
machine i s routed by t h e supervisor t o e i t h e r t h e syntax t r a n s l a t o r o r t o a
reading program f o r IL, depending on whether SL o r IL i s expected. I n e i t h e r
case , t h e r e s u l t i s an expression i n IL. The supervisor determines when
compilation i s t o t ake p lace , and a l s o handles processing reques ts .

The syntax t r a n s l a t o r t akes a stream of SL tokens and transforms it i n t o an
IL expression. This expression can be returned as output , passed t o t h e com-
p i l e r , o r both. The choice i s made by t h e supervisor under t h e con t ro l of t h e
user . The syntax t r a n s l a t o r cons i s t s of parsing and generat ing programs t h a t
a r e compiled from a s e t of syntax equations. These syntax equations def ine SL
i n terms of IL.

The compiler, which i s t h e most complex component of t h e system, converts I L
i n t o input f o r LAP, t h e LISP Assembly Program, o r f o r t h e core image generator .
Both LAP and t h e core image generator accept input i n assembly language (AL) .
If LAP i s being used, then t h e r e s u l t of assembly i s a r e loca tab le segment of

I LIBRARY FUNCTIONS (

I P R I M I T I V E S I

I GARBAGE COLLECTOR I
I META COMPILW I

(unlabeled connections designate control paths.)

Figure 2. System Components and Information Flow Paths

26 September 1966

code s tored i n an area of the machine reserved f o r binary programs. If the
core image generator is being used, then the r e s u l t is a s t r i n g of pa i r s of
binary numbers, each consist ing of a core location and the contents of t h a t
locat ion, s tored on a magnetic tape or other external medium. The core image
generator i s only used when a new system i s being created.

The META compiler, t h e garbage co l l ec to r , and the primit ives a r e a l l impl ic i t ly
involved i n t h e operation of the system. The META compiler i s a l i b r a r y pro-
gram t h a t generates a syntax t r a n s l a t o r from a s e t of syntax equations. The
garbage co l l ec to r i s the program t h a t co l l ec t s dead storage when avai lable
storage has been exhausted. The primit ives a r e the basic l i b r a r y functions i n
terms of which the e n t i r e system i s writ ten.

MEMORY MANAGEMENT

Most of t h e concepts of memory management used i n LISP 1.5 a r e a l s o used i n
LISP 2. Memory management i n LISP 2 i s based on several considerations:

(1) LISP 2 data s t ructures may vary i n s i z e by orders of magnitude *

a t run time, and storage f o r such data s t ructures must be a l located
automatically .

(2) Since recursion i s permitted, successive generations of data
s t ruc tu res must be retained simultaneously.

(3) Programs and data s t ructures t h a t a r e no longer needed must be
purged without e x p l i c i t act ion on the par t of the user.

(4) Numerical da ta must be stored i n such a way a s t o permit e f f i c i e n t
numerical calculat ions.

LISP 2 data s t ructures may be e i t h e r var iable or f ixed i n s ize . The var iable
data s t ruc tu res a re ar rays , s t r i n g s , and symbolic expressions. Although an
ar ray , once established, does not change i n s i z e , the s i z e of an array i s
frequently not known u n t i l the occasion a r i s e s t o crea te it. In t h e case of
l i s t s t ruc tu res , the s i tua t ion i s even more complex; a l i s t s t ruc tu re may be
modified i n such a way as t o increase o r decrease i t s aize.

Arguments of functions ana in te rna l parameters of blocks a r e s tored on a push-
down stack. Since a l l temporary storage belonging t o LISP 2 functions i s
recorded on the pushdown s tack, which is maintained by the LISP 2 system,
recursion i s permitted with no specia l user provisions. Unlike LISP 1.5, LISP
2 s to res numbers d i r e c t l y on the pushdown stack as s ingle c e l l s . Therefore, it
i s possible t o perform ari thmetic without the l o s s of ef f ic iency t h a t would
a r i s e from packing and unpacking numbers referenced indi rec t ly . Symbolic
expressions, s t r i n g s , and ar rays , however, a re accessed by means of pointers
s tored i n the stack. The data s t ructures thus pointed t o a re discarded when
the function creat ing them has completed i t s execution; however, they do not
disappear, but remain as garbage u n t i l t h e next garbage col lec t ion, t h e descrip-
t i o n of which follows.

26 September 1966

In LISP 2, da ta s t ructures a r e grouped according t o t h e i r storage charac te r i s t i c s
and a storage area i s s e t aside f o r each group. The groups are :

(1) Elementary symbolic e n t i t i e s (symbolic constants , function and
var iable names, e t c .)

(2) Compiled programs.

(3) L i s t s t ructures .

(4) Arrays and s t r ings .

In addit ion, a storage area i s s e t as ide f o r t h e pushdown stack. These storage
areas a r e arranged i n p a i r s , where one member of the p a i r grows from t h e bottom
up and t h e other grows from the top down. Data storage is obtained by taking
storage space from the appropriate area u n t i l t h a t area i s exhausted (which
occurs when i t s boundary meets t h e boundary of t h e area t h a t is paired with i t) .
A t t h i s point , the garbage co l l ec to r i s invoked. Garbage col lec t ion erases a l l
inaccessible data s t ructures and reclaims the emptied space f o r new s t ructures .
For instance, i f a LISP 2 function has been redefined, the program corresponding
t o i t s old de f in i t ion i s inaccessible and thus i s erased. During garbage
co l l ec t ion , the d i f fe ren t areas a r e compacted, re locat ing code and/or data
s t ruc tu res , i f necessary, so as t o eliminate the gaps l e f t by erased' s t ructures .

The d i f fe ren t kinds of s t ructures a r e s tored i n d i f fe ren t areas because t h e i r
requirements i n terms of garbage col lec t ion a re d i f fe ren t . For instance, t h e
elementary symbolic e n t i t i e s can not be moved, but other kinds of data can be
moved. Similarly, l i s t s t ructures consis t of independent nodes, while ar rays
consist of blocks of d i f fe ren t s i zes .

SYNTAX TRANSLATOR AND META COMPILER

The t r ans la t ion from SL t o IL i s performed by a syntax t r a n s l a t o r t h a t was
generated by the META compiler. The META compiler i s based upon a program
developed by the Special I n t e r e s t Group f o r Programming Languages of t h e Los
Angeles Chapter of ACM [8] . The META compiler takes as input a speci f ica t ion
of t h e syntax of SL, together with ins t ruct ions on how each syntact ic e n t i t y
i s t o be transformed t o IL. It produces an IL program t h a t ac tua l ly c a r r i e s
out the t r ans la t ion from SL t o IL. The descript ion of t h e syntax of SL i s
given i n an extended version of Backus Naur Form [b] .

The META compiler produces top-to-bottom compilers with a control led backup
fea tu re and an in ter face with the f i n i t e s t a t e machine (see below). Both the
control led backup and t h e f i n i t e s t a t e machine a r e ef f ic iency fea tures . The
control led backup allows t h e designer of a language t o specify i n t h e syntax
equations when the s t a t e of the machine must be saved because two o r more
parsings s t a r t with the same construction.

26 September 1966

Since it i s possible t o regenerate the syntax t r a n s l a t o r with new syntax
equations a t any time, t h e syntax and semantics of SL a re not , i n pr inciple ,
r i g i d l y fixed. In pract ice , var iants on the -syntax t r a n s l a t o r w i l l be used
i n order t o t r a n s l a t e other languages i n t o LISP 2 I L . These other languages,
unlike SL, w i l l normally not be semantically equivalent t o IL.

FINITE STATE MACHINE

The f i n i t e s t a t e machine (FSM) i s a token-parsing program used by the syntax
t r a n s l a t o r and the S-expression reader. Reading LISP 2 e n t i t i e s is expensive,
not only i n t h e o r ig ina l creat ion of t h e in te rna l s t ructures , but a l s o i n the
time spent i n garbage col lec t ing when the s t ructures a r e discarded. Conse-
quently, it is des i rable t o avoid backup a t the character l e v e l and i t s
resu l t ing re-creation of duplicate s t ructures . Since backup must be used by
t h e syntax t r a n s l a t o r , the FSM was imposed between it and t h e character stream
t o eliminate reprocessing of tokens. Having t h e bottom-to-top FSM in te r face
with t h e top-to-bottom syntax t r a n s l a t o r eliminates a large port ion of the
overhead associ.ated with reading i n the LISP 2 system. The S-expression
reader does not require backup, but s ince the FSM existed, it was convenient
t o use tokens fo r building S-expressions also.

The FSM behaves l i k e a Turing machine. It moves from s t a t e t o s t a t e a s it
reads characters; when a terminal s t a t e i s reached, it "prints" a character
from i t s output alphabet (tokens) and s e t s i t s s t a t e t o t h e i n i t i a l one.
Parsing and manufacture of s t ructures a r e done simultaneously as characters
a re recognized. No reprocessing of the parsed characters i s ever necessary,
s ince i n a terminal s t a t e t h e token i s already complete (except f o r a f i n a l
ac t ion, such as combining t h e pa r t s of a r e a l number).

LISP 2 COMPILER

The LISP 2 compiler i s a large , one-pass, optimizing t r a n s l a t o r whose input i s
a function de f in i t ion i n IL and whose output i s an assembly-language l i s t of
ins t ruct ions su i t ab le f o r input t o LAP. Most of the compiler i s independent
of t h e t a r g e t machine, s ince the compilation concepts themselves a r e machine-
independent. The declarat ions of a l l f l u i d var iables appearing within t h e
function a r e wri t ten i n t o t h e output l i s t i n g , s ince these must agree with
f luid-variable declarat ions made elsewhere. Checks a re made f o r both format
and semantic e r ro r s during compilation. The compiler consis ts of th ree major
sect ions: t h e analyzer, the optimizer, and the user control functions.

Analyzer

The top-level control of the compiler res ides i n the analyzer, which operates
recursively. Each item t o be compiled i s passed t o the analyzer e i t h e r
d i r e c t l y or ind i rec t ly . I f t h e item i s a var iable , an appropriate declarat ion
i s found and code f o r r e t r i ev ing the var iable i s generated; otherwise the code
f o r a function c a l l is generated, a macro expansion i s performed and the r e s u l t
compiled, or linkage t o an appropriate code generator i s made.

26 September 1966

A pattern-matching function has been implemented for use in the LISP 2 compiler.
The patterns are written in a modified form of Backus Naur Form (not the same
as the one used in the syntax translator). The patterns are matched to an
S-expression and the value of the match is either TRUE or FALSE. The pattern-
matching function checks for syntactic correctness and distinguishes among
different forms at the same time.

Optimizer

Optimization of the code produced by the LISP 2 compiler is handled by many
groups of routines, each responsible for certain actions. The communicative
mechanisms between these various parts and the rest of the compiler will be
described in some detail below.

The movers, a highly machine-dependent set of functions, produce code that alters
the state of a compilation in a specified way, such as moving an object to an
accumulator or converting a datum to a specific type. Embodied in the movers
is a predicate capability that answers the question, "Is this move possible
under these conditions (say, one machine instruction)?" The movers are used
to build all address and modifier fields of generated instructions. Associated
with the movers is a post-processor that rewrites the output code after the
main compiler has produced it. Redundant load-store sequences and some un-
necessary branches are removed from the listing. Also, certain groups of
instructions are rewritten to make use of machine-specific instructions.

The arithmetic optimization package handles code generation for addition and
multiplication. The algorithm used is a standard one that first sorts the
arguments by type and then by priority sequence within a particular type. The
sequence depends on whether the arguments are memory or accumulator references.
A single set of functions handles both multiplication and addition, with the aid
of several functional arguments .
A second kind of optimization has to do with the elimination of unnecessary trans-
fer instructions. This task is accomplished through the analysis of confluence
points, i.e., places in the program at which several paths of control converge.
For instance, consider the conditional expression:

The appearance of this conditional expression establishes a confluence point at
the end of the compiled code that represents it. After the execution of any of
the e control goes to this confluence point. Moreover, the confluence point is i ' hereditary for each of the e i.e., if one of the e is a conditional expression,

i' i
then its confluence point is the same as that of the entire expression. Analogous
considerations hold for conditional statements. Confluence points are also hered-
itary with respect to RETURN statements of blocks, i.e., the confluence point of
a RETURN statement is the same as that of the block in which it appears.

26 September 1966

When an expression is compiled, the charac te r i s t i c s of the value t h a t i s pro-
duced must be specif ied. These charac te r i s t i c s include type, whether it is i n
a spec ia l r e g i s t e r o r i n an ordinary memory c e l l , i t s address modifier (d i r e c t
o r i n d i r e c t) , which r e g i s t e r s it may be l e f t i n , whether t h e ac tua l value i s
needed or whether the negative or reciprocal of the value i s so described, e t c .
These charac te r i s t i c s a re remembered by a s e t of s t a t e var iables , which a r e
bound f o r each c a l l t o the analyzer. A s a statement o r expression i s compiled,
a l i s t i n g i s generated and the s t a t e variables s e t t o r e f l e c t t h e s t a t e of t h e
compilation. The compiler i s passive i n the sense t h a t a compilation produces
only t h e minimum mount of code necessary t o allow t h e r e s u l t t o be described
by the s t a t e variables.

User Control F a c i l i t i e s

The user can give t h e compiler e x p l i c i t ins t ruct ions t o a id i n t h e compilation
process. A s i n LISP 1.5, macros a r e an in tegra l pa r t of the language. Many
of the f a c i l i t i e s of the language, e.g., FOR statements, a r e implemented by
means of system macros. When a FOR statement (i n IL form) is encountered
during compilation, it appears a s an operational form whose operator i s FOR.
The compiler t e s t s each form operator t o see i f a macro i s defined f o r it.
In the case of FOR, the re i s such a macro. The macro i s invoked with t h e FOR
statement (i n t h e form of an S-expression) as input. The output i s a block
containing an equivalent i t e r a t i v e loop. This block i s then compiled i n place
of the FOR statement. Macros may a l so be defined by the user , and no dis t inc-
t i o n i s made between system macros and user macros.

Certain machine-dependent operators a re pa r t i cu la r ly useful a s primit ives i n
compilation. CORE i s an operator t h a t a c t s l i k e an array whose content i s a l l
of t h e machine memory. Therefore CORE(X) i s the content of locat ion x. BIT i s
an operator t h a t spec i f i e s a ce r t a in contiguous portion of a word. There a r e
a l s o severa l operators t h a t permit an expression t o be forced t o a ce r t a in type
or permit a datum of one type t o be used as though it were of another type.
Although such mechanisms e x i s t i n most compilers, LISP 2 has made these items
avai lable through t h e language.

LISP 2 ASSENRLY PROGRAM

The LISP 2 Assembly Program, LAP, generates a code segment from a l i s t of
symbolic ins t ruct ions and l abe l s . LAP a l s o a l loca tes storage f o r var iables on
t h e pushdown s tack, and insures t h a t references t o f l u i d and own var iables a re
consistent among d i f fe ren t compiled functions. LAP does more than most assem-
b l e r s , i n t h a t it handles a l l aspects of pushdown stack mechanics; consequently,
references t o var iables a r e made by naming the var iable i n the appropriate
f i e l d of any ins t ruct ion t h a t references it. Thus, the pushdown stack need
never be referenced exp l i c i t ly .

LAP includes a number of system macros spec i f i ca l ly designed f o r LISP 2 pro-
gramming. The prologue and epilogue of a function a re generated by BEGIN and

r - 26 September 1966 27 TM-3163

RETURN respectively; CALL i s used t o generate a c a l l t o a LISP 2 function i n
t h e standard format. Storage a l locat ion on the pushdown stack i s performed
by t h e BLOCK, DECLARE, and END macros; FLBIND creates any necessary bindings
f o r f l u i d variables. LAP does not have a generalized macro f a c i l i t y ; any
e f f e c t t h a t could be achieved by such a f a c i l i t y , however, can a l s o be achieved
by preprocessing.

The address f i e l d of' an ins t ruct ion may be used t o a l loca te , r e f e r t o , o r
re lease temporary storage on t h e pushdown stack. The address f i e l d s TOP, and
POP. a r e normally used with ins t ruct ions of t h e "load" type. Both TOP, and
POP, r e f e r t o the most recently a l located pushdown c e l l , but POP. has t h e
addi t ional e f f e c t of releasing t h a t c e l l . PUSHA. and PUSHP. both cause a new
pushdown c e l l t o be a l located , and r e f e r t o t h a t c e l l ; PUSHA. and PUSHP. a r e
normally used i n ins t ruct ions of t h e "store" type. PUSHA. i s used f o r absolute
quan t i t i e s and PUSHP. fo r symbolic quan t i t i e s , so t h a t a map of t h e pushdown
stack can be maintained.

To i l l u s t r a t e t h e use of assembly language, a s well as t h e output code produced
by t h e compiler, we give t h e Q-32 assembly language version of the program
RANDOM presented as an example e a r l i e r i n the paper:

(W (FUNCTION (RANDOM REAL)
((A REAL) (B REAL))
(STF TOP.)
(BEGIN)
(LDA Y)
(MUL 3125 (~ 5 6 7 . 7 R s))
(STB Y)
(ARGS)
(LDA Y)
(STF PUSHA.)
(LDA (NUMBER 67108864) S)
(CALL (REMAINDER . LISP))
(STF Y)
(LDC A)
(FAD B)
(STF PUSHA.)
(LDA Y)
(FLT (ENTRY ~ 4 8 .))
(FDV (NUMBER 6.71088640003-7))
(FMP POP.) (FAD A) ~09017 (END) (RETURN))

(((REMAINDER . LISP) FUNCTION (FUNCTIONAL INTEGER INTEGER INTEGER)
NIL) (Y OWN INTEGER NIL)) USER)

26 September 1966

REFERENCES

28
(last page)

1. Levin, M. I. and Berkeley, E. C. LISP 2 primer. SDC document
TM-2~l0/l0l/00(~raft) , 15 July 1966.

2. Abrahams , P. W e LISP 2 reference manual. (in press).

3. Levin, M e I. LISP 1.5 programmer's manual. M.I.T. Press, Cambridge, Mass.,
1962.

4. Revised report on the algorithmic language ALGOL 60. Communications of the
ACM, 6 (1) , 1963, pp. 1-17. -

5 . Yngve, V. COMIT reference manual. M.1 .T. Press, Cambridge, Mass., 1962.

6 . Bobrow, D. G. METEOR, a LISP interpreter for string transformation,
The programming language LISP. M. I .T . Press, Cambridge, Mass. , Msrch 1964,
pp. 161-190.

7. ALGOL algorithm #266, Communications of the ACM, - 8 (lo), 1965, p. 605.

8. Schorre, D. V. META 11, a syntax-directed compiler writing language.
Proceedings of the ACM, 1964, p. Dl. 3-1.

