
•

c

c

-

The views, conclusions, or recommendations expressed in this document do not neces-
sarily reflect the official views or policies of agencies of the United States Government.
The research reported in this paper was sponsored by
the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the
Electronic Systems Division, Air Force Systems Command
under contract F1962867COo04. Information Processing
Techniques, with the System Development Co~poration.

System Development Corporation / 2500 Colorado Avenue / Sanll Monica, California 90406
Information Internationll Inc./11161 Pico Boulevard / Los Angeles. California 90064

LISP 2 Document Conventions

ABSTRACT

1~CI 3417/001/00

AUTHOR K lJJ~JL
R. Wills

' 'CAl rA/fX~i
J. ~~ett

for J. I. Schwartz

DATE 4/26/67 PAGE 1 OF.-LPAGES

(Page 2 is blank)

This document describes conventions employed in a
series of documents which specify the LISP 2 language
and processor for the IBM S/360 computer. Included
in this document are rules for writing syntax equations
for the LISP 2 language.

I
I

I
/

)

•

c

c

26 April 1967 3 TM ... 3417/001/00

1. INTRODUCTION

Specification of the LISP 2 language and system for an IBM S/360 computer has
been a jOint effort of S.D.C. and 1.1.1. A large number of system analysts,
designers and programmers were involved in this effort over a long period of
time. The documents resulting from this work (which were published as separate
volumefJ of TM-34l7) define and describe the language and processor required to
implement LISP 2 on the 360.

Due to the large number of people involved in this project, and the inherent
complexity of the LISP 2 system as well as the complexity of the machine for
which it was designed. some of the specification documents are at variance
concerning the specific techniques for implementing certain system functions.
There is also some variation among documents in regard to symbology, particu
larly that employed in syntax equations. However, each document in the series
is internally consistent and contains explanations of any special symbols or
any deviations from conventional LISP documentation practices.

2. SYNTAX EQUATION CONVENTIONS

Within documents in this series. LISP 2 syntax is specified in terms of two
languages: a kernel language and a transformed language. Both the kernel
language and the transformed language are in turn subdivided into Source
Language (SL) and Intermediate Language (IL). The language specification
consists of the syntax and semantics of the kernel language together with a
set of syntactic transformations. A given sequence of characters is a legit
imate LISP 2 program if it can be obtained fram a kernel program through the
application of transformation rules. The semantics of the transformed program
are the same as the semantics of the kernel program from which it was derived.
The s:~tax of the kernel language is much simpler than the syntax of the trans
formed language, which is never given explicitly.

- :es~

A transformation rule consists of two sequences of meta-syntactic symbols: an
input pattern and an output pattern. The rule is applied by matching the
input pattern to a segment of a program. transforming the segment according
to the rule. and replacing the original segment by the transformed segment.
Transformation rules are of two kinds: optional and required. An optional
rule mayor may not be applied if it is applicable; a required rule must be
applied whenever it is applicable.

Transformation rules are intermixed with syntax equations in this document
series. If a transformation rule is in an SL group, then it is applied to 8L
programs; if it is in an IL group, then it is applied to IL pro~ams. Optional
transformation rules are indicated in the syntax equations by ~ ; required
transformation rules are indicated by ~ • When a program segment matches

I
I

l

26 April 1967 4 TM-3417/001/00

a metasyntactic symbol in the input pattern, then it also matches any occurrence
of the corresponding metasyntactic symbol in the output pattern. If a meta
syntactic symbol appears more than once in the input pattern, then subscripting
may be used to distinguish the occurrences of it. If the input pattern is
followed by "c" and a metasyntactic symbol or a choice of metasyntactic symbols,
then the input pattern must be part of the syntactic constr-uct specified to the
right of the "C". The notation "TciT" means "anything other- than an a". The
symbol ..,. indicates "is replaced by".

The syntax equations for SL and IL are distinguished by the appearance of~ ,

~ , andl~~ I at the beginning of a group of equations. When one of these

symbols appears, it applies until the occurrence of the next one. I ~~ I
indicates that the following group is part of both SL and IL. The same meta

syntactic symbols are used in both SL and IL syntax equations, and correspond

ing metasyntactic symbols have the same semantics. When a ~ appears, it
indicates that the remaining equations in the group are token equations. In
token equations, successive syntactic entities are assumed to be written with
out intervening blanks. The equations for SL and IL are all built up from
token equations. In the kernel language it is assumed that tokens are separated
by a single blank; transformation rules are used in order to insert additional
blanks and remove redundant blanks. Spaces within syntax equations are purely
for the sake of legibility and have no effect on the meaning of the equation.

3. RULES FOR WRITING SYNTAX EQUATIONS

The following rules are intended for use in connection with the syntax equations
that show how the complete language is built up from tokens. In these equations,
tokens are the lowest-level entities that are considered. However, there are
also equations for the syntax of~~~kens; the~e equations describe how tokens
are built up from characters. At this level, special provisions need to be
made to handle matters such as spacing, since the problems of delimitation are
much more acute there.

Let a designate a metasyntactic symbol, e.g., identifier, or an explicit token,
e.g., FOR. Then:

Rule 1: 01 02 ••• On designates the concatenation of

al , a2 , ••• on (n ~ 1). Let a designate such a

concatenation.

1
I

• 26 April 1967 5 TM-34l7/00l/00

Rule 2: alla21 ••• Ian designates the alternation among

al , a 2, ••• an (n ~ 1). Let a designate such

an alternation.

Rule 3: The brackets { and }, without subscripts or
superscripts, are used for grouping.

Rule 4: [a] == alempty

Rule 5: 1 designates the character [.

1 designates the character].

Rule 6:

Rule 7:

Rule 8:

Rule 9:

:ll = 2 -

•

I a .J:es,
n '

0* -
{a}* -

0*+1 -

{al*+l ==

{al c -*

0 or more a's

0 or. more a's

1 or more a's

1 or more a's

o or more a's separated
explicit token)

by 0 (where- 6 is a.n

Rule 10: {a}!+l == 1 or more a's separated by c (where 6 is an
explicit token)

I
I

26 April 1967 6
(Last page)

TM-3417/001/00

Examples:

Rule 11:

Rule 12:

exactly one occurrence of each
a i in 'any order. Each a i is

either a a or a {a}.

exactly one occurrence of each
ai' with the non-empty occurrences

separated by o.

Rule 13: The notation Nl preceding an equation designates footnote
number 1; N2 designates footnote number 2, etc.

Rule 14: Terminal symbols in syntax equations are written with all
capital Roman letters.

Rule 15: Non-primitive syntactic entities, e.g., those things that
are on the left-hand side of syntax equations, are written
in all lower-case Roman letters.

Rule 16: The name of a non-primitive syntactic eritity is written
without blanks. If it is composed of more than one word,
hyphens are used to connect the words. If split over
line boundaries, the hyphenator is not repeated on the
second line.

Rule 17: In prose descriptions, the distinction between non-terminal
syntactic entities and other uses of the same terms
(e.g., "atom" as a LISP entity and "atom" as a. chemical
entity) is maintained by using simple English. If the
distinction is not clear, it is spelled out with a few
extra words.

~ ::es=

Rule 18: Italic letters 'are not used in these documents. When a
term is first mentioned in a prose description, it is
sometimes underscored for emphasis.

~ section-list - {section-name}:+l

~ section-Ust" section-neme I (section-neme'n)

parameter-list:: (parameter * indef -parameter)

rsLl
~

attribute-list - {type II storage-mode II reference-mode}'

I
I

