
The views, conclusions, or recommendations expressed In this document do not neces-
sarily reflect the official views or policies of a(encles of the United States Government.
The research reported in this paper was sponsored
by the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the
Electronic Systems Division, Air Force Systems Command
under contract F1962867COoo4, Information Processing
Techniques, with the System Development Corporation.

System Development Corporation 12500 Colorado Avenue I Santa Monica, California 90406
Informalien Intemational Inc./IllGI Pica Boulev.rd I Los Anleles, CaIHernia 90064

LISP 2 Compiler Specifications

ABSTRACT

lr~a 3417/300/00

AUTHOR Ib/~

~~~~nett 
UCHHICALt1...1 J1~ 

l.~;nett . 
IEWSE ( 0°0.1 tt iJ£~i1AI).-

t,:~J~Ss~n.~ S...-l/ •• 
/~'-:L(') i; \. V'L ;. ~l ,::' 

D; Anschul tz,'- ~:t. . 
for J •. I. Schwartz 

DATE 4/26/67 PAIIE 1 OF~PAlES 

(Page 2 Blank) 

This document presents an overview of the LISP 2 compiler 
proposed for the IBM S/360 computer. It includes a brief 
description of the various passes of the compiler and 
their functions. Other documents in the series are 
referenced. 



) 

) 
./ 



26 April 1967 3 'I'M-3 IH 7/300/00 

1. INTRODUCTION 

The LISP 2 compiler design is for a large multipass optimizer. User-level 
inputs can be in Source Language. Intermediate Language, or LAP. Source 
Language is of the ALGOL-like, infix variety; Intermediate Language is a Polish 
prefix. list-structure resembling LISP 1.5; LAP is the symbolic assembly 
language used by the system. 

2. DESIGN PRINCIPLES 

The compiler design is based on several principles: It is expected that the 
LISP 2 compiler will operate in a time-sharing environment, therefore compila
tion is incremental. That is, one function definition at a time may be 
compiled, assuming appropriate declaration information for referenced variables 
is made available. The multipass structuring makes possible the easy determina
tion of overlays and allows each pass to use its own list spaces. At the end 
of each pass, these special list spaces may be abandoned instead of being 
garbage collected. 

The passes are independent in that during pass N, the function being compiled 
and all embedded definitions are handled by pass N. It is possible also for 
the supervisory function to batch several compilations through the passes, i.e., 
do all pass ones, do all pass twos, etc. 

Each pass of the compiler has a stated purpose. The first five passes resolve 
a particular question and do a language transformation that makes the answer 
apparent. The sixth pass is a more conventional compiler pass that generates 
LAP code. The final pass is the assembler, LAP. The passes and their functions 
are listed below: 

~ Name 

I Syntax Translator 

II Context Resolver 

III Type Resolver 

Function 

Translates SL to IL and resolves 
questions concerning hierarchy and 
precedence. (The Syntax Translator 
is produced by a meta-compiler and will 
not be described in this document series.) 

Translates IL to CRIL and resolves 
questions concerning denotation of named 
objects in the 1L program. Also macro 
expansions and label checking are done. 

Translates CRIL to TRIL and resolves 
questions about type conversions and 
confluence-point branching. All format 
and type conversions, as well as branches 
of returns. are made explicit. 

-----~-------------- --_.------_.----------



26 April 1967 4 TM-3417/300/00 

3. 

Pass Name - -
IV Machine Link 

Function 

Translates from TRIL to MSIL and resolves 
questions as to what is to be accomplished 
by function calls and what is to be gener
ated in-line. Further machine-dependent 
precision problems are solved. The other 
function of this pass is determining 
eligibility of each lexical variable for 
holding in a register rather than being 
placed on the stack. The number of 
references to each lexical variable are 
counted. 

V Register Counter Translates from MSIL to RClL and resolves 
questions about register needs of various 
sUbexpressions. The number of registers, 
general-purpose and floating, is deter-' 
mined and the information is put in the 
RClL output. 

VI Code Generator Produces the LAP code equivalent of the 
RClL input. The peepholer, a part of the 
code generator, does certain optimiza
tions on the produced LAP code that are 
difficult to do elsewhere. 

VII LAP Produces an octal core image and puts it 
in core or secondary storage by an 
appropriate plant routine. 

COMPILER FUNCTIONS 

An overview of the various LISP g compiler functions and the languages 
involved is presented in Tables 1 and 2 and Figure 1. 

Declarations are absorbed by a declaration scanner which is operated by the 
supervisor before input to the context resolver. Declarations for all free 
references from a form to be compiled are included in the form with its output 
from the context resolver. Hence, it is not necessary for SUbsequent compiler 
passes to interact with the external system declaration mechanisms. 

--- ------- --------

\ 
J 



26 April 1961 5 TM-3411/300/00 

Table 1. Description of Compilation Functions 

Name 

Supervisor 

Token 

Read 

ILREAD 

Input 

S-file 

Characters 

Token 

S-Expression 

EDREAD S-Expression 

Syntax Translator Token 

SREAD 

Declaration Scan S-File 

Context Resolver IL 

Type Resolver CRIL 

Machine Link TRIL 

Register Counter MSIL 

Code Generator RCIL 

Peepholer LAP 

LAP LAP 

Plant ClM 

------..--l~_~ _____ _ 

Output 

Token 

S-Expression 

S-File 

S-File 

S-File 

S-File 

Declaration 
List 

CRIL List 

MSIL 

RCIL 

LAP 

LAP 

CIM 

Function 

Coordinates the various sub
functions of the compilation 
process 

Parses characters into tokens 

Transforms a token stream 
into an S-expression 

Transforms an IL entity into 
an S-file 

Probably a NOP 

Transforms a sequence of 
tokens (Source Language) into 
an S-file 

A switch used for reading 
variously formatted inputs 

Scans an S-file and absorbs 
all global declarations made 

Macro-expands an IL input 
into a list of CRIL function 
definitions 

Transforms a CRIL input into 
TRlL by making type conver
sions and confluence-point 
branches explicit 

Determines what will be 
accomplished by in-line code 
generation as opposed to 
function calls; solves 
machine-related precision 
problems 

Counts and remembers register 
needs of subexpressions 

Compiles RelL into LAP 
assembly language 

Optimizes symbolic assembly 
language 

Assembles LAP into an octal 
core image 

Plants octals either in core 
or on core image secondary 
storage 



26 April 1967 6 TM-34l1/300/00 

Mnemonic 

5L 

IL 

S-FILE 

CRIL 

TRIL 

MSIL 

RCIL 

LAP 

CIM 

Table 2. Language Description 

Name 

Source Language 

Description 

ALGOL-like language made of a string of 
tokens 

Intermediate Language Polish prefix, list structure 

Software File A list of IL entities with a name; this is 
edi tor format 

Context-Resolved 
Interlude Language 

Type-Resolved 
Interlude Language 

Machine-Specific 
Interlude Language 

Register-Counted 
Interlude Language 

LISP Assembly 
Program Language 

Core Image 

A prefix, list-structured language with 
denotation of named objects explicit 

A prefix, list-structured language with 
type conversions and terminal branches 
explicit 

A prefix, list-structured language with 
decisions made on in-line code generation 

Like MSIL with notation to express register 
needs of subexpressions 

The LISP 2 assembly language 

A list of octals ultimately to be included 
in a LISP 2 system as a binary program 

) 

~) 



(------, (' 

S-FILE 

DECLARATION SCAN DECLARATION LIST 

====1-' V') -
~U 
~ 

;;<;ll' n » 
;=-0 

CODE GENERATOR 

a.. I a.. «« 
-' -' 

PEEPHOLER 

Figure 1. LISP 2 Compiler Flow Diagram 

S-FILE 

~ 

I\) 
0\ 

.a-
t"! 
1-'. 
I-' 

I-' 
\C) 
0\ 
~ 

~ 

t-3 

t 
lJJ 
+='" 
I-' 
~ -lJJ 
o 
o -o o 



26 April 1961 8 
(Last Page) 

TM-3417/300/00 

The context resolver introduces some machine-dependent precision information 
as part of its job. However, the process from syntax translator through 
the conclusion of the type resolution pass is essentially machine-independent. 
Other syntax translators and context resolvers may be used to produce CRIL 
representation of languages other than LISP 2. The optimization process 
begins with the type resolver pass. 

The supervisory program exercises a great deal of control on the compilation 
process. By means of PUBLIC variables, the output of any or all passes may be 
printed. Further, the compilation may be halted at any pass, the interlude 
language stored, and the compilation restarted at another time. An error in 
any pass will halt the compilation after that pass. Variables involved with 
the garbage collection and swapping heuristics will be bound by the supervisor 
to reflect pertinent facts about allocation to be used while compiling. The 
system action during compilation may be radically different than for other uses 
of LISP 2. 

4. RELATED DOCUMENTS 

other documents having volume numbers 300 to 399 in this series describe the 
various passes of the LISP 2 compiler and the interlude languages produced by 
them. Refer to TM-34l7/200/00 for descriptions of 8L and IL, and TM-34l7/400/00 
for a description of LAP. 

) 


