
Th. views, conclusions, or recomm.ndltlons .xpr.ss.d in this docum.nt do not nee ... 
serlly r.flect the officill views or policies of lpacl .. of the Unlt.d States Goverllllllflt. 
The research reported in this paper was sponsored by 
the Advanced Research Projects Agency Information 
Processing Techniques Office and was monitored by the 
Electronic Systems Division, Air Force Systems Command 
under contract F1962867COo04, Information Processing 
Techniques, with the System Development Corporation. 

Srstllll Devllopmg! Cerpontlon I 2500 Colarado Aft ... I' Santa Monica, Califonlll104Ol 
I.fonnatlon Inltmltlonll IK/I11S1 PIce IouI .. nI'Los An"I., California 10064 

LISP 2 Compiler Machine Link Specifications 

ABSTRACT 

lMC! 3417/380/00 

TECHIIICM ib~ ~ 
1:/{arnett 

.EWH~~t<lb~~ 

'01' J. I. Schwartz 

DATE 4/26/67 'Alit OF-,+--'''U 

(Page 2 is blank) 

This document describes the functions performed during 
the Machine Link pass of the LISP 2 compiler proposed 
for the IBM S/360 computer. The Hachine Link (pass IV 
of the LISP 2 compiler) determines what will be accom
plished by in-line code generation as opposed to 
function calls, and solves machine-related preCision 
problems. 





26 April 1967 3 TM-34l7/380/00 

1. INTRODUCTION 

The Machine Link is the first pass of the LISP 2 compiler that considers the 
machine for which code is to be generated. The following tasks are accomplished 
during this pass: 

2. 

1. Basic information required for optimal register 
allocation is obtained. 

2. Certain forms previously treated as function calls 
are detected and changed to the appropriate 
in-line form. 

3. CONVERT's are changed to one of the following: 

(a) function-call on convert routine 

(b) in-line form 

(c) no action at all 

4. Optimization to account for the distributive 
property of MINUS. 

LEXREG PROCESSING 

As bindings for lexical variables are encountered. their location in the 
expression is added to a list kept in a fluid variable location. Whenever a 
reference to a variable is encountered and the variable is on this list, one 
of two things is done: if this reference appears as the argument of an AFIELD 
or LFIELD form, or as a variable referred to by a CODE form. the locator is 
removed from the list; otherwise a one is added to a reference count that is 
associated with this variable. This reference count is included in the 
expression for all those variables still remaining on the list after all the 
subexpressions in the scope of a variable have been examined.· (If a block 
variable has a reference count of zero, a warning diagnostic message is issued 
and the variable is discarded from the binding list.) 

3. NET PROCESSING 

To insure that all values for EVALGO's to a given confluence point in a net 
can be found in the same place, the Machine Link performs the same type of 
logic to the assignment of registers as was used to insure that all values 
reaching a given confluence point were in a given format. To accomplish this. 
~bolic register assignments corresponding to the confluence point in the 
embedding net are placed in EVALGO's so that their values can be top-driven 
later to this register. When processing the net forms, as decisions are made 



26 April 1967 4 
(Last Page) 

TM-34l7/380/00 

to use function calls to perform conversions, the confluence points have the 
appropriate argument registers included with the confluence point. If an in
line sequence which m~ use arbi~rary registers is to be used, a generated 
register name is included with the confluence points. 

4. IN-LINE SEQUENCE DETECTION 

Certain forms have been treated as though they would be calls on functions, 
because they require strong driving to the proper format of their arguments. 
This pass looks at the function name inside all FNCALL forms, and if it is 
included in this special list, removes the FNCALL and uses the function name as 
the form name. 

The things discovered in this may include: 

5. 

WORDOR, WORDAND, WORDXOR, SHIFT, SCAE, CYCLE , 

IQUOTIENT, RECIP 

MINUS OPTIMIZATION 

When a minus form is encountered, the embedded expression is examined. 

If the embedded expression is a minus form, both minuses are removed. 

If the embedded expression is a plus form, the outer minus is removed and 
applied to each argument of the plus. 

If the embedded expression is a times form, the minus is applied only to the 
first argument. 

If the embedded expression is a datum, the minus is removed and the datum is 
changed to its negative. 

If the embedded expression is a recip, the minus is moved inside to apply to 
. the argument of the recipe 

When processing times forms, if minus forms exist within (at the top level or 
within reci~'s at the top level), the minus forms are removed. If an even 
number were removed, processing is complete. If a datum can be found to which 
a minus form can be applied, the form is applied; if a plus can be found, a 
minus form is applied to that; otherwise a -1 datum is added to the argument 
list. 


