
The views, conclusions, or recommendations expressed In this document dO not neces-
sarily reflect the official views or policies of agencies of the United States Government.
The research reported in this paper was sponsored by
the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the
Electronic Systems Division, Air Force Systems Command
under contract F1962867C0004, Information Processing
Techniques, with the System Development Corporation.

Spt.m Dev.lopm.nt Corpontion I 2500 Colorado Avenu.' Santa Monica, California ICN06
llfomation International 1nc./11161 Plco Boulevanll Los Anlll... Callfomil 90064

for J. I. Schyartz
DATl PAlE 1 Of ~PA'ES

4/26/67

(Page 2 is blank)

LISP 2 Compiler Register Counter and Code Generator Specifications

ABSTRACT

This document describes functions performed during the
Register Counter and Code Generator passes of the
LISP 2 compiler proposed for the IBM S/360 computer.
The Register Counter (pass V of the LISP 2 compiler)
counts and remembers register needs of subexpressions.
The Code Generator (pass VI of the LISP 2 compiler)
compiles Register-Counted Interlude Language (RCIL)
into LAP assembly language.

J

)

\

)

I ,
I I
I I,

"

26 April 1967 3 TM-34l7/385/00

1. INTRODUCTION

The first pass of the LISP 2 compiler that is concerned with register allocation
is the Machine Link pass. At this time, information about the references to
lexical variables generated in bindings is collected and inserted into the
declarations for these variables. Those lexical variables that have no refer
ence made to their locations are established as candidates to be LEXREG's.
Those variables later assigned as LEXREG's will have their values maintained in
a register (or registers) throughout their scope, rather than having their
values stored.

The real concern about register allocation begins in the next pass. the Register
Counter pass. Here, those LEXREG candidates whose references are numerous
enough to warrant it ar'~ assigned as LEXREG's. Basically, this pass counts the
number of registers that will be required to evaluate each expression. Infor
mation about such items as which registers will be used in evaluating an expres
sion and where the value will be found is placed into the expression for use by
the following pass, the Code Generator pass.

During the Code Generator pass, final register assignments are made. Cognizance
of parallel register usage* is used to allow more LEXREG candidates to be
assigned and to allow more intermediate results to be kept in registers.

As can be seen, a dominant dictum has been to keep all registers containing
meaningful information whenever possible, and provide those variables whose
utility is greatest with the most convenient access. Adherence to these
precepts should generate code that is both shorter and faster.

2. CONVENTIONS

The assignment of functions for all four floating-point and M general-purpose
registers resides in the compiler. For purposes of discussion, the general
purpose registers will be considered to be M contiguous registers whose names
are the digits 1 through M. (A likely value for M is 8.)

N (probably 3 or 4) of these registers are used in the transmission of
arguments to functions. Assignment of argument registers is from the last
argument to the first, and from register 1 to register N. Values are returned
in register 1. (For values requiring more than one register, the registers
are assigned consecutively from 1.)

*"Parallel register usage" refers to registers that may be allocated at this
time because a preceding or subsequent statement must have them available.

26 April 1967 4 TM-34l7/385/00

Funct~ons whose value-type is REAL return their value in Fl. The final REAL
argumunt (if any) of any function is passed in Flo Indef args are treated as
though they were the first and second arguments of a function, except that the
first is never passed in a register. The second argument is the integer count
of elements of the first, and may be passed in a register as any other integer
argument.

Those arguments that require more than one register to contain their values are
passed in registers if enough registers remain, otherwise earlier arguments
(if any) may be passed in registers instead.

At the return from a function call, any general resisters not used for values of
arguments will be unchanged.

3. PROGRAM STRUCTURE

During the Resister Counter pasa, one basic switch functions as a nucleus for
recursion: REGCOUNT. This function binds some public variables used for
register counting and calls a function appropriate to the MSIL form-name to
perform the counting. REGCOUNT then puts the results of this resolution into
the expression. Updating of other public variables is also done to reflect
increased parallel usage requirements.

REGCOUNT binds and puts into the listins: TRC, FRC, TFC, FFC, AR, and AF. It
updates PUC, PUCF, TRC, FRC. TFC. and FFC.

4. PUBLIC VARIABLES

Name Class Range Meanins

N Inteser Parameter Invariant lQumber of seneral resisters allotted
to be used to pass arguments of
functions

M Inteser Parameter Invariant

THRESHOLDS List Parameter No more

THRESHOLDF List

than M-N
elements

Parameter No more
than 3
elements

Number of general registers allotted
to be assisned functions by the
computer

The first element is the threshold
requirement for LEXREG assignment
when M registers are available; the
next for M-I, etc.

Corresponds to THRESHOLDS for
floating-point registers

)

~~~---------------- ~--------------~---.~~~~~.-----------~-------~~ --~------



26 April 1967 5 TV-3417/385/00 

Name ~ Class Range U[ea.ninp.: 

C Integer Context N<C~M Number of registers currently assignable 

CF Integer Context 1<Cli'::;4 Number of floating-point registers 
currently assignable 

PUC Integer Context O:-;;POC~C Parallel usage count 

PUCF Integer Context O::;PUCF~CF Parallel usage count of floating-
point registers 

REGUSE List Context List of current register assignments 

XREG Name Context Register in which answer desired 

TRC Integer Require- O~TRC~M Total register count 
ment 

FRC Integer Require- O~FRC~N Fixed register count (argument regs) 
ment 

TFC Integer Require- O~TFcs4 Total floating register count 
ment 

FFC Integer Require- O~FFC~l Fixed floating register count 
ment 

AR Name Require- Numbers Answer register 
ment l-M.ARB 

Name Require- TRUE. Availability flag 
ment FALSE. 

CON. 
PART 

NEED List Require- Fixed register usage requirement 
ment 



26 April 1961 6 TM-3417/385/00 

5. RULES FOR REGISTER ALLOCATION 

5.1 BIND FORM FOR REGISTER COUNTER PASS 

(BIND (V1 ••• Vk ) S) 

(1) Bind i to 1, x to NIL, y to NIL. 

(2 ) 

( 3) 

( 4) 

( 5) 

( 6) 

(1) 

( 8) 

( 9) 

(10) 

( 11) 

(12) 

(13) 

( 14) 

(15) 

( 16) 

( 11) 

If i GR k, go to (6). 

If V. is not a lexreg-candidate, go to (4). 
1 

If the type of Vi is REAL, put reference-count of Vi in list y, 
else in list x. (Lists x and yare generated in sorted order, 
i.e., Xi LQ x i +1 .) 

Set i to i+l; go to (2). 

Set x to PICKEM(x NOFF(M-C THRESHOLDS». - - ===;;;;.;;.. 
Set i to k. 

If x is NIL, go to (13). 

If Vi is not a non-REAL, lexreg-candidate, go to (12). 

If reference-count of V. NQ CAR(x), go to (12). 
l. 

Change V. from lexreg-candidate to LEXREG; set x to CDR(x); 
go to (7t. 

Set i to i - 1; go to (9). 

Set y to PICKEM(y NOFF(4-£! THRESHOLDF}). 

Set i to k. 

If y is NIL, go to (20). 

If Vi is not a REAL, 1exre~-candidate. go to (19). 

If refere~c~-count of Vi is NQ CAR(y), go to (19). 

) 

\ 

) 



; 

\ 

\. 

26 April 1967 7 TM-3417/385/00 

(18) 

(19) 

(20) 

(21) 

Change Vi from 1exreg-candidate to LEXREG; set y to CDR(y); 
go to (14). 

Set i to i-I; go to (16). 

Bind £. to £.' f1!£ to E.!l£; set i to 1; bind f! to £!.' .!:!!£E to f.!!£E.. 

If i GR k, go to (24). 

(22) Compile (i.e., count registers for) Vii if Vi is LEXREG, then: 

if REAL, set CF to CF-l; set PUCF to MIN(CF PUCF); - - - --

(23) 

(24) 

PICKEM: 

(1) 

(2) 

( 3) 

( 4) 

if not REAL, set C to C-l; set PUC to MIN(C PUC) • .... - - --
Set i to i + 1; go to (21). 

Compile S. 

Args: (x y) 

Set x to NOFF(LENGTH(x)-LENGTH(y) x). 

If x is NIL, return NIL. 

If there exists in x an element whose value is less than the 
corresponding element in y, set x to CDR(x) and go to (2). 

Return x. 



26 April 1967 8 TM-3417/385/00 

5.2 BIND FORM FOR CODE GENERATOR PASS 

(1) Bind PUC + PUC, PUCF + PUCF; set i + 1. -- ---
(2) If i > k, go to (7). 

(3) If Vi is 1exreg-candidate, then: 

* if type is REAL and PUCF > TFC or 
----- subsequent' 

* type is not REAL and PUC > TRC b t' make Vi LEXREG. --- su sequen 

( 4) 

( 5) 

( 6) 

(7) 

Compile V •• 
1 

If V. is LEXREG, set PUC + PUC - 1. 
1 --- -

Set i + i + 1; go to (2). 

Compile S. 

5.3 IPLUS AND APLUS FORMS FOR REGISTER COUNTER PASS 

(IPLUS Al .I.~) k > 1 

(APLUS Al A2 ) 

(1) Bind double = off, PUC + PUC, TRC + O. m 

( 2) 

( 3) 

( 4) 

( 5) 

(6) 

(7) 

* 

Compile A. (pass I). 
1 

If TRCi ~ ~, go to (7). 

If TRCi = TRCm, set double on; go to (6}1 

If THCi > TRCm, set double off; TRCM + TRCi • 

If i = k, go to (12); else i + i + 1 and go to (2)1 

TRC + TRCi , PUC + TRC - 1. 
m - m 

TFC WUbse uen is the maximum value found by adding to the value of TFC for 
the sUbse~uen\ binding (or statement) the number of LEXREG bindings inter
vening between it and Vi" 

) 

) 

) 



( 
\. 

/ 
\ 
"- ... 

26 April 1967 9 TM-3417/385/00 

( 8) 

( 9) 

(10) 

( 11) 

(12) 

(13) 

5.4 

If i = k, go to (13). 

Set i -4- i+l. 

Compile (count registers for) A (pass 1) in context of PUC. 

If TRei > TRCm, go to (7); else go to (8). 

If double = on TRC -4- TRC + 1. 
- m 

Set ~ -4- FALSE, ~ -4- ARB. 

IPLUS AND APLUS FORMS FOR CODE GENERATOR PASS 

-

(IPLUS Al ••• 

(APLUS Al A2) 

~) k ~ 2 

(l) Regroup arguments into two lists: (Bl ••• Bn) eCl ••• Cm) 

where Ci are all A. which have AF = TRUE or AF = COM, and 
1 -

TRC of Bi .~ TRC of Bi +l • 

(2) If no Bl , then compile load of Cl to ~ and go to (8). 

(3) If no B2 , then compile Bl into ~ and go to (6). 

(4) If TRCl ~ TRC2 , then: 

(4.1) If ARl = ARB. then 

• 

(4.1.1) compile Bl into partial-sum-accumulator, else 

(4.1.2) compile B1 • and if there exists TRCj such that 

j ~ 1, and AR j C TRC j • then 

(4.1.2.1) move AR1 into partial-sum-accumulator.* else 

(4.1.2.2) call ARl partia1-sum-accumulator • 

Partial-sum-accumulator = if ~ is a LEXREG or there exists FRCj such 

that J ~ 1, and XREG C FRCJ• then last arbitrary register allotted, else 
XREG. 



26 April 1967 10 TM-34111385/00 

(4.2) If partial-sum-accumulator 1 XREG and there exists 
AR. = XREG or AR. = ARB (i 1 ~. then move B. to end of list. 

~ - ~ 1. 

(4.3) Compile B2 ••• Bn_l (if any) into: 

if AR is arbitrary, then the last arbitrary reg allotted it, 
else the fixed register it desired. 

Add the results to partial-sum-accumulator as they are 
encountered. 

(4.4) If par.tial-sum-accumulator = ~, 

then compile Bn into last-arb-reg-allotted it, and add to ~, 

else compile Bn into ~ and add partial-sum-accumulator. 

( 4 • 5) Go to (5). else 

(4.6) If TRCl = ~, then 

(4.6.1) if there exists Bi such that TRC i = ~ and ARi 

1 ARB, then 

compile B.; remove it from the list; 
1 

if something already pushed. 

then add to it, 

else start push; go to (4) 

else set i to 1 and go to (4.6.1); else 

(4.6.2) if there exists Bi such that TRC i = TRCl and 

AR. = ARB, then 
1. 

(4.6.2.1) TRCi + TRCi +1; move Bi to head of list and go to 

( 4 .1.1), e1s e 

(4.6.2.2)if there exists Bi such that TRC i = TRC1 and 

AR. 1 XREG, then go to (4.6.2.1); 
~ 

else set i + 1 and go to (4.6.2.1). 

) 

) 

) 
./ 



26 April 1967 

(5) If pushed sum. add it to ~. 

(6) If no Cl • exit. 

(7) Add Cl to ~. 

11 

(8) Add C2 through Cm (if any) to !B!£. 

(9) Exit. 

5.5 FNCALL FORM FOR REGISTER COUNTER PASS 

(FNCALL full-type form-name argi ••• argk) 

TM-34l7/385/00 

( 1) From the full-type. determine and mark those arguments to be 
passed in registers and determine the number of registers required 
to hold the value. 

(2) 

( 3) 

( 4) 

Set TRC + Set FRC + Max (argument-register-count value-reg-count). 

Set TFC + Set FFC + Set PUCF + 4. - -Set PUC + MAX (PUC TRC). - --
Compile all arguments not being passed in registers. 

Bind ~ + 0 ~ + 0 to compile all args being passed in register. 

(5) Set ~ + MAX (~ TRCi (for all args passed in regs)}. 

5.6 FNCALL FORM FOR CODE GENERATOR PASS 

(FNCALL full-type form-name argl ••• argk) 

(1) Compile all arguments not being passed in registers onto the 
pushdown stack in sequence. 

(2) Form a list of thOse arguments whose AF is FALSE. 

(3) It none in list. go to (6). 

(4) If any argument requires all the registers currently available, 
compile it now. (Deltination is the stack if another argument 
requires all the registers or the use of the register in which 
this argument will be passed. Otherwise, compile into its proper 
argument register.) Remove this argument from list and go to (3). 



26 April 1967 12 
(Last page) 

TM-3417/385/00 

( 5) Choose the argument from the list that has the highest FRC and 
compile it next. (Destination is the stack if the other argument 
on the list requires the use of the argument register. otherwise 
compile to target register.) Go to (3). 

(6) If any register-passed arguments are on the stack. compile loads 
for them. 

(7) Compile loads for those arguments whose AF was not FALSE. 

) 


