
The view~, conclusions, or Iccommendltions expressed In this docum.nt do not neces
sarily reflect the offitial views or pollcl.s of Ilencies of the United StItes Government.
Tb~ research reported in this paper was sponsored in
part by the Advanced Research Projects Agency Infor
mation Processing Techniques Office and was monitored
by the Electronic Systems Division, Air Force Systems
Command under contract F1962867COo04, Information Pro
cessing Techniques, with the System Development· Corporation

s,stllll DtWllopmtnt Corporation I 2500 Colorado AWlnu.1 Sanll MonICl, 1:111,.,..11 10408
Informatlln Intemltlolll Inc./ll1&1 Plco BoullVlnll Lot Anpl ... call"",11 I0OI4

LISP 2 Assembly Program (LAP) Specification

ABSTRACT

AUTIIOI 9ClhUl-~?i'
D. Crandell

TlCUICAf)~~
I~/'arnett

DATE 4/26/67 PAIl 1 OF..A..PAlEI

(Page 2 is blank)

This document specifies the functions performed by the
LISP 2 Assembly Language (AL) and processor for the
IBM System 360. Included are.a description of LAP
address field types, LAP pseudO-instructions, and the
LAP assembly processor. Syntax equations for most
LAP language forms are included in an appendix.

\
'!

j

)

26 April 1967 3 TM-34l7/400/oo
(Page 4 Blank)

TABLE OF CONTENTS

~
Section 1. Introduction 5

2. Top of.the Language • 5

3. LAP Instruction Fields 5
3.1 ENTRY • 5
3.2 QUOTE 5
3.3 UNIQUE 6
3.4 OWN VARIABLES • • 6
3.5 FLUID VARIABLES • 6
3.6 LEXICAL VARIABLES 6
3.7 PUSH 8
3.8 POP 8
3.9 LABEL 8
3.10 LITERAL 8
3.11 REGISTER DISPLACER 8
3.12 REGISTER 8

{

"'- 4. LAP Pseudo-Instructions 9
4.1 ENTRY 9
4.2 BEGIN 9
4.3 ARGUMENT 9
4.4 CALL 9
4.5 PUSH 9
4.6 POP 10
4.7 BLOCK 10
4.8 RETURN 10
4.9 END 10
4.10 DECLARE 11
4.11 SYMBOL 11
4.12 ORG 11
4.13 CASEGO 11
4.14 ALIGN 11

5. LISP Assembly Processor 12
5.1 Calling Function LAP 12
5.2 RAP Operation 13
5.2.1 Label Processing 14
5.2.2 S/360 Instruction Processing • 15
5.2.3 Address Field Processing 16

Appendix 21

l Fig. 1 Assembly of Lexical Variable Address Fields 7

)
-~

26 April 1967 5 TM-3417/400/oo

1. INTRODUCTION

The LISP 2 Assembly Program (LAP) generates a core image (a list of octals
paired with relative locations) from a list of symbolic instructions and labels.
LAP also allocates storage for variables on the pushdown stack, and insures
that references to fluid and own variables are consistent among different
compiled functions.

2. TOP OF THE LANGUAGE

A lap-definition has the following format:

lap definition = (LAP listing ref-list)

where

listing a ({FUNCTIONIMACRO} (f-name value-type) par-list item*)

item = S!360-instlpseudo-inst Ilabel

A lap-definition consists of two parts: a ref-list, whose format is as yet un
defined and a listing. The ref-list supplies a complete list of global
variables referenced freely from listing; it also supplies the necessary
amount of declaration to do consistency checks of type, etc. The listing is
the symbolic assembly language, AL, for either a function or macro. The name
(f-name) and the type of datum produced (value-type) are specified. The list
of items includes machine instructions, pseudo-instructions. and labels--the
normal constituents of a symbolic assembly language.

3. LAP INSTRUCTION FIELDS

3.1 ENTRY

Syntax: (ENTRY identifier displacer)

This is used to reference an identifier defined by a previous ENTRY pseudo
instruction in this or a previous program. Provision is made for a displace
ment relative to this identifier by means of "displacer." This address usage
will result in assembling a "load index register" instruction with the address
of the entry identifier prior to assembling the given instruction.

3.2 QUOTE

Syntax: (QUOTE S-expression)

The normal case of a quote field causes the following: a quote cell is
generated in quote structure space; a load register {1112} via the quantized
core map (adcons) is inserted in front of the current instruction; the address
field concerned is assembled as (o.I12} displacement).

26 April 1967 6 TM-3417/400/00

In all these adcon-demanding instructions, the assembler checks the current
status of registers 1 and 12. If the required reference is in the same quantum,
no load is necessary. The remembered contents of these registers is lost when
a label or a function call is encountered.

3.3 UNIQUE

Syntax: (UNIQUE S-expression)

UNIQUE references have much in common with quotes. The outstanding difference
is that the structure is shared and quote cells are not.

3.4 OWN VPBIABLE

Syntax: own-variable

Once again, register, 1 or 12 is used as a base register. The address reference
created refers to the own binding cell for that own-variable. The own structure
count is incremented. The own-variable must be dotted with the name of the
section in which it was declared.

3.5 FLUID VARIABLE

Syntax: fluid-variable

The adcon required by the address reference to the fluid binding cell is very
likely given by register 14. Register 14 always contains the base for the
initial non-locative fluid structure space. Locative fluid references and
those non-locatives that could not fit in the initial space will reqUire an
additional adcon in register {1112}. The fluid-variable must be dotted with
the name of the section in which it was declared.

3.6 LEX! CAL VARIABLE

Syntax: lexical-variable

Lexicalvariabl~s are dotted with LEX. and represent absolute or pointer stack
references. The actual machine'address produced will be a positive displace
ment modified by either base register 10 or 13. The absolute and pointer stacks
occupy a single space and grow toward each other. Registers 10 and 13 represent
pointers to their respective stacks but have negative offsets included so that
references forward and backward from the stack boundaries can be accomplished
with positive displacements. These offsets are -a for the pointer stack and
-6 for the absolute stack. At exhaustion of stack space, a certain amount of
"breathing space", O. must still be present for the use of the garbage collector.
Figure I is typical of the stack at exhaustion. In the figure, G is the function
being called. Note also that registers 10 and 13 have the same value at this
point.

--- -- ------------ --------- ---- -- ----------

)

(

26 April 1967

Contents of
Reg ister 10
or 13

Ct

• ~

7

~

6

,

Low Address

-L

ARGS of G

Absolute Scratch
for G

G~rbage Collector
Breath ing Space

Po inter Scratch for
G

Pointer ARGS of G

I

High Address

1M'

....

TM-3417/4o%o

Absolute Stack
Boundary

Pointer Stack
Boundary

Figure 1. Assembly of Lexical Variable Address Fields

--~---- ------------~--.- ---'--""-----------~-~---~--.--

26 April 1967 8 TM-3417/400/00

3.7 PUSH

Syntax: (PUSH {{Alp} [count) lAD})

This address causes the same action as does the PUSH pseudo-instruction; it
also supplies the base register and displacement to the given instruction.

3.8 POP

Syntax: (POP {Alp} [count])

This address also acts the same as its pseudo-instruction counterpart, and
supplies the base register and displacement to the given instruction.

).9 LABEL

Syntax: (LABEL label)

Normally, label reference fields for the 8/360 simply assemble as R positive
displacement. Label references may occur outside the code section in which the
label is defined. In such cases, label references will refer to a link block
consisting of a "load register 11 and branch". This unfortunately complicates
the assembler, but should not occur often.

3.10 LITERAL

Syntax: literal

Literal reference fields cause an address reference to a quantity in the literal
pool. Parts of this li ternl pool may be in fixed proerllJ;) space. ~~toreB into
literals ar'eprohibited. Normally, a literal will be generated in the conRtants
region of the current BPI.

3.11 REGISTER DISPLACER

Syntax: (reg displacer)

This address form is a means of explicitly stating the register and displacement
to be assembled into the given instruction.

3.12 REGISTER

Syntax: reg

A reg denotes the register to use as a base or index register in a 360 instruc
tion.

J

)

-)

26 April 1967 9 TM-3417/4o%o

4. LAP PSEUDO-INSTRUCTIONS

4.1 ENTRY

Syntax: (ENTRY identifier displacer)

The ENTRY pseudo-instruction is used to generate an adcon in the entry pool
that may be referred to in subsequent assemblies by referring to the identifier.
This pseudo-instruction is intended for system-making purposes, and will cause
the program in which it occurs to be assembled in fixed program space.

4.2 BEGIN

Syntax: (BEGIN)

This pseudo-instruction causes fluid binding of the input parameters that ure
fluid.

4.3 ARGUMENT

Syntax: (ARG)

The ARG pseudo-instruction is used to mark the beginning of the preparation of
the arguments for the next FUNCTION call. It causes the assembler to note the
status of the stacks so that this status can be restored after the call.

4.4 CALL

Syntax: (CALL function-name map)

This causes the generation of a calling sequence for the function given by
function-name. The entity "map" reflects the status of the general registers.
The right bit of map will be 0 if register 0 is absolute und 1 if register 0
is a pointer quantity. Successive bits to the left in map describe successively
lower-numbered registers. The map will be put in the calli ne sequence nlong
with the amounts to increment the absolute a.nd pointer stuck dur:l.np; the call.
After the call is generated, LAP returns the stacks to the status ut the corres
ponding ARG pseudo-instruction. This has the effect of doing a POP pseudo
operation for each stack argument of this call.

4.5 PUSH

Syntax: (PUSH' {AIADjP} [count])

PUSH causes LAP to reserve a space on either the absolute or pointer stack as
given by A or P. AD is used to indicate double-length absolute pushes. If
count is not specified, then one such entry is made, otherwise count specifies
the number of entries.

26 April 1967 10 TM-3417/400/00

4.6 POP

Syntax: (POP {Alp} [count))

The POP pseudo-instruction is used to de-allocate stack space previously allo
cated by a PUSH. A or P indicates whether the absolute or pointer stack is
affected. The optional count field can be used to indicate the number of stack
entries to remove. An empty count field implies a count of 1. Stack entries
are removed on a last-in, f:l.rst-out basis.

4.7 BLOCK

Syntax: (BLOCK item* declare item*)

LAP is a block-structured assembler. This affects both le.bel referencing and
variable bindings. Labels defined within the block are invisible outside.
labels defined outside are visible inside, however. If several labels are
defined with the same name at different block levels. the j.nnermost visible
label will satisfy the reference. (If they are defined at the same block level,
there is an error.) The items encountered before the declaration-Qre a series
of computations ending with PUSHes. The declaration gives variable names to the
entities left on the stacks. Any variables declared fluid nre fluid-bound at
the decl~ration. After execution of the last item in the block, fluid-variables
bound in the block are restored and the lexical variables on the stack are POPp~d
automatically. An end pseudo-op is usually the last item in a block.

4.8 RETURN

Syntax: (RETURN)

RETURN generates the code to reload the safe-over-function-call registers that
were not arguments, and the system registers. Control is returned to the
calling program.

4.9 END

Syntax: (END)

END signals the end of a block and revokes all variable bindings and label
definitions of the block. The fluid variables are restored. If BND does not
occur in the context of a block, its function is to restore the fluid variables,
and mark the end of the function.

--------_._---_._ ..

)

)

26 April 1967 11 TM-3417/4o%o

4.10 DECLARE

Syntax: (DECLARE bound-declaration.)

When this pseudo-instruction is encountered, the list of bound-declarations
is reversed; each bound declaration is taken in order and paired with a
pushdown constituent. Fluid binding is done for the fluid variables declared.
See Section 4.7.

4.11 SYMBOL

Syntax: (SYMBOL (identifier. integer)*)

This pseudo-instruction can be used to define register na~les or other symbolic
equivalents. This definition must occur earlier in the code than the use of
the given symbol. This works as EQU does in most other assemblers,

4.12 ORG

Syntax: (ORG [integer])

This pseudo-instruction causes the progrnrr\ to be assembled in fixed space.
The integer indicates the origin of the program in fixed space. If the integer
is not specifie~some previously specified value is taken as the default value.

4.13 CASE GO

Syntax: (CASEGO reg label.+l)

The CASE GO pseudo-instruction performs an operation similar to the CASE opera
tion in IL. An integer value, n, is assumed to be in the e;eneral register
specified by reg. Computer instructions are e;enerated to transfer control to
the instruction with the nth label of the given label list. If n is less than
1 or greater than the given number of labels, control is transferred to the
last of the given labels.

4.14 ALIGN

Syntax: (ALIGN a [b))

This pseudo-instruction causes alignment of the instruction counter. The
parameter "a" specifies the desired alignment as follows:

a alignment

4 full word

8 double word

26 April 1967 12 TM-34l7/4o%o

Alignment is effected by adding half-word NOP instructions to the instruction
stream. Half-word alignment of instructions should be maintained by the user
at all times. The optional parameter b is used to specify the number of bytes
of contiguous coding that will follow this pseudo-instruction. "Contiguous"
means that the coding cannot be put on two different pages, e.g., an in-line
calling sequence.

LISP ASSEMBLY PROCESSOR

LAP 2 for the 360 is influenced by two major constraints: the block structuring
of its input language (AL), and the paging orientation of the 360's addressing
scheme. This most significantly affects the label processing, and to a lesser
degree, the method of handling literals.

The LAP assembler has two versions that essentially differ only in what they do
with the assembled code. LAP either places code to be run in the memory of the
machine on which it is operating (normal running mode), or it outputs a form of.
the code onto secondary storage to be subsequently loaded onto another system
(core image generation mode).

LAP's initial output is basically a list of items that are to be stored, paired
with the relative location in which they are to be stored. The post-
processor which plants this list in core or outputs it onto secondary storage
will not be considered further in this document. All other areas are treated
as though a planting in core (normal running mode) was planned for the initial
output of LAP.

5.1 CALLING FUNCTION LAP

LAP is a function which is called with one argument. This argument is the
definition of a function (or a macro) in assembly language.

LAP's argument, (LAP listing ref-list) consists of the ref-list (or decle.ration)
list, which is a list of the names of all variables used "free" in this function,*
together with pertinent declaration information, and the listin~--a list of the
assembly language (AL) items output by the compiler, which makes up the main
body of the function definition. The ref-list is processed first.

The ref-list is processed by applying the primitive MAKEFREE to each of the
variables in turn. l~FREE creates a variable structure (with the appropriate
class of structure and value type) for each of the variables for which a
variable structure does not then exist, and checks for consistency those
variable structures that already exist. In all cases, it returns as its value
the location of that structure.

* "Function" is being used to indicate function, macro, etc.

--~-"' ~--- .-.-.~-- --- ... -----,--------~-
-------"-.----~----.,-------- --------

)

)
/

26 April 1967 13 TM-3417/4o%o

The listing ({FUNCTION I MACRO} (f-neme value-type) par-list item*) is then processed.

The following list is passed, as an argument, to HAKEFREE:

•

f-name, i.e., the name of the function, or macro, etc.

usage,i.e., the type of structure being defined:
FUNCTION or HACnO

value-type, i.e •• the type of value the function will
return

par-list

r~EFREE creates the function descriptor and returns as its value the location
of that descriptor.

The par-list only gives information to LAP. Variable names on the par-list
are associated with preceding locations on the stacks, starting with current
locations of the stack pointers and going back to successively earlier loca
tions in the stacks.

In the proposed LAP/360 implementation, there are actually two stacks, one for
absolute quantities; a second for pointer quantities and recording the contents
of the registers prior to a function call.

This, then, leaves only the items unprocessed. The items of the listing make
up the main body of the function definition, and their processing mechanism
makes up the main be,dy of LAP--a function called RAP (Recursive Assembly
Processor). I

RAP OPERATION

RAP operates on its input, the free variable Listing, which is a list of items.
It outputs additions to the free variable Corim. which is a list of assembled
items, each paired with the location number of the site at which it is to be
planted.

By the time RAP operates on Listing, f-name, usage. value-type, and par-list
have been processed and all that remains is the main body of the function
definition, items.

.---------~----------

26 April 1967 14 TM-3417/4o%o

Therefore,

and

item = S/360-instlpseudo-instllabel

An item may be an S/360-inst (an assembly language 3/360 instruction which is
assembled and output), a pseudo-instruction (which operates on LAP's internal
lists and variables r and may produce an assembled output), or a label (which
specifies a point ill the code structure, causes LAP to record this point so
that it may be referenced by other code, and causes no assembled output).

Label Processing

A label is an identifier or an integer. Encountering a label produces no
assembled code output on Corim. and serves only to define the location of
a point in code for reference.

When a label is encountered, all of the code preceding it has been assembled
and assigned a location. so that the location of the label is defined as the
next location at which code will be planted.

Whenever a label is encountered, it is added to a list of labels and paired
with its location (actually the location at which the code immediately
following it is to be planted).

Labels list = «label. ilc)*)

The ilc ,(instruction location counter) is the location at which the code will
be planted.

Then the list of label references is searched (i.e., the locations of instruc
tions in Corim that make reference to labels are searched).

t is the current location of the code element on the Corim list. The location
includes the page on which the reference occurs.

If Lblref is found to contain references to this label, the code (whose address
field had been left empty) is fixed up to refer to this label location, and the
references are pruned from the Lblref.

)

)

26 April 1967 15

The process is actually not quite this simple, due to the page-oriented addres
sing (one can address locations only trom 0 to 1023 words torward ot a base
register), At run time there is always one register loaded with a value which
is the address ot either the beginning of the currently executing binary
program (BP) or a point n x 1024 words down from this point. Thus the binRry
program register always points to the beginning of the current "page" of the
BP (that is the beginning ot the 1024-word segment ot the binary program that
is currently being executed).

This makes it possible to address any label on the current pnge directly using
the binary program register (BPR) as a base and dis,placing up to l02h words
from this register,

To address (branch to) points oft the current page, as might have to be done In
large multi-page binary programs, it is necessary to load a base register with
a value which is within 1024 words of the desired address. This is done by
adding (or subtracting) a multiple of 1024 from the BPR, and then branching to
the location specified by the BPR displaced by a quantity less than 1023 words.

In practice, then, each time a label is encountered, it is added to the Labels
list, paired with its location--page number (relative to the beginning of the
BP)--and its location (displacement down from the beginning of the page).

Labels = «label (pg • ilc))*)

Then Lblref is searched.

If the Just-encountered label is'found in this list, then all references to the
label (the list of locations of references'to the label is dotted with the
label name in Lblret) are tixed up to point to the label. The label, and its
associated structure, is then pruned from Lblret.

8/360 Instruction Processing

A second class of items that may occur in the listing consists ot S/360
instructions. These instructions make up the main body ot the BP definition.
The syntactic structure of an 8/360 instruction is:

8/360-inst = (opl
op reg I
op reg regl
op reg addrl
op reg addr reg I
op length addr length addrl
op (iromed) addr)

These correspond to the RR, SI, RS, RX, and SG instruction types of the S/360
machine instructions.

26 April 1967 16 TM-3417/400/00

The first element of an 8/360 instruction is always the OPt which is a list
consisting of an op symbol or number followed by zero or more op-modifier
symbols or numbers.

The RAP program contains a standard list of op and op-modifier symuols (on the
8ymbtabel list), and this list may be expanded by any user by adding symbol
definitions to Symblist (which is appended to Symbtabel) using the SYMBOL
pseudo-instruction (discussed in the section on pseudo-instructions).

The op, then, is

op =({OP-symbollnumber} {op-modifier-symboll number} *)

(See the Appendix for a set of standard op and op-modifier symbols.)

The op is processed by exclusive-OR'ing each of its subelements together.
Numeric values are used as is, and symbolic values are looked up (first in
Symbtabel, and then, if not found there, in Symblist). The numeric value
defined in the list is used.

The syntactic structure of the address field is then analyzed and a constant,
which indicates instruction class, is EOR'ed into the opcode.

Finally,the address fields themselves are assembled into the instruction. The
complete instruction is then added to Corim and the next item on the listing
is processed.

Address Field Processing

Address-field processing is handled by calling a function that determines the
address type. creates any necessary side effects of that address, and returns
as its value the assembled address field.

There are two functions of this type: REG and ADR. The first handles the
assembling of register type address fields. The syntax of the field that is
passed to reg as an argument is:

reg = integerlsymbol

where integer is a number with a value from 0 to 15 that directly represents
one of the 16 general re~isters of the 8/360. and symbol is a previously
defined symbol in 8ymblstwhose value is an integer between 0 and 15. REG has
no side effects and merely returns as its value the integer~ or the integer
value of the symbol.

The second function, Ann, is a bit more complex. ADR processes address fields
of the "address, displacer" type. Its argument. addr. may be in one of several
forms. defined by the equations in the appendix.

J

)
J

26 April 1967 17 TM-34l7/400/00

The first form of addr, (reg displacer), expressly indicates the base register
that is to be used and the amount of displacement from this base register. If
either is in symbolic form. it 1s replaced by its numeric value, found in
Symblst. The two values, reg (= 0 to 15) and displncer (= 0 to 409) bytes or
1024 words), are EOR'ed together (after reg has been shifted 12 bits left) to
form the address, and this value is returned as the value of ADR.

addr = [~e_g __ ~ __ d_i_sP_l_a_c_e_r~
a 3 4 15

The second type of addr is the literal, ({21418l integer). This is a reference
to a literal value whose length is 2. 4, or 8 bytes in length (half, full, or
double-word sizel. Literals (except those found in fixed program space) are
placed at the end of the page of binary program that references them, so that
they may be directly referenced using the BPR as the base register. Literals
are shared on their page, so that if several instructions on the same page
refer to literals whose values are the same, then only one literal i~ created.

The location (at the end of the page) where the literal will be pla,ced is not
known at the time it is encountered. Therefore the addr field of the in
struction is left blank. The literal is added to the Litthspg list if it is
not on the list, and 2 (the location of this instruction in Corim) is associa
ted with it. The instruction's addr field can be fixed up to point at the
literal, when the literal is assigned a location on the page. The function
returns the value of BPR with no displacer.

Lexical-variables are variables whose values are stored on one of the two
pushdown stacks. Each of the stacks has an associated base register (the ASP
and the PSP) whose location remains fixed during execution of a function. All
lexical-variable addresses are displaced from these two registers. The
variable base register and displacement are determined by reference to the
lexical variable list. The function returns as its value ASP or PSP and a
displacer.

Own-variable values are stored in own-variable space. Own-variable space has
no reserved base register. so a base register must be loaded with a value within
1024 words of the referenced own variable. One of the scratch registers
(registers 1 and 12) is used for this purpose.

The actual procedure is as follows. First, a funct ion f'.1AKIo:FHEE is culled, with
(own-variable-nnme • section-nrume) as its argument; it returns with the location
of that own variable. This location is separated into two parts: n x 1024 words
+ displacer, with displacer < 1024 words. A test is made to see if either of
the LAP scratch registers contains the value n x 1024; if so, this register is
used as the base register. If not, an instruction is created which loads one
of the registers with the number n x 1024 words.

26 April 1967 18 TM-34l7/4oo/00

The number n x 1024 comes from a table in fixed program space that contains
adcons (multiples of 1024 words). That is, the instruction created loads a
LAP scratch register with the contents of a location specified by the frS
register displaced by an amount sufficient to reference the constant n x 1024
words. The instruction thus created is added to Corim and nssigned a location
just prior to that of the instruction currently being assembled. The fUnction
returns as its value the register number of the LAP scratch register loaded as
a base register, and the displacer portion of the value returned by MAKEFRF.E.

Fluid variables are handled in a similar fashion, except that fluid-variable
space does have a reserved base register which always contains the location of
the beginning of fluid-variable space. This means that those fluid variables
found within 1024 words of this base can be directly addressed, without first
inserting a "load base register" instructiion. The function returns the number
of the fluid-base register, or a LAP scratch register, as appropriate, and a
displacer.

Identifiers are handled similarly, except that a function MAKEID is called
instead of MAKEFREE. Normally, the identifier will already exist, having been
created at the time it was first encountered when read in, and MAKEID will
Just return its location. Identifier space. has no reserved base register. A
"load LAP scratch register" instruction usually must be inserted. The function
returns the appropriate LAP scratch register and displacer as its value.

Quotes and uniques are created at assembly time. The function ~~EQUOTE or
UNIQUOTE is called, with the S-expression as its argument. Quote space has no
reserved base register. The base register and value returned are as above.

The two address fields, (PUSH •••) and (POP •••), allow the compiler to create
instructions that add values to, and remove values from, the two pushdown
stacks.

First some of the features of stack management will be described. At the time
any function is called, the pushdown stack pointer (the ASP and P8P registers)
are set to pOint at the first location beyond the last argument for the function
being called. This is the leading edge of the stack at that time. (For the
8/360 implementation, the registers actually contain a value which is lower than
this by some constant offset, so that it is possible to refer to locations both
before and beyond the pointer. The 8/360 allows only positive displacements
from a base register.) During the execution of a. function, the stack pointers
do not move, but the compiler may add values to the stack (PUSH •••), o.nd then
remove (POP •••) these values. The a.ssembler keeps traclt of the current contents
of the stack (Aslist nnd Pslist), the current leading edgcn (the virtua.l stack
pointers Deltaasp and Deltapsp, which give the distance from the stack pointer
to the leading edge of the stack), and the locations of the leading edp;es of the
stacks just prior to the addition of the first argument of a function (Argspoint
list). (This last list stores the condition that exists just before and just
after the function call, as nIl arguments of a function are Rssu."'ed to be sone
from the stack just after the call to that function has returned.)

)

)

)

----.---~---- .. -~----. ------

(

/

~.

(~

26 April 1967 19 TM-3417/4oo/00

In instructions using the PUSH and POP address fields, A indicates the leading
edge of the absolute stack is being referenced, and P indicates the leading
edge of the pointer stack. Count indicates the number of items being pushed
onto the stack in that instruction (this is used when the push is done with a
"store multiple" instruction). If absent, the count is one.

The (PUSH •••) address field returns as its value the appropriate stack regis
ter (ASP or PSP) , and the virtual pointer (Deltaasp or Deltapsp) as its
displacer. That is, it returns the location of the leading edge of the stack.
The virtual stack pointer for the referenced stack is then updated. In a
simple push, it is moved one word beyond its previous location in an "absolute
stack, double word push" (AD), It is advanced two words, and it is advanced
"count" words when this item is present, indicating that this field. is in 0.

"store multiple" instruction. This is ac<,!omplished by updating the value of
Deltaasp or Deltapsp. The appropriate stack list (Aslist or Pslist) is also
updated.

i

The (POP •••) addr field creates a reference to a location on one of the push
down stacks and causes the item POPped to be removed so that it cannot be
referenced again. The location referenced is the last value pushed onto the
referenced stack (A or p). The function (P~R) returns the appropriate stack
register displaced by an amount that is one word before the value of the
appropriate virtual stack pointer. (The virtual pointers point just beyond
the end of the stack, that is, they point to the word just beyond the last
value on the stack. The meanings of "before" and "beyond" depend on which
stack is being discussed, since the absolute stack grows downward, toward
higher-numbered core, and the pointer stack grows upward, toward lower
numbered core. For the absolute stack, "beyond" is down and "before" is up;
for the pointer stack. this is reversed.)

Thus instructions exist in the calling sequence that update ASP and PSP
registers at run time. The virtual stack pointers (as represented by Deltaasp
and Deltapsp) and the lists associating names with stack locations exist only
at assembly time. They are used by the assembler to determine the location
assignment of values put on the stack.

The (LABEL •••) addr field refers to the labeled points in code (see the
discussion of label item types). Whenever a (LABEL •••) addr field is
encountered,Labels is searched. If the label is found and its associated page
number is the current page number, the addr fUnction simply returns BPR and the
value of the ilc (instruction location counter. relative to the BPn) associated
with the label in Labels as the displacer. If the label does not exist in

Labels or if the labels page is not the current page, then the function returns
as its value the BPR and an empty displacer field, to be filled in later, and
the label is added to Lblref. so that the addr may later be fixed up, in the
following manner.

26 April 1967 20 TM-34l7/40%o

After the pair of instructions have been added to Corim, the address fields of
all the instructions that refer to this label and need fixup [found :In Corim,
at the locations pointed to by the R.'s of t:1e list (R.*)] nre fixed up to point
to the llc of the first instruction of the ~air added. Then the list (~*) is
removed from Lblr~f and is replaced by the pair (pg • t) where ~ is the locat:Ion
in Corim of the first instruction of the two added instructions and pg :Is the
current page number. This, then, is sufficient information to enable the add
and branch instructions to be fixed up, when the label is encountered.

One further operation takes place when a label reference field is encountered.
Since the add and branch instructions take two words for each "off-the-page"
label reference (two per label referenced, not two per reference), and since it
must be assumed that all currently undefined label references are off-the-page
references until the label is encountered, the amount of space on the page is
reduced by two words each time a label reference new to the current page is
added to Lblref. Note also that PAGEROOM is increased by two each time a label
referenced on the page is encountered on this page. Page room is reduced by the
instruction size each time an instruction is added to Corim, and that Pageroom
is reduced by the literal's size each time a literal is encountered (literals
are stored in the BP at the end of the page).

If the label does not already exist on Lblref, it is added and paired with the
empty list of lists, ((())). If the first item of the first list (of the lists
paired with the label in Lblref) is a number (the paee number of a non-current
page), then a new list is inserted, (nil). If the label was found in Labels, but
on a previous page, then the first item of the first list is set to (pg • ilc),
the pg and ilc of the label found in Labels. Finally, the location ~ (in the
Corim) of the instruction in which this addr field exists is always inserted,
as the second item in the first list following the label in Lblref. This makes
it possible to go back and fix up the addr field of the instruction in Corim, when
the label is encountered or at the end of the page.

At the end of the page, all label references on the current page that have not
been fixed up (that is, all that are still in Lblref in the form: (nil. (R.*))
or «pg • ilc) • (1 *))) are assumed to refer to labels that are not on the
current page, and so a pair of instructions is inserted at the bottom of the
page. The instructions are of the form: an add or subtrnct of nn adcon (mUltiple
or l021~ stored in a table of adcons in fixed program space) from Ern. then H.

branch to the BPR displaced by some quantity. At the time of their creation,
the adcon locator and displacer fields are left blank, as the location of the
label that is being referenced is not known.

)
.~

)

)

(

(
\

26 April 1967 21 TM-3417/4o%o

APPENDIX

Lisp 2 Assembly Language Syntax

TOP-LEVEL EQUATIONS

Lap-definition a (LAP listing ref-list)
ref-list = (undefined}

listing = ({FUNCTIONIMACRO} (f-name value-type) par-list item*)

variable = (variable-name • {section-nameILEX.})

f-name = variable

value-type = {undefined}

par-list = {undefined}

item = S/360-inst!pseudo-inst!label

varia.ble-name = identifier

section-name = identifier

label = identifier! integer

SYSTEM(360 INSTRUCTION EQUATIONS

S/360-inst = rr!rxlrslsslsi

rr = (op)l(op reg)l(op reg reg)

rx

rs

ss

51

= (op reg addr)!(op reg addr reg)

= rx

= (op length addr length addr)

= (op (immed) addr)

26 April 1967

Op

22 TM-3411/4o%o

APPENDIX (Cont.)

= {ANDloR\XORICPL} I

({APPISUBIMULTICPA} (HIFISFIDFIDEC}) (Overbar indicates
{ADDLISUBLIDIV} {1ISFIDF} I default type)

B {[ue NEVER XH XIE AL CT] I

[GR LS EQ NG Nt NE] I

[{OFlpOsINEGIZE}*] I

[{ONESIMIXEDIZEROES}*] }

SHIl'"'T [Sr'NGIOOUB] [t"O'GIARI] CRTILFT]

LD [POSINEGITESTICOMP] [iIFISFIDFIMUDT]

STO [HI1ISFIDFI'MUt"rIDEc] I

MV [N'iiM'1 ZON I OFS] I

HALVE {SFIDF} I

PK I
UNPK I
TRANS

TRANST

EDIT

EDITM

reg • integer symbol

addr = (reg displacer)

literal I
lexical-variable

own-variable I

fluid-variable I
(UNIQUE S-expression)

(QUOTE S-expression)

(PUSH {{A Ip} [COUNT] lAD})

(POP {Alp}) I
(LABEL label)

(ENTRY identifier displacer)

)

"

\
!

(

(

(

26 April 1967

length

inuned

symbol

displacer

literal

23 TM-34l7/400/oo

APPENDIX (Cont.)

= integer/symbol

= character!integer

= identifier

= {integer!symbol}~ (Note: EOR'ed together to ,produce displacer)

= ({214IB} integer) (Note: Integer has size of 2\l1!8 bytes)

lexical-variable = (lex-var-name • LEX.)

own-variable = (own-var-name • section-name)

fluid-variable = (fluid-var-name' section-name)

lex-name = identifier (Used to name a lex-var on the pushdown
stack)

count = integer (Range 1-16, the number of items pushed
in a multiple PUSH)

word-count = integer (Used to reference specific word in a
mult!ple PUSH item)

lex-var-name = identifier

own-var-name = identifier

fluid-var-name = identifier

2~ April 1967 24

APPENDIX (Cont.)

PSEUDO-INSTRUCTION EQUATIONS

pseudo-inst = (ENTRY identifier disp1acer)

(BEGIN)

(ARG)

(CALL function-name map)

(PUSH {{AI p} [~ount 11 AD})

(POP {Alp} [count])

(BLOCK item. declare item.)

(RETURN)

(END)

(DECLARE bound-declaration*)

(SYMBOL (identifier. integer).)

(ORG [integer J)
(CASEGO reg label*+l)

(ALIGN a [b])

function-name = variable

map = {undefined}

bound-declaration = {undefined}

~---- -~---.-----___ ~ ___ M _______ .~ --- -----~-.- -------.----

TM-3417/4oo/00)

)

26 April 1967

S.D.C.
DISTRIBUTION

J. Barnett (5)
E. Book
R. Bosak
J. Burger
D. Crandell
E. Ehrich (30)
S. Feingold
Donna Firth
H. Howell
Aiko Horman
K. Hinman
A. Irvine
E. Jacobs
B. Jones
S. Kameny
c. Kellogg
R. Long
E. Myer
M. Perstein
W. Schoene
V. Schorre
J. Schwartz
R. Simmons
S. Sha1,iro
E. Stefferud
M. Spierer
A. Vorhaus
C. Weissman (10)
R. Wolfson

Room -
9721
2322
~328
9919
9731
2225
9525
9722
9912
9717
2032
1139
2344
2231
9310
9636
9716
9413A
2344
9923
2330
2105
9439
2413
2620
2109
2213
2314
2368

TM-3417/400/00)

/

\
/

