
(

The views, conclusions, or recommendations expressed· in this document do not neces­
sarily reflect the official views or poliCies of agencies of the United States Government.
The research reported in this paper was sponsored

1M.,. 3417/500/00

by the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the
Electronic Systems Division, Air Force Systems Command
under contract F1962867C0004, Information Processing
Techniques, with the System Development Corporation. TEC~f' !k,~tf

~. r. Barnett

.nw('3n~~(~J~J~
C. weiS~~.
~~~I, 

for J. 1. Schwart z 
System Development Corporation / 2500 Colorado Avenue / Slntl Monica, Clllfontia 90406 
Information Internatlonl Inc. / 11161 ,ico Bouleurd / Los Anleles. Clllfomia 9CI064 

DATE· 4/26/67 PAGE 1 OF -1..LPAGES 

(Page 2 Blank) 

LISP 2 Garbage Collector Specifications 

ABSTRACT 

This document is intended to be a basis for further 
detailing of the work completed on storage management 
for LISP 2 on the IBM 360. It includes brief descrip­
tions of housekeeping information, the four phases of 
garbage collection, the decentralization of primitives, 
the organization of the pushdown stack, and the role 
of various data ~ones. The relevance of these to the 
overall system is outlined, together with some of the 
remaining design and programming problems. 





/ 

( 26 April 1967 

Sect ion 1. 

2. 

3. 

4. 
4.1 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.2.4 
4.2.5 
4.2.6 
4.2.7 
4.2.8 
4.2.9 
4.3 
4.4 

5. 
5.1 
5.2 
5.3 
5.4. 

5.5 
5.6 
5.7 
5.8 
5.9 

3 
(page 4 blank) 

TABLE OF CONTENTS 

Introducti.on 

Terminology 

Structural Unit Descriptor (SUD) 

Garbage Collector Operation 
Mark Phase 
Plan Phase 
Local Planning 
Folding 
Vacant Sites List 
Collapsing 
Pruning 
Global Planning 
Reapportionment 
Inter-Allocati,on 
Reformatting 
Fixed Phase 
Move Phase 

Garbage Collection Overhead 
Active Data Structures 
Common Substructures 
Arrays and N-Tuples 
Temporary Data Structures: Allocation and 
Erasure 
Input/Output 
Coding of the Garbage Collector 
Core Storage 
Software Paging 
Storage Block Size 

._--- ._----_._--

TM-3417/500/00 

5 

5 

6 

7 

8 
9 
9 
9 

10 
10 
11 
11 
12 
12 
12 
12 

12 
13 
13 
14 

14 
15 
15 
15 
15 
15 



\ 
j 



l 

26 April 1967 s TM-3417/S00/00 

1. INTRODUCTION 

In this document, LISP 2 storage management is described metaphorically, using 
the terminology of city planning. The technical terms used i.n th i.s descr Lpt i.on 
include zone, zoning laws, reapportionment, structural unLt, si.te, block, re­
location, forwarding address, map, surface and substrate. This is an extension 
of·the usual systems terminology, which includes such terms as location, field, 
area, space, and border. Hopefully, the correspondence between the everyday 
and the technical will be clear and useful. The garbage collector performs 
the role of gathering together the inactive sites. The reapportionment of 
blocks among zones is better known as the growing pain. 

Storage management provides for 20 to 30 data zones in the basic implementation. 
There are user facilities for the definition of further data zones, including 
such specialized data zones as association spaces, SLIP spaces, queues, and 
stacks. A "garbage collector" is specified for this version of LISP 2; it 
uses a fresh technique called "plex processing." The word "plex" is an abbre­
viation of "plexus," and means an interwoven combination of elements or parts 
in a cohering structure. Plex processing is the interconnecting of n-tuples. 
Note that the etymology of the word "n-tuple," as in quintuple, may be traced 
to the Latin word "plex," which means fold or weave, as in fivefold. An 
n-tuple is a data element with N components, in which the components are 
accessed by name. For example, the traditional list node is a 2-tuple with 
component names CAR and CDR. The decision to use plex processing was made to 
motivate a detailed study of the problems associated with the new feature. 
Several simplifications in the design of st6rage management and the primitives 
occurred as a result. Similar simplifications will occur in other parts of 
the system. 

2. TERMINOLOGY 

A field is a consecutive sequence of bits in a memory word. 

A structural unit is an aggregate of fields that represents some elementary 
data object. 

A locator is a unit that is an encoded representation of the information 
necessary to access a field of a structural unit. 

A site is the storage space allotted to hold a structural unit. 

The surface of a structural unit is the information associated with the unit 
by virtue of its classification as a data unit. For example, the surface of 
a list node includes the fact that the data unit Ls a list node, that it has 
two components CAR and CDR, that the data type of the components is SYMBOL, 
that CAR is the left half -field and CDR is the right half -f ield of a word. 
The surface includes an n-tuple called the structural unit descriptor which 
contains information and functionals necessary to process the data unit. The 



26 April 1967 6 TM-34l7/500/00 

surface is determined from the site on which the unit is situated and from 
the data zone containing the site. 

The substrate of a structural unit is the aggregate of v<llues contained in 
the fields of the structural unit. The substrate belongs to the particular 
data unit, and may be thought of as an instance of the surface of the data 
unit. For the example of a list node, the fact that the node has components 
CAR and CDR is the surface of the node, whereas the contents of the CAR and 
CDR fields make up the substrate of the node. The substrate includes pointers 
which must be followed during the marking phase of the garbage collector, and 
which must be updated when the referenced data units move. 

A storage block is a set of contiguous memory locations. The computer memory 
is partitioned into blocks at the time the system is generated. The size of 
the blocks is uniform, predetermined, and a power of 2, typically 512 or 1024. 

A ~Q.!l£. is an integral number of consecutive storage blocks. The partitionl.ng 
of the blocks into zones is varied via a reapportionment mechnnLsm. For ex­
ample, a zone that contains no active structural units will have no blocks, 
and is said to be dormant. A zone can grow or shrink in quantum steps as 
determined by the storage block size. There are zoning laws to restrict the 
kinds of structural units that may appear within the zone. The zone control 
is a tuple containing procedures and functionals to allot sites within the 
zone, to specify the surface information about the structural units on the 
s it<;:!s in the zone, and to sweep over the zone during the various phases of 
garbage collection. Various statistics are accumulated, such as the occupancy 
of each zone and the count of the number of structural units of each general 
type. In addition to the zone control, there is a tuple associated with the 
zone called the zone descriptor which contains parameters such as the primary 
border, or low address of the zone, and the conjugate border, or high address 
of the zone. The control is a parameter of the descriptor. The separation 
of the control and the descriptor allows a multiplicity of zones with the same 
control. Thus it will be possible to have several list spaces. 

The storage map is an array that specifies for each storage block thl~ descrl.ptor 
of the zone to which the block belongs. The map is used to access the LISP 
:>rimitive for the data units in the data zone, ;IS these are stored 1n the zone 
control. 

3. STRUCTURAL UNIT DESCRIPTOR (SUD) 

A structural unit is one of the following data objects: a list node, a hash 
node, a number cell, an identifier, a genid, an array, a record, a table, a 
function descriptor, a quote cell, a free variable, an own variable, a locator, 
a string, an absolute value cell or a symbolic value cell. From the point of 
vie\~ of storage management, a structural unit is a grouping of fields in which 
the fields are associated together by virtue of their relative placements. The 
fields might be associated together because they are in contiguous memory 

---_. __ . __ . __ . ---------------

) 

\ 

) 



l 

I 

~ --

l 

26 April 1967 7 TM-34l7/500/00 

locations, or because they are .in symmetric positions relative to the bound­
aries of a data zone. The fields are not associated together via links, 
symbol pointers or displacements. The field grouping is treated as a unit 
by the storage management facilities: the unit is marked once, has one for­
warding address, and is relocated en masse. Some one of the fLellis in tht' 
unit is understood to be the base, and all locators of fields Ln the unit 
must address relative to the base of the unit. The placement of the fields 
relative to the origin is called the layout of the structural unit. 

With each structural unit is associated a structural unit descriptor (SUD). 
This is an n-tuple containing parameters, lists and functions as required by 
the various aspects of the system in order to describe and process the unit. 
All units of the same general layout and classification will have the same 
SUD. The SUD controls a data unit in the sense that it contains the func­
tionals required to process the unit. In the case of records, the SUD is 
introduced as a side effect of the user's definition of the record. In other 
cases, the SUD is introduced along with the core image generation of the system. 

The information contained in the SUD is used by the following: 

1. 

2. 

3. 

the I/O, in outputting data objects, and in inputting n-tuples; 

the dynamic typer, which yields the structure name for an 
n-tuple; 

the equality primitive, where if two data objects have the 
same data descriptor, then a functional contained in a field 
of the data descriptor is fired to carryon the comparison of 
the data objects; 

4. the allocation of storage for new data objects; 

5. the garbage collector, where the mark/follow and the fix phases 
require the coordinate of each pointer field, and the plan and 
move phases require the size of the data object. 

The structural unit descriptor is obtained via the function SUD (X). 

A problem which has not been explored in detail is the question of whether 
there should be .a special descriptor for arrays that makes usc of a SUD for 
the entries of the array. The SUD approach seems to work for everythtng else: 
n-tuples, number cells, list nodes, identifiers, variabl(~ elel1l1'nts, etc. 

4. GARBAGE COLLECTOR OPERATION 

The garbage collector operates in four passes, called the mark phase, the plan 
phase, the fix phase and the move phase. Duri.ng each phase the appropriate 
control functional for each zone is fired on that zone, meaning that the func­
tional is evaluated with the zone descriptor as an argument. When the functional 
is fired, a brief flurry of activity occurs, during which the storage management 



26 lurU 1967 8 TM-34l7/S00/00 

processes for that zone during that phase are performed. The order in which 
the zones are processed is irrelevant: the zones may be processed in a dif­
ferer.t order for each garbage collection, or even each phase. All that matters 
is tl at each zone be processed once during each phase, by the control func­
tiondl appropriate during that phase. In some instances a control process is 
a no-op. For programming convenience the processing order of the zones is 
determined by the storage map. The dormant zones .are ignored. 

4.1 MARK PHASE 

Dur 111g the mark phase, the zone control component SCANS is fired on each zone 
descl:iptor. The purpose of this phase is to determine which data units are 
active. At the start of the phase, the active units include the variables, 
the quote structures and the nontrivial identifi.ers. At the end of the phase, 
every data unit referenced from the substrate of an active unit has been marked 
as aetive. A zone control component, MARK, when fired on a data unit will flag 
the site as active. A zone control component, ACTIVE, specifies whether or not 
a site has already been flagged as active. This latter functional is also used 
during the plan and fix phases. The SUD component FOLLOW is fired on a data 
unit to guarantee that the site of each unit referenced from the substrate is 
active. The substrate is followed once for each active data unit, regardless 
of how many pointers reference the unit. If a referenced site is not active, 
then it is marked and its substrate is followed. The time spent marking is 
iJroportional to the number of active data units. The time spent following is 
propc,rtional to the number of pointers in active data units. The time spent 
scanning is proportional to the number of units, active and inactive, in the 
scanned zones. 

4.2 PLAN PHASE 

The plan phase prepares each of the data zones for the operations to be per­
formed during the fix and move phases to follow. During the plan phase, i.t 
is determined exactly where each data unit will be after the move phLlse. Many 
of the data units will be relocated, either during the plan phase or uuring 
the move phase, and a forwarding aduress must be associated with the current 
site of unit to indicate the new site. 

Data units are relocated so that all the active data units in a zone will be 
1m t~ontiguous sites, and all the vacant sites will be contiguous. As a result 
G~ compacting a data zone, the allocation of sites for new data units in the 
zone is simplified. Also, the number of storage blocks assigned to a zone can 
be kept to a minimum. The storage blocks not assigned to any zone are put into 
a pool of vacant storage blocks, from which they will be allotted to other data 
zones depending on the dynamic requirements of the system. 

The reassigning of sites to data units is called reallocation. The actual 
movement of data units onto the reassigned site is called relocation. The 
reassigning of storage blocks to zones is called reapportionmcnt. 

._------------_._---------------_._ .. _--

) 

) 



(~ 

26 Apr il 1967 9 TM-34l7/S00/00 

4.2.1 Local Planning 

Local planning is that aspect of the plan phase which governs the reallocation 
of sites to data units within a data zone. We will distinguish between pure 
zones, uniform zones and mixed zones. A pure zone is structurally homogeneous 
or equi-typical: all the data units in the zone have the same structual unit 
descriptor, so that the SUD is determined from the zone, and the only house­
keeping information associated with each site is a bit for marking purposes. 
Sometimes the marking bit is contiguous with the unit, and sometimes there is 
a bit map for the zone starting at the conjugate border. This arrangement of 
the unit on the site is called a pure format. A uniform zone is homogeneous 
with respect to size; the data units in the zone have a uniform size, though 
they are of mixed SUDs. The housekeeping information associ.atcd with each site 
includes a bit for marking and a pointer to the SUD. This arrangement of the 
unit on the site is called a uniform format: A mixed zone is heterogeneous: 
the data units are of mixed sizes and mixed structural description. The 110use­
keeping information associated with each site includes a pointer to the SUD 
and a pointer to the site. This arrangement of the unit on the site is called 
a mixed format. The self-pointer is set to NIL during the mark phase to indi­
cate an active data unit. The self-pointer, is set to the forwarding address 
of the data unit during the plan phase. After the move phase, the self-pointer 
points at the site, until the next garbage collection. 

4.2.2 Folding 

In pure zones and in uniform zones, such as list node zones and numerical zones, 
both the reallocation of sites and the local relocation of data units is per­
formed during the plan phase. The following operation is repeated until all 
the active data units are contiguous in the primary area of the zone: the 
highest active data unit is moved to the lowest vacant site, and a forwarding 
address is placed on the vacated site indicating the new site. The vacated 
site is now inactive, and the new site is active. The algorithm uses two 
pointers: one to the low end, which moves up looking for vacant sites, and 
one to the high end, which moves down looking for ;lct lve unLL s. 

The time spent scanning is proportional to the number of sites. The tlme spent 
folding is proportional to the number of units relocated and the size of the 
sites. 

4.2.3 Vacant Sites List 

In pure zones and in uniform zones there is an alternative reclamation tech­
nique to folding. The technique involves a sweep over a zone linking the 
vacant sites together. This technique is useful when global conditions are 
such that there is little global advantage to compacting; under such condi­
tions the fix and move phases may be bypassed, with a resulting decrease in 
overhead. The design of the local planning for each zone must allow folding 
as an option, to be used at the discretion of the global planning mechanism. 

-~------~------- -------------~--------~--- -



26 April 1967 10 TM-34l7/500/00 

The vacant sites list is the only reclamation technique useful in bolted zones, 
in which the data units may not be relocated relative to the primary border of 
the zone. Exami)les of bolted zones include the function descriptor zone, the 
variable clement zone, and the zone of quote-structure bases. These zones are 
bolted because the data units within are referencetl from compiled code. The 
time spent scanning is proportional to the number of sites in the zone. 

4.2.4 Collapsing 

In mixed data zones, the relocation of the data units is postponed to the move 
phase, in which the space occupied by inactive sites will be squeezed out in 
the process of collapsing the zone, that is, moving all the active sites to­
gether. The order of appearance of the active sites is preserved by the col­
lapsing operation. During the plan phase the effect is simulated by using two 
pointers: the put pointer and the scan pointer. The put pointer points to 
the simulated top of the primary area of the zone, Qnd indicates the address 
of the site at which the next data unit is to be allocated. The scan pointer 
points to the next site to be examined under· the reallocation. The size of 
the scanned site is determined. If the scaqned site is active, the put pointer 
is assigned to the self pointer of the site and the put pointer is incremented 
by the site size. The scan pointer points to the next site to be examined under 
the reallocation. 

The scan is then continued by incrementing the scan pointer by the site size. 
The time spent scanning is proportional to the number of sites in the zone. 

4.2.5 Pruning 

A data unit is said to be unique if the information that makes up the data 
unit: is constant throughout the lifetime of the data unit. A unique data unit 
has a read -only substrate. If a data unit is unique, then it is advantageous 
to conserve storage space by representing the data unit uniquely. A data unIt 
is said to have a unigue representation if all copies of the data unit are on 
the same site. Examples of unique data units include identifiers, variable 
elements, numbers and hashed list nodes. An identifier is a unique string. 
When a site is to be allocated for a unique data unit, then a check must be 
made to determine whether or not the data unit is already represented. Hash­
ing techniques are used to increase the efficiency of this search, in which a 
h;,h number is computed on the basis of the constant information in the data 
.mit: and all the data units in a given zone with the same hash number are linked 
together. The hash link is consid~red to be a property of the site, and is not 
followed during the marking process. 

Pruning is the name given to the process of following the hash links and un­
linking the inactive data units. Pruning occurs before reass Lgning sites to 
unique d~ta units, and is considered to be a part of the llousekeeping performed 
by the garbage collector during the plan phase. The time spent pruning is pro­
portional to the number of uniquely represented data units. The alternative to 

) 

/ 

) 



( 26 April 1967 11 TM-34l7/500/00 ' 

pruning is a technique called rehashing, which is performed during the fix 
phase and accomplishes both the pruning and the fixing of the hash links. 
When pruning is used to preserve the hash structures, the fixing of the hash 
links must occur during the fix phase. 

4.2.6 Global Planning 

The global planning governs the growth of zones and the relntLonships between 
zones. We define a mutual to be a collection of zones Ln which the sLtes are 
inter -allocatable. A mutual is the smallest progrannner -selectable workspace. 
The most common instance of a mutual will be a single zone. The next most 
common instance will be a set of zones with the same zone control. The most 
general mutual would bring together zones having separate zone controls. 

When the allocation processes exhaust the available sites in a zone, a vacant 
storage block must be found and added to the mutual of which the zone is a 
member. In some cases, such as list node zones, the operation involves no 
more overhead than constructing a new zone descriptor. In the more common 
case, the operation must be performed by appending a contiguous vacant block, 
which might involve a ripple of zone relocation. 

The global planning makes use of the statistics accumulated during the mark 
phase: the occupancy of each data zone, the number of instances of each 
class of data unit, and the total site allocation in each zone since the 
last garbage collection. The global planning must be very flexible in desLgn 
and in operation. Heuristics are used at the option points to smooth the over­
all operation; it must have flexible communications' with the local planning 
mechanisms. 

4.2.7 Reapportionment 

The reassigning of blocks to zones is accomplished by moving the primary border, 
the conjugate border, or both. A border movement entails a relocation of the 
portions of data units contiguous with the border. The moving of the primary 
border is a somewhat involved operation, because the data units in the zone are 
usually allocated starting at the primary border. In the case of the list nodes, 
the moving of the primary border can be achieved at the relatively low cost of 
relocating one block of nodes. In other cases, the effect must be achieved by 
first planning to do it, then performing the actual movement of the primary 
area of the zone at the end of the move phase. This latter operation is called 
a growing pain. The operation is performed to move a vacant block from one side 
of a zone to the other. Storage blocks can be appended only to the conjugate 
border of a zon(~. The reassLgning of the con.1ugate border, whether to enlarge 
a zone or to shrink it, is (\ RLmple operation. The .cnn.1ugnte hnrder f.s ndJusted 
autollllltically arter the datil units in u zone hnvc IWQI1 l'omp11ctl'd lo vnclltl' thl.~ 

blocks conti,.;uous nt thnt end. 

------------------------------------_._- ._-_._--_ .. __ .•. __ .- _. 



::6 April 196 7 12 TM-3417/s00/00 

4.2..8 Inter-Allocation 

When several zones with the same control are organized as a mutual, the re­
allocation of sites may result in the movement of some data units to some other 
zone in the mutual, in order to keep the total vacant space within the mutual 
to less than one storage block. 

Reformatting 

When there are enough instances of an n-tuple of a given class, a pure zone 
i." created, filled with data units from a mixed n-tuple zone. The conversion 
frOi.H the mixed format to the pure format accomplishes a net release of storage 
space due to the decreased housekeeping information associated with the pure 
Format. The new pure zone becomes part of a mutual containing the mixed zone. 

When there are too few instances of an n-tuvle of a given class, it is pref­
erable to store all the instances in the m·.xed format. The conversion from 
the pure format to the mixed format is performed only if the pure space is a 
member of i\ mutual containing a mixed space. The conversion accomplishes a 
net release of storage, because n-tuples in the pure format require a minimum 
.)f one storage block, whereas in the mixed format less total space may be con­
sum2d in spite of the increased housekeeping information. 

4.3 FIX PHASE 

During the fix phase every pointer in every active data unit is replaced by 
a forwarding address associated with the site of the referenced data unit. 
In tho case of a pointer that references a non-relocatable data unit, the fix 
operation is an identity operation. The time spent scanning is proportional 
to the number of active data units, except in bolted zones, where the time 
spent scanning Ls proportional to the number of sites in the primary area. 
The time spent fixing is proportional to the number of pointers in active 
data units. 

MOVE PHASE 

The move phase carries out the specifications of the plan phase. Every data 
llnit is moved to the location planned. The time spent is proportional to the 
tot.ll size of the relocated data units. There is no overhead for the data 
unii:S not moved. 

5. GN{BAGE COLLECTION OVERHEAD 

Garbage collection is often vie,ved as a convenience: the programmer is spared 
the detail cd bookkeeping associated with allocating storage, erasing data struc­
ture and l-callocating storage. He does not have to program the destruction of 
the data un its that make up the complex data structure he wishes to manipulate. 
He is thus free to concentrate on the problem-orLented aspects of the algorithm 
and the data structure. However, there are a number of general principles 
affecting the overhead of garbage collection. These princLples, when followed, 
,,,ill Tl~St1.1 t in <111. increased effectiveness and efficient use of garbage collec­
tion as D tool. 

.... __ ..• __ . ______ .. _____ c. ___ .• _____ . ____ ... _ ................ __ ... ____ . _____ ._ ... ____ _ 

) 

) 
/ 



l 

l 

c 

26 April 1967 13 TM-34l7/S00/00 

The following is a simplified derivation showing the basic relations between 
the main factors affecting overhead. The subsections following the deriva-
tion discuss the simplifications made in the derivation; the general princi­
plesvhich may be deduced from the result of the derivation; and the implications 
of th~ general relations for system design. 

Let A = space occupied by active data structures 

B = space taken up in core by compiled programs 

C amount of core storage managed by the LISP 2 system 

D = amount of space for temporary data structures allocated 
during the run of a program 

Then C - B - A = amount of space available for allocation of new data structure 

Thus 

5.1 

D = approximate number of garbage collections to occur during the 
C-B-A run 

kA time for one garbage collection 

kAD 
C-B-A 

total overhead generated by the run 

ACTIVE DATA STRUCTURES 

The garbage collection overhead is spent largely on the active data structures. 
The appellation "garbage collection" is misleading in the sense that the time 
is not spent gathering together the inactive sites but in transforming the data 
organization. The cost of garbage collection is inversely proportional to the 
derived benefits: the more space reclaimed, the less the overhead; the less 
space reclaimed, the greater the overhead. 

In the derivation it was assumed that the overhead per garbage collection is 
proportional to the amount of space occupied by active data structures. 
Actually, the overhead also varies linearly with the number of active data 
units, the number of pointers in active data units, and the size of the data 
zones. 

The "A" factor appears in both the numerator and the denominator, so that a 
reduction in the "All factor has a second-order effect on reducing overhead. 
There are a number of system and programming techniques available for reduc­
ing the "A" factor. 

5.2 COMMON SUBSTRUCTURES 

In many nppllcntions, such as algebraic manipulation, the Liatn Htructure Clm­

tains ;nany CU1TD1lOn sub -expressions. By arranging the complltat i on so that the 
common sub-expressions have a common representation, a decrease in the "A" 

-------_.- --



26 April 1967 14 TM-3417/S00/00 

factor results. This technique' is available to a programmer, and requires 
careful algorithm construction. In many cases the overlapping of common data 
substructures spells the difference between success and failure of a run. 

In this version of LISP 2, a number of techniques are available to guarantee 
unique representation of unique data structures. Thus numbers are uniquely 
represented when in the cell format. Constant strings, called identifiers, 
are uniquely represented. The unique representation of constant list struc­
tures is facilitated through the programmer option of hashing list nodes. 

5.3 ARRAYS AND N-TUPLES 

When appropriate, the use of arrays and n-tup1es in building complex data 
structures has several processing and overhead advantages. The advantage in 
processing is that the time to access a component is uniform. The advantage 
in overhead is that arrays and n-tup1es involve less space and fewer pointers 
to represent a given amount of information. It pays to "shrink out the con­
nections". However, using n-tup1es will result in a space-saving only if an 
n-tup1e is used frequently enough to balance the space taken up by the n-tup1e 
definition. 

5.4 TEMPORARY DATA STRUCTURES: ALLOCATION AND ERASURE 

The derivation of the overhead equation assumes that for each garbage collec­
tion, the amount of active data structure remains constant. In practice, some 
of the data units active at the last collection will have bec~me inactive, and 
some of the data units constructed since the last collectf.on nre still active. 
The i.mportant principles governing the "Oil factor are: (1) the programmer 
should prefer algorithms that consume less storage for the representation of 
temporary data structures, and (2) the space taken up by temporary data struc­
tures should be released as soon as possible. The first point focuses on the 
~llocation aspect of algorithms. An algorithm that uses few CONS'es is better 
than one using many. An algorithm that consumes less total space to achieve 
the same effect is to be preferred. However, there is a tradeoff between the 
compactness of data structures and the complexity of the algorithms necessary 
to process the data: complex algorithms are more difficult to program, some­
times run slower, and usually increase the ,~" factor. The programmer should 
look for data representations that are both compact and easy to process. 

The second point focuses on the erasure aspect of algorithms. There are a few 
obvious and straightforward techniques that ma.y be appl ted. to nn u1~ortthm 
after it has been debugged: a var lub1e referC'nc ln~ n tcmporllry datil strudtln~ 
keeps the structure uctive. If the variable 1H set to N[I,. or fl' tim blnck f.n 
which the variahle is bound is exited, then there arc [OWl'%' rUf()rlHlI.!l'H to the 
data structure. A data structure is eras(.;,d only w\wn therl' Hn.' nD references 
to it. During lnput operations, the variables that are to recclve the incom­
ing data structure may be NIL'd before starting the input operation. A number 
of erasure facilities can probably be provided through the use of compiler 
optimization techniques . 

. ---~--'--.-----~---

J 

) 

) 



( 

l 

26 April 1967 15 TM-3417/S00/00 

5.5 INPUT / OUTPUT 

In re(ucing the amount of resident active data structure, attention should be 
paid to the data structures that are independent of the current task and are 
not in use. These structures should be placed on secondary storage, where 
they will not participate in the overhead. To accomplish this effectively, it 
must be possible to externally represent data structures in a self-contained, 
structure-preserving format. 

A print/read capability should be available which preserves the 
connections of the data units that make up the data structure. 
would preserve the relations of the common sub-expressions, and 
the external representation of circular data structures. 

5.6 CODING OF THE GARBAGE COLLECTOR 

graph inter­
This capability 
would allow 

Obviously the "k" factor would be reduced if the garbage collector were coded 
in machine language. However, the advantages of programming in a higher-level 
language such as LISP 2 substantially out~eigh the possible gains in efficiency: 
the language itself improves through changes made during the implementation; the 
implementors learn one language; the coding of the garbage collector improves 
as improvements occur in compilation techniques; the avail ab il i ty of the system 
programs to the user is increased. 

Note that because the zones are processed independently during each phase, the 
advent of multiprocessing and parallel processing techniques will result in a 
substantial improvement in overhead figures. 

5.7 CORE STORAGE 

Obviously, an increase in the "c" factor would result in less overhead. 
cost of more core needs to be balanced against the increased efficiency. 
systems tend to be large. 

5.8 SOFTWARE PAGING 

The 
LISP 

A reduction in the "B" factor through the use of software paging techniques 
will affect overhead favorably. Software paging is the use of secondary 
storage to hold binary programs not relevant to the current task. The "B" 
factor is separated from the "A" factor because the former is simpler to con­
trol using automatic techniques. The storage management of binary programs 
is independent of the operation of the garbage collector. Several software 
paging packages have been proposed for this version of LISP 2, and one has been 
coded for the Q-32 LISP 2. 

5.9 STORAGE BLOCK SIZE 

There is a tradeoff between the size and the number of storage blocks. If 
there are more storage blocks, then the storage map will be larger. If the 
storage blocks are large, then the amount of committed vacant space becomes 



20 Apr it 196 7 16 TM-J417/soo/oo 
(last page) 

considerable. Once a storage block is assigned to a zone, it is committed to 
holding the data units characteristic of that' zone. 0)1 the aV,erage there will 
be half a block of vacant committed space per zone. 

J 

) 

) 


