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This document describes storage allocation conventions 
for the LISP 2 system proposed for the IBM 8/360 
computer. Core storage is to be partitioned into a 
large number of zones, each of which is classified 
according to the types of structural units that may 
occur within it. The configuration of each of the 
standard zones and its occupant units are described 
in detail. A scheme for the software paging of binary 
program space is outlined. 
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1. GENERAL ORGANIZATION OF CORE STOkAGE 

1.1 ZONES 

The directly addressable core storage available to the LISP 2 system is par­
titioned into a set of zones. Each zone belongs to a particular class according 
to the types of structural units permitted within it. Each zone, furthermore, 
is divided into two distinct areas. The active area contains well-defined units 
whose types are among those allowed by the class. The free area is that part of 
the zone not in current use, and available for the building of new structures. 
The words of core storage that constitute a zone are always contiguous by address. 

1.2 LAYOUT OF CORE STORAGE 

The storage map for a LISP 2 job concerns the partitioning of available core 
storage into zones. In preparation for the demands of tasking and/or paging in 
a time-shared environment, the flexibility of the storage map must be enhanced 
considerably for the 360 LISP 2 system as compared with its Q-32 counterpart. 
There are three principal amendments to the Q-32 scheme through which the 
desired degree of flexibility can be achieved: First, no restrictions should 
be placed upon the order in which zones appear in core storage; second, any 
number of zones of a particular class should be able to exist simultaneously 
and non-contiguously in core--for example, there may be two distinct list node 
zones used by different portions of a program; third, as mentioned previously, 
it should be relatively easy for a programmer to define a new zone. The remain­
der of this section is devoted to the impact of these three amendments on the 
problems of storage allocation. 

1.3 THE QUANTIZED CORE MAP 

Available core storage is partitioned into zones in such a way that the boundaries 
between adjacent zones are all multiples of some constant power of two (defined 
by the variable QUANTUM). This obviously means that each zone contains a number 
of bytes that is a multiple of QUANTUM. Thus, one may say that core storage is 
quantized, and one may call the set of bytes (beginning at address J*QUANTUM and 
extending through address (J+l)*QUANTUM-l) the J~ quantum of core storage. 

The quantized core map is simply a table whose J!h entry describes some of the 
properties of the J~ quantum. In particular, the Jlh entry contains a refer­
ence to the zone descriptor Z of the zone to which the J.!h. quantum belongs. 
The zone descriptor Z is used to elicit more information on the contt'!ntn of the 
J~ quantum and its relationship to neighboring quanta. 

--- ------------------------------------------------
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Given a core address A, the quantum into which A points is easily determined by 
dividing the difference of A and QORG (origin of lowest-addressed question) by 
QUANTUM, and ignoring any remainder (this computation may be performed by a 
shift instruction). Thus, for example, one may find the class manager of the 
zone into which an address A points by the following three steps: (1) find the 
quantum J to which A points; (2) use J to index the quantized storage map and 
obtain the zone descriptor Z; and (3) access component MANAGER (Z), which yields 
the class manager for the zone into which A points. The quantized core map is 
used extensively in the type determination primitives and garbage collector, 
where the type of unit to which an arbitrary core address refers must be com­
puted efficiently. 

The value of QUANTUM chosen for an implementation depends not only on the 
machine. but on the available core storage ar well. For the 360, 210 , 211 , or 
212 would seem to be an appropriate choice. 

There are two variables, SYSORG and SYSEND. which indicate--respectively--the 
lower and upper bound addresses for core storage available to a particular 
LISP 2 job. All zones that contain units known to the LISP 2 system must be 
located between SYSORG and SYSEND (whose values are multiples of QUANTUM). Any 
zone whose boundaries fall outside this interval is termed a virtual zone. Since 
pointers into a virtual zone cannot refer to actual structural units, they may ,)\ 
be used to represent absolute. unstructured quantities. Three general format , 
address intervals have been so used in Q-32 LISP 2: [0, 1] for Booleans, 
[2000008, 3777778] for small. unsigned integers; and [4000008, 7777778] for 

small, signed integers. Similar conventions will be adopted for the 360. Virtual 
zone quanta must be included in the quantized core map except for that which 
would contain address zero. 

1.4 SPACE SELECTION 

At any time, there may exist in core any number of zones of a particular class. 
However, allocation functions for that class do not want to be given extra 
arguments specifying in which zone they are to build their structural units. 
There exists a dilemma: one wants functions which can build units in any zone 
of a given class, yet one does not want to specify explicitly which zone they 
are to use every time they are called. (Who, for example, would be willing to 
supply a third argument to CONS?) 

To resolve this dilemma, a selection mechanism for zones must be used. At any 
given time for each class, one zone of that class is said to be selected, and 
all allocation functions for that class build units in that zone. 

'\ 
I 
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A zone selection is made in a program by calling the function SPACESELECT in 
section LISP. SPACESELECT takes one argument, the name of a zone, and selects 
it for that class to which it is known to belong. 

A possibility arising from the allowed multiplicity of zones of a particular 
class is that of creating in lieu of garbage collection a new zone of that 
class in an otherwise empty portion of core storage. The advantage of this 
scheme, if core is apportioned among zones in such a way as to leave a minimum 
of free area in each, is that new zones of a particular class can be created on 
demand as free areas of other zones if that class becomes exhausted. Of course, 
when all empty space is gone, a garbage collection must be performed, but the 
need for garbage collection is eliminated in the situation where some zone is 
depleted while another zone contains a large free area. One possible dis­
advantage of such a scheme is that core may become fragmented unless that part 
of garbage collection which deals with reallocation of structural units is 
capable of reassigning and moving units from one zone to another. Methods for 
accomplishing such inter-zone transfers are understood and appear to be feasible. 

The zone selection mechanism defined here is patterned after that used success­
fully in Q-32 LISP 1.5 and LISP 2 for input/output device selection. 

CLASS DEFINITION AND SPACE CREATION 

For LISP 2 to be a truly flexible and efficient system, it is desirable to 
provide the user with facilities for defining a new class of zones and for 
creating instances of it. For example, if the user wishes to work extensively 
with SLIP cells or a particular type of field unit, he should be able to devote 
one or more zones exclusively to these units in order to achieve maximum 
efficiency in storing and maintaining them. Even if these valid user demands 
were to be ignored, there still remains the problem of defining within and for 
the system itself the multitude (approximately a score) of standard zone classes. 
The need for a formal mechanism for defining classes and creating zones cannot 
be denied. 

Fortunately, the organization of storage in terms of zone descriptors, zone 
managers, unit descriptors, etc. provides a sound framework for the required 
facilities. To define a new class of zones it is necessary to create and 
appropriately initialize a manager for it. A function CLASSDEFINE will be 
available to perform this service; it will take as parameters the initializa­
tion for all components of the manager. Of course, many of these initializations 
are primitive functionals for use in garbage collection and type determination, 
and although what is expected of each of them can be stated quite simply, it is 
still system programming and beyond the domain of the average user. Thus, 
standard sets or subsets of parameters for the common cases will have to be 
provided in much the same way standard parameters are provided for opening input/ 
output files. Alternatively, or additionally, it may be possible to generate 
the appropriate parameters from declarations made by the user for those units 
that can occur in the zone. 

---- --_ .. _--,--_. __ ._-_._-----_._---
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Once a class has been defined, a zone of that class may be created by expro­
priating an area of core (most likely from empty space). creating a proper zone 
descriptor for it, and updating the quantized core map. The function SPACECREATE 
will take as arguments the initialization parameters for the zone to be created, 
and will perform the required modifications of and additions to the storage map. 

2. PROGRAM ZONES 

The program zones for LISP 2 are those that are involved in function calling 
sequence linkages. This group includes fixed program space, storage map space, 
binary program space, and pushdown stack space. These four, though decidedly 
dissLnilar in character, are so interrelated in the mechanics of a function call 
that they must be treated together. 

2.1 CONSTRAINTS AND PURPOSES 

The principal motivation in the design of program structure is that of providing 
a workable and efficient function-to-function calling sequence. A solution is 
judged workable not only by its ability to effect a call, but also from the 
viewpoint of backtracing and garbage collecting the pushdown stacks. Any measure 
of efficiency of a particular solution must balance both time and space considera­
tions. 

The constraints on a function-to-function calling sequence (i.e., those features 
of the system that must function properly within any proposed scheme) are the 
following: 

1. All calls must be recursive. 

2. If, upon entrance to a function, either of the pushdown 
stacks is found to be insufficient, it must be possible 
to garbage collect at that point in time. 

3. It must be possible, upon entrance to a function, to 
unwind the stacks with fluid variable-restoration to 
any higher level, and to continue processing in the 
function to which one has unwound. 

4. It must be possible during garbage collection to seek 
out and update all reference pointers on the symbolic 
stack (the most difficult problem is that of correcting 
return addresses when binary programs move). 

) 
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The two most important efficiency considerations are: 

1. The in-line code required to perform and parameterize 
a call should be minimized (subject to the constraints 
stated above). 

2. Base registers should be allocated so as to minimize 
the time and code required to load base addresses, 
but the number of general registers so allocated should 
also be minimized. 

Befor:e setting down the detailed configurations of the four program zones, it 
is u~eful to describe their fUnctions in a general way. 

2.1.1 Fixed Program Space 

Fixed program space acts as the anchor for LISP 2 as a system. It 1s always 
to be found at a fixed location in core, and its contents are always available 
for reference. Among other things, fixed structure space may contain: 

2.1.2 

1. the system sign-on code 

2. function-to-function linkage routines 

3. special-purpose code sequences to accomplish simple 
tasks (such as fluid bindings) that require too much 
space to appear in-line 

4. quantized core maps 

5. base address tables for fixed unit zones (identifier 
space. quote cell space, etc.) 

6. commonly occurring, unstructured constants 

Storage Map Space 

Storage map space is used only for storage management descriptors. The system 
descriptors, zone descriptors, zone managers, and possibly a part or all of the 
quantized core map are found here. The justification for this space is based 
on the need for treating these descriptors in a special way during garbage 
col1ection--they cannot be allowed to wander about core as can other structural 
units. Storage map space is a uniform field unit zone; thus all of the various 
types of descriptors appearing within it must be of the same size • 

. _-----------_._-_._-----_. __ .. _ .. _-_. ----. 
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2.1.3 Pushdown Stack Space 

The configuration of pushdown stack space has a great impact upon that part of 
the system devoted to the production of executable code (the compiler and 
assembler). This is due to the fact that pushdown stacks must be designed to 
conform to the constraints on calling sequences stated earlier in this section, 
and the compiler and assembler must in turn conform to the conventions for 
using the stacks. A pushdown stack is divided into intervals, each of which 
provides space in which an active function may store its arguments, return 
information, lexical variable values, and partial results. 

2.1.4 Binary Program Space 

Binary program space contains executable code for LISP 2 functions. Each function 
in the zone is represented by a structure which is termed a binary program image 
(BPI) or, more precisely, a resident binary image (RBI) to distinguish it from 
BPI's in secondary storage. A BPI is produced by the LISP 2 assembler (LAP) 
from its symbolic arguments, which are usuaJly generated by the compiler but 
which may be supplied independently by the tser. LAP is not a general-purpose 
assembler: its features are specifically designed to interface with the LISP 2 
compiler, garbage collector, storage conventions for fixed structures, and the 
pushdown stacks. (LAP is described fully in TM-3417/400/oo.) 

Any BPI which is generated by LAP must be re-entrant and dynamically relocatable. 
To satisfy these two requirements, all sr.ratch space needed by a function must 
be obtained from the pushdown stacks or general registers (accumUlators), and 
any reference from a BPI to a word within or without it must be available for 
updating by the garbage collector. 

PROGRAM STRUCTURE SPACES 

The fixed program space for the 360 is illustrated in Figure 1. It anchors the 
LISP 2 system because general register 15 is at all times kept equal to the 
fixed program origin (FPO) and thus any part of the space within the interval 
[FPO, FPO+212 ] is always immediately accessible. Fixed program space can not 
be said to contain structural units as can be seen in Figure 1; however there 
are several distinct labeled areas serving the following purposes: 

FNLNK 

LINKAGES 

OUTLINE 

Function-to-function linkage code must be located 
nt FPO, i.e" register 15 must always point to it 

Other functional and ROUTINE link and return code 
( FMCALL. HTCALL, RE'I'URN. et c • ) 

Special-purpose code sequences; calls from HPI's for 
reasons of effid ency (F'LBIND, FLHJ<:r-;'r, ~;fo:'l'LOC, etc.) 

--------.-----

\ 
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FPO FNLINK 

LINKAGES 

OUTLINES 12 
A < 2 bytes 

SIGNON 

FIXEDBASES 

CONSTANTS 

QCMAP 

ETC 

FPP 

FPE----~~L----L---L---L---L--~--~ 

Figure 1. Fixed Program Space 

.-~~ ..... ~--- --_._._----- ._-. __ ._-_. __ .-._ .. __ ._----_._--_ .... _-
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Sign-on code for LISP 2 system with monitor linkage; 
also rescue error restart according to monitor 
capab ili ties 

A set of base address tables for fixed structure zones 
(see Section 3), loads from which are generated by LAP 
on certain references to fixed units (see the LAP 
document); each table contains some number (1-16) of 
full words, the kth element of which contains the base 
address of the klh quantum of the class of space to 
which it applies; the entry names for these tables are: 
CHBASE, IDBASE, QTBASE, FLBASE, OWB~SE, ENBASE, and 
FNBASEi these base address tables must be updated when­
ever fixed unit zones are created, destroyed, or moved. 

Commonly occurring absolute field constants, e.g., 

. t { 2n 2n- 1 2n 2m- l 212 IOn},-ln egers n, -n,. ,-, - , n. 

reals {n, -n, lOn, _IOn}; virtual integers {n, -n}; etc. 
for reasonable, small, integral values of n 

The quantized core map (see Section 1.3) 

Other useful things 

Data and code are generated into fixed program space by LAP when an origin is 
given in its LISTING argument. when this is done, entries may be defined for 
future reference. All names given in the above descriptions of labeled areas 
are entry names. 

One possible configuration of pushdown stack space for the 360 1.S illustrated 
in Figure 2. Two active areas, the absolute stack and the reference stack, may 
be observed. Each of the two stacks consists of a sequence of .called function 
intervals, for each called function interval on the absolute stack there is a 
corresponding interval on the reference stack. Such a pair of called function 
intervals constitutes a pushdown stack unit. The stacks expand away from the 
stack-space boundaries PDO and PDE toward one another as the recursive depth of 
called functions increases. As each function is entered, a new interval comes 
into existence for it on both the reference and absolute stacks; when that 
function is exited, the intervals are removed. 

I 
) 



l 

/ 
I 
\ 
'--

l 

26 April 1967 13 TM-3417/550/00 

A snapshot cross-section of each of the two stacks is shown in Figure 2 at a 
moment during the execution of function g. which has previously been called 
from function f and which is in the process of calling function h. The called 
function intervals for g appear in full in the figure, and with no loss of 
generality, the substructure of the intervals can be described in terms of that 
shown for g. 

An interval on the absolute stack can only contain "absolute" fields and is 
allowed to have "holes," i.e., fields whose values are unknown and irrelevant. 
Conversely, a reference stack interval can only contain "reference" fields and 
can have no "holes." except for the portion A, the significance of which is 
defined below (return-block and register-block). In either case, a pointer to 
any field on either stack is legitimate for general format, but the format of 
the field it refers to cannot always be determined. 

A called function interval on the absolute stack (such an interval for g is 
covered by ~Pf in Figure 2) consists of: 

1. scratch space for the calling function (absolute 
quantities) 

2. stack-transmitted absolute arguments which have been 
evaluated by the calling function prior to calling a 
sub-function 

A called function interval on the reference stack (that for g is covered by 
~SPf in Figure 2) consists of: 

1. scratch space for the calling function (reference 
quantities) 

2. stack-transmitted symbolic arguments evaluated by 
the calling function prior to calling a sub-function 

3. a register-block 

4. a return-block 
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low Addresses 

----.. • • • • 
Scratchspace used by 
colling function f 

~ASPf 
1st. obsolute arg of g 

2nd. absolute arg of g 
• • • 

jth absolute arg of g 

Scratch space for g 

Args transmitted on the 
stock for called function h 

Args transmitted on the ~.I stack for co lied function h 

Scratch space for g t ! ? 
last reg. transmitted arg of g 

l ~ Register transmitted args of g -

B 
t-- - l-

t--
Other safe regs 

-
D 

Abs. stack PTR (SS Pf ) + 
~SPf 

Relative Addr Base for f (RABf) 1 Return to f 
Reference stack PTR (SSPf ) T 
Kth reference arg of g on the stack 

• • • 
2nd reference arg of g 

1st reference arg of g 

Scratch space used by 
calling function f. 

• • • PDE . 
f 

High Addresses 

Figure 2. Pushdown Stack Space For The 360 
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The return-block (C) for the 360 consists of: 

1. 

') 
<- • 

3. 

4. 

previous absolute stack pointer (ASPr ) 

binary program base address for callin~ function (RAB f ) 

return location in calling function (RETf ) (with implicit 
call parameters) 

previous reference stack pointer (SSPr) (the address of 
this element in the previous return-b ock). 

The register-block (B) is made up of two parts: 

1. register-transmitted arguments for the function (E) 

2. contents of registers whIch are saved by function g 
upon entry and restored upon exit. 

The sum E+D = B is an implementation constant reflectin~ the number of registers 
allotted to the compiler less those allocated for scratch and communication. 
The arguments of the function that are transmitted on the stack are distrIbuted 
in sequences on the reference stack (E) and/or on the absolute stack. In most 
cases on the 8/360, real arguments are transmitted in the floating-point 
registers. 

In each 360 calling sequence there is a parameter called the MAP which estab­
lishes for each constituent of the register block whether that constituent is 
a reference field or not. This MAP is used by the garbage collector in its 
marking scan of the reference stack. In scanning from the current SSP toward 
PDE, it looks only at the reference fields and can distinguish between general, 
functional, locative, and state restoration formats. 

The state restoration format is a special field format that can appear only on 
the reference stack; it is used to hold, among other things, a set of saved 
variable bindings that are to be later restored. It requires a special format 
on the stack so that it can be recognized by the stac.k-unwind portion of the 
TRY-EXIT feature, which must do the restoration. 

A diagram of binary program space is presented in Figure 3; it is seen to 
contain units called binary program images (BPI's), A possible configuration 
of a binary program image for the 360 is illustrated in Figure 4. The complex­
ity of the division of a BPI into code sections results entirely from the base 
addressing scheme of the machine; no jump can be made to a location more than 
212 bytes past a given base register. Only those functions, therefore, thnt 
assemble into a BPI of more than 1024 words require more than one code section. 
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BPO----~~-----------------------~ 

BPI 
m 

BPP----~~--~----~----~--~----~ 

BPE----~~-----L----~--~~--~~ 
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BPlk are binary program images (they are of diverse dimensions) 

Figure 3. Binary Program Space 
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Figure 4 shows the formats for binary program images in the 360. A fuller 
description of a BPI, together with the calling sequence that binds it to other 
BPI's through its function descriptor, can be found in the LAP document 
(TM-3417!400!00). 

FNBIN 
(pointer from 
function desc riptor) 

.... 

1 FNDESC 

nl r l 

Executable Code 

Remotes (size r l ) 

9) r 1 
n2 r~ 

Executable Code 

Remotes (size r 2) 

• 

• 

• 

i). 
r e-l 

ne re 

Executable Code 

Remotes (size r ) e 

,\ 

" 
'> ~ 

\ 

~ 
1\ 

~ 

First Code Section 
(size nl ) 

Second Code Section 
(size n) 

Last Code Section 
(nize n.,) , 

Figure 4. Possible Design of BPI for the 360 
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3. FIXED UNITS 

Fixed units are defined in LISP 2 to be those structural units that can be 
referred to directly from a binary program image (BPI). Included in this group 
are identifiers, quote cells, free variable structures, and function descrip­
tors. 

The fact that fixed structures are referred to from BPI's imposes two require­
ments on each such structure: (1) that it be located in a fixed position with 
respect to some base address, and (2) that it contain a count of the number of 
references to it from all active BPI's. These requirements result from the 
decision to exempt BPI's from garbage collector processing except when it is 
necessary to update relative addresses within them. 

The fixed location and refer.ence count problems are compounded on the 360 by 
the desire to make references to fixed units as efficient as possible. This 
may be accomplished by minimizing base r~gister loading, which in turn demands 
that those fields of a unit that are most commonly referenced be packed densely 
within a page. The best apparent solution to this problem is to separate each 
fixed structure into two parts. One part contains commonly referenced fields, 
and its core address is the site address of the structure. The other part 
contains all other fields; its location must be obtainable from the side address 
by a simple transformation. This solution has been adopted for the 360 with 
some trepidation; the problems of storage allocation and maintenance arising 
from it are manifold. 

4. FIELD UNIT AND ARRAY ZONES 

Field unit and array zones contain most of the structures commonly manipulated 
by a user program. Field unit zones come in three styles--pure,uniform. and 
mixed--whereas array zones come in only the "detailed header" style. 

TYPE REPRESENTATION 

Fields that contain type information have by now appeared in a multitude of 
structural units: among these are free variables, function descriptors, and 
unit descriptors. In describing these, the type-representing fields have 
merely been specified to be in general format. The problem of type encoding 
remains to be discussed; this is done below. 

TYPE ENCODING 

Within the Q-32 LISP 2 system, there exists a rather elaborate scheme for 
encoding the declaration and type information associated with a 
structural unit. When such a unit is created by the functions CREATE or 
MAKEFREE. the argument representing its type is transformed from symbolic IL 
format into a sequence of 6-bit bytes. This byte sequence is then stored in 

\ 
j 

) 

-----------~-----



l :'b April l<l(,'{ 

the newl] generated unit in one of several ways, depending upon its length. 
Later, when the functions STYPE or FTYPE are called upon to retrieve the type, 
the inverse transformation from byte sequence to S-expression is made. 

The justification for the Q,-32 encoding scheme rests solely upon the considera­
tionthat a byte sequence will require less storage space on the average than 
woule the equivalent S-expression. Against this purported advantage must be 
weighed the obvious disadvantages. Encoding and decoding byte sequences is a 
time-consuming operation, especially for decoding, where often much structure 
is generfited for transient usage (such llB type ch(>cking. llrguTII(>nt classifica­
tion, ami f'ield format determination within the primitives find gllrbage 
collector). A substantial amount of obscure code jn the r,ystcm is devoted to 
encoding and decoding. 'l'he encoding scheme i.s clumsy and difficult to extend. 
this limitation is especially serious in view of the proposed addition of 
format type and table definition features to LISP 2, which will expand con­
siderably the syntax of types. To meet the requirements of the expected expan ... 
sion of this syntax would require a complete redesign of the byte-encoding 
scheme. 

The first step toward solving the difficulties of type encoding seems to 
dictate abandonment of byte sequences in favor of something more flexible--for 
instance, S-expressions. The second step is to find a way to keep storage 
requirements for the more flexible format at a tolerable level. Is this 
possible? First of all, it can be observed that, out of a large sample of 
declaration data, there will be large subsets, all elements of which are of the 
same type. Furthermore, if one considers not "imply the complete declarations, 
but rather all the dotted pairs of which they are ultimately composed, :it is 
intuitively clear that the number of distinct pairs is low .in proportlon Lo the 
size of the sample as a whole. 'I'hu8, the answer to the quest ion seems to 1)(' 
that indeed, storage requirements for declllration data in ~;-expression format 
can pe kept within reason if, whenever the sub-rmrts of two types are equal, 
they in fact are represented uniquely. 

5.2 HCONS 

A feasible scheme for realizing unique internal representation of data has been 
described by J. McCarthy and is termed "hash-CONSing". In order to illustrate 
this term, it is useful to define an H-expression in terms of a function HCONS: 

1. Any identifier or Boolean is an H-expression 

;.~. If HI and H? are H-expressions, then BeONS (HI, H2) 
is an II-expression 

3. If Hl lmd 1I? ftre II-expressions, then j,:qUALN (Ill. 112) ~EQN (Ill, IL') 

1+. CAli (IlCOW; (HI, II?» = III and eDt{ (}leON:; (Ill, IL'» =: H;' 

'). NOrr ATOM (!leaNS (Ill, 112)) 

--- -------------------
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Clearly, an H-expression, as defined above, differs from a general S-expression 
in two respects: it is internally unique (property 3 above), and it allows 
only identifiers and Booleans as atomic elements. (Other, less restrictive 
definitions are possible within LISP 2.) In addition, implementation considera­
tions inlpose the constraint that the CAR and CDR fields of a node created by 
HCONS may not be altered. Fortunately, these rest~' ictions on H-expressions do 
not hinder their use in representing declaration data. Types in IL presently 
include as atoms only identifiers, small integers, an' NIL. !l1so, once a type 
has been copied from S-expression to H-expression, it need never be transformed 
the other way, dnce in all practical later use it is indistinp;uishable from an 
S-expression (properties 4 and 5). In addition to their usefulness for represent­
ing types, H-expressions can be of great value for mnny user npplice.t ions. 

Implementatjon of the function !lCONS requlres a hash to be pcrformc'd on its two 
arguments in order to select a, small SUbset of nIl existinp; hoshed nodes (the 
structures created by HCONS) to be searched for one whosp CAn and cnp fields 
are equal (EQN) to the firnt and second arp;uments, respectively. If Buch a 
node is encountered in the bucket, it is alrewiy ~unranteed to be unique and a 
pointer to it is returned as the value of HCONS. If none such is found, a new 
node can be added to the subset with full confidence that it too will be unique. 

The specific problem in a LISP primitive HCO~S is in representing the partition­
ing of hashed nodes into subsets, termed buckets, consistent with the hash 
computation. Two possibilities come immediately to mind: the easier but more 
space-consuming is to Iteep (unhashed) llsts of hashed nodes for each bucket; 
the less space-consuming but more complex solution is to divide the space con­
taining hashed nodes into a n~~ber of areas equal to the number of buckets 
determined by the hashiD/>: algorithm, with an escape mechanism for an area over­
flow. A good compromise seems to involve representin~ a hashed node by three 
address-size fields: the CAR field, the CDR fidd, and a +'ield to link the node 
to another one in the same bucl{et. '1'his can be done easily on a machine such as 
the 360 at a cost of 1-1/2 words per node, provided a Bp~cial hashed node zon~ 
is defined. This appears to be a tolerable price to pay for hashed nodes in 
view of the limited use anticipated for them. HeavIer U~;e of t1llsh-CONf~inp; than 
that now anticipated could ,justify a mor(' elaborate and ef rj (' i pnt scheme. 

As a summary and conclusion to the forep;oinp; discussion of type pncodinp; for 
LISP 2. the following points can be made: 

1. The syntax of declaration information will expand 
substantially with the coming of format and type 
definition features; increased subspecification in 
declarations will extend to structural units as well 
as to variable types. 

2. To meet these needs, type encoding in terms of byte 
sequences must 11e nbandoned in fnvor of :,-expr,'3sions, 
or somethinp; similar, which can be processed moY'(' 
quickly and flexibly. 

._-------_._-
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6. 

3. Hash-CONSing into H-expressions preserves all the advantages 
of an S-expression format for declarations while reduci.ng 
the storage requirements by a large factor. 

4. A new class of zones will have to be defined for unique 
nodes. These unique values must be compatible with other 
list nodes in the layout of the CAR and CDR fields. A 
reference into a zone of this class must be deemed non­
atomic by ATOM. 

SOFTWARE PAGING OF BINARY PROGRAM SPACE 

LISP 2 systems, unlike LISP 1.5, are characterized by large memory requirements, 
to the extent that the total space requirement for BPI's alone exceeds available 
core storage. This growth of binary program space is a natural side effect of 
(1) the expected growth of the LISP 2 language; (2) the increased sophistication 
of the compiler and the resident general storage management facilities; (3) the 
addition of a number of program modules to the LISP 2 system, such as the syntax­
directed facility, the pattern-matChing facility, and the interactive edit/debug 
facility; (4) the traditional growth of program modules in the expected LISP 2 
application areas. 

The following paragraphs outline a proposed software paging scheme for the 
dynamic management of binary program space. The scheme assumes a fast random­
access secondary storage device is available for the storage of binary programs. 
The scheme assigns memory residence to those binary programs that are immediately 
relevrant to the current process, and depends on heuristic methods for automatic 
task recognition and automatic measurement of the relevancy of particular 
programs to the current task. The scheme operates dynamically, is largely 
independent of the automatic general storage reclamation provided by the garbage 
collector, and proceeds with little user interaction. A set of user-oriented 
commands provides substantial control of the status of binary programs at the 
points where user control is essential. 

Such a scheme for the management of binary program space is motivated by the 
following considerations: 

A small fraction of the BPI's are necessary to process the 
current task; 

An increase in the amount of memory space available for 
structural units will result in an increase in the mean 
time between garbage collections, and a corresponding 
decrease in the overhead for general storage reclamation; 
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6.1 

A general-purpose program chaining mechanism will benefit the 
programmer in large-scale application areas; 

Binary program space should be modular, in the sense that 
the user always has easy access to the parts of the system 
relevant to his current program. and is not penalized for 
the parts of the system he does not use; 

Experience gained by simulating paging in our restricted 
sense will lead to some insight into the organization of 
binary program space most desirable in a hardware paging 
environment. Functions that are frequently part of the 
same task should be stored together on secondary storage 
in task clusters. 

BINARY AND SECONDARY PROGRAM SPACE (BPS. SPS) 

The compiled code for a LISP 2 function or procedure is called a binary image 
or a binar~~rogram. Some characteristics of binary programs are that (1) they 
occupy less space than the IL representation of the function or procedure they 
represent. and (2) they may be processed an order of magnitude faster than the 
corresponding IL representation. However. the essential characteristic of the 
binary program for the management of BPS is that (3) binary programs are a 
read-only data form. That is. once the compiled code for a function has been 
assembled. it may not be changed except through recompilation and re-assembly 
of a modified version of the original. with the current version being excised. 

A BPI that is in memory is called a resident binary image (RBI). The primary 
characteristics of an RBI are that (1) it is executable. and may be used in the 
current task directly if it is required, and (2) it is completely relocatable. 
in the sense that its location in memory may be varied dynamically without 
affecting the outcome of the current task. The memory space reserved for hold­
ing RBI's is called binary program space (BPS). Because an RBI is relocatable, 
binary program space can be compacted whenever a particular RBI is deleted, and 
the memory space occupied by the RBI can then be used for other RBI's or 
temporary data structures. 

Secondary program space (SPS) is an area on a random access storage device, and 
is used for storage of binary programs. A binary program that is stored in SPS 
is called a stored binary image (SBI). The characteristics of an SEI are that 
(1) it is not executable, so that if it is required in the current task, then 
it must be loaded into memory. (2) the address of the SEI is available to the 
resident binary program management facility, so that the SBI can be made 
resident by loading it from the random access SPS; (3) the SBT is written onto 
secondary storage once, under user control, when the SEI is first compiled, so 
that SPS is treated as a read-only device except for the initial recording and 
later reclamation; (4) the SBI is read into memory whenever it is not resident 
and is required by the current task. 

j 
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There must be a garbage collector for SPS, though it may be completely indepen­
dent of LISP 2. A LISP 2 dependent garbage collector would require 

The physical address of each SBI 

The garbage collection of SPS would involve copying secondary 
storage into secondary storage using the information held in 
the function descriptors, and updating the addresses of the 
SBI's in SPS. When an Snl is deleted from SPS, the function 
descriptor must be retained until the SPS address haB been 
used hy the secondary ~arbage collector. 

A LISP independent garbage collector for SPS would require: 

6.2 

A symbolic address assigned to each SBI at the time of its 
creation 

The garbage collector may reallocate SPS without changing 
the symbolic address, and so without affecting LISP. 

USER CONTROL FACILITIES 

The management of binary program space depends on the following control 
facilities: 

COMPILE and LAP, to produce in memory a relocatable binary 
image of a function. 

EXCISE, to remove all traces of a binary image. 

STOREBI, to store a copy of the binary image of a function 
on secondary storage, so that it may be reloaded when 
necessary. 

EXCISEBI, to remove the copy of the binary image from 
secondary storage. 

DELETEBI, to remove a binary image from memory when a 
copy exists on secondary storage, in order to reallocate 
the memory space occupied by the binary image. 

LOADBI, to generate in memory a binary image of a function 
from the copy on secondary storage. This is implicit 
whenever a function is called after the binary image was 
discarded with nr~LErrEBT. 

~ .. --~.--- ._._--._-_. --... -._---_._._----_ .. _ .. _._-_. __ ._. __ ._._-_ ... _----
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are described in greater detail later. The essential idea is 
LAP are necessary to generate the binary image of a function, 
useful for regenerating the binary image, which would be 
user had excised the binary image and then wanted to activate 

By storing the binary image on secondary storage, the user attains a higher degree 
of freedom. The binary image in core may be regenerated by loading a copy from 
secondary storage. When the current core copy of the binary image is not 
actively involved in the current task. it may be deleted. Note that DELETEBI 
is merely a temporary removal from residence, whereas EXCISE is a complete purge. 

The user may delete binary images under program control. 'rhi s rac i11 ty should 
be useful whenever the binary program requir,ements of a task can be anticipated. 
For the more general case of the absence of user control, a heuristic method for 
automatically deleting and reloading binary images is proposed. The method seeks 
to optimize the use of binary program space relative to dynamic storage require­
ments and relative to the cost of deleting and subsequently reloading binary 
images. The method is designed primarily to supplement the user's application 
of the DELETEBI and LOADBI facilities in accordance with current task require­
ments. 

6.2.1 LAP 

This is the interface between the compiler and the internal storage conventions. 
It is the final step in transforming symbolic code into executable code. The 
effect of LAP is to transform the S-expression output (LAP code) into a relocat­
able binary image (RBI) in memory. The symbolic references to structures and 
function descriptors in fixed space become explicit references. The count cells 
in the referenced fixed units are incremented, and a function descriptor for the 
RBI is created. All accesses to the RBI are accomplished via the function 
descriptor. This assembly process may be termed linking. 

6.2.2 EXCISE 

The effect of EXCISE is to destroy the effects of LAP and of STOREBI:the binary 
images of a function in memory and on secondary storage are made inaccessible to 
the user, and the memory space and secondary storage space reserved for the binary 
image are released for general re-allocation. An EXCISE is implicit before a 
function is assembled. If there is no binary image of a function. then the 
EXCISE has no effect. An EXCISEBI is implicit before an EXCISE. 

If the function cannot be excised, then the value of EXCISE (fn) is NIL. A 
function cannot be excised if it is active on the pushdown stack. The detailed 
effects of the EXCISE are: 

) 
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1. The function descriptor is made into an error trap 
so that the message FUNCTION EXCISED can be printed 
if the user attempts to activate the binary image 
before the function is recompiled. 

2. For each reference from the binary image to a fixed 
unit. the corresponding count field is decremented. 

The count field is a number associated with any fixed unit to indicate the 
number of references from BPS. References to fixed units (identifiers. quote 
cells, free variables, and function descriptors) are determined by examining 
the code itself or a bit map of it stored with the RBI. The core space 
occupied by a fixed unit is reclaimable if the reference count is zero and if 
there are no references to it from active list structure or from the pushdown 
stack. 

After an EXCISE. a function may be restored only by re-assembling, which 
usually involves recompiling. Thus EXCISE is an expensive space-maker if the 
user wishes to run the function at some later time. The EXCU>E is of limited 
usefulness. providing benefits only when the user's specific problem area is 
not serviced by the resident library functions, and when the user recompiled 
functions. It does not directly solve the problem of making spaee when LISP 2 
is in the depths of recursion. 

MAKE A LOADABLE BINARY IMAGE, (STOREBI function ~) 

The RBI of the function is written onto secondary storage, and a field of the 
function descriptor is set to the address of the RBI in secondary storage. The 
field is zero if the RBI has not been written onto secondary storage. The copy 
of the binary image in secondary storage is termed a loadable binary image. or 
SBI. There is never more than one SBr for a given function. 

Once an SBI has been created for a function, the RlH is redundant to the extent 
that it may be restored from secondary storage by a RELOAD operation. The SRI 
includes the relocation information normally associated with the RBI. When the 
RBI is not involved in the current task, the memory locations occupied by the 
RBI may be reclaimed by the garbage collector. When an RBI is deleted, the 
function descriptor must be replaced by a trap to a routine to load the RBI and 
re-activate the function descriptor. 

6.3 AUTOMATIC TASK RECOGNITION 

Included here are definitions of the concepts of task and task relevance. 
The relation of these and other concepts in the management of binary program 
space is summarized in Figure 5. 
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Active functions are on 
the stack waiting for 
other active functions 
to return values. 

Task-relevant functions will be 
called at some time in proces­
sing the current task. 

Binary Program Space (BPS) is the memory 
space reserved for holding binary images. 
A resident binary image (RBI) is 

(1) directly executable 

(2) completely relocatable. 

TM-3417/550/00 

Secondary Program Space 
(SPS) is the secondary 
storage space reserved 
for holding binary images. 
A stored binary image 
(SBI) is 

(1) not directly execut­
able 

(2) loadable into BPS if 
it is not resident 
and if it is required 
by the current task 

(3) deletable from BPS 
whenever it i3 
inactive. 

Figure 5. Automatic Task Recognition 
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A ~ is the computation that occurs during the time between an input to the 
supervisor and the time the supervisor is ready for another input. A task is 
characterized by the set of functions called before the pushdown stack returns 
to the supervisory level. We refer to tasks as disjoint or independent if 
they involve disparate sets of functions. A sUEervisory level or dispatch 
level is a level of the stack corresponding to the portion of the stack 
reserved for the local variables of a supervisor. A supervisor or dispatcher 
is a binary program from which substantially di~Joint tasks may be initiated. 
The possibility of several supervisory levels is fl slight compi i cat ion of the 
concept of task. We will think of the deepest supervisory level as the current 
supervisor. and any task initiated from that level will be called the ~~ 
task. 

A sequence of inputs to the LISP 2 supervisor will ordinarily include several 
disjoint tasks, and often the binary programs involved in all the tasks cannot 
reside in memory throughout the processing of the inputs. It is important to 
anticipate the binary program requirements of each task so as to reduce the 
overhead due to loading and unloading binary programs for the different tasks. 
It is also desirable to react to task requirements automatically, to avoid 
burdening the user with "housekeeping" details. 

A task may be anticipated simply by listing the functions to be used in pro­
cessing the task. This is burdensome, error-prone, and difficult to do in 
general. An alternative is to consider the set of functions referenced by a 
given function, together with all the functions referenced by those functions, 
etc. The advantage of this alternative is that the set of referenced functions 
can be derived automatically from an initial function. The disadvantage is 
that it overestimates the requirements of the task: too much memory space is 
allocated for functions that are not subsequently involved in the task. 

The proposed solution is based on the followinp; observations. fo'unctions that 
belong to the same section are written and compiled together, and they tend to 
be involved in similar tasks. Conversely, functions in different sections tend 
to belong to disjoint tasks. Of course, these observations do not hold for 
section LISP, which contains miscellaneous functions of general utility. 

The primary advantage of identifying tasks with sections is that it capitalizes 
on the existing LISP 2 structure to solve two important problems associated 
with task anticipation: 

1. The user has a simple, natural method for describing the 
set functions associated with a particular task. He 
accomplishes this by organizing his function dt'rinitions 
into functionally connected groups called nect\onR. 

~). Automatic task recognition can be performt"d ef'fleiently 
by measuring the percentage occupancy of the pu::;hdown 
stack for each section. 
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Associated with each function descriptor is a task relevance index (TRI). The 
TRI is a real number in the range 0 to 1 which heuristically measures the 
frequency with which the resident binary image (RBI) for a function is necessary 
to process the current task. The TRI varies dynamically. It is operationally 
defined by a reward-and-punishment scheme as follows: 

1. The TRI is initialized to 5. 

2. After each census of BPS, the TRI for a function 

a. is rewarded if the binary image of the function 
is active, 

TRI + e * TRI + (1 - e) 

b. is punished if the binary image of the function 
is resident but inactive, 

TRI e * TRI 

c. is ignored if the RBI is not in memory. 

This scheme has the following properties: 

1. The TRI converges to the percentage of times the 'l'RI 
was rewarded relative to the number of times the TrU 
was either rewarded or punished. 

2. A smaller value of e produces faster reaction of the TRI, 
whereas a larger value produces a slower, more stable 
convergence. 

A census is a survey of the binary images in the system for the purposes of 
determining their status with respect to activity, deletability and task 
relevance. A binary image is active if there is a return address to the RBI 
on the pushdown stack. A binary image is deletable if it is not active. and 
if there is a corresponding SBI on the secondary storage. 1'he task relevance 
is a combination of the task relevance index and the activity of functions 
belonging to the same section. 

The purpose of the census is to recover a predetermined amount of memory space 
by deleting, if possible, the irrelevant RBI's from BPS. A census occurs when 
a "growing pain" is invoked by the general storage reclaimer for the purposes 
of increasing the amount of free storage. A census also occurs when a function 
required by the current task is not resident in BPS. This latter condition is 
recognized because the function descriptor for the function contains a trap to 
the LOADBI routine. 

) 
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The concept of task relevance is sufficiently flexible so that a threshold may 
be set before the census, such that all deletable RBI's below the threshold in 
relevance will be deleted. A problem that is not well understood as of this 
writing is what to do if an insufficient amount of BPS is released by the 
census. One alternative is to lower the threshold, but proper design of the 
threshold setting should eliminate this alternative. If all the resident 
binary programs are strictly not deletable. then the required space can be 
obtained only by invoking the general storage reclaimer, which may result in a 
growing pain. 

The heuristics associated with the management of binary program spa.ce are 
directed entirely at selecting which of the deletable HBI's should actually 
be deleted. If all the functions to be used by a task are in memory at the 
start of the task, then there will be no overhead due to loading of SBI's from 
SPS, provided a census is not invoked either by the general storage reclaimer 
or inadvertently by the user through the application of the LOADEI function. 
The heuristics seek to retain as residents those RBI's that have a good likeli­
hood of being used again before the next census. Also, the heuristics seek to 
expel those residents that are unlikely to be used again in the near future. 
One of our basic assumptions is that recent activity is a reasonable measure of 
the :;mmediate future activity. And one of our basic goals is to minimize the 
memory requirements of binary programs. 

6.4 REMAINING ISSUES 

Many of the details of the software paging scheme have been left unclear, 
simply because little experience with the scheme has been obta.ined. One of the 
major questions to be settled through experimentation is thf' computation of the 
task relevance of a given function. 

The section name can be related to task relevance by measurin~,: the percentap;e 
occupancy of the stack by the functions in the section. Tt mny be better to 
take a. weighted percentage, such as the sum of the TRI's of actlve functions in 
the section. Alternately, it may be desirable to keep a section index, to vary 
dynamically, and to measure the recent overall activity of the section, or the 
cohesion of the section, etc. 

Other variables have been proposed as relevant to the question of whether or 
not a deletable RBI should be deleted. These miscellaneous variables include: 
(1) the size of the RBI, because it is cheaper per instruction to load large 
functions and release the space, (2) the frequency of loading; (3) the time of 
the last load; (4) the frequency of calls of the function durinp; the current 
task, (5) the static call count, or the number of references to the RBI from 
BPS; (6) the number of calling sequences in the RBI; ('n etc. 

It is likely that the accuracy of the ta.sk relevance index (Tin) Ctlrl hr 
improved by Getting up a "rewarci trap" n.fter H censur, for' tIll' tiP I Ctlll> I p 1m r 'f;. 
The purpofJe of the trap waul d be to reward the 'PH fi f the HlI I wnr. uf;pd be rort' 
the next census. 




