
(

(

The views, conclusions, or recommendations expressed In this document do not neces­
sarily reflect the official views or policies of Ileneles of the United Stites Government.
The research reported in this paper was sponsored in
part by the Advanced Research Projects Agency Infor­
mation Processing Techniques Office and was monitored
by the Electronic Systems Division. Air Force Rystems
Command under contract F196287C0004 Information Pro­
cessing Techniques, with the System Development

Corporation. @[Wi J
1r~~~ I~I@ dWorkingpaper

11M/a 3417/600/00

AUTIOR Dl --r
IJtnt~1.4./ J.).~~

Donna Firth

'IC"NI~O~~
~fa.r~ett

$plena Onelopment Corperdon 12500 Colorado AvenuII Santa MonlCl, Clllfomll10486
Informatiol InttmIIIouI 1ac./11161 Plco Boulevard I Loa Anples, Clllfomia 90064

. DATI "II 1 Of 2.3.......PA.U
4/26/67

(Page 2 is blank)

LISP 2 Input/Output Specifications

Abstract
\. ,"

This document describes the capabilities required
to perform input/output functions in the LISP 2
system being designed for the Im~ 360/65 computer.
It includes definitions of lo~ical units and files;
a discussion of file properties; a list of standard
input/output functions; and specification of the
monitor capabilities required for LISP 2 input/output.

.J

(

l

(

26 April 1967

Se.ction 1.
1.1
1.2
1.3

2.

3.
3.1
3.1.1
3.1.2
3.1.3
3.2
3 .• 2.1
3.2.2
3.2.3
3.2.4
3.2.5

4.
4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.1.4
4.1.1.5
4.1.1.6
4.1.1.7
4.1.2

4.1.2.1
4.1.2.2
4.1.2.3
4.1.3

4.1.3.1
4.1.3.2
4.1.3.3

~-..• --.- ----.-~---~----

3

TABLE OF CONTENTS

Introduction
Overview
Ba~ic Mechanisms--Units and Files
Design Goals

Units

Files , .
Permanent Properties of Files
Name •• •
Line Length
Buffer Size
Changeable Properties of Files
Left and Right Margins
Right Margin Overflow Action
Page Size
Code Form
Unit Connection • •

User Input/Output Functions
Functions Affecting Files
Functions Applicable to Any File
OPEN$LISP ••••
INPUT$LISP and OUTPUT$LISP
CHANGE$LISP
SHUT$LISP
REWIND$LISP
WRlTEOF$LISP ••
ADVLINE$LISP and TABCOL$LISP
Functions Applicable to the Currently
Selected Input File

READCH$LISP •
READ$LISP ••••
IADVL$LISP and ITABCOL$LISP
Functions Applicable to the Currently
Selected Output File

PRINCH$LISP
PRIN$LISP ••••••
OADVL$LISP and OTABCOL$LISP

•

•

•
•

•

TM-3417/600/00

~
1
1
5
6

9

12
13
13
13
13
13
13
13
14
14
14

14
14
14
14
16
17
18
19
19
19

19
19
20
20

20
20
20
20

12 April 1967

Section 4.2

5.

5.1
5.2
5.3

5.3.1
5.3.2
5.3.3
5.4

Fig. 1
Fig. 2

Table 1
Table2
Table 3
Table 4
Table 5

4

TABLE OF CONTENTS (Cont.)

Functions Af'fecting Units •

Monitor Capabilities Required for LISP 2
Input/Output •••••

Minimum I/O Device Configuration
Hardware Restrictions
Non-Parallel I/O Mode With Sequential File
Organization

Sequential Devices
Random Devices
Display Devices
Parallel I/O Mode or Non-Sequential File
Organization

General Input Scheme
General Output Scheme

Default Values for Optional Unit Properties
Possible Values for Unit Properties
File Properties, Names, and Value Types
CHANGE Function Property Key Words
SHUT Function Disposition Parameters

._----------_._--

•

TM-3417/600/oo

•

21

22
22
22

22
22
23
23

23

7
8

10
11
15
17
18

)

26 April 1961 5 TM-34l1/600/00

1. INTRODUCTION

1.1 OVERVIEW

The'descriptions given here are implementation-independent and of B. general
nature. Detailed programming descriptions of the variables, structures, and
functions used for input/output are not provided. Any restrictions caused by a
specific i~plementation will be announced in an amendment document for that
implementation, which will also include detailed program descriptions.

The purpose of input/output in LISP 2 is to exchange blocks of information
between main memory and other storage devices. Although many operations are
involved in this process, the goals of LISP 2 I/O are to minimize user effort,
provide maximum flexibility, and utilize all available resources.

The input of information is divided into three independent areas, as shown in
Figure 1. The result of processing in any area is used by the system for more
than one purpose. The master functions that produce results from these areas
are TOKEN, READCR, and READU. The function READ, a higher-level function, is
also provided for general data reading. Areas 1 and 2 cpnstitute the I/O portion
of the LISP system. Area 3 is completely independent and may in fact operate on
characters from other sources.

The output of information follows an equivalent schemr~. Internal datfl structures
are represented as character sequences; the character sequences are put into rUe
buffers; and the file buffers are transferred as physical records to auxiliary
storage. The primary difference is that there is no explicit equivalent of Area
3 on the output side.

1.2 BASIC MECHANISMS--UNITS AND FILES

Actual hardware devices, each with its own peculiarities, exist in the computer
environment. Since LISP 2 operates within the environment of an executive or
monitor program (the capabilities of which are specified in Section 5), the
actual devices are not of concern. Instead, something to be called a unit is
regarded as the basic input/output entity in the LISP 2 system.

A unit is roughly defined as a particular hardware device as seen through the
monitor system. The characteristics of units are completely dependent on what
the monitor will allow and are usually a subset of the features of the physical
device. Within LniP 2, flPparA.te unjt':3 are estllhJi:3hed for each t.ap~ rpcl, on­
line t.ypewrit(·'r, dispJay, ('onn,~d,('d portion or rllrwl nLol'lt.p;l', (·Lc'., t.hat. the IlBf~r
Wlj,llts lou !ll~"l~~W(Int,f'I'!lIL:i Iy, U ullit. in /.I. ,'oll'''I,t.iotl or 11II'ormuL.lnn, 1111:111111111': ttlr,
t.ypt> !Lnd t1Lll.te at' tht' dev.iee but l1l)t 1.1lcJuding Itny flplJ.ee t'or rt"eordn or till' Hutt.

'l'here are two types 01' I/O available to
binary; it involves the direct transfer
tional proeessing by the I/O routines.
it requires the I/O routines to process

the user. lIllie fir'at type will be called
of bloeks of computer words without addi­
The second type will be called printable;
streams of characters.

1 Usually called a disc file in monitor terminology •

. _------------ ----------

2L April 1967 6 TM-3417 /600/00'

Binary I/O is quite 'simply handled; the blocks of words are moved between a unit
and main memory in a manner chosen by the user. Printable I/O requires more
complicated handling since data formatting is desired. While each unit may have
different properties, it is not desirable (from the user point of view) to have
to use different functions to read or write the different units. 'ro achieve
unit independence and formatting capabilities, LISP 2 uses files for printable
I/O.

A file is roughly defined as an extra level of organization imposed between a
unit and a user which permits more convenient character-oriented input/output.
Depending on its declared organization, a file may reference part or all of the
information on the unit it is connected to. (For example, a tape reel declared
as a unit may contain many physical files, while the LISP 2 file connected to
this unit might reference only one of them.) Internally, a file is a collection
of information describing all its properties and including space for records on
the unit it is connected to.

As many files as the user desires may be declared within LISP, but only one file
at a time may be read or written. When a 'file is to be read or written it is
selected for that purpose and becomes the currently selected input or output
file; all the primitives.for reading or printing implicitly reference the current-
ly selected file. Each file--whether selected or not--is connected to exactly)
one unit, although the unit connection is changeable whenever desired.

When "standard" I/O operations (such as reading and printing data) are attempted,
only files need be considered by the user, since the associated units will be

-automatically dealt with by the I/O functions.

The exact nature of units and files will be discussed below in Sections 2 and 3
respectively. The user functions that establish, change, and delete units and
files are described in Section 4. ,

1.3 DESIGN GOALS

The main reason for the existence of units is convenience of implementation.
The machine- and device-dependent parts of the LISP 2 I/O package are concentra­
ted in the functions concerned with units. A unit is the object of a command
to move to (or from) auxiliary storage a certain number of computer words; no
pre- or post-processing of any kind is done on these words by unit-oriented
functions. The words handled by units are regarded as raw information and are
not interpreted by the units. Extracting meaning from t.his informs.tion is done
through the use of files. In particular, Lranslation or codcs--ASCII to BCD,
EBCDIC to ASCII--and data forma.t t ing nrc done through f.'i I Co • ']'lle ('i Ie: opf-~rll.t lurw
are machine-independent and need not be rewritten for different implementations.

- ---- ----------_.---------

)

(

(

l

26 April 1967

Binary
Data
Input

7

r-----------
I
I
I
I
I
I
I
I
L ___ _

Computer
System Monitor

•
Record in
Core
(READU)

---,---

TH-3417/6o%o

-----------...,
I
I
I
I
I
I
I
I

__ ARE~: ~NIT ~ANSFE~ _ J
L.-________ ~Computer Words

r------- -------------,
r--......Ji.-_--. Device-dependent mapping I

I File Buffer to ASCII characters.
I
I
I
I
I
I
I
I

containing
ASCII
characters

Character
Reader
(READCH)

I
I
I
I
I
I
I
I

I I Other
Character
Oriented
Input

h L - - - - - - -J - - - - ~E~ 2.:_..F~E~A~TENAN~E -J
Characters

L.............._-----j

r -- - - - - -4 ---- -- -- --------,

I Character sequence to I
I character mapping. I

Character
I Supplying I
I Function I
I I
I + I
I I

Token
I Parser I
I (TOKEN) I
I I
I AREA 3: I L ___________ ~~~~STRU~ON __ ~

Tokens

Internal
Data ------i

Source
Language
Reader

Data
Reader
(READ)

Internal
1----"", Data

Structures Structures

Figure 1. General Input Scheme

26 April 1961'

General
Character
Oriented
Writing

I

Binary
Data
Output

8 Tt<-3411' /600/00

Data Interna I
Writer .-------- Data
(PRIN) Structures

Characters

r-------- ---

Character
Printer
(PRINCH)

File
Buffer
(ASC \I
Characters)

4 ~ Device -dependent mapping to
CII characters. non-AS

L ________ -- _ __________ ...J

Computer Words
~----------~------------~

r - -- - -- - - - - - - - - - 'Are;l ;Unit fun-;Fe;- -l
I
I
I
I
I
I
I

Record
In
Core
(WRITEU)

: Computer
System

I Monitor I
I I L ________________________ ~

Figure 2. General Output Scheme

J

)

l

!

~-

~g~
yt;

26 April 1967 9 T]\1-3417/6o%o

For some kinds of I/O operations, efficiency in execution can be obtained by
having separate units and files. An example of this is copying physical files
of data. If a LISP file is used for this purpose, it is necessary to parse the
data as it is read and written. Parsing consumes execution time and free stor­
age. By using units for the copying operation, no parsing is required. The
records from the input unit can be read into memory and directly moved to the
output unit.

Although core is included as a type of unit, it has none of the features of
other devices and exists primarily so that files, which in effect are not
connected to any device, may be used within LISP.

2. UNITS

A unit declaration within the LISP 2 system activates a previously inactive
device. Once activated, a unit may be read or written by invoking the functions
appropriate for the type of I/O (binary or printable) desired on that unit. In
the case of printable I/O, a file must also be declared and selected before the
unit becomes useful.

When a unit is declared, there are two properties that must be given by the user
and several that are optional. The required properties are the unit name and
device, where the device specification consists of the type--such as 7-track
tape, disc, etc.--and a further specification for reel number or disc identifica­
tion (as appropriate).

The optional properties are parity, protection, organization, transfer mode, and
end-of-medium action. They have default values when they are not originally
specified. 2 The optional properties may be changed while the unit is active,
but the required properties are permanent as long as the unit is active.

Units may be directly positioned backward and forward or written with physical
file marks by using the functions for that purpose. When a file is connected
to a unit, positioning and physical file marks are ordinarily indirectly obtained
through operations on the file.

The system maintains additional iBformation concerning a unit, which includes
status of the last I/O transfer and current physical position. This information
may be examined by the user but should never be directly reset.

2 'l'he default values depend on the type of device and lire given in 'l'able 1.

~,~~~.~_,_:,~,~.-~-.s...~.' _~ _____ . ____ _

10 TM-3417/600!oo j

Table 1. Default Values for Optional Unit Properties

Property

Pro- End-of- Physical Record
Device Parity tec- Medium Record Transfer
Type tion Action Organization Mode

teletype printable none no-operation sequential wait

7-track tape binary none locked sequential wait

9-track tape printable none locked sequential wait

disc printable none locked sequential wait

display binary none no-operation sequential wait
\)

core printable none locked sequential wait

26 April 1967 11 TH-34l7/6o%o

Table 2. Possible Values for Unit Properties

Property Values

)Tame All identifier not in use as the name of another active unit

Device One of the identifiers TTY, TAPE?, TAPE9, DISC, DISPLAY, CORE
Type

Device When type is TTY--either the channel number of the teletype
Sub- or nothing (meaning the user's primary teletype)
speci-
fication When type is TAPE? or TAPE9--either a reel identification

or nothing (meaning a scratch tape)
physical file number 3

and optionally a

When type is DISC--either a monitor disc inventory iden-
tification or nothing (meaning the unit name will be used
for this purpose) and optionally, a starting position
designation.

When type is DISPLAY--the display identification (usually
a number)

When type is CORE--no sub-specification necessary

Parit'y One of the identifiers BINARY or PRINT

Protection Either, both, or none of the identifiers READ and WRITE I
End-of- The name of the function to be executed if EOM occurs
Medium

Physical
Record Options are implementation-dependent
Organi-
zation

Record
'l'ran31'<"1' Options are implementation-dependent
Mode

3
Al though it is lega1 to dt'clare dit'ferent physical files of a tape as
different ullits, it is not advisable if the units are to be used concurrently.

26 April 1967 12 TM-3417/6o%o

3. FILES

A file is a channel for printable information. It either supplies or absorbs
characters, depending on whether it is being read or written. The same file
can be used for either process by selecting it for the operation desired. In
actuality, character handling is not so interesting to users as is the proces­
sing of data of a language (such as S-expressions). The functions to handle
such data (e.g., READ and PRINT for S-expressions) will rely on the primitive
character handling functions to achieve their intended effects. To describe
files, then, all that is necessary is a description of their properties and a
definition of the effect of the character functions, READCR and PRINCR, on the
state of a file.

The permanent properties of a file are its name, line length, and buffer size4.
The changeable properties are left margin, right margin, right margin overflow
action, page size5, top of page, bottom of page, bottom of page overflow action,
code form, and unit connection. These properties are changeable in that they
may receive different values during the life of the file by executing the appro­
priate functions. New values may not take effect immediately (see the function
descriptions in Section 4 which describe when a change becomes effective).

All changeable properties will have a default if they are not given when a file
is established. Permanent properties have no default vaJue; hence, they must
be specified when a file is established. Some standard file descriptions are
available within the system, so it is not necessary to manufacture a new
description for every file.

The system maintains some additional information for each file. This includes
buffer location, buffer or file status, physical position information, variables
used by the language functions, number of characters in the buffer, and a group
of column and line index quantities. These indices specify line number within
a buffer, line number within a page, and current column of the line. The index
quantities are automatically updated as a file is read or printed and should
never be directly accessed by the user. Functions for line and column position­
ing are available and should be used for this purpose. Positioning within a
file is usually only possible in a forward direction.

It Buffer si:l.t' corresponds to n'~ord lengtll ['or the uni L ~onn(!eted La the rUe.-
Only one record of a file will be nccessible 111., a time.

-5 Page size is independent of buffer size.

.'

(
\~

(

26 April 1967 13 TM-3417/6oo/00

3.1 PERMANENT PROPERTIES OF FILES

3.1.1 Name

This is a LISP identifier not currently in use as the name of another file.
All further references to the file after it has been declared use this name
either explicitly or impliCitly. The implicit uses occur after a file has
been selected.

3.1.2 Line Length

This is specified by number of characters per line. Although a file can be
thought of and used as a sequence of characters, it is sometimes necessary or
convenient to format the file into lines. Lines actually have physical meaning
for many storage devices, and information will be lost if the identical line
length is not used for the file. When a line format is not wanted, the line
length should be given the same value as buffer size.

3~1. 3 Buffer Size

Corresponding to the size of the maximum physical record on the unit connected
to the file, buffer size is specified in lines per record. If S is the product
of characters-per-line and lines-per-record.and H is record size, then informa­
tion will be lost when a unit connected to this file supplies records of R > ~

size.

3.2 CHANGEABLE PROPERTIES OF FILES

3.2.1 Left and Right Margins

When lines are being used, it is possible to set margins on the line. The
settings are given by column (character) number. The following restrictions
will be enforced at the time of specification:

(1) 1 ~ left margin < line length

(2) 1 < right margin ~ line length

Either or both left and right margins may be u'sed. If both are used, the
further restriction that the left margin be less than the right margin will be
enforced. When left margin is not specified, it defaults to 1; right margin
defaults to infinity.

3.2.2 Right Margin Overflow Action

This occurs when the column about to be printed is the right margin. An action,
such as hyphenating the line or printing a line number, may be taken at this
point. The user specifies right margin action by supplying a function that will
be executed when overflow occurs. The default for right margin overflow is
line termination.

26 April 1967 14 TI~-3417 /600/00

3.2.3 Page Size

Lines may be grouped by pages with a margin at the top and/or bottom. When used,
these parameters are specified by the number of lines per page, and line numbers
of the "top" and "bot tom. " When the bot tom of 8. page is reached, an action-­
such as printing a page number or skipping to the next page and printing a
header--can be effected by a bottom overflow function. If page format is not
specified, the default will be to continuous use of every line. That is,
top = 1, bottom = lines per buffer, and overflow is a "no-operation."

3.2.4 Code Form

Internal to LISP, all files are in ASCII form. When a file is connected to
auxiliary storage where a different form (such as BCD) is used, this form must
be spl~cified. The default is to ASCII form.

3.2.5 Unit Connection

The types of storage devices available are tape, disc, teletype, display scope,
and core. A unit is considered to be a block of storage on one of these devices
(8ee Section 2). Connection is specified by unit name or by a complete declara­
tion for the unit. Standard unit descriptions, which will be sufficient for
normal usage, are available in the system. Default will be to core if no
specification is given.

4. USER INPUT / OU'l'PUT FUNCTIONS

4.1 FUNCTIONS AFFECTING FILES

4.1.1 Functions Applicable to Any File

4.1.1.1 OPEN$LISP

This is a function of two arguments: file name and a description list for the
file. The description list contains dotted pairs consisting of the file
property name and the desired value for that property. Sections 3.1 and 3.2
describe the properties of a file; the file property names are given in Table 3.

When the description list has more than one occurrence of a property name, the
first occurrence is used. This makes it possible to use standard file
descriptors with any exceptions CONS'ed on the front.

- ---- - ----_._-------

)

(26 April 1967 15 TM-34l7/6o%o

Table 3. File Properties, Names, and Value Types

Property Name Value Type When Used

Line Length LINE Integer

Buffer Size BUFFER Integer

Left Margin LINEL Integer

Right Margin LINER Integer

Right Margin LINEO Function Name
Overflow

(
Page Size PAGE Integer

Page Top PAGET Integer
,"

Page Bottom PAGEB Integer

Page Overflow PAGEO Function Name

Code Form FORM Identifier (implementation-
dependent)

Unit Connection UNIT Either the name of an active
unit or a list suitable for
the function OBTAIN (see OBTAIN,
Section 4.2)

26 April 1967 16

Use of the function OPEN causes one of the following:

If the given file name is already in use as a file name,
an error occurs.

If any permanent property is absent, an error occurs.

Otherwise, all properties are checked for legality;
defaulting occurs if any changeable properties are not
specified or a specified property is out of range (such
as LINEL ~ LINER).

TH-3417/6o%o

After the legality check is completed, structures to represent the file are
created,6 If an active unit name is supplied, the unit will be positioned
at the beginning of the region given in the device sub-specification; file
position information will be initialized to coincide. If a unit description
is supplied, the function OBTAIN will be executed.

The new file is added to the system inventory and a list of all active file
names is returned.

4.1.1.2 INPUT$LISP and OUTPUT$LISP

These two functions are used to select a file (already OPEN'ed) for reading or
printing, respectively. The file name to be selected is the sole argument;
the function value is the name of the previously read- or print-selected file.
By saving the name of the old file, it is possible to reselect it and continue
at a later time.

If a file has never been selected after it was OPEN'ed, either function INPUT
or OUTPUT can be used, since files are fundamentally direction-independent.
However, certain restraints are imposed on the selecting of files under other
conditions.

'The status of every file is maintained by the LISP system. When a file· is to be
selected, its status is checked, and if the selection is illegal, an error
occurs. The illegal combinations are: attempted OUTPUT when the file status is
reading, attempted INPUT when the file status is either wri tinp; or has .1ust
written an end of file. Rewinding a file initializes its status, and any
operation is then legal.

6 A detailed description of these structures is found in the implementation
amendment for each computer.

(

26 April 1967 17 T~-1-3417/6o%o

4.1.1.3 CHANGE$LISP

This function i~ used to change the value of any or all of the changeable prop­
erties of a previously OPEN'ed file. There are two arguments: file name and a
description list. The description list has the same form and key words as used
in OPEN. The new values are immediately placed in the file description and
become effective as shown in Table 4.

Property
Key Word

LINEL

LINER

LINEO
! PAGE
i

PAGET

PAGEB

PAGEO

FORM

UNIT

Table 4. CHANGE Function Property Key Words

New Value Becomes Effective

After the current line is terminated

The first time the current column has the new
value

When the next right margin overflow occurs

Immediately

After the current page is finished

The first time line No. within page has this
value

When the next bottom of page overflow occurs

At the next reading or writing of a unit

At the next reading or writing of a unit

""-----------------_ ..

26 April 1967 18 TM-34l7/6o%o

4.1.1.4 SHUT$LISP

The effect of this function is to purge a file from the LISP system. The file
name to be shut is one of the arguments, and the other is a disposition
specification for the file. The disposition list allows inserting or deleting
this file in the monitor inventory, renaming the file in the monitor inventory,
changing the protection of the file, and sending a message to the computer
operator. The value of SHUT is a list of the remaining active file names in
the LISP system.

SHCT has some implicit effects as well. If the file to be shut is in writing
status, any remaining partial buffer will be written onto the unit connected to
the file, and an end of file will be written. This occurs before the dis­
position specification is acted on. After the file is shut, the unit it was
connected to may be released. This happens when no other file in the LISP
system is connected to that unit.

File disposition is specified by a list of dotted pairs with default values
assumed for those parameters not supplied.

Table 5. SHUT Function Disposition Parameters

Disposition Name Possible Values Default Value
Parameter

Monitor inventory INVENTORY One of the identifiers DELETE
insertion or INSER'r or DELETE
deletion

File name RENAME An identifier Current name
change of the file

File protection PROTECT Either. or both of the No ;protection
identifiers READ and
WRITE

Operator message LOG A single datum to be No message
printed on the operator's
console

)

)

C

l

26 April 1967 19 TM-3417/6o%o·

4.1.1.5 REWIND$LISP

The file specified as the argument to this function is initialized effectively
as if it had just been OPEN'ed.

4.1.1.6 WRITEOF$LISP

The file specified as the argument of this function will be written with an
end of file mark, providing the file status is not reading.

4.1.1.7 ADVLINE$LISP and TABCOL$LISP

Changing column and line indices of a file is accomplished by using these
functions. Both take a file name and an integer for arguments and return
integer values.

Line positioning in a forward direction is accomplished by calling ADVLINE
with the file mame and the number of lines to be skipped. The function value
is the l~ne number (within a page) before the skipping took place. If zero is
supplied for the number· of lines to be ski:pped, the present position is
returned and no action takes place. Arguments less than zero cause an error.

Column positioning within the current line is achieved by calling TABCOL with
the file name and the column number to be positioned to. If the desired column
number is ~l and ~ line length, the pOSitioning will be done and the previous
column number returned as the function value. When the desired column nwnber
is outside·of these bounds, an error occurs.

4.1.2 Functions Applicable to the Currently Selected Input File

4.1.2.1 READCR$LISP

This is a function of no arguments that always returns a character as its value.
The character returned is either from the currently selected input file or is a
control character indicating end of line, end of file, or some other condition •

. READCR may indirectly cause a unit to be read. This can happen if either the
file buffer is empty or if right margin overflow causes the last line of the
buffer to be terminated.

The effect of READCR on the state of a file is:

Current column index is always changed.

Current line index may change.

File status may ehange. (This ordinarily occurs only at the
beginning or end of a file, but may also result from an error
in attempted unit re!:l.ding.)

26 April 1967 20 TM-3417/60o/00

4.1.2.2 READ$LISP

This is a function of no arguments that returns either the next datum on the
currently selected input file or a control character, or it causes an error.
The syntax of LISP data is followed in parsing the input character stream;
corresponding internal structures are created.

After READ has finished, the current character of the file is the one immediately
after the last parsed character. The line is not terminated.

4.1.2.3 IADVL$LISP and ITABCOL$LISP

These functions operate on the currently selected input file and are analogous
to the functions ADVLINE and TABCOL, except that file name is not supplied as
an argument.

4.1.3

4.1.3.1

Functions Applicable to the Currently Selected Output File

PRINCH$LISP

This is a function of one argument, the character to be entered in the file; it
also returns the argument as the function value. Before the character is
inserted in the file, the file control indices are tested; right margin overflow
or line termination may occur. If neither of these occur, the character is
entered in the file and the current column index is incremented. If line ter­
mination occurs, either directly or through right margin action, the character
is entered in the left margin position of the next line, providing no error
occurs. An error can result if the terminated line was the last one in the
buffer and an error occurred in attempting to write the unit.

The effect of PRINCH on the state of a file is exactly the same as READCH.

4.1.3.2 PRIN$LISP

This function has one argument, a LISP 2 datum, which it prints into the current­
ly selected output file. Printing is done in a symmetric fashion; that is, the
re-reading of the printed datum will cause an equal internal structure to be
created. For example, the string #A B C# will print as #A B C#, and not as
ABC.

PRIN does not cause a line termination; when it is through J/dntitl/i<, the c:urr~nt
column is the one immediately after the last character In th~ repreeemtuMon of'
the datum.

4.1.3.3 OADVL$LISP and OTABCOL$LISP

These are the currently selected output file counterparts of the functions
described in Section 4.1.2.3.

l

l

26 April 1967 21 T!1-3417 /600/00

4.2 FUNCTIONS AFFECTING UNITS

The functions OBTAIN and RELEASE are analogous to the OPEN and SHUT functions
for files. Both are in section LISP and have an indefinite number of arguments.

OBTAIN requests from the monitor the units that are given as its argument. If
they are all gotten successfully, OBTAIN then establishes the unit descriptions
for them and returns a list of all active unit names. If one or more of the
units can not be gotten from the monitor, OBTAIN does nothing and returns the
empty list as its value.

RELEASE deletes all the unit descriptions and tells the monitor to disconnect
the units (where appropriate). No LISP error is posSible, and all the
units supplied as arguments are then inaccessible in LISP.

The argument form for both functions is the same, and consists of a list whose
first element is the unit name and whose remaining elements are dotted pairs of
either unit descriptors (in the case of OBTAIN) or disposition parameters (in
the case of RELEASE).

Unit descriptors contain as their first element a key word--DEVICE, PARITY, PROTECT,
EOM, ORG, or TRANSFER~-corresponding to the properties given in Table 2. Examples
of legal unit descriptors are (DEVICE. TTY), (DEVICE. (TAPE7 1234), and
(PARITY. BINARY). Disposition parameters are the same as for SHUT.

The function ALTER has a single argument of the same form as the arguments for
OBTAIN. The changeable properties of the unit named will be reset to the values
given, and the new values will become effective at the next unit transfer.

The function POSITION has two arguments: the unit name and the action desired.
The effect of this function is to physically position the unit as specified.
The possible actions are: skip a record or physical file, backspace a record or
physical file, write an end of file, and rewind.

The functions READU and WRITEU are used to transfer records between main memory
and the unit. Each fUnction has three arguments: the unit name, the number of
words to transfer, and the memory location of the first word. The effect of
executing either of these functions is to transfer either the number of words
specified or a physical record, whichever is smaller. Parity will be according
to the unit's current specification.

.---.-~-.-,,~. .. ,,---

26 April 1967 22 TM-34l7/600/00

5.

5.1

MONITOR CAPABILITIES REQUIRED FOR LISP 2 INPUT/OUTPUT

MINIMUM I/O DEVICE CONFIGURATION

The following capabilities are required for input/output by the LISP 2 system:

5.2

A teletype, console typewriter, or other means of direct
user interaction.

A bulk, random-access, secondary storage with at least
100,000 computer words available for use by the LISP 2
system.

Magnetic tape handling capability.

HARDWARE RES~ICTIONS

In addition to the I/O devices required, the following limitations on these
devices are necessary:

5.3

The interactive typewriter must accept the full C{_bit ASCII
code. Other devices must have a "binary" mode so that both
blocks of instructions from memory and ASCII blocks can be
exchanged without code translation.

Error detection features must provide the option of
continuing operation after an error is encountered.

I/O interrupts of the LISP system must not be permitted
unless specifically requested by the system.

NON-PARALLEL I/O MODE WITH SEQUENTIAL FILE ORGANIZATION

When LISP handles all files internally as if they were purely sequenti~l (the
standard implementation), the system appears to the user as if it were device­
independent. The actual means of record access and device positioning is, of
course, device-dependent.

There are three main classes of devices, each with their own monitor require­
ments. These classes are sequential, random, and display.

5.3.1 Sequential Devices

This class includes tapes and typewriters, and requires the least monitor
capability. The software has to provide automatic transfer of physical records,
some transfer error-recovery procedure, unambiguous status reports (ok., end-of­
file mark, sub-specified error, etc.), ability to position to arbitrary records
and files for reading, ability to write multi-file and multi-reel tape output,
and file protection capability. When the monitor system allows more than one
user at a time, it must also provide automatic queuing of I/O requests so that
the I/O devices appear to the LISP system to be available at all times.

-----------------_._------

)

)

l 26 April 1967

5.3.2 Random Devices

23

(Last Page)

TH-3417/6o%o

"Random" here means that any record can initially be accessed in roughly the
same time. This class includes drum and disc storage and requires all the
monitor capabilities specified in Section 5.3.1, a "dictionary" linkage for all
records in a file, and the ability to expand or contract the space assigned to
a file.

The dictionary capability allows LISP to access a file by name, instead of
physical location, and to use physically non-contiguous segments of a file as
if the first record in one segment physically followed the last record of the
logically previous segment.

5.3.3 Display Devices

The capabilities described in Section 5.3.1 as well as an automatic renewing
of displays must be provided. When LISP has prepared a record that represents
the display, it expects to give this to the monitor for transfer and maintenance
once and for all.

Input from display devices must not interrupt program operation unless this mode
has been requested by LISP.

5.4 PARALLEL I/O MODE OR NON-SEQUENTIAL FILE ORGANIZATION

More monitor capabilities will be necessary for parallel I/O and non-sequential
file organization, but since these modes of operation are options within the
LISP system, they will not be discussed here.

