
(

l

Tile views. conclusions, or recommendltlonl Ixprelaed In tIIll document do not nee ...
sarlly reflect the officlll views or pollcle. of .. enotel of tile United Stet .. Government.
The research reported in this paper was sponsored
by the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the
Electronic Systems Division, Air Force Systems Command
under contract F1962867C0004, Information Processing
Techniques, with the System Development Corporation.

s,st- DmIopmeat Corpcntlol/ 2500 Colorado annul/ Santa Monlce, Call I04OI
liformetioft IlItImItIaIIl 1ac./lll&1 PIce aoulennt I LOI An"... Callfonlle 100M

LISP 2 Core Imag~. Generator (CIG) Specifications

ABSTRACT

lIMo 3417/700/00

for J. I. Schwartz

DATI 4/26/67'''11 O,-lL'.IU

(Page 2 Blank)

This document specifies functions to be performed by
the Core Image Generator (eIG) within the LISP 2
system proposed for the IBM 8/360 computer. It
defines the components of the CIG, how they are to
be written, and alternative approaches to the core
image generation process.

I
/

)

(

(

26 April 1967 -3- TM-34171700!OO

1. INTRODUCTION

Core image generation is a bootstrapping process by which an initial implemen
tation for some target machine is acquired. It is itself a LISP program
written on some existing system called the bootstrapping system.

The core image generation consists of the computation of the contents of the
target machine's core storage such that it can be loaded and started operating
as a viable LISP system. This computation is effectively the product of
compiling the code for the system (as written 1n LISP 2). There is, however,
one major difference between a LISP CIG and, say, a JOVIAL compilation: that
is the complicated processes of storage allocation that must take place.
Allocation processes for such things as identifiers, free variables, arrays,
strings, list nodes, etc., must be simulated in the CIG for the target machine.

2. CIG COMPONENTS

In order to define the components of the CIG and how they are to be written,
let us imagine that we have complete code for a LISP 2 system on some target
machine, and let us examine what we might do to get that code transformed into
binary which will actually run on the target machine. The components include:

1. Syntax Translator
2. Compiler
3. LAP (generating external code)
4. Storage Management Simulator.

Each of these components must be prepared to run on the bootstrapping machine.

Clearly the CIG code for the first three components is semantically the same
as the corresponding system components that are to be put through the CIG.
Let us consider each in turn, assuming for the moment that the CIG components
are syntactically as well as semantically equivalent to those in the system,
Le., that bootstrapping is performed within a compatible LISP 2 system.

2.1 SYNTAX TRANSLATOR

The Syntax Translator for LISP 2 is machine-independent in respect to both its
coding and the transformation it performs. Therefore, the Syntax Translator
available in a bootstrap system will suffice without change for the CIG and
for the target system.

2.2 COMPILER

The Compiler consists of several passes, some of which are machine-independent
in both respects, some only in their coding, and some not at all. However, the
Compiler as written for the target system may be used as is for the CIG.

-- ----------------- ---- _._-_._-----

26 April 1967 -4- TM-34l7/700/00

2.3 LAP

The LISP 2 Assembly Program (LAP) is written for the target system to plant
machine instructions into core storage. This obviously will not work during
core image generation since the CIG merely wants to determine the target
machine address and contents for each instruction and then write them on to
some output device. Thus the LAP component of the CIG differs from the
corresponding components of the target system in its disposal of assembled
code. In order to minimize the amount of rewriting required to adapt the
target system LAP to the CIG, it is coded in two parts. The first--and by far
the larger part--takes assembly language into a list of address-content-mapping
triples. The second--and smaller part--must create in the target system a
binary program image (BPI) and fill it according to the address-content-rnapping
list; in the CIG, on the other hand, it must output the list in a format suitable
for loading into the target machine.

2.4 STORAGE MANAGEMENT SIMULATOR

For each function entered into the CIG, the Storage Management Simulator must
be able to simulate the storage allocation processes that would take place in
the target system if that function had been entered into the target system
itself.

The product of the simulation is a set of address-content pairs for all
structures allocated. These allocated structures fall into two groups:
unique and non-unique. Non-unique structures, such as strings and unhashed
list nodes, can have their address-content pairs written out as they are
allocated. On the other hand, unique structures such as identifiers, hashed
lists, and function descriptors, must be kept track of in tables during core
image generation, and can only be written after all target system code has
been run into the CIG. These tables for unique structures essentially form a
model of the structural scheme through which the target system allocators
manage to preserve the property of uniqueness.

3. ALTERNATIVE APPROACHES

From the preceding consideration of the CIG components, it is apparent that
if one has completed the target system coding, and if one has a compatible
LISP 2 available for bootstrapping, then the amount of work required to code
the CIG is quite small. Indeed, it consists of writing the BPI output part of
the LAP component and coding the Storage Management Simulator. The first of
these tasks is straightforward, requiring perhaps a page of code. The second
requires a large volume of code, but the logical structure can be borrowed
from the primitives as written for the target system.

)

)

(
26 April 1967 -5-

(Last Page)
TM-34l7/700/00

Core image generation is thus a very effective technique, given the availability
of a compatible LISP 2. If a compatible LISP 2 system is not available, the
following alternative approaches could be considered.

First, let us imagine that we are to use a LISP 1.5 (or perhaps a primitive
LISP 2) as the bootstrapping vehicle. It might be emphasized at this point
that not just any LISP system will do, since several thousand words of list
structure--say 15,OOO--are needed for the Storage Management Simulator tables.
If we again consider the problem of producing the CIG components (but this time
for a LISP 1.5 bootstrapper) it is clear that the Syntax Translator, the Compiler,
and the assembly part of LAP will not suffice in their target system form. They
must, in fact, be translated from the more complicated LISP 2 language to the
simpler LISP 1.5 language. Complications can arise in this process of trans
lationi for example, any function using locatives in the target system
components cannot be easily translated. What tends to happen when tho boot
strapping language is simpler than the target system language (as was the case
in the development of Q-32 LISP 2) is that the system components that must
operate in the CIG are written first in the simpler language, to be later
translated to the more complicated one. Although this simplifies the procedure
for obtaining an initial target system, it results in the production of a
somewhat inferior system.

The alternative to core image generation is to proceed from LISP 1.5 to a
LISP 2 system by evolutionary stages. This approach is certainly more costly
than bootstrapping a LISP 2 from some existent compatible LISP 2. Whether
the same can be said of bootstrapping from LISP 1.5, however, is a question
which is not easily answered because of the human factors involved. When the
bootstrapping path is chosen, there are no concrete demonstrable products
between the design of the system and the obtaining of a more or less complete
working system. If one travels the evolutionary path, one always has some
sort of working system in hand.

