P

A-2450 10/62

\

The views, conclusions, or recommendations expressed in this document do not neces-
sarily reflect the official views or policies of agencies of the United States Government.

SD-97

This document was produced by SDC in performance of contract

M @ a working paper

System Development Corporation /2500 Colorado Ave./Santa Monica, California

LISP IT PROJECT

MEMO NO. 11

THE SYNTAX OF TOKENS

Abstract

TM': 2260/004/00
AUTHOR /77 27 /s
in & S. Kamen

TECHNICAL .
RELEASE@%% ‘

. Baranci |
for \
—D. L. Drukey
DATES /03 /65 PAGE 1 0F), PAGES

This.memo defines the syntax of LISP II at the
token level., The parsing of tokens is the function
- of the finite state machine.

23 August 1965 2 ™-2260,/00k4/00

This memo defines the token syntax of LISP ITI. The LISP IT reference language,
publication language, and Q-32 hardware language are identical. If LISP II is
to be expressed within the FORTRAN character set, a different hardware language
would be needed. No hardware changes should ever go beyond the token level,

this memo) and the carriage return (printed as (cr) in this memo). By using
a subset of ASCII, we hope to avoid the need for different hardware languages
at different installations. The final decision rests with the designers of
hardware .

LISP II Character Set

The LISP II language uses 58 printing c:ha.racters_i the space (printed as }5 in

26 letters ABCDEFGHIJKIMNOPQRSTUVWXYZ
10 digits @123456789

b ()C1]

7 e * [\t
by s 5 o 3

3 <> =

b »#$ "
-2 ¥

60

Five ASCII characters (@, &‘,)?, ", and }) are not part of the LISP II langusge.
Any installation may add-new characters at the cost of creating a dialect

that cannot be run at other installations. LISP IT has provision to handle up
to 255 characters without reprogramming.

letter = A|B|c|p|E|F|¢|H| 1| 7| k| LIM|N| 0| P| Q| R| 8 T| U] V| WX |¥|Z
octal-digit = §)1]2]3|4|5|6|7

digit = octal-digit|8|9

(s s #y b, a.nd’ 3 jare not string-characters.)
&x

strihara.cter = letter|aigit|(|)|L1T1+1-1%1/I\|t|],]]:1<]>|=|$|¥

23 August 1965 3 TM-2260/001L/00
token = token-atom|special~token

token-atom = Boolean|mmber|string|identifier

special-token = , |3 |: |BoBI<|>|=| /=|<=|>= - |# N1/ 1 l-: (DT 18

space = ¥| & |¥ space| D space\commentlcmmnent space

comment = ‘7}5{str1ng-character\#\ }* \%w{stmng-characterl#i/}*‘\%,\%@
Boolean = TRUE|false

false = FALSE|NIL| ()

The different ways of writing false are entirely equivalent.

number = integerlreal

- integer = octal] decimal
octal = sign octal=digit { octaladlglt} {uns:.gned~decmal‘ empty}
sign = {gﬂa‘emp‘ty

unsigned decimal = decimal-digit {decimalwdigit}*
decimal = sign unsigned-decimal {empty‘E‘E unsignedmdecimal}

real=object= unsigned-decimal o\ .,unsignedadecime,l!unsignedédecimal o unsignededecimal

real = sign real=object emp‘byIE scale}
scale = sign unsigned-decimal
string = #{stringncharacterl oo] #) (ex) .} *ff

e T
An/ unq_uoted carriage\;return inside a string will be ignored. An unquoted %
is an errér. An unquoted quote mark or fence is syntactically ambiguous.

The meaning of a string is a substring containing all characters of the
original in proper sequence except for the initial and terminal fences, and
all gquote marks that are not themselives quoted. (A quote mark is quoted if
and only if it is an even number of places from the beginning of a consecutive
sequence of quote marks.)

identifier = letter %letter‘digit‘ t1% string
TRUE, FALSE and NIL are not identifiers.

23 August 1965 4 TM-2260,/00k/00 AN
(last page)

The identifiers ABC, and %#ABC# are identical.
There is still another form for writing one character identifiers It is legal

only if the identifier is a_ datum or part of a datum. The identifier is
simply preceded by a qnote mark. e e

Thus '(is the same identifier as %#(#, but '(may only be used in internal
language or in a quoted context in source language. The source language
"1(will translate into (QUOTE ‘() which is identical to (QUOTE %#(#).
"(A B '() is identical to '(A B % (#).
A, %#b#, and 'A are identical in a quoted context.
atom = token-atom|array
Arrays are atoms that are not tokens. They are parsed by the syntax translator.
An array must be written with the same number of elements in each row, column,
etce.
Examples: [INTEGER [0 1] [-1 0]]
[REAL 3.4 -6.E2] o -
[swBoL [U (Vv . W)I(X ¥) 2.7]]

S-expression = atom| (S-expression {S-express1on} ¥ . ¥ S-expression)|
({S-expression)

datum = 'S-expression|number|Boolean|string

