
(

(

The views, conclusions, or recommendations expressed in this document do not neces­
sarily reflect the offici.1 views or policies of .gencies of the United States Government.

The research reported in this paper vas sponsored by
the Advanced Research ProJects Agency Information
Processing Techniques Office and vas monitored by
the Electronic Systems Division, Air Force Systems
Command under contract F1962867COoo4, Information
Processing Techniques, vith the System Development

Corporation. @[WI J
l~~~ I~I@ oworkingpapM for J. I. Schv~tz
System Development Corporation /2500 Colorado Avenue I Slnll MoniCl, Califorala 90406
Information International Inc.1]1161 'ico Boulevard I los lapin. California 90064

DATE 4/26/67 PABE 1 Of..2.6_PA8ES

LISP 2 Compiler Context Resolver Language and Processor
Speci:f'ications

ABSTRACT

This document describes the language and processor
required for the Context Resolver pass of the
LISP 2 compiler proposed for the IBM S/360 computer.
The Context Resolver (pass II of the LISP 2 compiler)
is used to macro-expand Intermediate Language inputs
into a list of Context-Resolved Interlude Language
function definitions.

26 April 1967 2 TM-3417/340/00)

TABLE OF CONTENTS
Page

Section 1. Context-Resolved Interlude Language 5
1.1 Introduction • • • 5
1.2 Memory Reference • • • • • • 5
1.2.1 Variables • • • 5
1.2.1.1 Sname • • 5
1.2.1.2 Gname • • 5
1.2.1.3 tname • 6
1.2.1.4 Variable • 6
1.2.1.5 Fname 6
1.2.2 Addresses • • 6
1.2.2.1 Address • 6
1.2.2.2 Length • 7
1.2.2.3 Offset • • 7
1.2.2.4 Coordinate • • 7
1.2.2.5 Aplus • 7
1.2.2.6 Computed address 7
1.2.2.7 Ifield • • 7
1.2.2.8 Indirection 7
1.2.2.9 Afield • 7
1.2.2.10 Locator 8
1.2.2.11 Address-expression • • • • • 8
1.2.3 Locatives • • • • • • • • 8
1.2.3.1 Field • • • • • • 8
1.2.3.2 Locof • • 8
1.2.3.3 Locative 8
1.3 Constants • • 8
1.3.1 Datum 8
1.3.2 Funarg • • 9
1.4 Expressions • • • 9
1.4.1 Complex • 9
1.4.2 Transformations • • • • • 9
1.4.2.1 Drive • • • • • 9
1.4.2.2 Callit • • • • 10
1.4.3 Arithmetic Forms • • 10
1.4.4 Assignments 10
1.4.4.1 Normal-assignments • • 11
1.4.4.2 Loe-assignment • • • 11

1.4.5 Comparisons • • 11
1.4.5.1 Relational • • 11
1.~.5.2 Arithmetic-relational • • • • 11
1.4.5.3 Equality-relation • 12
1.4.6 Terminals • • • • 12
1.4.7 Pterm • • 12

\

)
~

(26 April 1967 3 TM-3417/340/00
\

TABLE OF CONTENTS (Cont.)
~

Section 1.5 Statements • • 12
1.5.1 Label • 13
1.5.2 Compounds 13
1.5.3 Direct Transfers • t • 13
1.5.3.1 Go. • • 13
1.5.3.2 Computed-go • 13
1.5.4 Conditional • 14
1. 5.5 Binder • • 14
1.5.6 Return 15
1.5.7 Preturn 15
1.5.8 Function Calls • 15
1.6 Top of the Language 15
1.6.1 Function-with-value 16
1.6.2 Procedure 16
1.6.3 Function-definition • 16
1.6.4 Macro-detinition 16
1.6.5 Run-form 16
1.6.6 Funargs 16
1.6.7 Syntactic Start Variable 16
1.6.8 Miscellaneous Terms • 17

!

1.6.9 17 \ Simp1ificat ion • •
"- ~-

2. Context Resolver 18
2.1 Introduction • • 18
2.2 EXPAND 18
2.3 EXPFUNC 18
2.4 EXPLEX 18
2.5 EXPBIND • 20
2.6 EXPDEC 20
2.7 EXPSTAT 20
2.8 EXPLSA • 20
2.9 EXPRSA 20
2.10 EXPLSLA 20
2.11 EXPRSLA 20
2.12 EXPRED • 20
2.13 EXARI • • 22
2.14 EXPNOVAL • 22
2.15 EXPSWITCH 22
2.16 EXPDAT 22

26 April 1961

Section 2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26

Figure 1.

Table 1.
Table 2.

4

TABLE OF CONTENTS (C,')nt.)

EXPVAR • •
EXPFNAME • • • •
EXPCRIL • •
EXPCALL
EXPARY • •
EXPMAC
EXPFUNARG AND EXPFUNC
EXPBLOCK • •
Programming CODventions and Techniques •
Example Macros • •

LISP 2 Context Resolver Block Diagram •

Contextual PUBLICS ••
Context Resolver Public Variables

•
•
• •
•

TM-3417/340/00

•

~
22
22
22
22
23
23
23
23
23
25

19

21
26

)

../

(

'"

26 April 1967 5 TM-3417/34o/00

1. CONTEXT-RESOLVED INTERLUDE LANGUAGE

1.1 INTRODUCTION

The Context-Resolved Interlude Language (CRIL) is predicated on a computer with
the following configuration:

1. A cluster of locatable and addressable fields

2. A "heaven-box" which is infinite in length

A field is a finite-length box or container that holds the aurfac·e of a datum.
a locator, or an indirection. An indirection is a kind of locator generated
by the system whose existence is not guaranteed by the language. e.g., the
binding cell of a non-locative PUBLIC variable contains an indirection.

The heaven-box is a combination of general-purpose hardware registers and
compiler passive-state variables. The heaven-box may hold anything a field may;
the contents are assumed to be infinite in length, i.e., there are no s1gn­
extension or precision-truncation problems when moving quantities through the
heaven-box. All data constants are received through the heaven-box. It may
not be "located" or "indirected" within the CRIL language. even though it may
hold a locator or indirection.

1.2 MEMORY REFERENCE

1.2.1 Variables

variable = gname I ~name
gname = (identifier • sname)

sname = identifier (id ~ LEX.)

10ame = (identifier • LEX.)

foame = (identifier. sname)

1.2.1.1 Sname

An sname is a section name for a variable. Any identifier with the exception
of LEX. may be used.

1.2.1.2 Gname

A gname is the full name of a global variable. The identifier is its first and
most used name. The aname is its section name.

,-

26 April 1961 6 TM-3411/340/00

1.2.1.3 tname

An I.name is the name of a lexical variable, a variable found on either the
Alist or Aplist. The pseudo-section LEX. is used for uniformity of variable
formats.

Variable

A variable is either lexical (an tneme) or global (a gname) • The meaning of a
CRIL variable is the location of the binding of a variable with the given name.
It is like an immediate address with the name being a constant.

-F'name

An fname i8 the name of a function, actually a constant. Because of peculiar
naming conventions for functions, they look like variables; therefore an fneme
is handled syntactically as a variable.

1.2.2 Addresses

address = locatorlindirection

indirection = ifield

ifield = (IFIELD coordinate address)

{variable }
locator = computed-address

locof
afield

coordinate = (offset • length)

offset = integer

length • integer

afield = (AFIELD coordinate address)

rplUS l computed- integer
address • loc-assignment

address-expres~ion

aplus • (APLUS address integer-expression)

1. 2. 2.'I. Address
An address is a rule for computing the location of an entity in the computer's
memory.

------------------- -- --

J

)

)

/

\

26 April 1967 7 TM-34l7/340/00

1.2.2.2 Length

The length is the number of bits of an entity.

Offset

The offset is the number of bits that an entity lies to the left (maybe right) of
an address.

1.2.2.4 Coordinate

Given a computable address, the coordinate gives explicit instructions on how
to locate an entity in a computer memory.

1.2.2.5 ApluB

An aplus is used to compute run-time offsets for such things as array indexing.
The integer expression is the offset from the address. Assume A is an array
whose dimension is 10XlO. Then the address of A(I. J) would be (APLUS L(A)
{PLUS J (TIMES 10 (PLUS I -1»» where L(A) is the locator of the array A.

1.2.2.6 Computed-address

A computed-address is a locator that by its nature must reside in the ~eaven­
box. This mechanism is useful for such things as expansions of locatlvely
valued functions, CAR, etc. The interpretation of an explicit integeruaed as
a computed-address is as an intermediate address.

Ifield

An ifield specifies that the given address and coordinate are a rule for finding
an address that resides in the computer's memory. The indirection implied by
the ifield is needed because of something not part of the language specification.
Hence, something located by an ifield is not locatable unless the thing located
is locatable outside the context of the ifield. An example of this situation
is that the binding cell of a non-locative fluid contains the address of the
value. It is not legal to locset such a fluid. See explanation of afield for
contrast.

1.2.2.8 Indirection

An indirection is a rule for computing a non-language-guaranteed locator.

Afield

An afield specifies that the given address and coordinate are a rule for finding
an address that resides in the computer memory. The indirection implied by the
afield is through a locator guaranteed by the semantics of the language trans­
lated into CRIL. An address located by an afield is a candidate for locsetting.
An example of such an item is the contents of the binding of a locative variable.

26 April 1967 8 TM-34l7/340/00

1.2.2.10 Locator

A locator is a rule for finding anything in the computer's memory, the existence
of which is guaranteed by language semantics.

1.2.2.11 Address-expression

An address-expression is interpreted as an unsigned integer that specifies a
memory location. Some such form as (CALLIT ADDRESS expression) will be used
to denote this entity.

1.2.3 Locatives

locative • field I address

field = (FIELD type coordinate address)

locof • (LOCOF field)

1. 2.3.1 Field

A field is the description of a non-locator entity in the computer's memory.
The coordinate and address specify the location of the datum, and the type
specifies the format.

Locof

A locof is used to find the location of a field. The address part of the
embedded field is the value of the embedding locof. (See Section 1.6.9 for
a description of equivalent tfield-locof.)

1.2.3.3 Locative

Locatives are things that reside in the computer's memory or locate things
there.

1.3 CONSTANTS

constant {datum }
= funarg

datum = (DATUM type lap-address)

1.3.1 Datum

A data constant never stands alone in CRIL. Rather, its lap-address (see LAP
document) is wrapped within a datum form. This allows for compile-time "cheats"
and also alleviates the necessity for the continued use of "what-type-is-it"
functions. The type specifies the format that the datum is assumed to be in.
This mechanism may also be used to reference registers by using appropriate LAP
mnemonics.

--------_._--

\
)

/

(

(

\

(

26 April 1967 9 TM-34l7/340/00

1.3.2 Funarg

Funargs are constants in the normal meaning. However. a discussion of tunarg
syntax and semantics is delayed until after the exposition on expressions. All
constants are supplied through the heaven-box and therefore are not locatable,
hence they are not "settable."

1.4 EXPRESSIONS

expression
(constant I

I: ~ locative

complex

~ complex
transformation
arithmetic
assignment

= terminal
pterm

edl

An expression is an entity that produces a value, either a locator or a datum.
Expressions are the basic building blocks of a language and their semantics
describes the capabilities offered. Constants and locatives are obviouB
instances of expressions.

Complex

Complex expressions are expressions which are neither constants nor locatives.

1.4.2 Transformations

Transformations are mechanisms in CRIL to make type information explicit. They
are used in the expansions of function calls, "cheaters" and the like.

1.4.2.1 Drive

A drive causes the following action. If the embedded expression evaluates to
the type specified by the embedded type, then the valuation is exactly as if
the expression had appeared without the embedding drive. If the natural type
is different, then the drive results in a conversion of the value of the embedded
expression to the homomorph in the driven type. For example,

(DRIVE REAL 3.0) • 3.0

(DRIVE REAL 3) • 3.0

26 April 1967 10 TM-3417/340/00

1.4.2.2 Call it

Call it evaluates the embedded expression with no driving of types. The datum
produced is then assumed to be in the format specified by the embedded type.
The value of CALLIT is locative or not as the embedded expression. and has the
aame coordinate (if applicable). For example, on the Q-32

(CALLIT OCTAL 1.0) • 2001400--Q

The use of callit is for expansion of "Cheaters" from IL and for various other
machine-dependent features.

1.4.3 Arithmetic Forms

arithmetic = I ;i::s I
times

minus

plus

times

= (- numeric-expression)

• (+ numeric-expression.)

= (. numeric expression.)

Arithmetics are a set of forms that do arithmetic computations and are fairly
self-explanatory. The rules and algorithms governing the type of the produced
value are described in TM-3417/200/00. All values produced by the arithmetics
are unfielded. even (- (- variable» or + variable.

1.4.4 Assignments

assignment
,normal-assignment I

= Iloc-assignment ,

normal-assignment = (+ field expression)

loe-assignment • (+ (LOCOF(FIELD type coordinate (AFIELD coordinate address»)
address)

Assignments are the mechanism by which fields in the computer's memory may be
altered. Both the IL "+" and "+" operators expand in these forms.

J

)

)

26 April 1967 11 TM-3417/340/oo

1.4.4.1 Normal-assignments

A normal-assignment is the expansion of the IL "+-" operator. The value is an
unfielded copy of the value of the embedded expression. The action is to take
a copy of the value of the expression, convert it to the format prescribed by
the ti~ld, and replace the contents of the field by the converted copy. The
expression is evaluated only once.

1.4.4.2 Loc-assignment

A loc-assignment is the expression of the IL " " operator. The effect is to
place a copy of the embedded address (the right-most one) into the address
field specified by the address part of the AFIELD. The value of the loc­
assignment is the right-most address. If the original LOCSET was used as an
expression, an appropriate field may embed the loc-assignment as an address.

Comparisons

compare = (COMPARE relational expression expression)

relational • arithmetic-relationlequality-relation

(arithmetic-relation = >1<1~ls

equality-relation = machine-equalityldata-equality

machine-equality . -

data-equality = =

A compare is a boolean-valued form. It yields value TRUE if the first embedded
expression stands in the stated relationship to the second embedded expression,
and FALSE otherwise.

1.4.5.1 Relational

Relationals are the set of possible comparisons to be done by a compare.

1.4.5.2 Arithmetic-relational

These do comparisons for numeric quantities of the same or different types.
The meanings of the various comparisons are the normal ones.

-- ----- ---------.----

26 April 1967 12 TM-3417/34%o

1.4.5.3 Equality-relation

A machine-equality is a relation that tests TRUE if the two data being compared
have precisely the same "substrate." What this mesna may vary from implemen­
tation to implementation. In general, this is the comparitor used for uniquely
represented data. Data-equality is described in TM-3417/200/00 (see the semantic
description of SL and IL).

1.4.6 Terminals

terminal = (TERMINAL statement)

A terminal is an expression that evaluates as follows: The embedded statement
is executed. If the embedded statement is a return or if a return statement
embedded in it is executed, the value of the terminal ia the value of the ex­
pression body of the return. Labels in the terminal are invisible outside of
it. and outside labels are invisible inside. (See the description of the return
statement for more information.) If no return statement is evaluated within a
terminal, a guess is made as to what value to retain: 0, OQ, (), etc.

1.4.7 Pterm

pterm • (PTERM statement)

A pterm works similarly to a terminal and interacts with preturns instead of
returns. A pterm is an indication that the evaluation is a boolean one where
a data value is not needed, but rather placement of program control is condi­
tional. The usage is for expansions of blocks in predicate context.

1.5 STATEMENTS

conditional
return
preturn
go

statement = computed-go

label

code
binder
expression
compound-statement
NIL

= atom

)

')
!

(

26 April 1967 13 TM-3417/34%o

A statement is a member of the class of language entities used for obtaining a
side effect, not a value. In fact. if an ordinary expression is used as a
statement the value produced is discarded.

1.5.1 Label

A label is a marker in a program. Several language facilities may request
transfer of "program control" to a label. This means "continue execution in the
program at the lexica.l right side of the label". If several labels are given
in a row, the transfer of control to any of them is computationally equivalent
to transferring to the right~ost label.

Compounds

compound-statement • (COMPOUND {statementllabel}*)

The statements embedded in a compound are executed left to right unless a
control-transferring statement is executed. If such is encountered, control is
passed to the appropriate label. and left-to-right execution proceeds from there.
If program control passes through the right-most statement. the execution of
the compound statement is completed. What happens next depends upon what the
compound is embedded in. Not all compound-statements complete execution, as
embedded transfer statements may move control out of this compound-statement.
All labels visible directly outside a compound-statement are visible inside.
Labels directly embedded in a compound-statement are markers and may be seen
outside.

Direct Transfers

go = (GO label)

computed-go = (CASEGO integer-expression label*+l)

1.5.3.1 Go

A go transfers control to the specified label. If no label of the given "name"
is visible, an error condition exists. The label in a go is not a marker, only
a reference to a marker.

Computed-go

The em'Qedded integer-expression is evaluated. If the value is one, control is
transferred to the first label; if the value is two, control is transferred to
the second label, etc. If the va.lue is less than one or greater than the number
of labels given, control is transferred to the last label. If one or more of
the embedded labels are not Visible, an error exists. The labels in a computed­
go are not markers, only references to markers.

26 April 1961 14 TM-34l1/34%o

Conditional

conditi~nal = (COND boolean-expression statement)

The embedded boolean-expression is evaluated. If its value is FALSE, execution
of the conditional is completed. If the value is TRUE, the embedded statement
is executed. Completion of execution of the embedded statement completes
execution of the conditional. Visibility rules for labels and control transfer
for the embedded statement are precisely the same as if the statement had not
been embedded in the conditional.

Binder

binder a (BIND variable-declaration-with-preset statement)

variable-declaration-with-preset = {undefined}

A binder causes the variables specified by the variable-declaration-with-preset
to be bound and visible during the execution of the embedded statement. Upon
completing execution of the statement, or program control leaving the binder
for any reason, the variables are unbound. (For full variable visibility rules,
see the 8L and IL descriptions.) Labels visible directly outside the binder
are visible inside. Labels appearing within a binder are ~ visible outside.
A visible label from outside a binder may have the same name as a label inside
the embedded statement. References, in this case, are transfers to the inner
label. If two labels' definitions of the same name are encountered at the same
binder "level," an error condition exists.

For example,

(COMPOUND L(BIND ()

(COMPOUND

(IF P (GO L»

(SET A B)

L (SET B C»»

In this example, (GO L) transfers control to the label L in front of the
assignment. not to the label L in front of the binder. If the inner L was not
there, control would pass to the outer L. The use of the two L labels is not
an error, but rather a feature of blOCk-structuring,

)

I

\

26 April 1967 15 TM-3417/34%o

1.5.6 Return

return ,.. (RETURN expression)

A return is a statement assumed to be embedded in one or more terminals. If it
is not, an error exists. The execution of a return statement involves evalua­
tion of the embedded expression. The value of the expression is used as the
value of the innermost terminal embedding the return. The execution of the
return completes execution of everything embedded in the terminal, i.e., the
return does not "fall through."

Preturn

preturn ,.. (PRETURN expression)

A preturn is a statement that interacts with ~ pterm in much the same way that
a return interacts with a terminal.

1.5.8 Function Calls

function-call = (FNCALL type functional-expression {drivellocof}*)

A function-call is the mechanism used to direct linkage to an external subroutine.
The type describes the value returned and the necessary information to pass the
arguments. The functional-expression gives the rule for computing the form
operator. It may be anything from a datum (a function name) to a complex cal­
culation needed to save context for a funarg. The string of drives or locofs
is the CRIL representation of the arguments. The order of expansion of the form
operator and arguments is not guaranteed.

1.6 TOP OF THE LANGUAGE

cril-form = function-definitionlmacro-definitionlrun-form

function-definition = function-with-valuelprocedure

function-with-value = (FUNCTION (gname v-type)

variable-declaration-without-preset expression

external-reflist)

procedure = (FUNCTION (gname NOVALUE)

variable-declaration-without-preset statement

external-reflist)

macro-definition ,.. (MACRO gname (variable) expression external-reflist)

run-torm III (RUN expression external-reflist)

v-type • {undefined}

var1able-declaration-w1thout-preset III {undefined}

26 April 1961 16 TM-34l1/340/00

1.6.1 Function-with-value

A tunction-with-value is the mechanism for introducing a function definition to
the system. The gname is the name of the function. The v-type is the descrip­
tion of the value produced. The variable-declaration-without-preset is a list
specifying various things about the arguments. The expression body is the rule
of computation to apply to the arguments. The value of the function is the
value of the expression when evaluated.

1.6.2 Procedure

A procedure is a definition of a function that produces no value and therefore
is executed for its side effects only. The body of the procedure is any state­
ment. However. some statements have no meaning in this context; go, return, etc.
will be diagnosed as errors.

Function-definition

Function-definitions are forms absorbed by the system that state rules of com­
putation. The functions so defined can be called from any place in the system.

1.6.4 Macro-definition

Macro.definitions are functions to be used by the macro-expander at compile
time. Their actions will not be specified here.

Run-form

A run-form is the representation of an expression to be operated for its value
at the end of the compilation process. The value produced is handed to the
supervisory program and probably printe4.

1.6.6 Funarls

funarg-definition = (FUNARG v-type variable-declaration-without-preset

expression external-reflist internal-reflist)

tunarg

external-reflist

internal-reflist

• (DATUM functional-type funarg-definition)

= : {undefined}

= { undefined}

1.6.1 Syntactic Start Variable

A crll-form is the start variable for the CRIL syntax equations. They are the
entities upon which further passes of the compiler act.

)

)

)

(
~ ..

26 April 1967 17 TM-34l7/34%o

1.6.8 Miscellaneous Terms

The terms "identifier". "integer", "lap-address". "type". "v-type", and "atom"
have been used in this document without definition. since they are assumed to

. be understood by those familiar with LISP. A code statement is a mechanism
for introducing LAP code into a CRIL-expressed form. The semantics and syntax
have not yet been worked out.

Simplification

An additional form in the language is !field.

(LFIELD type coordinate address) = (locof (FIELD type coordinate
address»

Any place a locof may legitimately appear. the corresponding !field may also
appear.

Several CRIL language entities are self-typing. e.g., a field. Therefore

(DRIVE T (FIELD T coordinate address»

may be reduced to (FIELD T coordinate address) and so on. for driving of other
selt-typing things. A similar situation exists for callit:

(CALLIT T (FIELD S coordinate address»

reduces to (FIELD T coordinate address).

26 April 1967 18 TM-3417/340/00

2. CONTEXT RESOLVER

2.1 INTRODUCTION

The Context Resolver expands LISP 2 Intermediate Language into a list of CRIL
function definitions. Programs in IL format are rewritten as CRIL programs.
Error diagnostics are issued when such rewrites are impossible or prohibited
by either syntactic or semantic restrictions of IL or CRIL. All legitimate IL
programs may be transformed into a computationally equivalent CRIL program.
The converse is not true.

Figure 1 shows an overview of the fUnction structure of the Context Resolver.
EXPSWITCH is the controller of the recursion and acts as a master switch
through which all expansion passes. The functions EXPSTAT. EXPLSA, EXPRSA.
EXPARI. EXPRSLA. EXPLSLA. EXPRED. EXPNOVAL, and EXPFNAME are contextual top
drivers and form feeders to EXPSWITCH. The switch diverts the compilation
through various handlers such as the FUNARG expander. EXPFUNARG, etc. Listed
below are the functions in Figure 1, the PUBLIC variables they bind, and a
short description of their intended use.

2.2 EXPAND (COMLST, ERRFLG. ERRVAL)

EXPAND is handed either a function or expression in IL format. If an expression,
it is changed into a run-form. COMLST is bound to NIL and the function is
passed to EXPFUNC for expansion. ERRFLG is checked, and if TRUE, all expansions
are scrapped. The value of EXPAND is COMLST, a list of all CRIL expansions for
both embedded and embedding functions (not funargs). If the value is NIL. this
signifies an error in expansion.

2.3 EXPFUNC (EXTREF. FUNAME)

EXPPUNC performs the expansion of one function. The global reflist EXTREF is
bound, and external references are accumulated on it by the declaration logic.
EXTREF is tacked on to the CRIL equivalent of the IL function-definition to
form the complete CRIL function-definition. The function name is extracted
from the IL form before expansion and is bound to FUNAME. The value of the
expansion of the function-definition argument is CONS'ed onto COMLST. EXPFUNC
has as its value the function name.

2.4 EXPLEX (ALIST. APLIST, FUNTYP, ECLASS, VKIND. RSIDE, LOCNTX,
LABDEF. LABREF)

The arguments to EXPLEX are a list of lexically available variables (bound to
APLIST) and an IL function-definition to be expanded. ALI3T is bound to NIL
and FWlTYP is bound to the type of the function to be expanded. The name and
type of the functions are composed in CRIL format and placed in the resulting
CRIL. The equivalent CRIL form of the IL input is the value of EXPLEX. The
context variables are rebound to reflect the value type that is produced by the
compiled function. VKIND is bound to NOTERM for procedural compilations (NOVALUE
functions) •

(26 April 1967 19 TM-34l7/34%o

I EXPAND I

I EXPFUNC
....

I EXPLEX .-

- 1 I EXPBIND /

,
P+I. EXPSTAT I EXPDEC lIIII

f-+f EXPLSA l~)£PBLO~

~ EXPRSA ~ EXPFUNARG

(
~ ..

~ . l EXPARY
.- -J EXPFU~ - EXPSWITCH

r--+ ~
~r EXPARI

r-...r EXPRSLA ~ EXPDAT 1

EXPLSLA ~VAR 1

r.r EXPRED ~ EXPFN~ .-
I

rl-
o

~ EXPNOVALI ~[JXPCR}L I

*

._----- ,
I EXPCALL

I J f- ----. -- ! EXPMAC

.. _.

Figure 1. LISP 2 Context Resolver Block Diagram

26 April 1967 20 TM-34l7/340/oo

2.5 EXPBIND (~ST)

EXPBIND has two arguments: a set of additions to the ALIST. and a functional
to continue the expression. The value of the functional (of no argument) 1s
the va.~.ue of EXPBIND. ALIST is rebound to the APPEND of the addition and the
old va1ue of ALIST.

2.6 EXPDEC

EXPDEC has two arguments: a declarative sequence in IL format, and a boolean
stating whether or not presets are allowed. The value of EXPDEC is the
declaration sequence in CRIL format with the presets (if any) expanded.

2.7 EXPSTAT (ECLASS)

EXPSTAT has one argument. a statement to be expanded. ECLASS is bound to TRUE
to indicate that the context of compilation is a statement.

2.8 EXPLSA (ECLASS, VKIND, RSIDE, LOCNTX)

EXPLSA has one argument. an expression to be evaluated in the context of X in
the expression (X + Y). A validity check is made on the expansion of the
argument to ascertain legality in this context. The value of EXPLSA is the
resultant CRIL form. See Table I for values bound to PUBLIC variables during
the expansion.

2.9 EXPRSA (ECLASS, VKIND, RSIDE. LOCNTX)

EXPRSA has one argument. an expression to be evaluated in the context of Y in
the expression (X + y) or (CAR Y). The value of EXPRSA is the resultant CRIL
form. (See Table 1.)

2.10 EXPLSLA (ECLASS. VKIND, RSIDE, LOCNTX)

EXPLSLA has one argument. an expression to be evaluated in the context of X in
the expression (X ~ Y). A validity check is ~ade on the expansion of the
argument to ascertain legality in this context. (See Table 1.)

2.11 EXPRSLA (ECLASS, VKIND. RSIDE, LOCNTX)

EXPRSLA has one argument, an expression to be evaluated in the context of Y in
the expression (X ~ y). A validity check is made on the expansion of the
argument to ascertain legality in this context. The value of EXPRSLA is the
resultant CRIL form. (See Table 1.)

2.12 EXPRED (ECLASS, VKIND. RSIDE. LOCNTX)

EXPRED has one argument, an expression to be compiled in the context of P in
the statement (IF P THEN S). The value of EXPRED i.B the resultant CHI I. expan­
sion ot its argument. (See Table 1.)

)

--- ~.---... - ... --.-----

l

26 April 1967 21

Table 1. Contextual PUBLICS

•

EXPSTAT

EXPLSA

EXPRSA

EXPLSLA

EXPRSLA

EXPREP

EXPNOVAL

EXPARI

EXPFNAME

* ECLASS

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

VKIND

-
'VALUE

'VALUE

'VALUE

'VALUE

'PRED

'NVALUE

' ARITH

'FNAME

ECLASS. RSIDE. and LOCNTX are PUBLIC BOOLEAN.
VKIND 111 PUBLIC GENERAL.

RSIDE

-
FALSE

TRUE

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TM-3417/34%o

LOCNTX
-

- --

FALSE

FAIJSE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

26 April 1967 22 TM-31J17/31J0/00

2.13 EXARI (ECLASS, VKIND, RSIDE. LOCNTX)

EXARI works exactly as does EXPRSA, with the exception that VKIND is bound to
reflect the expansion of a form used in an arithmetic expression. (See Table 1.)

2.14 EXPNOVAL (ECLASS. VKIND. RSIDE, LOCNTX)

EXPNOVAL has one argument, an expression to be compiled in the context of X in
the expression (DRIVE NOVALUE X). A validity check is made to assure legality
of the CRIL expansion of the argument in this context. The expansion is the
value of EXPNOVAL. (See Table 1.)

2.15 EXPSWITCH (EXP)

EXPSWITCH has one argument, an S-expression representation of an IL form,
variable or constant. An IL form may contain embedded CRIL-formatted things but
not conversely. If the argument is a variable or constant, an appropriate
function changes it to its CRIL counterpart. Otherwise, the form name is pro­
cessed and--depending on the kind of name--further action is taken by various
handler functions. The argument is bound to EXP. If the argument is not a
variable or datum, it is checked for being a "top-level true-list."

2.16 EXPDAT

EXPDAT has one argument, a data constant. The value of EXPDAT is the constant
in CRIL.

2.17 EXPVAR

EXPVAR has one argument, a variable in IL format. The value of EXPVAR is the
field expansion of the variable properly tailed. The expression takes note of
the context of compilation variables. LOCNTX, etc.

2.18 EXPFNAME

EXPFNAME handles the expansion of form operators, and as such functions much
like a context top driver. Appropriate error checks are made. A communication
mechanism with EXPSWITCH is yet to be worked out.

2.19 EXPCRIL

EXPCRIL is a "fiction" used to illustrate the expansion. Its implication is
that an argument to EXPSWITCH already translated to CRIL will cause no further
transformation.

2.20 EXPCALL

EXPCALL expands functlon(al) calls. The function(al) declaration is used to
indicate which of the contextual top drivers to use for expansion of the argu­
ments of the called tunction(al). The argumente, before expansion, are wrapped
with appropriate combinations of drives and locof's. The value of EXPCALL is
the CRIL expansion of the function(al) call.

----.---------------'--~-----.---

-)

)

26 April 1967 23 TM-3417/340!Oo

2.21 EXPARY

EXPARY has one argument, a subscripted array. The subscripts are expanded and
combined using field forms. This conglomeration is the value of EXPARY. The
context variables, ECLASS, etc. are examined to determine whether the value or
a locator is requested.

2.22 EXPMAC

EXPMAC has one argument, a form whose form-name is a macro. The macro is
invoked with the form as an argument. The resultant S-expression is fed to
EXPSWITCH. This is done because ~he result of the macro may be an 1L form and
the expansion must continue until CRIL is produced.

2.23 EXPFUNARG AND EXPFUNC

These two functions are really Just macros. They are shown separately in Figure
1 because of the nature of the recursion needed to expand them.

2. 24 EXPBLOCK (LABDEF. LABREF)

The expansion of blocks is handled by EXPBLOCK. The ALIST binding and expansion
is handled by EXPBIND. The validity of label references and definitions is
handled by EXPBLOCK. If the block is an expression, LABDEF is rebound to «».
or else is rebound to the old value of LABDEF with a () CONSled on the front.
For expression blocks, LABREF is rebound to «», otherwise to the old value of
LABREF with () CONS' ed on the front. When the block expansion is finished, label
references in the CAR of LABREF are pruned if they occur in the CAR of LABDEF.
If the expansion is of an expression and LABREF is not completely deleted, an
undefined labels message is issued. If the expansion is not of an expression,
the CAR of LABREF (after pruning) is appended to the CADR of LABREF. The
functions adding labels to LABDEF check for ambiguous label definitions. This
process will do the only label error checking during the entire process of
compilAtion.

2.25

2.

PROGRAMMcrNG CONVENTIONS AND TECHNIQUES

All functions shown in Figure 1, including macros that produce CRIL­
formatted output must guarantee completely unique list structure
as their value. This is because subsequent compiler passes will
change (RPLACA and RPLACD) CRIL input in any manner desired.

All CRIL form names will be tailed into section CRIL •• This means
that CRIL. is a reserved section name in the LISP 2 system.

26 Apri.l 1967 24 TM-34l7/340/oo

3. It 1s the Context Resolver's task (by use of contextual information)
to decide whether special macros are to be used or equivalent
functional definitions are to be provided. For example, the
Context Resolver decides whether MINUS is the open-coded version
or the GENERAL FUNCTION with GENERAL argument.

4. The following function will be available as a diagnostic aid:

(FUNCTION (LENCHK BOOLEAN) « NUMARG INTEGER»

(IF (EQ (LENGTH (CDR EXP» NUMARG) FAU3E

(BLOCK ()

(COMER2 (CAR EXP)

(QUOTE(WRONG NUMBER OF ARGUMENTS»)

(SET ERRVAL (BSTGES»

(RETURN TRUE»»

The function SIMCHK of one GENERAL argument, a pattern for SIM
to match against EXP, will work in the same way as LENCHK
using SIM instead of LENGTH for the checking.

6. A function named BSTGES will be coded. BSTGES looks at the
context variables and trys to make a guess at a CRIL
expression which may be used. This facility is used in
attempting to continue expansion when an input is incorrectly
formatted.

7. A function named COMERR will exist and will have the following
Job:

1. set ERRFLG to TRUE ..

2. send its one argument, a compilation diagnostic, to the
supervisor error file.

8. COMER2 has the following definition:

(FUNCTION COMER2 (X Y)

(COMERR (CONS X y»)

Whenever it makes sense, the names generated by macros (systems
type) must be tailed.

)

26 April 1967 25 TM-3417/340/00

2.26 EXAMPLE MACROS

MACRO LABEL (X)

IF LENCHK(2) THEN ERRVAL

ELSE '(DO • LISP) • CDR(X) i

MACRO PLUS (X) : ('+ • 'CRIL.) • MAPCAR(CDR (X), COMARI)i

(

26 April 1967

!!:!!. ~
ALIST GENERAL

APLIST GENERAL

COMLST GENERAL

ECLASS BOOLEAN

ERRFLG BOOLEAN

ERRVAL GENERAL

EXP GENERAL

EXTREF GENERAL

FUNAME GENERAL

FUNTYP GENERAL

INTREF GENERAL

LABDEF GENERAL

LABREF GENERAL

LOCNTX BOOLEAN

RSInE BOOLEAN

\'KIND GENERAL

Table 2.

26
(Last page)

Context Resolver Public Variables

Description

TM-3417!340!OO

List of bound lexical variables and their declarations
that are visible at this point in the expansion.

List in the same format as ALIST. the variables on this
list are the lexieals available from an embedding
function.

List of CRIL outputs of expansion of all embedding and
embedded function definitions.

Context variable. TRUE if expression expansion. FALSE
if statement.

Set TRUE whenever an error diagnostic is issued.

Used by error mechanism to hold guess at an acceptable
value with which to continue expansion.

The expression (statement) being expanded,

List of global variables and functions referenced by
this compilation.

The name of the function being expanded.

The type of the function being expanded.

List of lexical variables referenced and on the APLIST.

A list of lists of labels visible at this stage of
the compilation,

A list of referenced labels. definitions for which
have not been found.

Context variable that is TRUE :if the expansion is for
the lett or right side of a locset.

Context variable that is TRUE if the expansion is for
the right side of any assignment eX qualifies in +X).

Context variable that states the kind of value expected
from an expansion. Possibilities are VALUE, PRED, ARITH,
NVALUE. NOTERM. and FNAME.

\
)

