
TP-546
MCS-76-23763

(su~ersedes TR-400)
June, 1977

VlI5P for PDP-11s ~ith Memcry Management

Robert L. Kirby

Computer Science Center
Univer&ity of Maryland

College Park, Maryland 20742

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF, MARYLAND
COLLEGE PARK, MARYLAND

20742

L

.c.._~ 'J

TR-S 46
MCS-76 -23763

(supersedes TR-400)
June, 1977

VlISP for PDP-11s kith Memcry Management

Robert l. Kirby

Computer Science Center
University of Maryland

College Park, Maryland 20742

ABSTRACT

A.new large scale implementation of LISP, VLISP, for PDP-
11s with memcry management is described as implemented at the
University of ~aryland. The im~lementation is modelled after the
University of ~isconsin's UNIVAC 1100 LISP. Four versions are
avai lable: an interpreter for use with the Virtual Operating
System (VQS> being developed at the University of Maryland; a
version compatible with DEC's Disk Operating System (DOS) using a
VOS emulator; a stand-alone version which also emulates VOS; and
a version for use with Bell Laocratories' UNIX operating system.
This aocumentdtion 1) explains how to use the implementation; 2)
discusses the problems, limitations, and internal configuration;
3) briefly describes the available system software including a
Pretty Printer, an S-expression editor, a LISP function compiler,
and micro-PLAN~ER; and 4) provices a synopsis of the pre-defined
LISP functions.

The supJ,Jort of the Mathematical and Computer Sciences
Division, National Science Founcation under Grant MCS-76-23763 is
gratefully acknowledged, as is the help of Prof. Azriel
Rosenfeld, Prof. Chuck Rieger, Ms. Joan Weszka, ~r. Mache
Crep.ger, and Mr. Ken Hayes in tr.e preparation of this document.

COPYRIGHT, 1977, RObert l. kirby

This document may be copied for non-profit purposes or for
any purpose of the United States govern.ent, provided that any
copy incluaes the copyright notic~ and this statement.

1 •

2.

Table 01 Contents
The LISP; nterpreter.

1.1. General Capabilities.
1.2. AVdilable Functions.
1.3. Adaitional Features.
1.3.1. Arrays.
1.3.1.1. Creating Arrays
1.3.1.2. Types of Arrays.
1.3.1.3. Array Utility Flmctions.
1.3.2. Full ASCII Character Set.
1.3.3. Empty Atom and String.
1.3.4. vos ana DOS operating system calls.
1.3.4.1. The VOS and DOS TRAP Function.
1.3.4.2. The VOS and DOS OPEN function.
1.3.4.3. The VOS and "DOS CLOSE function.
1.3.5. uNIX VLISP Operating System Calls.
1.3.5.1. The SYS Functior.
1.3.5.2. The UNIX OPEN FLnction.
1.3.5.3. The UNIX CLOSE function.
1.3.5.4. The PIPE Functicn.
1.3.5.5. The FORK Predicate.
1.3.5.6. The UNIX VLISP EXEC Function.
1.3.5.7. The wAIT Functicn.
1.3.5.8. The Shell Command Interpreter Function, SHe
1.4. Differences in Implementation.
1 • 4.1. A r i t hm e tic.
1.4.2. CLEARBUFF and TERFRI Parameters.
1.4.3. System Commands.
1.4.4. Utility Functions Not Implemented.
1.4.5. compiler Functions.
1.5. LISP Systems Software.
1.5.1. Pretty Printer.
1.5.2. The LISP Expressicn Editor.
1.5.3. The Debug Package.
1.5.4. Micro-PLANNER.
1.5.5. LISP Function Com~iler.

lnterna l Configuration.
2.1. VOS Operating SysteR calls.
2.1.1. TRPTRP (0) - Simulate TRAP.
2.1.2. READ (1) - Start Input ofL;ne.
2.1.3. RDASC (2) - Read ASCII Character.
2 • 1 .4 • ~ R IT E (5) - Send '" i t h No Carr ; age Con t ,. 0 l s •
2.1.5. CRLF (6) - Send line With Carriage Controls.
2.1.6. PRAse (7) - Send "SCIl Character.
2.1.7. SYSPRT (020) - Change System Port~.
2.1.8. SETRAP (024) - Prepare to Process Contingencies.
2.1.9. ERINFO (032) - Get Status After Contingencies.
2.2. Function Call Convertions.
"2.2.1. 0 n En t ry.
2.2.2. How to Call Exterral" Functions.'
2.2.3. Internal Subroutires.
2.2.3.1.
2.2.3.2.

printing Subroutines.
Obtaining Data ~odes.

1
1
2
3
3
3
5
6
6
7
7
7
7
9
9

10
11
12
12
13
13
14
14
15
15
17
17
17
17
18
18
20
20
21
21
23
23
23
24
24
24
24
24
24
25
25
25
25
26
27
27
27

3.

4.
5.

2.2.3.3. Obtaining Node Types.
2.2.3.4. Catching Error and Non-standard Returns.
2.2.3.5. Internal List Maniputation.
2.3. Register Usage.
2.4. Storage Allocation.
2.4.1. SYSTEM and Stacks (-6).
2 • 4 .2 • Not A va; lab l e (N A) (-4).
2.4.3. FREE (-2).
2.4.4. CONSED Nodes (0).
2.4.5. LINKER Nodes (2).
2.4.6. SYMBOL Nodes (4).
2.4.7. OCTAL (6).
2.4.8. Integer (INTGER) (010).
2.4.9. SINGLE precision (012).
2.4.10. DOUBLE precision (012 or 014).
2.4.11. STRING and Array (012, 014, or 016).
2.5. Garbage Collection.
2.5.1. The Deutch-Schorr-Waite Algorithm.
2.5.2. Free Storage "lists.
2.5.3. Packing Storage.
2.6. Hindsight.
2.6.1. 32K.
2.6.2. Two Stacks.
2.6.3. The Deutch-Schorr-Waite Algorithm.

"1.a chi ne Cod e G e n era t ion.
3.1. Manipulating the USER Instruction (I) Space.
3.1.1. *BEGIN New User Cede Area.
3 ~ 1 .2. "* E X AM ; ne"a We, "'"d "i""·"1: =5 pac e. ""
3.1.3. *EMIT a Word to I-space.
3.1.4. *ORiGinate a Seco~dary Entry Point.
3.1.5. *DEPOSIT User COde and LOAD S-expressions.
3.1.6. DUMP User Code anc Refer~nced S-expressions.
3.2. Assembling Code.
3.3. Compiling LISP S-expressions into Machine Code.
3.3.1. Compiler Invocaticn. .
3.3.2. Fluid variables.
3.3.3. Compiling the Execution Sequence.
3.3.4. Compile-time Expressions.

References.
Appendi ces.

5.1. Available Operating Systems.
5.1.1. Stand-Alone Systels.
5.1.1.1. CIMSES - Canberra Magnetic Tape System.
5.1.1.2. PDP-11/45 with Disk.
5.1.1.3. PDP-11/40 with Cisk.
5.1.1.4. Paper Tape Soft~are System.
5. 1 .2 • Vir t ua lOp era tin 9 S y s t e m (V 0 S) •
5.1.3. Disk Operating System (DOS).
5. 1 .4 • Bell l abo rat 0 r i e s ~ UN I X 0 per a tin 9 S Y stem.
5.2. Using the Operating System~.
5.2.1. Bootstrapping.
5.2.2. Stand-Alone Systews.
5.2.2.1. Loading and Run.ring the Loader.
5.2.2.2. Cartridge Disk Systems.

27
27

.28
28
28
2·9
30
30
30
30
31
32
32
32
33
33
34
34
35
36
37
37
37
37
38
39
40
41
41
42
42
43
44
49
50
51
53
53
55
57
57

"57
57
57
57
58
58
58
58
59
59
59
60
60

5.2.2.3. CIMSES - 24K Core. 60
5.2.2.4. Paper Tape Soft~are Systems. 60
5.2.2.5. Starting the VLISP interpreter. 61
5.2.2.6. Changing 1/0 Paths. 62
5.2.2.7. Typographical Error Correction. 63
5.2.2.8. Stopping VLISP Under Stand-Alone Systems. 63
5.2.3. VOS. 63
5.2.4. Disk Operating System (DOS). 64
5.2.4.1. Getting DOS VLISP Started. 65
5.2.4.2. Interrupting, Westartins, Killing DOS VLISP. 65
5.2.4.3. Input and Output Datasets. 66
5.2.5. The UNIX Operating SysteM. 67
5.2.5.1. Getting UNIX Started. 67
5.2.5.2. Invoking UNIX ~LISP. 67
5.3. Cooing and Asse~bly. 69
5.3.1. Assembler Syntax Differences. 69
5.3.2. Conditional Assemcly. 70
5.3.3. Assembly procedures. 71
5.3.3.1. Stand-Alone SysteMs. 71
5.3.3.2. Virtual Operatirg Systew (VQS). 71
5.3.3.3. Disk Operating System (DOS). 72
5.3.3.4. UNIX Operating System. 74
5.4. Distribution. 75
5.5. Known Problems. 77
5.5.1. READing Floating-point Nu"bers. 77
5.5.2. Problems with the DOS Version. 77
5.5.2.1. Attention Interrupt and Free Storage lists. 77
5.5.2.2. Too Many open Files. 77
5.5.2.3. Unsuccessful Stcrage At location looping. 78
5.5.2.4. Random Disk 1/0. 78
5.5.3. Problems with the UNIX Version. 78
5.5.3.1. Number of Output Columns. 78
5.5.3.2. floating Point Simulation. 78
j.5.4. Problems using PDF-11/40s. 78
5.6. MOdifying the UNIX Cperating Systea. 79
5.7. Alphabetical Functicn Synopsis 91

1

1. The LIS p i nt~rprete r.

VLISP for PDP-11s ,.dth memory ManageMent ;s modelled on
the University of Wisconsin's LISP for the UNIVAC 1100 series
COMPuters. Fa.iliarity with LISP is assu.ed. The manuals' ~e
scribing Wisconsin's UNIVAC 1100 LISP give a more detailed de
scription 01 the language. The differences and peculiarities 01
this PDP-11 LISP dialect are cescribeo here. The first chapter
gives a brief overview of VLISF, comparing 'it to Wisconsin's
UNIVAC 1100 LISP. The second chapter describes the internal con
figuration of the interpreter. A knowledge of the internal con
figuration may then be used to ~rite extensions to the interpret
er as describea in the third chapter. The appendices give imple
mentat;on instructions and a synopsis of pre-defined LISP
fun c t ion s.

1.1. General Capabi lities.

VLISP is a mocerate-scale, in-c~re i.ple.,ntation using
two stacks, oeep or global bindings, MultipLe data types, and
type determination through address location. The initial code
ana data for the LISP interpreter occupy approxi.ately 9K words
of core. The Virtual Operating System I Distributed CONPuter
Network <VOS/DCN) developed at the Uniuersity of Maryland, aVOS
emulator tor use with DEC's Disk Operating System COOS), and a
stand-alone system which emulates some VOS functions are operat
ing systems whiCh support the LISP interpreter. Conditional as
sembly instructions select t~e host operating system. With a
small operating system, the LISF interpreter needs nearly 16K
words of core just to sign on. Expanding just the potential data
area. 42K words of core could be supported. 28K ~ords of core
woula probably be needed for much useful computing. COllipiled and
assembled code could use yet ancther 24K words. With the maximum
supportable configuration, about 14K CONSed nodes could be used
for data, assuming that aLMost all programs ar~ compileo. The
amount of core which can be sup~orted is reduced on PDP-11s which
do not support seperate instruction (I) and data (0) spac~s (~.g.
the PDP-11/40). The host'computer must also support the Extended
Instruction Set (ElS) consisting of the MUL, DIV, ASH, and ASHe
instructions. PDP-11/45s ano PDP-11/70~ support EIS with stan
da rd h ardwa re.

Bell Laboratories' UNIX operating system also supports
VLISP. However, before the LISP compiler can be used under UNIX
on PDP-11/4Ss ~r POP-11/70s, the UNIX 0~eratin9 system must be
extended. The extensions cor-sist of two pages of straight
forwaro additicns to the "c" coce of the UNIX operatinq system.
The extended UNIX can support for each process an addit;onat,
writable I-space following the write-protected code in
seperated-I-an~-o-space mode. The VlISP co.piler can then write
;nstructions ;nto the I-space area to increase efficiency. A

2

second t sma lle r improvement to the UNIX operat ing system prov;oes
one-line-at-a-time input from 1iLes other than teletypes. After
the improvemen t, whi ch creates a new "sys" call by adding 20
lines of "c" code, callers car read input from file systems and
pipes up to ano including the first new-line, line-feed character
encountered. ~it~out the secone UNIX mcdification, LISP requests
ASCII character input one character at a time so that input may
alternate between fi les. VLISP only reads characters on the.cur
rent line that is tQ be immediately processed. Unfortunately
this slows down VLISP input processing_ LISP software may access
the po we r f u l f eat u re s () fUN I X S l. C has FeR f(s, EX E Cs t PIP E san d the
other "sys" and ··shelP· calls described in the Yrll! e!2g!!mm~r=§
!:!!!:Hl~2Q~£

Except as noted in suo sequent sections, the following
functions have been implemented consistently with the definitions
in the ~~!~!~ 11Q~ bIlf B~!trtn~f ~!ny!l [Norman 196~J and the-
adoitions produced at the University of ~aryland. An app~nd;x

provides d syncpsis of these pre-definec functions.

ADD1 ALIST AMB AND APPEND ARRAY ARRAYL ARRAYP ASSOt
ATOM ATSYMP ATTEMPT

BACKSP BRtAK

CLEARBUFF. CLOSE COMPLEMENl COMPRESS CO~D CONS CSET
CSETQ CURReOL

DtFINE DEFMAC DEFSPEC DELI~ DIFFERENCE DO DOUBLE DUMP

E~TIER EQ EQUAL ERASE. ERROR EVAL E)tEC EXPLODE EXPLODE2

F IXP FLOA 1 FLOA TP FLAG FOR.k FUNCTION

GENSYt-1 GET GO -GREATERP

IFFLAG IFTYPE INDEX INTO

LAMBDA LAMDA LEFTSHIFT - LE"GTH LESSP LISP LIST LOAD
LOGAND LObOk LOGXOR

MANIFEST MAP MAPC MAPCAR M~PlIST MEMBER MINUS MINUSP

NCONC NOT ~TH NULL NUMBERP

OULIST ONDEX.ONTO OPEN OR

PIPE PLENGT~,PL·ENGTH2 PLIMIT PLUS PRINT PRIN1 PRIN2
PROG·PROP PUT

3

QUOTE QUOTIENT

RE.AD READCH READMAC REMAINDER REM08 REMOBP RE"'PROP
REQUEST RETURN REVERSE RPLACA RPLACD

S~T SETCOL SETQ SH SINGLE SPACE STACK STRING SU8ST SUB1
SYS

TERPRI TIME TIMES TOkEN TRAP

U NB REA K UN F LA G

WAI T

Zt-ROP

*BEGIN *CAR *CDk *CHAIN *OEF *DEPOSIT *EMIT *EPT *EXAM
*MACRO *OkG *REVERSE *SPEC

1.3. Additional Features.

VlISP on PDP-11s has some new features that are not pro
vio~o on wisconsin's UNIVAC 11(0 LISP. VLISP provides array and
arraY utility functionS, upper-lower case characters, an empty
atom and string, file opening ard closing functions, and specific
functions for interacting with the host operating system.

1.3.1. Arrays.

Array fynctions manipulate a
guous area of S-expressions, lo~ical

n~mer;cally-indexed conti
data, or numerical data.

1.3.1.1. Creating Arrays

Evaluating the LISP expression

(CSETQ ARR (ARRAY SIZE TYPE»

creates a one aimensional array of logical length SIZE and glob
ally binds it to the SYMBOLic dtom ARR. The actual physical size
in bytes of tne array depends cn the array type given by the se-
cond parameter, TYPE, a fixed-peint number. Permissible Values
of the TYPE ~arameter are aescribed below. It TYPE is omitted,
ARRAY produces an drray of pointers. The value of the ARRAY
function is a function whese val~es may be obtained by
evaluating:

(A~R X)

where ARR evaluates to the cre~ted fun~tion and X to a positive,
fixed-point numoer. An elemert of this array may be set to the
value of VAL by evaluating:

4

CARR X VAL)

The ere ate d' a r ray fun c t ; 0 n, A R R, ret urn s the val u e 0 f V A L 'r ega r d -
less of ~hat AkR stores in the array.

Both the ,Log; cal length (spec ifi ed by the paraMeter SIZE)
and the physical size in b)tes must be positive, non-zero,
fixea-point numbers (octal or irteger) that a 15-bit number (i.e.
l e sst han 3 2 , 7 6 8 and 9 rea t e r t h an ze r 0) can e x pre s s • I fAR RAY
attempts to create an array with an i.proper SIZE parameter, the
LISP interpreter will produce ar internal error -9 as if it were
evaluating

(E R R CR -Q) •

If a current ATTEMPT invocation catches error -9, processing con
tinues at the restart point. Otherwise, the interpreter prints
the ntessage

WARNING, X BAD INDEX

where A is the offending SIIE parameter. The interpreter then
res t ar ts at the Lat est leve l of LIS P s l.pervi s i on by request ing a
new expression to evaluate. The ARRAY function rounds the
creation size of the bit arra), types (log;cal and binary) up to
the next multiple of 8 to simplify array index checking.

The function created by PRRAY checks that the array index,
the first parameter of the created arra), function, is a fixed
point number which lies bet~een 1 and the logical length
inclusive. The created array tLnction makes no conversion of the
arra), index from a floating-pcint nu~ber into, a fixed-point
numb~r. Array indices out of range also produce error -9 and, if
unaetectea by ATTEMPT, the sale message as abov~ where X is the
offending array index. However. ATTEMPT may be used ~hilp se
Quentially referencing array elements te catch the error -9 of an
out-of-range reference. Thus, the programs need not explicitly
check for the last element of arrays during seQuential
re1erences. For example, evaluating the follo~ing S-expression
defines a function CARRAY that creates an array of any desired
sizp and fixed-point type whose elpments are their integer
inoices.

5

Figure 1 - Define C~RRAY to create arrays.

<CSETQ CARRAY ? Establish a glcbal binding
<LAMBDA A ? Make a list of the function's parameters

<SETa A (ARRAY (STACK ~») ? Use list of SIZE and TYPE
(ATTEMPT [PROG «X 1» ? Start indexing at one

))}

lOOP <A X X> ? Initial;ze array vaLue
<SETQ X (ADD1 X» ? IncreMent index
<GO lOOF>]

[-9 AJ ? Return array when done

The function CARRAY handles losical and floating-point arrays
differently than fixed-point arrays. The elements of logical
type arrays created by CARRAY ~ill all te T (true). Floating
point arrays use the fixed-point indices without conversion.

1.3.1.2. Types of Arrays.

The second parameter of "RRAY (or its absence) specifies
the type of array:

TYPE HE Me ER INITIAL RA NGE
ARGUMENT DESCRIPTION VALUE

Omitted Pointer Undefined Any S-expression
n Pointer Undefined An y S-expression
1 logical NIL T (true) or NIL (false)
2 Binary 0 0 or 1
~ Signed byte 0 -128 to 127
4 Unsigned bytE' 0 0 to 255
5 16-bit integer 0 -32768 to 32767
6 2 -word floating O.OEO Single precision floating point
7 4 -w 0 rd fLo a t i ng 0.000 Doubt e precision floating point

All elements 01 type 0, pointer arrays, are initially undefined.
Values should be assigned to ~ointer ar~ay elements before they
are referenced. If not, an errcr occurs after referencing an
unoefined, pointer-array value. The VLISP interpreter uses an
err 0 r -8 as· ; f the S - e x pre s s ion

(ERROR -B)

were evaluated. If a current ATTEMPT call
cessing continues at the restart point.
preter prints the message

catches error -8. pro
Otherwise, the inter-

WARNING,)(IS UNBO UND ,

where X is the inoex of the unbcund array element, foLlowed by
the sOlicitati on

Help:

6

that requests an expression whose value may be used
the unaefinea array element.

1.3.1.3. Array Utility Functio"s.

instead of

Two utility functions for retrieving an array"'s specifica
tions are avai LaDle.

If the parameter of ARRA'P, the array predicate, is an
arra~, then ARRAYP returns a number indicating the array type.
If the parameter of ARRAYP is net an array, then ARRAYP returns
NIL (1alse> as its value. For example, suppose the SYMBOLic
atom, ARR, has been given an array value by _evaluating

(CSETQ ARR (ARRAY 17 1» •

Then the expression

CARRAYP ARR)

will return a vaLue of 1, which specifies a logical array, an ar
ray theat stores either NIL (the initial value) or T for non-NIL
values.

ARRAYL, the array lenyth function, returns the logical
len 9 t h of an array g i vena sap a ram e t e r • If the par a met e r of
ARRAYl is not an array, ARRAYl returns I'iIL. The logical len~th
specified by SiZE ouring the creat~on o~ logi~al and binary ar
rays is rounoeo up to the next wultiple of 8 to align logical and
binary arraYS (represented by bits) on a byte boundary. In the
e x a "I p l to aDO v e , w hen 1 7 ; s 9 ; "e n for the len 9 tho f a log; calor
bin~ry array, ARHAY produces ar array of logical length 24.
He nee,

(ARR ,ftYL A RR)

e val ua t est 0 2 4 • 0 t h p r t y pes 0 far ray s jus t us f> the l e ng t h s p e-
cified by the first parameter of ARRAY as the logical length.

1.3.2. Full A~(II Character Set.

The full ASCI I character set is avai lable for use in atom
nam~s and strings. However, to avoid a proliferation of atOM
names that differ only in character case, upper case lettprs are
automatiCally converted to lower case before being used in symbol
namps. This feature can be overridden by u~ing an escape
character (') before f:'ach upper case letter whiCh is not to be
converted to lower case.

7

While using the DOS or stand-alone versions of the LISP
interpreter, lower case ASCII may not be desired or supported.
In this case, the assembly line

.ENABLE lC ; Use lower case

should be commented out of the code module TRAPS.~AC of the DOS
versions of the interpreter scurce COde. In an interpreter as
sembleo without the above line commented, READ and TOKEN convert
lower case characters encountered to upper case unless the escape
character, which is initiall) exclamation point (!), precedes
the'" •

1.3.3. Empty Atom and String.

An empty string and an atom whose print name is p.mpty have
been provided. 60th have apr; rt lengt h of zero. When READ or
TOKEN encounter a single pair of dOl.ble Quotation marks (u"),

they reference the empty string. However, READ and TOKfN cannot
directly scan the empty atomic symbol. The expression

(ATS'iMB)

will evaluate to the empty atom, if it is needed.

VOS ana DOS operating s)stem calls.

Only VOS ano, the VOS emulator under DOS versions of VlISP
provide the VOS and DOS operatirg syste~ call functions.

1.3.4.1. ThevOS ana DOS TRAP Function.

The TRAP function proviaes an interface to the VOS operat
ing system via the TRAP instruction with offset zero (0). The
vas emulator may then use ippropriate DOS system calls. The
first parameter of TRAP is a fi.ed-point number that ;s placed in
CPU register RS for \Jse as the lRAP instruction offset by the
operating system. The other, optional parameters are used to
place values in registers trom ~O to R~ to be passed to the
operating system. A NIL parameter or omitted paraMeter passes
zero. Both strings and arrays ~ass pointers to the first words
of their data. Atoms pass their print names which are strings.
Fixed-point numbers pass their values. Floating-point numbers
pass a pointer to their values. CON Sed nodes pass pointers to
their CARs. The value of the TRAP function is a CONSed pair of
octal numbers giving the values returned in registers RO and R1
by the operating system.

1.3.4.2. The VOS ana DOS OPEN function.

The VOS and DOS OPEN function provides the subset of the
services provided by the TRAP function with offset 37Q (octal).
The OPEN function may be used with from one to three parameters.
For example, when evaluatinq

8

(OPEN FILE-STRI~E MODE FILE-NUMBER)

the first parameter~ FILE-STRINE, evaluates to a string or atomic
symbol, the externdl name of the file to assigned an internal
logical file number. Under cos each permissible internal file
number is associated with a default external file name on the
s y s t em d e vice , ItS Y : If • The de f au l t e lie t ern a l n a me i s the ; n t ern a L
number foLLoweo oy th~ suffix n.LSP". The OPEN command replaces
the external association with a ne~ one given by the first
parameter, FILE-STRING. The first tiMe the file is accessed for
either input or output, the VOS emulator searches for a file with
the given externaL name using a"y User lndentification Code (UIC)
given as part of the file name in the standard DOS syntax. If no
UIC was specified, the VOS e.ulator first searches the current
UIC directory. If the VOS emulator does not find the fiLe under
the current UI C ai rectory, the VOS ernuL ator then searches· the su
pervisor UJ.C ("[1,1)11) directory. ~ost LISP system software
should be available under the supervisor llIC directory.
Inability to locdte a file prOOLces a system error and a restart.
If ~ODE, the second parameter of OPEN, is NIL or zero, or is
omitteo, then the fi rst write tc the logical file ... number attempts
to first .INIT and .OPEN in contiguous mode (013) in case the
file is contiguous. If the file ;s not contiguous, the first
write attempts to .OPEN the file in extension mode (3) which ;s
synonymous with output mode if the file did not previously exist.
On the other hana, the first read directea to the file attempts
to .1NIT and .OPEN the fiLe in input mode (4). If MODE is non
NIL and non-zero, the first I/O at te If.pt use s the gi ven lIode if
possible. This provides a way to .INIT and .OPEN contiguous
filps in upddte mode (1), sc that the emulator may use ranoom
access. When FILE-number, the cptional third parameter of OPE~,

specifies a fixeo-point number, the VOS emulator uses that number
as the internal logical file-rumber instead of searching for an
availaole, unused, logical file-number. OPEN returns the logicaL
file-number which may be used b) ClfARBUFF, TERPRI, and LOAD to
access the new external file association. The external file-ndme
string may also contain both s.itches ana a second file name foL-
lo~ing the standara ;nput-anc-output-file-seperator character
("<"). The five possible modes available through the second
parameter, MODE. can also bp specified ty switches:

Switch Value Description

/ I
/E
10
/u
IC

4

2
1

J13~

Input from e~isting file,
l:)(tension of dn existinQ file,
Output to a new file,
Update an existing contiguous file,
Contiguous file started empty.

ana

The logical number associaticn avai table through a third
parameter, FILE-NU~BER, couto also be iiven by a numeric switch
(e.g .• "/5"). An alLocation size for creating contiguous files
given as a 64-byte~block COLnt is speciiied by the switch
.. I A l : II .. • For e)(d m p l e, i n e va lu at i ng

9

(OPEN uNEwFI L.LSP/AL :32/C")

32 is a switch parameter allocating 32 contiguous blocks of file
space. OPEN may also rename anO append files through the
s w ; t c h e s .. IRE II a no It / A P .. , r ~ s p e c t ; ve l y • I nor d e r t 0 a p p ~ n d the
linked file. ··FIlE2.LSP" tc the end of the linked file
.. F I L E 1 .l S p", e ~ a l u ate

(0 PEN ,. S Y : F I L E 1 • L S P < S Y : F I l E 2 • l S P I A P ..)

DOS pads FIlE1.L5P with nulls vefore appending the other linked
file. In DOS bATCH mode. the opening facility with switches is
available to command strings in the run stream with the standard
syntax, i.e. preceded by a n~mber sign (#). For example, when
the HATCH commana

IINEWF IL.lSPJ 4<OlO FIl .LSPJRE

is encountered, the file originally named "OLDFIl.LSP" is renamed
.. N E '-I F I l. L S p" and ass 0 cia ted ~ i t h l og i c a I f i l e - n u m be r 4.

1.3.4.3. The vas and DOS CLOSE function.

The VOS and DOS CLOSE furction calls the operating system
to close and release any external file and device associated with
the parameter, a fixed-point number 0 The OPEN function would
usually hav~ associated external file names to the parameter, a
logical file number. The logical file-number given may be reas-
signed by a subsequent OPEr~ call to a different external
association. CLOSE makes the buffer space ana device control
blocks in the DOS monitor available pro~ided more recently opened
files are also closed, since the DOS monitor allocates buffer and
control block space from a stack. The CLOSE function returns
NIL.

1.3.5. UNIX VLISP Operating System Calls.

U~IX VlISP provides complete access to operating system
calls. Either specific system calls using the

sys 0 ; buff J i rdi rect system call

machine .instruction like IIC" language and tlas" assembler
programs, or general calls to t~e shell t "sh", may be maoe. UNIX
VLISP faci litotes passing strirgs endec by a zero byte that many
system-call syntaxes require. lhe LISP interpreter converts in
ternal types STRING, SYMBOL, and CONSfD into STRING and insures
that the aata is followed by a lero byte, even if this forcps
c rea t i n9 a s l i g h t l y l on 9 e r cop y 0 f the c rig ina l • .. The i n t e r pre t e r
passes the print name of SYMBOLic atoms, the LISP variables, as a
5 t ring ex c e p t for NIL for w hi c h the . ; n t e r pre t e r pas s e s z e r 0 • I f
a system call receives a CONSea node parameter, VlISP assumes the
noae heads a list of single-character atoms, single-character
strings, or fixeo-point. ASCII-character values. The interpreter

10

concatenates the implied characters into a string. The system
call eventually passes a pointer to the first word of the string
followed by a guaranteed zero byte. Programs themselves need not
supply the zero byte after strings. In system calls, VlISP
passes the val~e of fixed-point-number parameters and a pointer
to the first word of floating-point-number parameters. The in
terpreter handles function LINkERs in two ways. System calls
pass the I-space address <*CDR) of non-array LINKER parameters so
that signals may be caught by user-written, Machine-code
routines. When VLISP receives an array function LINKER, a
pOinter to the first word of the array data is passed. If the
array data, that has internal t)pe STRING, were used directly as
a parameter, the interpreter might create a copy of the array in
oraer to satisfy the zero byte requirement. Hence, in ord~r to
pass an array of data via a syste. call, e.g. "gtty" or "fstat",
the invocation should use the array LINkER, not the array data.
The invocation Must provide arrays long enough to receive all
data returned by systeM calls. The operating system overwriting
the area follo~ing an array coes gra~e damage to VLISP storage
allocation.

When the UNIX operating system detects a venial error dur
ing a system call, the operating systeM returns frOM the call
with the carry <C) bit on in the processor status (PS) register
to signal an error condition. ~hen VlISP detects this error con
dition after any system call except CLOSE or EXEC, VlISP gener
ates an internal error 0 as if the S-expression

(ERROR 0)

hao been evaluated. If a current ATTEMPT invocation catches
error 0, processing continues at the restart point. Otherwise,
the interpreter prints the ~essage

WARNING. x SYSTE~ E~RO~

~here X is the integer error nu~ber returned in CPU
by the UNIX system call, and restarts at the latest
supervision.

1.3.5.1. The SVS Function.

register RO
levpL of LISP

The SYS function allows access to Most of the UNIX operat
in~ sYstem calls. UNIX VLISP provides other functions for the
cases in which SYS cannot effieiertly handle the syntax.
PrOQrams shoulo invoke the SYS function with at least one
parameter, the SYS offset number. In

(SYS ARGO • • • ARGn)

the interpreter converts the first para~eier, ARGO, the offset
numher, to integer type, and Lses it to construct a machine in
struction in D-space

11

ibuff: sys argO I start of indirect buffer

for use in an indirect system call in I-space

s y sO; i b u f f J i nd ire ct.

The interpreter converts any relaining paraMeters according to
the above rules and places the. after the system call in the in
direct call buffer. SYS also places the last two parameters in
CPU registers R1 and RO, respectively, just before the indirect
system call. If the system call returns with an error condition,
i.e. the C (Carry or error) bit ;s on, the interpreter uses the
IISP-system-error procedurp.. Otherwise, SYS returns the value
that the UNIX operat ing system returned in CPU re9ister RO in in
teger representation. The system call section (Part II) of the
~~!! E!2grgmm~!:! ~~OYil contains the particulars of each UNIX
system call. following these irstructicns for assembly language
format calls, the program supplies, in order, the SYS offset, any
in-line parameters, and any values to pass in registers. The
LISP i.nterpreter converts most ~arameters to the natural, UNI)(
system-call format to minimize programming ef·fort. The available
supoort software inc ludes a file, u/lisp/sy", that gives examples
of system calls.

1.3.5.2. The UNIX OPEN Functior.

The OPEN function calls the UNI~ operating system to ob
ta;n an interndl, logical file-nuMber used to access a pre
existing file. The OPEN functicn gets one or two parameters,
e·9·

(OPEN EXTERNAL-NAME l/C-MODE) •

The first parafljeter. EXTERNAl-N~ME, specifies an external file
name that OPEN will convert to internal type STRING, ended with a
z e r 0 - b y t e, i f nee d e d. The sec 0 r d op t ; 0 r alP a ram e t e r tIl 0 - MOD E , a
fixed-point numoer, sets one cf the permissible I/O mOdes: zero
(0) for reading only, one (1) fer writing only, or two (2) for
both reading ana writing allowed. If the second parameter, 1/0-
MODE. is omitted, OPEN uses zerc (0) to set read-only mode. If
UNI~ opens a file for writing, UNIX starts placing output at the
beginning of the file, overwriting any existing data without
first truncating the file. 10 extend an existing file, before
sending any output, evaluate the S-expression

(SYS 1Q 0 2 FILE-NUMBER)

to perform a seek (sys 19.) to the end c1 the file (of1set=O and
ptrname=2) where FILE-NUMBER is bound to the value returned by
the OPE:N call. In order to crecte or truncate a UNIX file. a
function CREAT could be defi~ed by evaluating the following S
exp res si on.

12

figure 2 - Oefire CREAT function.

{CSFTQ CREAT
(LAMB OA (N AM E • MOO E)

(SYS 6 NAME
(CONO [MODE <CAR

[666Q)))

? Define constant binding
? Optional mode parameter
? Call systeM to create external name
MODE») ? Use any given Mode
? Else default to read/write for all

CREAl could then return a logit~l, internal file-number of a new
or previously existing, truncated file. If UNIX detects an error
whi le processing an OPEN, CREAT, or SEEK call, the interpreter
gen~rates dn internal-type-(l system error that an ATTEMPT call
may in te rce pt.

1.3.5.3. The UNIX CLOSE Function.

The CLOSF function remOVeS the external file connection to
the internal, logical file-number given by the CLOSE parameter, a
filleo-point number, for example:

(CLOSE FILE-NUMBER) •

If CLOSE remov~s such a connection, CLOSE returns NIL. However,
i f the i n t ern a l toe)(t ern a l f i l E C on n e c t ion doe s not e xis tor the
parameter is out of range, CLOSt: returns the integer error number
returned by the UNIX operating system. If CLOSE gets the para
meter NIL, CLOSE disconnects the standard input, Logical file
numb~r zero (0). As CLOSE reloves the last internal connection
to a file, the operating system may perform other actions such as
rewinding magnetic tape, returning end cf file to the recelvlng
end of a pipe, or reclaiming file space that is no lonqer refer
encpo oy any directory.

1.3.5.4. The PIPE Function.

The PIPE function, a function of no arguments,

(FIPE)

calls the UNIX operating system to obtain d pair of PIPE. file
descri~tors. PIPE returns the pair as a CONsed node of two
intpgers: the read and write internal, logical, PIPE-file
numbers. The current invoc~tion of VlISP and any subsequent
offspring createo by the FORk request may share the PIPE-file
number~ for inter-process commu"ication. A process receives out
put i nth e 0 roe r sen t. b y any 0 the r D roc e s son any 0 n e PIP E •

. Processes not intend ing to use. cne side of the PIPE or pass
further copie~ of that PIPE descriptor to offspring should CLOSE
the unuseo side of thp PIPE descriptor so that 1) receiving pro
cesses may detect an end of file when all other proc~sses have
finiShed sending data, and so that 2) sending processes may be
stoppeo when no other process intends to read the data sent via
the PIPE. If a PIPE call is unsuccessfLl, the LISP interpreter

13

generates an internal, type-O error.

"1 .3 • 5. S. The FOR K P red i cat e •

The FORK predicate, a furction of no arguments,

(FORK)

creates a second process that ;s a copy of the original process.
Each process maintains a distinct copy of the data area and any
user code in the writable I-space. The two processes determine
their identity by examining the res~lt of the FORK pred;cate.
FORK returns NIL (false) to the chilo process but returns the
Pro c e s sID en t i f 1 cat; on (P I D) (t rue) 0 t the chi l d pro c e sst 0 the
parent process. If UNIX cannot create a second process, FORK
generates a LISP internal system error 0, that a current ATTEMPT
invocation could catch. Any files that were open before the FORK
call, including any PIPE files that inter-process communication
could use, are available to toth processes. The child process
suppresses the prompting message, the value return prefix used by
the LISP supervisor, and the restart siqn-on message. Thus the
parent process may continue sending prompting messages to the
user while the child process Sl.ppresses prompting messages in
order to converse cleanly with the parent through redirected
standard input/output files. Fer example, in oraer to redirect
the stanoara output to a previously created PIPE on which the
parp.nt may receive data, the child process would 1) close the
stanoard output tile, 1, by evaluating

<CLOSE 1) ;

2) duplicate the write descriptcr of the dotted-pair descriptor,
PIPE-PAIR, by evaluating

<SYS 41 (CDR PIPE-P~IR» ~ SysteM DUP call

which allocates the lowest available nu.ber to the file
descriptor; and 3) close the child's unused copies of the file
descriptor by evaluating

(DO (CLOSE (CDR PIPE-PAIR)] [CLOSE (CAR PIPE-PAIR)])

so that logically unysed pipes may return end-of-file status.
Similarly, the parent would close the PIPE write descriptor.
Thereafter, the parent would read the standard output of the
child, without any tlEval: .. proIJpt or I'Value: .. prefix, using the
PIPE read-tile descriptor. Either process, but usually the child
process, may overlay itself usirg the E~EC function, to perform a
different activity as a satelllte of the other process. Finally,
us i n 9 the W A I T f un , t ion, the par en t. pro C e ssm a y sus pend its 0 w n
activity until the completition of the child process.

1.3.5.6. The UNIX VLISP EXEC fLnction.

14

UNIX allows a process to overlay itself with a replacement
acti~ity, whos~ initial data anc code ~ny executable, UNIX fiLe
may define, e.g.

(E XEC ARGO AR G1 ••• ARGn) •

The initial parameter, ARGO, of the UNIX VlISP EXEC function
gives a complete external file r,ame that UNIX passes as the para
meter of the "exec" call tc replace the' LISP interpreter
activity. EXEC calls the function STRING to convert all of the
par a lie t e r s ; n to string s t e r m ina ted b y a z era (nul L) . by t e, con -
structs an array of pointers to the heao of each null-terMinated
string, and passes the arra) as the· second parameter in a
constructed, indirect "exec" call to the UNIX operating system.
By convention, UNIX expects the initial element of a string
pointer array to specify the overlay fi le." The other parameters
often specify option strings, usually .starting with Minus (-),
ana external file names manipulated by the replacement activity.
The standard 1/0 files used ty the replace~ent activity may be
redirected before calling the EXEC function. Jf the EXEC func
tion returns to LISP instead of overlaying LISP, EXEC returns the
integer error number that the UNIX operating system returned in
CPU register ~G, rather than ger:erating a LISP internal error.

1.3.5.7. The wAlT Function.

The WAIT function

(~AIT)

suspends activity in the current process until anyone of its
previously createa children terminates. WAIT removes the rem
nants of a terminated child and returns a dotted pair of two
integers. The CAR is the Process IDentification (PID) of the
terminated child. The CDR is the status value returned by UNIX
in CPU register R1, and is composed of the child's exit-value
byte and the child's terminatior status in the high and low order
bytes respectively. If a termirated child has not been waited
for previously, the call to WAIT will continue immediately with
out suspenaing activity. If the calling process has no remaining
chi ldren, wAIT generates an internal LISP error 0 condition.
Since SH, the shell command interpreter, waits for a specific
terminatea chi ld, SH silently removes the remnants of any oth~r

ter~;nated children, who disappear without further announcement
oft he i,. de rrd s e •

1.3.5.~. The Shell Command Interpreter Function, SHe

The SH function provides convenient access to the UNIX
command languaye interpreter, t~e shell. SH may get one optional
parameter, e.g.

CSH ARG) •

15

SH converts the optional parameter, ARG, to a string followed by
a nlJll (zero) byte that the shell command interpreter uses with
an implicit U_C" option as a sir.gle command line. If the option
al parameter ;s omitted, SH calls the command interpreter to re
ceive commands fro. the currert standard input up to an end-of
file. SH expects to find the shell command interpeter named
"'bin/sh". while the shell command interpreter processes
commanas, SH slJspends activity, ignoring the standard, delete-key
(DEL) interruPt and the QUIl, tile-seperator <FS> interrupt
(Control-SHIFT-lor Control-Backslash), waiting until the shell
command interpreter terminates. WhiLe waiting, SH removes any
other children who terminate .. ithout returning any status about
the terminated chiLdren. Wher the shell-command interpreter
t e r m ; nat e s , S H re s tore s the pre vi ou s LIS Pin t err u p t hand lin 9 and
returns the octal number returned by UNIX in CPU register R1 as
the terMination status word.

1 .4. Differences in Implementation.

Due to machine architecture differences, some features are
implemented differently in VlISF than in Wisconsin's UNIVAC 1100
LISP. VLISP cdlculates slightly different arithmet;c values,
uses different T~RPRI and CLEARBUFF parameters, redefines the
compiled code handling functions, and omit"s some features.

1.4.1. Ari thmet ic.

Unlike the UNIVAC 1100 series machines that use 36-bit
word, one's-complement arithmetic~ DEC PDP-11s use 16-bit-word,
two's-complement, fixed-point arithmetic and signed-magnitude,
32-hit-single-precis;on and ~4-bit-dcuble-precision floating
point drithmetic. VLISP provides one-word, 16-bit, octal-and
integer-representation, fixed-~oint nUfflbers and stores negative,
fixed-point integers in two's ccmplemento Integers from -32767
to 32767 may be created by the READ and TOKEN routines. The
function MINUS proouces the integer t~o~s complement negation of
a fixeo-point parameter. VLISP defines a new function COMPLEMENT
to provide an octdl representdtion of the one's-complement nega
t ion 0 fit spa r a "I e t e r, i. e • COM F L E MEN T rever s e sea c h 0 f the 1 6
bit s •

Signed-magnitude, floating-paint-arithmetic hardware is
optional with PDP-11s. It the host PDP-11 provides floating
point arithmetic, VLISP can support floating-point data typ~s de
pendiny on the setting of flags for concitional assembly state
ments in the interpreter scurce cede. VLISP may support
floating-point, signed-Magn;tuoe data t)pes that are either 2-
word, single-precision; 4-worc, double-precision; or both. If
VLISP supports any floating-peint ty~e, VLISP also supports
mixea-mode arithmetic between any ~loating-point-type or fixed
point-type number. The stancard multi-parameter, arithmetic
fun c t i on s

16

PLUS, DIFFERENCE, TIME:.S, QUOTl ENT, and REMAINDER

and the standard comparison functions

EQUAL, LESSF, and GREATERP

convert an operand with lesser precisicn to th~ type of the
operand ~ith greater precision tefore ccmputing each inter~ediate
result. If VLISP supports floating-poirt numbers, then the final
result of arithmetic functiors, including the single-argument
functions

ADD1, SUB 1, and'" INUS

have the same type as the parameter ~hose precision is greatest.
If VLISP does fiot support floating-point numbers, then the arith
metic functions use all para~eters as fixed-point integers and
return an integer result. The TIMES function converts any
fixeo-~oint-multiplication, intermediate result w~ich overflows
into a numeric type ~ith the ~ighest floating-point precision
availaole ;n order to avoid losing irformation.· If VLISP sup
ports any floating-point ty~e, VLISP detines additional
floating-paint conversion functions and predicates:

E NT IE R, F I X P , FLO AT, and FLO A T P •

The function FLOAT, which Wiscorsin's UNIVAC 1100 LISP does not
pre-detine, converts any fixed-point parameter into a lowest
availaLle-precision, floating-peint res~lt and returns floating
param~ters unchanged. If VLISP sup~orts both the s;ngle and
double floating-point type, VLISP oefin~s two additional conver
s ion f un c t ; 0 n s

SINGLE end DOUBLE

that convert pdrameters to the
precision.

The bitwise logical functions

a p pro p ria t p ,'" flo a tin g - poi n t

COMPLEM~NT, LEFTSHIFT. LOGAND, LOGOR, and LOGXOR

treat any parameter as a fixed-~oint number and return octal
rep res en tat i on, 16 -b it res u l t s • The bit wi s e log i cal fun c t ; 0 n s 0 f
VLISP, like their W;sconsin UNIVAC 110C LISP counterparts, treat·
floating-point parameters as 16-bit Quartit;es without conversion
usin~ the high-order, .ost significant ~ora.

17

CLEARBUFF and TERPRI Pit rameters.

The LISP 1/0 functions ClEARBUFF and TERPRI can take an
optional parameter which can be a fixed-point number or NIL. The
parameter specifies a new temporary input or output dp.vice,
respectively. NIL May be used to return to the standard file.
If CLEARBUFF or TERPRI get no parameter, the appropriate buffer
is hanoled without changing the current rIO file, unlike what is
done in wisconsin's UNIVAC 1100 LISP. System messages are always
sent to a standard file. Also, after a system message, input is
expected from the standard file. TERPRI and CLEAR8UFF save their
most recent paraaeter as the co~stant binding on the variables,
*TERPRI and *CLEARBUfF, respectively.

sy stem
inc l lAde

Sys tem Comma nds.

VLISP dces not implement the ~;scons;n's U~IVAC 1100
commanas that begin with a colon (:) in column 1.

:BACK :EXEC :LISP :OOPS :PEEK : S TOP ·a n d : TIM E •

1.4.1.. Utility Functions Not lrzplemented.

LISP
The se

Other utility functions includec in Wisconsin's UNIVAC
1100 LISP are as yet unimplemented. These are:

bACKTR CONCAl DATE DlIME GCTIME GROW MEMORY and *PACK.

Compiler Functions.

Functio~s used with the LISP com~iler to manipulate gener
ated code, namely

*BEGIN, *DEPOSIT, *EMIT, *EFT, 1\EXAflI, *ORG, DUMP, ana LOAD

are not oefineo in the same way as in ~isconsin's UNIVAC 1100
LISP. Since most of the compiler functions are machine
de~endent, and would have little utility for programs other than
the compiler, the differences have little effect on the tran
spo~taoility of cooe, except that DUMP and LOAD have different
purposes. Inst~ad of using CUMP to output compiled code as is
done in wisconsin's UNIVAC 1100 LISP, the Pretty Printer should
be usea as described below. The LOAD fLnction could then restore
the code into VLISP by reacing S-e~pressi9ns intermixed with
binary code mOdules instead 01 restoring an absolute loader
format file as is done in wisconsin's U~IVAC 1100 LISP. If VllSP
doe~ not support compiled coce, as is the case with VLISP on a
PDP-11/40, VLISP does not pre-aefine 'the functions

*BEG IN, *DEPOSI1, "EMIT, and *ORG

18

but instead defines the functiors

*EXAM and DUMF

so that they return NIL when called, ano defines the functions

*EPT and LOAD

with a reduced capability. The setting of an asse~bly-time flag,
CPLCPL, in the module "TRAPS.MAC" deter.ines if VLISP will sup
port compiled coae.

1.5. LISP Systems Software.

Systems programs, writter in LISP, are available to help
the programmer. They are kept on file in a form that can be
brought into core bY evaluatiny the LISF S-expression

CLOAt FILE)

where the SYMBLLic atom, FILE, Evaluates to the logical file
number of the program. Under UNIX, the FILE parameter may also
specify the na~e of a file that UNIX VlISP opens, repetitively
reads and eva luates, and closes. The system software includes a
Pretty Printer, an S-expression editor, a debug package, micro
PLANNE~, and a campi ler.

1.5.1. Pretty Printer.

The Pretty Printer, PRET1YP, di splays non-circular LISP
objects in an orderly, indentec forlOat that can be read as input
to recreate the objects. The fLnction, P~ETTYP, takes from one
to three parameters, e.g.

(PRtT1YP DUMP-LIST ASCII-FILE Bl\ARY-FlLE) •

The first paramp.ter, DUMP-LIST, evaluates to a list of 1) atolnic
symbols with constant bindings to be displayed; or 2) sublists,
the CAk of which is a property or flag cf the subseQuent atoms in
the suolist to be displayed. If the second paraMeter, ASCII
FILE, is given, it specifies that out~ut will be sent to a log
ical file-number instead of to the keybcard. If PRETTYP gets the
second parameter, ASCII-FILE, ar internal, fixed-point, logical
fil~-number, FRETTYP sends the S-expression output to the speci
fied flle instead of the current file. PRETTYP sends binary out
put of comp; leo code to the internal, fixed-point, logical file
number given by the last parameter, BINARY-FILE, provided that
the parameter is non-NIL. If the last par-alleter is NIL, or if
PRETTYP gets only one param@ter, P~ETTYP produces no binary
output. The second parameter way alsc be the last so that
ASCII-character output of S-express;on representations and binary
output of compiled code wi II be approp riately inter-leaved in the
same file. The ASCII and binar) logica l file-numbers should have

19

previously been given an external association by a call to OPEN
or a si.ilar function such as PIPE under UNIX. PRETTYP returns a
list of the atoms in the first parameter, DUMP-LIST, which had no
constant binding, and sublists with two elements giving a name
and atom whose property list did not contain either the property
or a flag with the name mentioned in a sublist of the first
parameter, DUMP-LIST. When Pretty Printing cOrllpilea code, the
expression bouno to the master LINKER, the function entry to the
start of the compiled code area, should be output first so that
the expression may later be restored. Usually the safest way to
output expressions which have bEen compiled is to output the~ all
with a single call to PRETTYP, ~assing as the first parameter a
list of atoms bound to the coepiled functions in the same oraer
as the functions were compiled. After Pretty-Printing, the files
could be re-read to re-establish the indicated bindings by eva
luating the S-expression

(LOAD ASCII-FILE BINARY-FILE)

where ASCII-FILE and BINARY-FILE are internal, fixed-point, log
ical tile-numbers, previously associated with an ext~rnal file
name of files containing the S-expression representations and
compiled code images, respectively. If LOAD gets only one
parameter, it may input a file ~f interleaved ASCII a~d binary
information. LOAD repetitivel) reads S-expressions until reach
ing an" end of tile. Under UNIX VLISP, the first parameter (but
not the second) of LOAD may specify an external file which the
interpreter wi II open, read, anc close.

20

1.5.2. The LISP Expression Editor.

The LISP editor special for~, EDIT, and function. EDIT1,
allow the programMer to easily alter in-core expressions and
function definitions. Once the editor is invoked, for example,
byevaluatiny

(ED 11 FUN C)

M II - .ove the focus horizontally without descending;
+11 - move the focus ~orizontally in list and descend;
-# - ascend # times in a list structure;
p - print the currert focus;
PP - Pretty Print the focus (if PRETTYP is loaded);
E EXP - evaluate th~ expression EXPi
1 EXP - inse~t the value of EXP before the focus;
D - aelete the curr~nt focus and ascend one level;
R EXP - replace the current foc~s with the valu~ of EXP;
S ATM - sa~e current focus as fluid binding of ATM;
COLD NE. - replace all occurrences of OLD with NEW;
RESTORE - start over from the top; or
STORE - install the edited object and return.

Note that # represents any inteser. its sign giving the direction
of tra~el. EXP represents any LISP S-express;on. AT" represents
an atomic symbol, a variable.

1.5.3. The De oug Pa ckage.

The debug package provides four routines utilizing the
system functions, BREAk and UNBREAk, whose first parameter is a
list of variables or atoms with constantly bound functions,
ma eros, 0 r s pe c ; a l f 0 rill S •

STRACE traces the call
functions, macros, and special
values.

and e~it of constantly bound
forms and gives parameter and exit

SBREAK 1S sim;lar to ST~~CE but stops, querying the user
for expressions to ewaluate until reading the expression T.

STRACEV prints the new walues of variables as (SET, CSETQ,
SET, and SETQ alter them. Tracing is ineffective for variables
altered by compiled code.

$ UNB UG
list or, if
tracin9.

reMoves tracing from the atolls in its parameter
no paraMeter list is prcwided, SUNBUG removes all

If possible, use a compiled version of the debug package
to avoid internal conflicts between traced variables and
functions. If compiled code is not available, evaluate

21

(SMANIFEST DB-LIST)

after loading the debug package and befcre initiating tracing to
remove some 01 the conflicts irvolved in tracing functions using
functions which might be traced.

1.5.4. Micro-PLANNER.

A version of Micro-PLANNER can be us~d on PDP-11/45s on a
small data bdse. A 32K word lSER aata area is reQuirea. After
loading, typin~

(FLNR)

starts Micro-PLANNER. ~icro-PL~NNEP. wi II then prompt for PLANNER
expre~sions to evaluate by printing

TH~AL: •

If the Pretty Printer is also lcaded, the P~ANNER data base may
be dumped to a file by typing

(THDU~P FILE)

where fILE evaluates to a logical file number. Later the data
base may be restored while using Micro-FLANNER by typinq

S&(LOAC FILE)

1.5.5. LISP Function Compiler.

The LISP 1unction compiler, CO~PILE, transforms LAMBDA ex
pressions into machine code placed in the user-code, writable-I
space area. COMPILE gets from cne to three parameters, e.g.

(COMPILE COMP-LISl DUMP-FLAG MASTER) •

The first parameter, COMP-LIST, is a list of 1) SYMBOLic atoms
that are constantly bound to furctions, special forms, or macros;
or ot 2) sUblists whose CAR is a property name, a SYMBOLic atom.
found on the property lists of the sublist's remaining variables
whose propert~ values are user defined functions. The indicated
functions, special forms, and macros ha~e underlying S-expression
definitions thdt COMPILE trans.fcrms intc machine code added ~to

the writable-I-space area. If COMPILE gets the optional, non
NIL, second parameter, DU~P-fLAG, COMPILE displays the intermeai
ate tuples proaucea from the S-expressicns which are converted
into code. An~ thira parameter, MASTER, which is a master LINKER
for tne current area of COdE being generated, COMPILE uses in
place of a new master LINKER that would ordinarily begin a fresh
cod~ area so that the code to te produced will continue the cur
rent code drea. COMPILE prints a warning message about any
constant binoings or properties which cannot be compiled.

22

COMPILE returns a list of any variables used freely without being
declared fluid or having constart bindings. Variables are free
when they are used by a functior without being declareo as an ac
cessable dumMY argulllent of the function or a surrounding PROG
special form. The function FLUID, included with the compiler,
takes as a parameter a list of variables that FLUID will lIark as
fluid. The function UNFLUID, also inclLded with the co.pile,.,
takes as a parameter, a list of variables fro~ ~hich UNFLUID will
remove the fluid marking. EXCISE, a function of no argu.ents,
removes all S-expression connections with the compiler that the
garbage collector might reference, thus returning SOMe S
expression space to general use.

23

2. Internal Configuration.

The PDP-11 LISP interpreter is modelled after the
Wisconsin LISP UNIVAC 1110 interpreter. Each interpreter is
written in assembly language to facilitate its optimization with
respect to the architecture of its host. Both interpreters have
been modularly organized to aid in their design and improvement.
Standardized interfaces and data structures are used between most
interpreter routines. Documentation is provided within the code
listin9s for deviations from the standard interfaces. Both in
terpreters assume an operating system has been provided to handle
system overhead chores. Moreover, the physical layout, the
algorithMs, ana even many assembly labels used are, in general,
s i m ; ta r • U n d e r s t a nd i ng the W 0 r kin g s 0 f e i the r i n t e r pre t e r s h 0 u t d
aid in the understanding of the other.

2.1. VOS Operating Systelll calls.

Unoer VOS, the VLISP interpreter uses the "TRAP" instruc
tion <1044XX) to perform input/cutput, to recOver from errors and
interrupts, and to do other miscellaneous system functions. CPU
registers pass the parameters. In order to be compatible with
the PDP-11/40, the operating system uses only one CPU register
set ano makes no attempt to charge register sets in pop-11/4Ss
from the starting register set. The operating systeM returns
unaltered the tontents of CPU registers not used for sending or
receiving parameters. Any o~erating system that supports the
following "TRAP" de finitions and pro\lides sufficient address
space can house the PDP-11 LISP interpreter. The stand-aLone
operating system and the VOS emLlator under DOS take advantage of
the un if arm; t y 0 f the V 0 Sin t e r fa c e. The lab elf 0 rea c hilT RAP ..
instruction offset below preeeces its octal representation which
is in parentheses. The value and action correspond to the
uTRAP"s of the vos control machine.

2.1.1. TRPTRP (0) - Simulate T~AP.

Offset TRPTRP (0) simulates any other TRAP. The low order
byte of CPU register R5 passes the TRAP offset. The other CPU
registers pass parameters in the normal manner according to the
simulated TRAP.

24

2.1.2. READ (1) - Start Input cf Line.

Offset READ (1) cond;tiors the input routines so that the
next character will be transferred fro. the beginning of the next
input line. Any unread characters from the previous line are
lost. The end of line flag frol the previous line is cleared.
Register RO, which contains flags used by VOS, is cleared by the
LISP interpreter before the call. Regi ster R1 is used to specify
a logical device. process, or pert from ..,hich the next tine will
be obtained. If zero is used in P1, the default device assign
ment ;s used for input.

2.1 .3. RDASC (2) - Read ASCII Characte r.

Offset RDASC (2) returns the next input character frOM the
current input line in CPU regis.ter RU. Register 1<1 contains a
non-zero flag. When all characters from the current line have
already been reaa, zero is returnea in register R1. The next
line is not started until a "TR_P READ" is performed.

In the current system, register R2 contain,s a count of
characters already received. The stand-alone operating system
decrements the value returned ir CPU register R2 to backspace.
Returning zero in CPU register R2 aeletes the input line. More
general operating systems need ~ot attempt this kind of Shortcut.

2.1.4. wRITE (5) - Send with No Carriage Controls.

The WRITE TRAP provides ,ompatiblity with VOS. In the
stand-alone systems, it performs no act ion. Under VOS, the WRITE
TRAP signa ls the end of the current line of output characters,
insuring message completion to receiving processes. CPU register
RO, in which vas passes flags, is cleared to zero before the
"TRAP" by the LISP interpreter.

2 • 1· • 5 • C R L F (6) - Send Lin e Wit h Car ria g e Can t r 0 l s •

A CARRIAGE RETURN and LI~E FEED are added to the current
line of outp~t. Then the "TRAP" performs the actions of "TRAP
WR 1 TEn.

PRAse (7) - Send ASCII Characte r.

The character in register RO is added to the current line
for output. vas uses the seven low order bits of register RO and
computes an even parity bit.

2.1.7. SYSPRT (020) - Change System Ports.

The loglcal port number specifiec by registPr R1 is used
to temporarily change the standard 1/0 streams. If the upper
bytE' of R1 is nonzero, the logical port specified is used tor
input. Otherwise the logical pert specifiea by the lower byte is
used for output.

25

SETRAP (024) - Prepare to Proce ss (ont ingenc ies.

Register RO contains the address at which the LISP inter
preter wants to start proCEssing contingencies. Attention
interrupts, stack overflows, illegal instructions and 1/0 errors
wou ld all negi n processing at t he spec; fied point.

2.1.9. ERINFO (032) - Get Statl.s After Contingencies.

After a contigenc,,!, "TRAP ERINFO" obtains infor.ation
about the continyency necessary for a restart. Thus uninterrupt
iDle operations can oe resu~ec before an attention interrupt ;s
processed. The LISP interpreter must ensure that an uninterrupt
ible process did not cause the interrupt.

Upon return, CPU register RO contains the virtual program
counter (PC) location, register R1 contains the virtual processor
status word (PS), and register R2 contains the error type in the
low oraer byte. Attention inte rrupt s return a negat ive error
code in this byte while other t)pes re.turn positive codes.

2.2. Function Cdll Conventions.

The LISP interpreter code section consists of a collection
of mostlY inde~endent subroutines. External routines, which the
interpreted data may call directly, all have a common calling and
exit convention. Thus indiviol.al routines may bp added or modi
fied without fear of affecting ether sections of code. Internal
suoroutines, such as the garbage collector, which have different
conventions, are documented within the LISP interpreter code
listing. However, almost all subroutines follow the conv~ntion
that the return address is on tcp of the control stack, which
grows aownward, pointed to by CPU register SP, R6.

2.2.1. On Entry.

On entry, external rout ires expect CPU registers R4, R5,
and SP to be pointers. As ncteo above, SP, the hardware stack
pointer, points to the control stack. which growns downward to
lower unsigned aodresses. On tcp of this inverted stack is a re
t urn a ad res s w h ; c h may be a c c e sse d by the ins t r u c t ; 0 n

RTS P(•

CPU re~ister R4 points to the tcp of the value stack, which grows
upward. Register R4 points to the n~~t free word on this stack.
CPU register R5 points to the first parameter's location on the
value stack. If the routine was called w;th no parameters, then
R4 ana R5 contain the same Values. Otherwise, successive para
metprs occupy successively higher words on the control stack
starting at R5~s value and endirg just telow register R4~s value.
Data items in IISP contain pointers, Which may be followed during
garbage collection. The itels on the value stack are also

26

pointers and hence the garbage collector Marks the items refer
enced by the value stack to keep them from being reclaimed. All
parameters passeo to functions lust have such protection and th~s

are placed on the value stack. Other aodresses, such as return
addresses, pointers into the stacks, or raw values (as opposed to
the pointers to values) are stored on the control stack during
evaluation. The items on the central stack are not referenceo
during garbage collections.

2.2.2. How to Call External Functions.

Two internal procedures facilitate subroutine entry and
return. Before using the reutines, any temporary data item
pointers that may need protectien from garbage collection are
pushed onto the value stack. ~ext, the current value in register
R4, the value stack top, is pushed onto the control stack,
pointea to by register R6.

External subroutine calls use the internal subroutine
ENTPY, externally named XNTR~. To ~se ENTRY a special LINKER
node pointer ;s pushed onto the value stack. The LINKER node
consists of a subroutine entry address and a pointer to a data
item, such as a LAMBDA expressicn which is to be interpreted.
The data itee will be markeo by th~ garbage collector to avoid
reclamation. The subroutine entry aodress is not marked by the
garbage collector. LINKER nooe usage per.its one numerical ad
dress to have two siMultaneous leanings, which the PDP-11/45 Mem
ory seymentation hardware permits. ENTRY must also be used for
some internal subroutine calls which expect a LINKER node to be
placed on the value stack. After the LINKER node, the parameters
are pusheo onto the value stack befor EhTRY is called.

A simplified entry procedure named ENTRVQ, externally
named XNTRYQ, is ~sed for calling acceptable subroutines. The
parameters are simply pushed onto the value stack without any
LIN K ERn 0 de. The add re s s oft h e cal led sub r 0 uti n e i s the n put i n
CPU register RL just before calling ENTRVO.

80th entry subroutines are then called using the JUMP sub
routine instruction, JSR, us;ng CPU register R5, i.e.

JSR X ~,ENTRVO

or

JSR X5,ENTRV.

Both entry subroutines call the specified function in the conven
tional way. On exit, the stack pointers R4, ~5, and R6 are res
tored to the; r values before t~e para.e~ers and LINKER node were
pushed onto the stack. The othEr registers may be used by the
called procedure without having to save their ~alues. CPU re
gister RO returns the pointpr tc the returned data item, the val
ue of the called function. The calling routine mu~t save any re-

27

gister values on the appropriate stack before beginning function
calls.

2.2.3. Interndl Subroutines.

The jump-subrout;ne instruction Lsing CPU register R7, the
pro 9 ram c ou n t e r (P C)

JSR PC,SUBRTN ; Call slJbroutine

calls most internal subroutines. Parameters are transmitted in a
manner peculiar to each subrout ine. In general, CPU register RO
returns values.

2.2.3.1. Printing Subroutines.

Most of the printing subroutines expect just one paraMeter
on the value stack. This parameter is popped from the value
stack on return into RO. The value in R5 is unaffected.

2.2.3.2. Obtaining Data Nodes.

The proceaure NODE, externally named NNODE, provioes data
nodes. CPU register R3 contains the type of data node required.
CPU registers ~f) and R1 or floating-point accumulator ACO, if
needed, contain the valup tc be used in node construction.
Additional entry points load CPL reqister R~ before entering the
NODE routine. CPU register RO retlJrns a pointer to the node
createo. NODE saves only CPU registers R4 and R5. Calling NODE
may cause a garbage collection.

2.2.3.3. Obtain;ny Node Types.

Small, eMternally availatle subrcutines return the type of
a gi~en node in CPU register R3. ~outines GETYPE, bETYP2,
GETYP1, and GETYPO, externall) named GTYPE, GTYPE2, GTYPE1, and
GTYPEO, are used to obtain the types of nodes in R3, R2, R1, and
ROt r~spectively. Only reg;ster R3 may be altered. Other sub
routines that use node types assume the nOde type is in register
R3.

2.~.3.4. Catching Error and No~-standard Returns.

Several proceaures such as LISP, PROG, and ATTE~PT place
restart point s on the value and cont rol stacks. These restart
points provide stack reset positions after a non-standard return,
the ERkOR ano GO procedures, anc internal errors. The function
UNwIND, externally named UN~NO, finds the appropriate restarting
point on thp stacks. When UNWl~D is calted, CPU reg;ster R1 con
tairis the return index and CPU register R0 contains an appropri
ate vdlue, such as a GO label or RE~URN value. After finding a
match to the return index, the (riginal procedure restarts im
mediat~ly after the point where it estatlished the restart point.
The association list existing ~hen the restart point was created

28

is also reestablished.

2 • 2 • 3. 5. I n t ern all i s t Man i put ii t ; on •

Internal subroutines for manipulating the current associa
tion list, property list flags, and attribute-value pairs pass
parameters and return values through registers RO to R:!.

2.3. kegister Usaye.

Although most registers have no fixed usages. register us
age follows some general patterns. Registers kO to R3 are used
wit~out being saved by subroutines, while registers R4 to R6 are
normally restored after subrcutine calls. The conventions
f 0 l low:

2.4 •

RO = ~O 1S used to calculate and return values.
1<1 = X1 is general purpose.
R2 = ~2 is used as a loop counter.
R3 = t3 contains the type of a data item.
k4 = X4 points just beyono the to~ of the vatue stack.
R5 = 45 points to parameters within the value stack.
R6 = SP = 16 defines the tardware control stack top.
H7 ; PC = %7 is the instr~ction ccunter.

Storage Allocation.

The user mode D-space area of storage is divided into
equal size contiguo~s areas called pages. Data within each page
has a uniform type. A page table records the current type within
each page. Gi~en a pointer to 2 data ;tem, the page table is
use1 to determine the type frOM the addres~. The pages are
aliqnea on page bounaary addresses that are Multi~le~ of the page
size. Thus the high order bits of any pointer can be used as an
ind~x into the page table to ceter.ine the type. The numerical
byte code for each type is incl~ded in parentheses in the de
scription that follows. All of the types are even numbprs to fa
cilitate multiJ:.le branch instructions, e.g.

ADO X3,PC ; Branch according to type.

. _._. __ ._• _---

29

Fi~ure 3 - Initial IISP data area layout.

Address

+---------------------------------- 0 -+
Fi)led "orkspac e

+---------------------------------- 2000 -+

Hash table and atoms

+---------------------------------- 10noo-+

linker nodes

+---------------------------------- 12nOO-+
Single character strings

and
Other stri~gs and arrays

+---------------------------------- 16noo-+

F r e e p ag e s

+---------------------------------- 154000 -+

Valu~ stack

+---------------------------------- 160000 -+
Unallocated <stack overflo~ protection)

+---------------------------------- 160100 -+
A

Contra l stack I
I

+---------------------------------- 164000 -+

1/0 buffers and pre-allocated integers

+---------------------------------- 166000 -+

More free page s

+---------------------------------- 177777 -+

2.4.1. SYSTEM and Stacks (-6).

The value and control stacks, lie buffers, tables, errQr
message string, ano permanent adoresses are located in SYSTEM
pages. The control and value stacks expand to the lowermost and
part of the top hardware se~ment.' I'It least one bloCk is left
unallocated so that if either $tack overflows, a hardware inter
rupt occurs.

30

2.4.2. ~ot Avai labl e (NA) (-4).

This typ~ is reserved fcr pages used for non-standard
purposes. Thls might include workspaces for other procedures
that could be linked to the LISF interpreter cOde. Also pages
that are not incluaed in the hardware mapping are given type NA
during the start-up procedure.

FREE (-2).

Pages that are available tor conversion to other types
when needed have type FREE. ~hen the garbage collector reclaims
an pntire page it is given type FREE. Type FREE pag~s re~ain

uninitialized until needed. A count is maintained of the numoer
of rRE~ type pages. Whpn an a~cilable FREE page is needed, the
storage allocator searches the ~age table to compute the starting
ada res s of a F REf:. pa gee

CONSED Nodes CO).

CO~SED nooes, the list ccnnectives, are four bytes (two
words) long and are aligned on two wore boundaries. The low and
high order woros are pointers tc the CAF< and CDR of the node
respectively. Pointers to CO~SED nodes point to the high order
(CDR) word. Taking advantage of the hardware decrement before
addressing, beth CAR and CDR Ciln be reached directly without us
ing the longer index addressing mode. During garbage
collections, if a (ONSED node is marked, its CAR and CDR arp also
marked.

Figure 4 - CONSED node.

v
~-----------------------------+-----------------------------+

CA R CDR
~-----------------------------+-----~-----------------------~

1 2 3 4

2.4.5. LIN K f. R Nod e 5 (2).

Two-woro (four-oyte) LIN~Eq nodes are used to access func
tions and transmit auxiliary information. The high order word
(.Cf\~) of .d LINkER node is the starting address of a function
whose code is in the memory-management-hardware instruction (1)
space. This address should ~ot be used as a pointer since the
adoress specified may have a different lI;eaning in the data space.
The lo~ order word C*CAR) of a LINkER node for a system-defined
function points to a string giving the original name of the,
function. The *CAR of a LINKE~ naae o~ a lAM8DA expression
points to a list of the parameters given to LAMBDA to create the
function. The *CAk of a node created by LAMBDA and FUNCTION
points to d CONSE~ node whose CAR is the captured association
list and whose C~R is a list of the parameters of the creating

31

LAMBDA call. The *CDR address cf such a LINKER noae specifies an
adoress where the captured association list is established as the
current one and the dummy arguments are given values from the
value stack. On ent ry to this function, the *CAR of the LINI<ER
node ;s placed on the value stack just telow the first parameter.
The *CAR of the LINKER node of an array points to the string con
taining the values of the array. The address given by the *CDR
of sucn a LINKtR node specifies whether the string contains
pointers whose values must be marked curing garbage collection.
The *CAR of the LINKER node for the function ALIST points to the
head of the association list.

The *CD~, I-space address, 01 a LINKER node determines if
the associateu routine invol~es a function 01 a speciaL form.
All functions have an unsigned I-space address greater than or
equal to the I-space address of the system interpreter function,
EVAL. Other I-space addresses specify special form routines.
Both types ot LINkER nodes are aligned on two-word (four-byte)
boundaries. function parameters are evaluated before being
passed to th~ procedure. Special forI and macro parameters are
not evaluatea tetore being passed.

Figure ~ - Function and speciaL form LINKERs.

" +-----------------------------+-----------------------------+
Expression I-space Address

+-----------------------------+-----------------------------+ o 1 4
(* CAR)

S V t', POL Nod e s (4) •

SYMBOL Citoms, th~ named entities of LISP, are four words
(eiqht bytes) long. The first, low crder word is a haSh link.
The single charatter atoms embocy the hash table bUCket heads.
The oata initidlization creates the single character atoms at the
lowest unsigned addresses of the first SYMBOL atom page. The
hash code is c~m~uted by adding the ASCII character bytps in the
sym~ol name, truncating to the low order seven bits and multiply
ing by 8, i.e. algebraic shift left by 3, in order to find a
bucket head in the hash table. The last hash link in a bucket is
marked by a zero wor~. GENSYM atoms, which are not on the hash
chains, have nash links that point to an integer index. The se
cond word points to the ASCII strinq that gives the name of the
atom. The third lIIIord, the *CAR of an atom, gives the constant
binding of the atom. If the atcm is not constantly oound, the
thiro word ;s zero. If the third .. ora is zero, a flu;o binding
of an dtom may be placed on or retri~ved from the association
list. Each fluid binding on the association list is an atom and
attribute pair. The fourth, high order ~ord of a SYM~Ol atom is
the property list. A property list consists of flags, which are

I '

32

other ~YMbOL atoms, and attribute-value pairs in which the'CAR of
the pair is a SYMBOL atom and the CDR of the pair is the value or
property. Pointers to the atom address the fourth word, the
property list, which Serves as the *CDR of the atom.

Figure 6 - S~MBOl ateM node.

V

+--------------+--------------+--------------+---------------+
hash link I Print name Value I property list I

+--------------+--------------+--------------+---------------+ o 1 2 3

2.4.7. OCTAL (6).

4 5
C*CAR)

6 7
(*CDR)

010
'3

OCTAL nodes are 16-bit wcrds aligned on word boundaries.
Althcugh a s1gn may be specified on input, OCTAL nodes are
printea as unsigned octal radix numbers followed by a "Q". Bits
within the bytes at the beginning of each page 'of octal nodes
serve as marking flags for garbage collection.

I
V

Figure 7 - OCTAL node.

+-----------------------------+
Value

+-----------------------------+ o 1 2

Integer (I~TGER) (010).

Integer nOdeS are siyred, 16-bit, fixed-point, two's
complement words aligned on word bo~ndaries. Sits within the
bytes at the beginning of each ~age of integer nodes serve as
marking flags for'yarbage collection.

figure 8 - Inte£er (INTGE~) node.

v
+-----------------------------+

Value

+-----------------------------+ o 1 2

SINGLf oreci sion (012).

Single-precision,
occupy 2 wordS (4 bytes).

s;gn-Iagnitude, floating-point nooeS
Bits within the bytes at the beginning

33

of each page of single-precision nodes serve as marking flags for
garbage collection. *CDR anc most functions that use s;ngle
precision values as if they ~ere fixed-point values without
conversion reference the high-order word that contains the sign
bit,8 bits of biased exponent, and the most-significant bits of
the mantissa. *CAR referencEs the other word containing the
least significant bits of the mantissa.

Figure 9 - SINGLE precision node.

V

+-+-------+--------+--------+--------+
151 Exp Mantissa I
+-+-------+--------+--------+--------+
u 2 3

(*CAR)
4

2.4.10. DOUBLE precision (012 cr 014).

Double-precision, sign-.agnitude, floating-point nodes
occupy 4 words (8 bytes). Bits within the bytes at the beginning
of each page of double-precisior nodes serve as marking flags for
garbdge collection. *CDR anc most 1unctions that use double
precision values as fixed-point values ~ithout conversion refer
ence the high-order word, which contains the sign bit, 8 bits of
bia~ed exponent, and the most significant bits of the mantissa.
The *CAR references the second highest significance word contain
ing part of the mantissa. The internal numerical type of double
precision nodes 1S 014 (octal) if VLISP also supports single pre
cision nodes, otherwise 012 (octal).

fi~ure 10 - DOUELE precision node.

V

+-+-------+------+--------------+-------------+--------------+
Isr Exp I ~antissa

+-+-------+------+--------------+-------------+--------------+ o 1 2 345 6 7 8

2.4.11. STRINb and Array (012,014, or 016).

Strings and arrays, that both have the same format, occupy
the same page type. Pointers tc arrays or strings address a word
that gives "the length in bytes followed by string or array data.
Strings and arrays must be less than ~2K bytes long since the

34

high order hit of the length word is used by the garbage
collector to mark strings and arrays. Strings consist of 7-bit
ASCII characters in each byte. Context specifies array data,
i.e. a special LINKER node's *C~R points to the array. Arrays of
pointers, whose values must be larked during garbage collections~
must have exactlY One LINKER rode whose *CDR address is ARRAYA,
the pointer drray internal 1unction, so that the garbage
collector will mark the memters of the array exactly once anO
will maintain pointer integrity. The starts of strings and ar
rays align on word boundaries, even when the preceding string
len~th is odd. Strings and arrays May exteno across page
b o.u n 0 a r i e s • The i n t ern a l n u mer i c t y p e 0 f s t r i n gsa n dar ray sis
either 012, U14. or C16 (octal) if VLISP supports the 0, 1, or 2
type of flaati ng-precision node s, respe ctively.

Figure 11 - STRING or array nodes.

V

+-------------------+---+
t length (~) I Characters, bytes or pointers I
I 1n bytes I I
+-------------------+---+
-2 -1 c 1 2 • • N-1 N

2.5 • Garbage tollec tion.

Storage mandgement and garbage ccllection differ greatly
fro"" those in wisconsin UNIVAC 1100 LISF.

2.5.1. The Deutch-Scharr-Waite Algorithm.

Each ne. data item created is stcred in a node drawn from
free storage lists. When a free stcrage list is exhausted, a
fREE poge is ccnverted into a page of nodes of the reQuested
tYJJe. Finally, when no fRfE pages remain, the garbage coLlector
is cdlled to determine which noces are no longer used to hold
current values. Thpse free nodes, which cannot bp reached by any
chain of point~rs accessibLe to the Lser, are placed back onto
tne free stora~e cnains. If an entire page consists of free
noop.s, the nodes in thp page are remcved from the frp.e storage
chain and thei r J:.ia~e reverts to type fREE.

The Deutch-Scharr-Waite ~lgorithw underlies th~ marking
methcd that only marks nodes still in use. Node marking starts
from the hash table, the value stack, scme unremovable atoms used
as flags or lI~KERs within the interpreter code, and any current
pOinters that .ill be incluced in the data item about to be
generated. The Deutch-Schorr-w~ite algcri.thm maintains a stack
within the data oy reversing the direction of the marked chain of
pointers. It requires only Ci small 1ixed amount of additional
storage for chain head pointers, which are kept in reqisters.
Further, The Deutch-schorr-w~ite atgcrithm operates in linear

35

time with respect to the numoer of marked
marking method can significantl) improve upon

nodes. No othe r
linear time.

After the marking operation is completed, each page is
swept for unmarked nodes. For each page, the page type is found
to determine the Method of marking used and current position in
the free storage chain of a given type. The free storage chain
for each type is kept in unsigned asce"ding order. Newly re
claimed nodes are placed in oreer on the appropriate chain. The
free chain, current position pointers may be advanced when marked
nod~s dre encountered. Also, the marking is removed from marked
nodes. After sweeping each page, a count of the free nodes
within the page is inspected to determire if the entire page is
free. The sweeping algorithw. operates in linear time with re
spect to the a~ount of storage.

C OI\P l i cat ion s a r i s elf the garb age co II e c t or i s
interrupted. While being marked, pcinters 00 not necessarily
give the expectea value. Some larking is done by setting the low
order oits of ~ord pointers. If these pointers were used as word
adoresses, the odd-address hard~are trap would occur. Moreover,
some free storage chains may ce temporarily disconnected during
the sweeping procedure. The unallocated string chain, however,
must remain intact to determine whether a given partition (slot)
of a string page is either (1) en the unallocated string chain,
(2) marked, cr (3) allocatee but Lnmarked. The partition's
length is foun~ in different positions within the slot
accordingly. Similar problems may occur during node allocation.
One solution is to disable interrupts during the critical
periods. unfortunately, disabling interrupts involves excessive
overhead for such frequent eperations as node allocation.
Hardware interrupts could not be disabled for the duration of
garbage collection during any simultaneous real time operations.
Usually, garbage collectior lasts beyond one second.
A l t ern at; vel y , a f lag ; sse tan c c lea r e ,d w hen e n t e r ; n 9 and lea v -
ing criticdl areas. When an i~terrupt is intercppted, this flag
is examinee. If the flag is set, the operation procedes from the
interrupt point to the point where interrupts can occur, the
point at which the flag would be cleared. There, the normal pro
cessing is discontinued drd the interrupt processing is
completeo. Note that the uninterruptible operations must not
ge n P. rat e h a r d W d rei n t err up t s the m s e l v e s, for the 5 y s t e m c 0 U l d not
con t in ue •

2.5.2. Free Storage Lists.

Each of the free storage chains for each noae type is in
unsi9ned ascpndin~ order. The enc of each chain is indicated by
a zero where the next link pointer is e"pected. Unlike allocated
nOdPs, the chaln links of each type always point to the Unsigned
low oreier word of the next slot. '

36

onto
typ e.

For all node types eJCcept strings, all nodes are Linked
the free storage chain after their page is given the new
The chain then consists of a forward linked list.

Within pages of strings and arra)s, a chain of free slots
is kept'. The unsigned low order first word of each slot gives
the link to the next s'Lot. If the free slot consists of just two
bytes (one word) then the low order bit is set, i.e. the pointer
is ado. Following this convention, if the last unallocated slot
is just two bytes, it contains the number one. Free slots longer
than one word have zero in the low order bit of the first word.
The second word of such a slot gives the slot's length. When a
slot is added to the free storage chain it is immediately merged
with any contiguous slots. The full length of the combined slot
will then be available without .aste.

2.5.3. Packing Storage.

Storage packing has not yet been implemented. Storage
should not be packed after each garbage collection, but only upon
request or garbage collection failure. There will probably be a
need to implement this complex and time-consuming procedure.

After the LISP interpreter has been running for a long
time, all of the pages probabl) will ccntain more or less perma
nently allocated nodes. At the same time, many of the pages
probably wilL be mostly unallocated. Thus, although unused space
is available, the garbage collector may eventuallY fail b~cause
it cannot allocate a new page fer a type that densely populat~s
its present pages. With fewer free pages avaiLable for
r~cycling, the time ~onsuminggarbage collector will be called
more often.

Packing storage consists of putting nodes of each type in
as fe~ pages as possible. For fixed-node-size page types~ some
pages ~ould be marked to have their nodes placed in other pages
of the same type. Pointers to these nodes must also be adjusted.
For variable node sizes, the free slots must be removed from be
tween allocated nodes by shiftirg the allocated nodes, preferably
downward, and grouping the free slots i"to one large free slot at
the end of the area. The greatest storage economy is obtained by
also ensuring that pages with variable length nodes abut, so that
allocated slots may extend across page boundaries. Of course,
the pointers to variable lergth slcts must also be adjusted.
Nodes in the hash table and LINkER nodes and symbol flag nodes
used bY the system must not te moved since their positions are
referenced by the LISP interpreter code. Moreover, references to
moved aata nodes must be altered in any compiled code.

,--_ .. _-,-------- ------

"--11-" ... '-,",.'--,

37

2.6. Hindsight.

32K.

The size bf the data space, even using a virtual memory or
add i t i on a l cor e t ; s lim i ted t 0 3 2 Ie W 0 r d s • T his i s the l a r 9 est
number of words that can be directly addressed by a 16-bit word
without modification. This restriction limits the absolute size
of programs that may be interpreted by PDP-11 LISP. Limited ad
ditional program space can be cbtained by compiling functions
into the haraware supported I-space, but absolute limits on
pro 9 rfa m s i z, e remain. Future imp l e men tat ion s of P [) p -11 LISP ,
workin~ in a virtual environmert, could use 16-bi~ word pointers
that m~st.be modified before USE, or 3 cr 4 byte pointers to in
crease· the effective address space.

2.6 .2,. Two St Q c ks •
~ , f) ;
:"Usingit~o stacks, the value stack for pointers and the

contrciT" sta·t;:'k for:' addresses and binary v'alues, facilitated
programming. However, having t .. o stacks places restrictions on
any larger virtual space version. Separate pointers and data
areas must be rr.aintained. If the stacks are allowed to 'overflow
onto aaditional pages of virtual memory, each stack would n~ed to
be separately handled. Moreover, if stack sections were to be
used as data, dS in .ore advanced versicns of LIS.P, both stacks
would have to be manipulated, with double the overhead.
Alternatives are to use a methoc whereb~ pointers may be distin
guished from addresses and raw cata On a Single stack, or to eli
minate the Value stack as a separate contiguous area. With the
latter alternative, the value stack would be kept among the
CONSEO nOdes, thereb~ slowing acccesses into the value stack.

The Deutch-Schorr-Waite Algorithm.

The Deutch-Schorr-Waite algorithw, used by the garbage
collector, has oisadvantages as noted above. The process cannot
be interrupted during garbage ccllection, an intolerable situa
tion for some real time appliCations. Using other algorithms in
virtual space, multiprocessing environments, simultaneous garbage
collection Cdn take place while processing continues.
Furt"erlnore, restarting after irterrupts would be simplified.

\ •

38

3. ~,achine Code Generation.

User created machine code can be dynamically added to the
LISP interpreter within machines whose R.emory management supports
seperated I (instruction) anc D (data) Spaces, in particular
PDP-11/45s and PDP-11/70s. The operating systeM, such as VOS,
must also provide for the dynamic expansion of the USER-mode 1-
space in unit~ corresponding to full length hardware segments
(020000 octal bytes). Using fur.ctions within LISP, pre-asse.bled
routines of machine code can be added to the repertoire of LISP
functions in order to perform slowly interpreted or non-standard
actions such as system calls wore efficiently. LISP LAMBDA ex
pressions may be compiled into Irachine code in order to speed
their execution, avoid unnecessary overhead, and allow the nodes
originally occupied by the LAMBDA expression to return to general
use, thus increasing the FREE storage space.

The user's machine code .ay reference S-expressions that
are dynamically allocated by the LISP interpr~ter. Possibly a
reference toan expression woul~ be the only reference. To avoid
garbage collection of references that are only known to the us
er's machine code, a table of ~ffsets that point to the refer~
ences is kept following the user's machine code groups in 1-
space. The garbage collector consults these tables during its
marking phase. All S-expressiors thus referenced are marked as
in-use to avoio reclamation. Storage packing routines would know
which locations specify addresses to alter within USER-mode 1-
space when S-e~pressions are moved in D-space. If the user makes
copies of the machine code, the table of offsets following the
machine code specify which addresses must be reallocated by a
later invocation of the LISP interpreter if the machine code is
ever dynamically reloaded. IISP S-expressions written after the
code specify how reloaded code gust be altered to point to the
reallocated S-expressions that the code references.·

Reading locations within USER mode I-space by USER-.ode
programs cannot be done directly. Although the USER-mode in
struction MTPI (Move To Previous Instruction space) can write
into USER-mode I-space, the hardware design circumvents the
USER-Mode instruction MFPI (Move From Previous Instruction space)
from reading USER-mode I-space by diverting the reference to the

·D-space. Th)s unfortunate ~esign ~as intended to support
eXecute-only code, which no widespread cperating system currently
supports. Instead, the design has forc~d a system call to be ad
ded to operating systems to enable reading locations within
USE R -m od e I - sp ace •

. _-_ .. _----------------_._---------- --------------

39

3.1 • ft1anipulating the USER Instruction (1) Space.

Several functions definec in PDP-11 LISP manipulate the
USER instruction (1) space that is not occupied by the LISP in
terpreter code. Although these I-space functions have names that
match the names of Wisconsin UNIVAC 111C LISP functions, their
machine-dependent d~finitions are different. The code for the
I-space functions is conditionally assembled with the LISP inter
preter when the tlag "CPLCPL" in the assembler source module
uTR,APS" is set to one. When the code is not assembled the inter
preter may occupy less than ~K words (020000 octal bytes), one
harrlware segment. With the I-sa:ace functions included, the LISP
interpreter code resides in two hardware segments. This leaves a
maximum of 6 hardware segments, 24K words (140000 octal bytes),
for allocation to user code areas, depending upon the operating

·s y stem.

The LISP interpreter manages the USER I-space as a forward
linked chain of user code areas. Two words precede each user
coae area. The first word points just teyond the end of the con
tiguous user code area to the next area's pointer word. The
second, flag wO'ro is normally zero. System programs such as the
Pretty Printer and the S-ex~ression editor e~amine the word
preceding an aadress specified ty a LINkER node. If the preced
ing word is zero, the start of a code area has probabLy been
founc. Hence, it is unwise to J:lace any other zero woro within
user code such as a HALT instruction. Each user code area con
sists of two parts: the instructions anc a table of offsets. The
table of offsets, described belew, has e~actly on~ zero word that
;s usea to mark the unsigned-lobest adcress within the table.
Only the last user code area on the chain may be expanded or
loa d ed •

System conventions shoulc be follo~ed for LINKEP nodes
that point to addresses within the user code areas. The *COR ad
dress of one master LINKER nooe should specify the beqinning of
each user code area, the word preceded by a zero flag ~ord. The
*CAR of the master LINKER shoulc point to an $-~)(pression that is
a for nl u l a t hat e val u ate s b a c k tot hem a s t e r LIN K E R • The. CAR 0 f
other LINKER nodes that specify other acdresses within the same
user code area should point to the master LIN~ER node of the
area. This convention facilitates dumping user code areas that
may be loaded dt a later invocation of LISP. During garbage col
lection before storage packing, any marking of secondary entry
points to a coce area would also lead to marking the master
LINKER, which in turn could ledc to marking the flag word preced
iny the code area. Thus any reference to a code area would keep
the entire area from being reclaimed.

48

Figure 12 - Typical Structure of Pointers to Us~r· Code Area.

I
1

1->1 SeconClary
1 t V LINKER node

1 V +------+------+
I S-exp I *CAh: I *CDR I
I \ +------+------+
, \0 I 2 4 Bytes
I \ I
I \ t
I ~a st e r \ I
ILl NK E R V

, +------+------+
f I *CAR I *COR I
r +------+------+
\ C I 2 4

\ 1
\ <-I

V
\

\
\

\
\

\
\

\
\

• • • • • \
Start I Secondary

\i of Code V ertr)' po;"t

D-space

• • • • • • • • • • •
I-space

+------+---+---------------------------+---+----------------+
~ext I 1 I User CODE I 0' Offset Table

+------+---+---------------------------+---+----------------+
-4 -2 a n n+2 n+m

V A
\ I

\---~> I

•

Descriptions of each I-s~ace management function follow.
*BEGIN creates a new area to receive code. *EXAM and *EMIT re
tre;ve and replac~ values in the USER-made writable I-space.
*OHG creates secondary entry points to a code area. DIIMP, LOAD,
ano *DtPOSIT o~tput and re-reaa code and related S-expressions.

3.1.1. *BEGIN New User Code Area.

*b~GIN creates a new area for user code and returns a
master LINKER to it. If arother I-space hardware seament is
needed it is r~Quested and integrated into the USER I-spdce
chain. Any previous user aata area under construction is
finished by moving the previou~ table of offsets down to the pr~
vious enCl of instructions. The point~rs to the ends of the areas
are adjusted. The one parameter to *BEGI~ is used as the *CAR of
the master LINKER that *BEGIN returns:

<*8EfIN ARG)

41

3.1.2. * E)(AMi n e a Word ; n I - spa c e •

*EXAM returns an octal representation of a specified word
in USER I-space. *EXAM maY havE f.rom o"e to three parameters:

(*EXAM LINK OFFSET TARLE)

The first parameter, usually a LINKER (lode, possibly the only
parameter, gives an address in the I-space. T~e secono
parameter, if given, provides a numerical offset from the address
given by the first parameter. ~hen the third parameter is given,
it specifies an entry within the table of offsets. Th~ third
parameter, USually a negative rumber, is the offset of the taole
entry in bytes from the high aacress enc of the offset table.
The first parameter should be a master LINKER and the second zero
in this case. The entry in the table of offsets determines an
address among the instructions ~hose octal representation *EXAM
returns. If the specifieo acdress lies within the LISP inter
preter cooe, *tXAM returns NIL.

3.1.3. *EM IT a wo rd to I-space.

*EMIT writes a value in a specified location of
*~MIT may have from one to five parameters:

(*E~IT LINK OFFS~l TABLE MODIFIER ARG)

I-space.

If one parameter is given, usually a nuwber, its val~e is added
to the open user coae area, the last area on the I-space chain
createo by *oEblt-.. If t.,o or mere parafl'teters are given, -thE' last
two ~arameters determine an offset and ~ointer. The value of the
penultimate parameter, usually c pointer to a numf'ric nooe, modi
fies the last parameter, the adcress of some S-expression. This
modified value replaces the value at the specified location. If
e)(dctl~ two parameters are giver, the specified location is the
next dvailable location of the open user code area. *EMIT also
expands the tatle of offsets by adding the offset to the next
cooP location. Thus the S-expression given by the last parameter
will hencefortn be protected frem garbage-collection reclamation.
The table of offsets of the last user code area is kept at the
extr~me, unsigneo-high-address end of the allocated I-space. The
instructions and table of offsets in the last arf'a grow 'toward
one another. If *tMIT can not fino enough unallocated space to
aOd a new instruction word or o1fset table entry as requested by
one or two parameters to *E~IT, *EMIT trys to expand the last
USER I-space area by adding a new contiquous hardware segmp.nt to
the existing user code area, Lpdating the chain pointers to 1n
elude the addition, and moving. the table a1 offsets to the ex
treme high end of the new area. If the attempt to gather mor~
I-space fai ls, the interpreter .. ill Gall the operating system 1n
error ruode after sending the message .

NO SPACf.

42

*EMIT uses any parameters given ~efore the last two, the offset
ana pointer, like the parameters of *EXA~ to specify a location
in I-space. With three or more parameters, *EMIT expands neither
the code area nor the offset tatle, but simply alters an existing
word in a user code area. If *E~IT gets three or more
parameters, the first parameter specifies an I-space location.
with four or more parameters, the second parameter gives an
offset from the first parameter. Lastly, with five parameters,
the third parameter gives an offset from the high address end of
the offset table. The offset table entry in turn specifies a lo
cation within user code to replace.

*ORiGinate a Secondary Fntry Point.

*ORG creates a secondary LINKER node to a computed
tion within a user code area:

(*ORG LINK A~G1 • • • ARGn)

loc a-

*OkG uses its first parameter, ~hich shculd be the master LINKER
node of the code area, as the *CAR of the secondary LINKER
created. If no other parameters are gi~en, the *COR of the cre
ated LINKER points to the next location that might recieve code
from *EMIT. Otherwise, *ORG uses the value of its second para
meter as the *CDR of the created LINKER node. The value of any
other parameter woula additivel) modify the address specified by
the secono pardmeter.

3.1.5. *OEPOSIT User Code and LOAD S-expressions.

*OEPOSIT inputs S-expressions anc code in DEC absolute
loader format or uNIX a.out format from specified logical files.
Since each operating system has its own conventions for opening
and assigning lo~ical names to files and devices, file and device
opening and naming must occur ~efore *VEPOSIT operates on a spe
cified file. If LOAD has parameters

(LOAD ASCII-FILE ~INARY-FILE)

the first parameter specifies an in~ut file from ~hich s
expressio~s are read in a READ-EVALloo~ until the end of file is
reacheo or a top level RETURN or ERROR function is evaluated.
The last parameter specifies a file to be used later for in
putting binary code by *DEPOSI"T:

(*DEPCSIT ARG)

*OEPOSIT and (if LOAD gets no parameters) LOAD input binary code
in DEC absolute loader format or UNIX a.out absolutp loader
form~t from the file specified by an invocation of LOAD with
parameters as the last parameter. Uncer UNIX, the .data, .bss,
relocation, ana symbol table parts of the a.out" load Module
should be empty. *OEPOSIT performs *BEGJN beforp init;ating the
input. If not enough space is available for the input code, the

43

LISP interpreter prints the message

NO SPAC E

ana calls the operating system in error mode. If the input
format is interrect or a checksum error is found, *DEPOSIT calls
the interprpter rout ines for internal error handling. The input
code image shoulo contain irstructicns followed by an offset
taDle. *DEPOSIT creates the necessary code chain pointer and
zero flag word. When *DEPOSIT finds the end of the code image as
indicated by a transfer address record, *DEPOSIT closes the newly
created user code area and returns a master LINKER to the start
of the code. The *CAR of the created master LINKER ;s the para
metpr of *DEPOSIT, conventionally an S-expression that the inter
preter can e~aluate back to the master LINkER. If LOAD gets no
par a me t e r s , SUD seq u e n t lye val u ate d S - e x pre s s ion s s h 0 u l dam end the
*CAR of the returned master LINkER node to point to a formula
that evaluates back to the master LI~KEH.

3. 1 .6. DUMP User Code and Referencea S-expressions.

DUMP uses either two or three parameters to output a user
coae area in DEC aosolute loader format or in UNIX a.out absolute
loader format dnd to turther invoke routines to handLe each $
ex~ression that is referenced b) an address known to the table of
offsets:

<DUMP MASTER fILE FUNC)

The first parameter must be a master LI~KER of a user code arett;
otherwise, DUMP immeoiatelY retLrns NIL. If the second parameter
is not ~lL, the parameter is LSed as the logical name of a file
to which an imaq~ of the 'user cede area is sent in DEC absolute
loader format. OUMP places tt-e start (bottom) of code at loca
tion zero in the code image. Urder DOS, DUMP produces no DOS
communications airectory <COMD) but does produce records shorter
than 100 (octal) with a few NULL (zero) padding characters be
tween recoras ana longer padding before and after the image. $
expression references are changed to 16(011 (octal) in the image
to protect against improper relcading. The last record, when us
ing DEC absolute loaoer format, signals a transfer address of one
(000001), that normally indicates the transfer address is not to
be used as a start aadress by a DEC abselute Loadpr. Under UNIX,
the a.out loader format produces contains only a .text part in
separately-executaole mode without relocation bits or a symbol
table. Next, if the third DUMP parameter is given, DUMP checks
to insure that the parameter is a function. DU~P calls the third
parameter function once for each entry in the offset table.
Three parameters are passed .hose values may be used by *EMIT to
recreate the S-expressions when relo~ded. First is an octal node
which gives the offset of the S-expression address from the start
of the COde areae Second is ar integer node whose value must be
subtracted from the referenced ~ointer to make it conform to the
standards of other pointers of its type. For example, a pointer

44

to the high order byte of an OC1AL node would need one (+1) sub
tractea from it to make the pointer word-addressable like normal
OCTAL node pointers. Third is the pointer referenced in the
standard format used for its typ~, that is, with any offset
removed. Finally, DUMP returns the master LINKER node, the first
par a me t e r 0 f DUM P •

3.2. Assembling Code.

Hand encoded assembly routines may be prepared for pro
cessing by the available assewbler and link editor. A group of
LISP S-expressions should also te prepared to command the LISP
interpreter to dynamically install the load module output of the
link editor and to redirect locations within the code to point to
dynamically allocated storage areas. When the LISP system itself
is link edited, a symbol table, preferably called LISP.STB, is
createa so that later global re1erences within user code to fixed
locations within the LISP s)stem may be resolved by the link
editor.

The following example, prepared for use with DEC's DOS
MACRO assembler and LINK link editor, explains how to carry out
this prodedure. A similar procedure under UNIX using the UNIX
II a s It aSs em b l era n d "l dill ink - e d i to r c 0 U l d c rea tea s i mil a r loa d
module. Suppose a LISP function UMI~ is desired that returns an
unsigned minimum of an arbitrary number of integer parameters.
If no parameters are supplied, linus one (-1=177777 octal), the
largest unsigned two's complement integer, ;s returned. Such a
function, U~INt woulo be relati~ely lengthy and slow if written
as a LAMBDA expression since unsigned comparisons are not
(currently) ai rec.tly supported ty the LISP interpreter. ,. fast,
machine-encodeo UMIN would not need to create binding nod~s and
could assume the validity of parameters unlike interpreted LAMBDA
elCpressions. A second function, UlESSF, an unsigned-Less-than
predicate, can also be defined beside the same code. Assume that
the COde below has been placed in a DOS file labeled "U"'IN.PAl".

45

Figure 13 - Assembler Source for UMIN and UlE~SP ExampLe •

. ,

;
;
;
UMl N:
AODRSS:

lOO P:

lAB~L:

;
;
;
Ul E SSP:

RETURN:
;
;
;

• Gl OBl
.GlOBl

UMIN ,UlESSP
TRU,NIL

iE.lIternali zed definitions
iExternal references

find unsigned minimum alTong integer parameters.

MOV (PC).,RO ; L ca d -i mme d i ate a pointer to -1
• WO Q D 16 uO 11 ;P laceholder for pointer to -1
Sf(lASE L i J l.mp to e "d of loop
CMP (Ru) ,@-CR4) ; C ~e c k a r9 from value stack top
BlO S LASE L ; - ') This a rg i s not smaller
MOV (R4),RO ; C l. r r en t a r9 ; s smaller
CMP f<4,R5 ; First a rg reached?
BHI LOOP ; N c, -> mo re a rg S to compare
RTS PC ;Re -> minimum arg

Unsigned-less-than predicate

MOV UTRU,RO ;Assume true = T'
CMP 01- (R it) , @- (R 4) ; I s 2nd arg > 1st arg?
BHI RETURN ; - ') Yes
MOV #NIL,RO ; N C, re t ur n NIL for false
RTS PC ;T or NIL is returned in Rn

Taole of offsets to dynamically allocatea addresses

• WO R D o iMarker for beginninq of tabl~

• IIrWO R D AODRSS-UMIN ;Offset of pointer from code start
• EN D UMIN iAry transfer address is ignored

The user cod~ must be position-indepenaent. Program
counter (PC) relative references (mode 67) to the data space and
to loccltions within the IISP interpreter code should not be made.
In particular, subroutine calls to the LISP interpreter must be
mad P. ina b sol lJ t e (.. 0111") "I 0 d e (3 7), rat ~ e r t h ,a n i nth e ubi qui t 0 u s
relative mode found in much assembly programming. However, ref
erences of the· user code to itself, such as subroutine calls,
should be relative. Storage packing rOLtines may move the abso
lute loeat ions ot groups of cede. The changes in location wi II
only be reflected in the address portion <*COR) of the LINKER
nodp.s that reference t'he user code areas. Hence referpnces from
one user code area to another ml.st only be make throuqh LINKER
nooes.

A table of offsets to references must be provided at the
end of each user cod~ area. The first word of the tabLe, that
must b~ provided even if the rest of the table is empty, is zero.
Any entries that follow are offsets fro" the start of the code
area to addresses within instructions of the I-space that refer
ence S-expressions that must be dynamically allocated by the IISP
interpreter. In the pr~sent example, the word at the label

46

"AODRSS:" is identified in the table by the offset, "ADDRSS
UMIN~. This MOV instruction operand is assembled as 160011
<octal) so that if the code is used before the proper dynamic
st~rage allocation is complete, a hardware byte error trap will
occur. Furthermore, the address 160011 (octal) in D-space has
type SYSTE~. Hence, the garbage collector will not attempt to
mark the location specified as an in-use S-expression. The word
will eventually contain the address of an INTGER node whose con
tents are a t~o's complement minus one (-1 = 177777 octal). The
D-space references to NIL and T~U are net included in the table
since they have permanent locctions t~at are externally defined
; n t he s y tnb 0 l tab l e til I S P • S T B II • The ref ere n c est 0 NIL and T R U
can be resolveo oy the link editor before loading the user code.

An avai lable program, INTRANSLATE", provided with UNIX
ppLISP, can convert most of thE syntax of DEC PAL assembler pro
gra",s into the syntax of the U"IX lias" assembler. The above
source code tor the UMIN and LLESSP example could be translated
by "TRANSLATE" or or;ginally written wi th the syntax used by the
lias" iassembler. Under UNIX, the following shell command inter
preter instructions could assemtle the code, print an external
name list, and resolve external references. In this example, the
UN I X ass e mb l e r sou r c e i s n a m edit u m ; n • a .. ; nth e CUr r e n t d ire c tor y ,
the lisp symbol table is named "/lib/lisp.stb'·, and th~ output
pro d u c e dis l a tJ e l e (J .. um in. 0 .. i nth e cur r e n t d ire c tor y • The UN I X
l ; n k -e d; tor .. l d" use s the s qua shop t ; 0 n, .. - s ", too mit pro due i n 9
any s YlRb 0 l tab l e or relocation t: its.

Fiqure 14 - UNIX commands to assemble and resolve UMIN example.

: - Assemole source code
as umin.a
: - Produce name list from object module
: - in 3 columns on the line printer
nm a.out I pr -h "UMIN symtol table" -3 > Idev/lp
: - Link-edit removing symbol table and relocation bits
lo -s a.o~t Ilib/lisp.stb
: - Rename load module
mv a.out umin.o

In the example. the user cooe could be assembled and
linked in DOS bATCH mode by the following commands.

figure 15 - nos Commands to LINK and Assemble lIMIN E:xample.

SRUN MACRO ; Assemble
#SY:UMIN.OBJ,lP:<SY:UMIN.P~L

$kUN LINK ; link Edit ~ith·start of code at zero.
II S Y : U'" IN. L D A, LP : <S Y : U MIN. 0 E J , Ll S P • S T B (1 , 1] J B : C IE

,.

47

D05 incluaes a 16 (20 octal) word commur1ications directory (COMD)
as the first record of load modLles. The COMO is normally loaded
into core ana then overwritter. In order to avoid interference
with the dynamic code loader (*OEPOSIT) by the COMD, the user
code loaded must be at least 16 (20 octal) words long, under DOS,
so that the COMO may be comrletely cverwritten. The "BOTTOM"
switch, 11'8:0", must be specified to the DOS link editor so that
the virtual stdrt (bottom) of the user code is at zero. The LISP
loader (*DEPOSIT) expects the load module to be in DEC's PDP-11
absolute loader format, that the DOS liflk editor provides. The
format includes a transfer address record at the end of the
mOdule. The LISP loader (*DEPOSIT) uses the transfer address re
cord to signal the end of user code. E~actly one address offset
table as described above must exist at the end of the combined
link edited user cOde area. If several Object modules are
included, the offsets in the table must be computed from the be
ginning of the entire user code area, not from the start of each
inaividual moouLe. If paddiny words are needed to make the user
COOE' area at least 16 (20 octal) words long. the padding must
pre c ed e t he of f se t tab l e •

In the example, the printed outPLt of the DOS link ~ditor

should be consulted to find the offset of the secondary entry
point, ULESSP, from the start 01 code;, UMIN. The name list pro
duced from the above examplf under UNIX by the " nlll " processor
lists the location of the seconcary entry point. In this case,
the offset found, 22Q (octal in LISF notation), is used while
preparing a set of LISP S-expressions to create bindings and al
locate the S-expressions referenced by the code through the table
of offsets. Assume the followirg S-expressions are placed in the
DOS file "SV:UfJ,IN.lSP" or the U~IX file "umin.lsp" in the current
oirectory.

Figure 16 - $-expressions to Bind and Allocate UMIN Example.

?Comment - Create primary function binding and load code.
(CSET~ UMIN (*OEPOSIT 'UMIN»
?Comment - loaa module cOLld be pLaced here
?Comment - Create secondary funct ion binding
(CSETQ ULESSP (*ORG UMIN lMIN 22Q»
?Comment - InstaLL INTGER node for -1 using 1st offset, -2
(*E~IT UMIN OQ -2 0 -1)
(PRINT "U~IN and UlESSP leaded")

48

The following commands would then: start LISP under DOS,
associate logi cal fi le numbers to fi les, read the code and create
pointers to it, and close the files.

Figure 17 - DOS Commands to Load UMIN and UlESSP Example.

~RUN LISP; Invoke the interpreter from system file area
<OPEN nUMIN.LOA" NIL 4) ? Load moaule file
(OPEN "UMlr~.LSP" NIL 5) ? S-expression file
(LOAD 5 4) ? S-exp file closed as end reached
(CLOSE 4) ? Close lead module file

• • •

A similar sequence of U~IX commands can also read the
coae, c,.eate pointers to it, anc resolve dynamic references.

Figure 18 - U~IX commands tc loao U~IN and ULESSP example.

: - Invoke LISP with prompts
lis p +
<{LAMBDA (FILE-NUM) ? Internal LAMEDA

(LOAD "umin.lsp" FILE-NUM) ? Open, read-eval, close
(CLOSE FILE-NUM)} ? Close binary input

(0 PEN .. u n, in. 0 II) > ? 0 pen sec and a r y, bin a r yin put f ; l e

The assembleo uSer code woUld t~en be ready to use.

49

This relatively short user code
gen~rated by the following sequence of

sequence could
S-expressions.

also be

Fiqure 19 - S-expressions for Cirectly Generating UMI~ Example.

(CSETQ UrtllN (*BEGIN UMIN»
(* E ~ ITO 1 270 OQ)
(* e'" IT 0 -1)
(MAPC (

000403Q
021054Q
101401Q
011400Q
G2040SQ
101373Q
G00207Q

) *E,.,I l)

(CSElGi ULESSP (*ORC, UMIN»
C*e,.. IT (LIS T

G12700Q
(RPLACA CQ 'T)
CJ25454Q
101002Q
01 270 OQ
(RPLACA LQ 'NIL)
000207Q

) *E~IT)

(*8EGl~ UMIN)

? Mev (PC). ,RfJ
? Lccation(-1) <Note 2 args>
? Generate the rest of UMIN
? B h LAB EL
? LCOP: CMP (RO),@-(R4)
? BlOS LABEL
? MeV (R4),RO
? LABEL: CMP P4,R5
? B l11 LOOP
? R TS PC
? Ore arg calls to *EMIT

? Generate code for UlESSP
? Mev (PC)+ ,RO
? Octal val~e of 'address of T
? C~P @-(R4),@-(R4)
? B tH RE TUR ~
? MCV (PC). ,Rn
? Octal val~e of address of NIL
? R ET URN: R T S PC
? O~e arg calls to *E~IT

? Close code area

For longer sequences of code the direct generation method becomes
imp rac ti cal.

3.3. Compiling LISP S-expressicns into Machine Code.

The LISP compiler, COMPILE, may convert LAMBDA expressions
into machinp code placed in the USER-moce, writable-I-space area
of PDP-11/45s and PDP-11J70s. Compilatle LAMBDA ~.pressions may
be constant ly (glooally) bound to varia~les, SYMBOLic atoms; used
in a special form or macro defirition; or included as a property
value. The LAMbDA function definitions may include macros, spe
cial torms, compile-time expressions, and LAMBDA and LAMOA
(without a "~") expressions passed as internal functions to
functionals. Sometimes, the user must provide additional infor
mation concerning variables -- in particular, whether the vari
abLes are constants; strictly fermal parameters; or fluid vari
ables accessible from thp. s)stem association list, AlIST, the
deep binding e"vironment. The resulting code is faster and re
Quir~s less O-spdce, but omits muc~ of the validity checking of
interpreted coc~.

50

3.3.1. Compiler Invocation.

The compiler must be loaced before invocation. Urider DOS,
if the filt:' "SY:C.OHP[1,1JII contains a compiled version of the
compiler, evaluating

(LOAD (OFEN "COMP"»

~ould aefine the compiler functions for use. Under UNIX, if the
file "/lisp/com~" contains a compilec version oi the cOlrlpiler,
PPLISP invoked with the shell ccmmand

lisp /lisp/comp +

loads the compit~r and calls the LISP sLpervisor in prompt moae,
or after invokin~ LISP, ppLISP could eVC3luate

(LOAD ",lisp/comptl)

to load the co~piler. The LA~BDA expression to be compilea
should be loaded and tested oefore compilation., Since compiled
COde p~rforms little of the syntax and semantics checking done on
interpreted coae, improperly formed functions may misbehave with
out warning after compilation. The com~iler, COMPILE, qets from
one to three parameters:

<COMPILE COMP-LIST DUMP-FLAG MASTER)

The first parameter, COMP-LIST, is a list of variables ana sub
lists of variaoles. Each variabLe, SYMBOLic atom, in the list
must either constantly (globally) bind a LAMBDA pxpression cre
ated oy calling the special fcrm lAMBrA, a specidl form created
by DEFSPEC from a LAMBDA expression, or a macro created by DEFMAC
from a LAMBDA expression. Each subL ist, containiny a least two
variables, specifies a property, the CAR of eactl sublist, whose
value 1S a LAM80A expression of each property list of the
SYM~OLic dtoms in the remairder, COR. of the sublist of the
param~ter, COMP-LIST. Although the first parameter, CO~P-lIST,
ma) not refer to LAMOA (without a "9") expressions, FUNCTION
function expressions, that captLre d tinding environment, and
fluidly bound aefinitions that the system association list,
ALIST, maintains. compiled code can hancle captured binoing en
vironments and fluid definitions. If the compiler gets a second,
non-~IL paramet~r, DUMP-FLAG, tl-e campi le,. sendS a listing of in
termediate coue, pseud~-machire instructions, cr~at~d from the
S-expressions to be converted irto machine code, to the current
output file. If the compiler gets the third parameter, MAST~R,

the compiler maY get a NIL secord paramet~r as a pLaceholoer to
avoid listing intermediate ccde. Without a third parameter,
MASTER, the co~oiler begins a new area Gf writable I-space, of
which the I-space address, *CDR, ota mas~er LINKER indicates the
start, dnd the compiler plaCES the machine instructions conti
guously into the I-space area. With the third parameter, MASTER,
a master funct ian LINKER for the code a rea just generated but not

51

finished, the compiler continues compilation into the current,
I-space area. The compiler may place seperately compilea but mu
t u all y ref ere n c i n 9 f un c t ion sin a con t i guo usa rea t 0 ins u r e cor
reet dumping by the Pretty Printer. When the Pretty Printer out
puts compiLed coae to a fiLe, the variable binding the master
LINKfR for eaeh compiled code area should precede any other vari
ables bound to secondary entry points within pach area in the
first parameter, the dump list, of a single Pretty-Printer call.

After all compilations are complete, the function EXCISE
with no parameters, oefined ~it~ the compiler

(E)(CISE)

removes the compiler, associatec flags, properties, and functions
from gdrbage collection marking. EXCISE returns some space for
USe in new S-expressions and reduces the frequency and len~th of
garbage collection.

3.3.2. Fluid variab lese

The com~iler returns a list 01 ~ariabLes that it found
without a constant binding, without a fluid marking flag, and
without a declaration as a formal parameter directly accessible
to the current function environ"ent. A II tree variables that the
comriler encOunters should either have a fluid marking or a
constant binaing. If a variable is not declared as a formal
parameter in the ar9ument lists of the nearest surrounding PROG,
LAM80A, or LAMOA expression, a ~ariable is free. The compiler
may treat a ~ariable declareo as a formal parameter of an outer
expression, but strictly definec as tree in an inner LA"'8DA
expression, as a formal parameter ~ithout needing a fluid
marking. In particular, the compiler uses formal parameters
frep.ly referenced ~ith an internal LA~BOA (or LAMOA) serving as
the first member of a list in a calling sequenct.'

<LAMBDA (FRI:E) • • • ({LAMBD P () • • • f~EE . . .}) • • • >

ana serving as the in-line function parameter of the system oe
fined functiondls (functions gettinq functions as parameters)

DUM P, I ~ TO, lIS P, MAP, ,.1" PC, 0 B LIS T, 0 N TO, and PRO P

as fermal parameters without needing a fluid marking.
compiler compiling the function csefined by

Thus the

{L A JIll B D A (X) (P ~ 0 G < Y > < I N T 0 X {LAMBDA (Z) (L I S TX Y Z)}»}

woula treat all of the variabLes X, Y, and Z as formal parameters
even though X ana Yare free within the innermost LAMAOA. The
compiler allocates a run;"time posi'tion on the interpreter value
stack for formdl-pardmeter variables without d fluid marking.
The compileo eoae generated frcm the specialized inte~nal LAMBDA
expression used within some system functionals can directly find

52

the location of free vdriables lIsed as formal parameters by know
ing the number of subsequent values pushed onto the value stack.
Com p ; led cod ere 1 e re n c ; n 9 for mal par am e t e r s wit h 0 u t flu i d Mar k ; n 9
creates no binoing pairs on the system association list, ALIST.
Indeed, the formal parameter ~ariable neeD not be defin~d after
compilation. lhe binding of flLid variables occurs as name-value
pairs on the system associat;on list, AlIST. All for~al para
meters of interpreted functions receive such fluid bindings.
Likp interpreter functions, compiled coce calls the LISP inter
preter to create fluid bindings. If the variable has a previous
constant binding, the interpreter outputs a message

wARNING, (NAME • ~ALUE) BINDING HIDDEN

where (NAME. vALUE) is the att ribute-value pair, since the in
terpreter references the pre~ious constant binding before the
newly created fluid binding. If compiled code does not treat a
variable marked fluid as a forlal parameter, compiled code calls
the LISP interpreter to create, access, and 'alter fluid variable
bindings. If SET or SETG attempts to create a new fluia binding
but cannot fino dny marker estatlished t:y a LISP. supervisor on
the system association list, ALIST, such as during start-up load
ing under UNIX, the interpreter terminates in error ClOT under
UNIX). If the interpreter attewpts to access a fluid variable
with no binding, the interpreter first generates an internal
error -8, as if' evaluating

(ERf10R -8)

that a previously invoked ATTEHFT may use to restart evaluation.
Otherwise, if no ATTEMPT catching error -8 is active. the inter
preter outputs the message

WARNING, X IS UNBCUND

where ~ is the name of the fluio variable, solicits a replacement
by outputting the prompt

He l p:

ana then reads and evaluates the replacement expression. If com
pil~o code expects a variable tc have a constant binding, the
coae will use the value in the constant binding part of the vari
able (*CAR) regardless of a~y other fluid bindings and of any
unaefined stat~s of the variable. If the unbound constant var;
aole was to have provided a functio~ definition to a function
call, usually oecause functions present during compilation have
not been re-loaded with compileo code, the location referenced by
the spurious f~nction call will produce the cryptic Message

WAR ~ IN G [? 0 Q) I S NO T A F'U NeT ION

will prompt for a new function ty outputting

53

Help:

and will read, evaluate, and use the requested function in the
compiled function call. Variables used by compiled code should
be marked fluid if they may be ~nbound ~hen compiled code is re
loaded, i1 they are treated as tree variables without constant
bindings, or if the interpreter needs tc find their binding on
the stack. For example, the first parameter of SET or any vari
able referencea in an explicit call to EVAL, the interpreter,
should be marked fluid. The functicn FLUID included with the
compiler, puts a fluid marking cn each variable member of the
parameter, a list:

(FLUID LST)

Th~ function U~FLUID, also inclLded with the compiler, removes
any fluid marking of each variable ~ember of the parameter, a
list.

<UNFLUID LST)

3.3.3. Compiling the Execution Sequence.

Compilea code limits the use of PROG labels and the RETURN
function used .ithin PROGs. lr interpreted expressions, when
calling the bO special form, the interpreter searches for the
unevaluated GO parameter, an atomic symtol, within the parameter
list of each surrounding PROG expression list ·until finding the
parameter, which is a PROG Label, or reaching a level of LISP
supprvision, regardless of the depth of nesting of function call
construction. Ho~ever, the ~om~iler wi II correctly generate code
for the GO special form only if a compi led PROG calls the GO spe
cial form at the top level or within nested calls of the CONO,
AND, OR, or DO special forms and provides the GO parameter as a
label within the P~OG body. The GO special form may also be
nested within one call of the ATTEMPT special form as part of an
ATTE~PT alternative. After compilation, a PROG no longer uses
the atomic symbol, the PROG label, that served as a placeholder
for GO searches. Th~s a GO special form external to a compiled
PROG may not access the location indicated by the former PROG
label. The co"piler converts RETURN function calls within PROG
expressions into in-line machine code. A RETURN function call
performed by a function ca.lled ty a compilea PROG special form
but external to the definiticn of the PROG body will not cause
actions within the compiled PROG. Inst~adt the RETURN function
produces a return from the nearest surrounding interpeted PROG
special form or LISP supervisor call.

3.3.4.

The compiler evaluat~s scme expressions while compiling,
using the value obtained ther, rather than generatinq cOMpiled
code to evaluate the expression. The f~nction ~ANIFfST signals

54

to the compi ler that the ex~ression that the interpeter ~ould
evaluate to pas~ to MANIFEST as a parameter .s to be evaluated by
the comp i le r:

(~ANI FEST EXP)

In particular, many function definitions within the DEBUG package
use the MANIFEST function. Thus even though the DEBUG package
coulo apply BREAK to a function used internally, the compiled
DEbUG ~ackage ~ses the orignal cefinition of its internal func~
tions without BREAk applied. This avoids using functions on
which bREAK was appLied for tracing. Otherwise, compile~ code
would reference the defining atomic symbol each time the code
needed the function definition.

The compiler evaluates macro calls passing the unevaluated
parameters. Ho~ever, unlike the interpreter which then evaluates
the e.press;on returned by the "aero call, the compiler COMpiles
code for the value of the .aero call. Thus macros which DEFMAC
creates can create a new expression from their unevaluated para
meters that can be interpreted or cowpiled at each invocation.
For example, a macro that incre,ents its parameter could be cre
ated by the following:

Figure 20 - DEFMAC AOo1MAC example.

{OE FHA C A DO 1MAC
(LAMB OA (ARG)

(L IS T
'-SETQ

? Define macro
? with one unevaluated paraMeter
? that creates a new expr~ssion
ARG (LIST ~ Replace paraMeter

'AOD1 ARG»)} ? as incremented

With the AD01MAC macro defined, when the compiler encounters the
S-expression

CAO[)1MAC x)

the COMPiler generates code for the e.press;on

(SET Q X (A DD 1)(»

as if the latt.er expression were usea instead of .the forlhPr.

55

4. References.

Bell Laboratories, ~~I! e!:2g!2mm~!::! ~~Q~~l£ Sixth Edition,
Murray Hill, New Jersey, 1975.

Diyital Equipment Corporation, I IUf ~Q~Lea!~~ tl~ng~Q2!% DEC-l1-
ODbHA-A-D, Maynard, Massachusetts, Apr; l, 1974.

Digital Equipment Corporation, ~!11:~
~2io!tO!O~~ ~gQ~~l~ DEC-11-HK1CA-C-D,
Nov P mb e r, 1 974 •

~~mQ!~ ~gD~g~m~D! Yoi!
~aynard, Massachusetts,

Digital Equipment Corporation, eQe:l1 ~!eft !2e~ ~Q!!~!!:f
e.[2g!:~mmiog !i!!HHH12!.l Maynard, ~assachusetts, 1973.

Digital Equipment Corporation,
Maynard, Massachusetts, 1975.

Digital Equipruent Corporation,
Maynard, Massachusetts, 1974.

B. W. Kernighan, UNIX For Beginrers, Bell Laboratories, Murray
Hill, New Jersey, 1974.

D. E. Knuth. !b~ !.!! Qf ~Qm~Yl~! e!Qg!:gmmi09.l Vol. 1:
Fundamental Algorithms, pp.
Company, 1969.

417-420, Addison-Wesley Publishing

w. ~. Lay, D. L. Mills, M. V. Zelkowitz, Design of a Distributed
Computer Netwcrk for Resource Sharing, ~!!! £Qm~ul~! ~~!~2!!
~~~!.~!!! £2D!f!~Q~~.1. Huntsville, ~labama, April, 1973. 

w. ~. Lay, D. L. Mills, M. ~. Zelkowitz, Operating Systems 
Architecture for a Distributeo Computer Net~orkt E!Q~~~QiQg~ Q! 
!~~~!~£~ fQQ!~r~Ok~ gO ![~Og~ gOQ aQ~li£~liQO~ 2! ~ioi:~QmQYlfr 
t!~l~Qc!S.~.1. Gaithersburg, Marylanc, April, 1974. 

J. McCarthy, P. ~. Abrahams, D. J. Eowards, T. P. Hart, ~. I. 
Levin, L!~E 1~~ e!Qg!2!m~!:~ ~~Q~~lL The M. I. T. Press, 1q62. 

E. ~orman, Ll§e£ Academic Com~~ting Center, 1210 West Dayton 
ST., Madison, ~isconsin 53706, ~pril, 1 C;69. 

E. r..orman, Unpublished report on 
Academic Com~uting Center. 1210 
Wi scan sin 53706, 1 974 • 

D • I; • R ; t c he, y ~!! A ~ ~ ~ ! b 1 ~!: 

1 1 ~8 
We st 

LISP 
Day ton 

LaDoratories, ~urray Hill, New Jerse~, 
8~!~!~D~t 
1975. 

implementation, 
St., Madison, 

Be II 



56 

D. M. Ritche, K. Thompson, lhe UNIX Time-Sharing System, 
t2mmun!'~li2Ql 21 lbl Ak~~ Vol. 17, pp. 365-375, July, 1974. 

H. Schorr, W. M. Waite, An Efficent Machine-Independent Procedure 
for Garbage Collect;on in Vario~s List Structures, 
~2!!~ni~!ligo~ a! Ih~ A'~~ Vol. 10, pp~ 501-506, August 1967. 

G. J. Sussman, T. Winograd, ~i~r2:fl!QQ![ B~!~!~O~f ~!DYil~ 
PLNR.McM 226, Stanford, California, April, 1971. 



57 

'5. Appendi ces • 

5.1. Available Operating Systers. 

PDP-11 VlISP is available ;n several versions. The major 
differences between them are the operating systems and machines 
which house VlISP. The coding cf the interpreter is nearly iden
tical for all of the versions. The roster of operating systems 
follows in historical order. 

5.1.1. Stand-Alone Systems. 

In the absence of a reLiable, available, operating system 
to develop VLISP, a rudi.entary operating system has been used. 
The stand-alone operating systew is a class project for a data 
concentrator that was modified and rewritten. The system is 
loaded into core by a bootstrapping process. Once in core it ex
amines how much core ;s available (at least 16K and up to 32K 
words) and which communications device is present (DC11 or Dl11). 
The system then continues using only what has been found. 
Programs may be loaded or printed out using either the console 
teletype, or one communicatiors device, or a combination of the 
two. A small aebugging package is avai lable to examine and alter 
absolute core locations with the console teletype. This permits 
patches to known bugs and trial corrections to problems with the 
interpreter coce. Program patches should be made using the fa
cilities of the LISP language. 

The stand-alone system is available in several for~ats. 

5.1.1.1. CIMSES - Canberra Magretic Tape SYstem. 

VLISP is available on magnetic tape cartridge used by 
CIMSES (Canberra Magnetic Ta~e Operating System). At present 
VLISP is kept on a separate cartridge ty the author. Perhaps 
later, when a more finalized ~ers;on is produced, VLISP will be 
inc lUded as a proces sor on the system tape. 

5.1.1.2. PDP-11/45 with Disk. 

VlISP is avai lable on the disk cartridge of some machines 
and the fixed disk of others. The system is loaded and run with 
the appropr iat e di sk loader. 

5.1.1.3. PDP-11/40 with Disk. 

VLISP is available on the cartridge disk of the PDP-11/40. 
An effort has been .ade to keep PDP-11 VLISP downward co.patible 
with the pop-11/40. However, the protection of separate instruc
tion and data spaces is not pro~ided on the PDP-11/40. Moreover, 



58 

the audress space available for data on the pop-11/4C is ulti
mately more restricted, even if virtual memory could be provided. 
Thus future versions of the operating system may not support 
VLlSP on the poP-11/40. 

5.1.1.4. Paper Tape Software S)stem. 

A COpy of the DEC progran OUMPAB (Dump in Absolute Format) 
can be appenOec to the code. This woulc enable paper tape abso
lute versions of the system to be prcduced for systems without 
op era t i ve mas sst 0 rage. I) u e toe op y rig h t res t ric t ; 0 n 5, the, 
program OUMPA~ may not be transmitted to systems outside the 
University of Maryland. 

5.1.2. Virtual Operating Syste. <VOS). 

The original intent was to ~rite VlISP for an environment 
with virtual acdress space and cooperating processes. The inter
fac~s of the vlISP interpreter have been designed to be compati
ble wlth the DeNlvOS (Distributed Computer ~etwork/V;rtual 
Operating System) being developed at the University of Marylanu. 

5.1.3. Disk Operating System (rOS). 

A VOS emulator exists for use between the VlISP interpret
er and DEC's Disk Operating Syste~ COOS). The pmulator inter
cepts the TR~P instructions ~iven by the VlISP interpreter for 
I/O ana other services. The emLlator converts the interpreter 
requests into EMT instructio~s used by DOS. Buffers. link 
blocks, and fi lename blocks are maintained in the emulator for 
use by DOS. The emulator sinulates the ne~ded features of VOS 
for the VllSP lnterpreter while providing access to the DOS file 
structure. 

5.1.4 0 Bell Laboratories' UNIX Operating System. 

Bell laboratories~ UNIX operating system can support 
VllSP. Conversely, UNIX VlISF can access the powerful features 
of UNI~ includin~ system calls and ccm~dnd-interpreter, shell' 
calls. The uNIX cperating s)stem may be extended to support a 
writceble, per-process, I-space en PDP-11s with separated I and 0 
space, so that VLI~P may support compiled S-express;ons. Another 
UNIX extension supports readirg single lines of characters from 
files up to and including the next new line character, which i~
proves the speed of VlISP character 1/0. 



59 

5.2. Using the Operating Syste~s. 

5.2.1. Bootstrapping. 

After turning on a computer the contents of core may be 
unknown or unusable. A small procedure, a bootstrap, is in;tial~ 
ty used to stdrt up whatever operating system is to be used. 
Hopefully, a hardware oootstrap will be available or the boot
strap will already be in core. If not, the bootstrap can be en
tered using the switches on the front of the machine. A listing 
of the CIMSES bootstrap is incl~ded at the end of the CIMSES sys
tem documentation. The 24K CIMSES bootstrap starts at 137720. 
For 16K core machines, the disk bootstrap starts at 77740, for 
32K at 157780. The disk should be po~ered up after the system, 
then the run-lcaa switch moved to the rLn position. Wait for the 
run light to go on (in less thar a minute). (Power down in re
verse order.) The DEC paper tape soft~are handbook contains the 
paper tape bootstrap and procedLres. The tape and disk boots
traps are startea bY the following procedure: 

A. Make sure the console teletype is online and the disk 
or tape reader is on. 

B. Put the HAL T-ENAALE key in t he HAL T (down) pos it; on. 
C. Place the bootstrap start address in keys. 
D. Press the load address key 0" the console. 
E. Press the START key. 
F. Put the HALT-ENABLE key in the ENABLE (up) position. 
G. Press the continue (CaNT) ke). 
H. If nothing happens, start ever after checking the 

bootstrap for errors; otherwise, the loading operation can begin. 

AlternativelY an RK11 disk' can be bootstrappea ty the fol
lowing proceaure on PDP-11/45s .. ithout loading an 'in-core boot
strap program. 

A. Put the HALT-ENABLE key in the HALT (down) position. 
B. Put zero (0) in the keys and press the START key. 
C. Put 777406 (Word Court Register) in the keys and press 

the load-address key. 
D. Put 777000 (Negat ive of Word count) in the keys ana 

lift the DEPOSIT key. 
E. Put 7774Q4 (Command Register) in the keys and press 

the load-addre ss key. 
F. Put n00005 (READ dnd GO) in the keys and lift the 

DEPO~l T key. 
G. Press the EXAMINE ke); bit 15 of the aadress display 

should be off. 
H. Put the HALT-ENABLE key in the ENABLE (up) position. 
I. Press the CONTINUE key. 

5.2.~. Stand-Alone Systems. 

The stand-alone systems aiffer only in the medium on which 



60 

they are housed ana the method "sed to load the'm. 

5.2.2.1. Loading and Running the Loader. 

After the bootstrapping ~rocedure, the following proce
dures wi II loao and run the loacer. 

5.2.2.2. Cartridge Disk Systems. 

A. If the system types I'READY TC DIAL" or "WAITING FOR 
CAR R IE R II s 0 met e l e p h 0 n e con nee t i on m u s t be mad e ..,; t h the a p pro -
priate device, ~ither DC11 or uL11. Any terminal may be called 
or p.ven another computer. 

a. If the system types "SELECT SPEED ••• It typ~ "0" for 
110 baud lines, "2" for 12(0 baud lines, or "3" for ~OO baud 
lines. 

C. The system must he irformed of the location of the 
program on disk. This is currently sector 5000 or 5100 on the 
cartridge, unit G. To signal this type All-MODE A. The system 
wi l l re s po n d 0 Y Que r yin g U, F, and the n D. Aft e rUt y pe I. () II for 
unit O. After F and D type the starting sector location (5~OO). 

D. To start the loading operation type ALT-MODE L. 
E. If the system asks fer a loader disk address use 16 

(at present). 
F. wh~n the system asks for a loader address. type 

carriage return or any address higher than the highest address 
load~d, currently 44210. 

G. When the system halts at an address near 22570. the 
VLISP int~rpreter has been loaded. 

5.2.~.3. CI~SES - 24K Core. 

A. Ensure the CIMSES 24k system tape is mounted on unit 
1, the leftmost tape drive. 

8. If the system is reacy to receive commands it will 
tyJ.i~ a left bracket C"[II). If ,..ot. try the bootst rap procedure. 

C. ~ount a tape containing the VLISP interpreter 
usually on unit 2. 

D. Position the tape at the start of a copy of the VlISP 
interpreter. usually pressing the rewi..,d button is sufficient. 

E. Type nRUN" followec by ar ALl-MODE to load the 
mag net ic ta pe loader. 

F. 'lihen the systpm Queries n)u"" type n?,. (if 
appropriate) ylvlnq the unit number which is positioned at the 
beginning of the interpreter. 

G. When the system halts near location 22~70. the VLlSP 
int~rpreter has been loaded. Othe"rwi se a loading error has oc
curred and the hootstrap procedLre should be restarted. 

A • 
DC 11 sand 
tel e ty pe • 

Paper Tape Software S~stems. 

loaa the paper tape absolute loader and modify it if 
telephone lines are to be used instead of the console 



61 

B. Loaa a copy of the stand-alone VLISP system into an
at her rna chi n e • 

C. After loading, the VlISP interpreter halts. Note the 
address for later use. 

D. Set 040004 in th~ switches of the sending machine, set 
the HALT switch, press LOAD ADDRESS, press START, set the ENABLE 
switch, and ~ress CONTINUE. ~ modified copy of DUMPAB (dump in 
DEC absolute format) can be pro~ided following the data area. 
DUMPAB will halt to waft for an address to begin dumping eoae. 
The code for DUMPA£j is overwritten once the .VLISP interpreter 
be 9 ; ns • 

E. Connect the two machines by telephone. If using DC11s 
a t ~ i:O baud ens u re t h at a II err c r bit sin t he i r de vic est at u s r ~ -
gisters are off and thatlocaticns 7740CO and 774004 both have 
octal 31 set. 

F. Start the absolute leader in the receiving machine. 
G. Start DUMPAB in the sending "achine. Note the stack 

ana device register queries have been preset to use a OC11. Only 
a dump start and stop location are needed. 

H. In the sending machire, put 400 in the keys for the 
dump s ta rt lac ation. 

I. Press CONT; the machine should halt again. 
J. Put 37000 in keys for last dumpea address. 
K. Press continue (CO~T); the sending machine should 

start the transfer. 
L. It the sending machire halts while the receiving ma

chine does not, the VLISP interpreter has been loaded; otherwise 
try again from the beginninQ of the bootstrap. 

M. Start tne VLISP interpreter at the address where the 
sending machine halted. 

5.2.2.S. Starting the VLISP interpreter. 

After VlISP is loaded, the kernel stack pointer is set and 
the operatinq system halts. Patches can be made at this point. 
If DC11s are to be used at 110 baud instead of the preset 12!10 
baud, the device status register reset ~alues located dt 404 dnd 
406 Should be changea from 121 to 1n1 using the switches on the 
machine. If a different device, such as a DC11 instead of a 
DL11, is to be used, the receiving and transmitting status r~
gistPr addresses at locations 4(0 and 4(2 must be chang~d. After 
any s u c h pa t c h e s h a v e bee n mad e, pre s s can tin u e (C 0 NT) tor est art 
the system and initialize the data area. The initialization 
eoue, which is used only once, is later overwritten Dy the user 
control stack. At the end of oata initialization, a HALT in
struction in user mOde occurs w~ich generates an interrupt. 

The jllegal user mode HALT interrupt is fielded by a small 
debuyging procedure that is part of the stand-alone operating 
system. When the debugger starts, it sends a message and prints 
the top 16 wor.:JS at the kernel system" stack. The first word of 
each line is the starting adoress aum~ed. When an error inter
ru~t occurs th 1S stack contains: 



62 

A. A return address. 
B. CPU registers RO to ~5 from register set O. 
C. Another return address. 
D. The stack pointer for the previous mode. 
E. The program counter (PC) of the interrupt. 
F. The processor status word CPS> at the interrupt. 

The val~es on the kernel stack are used when a restart ;s 
made. 

The debugger accepts co~.ands of the form: 

OP 1 0 P2 eM D • 

OP1 and OP2 are octal numbers of which cnly the last six digits 
are si.gniiicant. If an error is made while typing a number, sim
ply retype all six digits of the correct nUlnber. An unknown corn~ 
mand will simply repeat the previous COMmand. The second para
meter may be omitted. The command letters are: 

A - Restart using the current values on ~he stack. No 
paraaete rs are needed. 

B - Jump to location of CP1 resetting th~ kernel stack 
poi nte r to OP2. 

C - Change the contents of location OP1 to the contents of 
OP2. The old and new vaLues of location OP1 are displayed. 

D - Dump OP2 locations starting at address OP1. Each line 
printeo consists of an address follow~d by 8 du.p~d words. 

E - Restart the VLISP interpreter at its error recovery 
point. No para~eters are needed. lhe old PC and PS from the 
s t a c k are s a ve d for use by the ; n t e r pre t e r • T h u s i f the V lIS P 
interpreter ;s garbage collecting or dOing some other uninter
ruptable operation, it may restart to complete the operatiOn 
without irreparable damage to itseLf. 

At t~is point any patches may be .ade usinQ the debugger 
insteao of the switches on the machine. After any patches are 
COMPLeted, the VLISP evaluation process is initiated by typin~ 
the cOlnlRand "A" to the debugger. The VlISP interpreter ... ill then 
type a sign-on message and reQuest an expression to evaluate by 
typ; n9 : 

E\fAL: 

5.2.2.6. Changing 1/0 Paths. 

The standard 1/0 paths may be altered by COMMands issued 
at the console. Three entities May send and receive character by 
character 1/0. These entities and their logical device na.~s 
are: 

A - VLISP interpreter precess. 
B - Computer console teletype. 
C - Auxillary serial 1/0 device (DC11 or Dl11 ModeMS). 



.' 

63 

The command 

BELL LOGICAL-NAME-FROM LOGICAL-NAME-TO 

issued at any time, including the middle of a line, at the con
sole teletype, cau·ses further o\Jtput frclS' the entity specified by 
LOGItAL-NAME-FROM to be sent tc the entity specified by LOGICAL
NAME-TO. Note that if the initial speed of the DC11, 1200 baud, 
i s t 0 be c h a n9 ed, a p ro 9 ram pat c h mu s t be mad e • 

5.2.2.7. Typographical Error Ccrrection. 

While typing an input lire characters may be corrected us
ing the backspace character (BS), CONTROl/H, and then typing the 
correct charcter. Do not attempt to backspace beyond the be
ginning of a line or once the erd has been passed. The entire 
line may be. deleted by typing the character cancel (CAN), 
CONTROL/X, before any other control character that will end the 
line. After a line has been sent to the process by typing 
car ria 9 e re t urn ( C R ) 0 r so 1ft e 0 t t1 e r con t r 0 l c h a r act e r, CAN and 8 S 
have no effect on the line. 

5.2.2.8. Stopping VLISP Under Stand-Alone Systems. 

The process may be i~terrupted by typing the three 
character sequence: 

BELL CHAR ENQ 

(BELL is CONTROL/G and ENQ is CONTROl/E) 
If the second character, CHAR, is also ENG then the process may 
be stopped as is ano the debug procedure called. Control .ay be 
return to the VLISP interpreter process to continue by giving the 
command "At. to the debugger. 11 CHAR is not ENQ then the process 
will complete any garbage collection anC! return to the latest 
level of supervision using CHAR as the error type code. In order 
to send a BELL to the process t)pe two SELLs. 

5.2.3. vos. 

VOS aay be brought into core 1roa disk by first bootstrap
ping the di sk loader. Then the disk loader is used to bring in 
the VOS code. The computer ~ay then be halted, any patches made, 
and then restarted at address zero (0). Next, the following 
procedure is used to load and start the VLISP interpreter. 

A. The command language interpreter sends a period C.> in 
order to solicit the next command. Type a carriage return to end 
any current command. If after loading, the period does not 
appear, type the co •• and "TT u (ClTesT",> to receive a test Message. 
Typing CONTROL/E should interrupt any current processing and 
produce the coa.and solic;tatior, the period. If neither of 
these works, the system may need to be restarted or rebooted. 

B. Typ e the command 



64 

OpenF.030(0 LISP OLD 0 

• in order to open the existing file "LISP" that contains the in-
terpreter initialization orocedure. lhe logical number, 03000, 
will be associated with this file. Note that only the upper byte 
of this number is significant. The fourth parameter, "0", speci
fies the drive that holds the file. Since zero is the defa~lt 
value of the fourth parameter it may be omitted. 

C. Type the command 

LinK 030(1 0 100C01 

to map the segment 1 of the just opened file, 03000, to the de
f a u ltv i r t u a lad d res sO, wit h I a nd D spa c e e nab led w ; .t han e x e -
cut~ only segment and to link to the initialization procedure 
just Mapped at virtual locaticn O. This procedure assigns tem~ 
porary data workspaces, initializes the data areas, and maps the 
VLISP interpreter code segment into the VLISP interpre~er, which 
should send a sign-on message. 

After the VOS VLISP interpreter initializ~tion procedure 
has been started, the interpreter shoLld send a sign-on message 
and proceed to request an expression to evaluate by typing: 

E\lAL: 

Any patches should be made before loading, using the map segment 
(MP), display storage (DS) and alter storage (AS) commands. 
Exc~~t to make permanent patches and start the VLISP initializa
t ion procedur'e, th e file alllSP" sh ould not be used by the 
programmer. InadVertently, the data initialization or code seg
ments could be altered. Sinilarily, use of the logical f;le 
number, 03000, should be avoidec since VOS does not provide sys
tem file protection. 

The pro c e s s In a y be i n t err up ted by t Y p'i n 9 the E N Q 

character. The process completes any uninterruptable operation 
and then links to the command language interpreter that solicits 
a ccmmand by typing a period (.). The top of the user stack is 
the error code. that will be useo by the process. The process lIIay 
be restarted by the com~and "SP~, which stops the command lan
guaqe ;nterpreter and returns tc the VLISP interpreter process. 

If the ~LISP interpreter must be restarted after operator 
intervention, stack overflow, cr garbage collection failure, the 
old stocks and association list will be lost along with any SETQ 
bindings. 

5.2.4. Disk Operating System.(tOS). 

The DOS-LISP interface has been developed and tested Under 
DOS/8ATCH version d. 



65 

5.2.4.1. Gettin~ DOS VlISP Started. 

The following procedures load anc start the DOS version of 
LISP, assuming that DOS has just been bootstrapped. If DOS is 
alread) running, only the last portion of the procedure may be 
needed. Note that DOS system ccmmands wust be typed in upper 
case and that only' the first two letters of the command are 
5i9n;f icant. 

A. After being bootstrat:peo, DOS should sign 'on with a 
version number and prompt for a command with "Su. Note that the 
disk must not be write protected if the sign-on message is to 
app~ar. If another program i5 active type CONTROLIC followed by 
It K 1 L L II i nor de r to stop it. 

B • S pe c i f y the d ate and time (2 4 h 0 u r c lo c k) tot he s y s-
t em bye 0 mm and s sue has : 

DATE C4-JUL-7t 
TIM E 13: 01 : 00 

Files produced will be marked with given time ,and date. 
C. log in to the system by typing a command such as: 

lOGl~ 13,13 

The numbers must specify a user group n~mber and user number, the 
User Ioentification Code CUIC), between 10 and 376 in octal, 
known to the system file structure. ~ew UIC numbers may be en
terpc into the fi le system using the system program PIP 
(Peripheral Interchange Prograrn). If a different UIC is desired, 
other than the one currently in use, type the command "FINISH" to 
log c f f the s y s t e m b e for e log 9 i r. gin un de, ran e w n u m be r • 

D. Type the command: 

RUf\ LISP 

The above commanu brings in overlay seg.ents used in code and 
data initialization, opens the ~rimary input ana output datasets, 
and sets values used by DOS. ~her the initialization is 
complete, the VlISP interpreter signs on and requests an expres-
sion to eva lua te by typing: '. 

E\lAL: 

5.2.4.2. InterruPting, R~starting, Killing DOS VlISP. 

Once VLISP is running, the attention of the monitor May be 
obtained by s·inlultaneously stri~ing the CONTROL and .. c .. keys. 
The monitor responds by echoin£, typing a period (.), and inter
rupting any current output. One of several one-line commands may 
then be given: 

A. RES1Akl - Restart the interpreter 
point estaolished by the ~rogram. Thi's 

at the interrUPt, 
controls runaway 



66 

pro 9 ram s • Don 0 t use liB E GIN" t c: re's tar t DOS, V LIS P • 
B. PRINT - Turn console output either off or back on 

• a'ga;n. This cOllllland, which is transparent to the program, can 
eliminate excessive output. 

C. ASSIGN - Ass'ociat'e 'a ,logical nalne, for example: 

ASSIGN SY:~EWFILLSF~4 • 

This command specifies a logical port or dataset number between 3 
ana 10 'that is to ha\le the external naMe given. In t'h'~ above ex
aMple the l'og;cal-'port number 4 ,is associated with the dataset 
SY:NEWFIL.LSP on the syst'elft dev;'cet, "SY:"; with fil-enalne, 
"NEWFIL"; and with'file name 'extention, ".lSP tI

, to denote a VLISP 
c 0 (j e s ou r c e f; l e • Fur the r de t ail san d e x amp l e 5 ,c a n be f 0 u n din 
the DEC DOS "m a n u at's. 

O. KILL - This command stops the current program in a 
tidy fashion. Files are closed and an orderly return is .ade to, 
the monitor regardless of what the VLISP interpreter may have 
bee n do i ng • 0 nee "K I L III i sis sue d the pro 9 ram can not be 
restarted. 

Aft era s 'i s t e 1ft err 0 r 'm e s sag e , e • 9 • 

F345 001306 or A003 040676 

the "KILL" or "RESTART" commands maY also be given. SOlie sYstem 
er,rors, such as stack overflows,are intercepted by the 'DOS-LISP 
interface, whi'ch prints somes)stell stack values and 'returns 
direct ly to the VLlSP 'interpreter. 

5.2.4.3. Input and Output Datasets. 

The VlISP interpreter refers to input/output files or da
tasets by l~gical number. The DOS-LISP interface provides link 
and fi lename olocks. for logical numters between 1 and 10. 
Logical numbers 1 and 2 are ~sed for default input and output. 
DOS logical naMes, "COl" and "C~O", are used in their link blocks 
respectively, so that VLISP May be used in batch Mode. In in~ 
t~ractive mode the device, "KE: II

, console keyboard, is used for 
def ault input and output. T tle rella i'ning log; ca II y nUMbered' 
f'iles, 3 to 1C, use, as defaults, the system device", "SY:": 
extension, ".LSP··, to denote LISP source files; default file 
names, "311 to "10"; and DOS logical na.es, "3" to "10"0 The da
tasets may be reassigned using the ASSIEN command or by a TRAP 
instruction issued by a LISP progralt,. For exaMple, the LISP ex
pre s s; on 

(TRAP 37Q 4 "SY:OlDFIL.LSP[1,1]") 

which is equivalent to 

(OPEN "SY:OLDFIl.lSP[1,1l" NIL 4) 

will change the file name bloek to us~hSY:", ~he, syste~ device; 



67 

.. 0 L D F I L" a s the f i len a m e i ". L S p" as the e)( ten s ion t 0 den 0 t e . a 
LISP source program; and User loentification Code (UIC) "[1,1)" 
to exactly specify the entry. The first TRAP function param'eter 
gives the TRAP offset, 37Q (octal>, which specifies opening a 
file. The second parameter, in this e~ample 4, specifies which 
logical file is to be altered. The third parameter of the func
tion is a string in standard DOS COMmand string syntax. The 
standard command string drop-out rules apply: the system device 
is assumed if no device is specified and the current user's Ule 
is used if none is specified. 

5.2.5. The UNIX Operating System. 

5.2.5.1. Getting UNIX Started. 

The UNIX bootstrap procedure will read a larger bootstrap 
program that searches the file structl.re for a copy of the UNIX 
operating system whose name it cbtains by prompting with an at
sign (oa). nefore using the larger bootstrap, place 173030 in the. 
console switches so that the UNIX file struc'ture may be checked 
in single-user mode.. Usuall)l typing "unix" followed by a 
carriage return will load a copy of the UNIX operating system. 
The UNIX system, if in single user mode, will print a sign-on 
message and prompt for input with a numb~r-sign (#). Typing 
fldate .. followed by an 8-digit number giving the month, day, 
hour, and minute in pairs of digits such as 

date (7041301 

for 13:01 on JLily 4th corrects the system's idea of the time and 
dat e • 

The file structures should each r.e checked for integrity 
by t y pin g II i c n e c k" and .. d c he c k It f 0 l lowed by a raw f i l est r u c t u ,. e 
device name for each file-structured de~ice in use, such as 

#;check Idev/rrkO 

to check platter zero of an RK11 disk. If the file structure 
checks report no anomalies, the system may then be safety used in 
multi-user mode by placlng any other non-zero number in the keys, 
such as 141774, and pressins EOT (Control-D) on the console 
keyboard. Users may then log irto the system by typing the ap
propriate identifier and password in response to the "login:" 
prompt. 

5.2.5.2. Invoking UNIX VLISP. 

Typing 

lisp 

to the shell cemmand interpreter invokes UNIX VLISP in prompt 



68 

mode. In prompt mode, UNIX VlISP ou~puts a sign-on message and 
prompts for input by outputting 

E "a l: 

The VlISP invocation comMand received by the shell lIay include 
tile, names or the options plus (+) or rJinus (-). The shell c:o",-' 
.and interpreter .ay expand special characters within file name 
s t r ; n9 5 t 0 c rea tea l ; s t off i l e s • V LIS P loa d s the f i l e s ; n 
order, using the function LOAD, before signing-on or invoking a 
level of LISP supervision. Since the LISP supervisor handles 
most LISP error conditions, errors occurring during start-up 
loading usually cause an abort of VLISP (lOT). If the VlISP in
vocation gives file names, VLISF does net invoke a LISP supervi
sor until encountering either the opticn plus (+) for normal su
pervision with prompts and interrupt handling or minus (-) for 
silent superV1S10n without prcmpts or interrupt handling. When 
VLISP enables interrupt handling, the delete key (DEL) asyn
chronous interrupt causes VLISP to generate an internal err~r -3, 
as if evaluating 

which will restart the LISP supervisor if not caught by a pre~ 

viously invoked ATTEMPT. Withcut interrUPt handling, VLISP does 
not alter the previous asynchrorous interrUPt status given during 
invocation, so that VlISP-runnirg as a background process with 
the minus (-) option will not be affected by asynchronous 
interrupts. In either instance, VLISP does not alter the status 
of the QUIT asynchronous interrLpt. If UNIX VLISP gets the Minus 
(-) invocation option, or if VLISP ;s a child process of the ori
ginal invocation, VLISP suppresses the sign-on mpssage, the ex
pression to evaluate prompt uEval:'·, and the "Value:" prefi)C so 
that processes may communicate in a non-interactive mode, such as 
using standard 1/0 through a pi~e, e.g. 

>commands lisp Ilisp/pp - t lisp yourfiles? - > outfile & 

Invoking VlISP without file names or options is equivalent to us
;ng just the plus (+). with-pro.pts option: 

lisp + 



69 

5.3. Coding and AsseMoly. 

5.3.1. Assembler Syntax Differences. 

The PDP-11 VlISP interpreter is written in a modified ver
sion ot PDP-11 Assembly Language (PAL). Modified PAL can be used 
with a cross assembler on the Lniversity of MarYland~s UNIVAC 
1100 series machines. Programs written in PAL can be transported 
to other PDP-11 installations. Moreover, optimization involving 
the use of addresses, as in the VLISP interpreter, would be dif
ficult in higher level languages. 

The Uni~ers;ty of Maryland1s modified PAL is quite siMilar 
to the orginal DEC PAL. Although many of the features of the DEC 
MACRO assembly language were available in modified PAL, they are 
unused in oraer to maintain transportability. UnfortunatelY, 
some different features were used. Users outside the University 
of Maryland may have to program arouna them. These differences 
; nc l ud e: 

.TITLE in Maryland PAL provides assembly listing headings 
only. In other versions, .TITLE also provides information to the 
LINK processor • 

• EJECT in Maryland PAL has the sa~e meaning as .PAGE in 
other assemblers. .EJECT and .PAGE ccntinue the listing on the 
next page • 

• ALIGN ddvanc~s the current location counter to the next 
location that is a multiple of the power of two given by the 
parameter. .EVE~ is equivalent to 

·ALIGN 1 

The .ALIGN direct; ve was useful in deve loping the growing VlISP 
system. Its effect can be emulated by reseiting the location 
counter, provided ~roper care is taken. for example, suppose 
t hat d p re v ; 0 u s lab e l, .. FLOOR : I. , \.I ere de f ; ned 0 n a h a r d war e s e 9 -
ment boundary, a multiple of 02COOO (octal), such as at the be
ginniny of the code. The statelent 

.ALIGN 020-3 ; Align on hardware segment boundary 

would align the assembly locaticn counter C.) on the next segment 
boundary. Si~ce (in octal) 

020-3 = 015 anc 020000 = 2**015 

the location ccunter altering statement 

• = .-FLOOR+OZPOOU-1/02QOOC*02000Q+FLOOR 



70 

could replace the .ALIGN 015 statement • 

• IF begins a section of code that is conditionally 
assembled. If the parameter to the .IF statement is false, the 
cOde following .IF is not assemtled up to a matching statement 

.EHDC; End cor.d;tional assembly 

that ends the conditional assemtly area. Each assembler accepts 
a different syntax for the .IF statelllent. As an example, both 
the Maryland PAL cross assembler and DEC's MACRO assembler recog
nize the statement 

.IF NE,CPLCPl ; Assemble only if compiler used 

that ;s frequently used within the VlISP interpreter code. The 
code is assembled only if the label "CPlCPL II is not equal (NE) to 
zero. DEC's macro assembler also recognizes the statement if 
.. NEil ; s rep lac e d b y It N Z II t for net z e r 0 , w h ; l e Mar y l and PAL doe s 
not. DEC's PAL-11S and PAL-11R assemblers would only recognize 
the eq ui val ent s tate men t 

.IFNZ CPlCPl ; Assemble only if compiler used 

that is also recognized by DEC's 
Laboratories' UNIX assembler, "as", 
different, but equivalent statewent 

~ACRO assembler. Bell 
recognizes yet another, 

.if cplcpl I Assemble only if compiler used 

to begin the conoitional assembly area and the statement 

.endif I End corditional assembly 

to end the conoitional assembly area. In order to reduce the 
difficulty in transforming code for different assemblers only the 
above formats for the .IF stateuent are used. 

5.3.2. Conditional Assembly. 

The assembler source code module "TRAPS" under DOS or 
UlOtraps" under UNIX contains common definitions that are used 
with all of the assemblies_ Sevetal parameters defined by 
"TRAPS" may need to be c tanged depending upon the host 
con fig u rat; 0 n • The val u e II 0 B R S TV·I (0 u t put B u f fer Res e t Val u e ) 
should .be se t to the column width (in octa l) of the narrowest 
de~ice used for primary output, usually the console k~yboard. 

The va lues 110 (72), 12'1 C80>, cr 204 (132) may be used for KB33, 
l A 3 11, 0,. l A 3 6 r e ~ p e c t ; vel y • The f lag. .1 C P L C P l" iss e t too n e (1 = 
on) or zero (C = off) depending on whether or not, respectively, 
the compiled code functions are tobe ass~mbled as part of the 
interpreter. The compiled code functions should not be included 
with an interpreter for use with a PDP-11/40 or similar PDP-11s 
without memory-management-separated I and 0 spaces. The UNIX 



71 

operating system must be extenaed before using compiled code 
functions. The flag "PDP40" should be set if the code is usable 
on PDP-11/40s, that do not have separated I and D spaces. If 
"PDP40" is set. compiled coce should not be supported by not 
setting the flag "CPLCPL u and, l.nder UNIX, the option "-i" for 
separated I and 0 spaces should not be used with the UNIX link-
ed it or "ld". 

Conditional assembly flags specify whi~h kinds of 
floating-point arithmetic VLISP may support. If the. host PDP-
11/45 or PDP-11110 has floating-point hardware, VlISP may support 
either single-precision or double-precision floating-point or 
both, depending on the settings of the flags FPPS and FPPD. To 
support no floating-point, VLISF has the flag NFPP set. 

5.3.3. Assembly procedures~ 

Procedures for assembling each version of VLISP follow. 

5.3.3.1. Stano-Alone Systems. 

The stand-alone version c1 the VlISP interpreter and a 
small, in core, operating system are asseabled together on the 
University of Maryland UNIVAC 1100 series machines by the follow
ing control cards. The source elements are assummed to reside in 
a tile n a me d .. C ." • 

@SUSPEND • Divert the listing to a temporary file 
@PDP*11.ASM,ICDS X,Y • In~oke the assembler 
alAOD,P C .SVECS • Operating system workspace 
~ADD,P C.TRAPS • Common values 
dADD,P C.SVS • Operating system code 
~ADDtP C .PLISP • VLISP interpreter code 

.ALIGN PAGBIT ; Align on 2eOa byte boundary 
~ADO,P C.WORKS • LISP fixed workspace and tables 
~ADO,P C.ATOMS • SYMBOL, LINKER, and STRING initial data 
@ADO,P C.STLISP • LISP data initialization code 
UiADD,P C.URANUS • Operating system initialization code 

.END DRIVER; Start with system initialization 
~RESUME,P • Print the listing efficiently 

The loao module, ny", is then sent to the storage medium 
using the 1108 transmittion program PUNCH: 

aPDP*11.PLNCH,CXT Y • 

5.3.3.2. VirtlJal Operating System (VOS). 

The VOS version of PDP-11 VLISP is assemoled on the 
Maryland UNIVAC 1108 with the fcllowing commands: 



72 

QlSUSPEND • Divert the listing to a print file 
iPDP*11.ASM,ICDS X,C.V • Put load module in permanent file 

.TITLE .LISP interpreter for VOS. 
e :: .; Physical acdress of virtual origin of code 
litADD,P C .TRAPS • Comlnon values 
~ADD,P C .PLISP • LISP intErpr~ter code 

.ALIGN 20-3; Start data on segment boundary 
b = .; Ph Y sic a l a cd res s 0 i vir t u a lor i g; n 0 fda t a 
WADD,P C.WORKS • LISP fi.ed workspace and tables 
iatADO,P C .ATOMS • ,SYMBOL, LINKER, and STRING initial data 

.ALIGN 20-3; Start LISP loader on segment boundary 
~ADO,P C.LSPLD • VOS LISP loader creates mappings 
@ADO,P C.STLISP • LISP data preprocessing code 
@RESU~E,P • Print the listing efficiently 

TheVOS VLISP load module C.V can then be transmitted to 
the VOS file system. Segments 3, 2, and 1 from the VOS file 
"LISP" should be mapped into hardware data segments 0, 1, and 2, 
respectively. The transmittec load wodule is then loaded into 
these segments. Segment 2 of the file ftLISP", co~taining unpre
processed initial data, is then mapped into USER hardware segment 
O. The code (STLISP) is started at location a to preprocess the 
initial data. After a backup ccpy of the seg.ents is made, VOS 
VLISP is ready for use as described above. 

5.3.3.3. Disk Operating System (DOS). 

The fol lowing DOS system com~ands, without the comments, 
construct the DOS VLISP interpreter, for the PDP-11/40 or PDP-
11/45, assuming that the source is on the 9-track magnetic tape 
device, "MT:u. The commands below are written in batch mode for 
c l a r ; t y ; how ~ v e r, the seq u e n c e i s mo res a f ely per for m e d ; n ; n
teractive DOS mode by someone cuite familiar with DOS. Over 150 
pag~s of 132 column wide output may be produced. If the avail
able printers 00 nat support 132 coluarn print width, the state
ment 

.NlIST TTM 

must be deleted from the file T~APS.MAC using the system program 
EDIT. The amount of output may be greatly reduced by including 
the no-list switches (INl/NL:SY"') on MACRO output. If the pri
mary keyboard is used in upper-ease-only Mode, the assembly tine 

.ENABLE LC ; Use tower Case characters 

should be commented out of the source code module "TRAPS.MAC". 



73 

SJOB MAKElISP[1,1l 
$MESSAGE Mount VlISP source MAGTAPE 
$MESSAGE .hen ready type CCNTINUE 
SwAIT 
SRUN PIP; Replace lP: by kB: if no line printer configured 
#LP:<MT:[.,*JJDI ; Multiple copies are on tape 
#SY:TRAPS.MAC<MT:TRAPS.MAC ; Commo~ values 
#SY:E.PAL<MT:c.PAL ; An enc card 
#SY:LISPSY.MAC<MT:LISPSY.M~C ; Mair DOS-LISP jnterface 
#SY:LISPEX.MAC<MT:LISPEX.HftC ; XAP labels, storage. allocator 
#SY:LISPI~.MAC<MT:LISPIN.MPC ; Interface initialization 
#SY:PLISP.PAL<MT:PLISP.PAL ; Interpreter code 
#SY:STLISP.PAl<MT:STlISP.P~L ; Data preprocessing code 
#SY:WORKS.PAL<MT:WORKS.PAL; Fixed LISP workspace and tables 
#SY:ATOMS.PAl<Ml:ATOMS.PAL; SYMBOL LINKER STRING data 
SRUN MACRO 
#SY:LISPSY,LP:<SY:TRAPS,lISPSY,E 
#SY:LISPEX,LP:<SY:TRAPS,lISPEX,E 
#5Y:LISP,LP:<SY:TRAPS,PLISP,WORKS,ATOMS,STLISP,E 
#SY:lISPIN,lP:<SY:TRAPS,lISPIN 
SkUN LINK; Create load mocule and symbol table 
#SY:LISP[1,lJ,LP:,SY:lISP[1,1J<SY:lISP,LISPEX,ODT/OO 
#LISP,LISPIN/T:110000/E 
$RUN PIP; Remove the scra~s 

#SY:E.PAL,TRAPS.MAC,LISP.OEJ/DE 
#SY:PLISP.PAl,STLISP.PAl,WCRKS.PAl,ATOMS.PAl/DE 
#SY:LISPSY.MAC,LISPSY.OBJJCE 
# SY :LI SPE x .MA C, LISPEX .OBJ I DE 
#SY:LISPIN.MAC,LISPIN.OBJ/DE 
#SY:[1,1]<MT:*.LSP ; IISP system programs available to all 
#ftlT:/RU 
$ ,., E S SA G E " LIS Pis now rea 0) tog 0 

$FINISH 

11 OOT (On-line debugging) is not desired, ODTIOD may be 
omitteo from the commands to LINK and the top of code lowered to 
octal 74000 by using the switch, u/T:74COO". Note that the top 
of code specified to LINK shculd lie on a VlISP page boundary, 
for example octal 70000, 74000, or 1000CO. 



74 

5 • 3 • 3. 4 • U N I X 0 pe rat in 9 S Y s t em. 

The following UNIX shell commands when interpreted cause 
UNIX VlISP to be assembled and installed, create necessary 
directories, and compile the LISP software assuming that UNIX has 
been altered to support com~iled code. A later appendix 
(Modifying the U'NIX Operating System) gives instructions for in
stalling the UNIX ;~provements reeded tc support compiled code 
and provide reading up to the new-line character. The Module 
"lOt raps" should be edited to reflect the current configuration. 
The VLISP source must have already been read into the current 
directory, usually using the "t~" tape handler, and the LISP sys
tem software M~st have been put into a brother directory accessed 
as " •• /l". If compiled code is not available place the system 
soft~are directl~ into a new directory called "/lisp" with write 
protection set. The current user should be either "bin" or 
Uroot" • 

: - Assemble interpreter code and workspace. 
: - The assembled modules are 
• - lOtraps - Conditional assembly flags and definitions 
: - l1top - Top of code locaticn 
: - l2stlisp - Start up procedur~ 

- l3garb - Garbage collector and utilities 
: - l4spch - System special forms and basic functions 
: - t 5 s y s t - Op e ra tin 9 s y s t e min t e r fa c e 
: - l6ic - 1/0 routines 
: - l7comp - ,Compiler rcutines 
: - l8mapc - List handlers 
: - 19arth - Arithmetic functions 

- labot - Bottom of .text 
: - lbworks - .data workspace 
as L[O-b]. ; mv a.out text 
: - Assemble initial atoN definitions 
as lOtraps lcatoms ; mv CJ.out atolls 
: - Link-edit leaving only the s)Mbol table 
: - No "-i" option if PDP4D flag set 
ld -i -x text atoms /lib/liba.a 
: - Install program for lsers 
mv a.out lusr/bin/lisp 
: - Extract SYMbol table 

•• /symtab lusr/bin/lisp Ilib/lisp.stb 
: - Protect the code 
chmod 755 lusr/bin/lisp 
: - Make a directory for compiled LISP software 
m k di r It i SP 
: - Shell comMand file ccmpiles all LISP software 
•• /l/c mpall 

: - Protect compiled software, directory, and symbol table 
chmod 644 Ilisp/. Ilisp Ilib/lisp.stb 

VlISP will then be ready for use. 



75 

5.4. Distribution. 

The preferred medium of distritution is 9-track, odd
parity magtape recorded at either 800-NRZ frames per inch (FPI) 
or 1600-phase-encoded FPI by DEC's DOS system program PIP 
(Per;pheral Interchange Program) or by the UNIX magnetic tape 
handLer tltp". The files'on the DOS version include assembler 
source code, object modules. and load Modules for the VlISP in
terpreter designed for the VirtLal Operating System/Distributed 
Computer Net~ork (VaS/DCN) ceveloped at the Univ~rsity of 
Maryland, and a VOS emulator to use VLISP with DEC's DOS. LISP 
code for a Pretty Printer, a LISP S-expression editor, a debug 
package, and PLANNER are also i~cluded. Normally, copies of the 
DOS files are placed under UICs [1,1], [13,13], and [13,31] in 
oraer to minimize the possible effects of tape errors. The files 
recorded repre sent a current ve rsion wo rk ing under DOS. 

The UNI X Utp" version wi II include Multiple copies of the 
VlISP source ccae modules- The tape includes a source code ver
sion for use with the DEC PAL assembler; a source code version 
for use with the UNIX "as" assembler; "c" source code and com
piled version of a prograM, TRA"'S, to translate DEC PAL source 
code modules into UNIX "as" source code fJodules; S-enpression 
versions of the LISP software i~cluding a Pretty Printer, an S
e~pression editor, a debug package, micro-PLANNER, a LISP func
tion compiler, and a package 01 LISP operating system calling 
functions; text editor instructions to alter the UNIX operating 
s y s t em mod u l e S i .. n r 0 i f II for mat s y n ap s e s for use wit h the •• man .. 
processor; and other miscellaneous tits and pieces. The tape 
should not inc luoe usable campi led vers ions since the f lags in 
IIlOtraps" will have to be altered to conform to the current 
configuration. 

The Uni~ersity of Maryland's UNIVAC 1108 computer may 
produce other distribution media. 8ackup copies of the assembler 
source code for the VLISP interpreter, the VOS emulator for DO~. 
and the stand alone operating s)stem which also emulates VOS, 
ready for assembly by the Mar)land PAL CfOSS assembler together 
wit h the LI SP systen1 programs, nay be recorded on 9 or 7 track 
magnetic tape in one of the. UNIVAC 1108 supported formats. 
Blocked card image magnetic tapes with cdd parity may be encoded 
in 7-track-BCO or 9-track-E8CDIC. Even-parity, 7-track tapes 
should not be produced since the tape hardware truncates any phy
sical record with a zero frame, the value produced by a BCD en
cooeo ampersand (&). BCD ane EBCDIC translation also lose the 
upper/lower case Qualities of the programs. The normally lower 
case variable ndmes used by PL~NNER must be preceded by a dOUble 
exclamation siyn (!!) in code tc be read by the VlISP interpreter 
to distinguish them from upper case variables when either BCD or 
ESCOIC translation is to be Lsed. Unless otherwise requested, 
the physical recordS of blocked card image tapes each contain 720 
characters that represent nine (9) 80-character-card images. The 
approximately 12,000 card images are recorded several times, each 
copy being fol lowed by a file mark and the last copy followed by 



76 

multiple file w,arks, the logical end of tape. Tapes are normally 
produced at aOC-NRZ-FPI. 1600-~hase-encoded-FPI 9-track magnetic 
tapes and 200 or 556 FPl 7-track tapes are also possible. Since 
the PDP-11 assembler source code kept on the UNIVAC 1108 ;s in
tended for use with the cross assembler, some modification, Most
ly syntactic, may be 'needed before ~se with other assemblers, 
such as the DOS MACRO assembler. 

Tape requests should specify the meoium desired including 
format, number of tracks, density, parity, and any encoding 
method. Permissable variations on these tape parameters should 
also be specified to aLlow alternate w.ethods to be used in case 
of hardware failures. Usually a listing of one copy of the 
tape's contents and basic documentation are included. 

The material is copyrighted and may only be copied, used, 
transmitted, or altered as allowed by a copyright license. The 
license is intended to protect the syst em from unauthorized com
mercial exploitation. Requestors may prepare a sU'itable license 
for signat~re or a license will be created for them. GeneralLy, 
the l ; ce n se per mit s the s y s t em to be cop i ed, use d, ,t ran s mit ted 0 r 
alterea provided that the copyright notice is included on all co
pies and versicns created by the licensee. 



77 

5.5. ~nown Problems. 

S orne bug sst; II rem a; n • 

5.5.1. READing Floating-point ~umbers. 

The READ and TOKEN functions cannot construct floatinq
point numbers. As a temporary fix, a readmacro tor the percent 
(Xl character is included with the Fretty Printer routines. 
Before readin~ floating-point numbers, the readmacro must be 
definec, such as by loading the Pretty Printer. Once the readma
cro has been defined, floating-~oint nu~bers must be preceded by 
a percent sign. For example, 

%3.3 XO.7 X33D X52.12345E-22 43333~.333d+25 or 40.0 

may be used to input floating-pcint nUMbers. In the absence of 
floating-point read routines, PRIN2 prefiXeS floating-point 
number output .ith a percent sign (Xl so that the output may be 
re-read. Some day, the input scanner, which ~as ~ritten in the 
era of 'filCed-point-only numbers, will be re-wri,tten. Users may 
then oefine Ill" as an ignored character so that old programs may 
be usee without further difficulties. 

5.5.2. flroblems with the DOS Version. 

When using the VOS emulator on Des some problems may occur 
involving the interface. 

5.5.2.1. Attention Interrupt and Free Storage lists. 

The system may not properly restart at the latest level of 
supervision as described above if free storage lists are being 
manipulated. Tnis may occur during garbage collection or when 
allocating strings or array space. 

5.5.2.2. Too ~any Open Files. 

Although communications ~ackp.ts have been provided for ten 
files, if VLISP is LINKed close to the DOS operating system 
buffer area only a few files nay be o~en at once. When the al
lowed number of open files is e~ceeded; the DOS monitor will 
loop, probably hunting for non-existant buffer space. The system 
must then be rebooted: it carnot be restarteo from the console 
tel P. t Y P e • T h ; s con d i t ion is. e s ~ e cia. l l y l ike l yin BAT C Hmo a e , 
since the system must allocate extra buffers for the BATCH 1/0 
fil~s. 



78 

5.5.2.3. Unsuccessful Storage Allocation Looping. 

After an unsuccessful attempt to allocate storage follow
ing garbage collection the system will attempt to restart by re
setting the stacks and the association list to their initial 
values •. If this recovery is unsuccessful, it ·will nonetheless be 
attempted again. The· only~ays to halt this loop are through 
operator intervention, output file overflow, or exceeding a time 
limit •. Each attempted recovery produtes a regtster dump followed 
by the message 

NO SPAC E 

; fag a in un s u c t e s s f u l • 

5.5.2.4. Random Disk 1/0. 

Although code has been included to support random address 
I/O to contiguous disk files, it has not been debugged. 
Unexpected results may occur when using random I/O. 

5.5.3. Problems .,ith the UNIX Version. 

The UNIX version of VLISF is not without its faults. 

5.5.3.1. Number of Output Colulns. 

When UNIX VLISP is used in multi-user mode, diffprent ter
minals with ditferent column wioths may be used and the printer 
may have a cifferent column wicth from the user ter~inal. Since 
many terminals wrap excess characters around to the next line, 
VLISP may send output using the largest available column width 
without difficulty in many configurations. However, if terminals 
are used that truncate the exce 55 characters of a line, the out
put column width must be adjusted. The pretty Printer includes a 
function PP-SHORT getting one parameter, a new column width, that 
may te called to alter the maxiwum output column width: 

(PP-s ~OR T COL) 

5.5.3.2. Floating Point Simulation. 

The UNIX floating point simulator will not work with pro
grams that use separated 1 anc D spaces. It may b~ possible to 
fix the simula tor· by altering it to use the new Umfpit ll "sys" 
call. Use of the simulator for PDP-11/'O compatible code has not 
been fully tested~ 

·5.5.4. Problems using PDP-11/4(s. 

Althougn VLISP may run or a PDP-11/40 host, VlISP will not 
have enough space to ;mplement wany modest scale programs. VLISP 
has not been f~lly tested for USe ~;th PDP-11/40 hosts_ 



79 

5.6. Modifying the UNIX Operating System. 

Two improvements can be added to the UNIX operating system 
that will extend the capabilities of LISP. The· first improvement 
allows LISP to support compiled code on PDP-11s with memory 
management that support separated Instruction (1) and Data (D) 
spaces, such as the PDP-11/45. With the improvement, each pro
cess May maintain a writa~le I-space area following the 
protected, .text section of. I-space, which· processes share. 
InternaLly, UNIX maintains a writable I-space as part of the 
swappable process image following the process control section, 
the data sectien, and the stack area after a call to a new system 
call, "obreak" (overlay break). The ne-.. "obreak u system call has 
a similar syntax to the "break" system call. The lowest address 
not to be included in the requested area is passed ;n CPU re
gister RO to "obreak". If the address is within a hardware seg
ment allocated to protected cooe (.text), "obreak" creates an 
empty writable, I-space, overlay area, the initial state after an 
"exec" system call. The "fork" ope·rat tng system call replicates 
any writable I-space area, giving each process its own copy. If 
the writable I-space area requested of "obreak" cannot be 
allocated, "obreak" sets the error bit (C) on return. If the ad
dress specified falls within a hardware segment that contains 
protected code (.text) of the I-space area, "obreak" deallocates 
any writable I-space area to the initial empty state. If the 
specified address lies outsioe the hardware segments devoted to 
protected, .text code but above or bela .. the highest address of 
any previousl y allocated wr; table I-space, uobreak" expands or 
contracts the .. ritable I-space (overlay) area appropriately. 

The code extension implewenting nobreak" adds very little 
overhead. The U~IX operating s)stem does not execute most of the 
code implementing the extension until an explicit "obreak" call. 
An additional parameter to the internal routine Uestabur", which 
checks that requested data areas may te allocated and allocates 
allowable user .text, .data, stack, and. obreak configurations to 
hard .. are regi sters, is the onl) routinely used interface between 
the extension ana the rest of t~e operating system. In turn, the 
UNIX operating system calls Uestabur U usually about once per 
switch between users, a relatively infrequent event compared to 
total processing. Within Uestatur··, user processes not using 
"obreak" perfer"l less than twenty additional instructions per 
call, a negligible number. Thus "obreak" does not appreciaoly 
slow the UNIX operating system. In terms of space, in all, 
implementing "obreak ll adds only.a fe ... hundred instructions to the 
UNIX operating system, a minor space ,.eouirement. The "obreak" 
extension is compatible with U~IX used on PDP-11/40s. On a PDP-
11/40, "ob,.eak" returns with an error status, since PDP-11/40s do 
not support separateo I and 0 spaces. 



- -- -------------------------- - ------------------------- - ------------------------------- -------------------------------- --- ------

80 

tlMfpit" is a companion extension to "obreak". Although 
PDP -11 s t ha t s up po rt se par at ed 1 and D sp ace s will per mit w r ; tin 9 
into I-space with the uMTFI" (~o"e To Previous I-space) 
instruction, provided that memory management protection is 
disabled, such PDP-11s divert attempt s by the "MFPI" (Move From 
Previous I-space) instruction ir USER mode from reading the USER 
mode instruction space while separated spaces are enabled. This 
lip rot e c t ; on '1 was de vis edt 0 e nab lee x e cut e -0 n l y co de. 
Un10rtunately, the protection cannot be directly overwritten. 
Thus the umfp; t" UNI X system ca It must be used to read . USER-mode 
I-space. nMfs;it" returns, in CPU register RO, the contents of· 
the USER-mode, I-space, word location passed to Umfpit" in CPU 
register RD. If the specified location is protected fronl reading 
or if it d 0 f!I S not align on a .. 0 r d b 0 u r. dar y, .. M f pit" ret urn s- 1 , 
177777 (.octal>, but does not set the .. c .. (carry) error bit of t-he 
PS (Processor Status) register. The extension for "mfpit"- to the 
UNIX operating system entails a one-assignment-statement "c" 
function that calls IIfiuword" with;" the operating system. 
ItM1pitit executes less than 100 rrachine instructions and executes 
them only when called. 

A'1urther extension, ureadnl", r('ctifies an omission' of 
the UN I X II r pad II 5 Y s t em cal l b y ~ e r mit tin 9 lin e - a t - a - tim e i n put i n 
addition to the buffer-at-a-tirne input prov;ded by "read" • 
• IReaanl u perform like' nread" ellcept when inputting characters 
from file systeMs of block structured devices and from pipes, 
which the file system of a block structLred device, the system 
device, supports. The syntax of the "readnl" call is identical 
to :the syntax of the "read" UNI)c operat ing system call. When in
vokp.o to input characters fro," a file system, ··readnl" does not 
return characters beyond the first new-line~ line-feed character 
.(012 octal) pncountered. Like ·'read", " rea dnl ll returns a count 
of the characters returned. Thus "readnl" inputs characters as 
if they were reao from a terminal, one line at a time. without 
requiring that more characters than are needed be buffered. A 
more disconcerting s;tuation occurs when using "read" with pipes, 
since oackward (or forward) seeks are net allowed. If two pro
cesses want to read varying-lergth character data from a pipe at 
oncp, each process must input- dota one tyte per call using "rpad" 
so that each process will get the data intended for it. This in
volves excess; ve system overheac that using ureadnl" can avoid by 
doing line-at-a-time input using the new-line character as an 
end-of-line marker. 

The II rea d n l" ext ens; 0 n i 5 e con aIR it'. a l • W hen us i n g .. rea d .. , 

the " rea dnl" extension adds less than five additional machine in
structions per data- block. When reading from file systems, a 
call of "readnl" is only slightly slower than a corresponding 
call to U reao " since ureadnl u cOllpares each character to new
line. The ttreCidnl" extension should reQuire less than 100 ma
chine instructions of core space. In return for the expense of 
incorporating the "readnl" extension, ureadnl·· provides a More 
uniform method of character data handling by UNIX. 



81 

Each of the extensio'ns tc the UNIX operating system are 
distributeo as files of UNIX text edi tor tied" commands produced 
by the UNIX fi le difference processor ··oiff". The UNIX operating 
system source code files to be changed are found under the UNIX 
directories 

lusrlsys 

and 

lusrlsys/ken 

as distributed by Bell Laboratories in the sixth edition. The 
names of the fi les distributed with ppLISP suffixea by ".e n 

correspond to names suffixed with ".e" in the UNIX system source 
code directories. For example, if the system source file 

we ret 0 be c han g e d b y the e d ito r c om 1ft an C sin the f i l e 

rd .. ri .e 

with both files in the current oirector~t the shell command in-
t e r p re te r l ; ne 

(cat rd .. ri.e ; echc "w") I ed - rdwri.c 

WOUld implement the changes. ~aturally the file protection Mode 
should permit changes to the systeD source file. After the 
source code has been changed, a new UNIX configuration should be 
made following the instructicns distributed with UNIX. A com
parative listing ot the changes need for each file follow as pro
duced by the UNIX fi le difference processor udiff". The listings 
consist ot line numbers in the cld and new versions followed by 
the old and ne\ll line s to be char.ged or added. 

Changing the stack size parameters in "param.h" allows 
ppLISP to allocate the longest possible stack within the last 
hard~are segment, leaving one block at the bottom unallocated to 
enable stack overflow detection. 

F ; gu r e 21 - Parameter changes to "/usrlsys/param .h u • 

11 t 1 2c 11 , 12 
- #def;ne S S I Z E 20 1* initial s t ac k size (*64 bytes) *1 
- IIdef ine S INC R 20 1* increment of stack (*64 bytes) *1 
.** 
+ #define SSIlt: 22 1* initial s tac k size (*64 bytes) *1 
+ IIdefine S INC R 21 1* ; nc r e .. ent of stack (*64 bytes) *1 



82 

Both the "obreak" and· nreadnl" extensions require changes 
to "user.h lt

• Each extension ados new variables to the end of the 
user per process data area. 

Figure 22 - Add to "/~srlsysJuser.h" per-process variables. 

5 4a 5 5 , 59 : Aft e r 
+ char u_nlflag; 
+ 
.. i nt u_ 0 s i z e; 
+ 
+ 

u.u_intflg 
1* FLag for reading. only to 
* the "ext new line char *1 

1* Overlay, writable I-space 
* segment size. 
*1 

Changes to "sys1.c" ellbody most of the "obreak" system 
call extension. The changes also implement the .Imfpit ll extension 
with a single function. 

Figure 23 - Add "Obreak" system call in "/usrlsys/ken/sys1.c tl
• 

123c123.129 
if(estaburCts, ds, SSIZE, sep» 

*** 
+ 1 * 
+ * Inc l ude a nu II writable I-sp a ce length. RLK 
+ *' + if(estdburCts, ds, SSIZ E, se p, e» 
+ 1* .. * if(estabur(ts, ds, SSIZE, se p» 
+ *1 
145c151,157 

estabur(O, ds, 0, 0); 

*** .. J * 
+ * Inc l ud e s a null overlay segment argument. RLK 
+ *1 
+ estaburCQ, d s, 0, 0, 0>; 
+ I * 
+ * estaburCu, d s, 0, O)i 
+ *1 
159 c 17 1 , 1 79 

*** 
+ 1* 
+ * 
+ *, 
+ 
+ 
+ 
+ 1* 

estabur(u.u_tsize, u.u_csize, u.u_ss;ze, u.u_sep); 

Reset size of overlay, _ritable I-space. RLK 

u.u_os ize = C; 
estabur(u.u_tsize, u.u_csize, ueu_ssize, Ueu~sePt 

uau_osize); 



83 

+ * estabur(u.u_tsize, u.u_csize, u.u_ssize, u.u_sep)i 
+ * 1 
381 ,382c401 ,414 

*** 
+ 1* 
+ * 
+ *1 
+ 
+ 1* 
+ * 
+ * 
+ * 
+ ", * I 
+ 
+ 
+ /* 
+ * 

n =+ USIZE+u.u_ssize; 
if(estabur(u.u_ts;ze, ueu_ds;ze.d, u.u_ssize, u.u_sep») 

Include overlay segment in total size computation. RLK 

n =+ USIZE+u.u_ssizei 

Include overlay, writable I-space in size checking. RLK 

if(estabur(u.u_tsize, u.u_dsize+d, u.u_ssize, u.u_sep, 
u.u osize» 

+ *1 
387c419,422 

a = ueu_procp->p_addr + n - u.u_ss;ze; 

*** 
+ 
+ 1 * 
+ * 
+ *1 
389c424,430 

n = u.u_ssizei 

*** 
+ /* 
+ * Include size of overlay area,when moving. RLK 
+ *' + n = u.u ssize + u.u_osize; 
+ 1* 
+ * 
+ *1 
400c441,448 

n = u.lJ_SS;Zei 

*** 
+ 1* 
+ • Include the ove r lay 
+ * whe n moving them up. 
+ */ 

segllent 
R LK 

+ n = u.u 5S; z e + u.u_o5ize; 
+ /* 
+ • n = 
+ *1 
407a456,498 
+ 1* 

u.u_ssize; 

: Put at end 

OBREAK system call. 

wit h the s tac k 

+ • 
+ • 
+ * 
+ * 

Expand the writable I-s~ace, overlay area which tollows 
the s t a C k. s e 9 me n t • 
RO contains some address with~n the highest segMent to be 



84 

+ * 
+ * 
+ * 
+ *1 

allocated. 

Added by RLk. 

+ 0 b re ak () 
+ { 
+ r-eg is t era, n, d; 
+ a = u.u aru[RO); 
+ n = (Ca-'" 63> » 6) & 01777; 
+ if(n==C && a<O) n = 020(0; 
+ n =- nseg(u.u_tsize) * 128; 
+ i1(n<0) n = C; 
+ d = n - u.u_osize; 
+ ifCestabur(u.u_tsize, u.u_ds;ze, u.u_ssize, u.u_sep, n» 
+ return; 
+ a = u.u_procp->p_sizei 
+ expand(a + d); 
+ u.u_oslze = n; 
+ ifCd>O) { 
+ a =+ u.u_pr-ocp-)p_addr; 
+ while(d--) clearseg(a++); 
+ } 
+ } 

+ 1 * 
+ * 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

* 
* 
* 
* 
* 
* 
* 
* 
*1 

MFPIT System call. 
The contents 01 the locations in USER I-space given by RO 
are re turned in RD. 
Because the PDP-11/45 was designed to support execute 
only code, USER I-space may not be read with MFPI by USER 
programs, even though M1PI may ~r;te directly. 
To overcome this annoyance, the system reads USER I-space 
whi le ;n KERNEL mode. 
Added bY RLK. 

+ m f p'; t ( ) 
+ { 
+ u.u arC[RO] = fu;wordCueu_arO[RC); 
+ } 



85 

Changes to the core dumping rout ines in "sig.c" cause any 
writable I-space area to be dumped 1ollowing,the normal dump. 
Thus system debugging software is not affected by the writaole 
I-space extensions. 

Fi,:)ure 24 - Core dumping changes 'in II/usrlsys/ken/sig.c". 

190c190,197 

***' 
... / * 

register s, *ipi 

+ * More variables needed with writable I-space overlay areas. 
+ */ 

'+ 
+ 
... 1* 
... * 

register s, *ip, i; 
; nt a; 

register s, *ip:' 
+ *1 
213,214c22Q,23t: 

••• 
? / * 
+ * 
+ *1 
... 
+ /* 
+ * ... * 
+ * ... *1 
+ 
... 1* 
... * 

s = u.u_procp->~_size - USIZE; 
est~bur(O, s, 0,0); 

First .rite data and stack segments. RlK 

s = u.u procp->~ size - USIZE; - - ~" 

Include the ~ritable I-space {n the area. RlK 

estaburCO, s, 0,0): 
... ·1 
218a237,253 : A 1 te r w r i t e i ( i r:: ) ; 

+ '* + ." 

+ * 
+ • 
+ . , 
+ 
+ 
... 
... 
+ 
+ 
+ 
... 
+ 
+ .. 

COpy ar.y writable I-space onto the data and stack area, 
then write it at end of file. RLK 
The following if statement was added. 

if(a = u.u osize) { 
i ; u.u_procp->p_addr ... USIZE; 
w hi l e (a --) {' 

copyseg(i+s, i); 
i ++; 

} 

i = u.u_osizei 
estabur (0, i. 0, 0, 0); 
u.u_base = n; 
u.u_court = i * 64; 
writeiCip)i 

r 



86 

+ } 
239c 274, 281 

i f C est a bur (u .u _ t s i z e, u. u _ d 5 i z e, u. u _ s s i z e ... s i, u • u _ s e p » 
*** 
... / * 
... * 
... */ 
+ 

Include ~ritable I-space in size checking. RlK 

... 
if(estabur(u.u_tsize, u.u_dsize, u.u_ssize+si, u.u_sep, 

u.u_os;ze» 
+ / * 
+ * ifCestabur(u.u_tsize, u.u_dsize, u.u_ssize+si, u.u_sep» 
... */ 
243 c 28 5 , 2 91 

forCi=u.u_ssize; ii i--) { 
*** 
+ /* 
... * Move both stack and writable I-space up. RlK 
+ *1 
+ 
+ /* 
+ :. for ( ; = "'. u_ ss i ze i i; i --) { 
+ */ 

C han 9 est 0 .. m a in. c" en a b l e .e ... 0 r y til a nag em e nth a r d war ere -
gisters to be set up to handle the writable I-space allocated by 
"obreak l

'. 

Figure 25 - Change tI/usrlsys/ken/main .c" to allocate r~space. 

128 c 12 b t 134 
. estaburCO, 1, 0, 0); 

*** ... 1* 
... * Include 
... *1 
... 
... 1* 
+ * 
... */ 
182c186,195 

nu II ove r lay 

estaburCO, 1 , 

estabur(O, 1 , 

- estabur(nt, nd, ns, sep) 

*** 

se gment 

CJ , 0, 

a , 0); 

size RLK 

0); 

+ 1* 
... * 
... * 
+ */ 

The adoitional arguMent gives overlay s~gment size 
for writable I-space. ~LK 

+ estaour(nt, nd, ns, sep, no) 
+ I· 
... * estabur(nt, nd, ns, sep) 
+ * I 
189 c 20 2,208 

if (n S e 9 C n t) > 8 I Ins e g( n d ) + n se g C " s) > 8 ) 



87 

••• 
+ / * 
+ * 
+ */ 

Include size of writable I-space. RLK 

+ if(nse~(nt) + nseg(no) ) 8 I I nseg(nd)+nseg(ns) :> 8) 
+ I· 
+ • if (nseg(nt) > ~ II nseg (nd)+nseg(ns) > R) 

+ * /. 
192c211,217 

••• 
+ /. 

if(nsey(nt)+nseg(nd)+ns~g(ns) > 3) 

Include size of writ~blE I-space. RlK + * 
+ */ 
+ if(no II nseg(nt)+nsegCnd)+nsey(ns) > 8) 

+ 1 * 
+ * if(nsegCnt)+nseg(nd)+nseg(ns) > 8) 
+ *1 
194c219,225 

if(nt+nd+ns+USIZE > maxwem) 
*.* 
+ I" 
+ .. Inc l ud ~ size of writable I-spae e. 
+ ·1 
+ i f ( n t + n d + n s + n 0+ US I Z E > "a lC me m ) 
+ 1* 
+ .. if(nt+nd+ns+USIZE 
+ *1 
209a241,260 
+ 1* 

: After 

> maxmem) 

if(sep) 

RLK 

+ .. Set up prototypes for 1M r i tab l e I-space. P LK 
+ • The following i s added 
+ * I 
+ { 

+ a = nd-tns+USIZEi 
+ whi l e (no >=. 128) { 

+ 
+ 
+ 
+ 
+ 
+ 1* 
+ i f 
+ 
+ 
+ } 

+ 1* 
+ • end 
+ *1 
213a265,268 

*dp++ = (127 « 
*ap+ + = ai 
a =+ 128; 
no =- 128; 
} 

Finish la s t partial 
(no) { 

*dp+ + = «no -
·a p+ + = ai 

of added code. 

: Just before 

code. 

8) I RW; 

segment of writable 

1 ) « 8) RW; 

a = USIZEi 
+ I· 
+ ." Thi spa renth esi s added tor ba La nee. 
+ *1 
+ } 

I-space *1 



88 

Changes to "text.c" add an additional parameter to the 
"estabur", establish-user-register, function call. 

Figure 26 - Fix Uestabur n call in "/usrlsys/ken/text.c lt
• 

117c117,123 
estabur(O, ts, 0, 0); 

*** 
+ 1 * 
+ • 1 nc lud e argulllent for nu II writatle I-space segment. RlK 
+ *1 
+ est abu r <a, t s, 0, 0, 0); 
+ 1* 
+ * estaburCQ, t s, 0, 0); 
+ * I 

Changes to "sysent.c" adc new entry point to the system 
call tdble for the "obreak"t Itmfpit", arid IIreadnl" extensions. 



89 ~ 

. Changes to "rdwri.c" implement the ureadnl" system call 
ext ens ion. 

F ;yure 28 - Extensions to II/usrlsys/k en/rdwri .c" for II rea dnl u
• 

11 a 1 2 , 14 : Aft e r #I inc l u c e ,... 1 5 Y s t m • h .. 
+ 1* Aadeo mac ro call to support reaanl. RLK */ 
+ #include .... /file.h·· 
+ 
34a38,41 : After if(ip->i_IIIode&IFMT) == IFCHR) { 
+ '* Turn oft the read-up-to new-line flag 
+ * when using interruptable character devices. 
+ * line of code added b) RLK *1 
+ u.u_nlflag = 0; 
170a17B,199 : After cp = br;->b_addr + 0; 
+ 
+ 1* When the tlag is set by readnl, search the data about 
+ * to be transferred for a ne,,-line, line-feed character. 
+ * It found adjust the byte CGunts reQuested 
+ * to inc lude nothing beyond the new-line character. 
+ .... if II s tat ~ At en t add e d by R l II: * I 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

t = n; 
while (t--) if (*cp++ == 012) { 

/* the current number 01 bytes )et to transfer *' 
n =- ti 

1* Lower originally reqLested nLmber of bytes *, 
u.u_arg(1J =- u.u_count-n; 

/* lower total number of bytes yet to transfer *1 

} 

u.u_cour.t :, n; 
break; 

1* Rec~lculate the transfer start address *' 
cp = bp->b_addr + 0; 

} 

+ 
195a225,243 : Put at end 
+ 

+ '* + * READNL is an added system call whi ch acts like "reao" 
+ * except that it does not transfer any characters beyond 
+ * the new-line, line-feed character on a single call 
+ * to block oevices. This prcvides line at a time input. 
+ * Function adoed by RLK. 
+ *1 
...-
+ r P. ad n l ( ) 
+ { 
+ 
+ 
+ 

1* set flay used by iomcve PlK ., 
u.u_nl f lag++; 
row r ( F k E AD) ; 



90 

+ 
+ 
+ 
+ 
+ } 

1* Reset flag here. 
* This flag manipulaticn depends on having 
• uninterruptable calls to block devices *1 

u.u_nl flag = 0; 



91~ 

5.7. Alphabetical Function Syncpsis 

ADD1 - increment argument. 

(ADD1 x) - Adds 1 to the parameter X. If the 
floating-point type, ADD1returns the same type. 
returns an integer. 

ALIST - return system Association LIST. 

parameter has 
Otherwise. ADD1 

(ALIST) - Obtains the current system association list. The sys
tem association list starts at the *CAR of the function linker. 

AHB - AMBiguity function. 

CAMS X1 ••• Xn) - Returns a random selection from an arbitrari
ly long parameter list. 

AND - evaluate aryuments while true. 

(AND EXP1 ••• EXPn) - Special form; sequentially evaluates its 
parameters until done or a parameter evaluates to NIL (false). 
AND returns the value of the last evaluated parameter. 

APPEND - create a new list frOM argument lists. 

(APPEND X V) - Creates a new list by CONSing the members of the 
first list onto the second list. APPEND ~akes a copy of the 
first list whi le using the secord list as is. If the first para
meter is NIL, APPEND returns the second para.eter. If the second 
parameter is NIL, APPEND creates a copy of the first parameter. 



92 

ARRAY - credte an ARRAY. 

(ARRAY SIZE TYPE) - Creates a fLnction that can acc~ss or alter 
the elements 01 an array of length SIZE. If the created function 
receives one' parameter, a fixed-point number, the creat~d func
tion returns the array member irdexed. If the created fUnction 
receives a second parameter, whose type matches that of the 
array, the created function retLrns the second parameter and re
tains its value in the array member referenced by the first 
parameter, a fixed-point number. The parameters of ARRAY, SIZE 
and TYPE, should be fixed-poirt numbers. If ARRAY does not get 
the optional TVPE parameter, ARRAY produces an array of pointers 
by default. 

TYPE MEMBE RS 

) 

1 
2 
3 
4 
5 
6 
? 

Pointer 
Log i cal 
Binary 
Signed oyte 
Unsigned byte 
16-bi t word 
2-word single 
4-word double 

"ANGE 

Pny S-expression 
1 (true) or NIL (false) 
( or 1 
-128 to 127 
C to 255 
-32768 to '32767 

preC1Slon floating point 
precision floating point 

VLISP supports all of the floating point array types only if 
VLISP supports at least one type of floating point arithmetic. 

ARRAYL - ARkAY Length predicate. 

(ARPAYL ARR) - Returns the logical length of its parameter ARR, 
if it is an array. Otherwise the predicate returns NIL (false). 
The length of a lo~ical or binary array (a bit array) is roundeo 
up tc the least multiple of 8 greater than or equal to the l~ngth 

9 i v e n as. t h P. fir s t par a met e r 0 fAR RAY w he ncr eat ; n 9 the a r ray a c -
cess function. 

ARRAYP - ARRAY type Prpdicate. 

(ARRAYP ARR) - Returns the type, an integer, of its parameter 
ARR, if it is an array. Otherwise the ARRAYP predicate returns 
NIL (false). 

A~SOC - search an ASSOCiation list. 

(ASSOC ITEM LSl COUNT) - Returns the COUNTth occurrencE' in the 
second parameter, LST, a list,' of d CONSed pair whose CAR in 
EQUAL to the first parameter, ITEM. If tfie thira parameter, 
COUNT, the count, is omitted, 1 is used. 



93, 

ATOM - ATOM predicate. 

(ATOM X) - Returns T (true) if t~e paraMeter X has an atomic 
t '1 P e • 0 the I' w i s e , A T OM I' e t urn s NIL (f at l s e ) w hen the ,p a I' a met e I' ; s 
a CONS ed no de. 

ATSVMB ....; creat~ AToadc ,SYMEol. 

(ATSVMb X) - Finds or creates, if needeo, an atomic symbol speci
fied by the parameter X. If the parameter is a SYMBOLic atom, 
ATSYMB returns it, regardless of whether or not the hash table, 
OBlIST, contains it. Otherwise, ATSYMB converts the parameter to 
internal tYPe STRING and searches for an atom with this print 
name in the haSh lists, OBlIST, used by the READ and TOKEN 
routines. After not finding an atOM with the print name, ATSYMB 
c rea te s 0 ne and en tel's i tin tot h e has h tab l e s • 

ATTEMPT - catch errors after ATTEMFTing evaluation. 

( A T T EM PT EX P 
[N1 El-1 • .. . 

• • • 
(Nm Em-1 • 

) - • • 

El-n] 

Em-nm] 

Special form; evaluates the first paraMeter, EXP, and returns its 
value if no systell errors have occurred. However, if an error 
does occur while evaluating EXP, the interpreter examines the 
other arguments for d list whose CAP. is a number whose value 
matches the error type. If the interpreter finds a match. 
ATTEMPT evaluates the remaininy expressions in the CDR of the 
list. ATTEMPT returns the value of the last expression 
evaluated. 

8ACKSP - BAtKSPac~ the REAC routin·e buffer pointer. 

(BACKSP) - Returns T (true) ana prepares the READ, TOKEN, or 
READCH function to read the pre~ious character in the READ buffer 
if the buffer pointer was not set to read the first character. 
Otherwise BACK~P returns NIL (false) and leaves the buffer 
pointer where it was. 



94 

BREAk - intercept functions before application. 

(BREAK ATM NE~fN) - Functional; uses the second parameter, N~WFNt 
a fUnction, in place of the function or special form that is con~ 
stantly (globally) bound to the first paramete~, ATM, a SYMB~Lic 
atoM. When called, the new function, NEWfN, bound to ATM re
ceives at least two parameters. The first parameter is the atom 
ATM whose binding BREAK altered. The second parameter is the 
function LINKER oound originally to the atom ATM~ All other 
parameters follow as they woulo have been passed ·to the- original 
unbroken function. If BREAK acts on an atOM bound to a spe~ial 
10,.11, the third paraMeter passed to the new, intercepting 
functi~n. NEwFN. is a list of the unevaluated parameters intended' 
for the original special for •• 

C ••• R - find CARs and CDRs.· 

(C ••• A ••• D ••• R ARG) - Retur"s the pointer derived by 
r e cur s i vel y t a kin 9 CAR s and . C t R s 0 i t he par a_ e te r' A R G, a CON S. E D 
node, a dotted pair. The CAR of a dotted pair is the'first part 
as printed, the lefthand side. The CDR of a dotted pair is the 
second part as printed, that which follcws a dot in a simple dot
ted p air. the rig h t hand sid e • For e x a_ p l e, i fAR G w ere the dot -
ted pair 

(X • y) 

the n 

(CAR ARG) - <CAR '(X. V»~ = X 

and 

<CDR ARG) • (CDR 'ex. v»~ = y • 

The input routines READ and TOKEN bind any atOM whose name 'con
sists of the character, "C·', followed by an arbitrary nURlber of 
uAus and nD"s, ended by an "R" to a cOlllposition function of CARs 
ana CDRs. The order of eval~ation is frOM right to left. For 
example, evaluating the S-expression 

(CAD ADR E XP) 

is equivalent to evaluating 

(CAR (CDR (CAf; (CDR EXP»» • 

If the interpreter attempts to follow the pointer into an atomic 
object, anything but a dot tea pair. while evaluating a CAR-CDR
chain function call, the interpreter prints a warning message. 

---------_._--_._--- ---_._ .. _.-. 



CLEARBUFF - reset input BUFFer for newline. 

(ClEARt;UFF FILE) - Resets the irput buffer to input a, new line on 
the next call to READ, TOKEN, or READCH. If CLEARBUFF gets the 
optional parameter FILE, a filled-point number, subsequent input 
will come from the logical file number specified. The op~rating 
system .ust have previously provided an external meaning to the 
i n t ~ rna l, log i cal f; l e - n u m b e r c rea t e Cl b 'J 0 PEN 0 r "0 t h ~r s y s t e m 
calls such as PIPE under UNIX. A NIL parameter returns input to 
the standard, oefault file. CLEARBUFF saves the parameter as the 
constant (global) binding of the atoll *CLEARBUFF. 

CLOSE - CLOSE logical file number. 

(CLOSE FILE) - Closes the interral, fixed-point, logical file
number specified by its parameter FILE. If CLOSE get a NIL 
parameter, the operating s),stel closes the standard, default 
input. If successful, CLOSE returns ~ll. Otherwise, CLOSE re
turns the integer error number returned by the UNIX operating 
s y stem i n R 0 • 

COMPLEMENT - logical one's COMPLEMENT negation. 

<COMPLEMENT X) - Computes the octal, logical one's complement of 
the parameter X. COMPLEMENT uses the high-o,.der, most
significant word of a flo~ting ~oint parameter as a fix~d-point 
value. 

COMPRESS -COMPRESS l;s't irto anoce. 

(COMPRESS LSr) - Uses the TOKEN routines <the scanner) to convert 
a list of single character elements into an approoriate atomic 
node. The list elements may be either single character atoms, 
single character strings', or fi.ed point numerical ASCII values. 
The TOKEN routine examines the syntax of the character to deter
minp the type of node to· create. User defined readmacr~ 
characters cause no special actions. Thus readmacros may use 
COMPRESS without escaping the use~ read.aero characters in the 
input list. 



96 

COND - CONDitionally evaluate arguments. 

(CON D (E XP1 E1-1 • • • E1-n1] 

• • • 
(eXPm Em-1 ••• Em-nm] 

) -
Special form; expects paralneters that are lists of at least one 
expression. At least one paramEter, a list, must be given. COND 
evaluates the CAR of each list tjntil one returns a non-NIL (true) 
value or until it has evaluated the CAR of every parameter. At 
the first instance of a true value, CONo sequentially evaluates 
the reMaining expressions, if any, in the CDR of the current 
par a me t e r tal i st. CON D ret urn s the val u e 0 f the las t e)( p re s s ion 
evaluated. 

CONS - cr~ate a CONSolidated pair. 

(CONS X y) - Creates a new CONSED node of two pointers, its CAR, 
X, ana its CDR, Y, the left and right hand sides respectively, 
cal led a do t te a pa; r • 

(X • y) 

C~ET - .cr€ate a new Constart (global) binding. 

(CSET ATM EXP) - Function; creates or replaces a constant binding 
on the first parameter, a SYMBOLic-atoM variable, ATM, using the 
second parameter, EXP. Any old constant (global) binding 
disappears. Any fluid bindings on the system association list, 
ALIST, become hidden, since the interpreter checks the constarit 
binding cell (~CAR AT~) before searchi~g the ALIST for fluid 
bindings. 

CSETG - Quote the first ar~ument to CSET. 

(CSE1Q NAME EXP) - Special form; serves as an abbreviation for 

(CSET "NAME EX P) 

since CSETG only evaluates the Secona parameter to change the 
constant binding of the first parameter. NAME. as given. Thus, 
unlike CSET, in this example the binding of NAME itself would be 
chanqea, insteaa of any variable that might have been bound to 
NAM E. 

CURRCOL - determine CURRent COlumn in output buffer~ 

(CURRCOL> - Returns an integer that represents the next column in 
the output composition buffer t~at will receive a character. 



97, 

DEFINE - establish a list cf constant bindings. 

<OEFINE LST) - Applies CSETQ to each sublist of the parameter 
LST, a list, constantly binding the first member of each subl;st, 
a SYMbOlic-atom variable. to the value of the second member of 
the sUblist. DEfINE creates a list of the variables that re
ceived bindings. 

DEFMAC - DEfine a MACro special form. 

(DEFMAC NAME FUNC) - Special form; constantly (globally) binds a 
macro special form creates frcm the e~aluated second parameter, 
FUNC, a function LINKER, to the unevaluated variable which ;s the 
first ~arameter, NAME. The created macro passes the unevaluated 
parameters received, if any, to the original function LINKER, 
FUNC. The interpreter then evaluates the results. Thus the crp.
ated MACRO can ore-process une~aluated parameters into a new S
expression that the interpreter finally evaluates. 

DEFSPEC - DEFine SPECial fcrm. 

(DEFSPEC NAME fUNC) - Special fermi constantly (globally) binds a 
special form either given as the constant binding of a variable, 
the second pdrameter, FUNC. cr else creates from the evaluated 
second parameter, FUNC, a function LI~KER to the unevaluated 
first parameter, NAME. If the uneval~ated second parameter was 
a l read y b au nat 0 asp e cia l for m 0 r ,., A C R 0 , D E F S PEe p eo r for 1ft s a 
renaming so that the first parameter variable will have the same 
meaning as the second parameter. Otherwise, the created special 
form returned as the value ot t~e second argument of DEFSPEC will 
pass any parameters it receives to the function. FUNC, unevalu
ated by the intE:'rpreter. 



90 

DELIM - specify input scanr.er DElIr-iters. 

(DElIM STR FlG) - Converts the first parameter, STR, into a si·n
gle character of internal ty~e STRING. If the optional second 
parameter, FLG, is given, the character specified by STR has its 
delimiter status changed. A NIL (false) second parameter removes 
delilldter status. Any other second parameter (true) turns deli
miter status on. Regardless cf the presence of the second 
parameter, DElIM returns the previous delimiter status of the 
character, T (true) for on and ~Il (false) for off. ·READ and 
TOKEN use delimiter characters to terminate the input scanner's 
creation of a name. A SYMBOLic atom naWoe being created does not 
include a non-escaped delimiter character unless no previous 
characters have been read •. If a delimi ter character is not also 
a readmacro character, the scanner ~ill return it as a single 
character SYMBOLic atom when encounterec initially. The string 
s can ne rand REA D CHi 9 no red eli mit e r S tat us. 

DIFFERENC~ -compute DIFFE~ENCE of arguments. 

(DIFFERENCE X Y) - Subtracts the second parameter, Y, from the 
first parameter, X. The result uses the greater precision of its 
t~o parameters. DIFFERENCE returns integer fixed-point results 
if neither parameter has tloatirg type. The single-character
atom ,,_u is a synonym for DIFFEJ(ENCE. 

Du - unconditional evaluation special form. 

(DO EXP1 ••• EXPn) - Special form; seQuentially evaluates its 
arguments. DO returns the value of the last parameter evaluation 
and discards all other results c1 evaluation. 

DOUBLE - convert to DOUBLE precision floating. 

(DOllbLE ARG) - Converts the parameter A~G into a double-precision 
floating-point value <four 16-bit words). VLISP defines DOUBLE 
only ~hen su~porting both doutle and single precision floating
point-number types. 



99 

DUMP - outPut compiled cooe and pointers. 

(DUMP LINK FILE FUNC) - Returns NIL if the first parameter, LINK, 
is not a master LINKER whose I-space address (*CDq LINK) points 
to the beginning of a compiled code area. Otherwise, DUMP sends 
a binary image of the compiled code area to the internal, logical 
file-number specified by the second tiMed-point-number parameter, 
FILE. VOS and the DOS emulator of VOS VlISP use DEC absolute 
loader format. UNIX VLISP uses a.out load module format. DUMP 
performs an implicit *BEGIN to compact the code area. If FILE is 
NIL, DUMP inhibits the binary OLtput phase. Next, if DUMP re
ceives the optional third para~eter, FUNC, a function of three 
arguments, OU~P applies FUNC to each pointer offset at the end of 
the compiled cede area. The first arguwent of FUNC gets the oc
tal offset from the start at code of the specified pointer. The 
SeCOnd"gets that integer ~hich "ust be added to a normal pointer 
to produce the pointer giver in the code. The third gets the 
normal pointer derived from the given pointer. Lastly, DUMP re
turns the master LINKER given as the first parameter, LINK. 

ENTlER - round down to next whole integer. 

(ENTlER X) - Returns an integer node whose value is the greatest 
whole, signed number less than or equal to the parameter X after 
performing any conversion needec for a floating parameter.. If 
the converted value cannot be represented by a sigoed, 16-bit 
int~yer, ENTIEH returns integer zero. VLISP defines ENTlER only 
if supporting floating point. 

EQ - test pointer EQuality. 

(EQ X Y) - Returns T (true) if the two ~arameters are the same, 
otherwise NIL (false). EQ returns ~IL ~hen comparing two differ
ent nooes even though they may ~ave the same value. 

EQUAL - test arguments tor congruerce. 

(EijUAL X Y) - Returns NIL (false) only if its two parameters, X 
and Y, cannot be made congruent; otherwise, EQUAL returns T 
(true). EQUAL converts two numerical parameters to the type of 
greatest commen precision befcre testing for equality of value. 
It tests two string parameters character by character. EQUAL re
cursively descendS twa CONSED ncde paraw.eters to see if both the 
CAkS and CDRs are also EQUAL. The right recursive descent may 
loop it presenteo with two corgruent, circular lists. EQUAL 
tests other nooe types for pointer equality. 



100 

ERASE - remove atoM consta~t binding and property list. 

(ERASE LST) - c)(pects a parameter which is a list of SYMBOLic 
atoms. ERASE sets the constart <global) binding cell (*CAR) of 
each atom to its undefined state and sets each atom's property 
list to NIL, the initial state. An~ hidden bindings to these 
atoms on the system association list, AlIST, will reappear since 
the constant binding cell is uncefined. Since user readmacro de
finitions are kept on the property list of the associated
single-character atom, ERASE wi II remove such readmacros as a 
si d E' -e f f e ct. 

ERROR - generate LISP internal ERRCR condition. 

(ERROR NUM) - Simulates the LISF internal ERROR condition given 
by the fixed-point-number parameter NUM. If NUM is omitted. 
ERROR produces a type 0 error. Some non-positive error numbers 
have special meanings to the ~LISP interpreter. These reserved 
error types wi II cause special; 2ed acti ens if not caught by a 
pr'ev;ously invoked ATTEMPT: 

o - System errors 
-1 - RETURN value 
-2 - GO label 
- 3 - As Y c h ro n 0 us in t err up t s 
-4 - Previous error type was not caught 
-8 - Unbound variable or pointer array eLeMent 
-9 - Bad array index 
-1J - Floating point excePtions 
-11 - End of file. 

During the· initial file loading of the UNIX VLISP startup 
procedure, most uncaught errors cause a premature error termina
tion (lOT) of the UNIX VLISP interpreter. 



10~ 

EVAL - interpret argument. 

(EVAl ARG) - Calls the VLISP interpreter to e~aluate the para
meter ARG. If ARG ;s an atcm with internal type SYMBOL, EVAL 
first checks the constant bindirg celt (*CAR). Upon finding a 
non-zero pointer to a node. a cefined reference. in the constant 
binding cell, [VAL returns this pointer as the value. If the 
SYM8CLic atom has no constant binding, EVAL searches the system 
association list, ALIST, for a binding (ONSED pair whose CAR is 
the atom and whose CDR is the ~alue of the ATOM, a non-zero 
pointer. If EVAL still cannot find a value for the atom, VlISP 
prints a warning message and queries the user for a value to use. 
If the parameter ARG of EVAL is a tONSED node, EVAL assumes the 
parameter heads d list. EVAl c~ecks if the CAR of the list is a 
SYMROLic atom which is constantly bound to a special form LINKER 
by comparing the I-space address of any such LINKER (*CDR) with 
the I-space address of EVAL. If the unsigned, I-space address of 
the LINKER is less than that of EVAL, the LINKER specifies a spe
cial torm. Lpon tinding that the CAR of the parameter ARG, in 
this case a list, is constantly bound to a special form, EVAL 
calls the special form using the remaining'members of the para
meter (CDR ARG) as parameters tc the special form ~ithout further 
evaluation. However, if EVAL finds that the parameter ARG, a 
list, is not d special form call, EVAL recursively evaluates the 
first member <CAR) at the parameter, a list, and checks that the 
returned value is a tunctior LINKER. If not, EVAL prints a 
warning message and queries the user for a new function LINKER to 
use. by recursion, EVAL evaluates any remaining members of its 
parameter (CD~ 'RG) and passes their values as parameters toa 
call of the or~viously obtained function. EVAL returns all other 
types of nodes, namely LINKERs, numbers, and STRINGs, used as the 
parameter ARG. without further evaluation. 

EXEC' - EX~Cute program in ~lace of intepreter. 

(EXEC ARGO ••• ARGn) - Calls STRING to convert all of its 
parameters, inclUding lists of characters, into strings follo~ed 
by a zero byte, the format used by the UNIX sys E~fC call. EXEC 
creates an integer array of poirters to the start of data of each 
string, which it passed as the second parameter of the system 
call. The first parameter is also passed as the file name to the 
sys call. If the call returns, EXEC returns the integer error 
number. NO LISP system error is generated. Only UNIX VLISP de
fines EXEC. 

EXPLODE - create list from print name. 

(EXPLODE ARG)"- Uses the PRIN1 cutpu~ rcutines to create a list 
of sin~le-character, SYMBOlic atoms that represent the characters 
that PRIN1 would usp to print the parameter AR~. 



102 

EXPLODE2 - create list fro" print name with pscapes. 

(EXPLODE2 AQG) - Uses the PRIN2 output routines to create a list 
of single-character atoms thGt represent the characters that 
PRIN2 would use to print the para.eter ARG in a format with es
capes so that the READ or TOKEN routines could recreate the 
printed object. 

flXP - FIxea-point Predicate. 

( f:I X P X) - Ret urn s T (t rue) i f the par a .. e t e r Xis a 
number <octal or integer); otherwise, NIL (false). 
FIXP only if supporting floating point. 

FLAG - put fLAG on atom prcperty list. 

fixed point 
VLlSP defines 

(FLAG ATM FLG) - Puts the flag 9iven by the second paraMeter, 
FLG, a SY~80Lic atom, on the property list (*CDR) of the first 
parameter, ATM, another SYMBOLic atom. 

FLOAT - convert to a FLOATing type. 

(FLOAT X) - Returns a floating-point number by converting the 
parameter to floating-point type, using single precision if 
available, otherwise double preC1Slon. If the parameter has 
floating type, FLOAT returns it as is. VLISP only defines fLOAT 
if support; ng t loa ti ng point. 

FLOATP - fLOATing-point Predicate. 

(FL0ATP X) - Returns T (true) if the parameter X has floating
point type; otherwise, NIL (false). VLISP onty defines FLOATP if 
supporting floating point. 

FORK - spdwn a child process. 

(FORK) - Creates a child process, a copy of the current process, 
by calling the UNIX operating s)stem, returns the integer process 
identification (PID) of the child process to the par~nt process, 
ana returns NIL (false> to the child process. Only UNIX VLISP 
de fine s the FOR K pre 0 ; cat e • 



103,. 

FuNCTION - create function that captures the AlIST. 

(FUNCTION fUNC) - Creates a new functio~ from its parameter FUNC, 
which captures the current system association list, AlIST, that 
maintains the status of fluid binding pairs. When this new func
tion is invokeo, the captured ALIST, ~h;ch contains the binding 
environment during the creation of the function, is temporarily 
re-established for the duraticn of the function call. The cre
ated function then calls the ole function parameter FUNC in this 
new environment with the parameters passed to the created 
fun c ti on • 

GENSYM - GENerate a temporary atomic SYMbol. 

(GENSYM ATM) - Creates a new atcmic symtol that is not on the 
hash lists, the OBlIST. If the caller provides the parameter 
ATM, its print name is used as the print name of the newly cre
ated symbol. If the caller ~rovides no parameter, GENSYM uses 
the SYMBOLic atom G. The created atom ~ill be different from any 
previous atom. ~hen the atom is printeo, its print name will be 
fol.lowed by a colon (:) and a t..nique integer. Since the atoM is 
not on the ha~h lists, READ and TOKEN cannot directly access the 
name, even when its name, as printed, is input. Instead an atom 
will be created on the hash lists, OBlIST, tor the input name. 
Unlike atoms on the hash lists, when an atom created by GENSYM is 
no lonyer explicitly referenced, its spClce may be reclaimed. 

GET - obtain property from atom property list. 

(GET ATM PRP) - Obtains the prcperty specified by the second 
para"eter, PRP, a SYMBOlic atom, from the property list of the 
first parameter 9 AT"', another atom. If ATM ;s not typed SYMBOL 
or CON~ED, or if the property list C*CDR) of ATM does not contain 
the property given by PPP, GET returns NIL. 

GO - GO to PROG label. 

(GO lAHEL) - S~ecial form; continues evaluation with the next ex
pre s s ; 0 n f 0 l low; n 9 the 9 i v e n l a t: e l, lAB E l , 1 n t .h e II 0 s t r e c e n t 
PROG. If the most recent FROG does not use the GO parameter 
LABEL dS a la~~lt the interpreter recursively searches in the 
next most recent PROG for LAEEL unti l reaching a level of LISP 
su~ervision. 1f a level of lISF supervision intercepts the label 
search, the interpreter prints an error message and restarts the 
LIS P sup e rv i so r • 



104 

GkEATERP - GREATER than Predicate. 

(GREATERP X, Y) - Returns T (true) if the first parameter, X, is 
greater than the second para~eter, Y. Otherwise, GREATERP re
turns NIL (false). The cOMparison is signed, i.e. positive val
ues are greater than negative ones. In interpreters supporting 
floating point, if the type of the paralleters differ and at least 
one para.eter has floating type, GREATERP converts the parameter 
of lesser precision to the type of the parameter with greater 
precision before making a comparison. 

IFFLAG - FLAG existence predicate. 

( IFF LA G ATM F L G l - Ret urn s T ( t rue) i f the pro per t y lis t ( • CDR) 
of the f; rst parameter, ATM, a SYMBOlic ato., contains the flag 
given by the secono paralleter, FLG, another SYMBOLic atoln, as a' 
member. Otherwise, IFFLAG returns NIL (false). 

If TYPE - 1100 LISP internal node TYPE predicate'. 

(IFTYPE NODE TYPE) - Returns T (true) if the type of the first 
parameter, NODE, has an internal type that corresponds to the 
Wisconsin U~IVAC 1100 LISP internal type specified by the second 
parameter, TYPE, a fixed-poirt number. The 1100 LISP internal 
types used by IFTYPE differ frcm the internal types used by 
VLI S P. 

1100 Internal VLISP 
type name type 

0 COtwSED 0 
1 INTGER 010 ... ac TA L 6 t:.. 

= 
SINGLE 012 

4 SY ST EM -2, - 04 , and -f; 

5 Compiled Not ; r dat a s ~ace 
6 LI Nt< E R 2 
7 SYMBOL 4 
& STRING 012+(2* numbe r of floating type s] 

( S ) DOUB LE 012+(( if SIN Gl E use.d, E:'lse OJ 



105.1 

INDEX - recursively apply iunction to CARs~ 

(INDEX LST END FUNC> - Functional; appl ies the third parameter, 
FUNC, d functicn of two arguments, recursively to each element of 
the first parameter, lST, a list, and the value of subsequent 
calls to the remaining members cf lST. When applying FUNC to the 
last eleMent of the parameter lST, INDEX passes the second 
parameter, END, as the second parameter to FUN(. Thus if 

LST = (X1 X2 • • • X n) 

then the call 1S equivalent to 

(FUNC 'X1 (FUNC ')(2 • • • (F UNC 'Xn END) ••• ) ) 

INTO - list of values of f~nction application to CARs. 

(INTO LST FUNC) - Functional; creates a list of the values re
SUlting from applying the seccnd para.eter, FUNC, a function of 
one argument, to each member, successive 'CAR, of the first 
parameter, lST, a list. MAPCAk is a synonym. 



106 

LAMBDA - create function. 

(LAMBDA ARG-LIST EXP1 ••• EXPr) - Special form; creates a func-
tion that uses the first parameter, ARG-LIST, a list of' 
arguments, as arguments of t~e created function. The argument 
list need not te a true list sirce the rightmost CDR of the list 
need not be NIL, which ordinarily specifies the end of a list. 
The members of the argument list that will act as variables must 
be atoms with internal type SYMBOl. When called, the created 
function binds its arguments, the melllbers of ARG-LIST,. to the 
values passed as parameters in the function call by adding CONSED 
node pairs to the beginning of the system association list, 
ALIST. The CAR of these binding pairs consists of the argUMent 
name as given bya member of ARG-lIS1, and the CDR consists of 
the respective value passed as a parameter to the function call. 
The new binding obscures any ~revious binding on the AlIST with 
the same variable name for the duration of the function 
evaluation. If the end of ARE-LIST, the rightmost CDR, is NIL, 
i.e. the list has the form 

ARG-LIST = ()(1 X2 ••• Xn) 

then the number of parameters passed to the function Must be the 
same as the number of arguments given in ARG-LIST. If the argu
ment l"ist iSNIL, the degenerate case9 then calls may pass no 
parameters to the created function. If the end of ARG-lIST, i.e. 
rightmost CDR, is not NIL, then it .ust be a SY~BOlic atom to 
which the created function binds a list of any parameters passpd 
which remain after the created function has bound the other 
variables. For example, if 

ARG-LIST = (X y • Z) 

during a f~nction call, the created function would bind X and V 
to the first two parameters of the fu"ction call, create a list 
of any remaining parameters. anc then bind that list to the last 
"list" v,ariable, oZ. Calls to the creat~d function must provide 
sufficient parameters for each \fariable exclusive of any "list" 
variable. It ARG-lIST consists of a singl~ SYMBOLic-atom 
variable, the oegenerate case of "list" variabl s, for exalDple, 
if ARG-LIST is the SYMBOlic atom Z, then durlng each call, the 
createa function makes a list of any parameters passed and binds 
that list to the solitary "list" variable Z. Aft"er the created 
function has bound any parameters passed to its variables, the 
function evaluates the other pdrameters of LAMBDA sequentially in 
the new binding environmert. After evaluating the last 
expression, the created function restores the system association 
list, ALIST, to its state at 1unction entry, thus restoring the 
oriqinal binding environMent with any previously obscured 
bindings. The created function returns the, value of the last ex
pression evaluated. 



107 

LAMDA - apply FUNCTION to LAMbDA expression. 

(LAMDA ARG-lIST EXP1 ••• EXPn) - Special formi serves as a 
shorthand for the function FUNCll0N applied to the LAMBDA e~pres-
s;on specified by the parameters 01 LAMDA. When called, the 
function created by LAMOA i~stalls the binding environment 
captured when LAMDA was evaluated, tinds any variables to the 
parameters of the created function call t evaluates the remaining 
expressions of LAMDA, reinstates the original binding environment 
in effect before the created function call, and returns the value 
of the last expression evaluatec. 

LEFTSHlfT - SHIFT LEFT for positive counts. 

(LEFTSHIFT X COUNT) Returns the two's complement 
arithmetically-shifted octal representation of the first 
parameter, x, a fixed-point numter, using the second parameter, 
COUNT, a signed, fixed-point number. If COUNT is positive, 
LEFTSHIFT perferms a left arithretic shift with zero fill enter
ing from the right into the least significant bits. If the se
cond parameter is negative, the first paralleter, X, is right cir
cularly shifted as a 16-bit value. ctherwise, given a zero 
count, LEFTSHIFT creates an octal node of the first parameter 
value. LEFTSHIFT USes the most significant word of ftoating
point parameters as is without converting to fixed-point-number 
type. 

LENGTH - count LENGTH of list. 

(LENGTH LST) - Returns an integer count of the number of members, 
CARs, of the parameter LST. LE~6TH repetitively performs *CDRs 
on the parameter LST until NIL is found, which represents the end 
of a list in correct format, or until the count overflows, which 
produces a system error conditicn. 

LESSP - L~SS than Predicate. 

(LESSP X y) - Returns T (true) if the first paraMeter, X, is less 
than the second parameter, V; other-ise, LESSP returns NIL 
(false). The comparison is sigred, i.e. negative values are less 
than ~ositive ones. In VLISF interpreters supporting floating 
point, if either one of the parameters has floating-point type, 
LESSP converts the parameters to the type with greater precision 
before making a comparison~ 



108 

LISP - LISP supervisor. 

(LISP REA'D-FUNC) - Iteratively ~rints the results of evaluating 
the expression obtained by its parameter READ-FUNC, a function of 
no arguments. The LISP supervisor prefixes the returned value 
wi t h 

Val ue: 

except under UNIX in child processes of the original LISP invoca
tion or if LISP is invoked with "_" as a parameter of the call 
from the shell. If the (LISP) call does not supply a parameter 
READ-FUNC, the interpreter sLPplies a default S-expression
READing function. At each call of the default READing function 
by the LISP supervisor, the default function resets the input 
buffer, resets to use the standard input, resets to use the stan
dard output, sends a prompt fer the user on the standard output 
sa y ; ng 

E \la l : 

and calls READ to obtain the next S-expression f~OM the standard 
input as the value of the default-READing-function call. In 
those cases in which the LISP supervisor does not use the 
"Value:" prefix, the default READing function does not print ,the 
nEva l:u prompt eithe r. The LISP superv ision handles any errors 
that are not caught by ATTEMP1-speciaL-form calls by printing a 
warning message and restarting the READing, EVALing, and value
printing sequence. The supervisor may be exited by using the 
RETURN function or by providing an end of f;Le condition on the 
standard input with UNIX EOT (contro LID>. The LISP supervisor 
call returns any value of the RETURN function or NIL if no value 
is provided. At the end of the start-up procedure, the VLISP in
terpreter invokes a level of the LISP svpervisor with the default 
expression-obtaining function which con~erses with the user. The 
VLlSP interpreter prints any ncn-NIL and non-fixed-point-numeric 
value RETURNed by the top level of LISP supervision and uses the 
value as the UNIX exit status with NIL converted to zero. 



109 

LIST - create a LIST from arguments. 

(LIST ARG1 ••• ARGn) - Creates a list from any parameters. If 
the call provides no parameters, LIST returns the empty' list, 
NIL. For exa.ple, evaluating 

(LIST '~ 'X 'y 'Z) 

produces the list 

(W ~ y Z) 

which is a shorthand used by the interpreter for the CONSED, 
dotted-pair expression, 

(W • (X • (y • (Z • NIL»» • 

LOAD - LOAD definitions frcm file. 

(LOAD ASCII-FILE BINARY-FILE) - Repetitively reaqs and evaluates 
S-expressions from the the file specified by the first parameter, 
ASCII-FILE, a fixed-point logic~l file number, until reaching end 
of file or evaluating a RETURN function call. LOAD closes the 
file if under UNIX and returns the logical file number used. 
Unoer UNIX, the first parameter may alternativelY specify an ex
ternal file name, which the interpreter will open. Under UNIX, 
if the LISP interpreter invocation provides file names, the in
terpreter LOADs them before invcking a level of LISP supervision. 
A parameter "+" must then be explicitly used to produce a sign-on 
line and invoke the LISP supervisor. The parameter "_U could 
also be used to invoke the LISP supervisor without prompts under 
UNIX. If the call provides the second parameter, BINARY-FILE, an 
internal, fixed-point, logical rame, LOAD saves the parameter as 
the constant binding of the atom *lOAD for use with the next 
*DEPOSIT call. Otherwise, LOAD constantly binds *LOAD with the 
logical fi le number computed for ASCII-FILE. The binary file 
number specifies a file containing binary machine code in load 
module format to be installed i~ I-space later by *DEPOSIT. 

LOGAND - bitwise lOGical A~D. 

(LOGAND ARG1 ••• ARGn> - Returns a 16-bit octal representation 
of the bitwise logical AND of any parameters. LOGAND uses the 
high-order, most-significant word of floating-point-number para
meters as a fixea-point value. If the call to LOGAND provides no 
parameters, LOGAND returns octal negative 1, 177777Q, all bits on 
(true) • 



110 

LOGOR - bitwise LOGical OR. 

(LOGOR ARG1 ••• ARGn) - Returrs a 16-bit octal representation 
of the bit",i se logical OR cf any parameters. LOGOR uses the 
high-order, most-significant word of fleating-point-number para
meters as a f ixed-pointvalue. If the call to LOGOR provides no 
parameters, LOGOR returns octal zero, QQ, all bits off (false). 

LOGXOR - bitwise LOGical eXclusive OR. 

(LOGXOR ARG1 ••• ARGn) - Returns a 16-bit octal representation 
of the bitwise logical exclusive OR cf any parameters. LOGXOR 
uses the high-order, most-significant word of floating-point
number parameters as a fixed-pcint value. If the call to LOGXOR 
provides no parameters, LOGXOR returns octal zero, QQ, all bits 
off (false). 

MANIFEST - signal compile time computation. 

(MANIFEST ARG) - When interpreted returns the parameter ARG as 
value. VLISP defines MANIFEST for use with potentially compile
able functions to signal to the compiler that the parameter is to 
be evaluated at compile time instead of being evaluated by the 
compiled code. 

MAP - apply function to each final segment. 

(MAP LST FUNC) - Functional; applies the second parameter, FUNC, 
a function of one argument, to each final segment of the first 
parameter, LST, a list. The final segments are the successive, 
non-NIL CDRs of a list. Thus if lST is NIL, the degenerate case, 
it has no final segments to which to apply to FUNC. MAP always 
returns NIL. 

MAPC - apply function to all members of a list. 

(MAPC LST FUNC) - Functional; af.:plies the second parameter, FUNC, 
a function of One argument, to each member (CAR) of the first 
parameter, LST, a list. MAPC always returns NIL. 

MAPCAR - synonym for INTO. 

(MAPCAR LST FUNC) - Functional; performs the same as INTO. 

MAPLIST - synonym for ONTO. 

(MAPLIST LST FUNC) - Functional; performs the same as ONTO. 



111 ~ 

M~M8ER - MEMBER of list predicate. 

(MEMBER ITEM LST) - Searches the second para.eter, lST, a list, 
for the first congruent occurrence of the first parameter, ITE~, 
using EQUAL to test for congruerce. If found, MEMBER returns the 
first final segment of LST ~hose CAR coincides with ITEM. 
Otherwise, MEMbER returns NIL (1alse). 

MINUS - arithmetic negation. 

(MINUS X) - Returns the signed Dagnitude negation with the sa~e 

type as a f loating-point para~eter X; otherw;se, the integer, 
two's-complement, arithmetic negation of the parameter X. 

HINUSP - negative number Predicate. 

(MINUSP X) - Returns T (true) if the high-order, sign bit of its 
numerical parameter X is on, i.e. the para~eter is negative; 
otherwise, NIL <false>. 

NCONC - CONCatenate two lists. 

(NCONC X Y) - Returns the concatenation of the two paraMeters, X 
anO V, lists, formed by altering the end (rightmost CDR) of the 
first parameter, X, so that the end becomes the second parameter, 
Y. If either parameter is NIL, NeONe returns the other. 

NOT - logical NOT predicate. 

(NOT ARG) - Returns T (true) if the parameter ARG is NIL (false); 
otherwise, NIL. NULL is a synorym. 

NTH - count to the NTH final s~gment. 

(NTH LST COUNT) - Returns the final seg~ent, CDR, at the first 
parameter, LST, a list, specified by the second parameter, COUNT, 
a fix~d-point number. If COUNl is positive, NTH counts from the 
left (the head) of the list. If COUNT is negative, NTH counts 
from the right (the tail) ot the list. Otherwise, if COUNT is 
zero, NTH returns LST as is. If the absolute value of COUNT ex
ceeds the length of LST, NTH returns NIL. 

NULL - NULL argument predicate. 

(NULL ARG) - Returns T 
(false); other~ise, NIL. 

(true) if the parameter 
NOT is a synonym. 

ARG is NIL 



112 

NUMBERP - NUMBER type Predicate. 

(NUMHERP )()- Returns T (true) if the paralleter )( has 
internal tYpe, octal, integer, or floating-point. 
NUMBERP returns NIL (false). 

a numeric 
Otherwise, 

ObLIST - apply function to members of the OBject LIST. 

<OBLIST FUNC) - functional; applies the paraaeter FUNC, a func
tion of one argument, to each SYMBOLic atom which is on the hash 
lists used by the READ and TOKE~ routines. OBLIST returns NIL as 
its value. If the call omits the parameter, OBLIST uses a de
fault function that prints each SYMBOLic atoM on the current out
put starting each bucket, the object list divisions that the hash 
values reference, On a new line. 

ONDEX - recursivelY apply function to CDRs. 

<ONDEX LST END FUNC)- Functional; applies the third parameter, 
FUNC, a function of two arguments, recursively to each final 
segment, CDR, of the first paraleter, LST, a list. When applying 
FUN C tot he las t f ; n a l s e 9 men t, P e nu l t i ra ate CDR, 0 f L S T , IN DE X 
uses the second parameter, END, as the second parameter of FUNC. 
Thus if 

LST = (X1 X2 ••• Xn) 

the call is equivalent to 

{fUNC lST (fUNC (CDR LST) ••• (FUNC '(Xn) END) ••• » • 

ONrO - list of values of f~nction application to list CDRs. 

(ONTO LST FUNC) - Functional; creates a list of the values re
sulting from applying the seccnd para.eter, FUNC, a function of 
one argum~ntt to each final segDent (successive non-NIL CDR) of 
the first parameter, LST, a list. MAPLIST is a synonym. 

OPEN - prepare to use external file. 

(OPEN ARG MODE NUM) - Returns ar. integer that can be used inter
nally by CLEAR8UFF, TERPRI, LOAD, and CLOSE to specify the exter
nal name given by the first parameter, ARG, a string or SYMBOLic 
atom. The optional second para.eter, MeDE, a nUllber, specific to 
the host operating system, is zero if net given or if NIL. The 
optional third parameter, NUM, used only with the DOS operating 
system, forces DOS to return that integer as the logical file 
number. An unknown external na.e (first paraMeter) causes a sys
tem error. 



113 

OR - evaluate arguments until true. 

(OR EXP1 ••• EXPn) - Special form; seQuentially evaluates its 
parameters until a parameter e~aluates non-NIL (true) or no une
valuated parameters re.ain. OR returns the value of the last 
evaluated parameter. 

PIPE - create UNIX PIPE. 

(PIPE) - Returns a CONSED node (dotted pair) of' two 'integers 
whose CAR ana CDR (left anc right) specify read and write 
logical, internal fi le-numbers used by CLEARBUFF and TERPRI, 
respectively, to communicate arbitrarily among the future 
offspring of the current process and itself. Only UNIX VLISP de
fines PIPE. 

PlENGTH - Print LENGTH court. 

(PLENGTH ARG) - Returns an inte~er that repre,sents the number of 
characters which would be used by PRIN1 to print the parameter 
ARG without escapes or line feecs. 

PLENGTH2 - Print ~ENGTH with escapes. 

(PLE~GTH2 ARG) - Returns an integer that repres'ents the number of 
characters which would be used ty PRIN2 to print the parameter 
ARG without line feedS but with any escapes which would be needed 
by READ to re-read the output of PRIN2 as input. 

PLIMIT - manipulate Print routine LIMITs_ 

(PLIMIT ARG) - Returns a CONSed node Cdctted pair) of integers 
that represent the maximum ~rint depth and length limits of 
lists. When passed, the optionel parameter ARG, a dotted pair of 
integers in the same format as that ret urned, changes the respec
tive print limits. While composing output, the print routines 
use ampersand (&) in place of s~blists which exceed the depth li
mit and use two hyphens C--l in place of the CDRs of sublists 
which exceed the length limit. 



114 

PLUS - SUM para.eters. 

(PLUS ARG1 ••• ARGn) - SUIIS the paraMeters from left to right, 
converting either the next paraMeter cr the current subtotal to 
the type of the one with higher precision if either has 
floating-point type. PLUS does not check for addition overflow 
when adding two fixed-point vall.es. The value returned has the 
type of the highest precisicn parameter used. If all of the 
parameters have fixed-point type, PLUS returns an integer total. 
If the PLUS call gives no parameters, PLUS returns integer zero 
(0), the empty totat. The sing le-thara cter-atoln n+" is a synonym 
for PLUS. 

PRINT - compose object for PRINTing and send. 

(PRINT ARG) - Composes an e.ternal representation of th~ para
meter ARG in the output buffer; sends the entire contents of the 
output buffer to the current output logical-fi,le given by 
*TeRPRI; ana prepar~s the outPl.t buffer to co.pose a new line of 
output. Whene\ler PRINT fills the output buffer, it sends the 
buffer and continues cOMpositio~ at the beginning of a new line. 

PRIN1 - COMpose object for PRINting. 

(PRIN1 ARG COL) - COMPoses the external representation of the 
first parameter, AkG, in the output buffer starting at the column 
given by the optional secone para~eter, COL, a fixed-point 
number. Skipped colUMns th~t have not previously received a 
character contain blanks (ASCII spaces). PRIN1 replaces an OMit
ted second parameter, COL, with the current output colUMn. It 
sends the contents of the output buffer to the current output 
file when the length of the external representation requires 
positions beyond the end of the output buffer and continues com
position at the vE'ginning of an empty buffer. 



115 

PRIN2 - cOfllpo~e re-readable output. 

(PRIN2 ARG COL) - Co.poses an external representation of the 
first parameter, ARG, in the ol;tput buffer in a forrnat that READ 
could use to reconstruct a congruent object. PRIN2 places the 
most recently defined escape character, which is initially excla
mation point (!), before characters with readMacro or deliMiter 
status used in SYMBOL atom print names and before SYMBOLic atom 
names whose first character is a n~.ber (0-9). It surrounds 
strings ~ith the .ost recently defined string ~elimiter 
character, which is initially couble-q~otes (U), and doubles any 
instance of a string delimiter character within strings. It 
starts composing in the colu.~ specif;ed by the optional second 
para",eter, COL, a fi xed-point nllmber, in lieu of composing into 
the next available column. Skipped colu.ns that have not pre
viously received a character contain blanks (ASCII space). PRINZ 
sends the contents of the output buffer to the current output 
file when the length of the external representation reQuires 
positions beyond the end of the output buffer and continues com
position at the beginning of ar empty buffer. It cannot coupose 
re"",readable e)(ternal representations for function LINKERs, the 
; n t e rp ret e r W 0 r k. spa c e , and s t a c k s • 1 h e p r . i n t r 0 uti n esc 0 fa P 0 S e 
the "unprintable" object within square brackets «(]) with either 
the name of system defined function LINkERs, the LAMBDA parameter 
list of user defined function LINKERs, the bytes as characters of 
short arrays (less than 128 bytes), or a question Iftark (?) 
preceding an octal number for lcng arrays and parts of the inter
preter workspace and stacks. 

PROG - PROGram special fori. 

CPR OG AR G-L 1ST 
LAB EXP1 

• • • 
EX Pn) 

Special formi places binding pairs on the system association 
list, AlIST, for each member (CAR) of the first parameter, ARG
LIST, a list cf arguments consisting of SYMBOlic atoms and 
sUblists. PROG binds each .ember that is a SYMBOlic atom, a 
variable, to NIL of the dummy argument list, ARG-lIST. The CAR 
of each sublist of the argLment list is also a SYMBOlic atom 
which PROG bindS to the value attained by evaluating the second 
member of the subl;st, the CADR. If ARG-lIST is NIL (eapty), 
PROG places no new bindings on the association list. After PROG 
binds any argUMents, PROG 'seq~entially evaluates any remaining, 
non-atomic parameters until either evaluating the GO special 
form, evaluating the RETURN furctian, or reaching the end of the 
paraMeter l.ist. The unevaluated atomic paraMeters are labels for 
the GO special form. After evaluating the GO special form, PROG 
restarts the sequential evaluation .with any parameter following 
the PROG label used as the unevaluated t:arameter of GO. If PROG 
evaluates the RETURN function, PROG uses the valup of any RETURN 
function parameter as the value of the PROG call and ceases se-



116 

Quential evaluat'ion of further PROG para.eters. If PROG evalu
ates a RETURN function call without parameters or if it exausts 
the supply of· para.eters to e\laluate, ;t ceases and returns NIL 
as value. In any case, as PROG returns, it restores the system 
associatton l;st, AlIST, the ola binding environment existing be
fore the ~ROG call. 

PROP - obtain PROPerty list pair. 

(PROP ATM PRP FUNe) - Functional; returns any property binding 
pair on the property list of the first parameter, ATM, a SYMBOLic 
atom. The property binding pair consists of a CONSED node 
(dotted pair) whose left part <CAR) is the second paraMeter, PRP, 
a SYMBOLic atom, the property name, and whose right part (CDR) is 
the current binding (vaLue) of the property. If ATM has no ap
propriate property binding, PROP returns a value by calting its 
third parameter, FUNt, a functicn of no arguments. 

PUT - PUT property binding on property list. 

(PUT ATM PRP ARG) - Replaces the property value of the property 
name, PRP, a SYMBOLic atOM, on the property list of the first 
parameter, ATM, another SYMBOlic atOM, ~ith the third parameter, 
ARG. If the specified property does not exist on the property 
lis t. PUT c rea t e sap ro per t y b i r.d i ng p air. 1 t ret urn s the fir s t 
parameter, ATM t whose property list it modified. 

Q UO T E - use a r g u me n t a sis • 

( QUO 1 EAR G) - Special form; ret ~ r n s it spa r a 1ft e t erA R G as is. 
Since speciaL forms receive parameters without prior evaluation, 
QUOTE returns its parameter ARG without evaluation. The READ 
function recognizes the single Quotat;~n mark (') followed by an 
S-expression as a shorthand for a list of the SY"BOLic atom 
"QUOTe" .and the S-expression. for exalllple, if READ encounters 
the characters 

'(J. 8 C) 

it prOduces the list 

(QUOTE (A Be») • 



117, 

QUOTIENT - divide argu~ents. 

( QUO TIE N T _ X yJ - Ret u rn s the ~ u 0 t; e n t 0 f d ; v i din 9 th e fir s t 
para,.eter, X, oy the second lJaraMeter, V. If either para,meter 
h~, floating-point-numeric type, QUOTIENT converts the parameter 
o'f lesser precision to the ,type of the other before dividing. 
Otherwise, QUOTIENT ~eturns an integer whose value is the 
number-theoretic quotient. The sing Le-character-atom "I" is a 
synonym for QUOTlENT. 

READ - create S-expressions from input characters. 

(READ) - Returns an S-expressio~ createo from input characters 
starting at the current input b~ffer position. Upon encountering 
a list,opening character ("(II, U[t., "<N, or "{II), READ recursive
ly calls itself to obtain members of a list expression. After 
encountering a list closing character (lit.) .. , II]U, II>", or .'}I'), 

READ compLetes each sublist u~der construction until matching a 
corresponding list opening character. READ creates a CONSED node 
of the expressions before and aiter a period ,(.). It ignores ex
cess list close characters and any characters after the comment 
character, initially question mark (1), up to the next non
printing ASCII character, such as a new-line character (012), 
which delimits any token being scanned. When READ encounters 
user-defined readmac ro characte rs, it uses the value of a calL to 
the associated readmacro. Otheruise, it calls the scanner, 
TOKEN, to return the next item scanned in the input buffer. For 
example, the S-expressions READ creates from the characters 

«A .... 8> (C • D) NIL} 

or 

«A .. «QUOTf:: • (6 • NIL» It t\lL» • (C. D) • (NIL. NIL») 

or 

({A .... B) • <C • 0> () 

are congruent. Whenever READ reaches the end of the input 
butfer, it calls the operating system to obtain more ASCII 
cha rae te rs f rom' the cur rent inp a.t fi leo 

READCH - READ a single-CHaracter atom. 

(RcAOCH) - Returns a single-character, SYMBOLic atom ~hich repre
sents the next character in the input buffer, regardless of any 
delimiter or readmacro status cf the character. If READCH finds 
no further characters in the input' buffer, READCH calls the 
operating system for another lire of ASCII characters. 



118 

READMAC - manipulate character READMACro status. 

(READMAC CHAR ARG) - Returns the existing read.acro status of the 
character sP~cified by the first parameter, CHAR, which STRING, 
called by., READMAC, converts i rto a s; ngle character string. If 
the charaeier is not a read.acre character, REAOMAC returns NIL 
(false). If the character specifies a user defined readMacro, 
READMAC returns the function lI~kER that the user established to 
be. called by READ whenever READ encounters the ch~racter while 
looking for the start of a new token. Otherwise, READMAC returns 
a pseuao-function LINKER used b) a systeM defined read.aero, e.g. 
the Question Nark (?), COMment character, or the single quotation 
mark ('), QUOTE S-express;on character. If READMAC gets the 
second, optional paralleter, ARG, REAOMAC establishes a new read
macro status following the sa~e rules used to return the old 
readmacro. 

REMAINDER - REMAINDER after division. 

(REMAINDER X Y) - Returns the nLmber-theoretic reMainder of di
viding the first parameter, X, by the second parameter, Y, when 
both parameters are fixed-point nUMbers. 

REMOB - REMove OBject frOM hash lists. 

(REMOBATM) - Searches the apprcpriate hash list for the para
meter ATM, a SYMBOLic atom. If REMOB finds the atom and the user 
created the atom as opposed to the ato. e.isting during Sign-on, 
REMOB removes the parameter frow the hash list and returns the 
parameter. REHOB also accepts a user-code-area, function 
master-LINkER as the parameter ARG. If RE"OB had not previously 
marked the user-code area specified by the I-space address of the 
master-LINKER as unused, REMoe marks the code area as unused so 
that any points referenced by the code area may be recLaiMed and 
returns the parameter, the fLnction .aster-LINKER. Otherwise, 
REHOB returns NIL (false). 

REMOBP - REMoveabLe OBject Predicate. 

( REM OB PAR G) - Ret urn s T (t rue) i f the gar bag e col l e c tor co u l d 
potentially reclaim the paraMeter ARG, i.e. the user defined the 
object after invoking LISP. Otherwise, REMOBP returns NIL 
( fa l se ) • 



119~ 

REMPROP - REMove PROPerty from property list. 

(REMPROP ATM PRP) - Removes any property binding pair indicated 
bY the second parameter, PRP, a SYMBOLic atom, from the property 
list (*CDR) of the first parameter, ATM, another SYMBOLic atom. 
REMPROP returns the first PGra~eter, ATM, whose property list 
REM PRO Pal t ere d • 

REQUEST - output query for S-expression input to evaluate. 

(REQUEST ARG) - Forces output 01 the parameter ARG to the current 
output file wi thout a carriage return and t;hen returns the eva
l U d t ion 0 t the n ext S -e )( pre 5 S i 0" rea d fro m the c u ,. r en tin put • 

RETURN - RETURN to caller. 

(RETURN ARG) - Returns the most current invocation of the PROG 
special form, thE LOAD functior, or the LISP supervisor to their 
caller. The caller receives an) optional parameter ARG as the 
value of a call of PROG or LISP. If RETURN has no parameter, 
RETURN returns NIL. When RETUR~ leaves the top level of LISP 
supervisi~n, the interpreter may exit tack to the operating sys
tem using any r<ETURN parameter as status. 

REVERSE - create REVERSEd list. 

(REVERSE LST) - Creates a new list whose elements, CARs, are the 
elements of the parameter LST, a list, in reverSe order. If the 
parameter LST is NIL, the empty list, REVERSE returns NIL. 

RPLACA - RePLACe CAR. 

(RPLACA ARG ITE~) - Replaces the lefthand side, *CAR, of the 
fir s t par a met e r tAR G t usual l y a l is t , with the second par a at e t e r, 
ITE~. RPLACA returns the altered 1irst parameter, ARG. In order 
to preserve system integrity, the first parameter 01 RPLACA 
should not be an integer or string node. 

RPlACD - RePLACe CDR. 

(RPlACD ARG ITEM) - Replaces the righthand side, *COR, of the 
first parameter, ARG, usually a list, ~ith the second parameter, 
ITEM. RPLACD returns the altered first parameter, ARG. In order 
to preserve system integrity, the iirst parameter, of RPlACD 
s h 0 u ld not b e ani n t e 9 e r 0 r s t r in 9 n ~ de. 



120 

SET - change fluid binding. 

<SET ATM EXP) Replaces any previously existing constant 
(global) binding given by a non-zero pointer in the constant 
binding £ell (.CAR) of the first paraMeter~ ATM, a SYMBOLic atom, 
a variab;te, with the second parameter, EXP. It ATM has no 
constant binding, SET searches the system asso£iation list, 
ALlST, for a binding dotted-pair whose lefthand side (CAR) ;s the 
first paraMeter, ATM, and whose righthand side, CDR, is the pr~

vi 0 u s flu i d bind; n 9 va l u e t hat SET will rep lac e w ; thE X ~ • I f SET 
can find no binaing pair for A1M, it ins~rts a new binding pair, 
consisting of a CONSED node (dotted pair) whose CAR is ATM and 
whose CDR is EXP, on the current systeM association list just be
low a marker, the atom LISP, added to the list by ,the Most cur
rent level of LISP supervision. Any such binding disappears as 
the c,urrent level of LISP supervision exits. If SET cannot find 
any marker to use in the latter case, usually because a level of 
LISP supervision is not in effect during LOADing at start-up und
er UNIX, the LISP interpreter exits in error lIode (lOT). 

S~TCOl - SET next COLumn tc read i"put. 

(SETCOL COL) - Sets the input rcut;nes, READ, READCH, or TOKEN, 
to obtain the next characters frOM the input-buffer column indi
catec oy the parameter COL, a fixed-point nu.ber. 

SETQ - Quote the first argLment of SET. 

(SETQ NAME EXP) - Special form; serves as an abbreviation for 

(SET '~AME EXP) 

since SETQ only evaluates the second paraMeter, EXPw SETQ fluid
l y b; n d s t h eo fir s t p a ram e t e r, N AM E, a S \1MB 0 Lie at 0 m, a va r i ab l e , 
as is~ without evaluation. Thus, in the example, SETQ alters the 
fluid binding of NAME rather than any variable which could have 
bee n bound to ~AME. 



121 , 

SH - UNIX SHell. 

( S H A R G ) -Invokes the UNIX shell, the operating s y s t e 1ft command 
interpreter, with an implicit II-eN o~tiont using any optional, 
given parameter ARG, which SH ccnverts to a string followed by a 
zero byte, as a shell command line. It SH gets no parameter. SH 
in\lokes the UNIX she II without cptions or parameters, so that the 
shell will read co.mands from the current standard input file. 
While SH waits for the shell cOMmand interpreter to finish, SH 
ignores the standard (DEL) ar.d Quit CCNTR-SHIFT-L or CNTR
Backslash) asynchronous interrupts. ~hile waiting, SH absorbs, 
without noti1ication, any other offspring created by forking that 
terminate conc~rrently. SH ret~rns an octal representation of 
the stdtus word that the operating syste- returns in CPU register 
R 1, ~ 1. On l y li N 1)( V lIS P de fin e s SHit 

SINGLE - convert to SINGLE precisian floating. 

(SINGLE A~G) Converts the parameter ARG into 
precision, floating-point value Ctwo 16-bit words). 
fines OOUBLE only when defining both double and single 
floating-paint-number types. 

SPACE - set vertical output SPACE count. 

a single
VlISP de
precision 

(SPACE ARG) - Sets the number cf vert ical spaces, line feeds 
C01?), given by the parameter ARG, a fixed-point number, that 
will p~ecede the n~xt output frem the o~tput composition bufter. 
If ~RG is zero, SPACE outputs a carriage return (015) and no line 
feed, which will allow many output devices to overprint the cur
rent line with the next. It ARE is large (greater than 64) or 
negative, SPACE outputs an ASCII form feed (014) instead of any 
lin~ feeds, wh ich causes many ot.tput devices to perform top of 
form actions. Alternatively, ARG may be NIL, which causes the 
next line of output to be? sent without carriage control 
characters. Thus SPACE with a NIL parameter may be used to send 
a prompt without advancing to a new line. SPACE sends any 
control characters to the currert output file immediately. 



122 

STACK - STACK list as argulents to function call. 

(STACK LST) - Special formi evaluates the members (CARs) of t.he 
parameter LST, a list, and passes the values as parameters to the 
most immediate, surrounding, furction cal.l being constructed. If 
LST is NIL (the empty list> STACK passes no new parameters to the 
function call being constructed. Fer example, evaluating the 
fun c ti on ca l l 

( F N A 'e "c D) 

is equivalent to evaluating the function call 

(FN A "8 (STACK (LIST ... c D») 

that uses a STACK invocation. 

STRING - convert to STRING interna l type. 

(STRINll ARG) - Converts the parameter ARG into i·nternal typ~. 
STRING. If ARG already has type STRING, STRING returns it. 
STR!NG uses the print name of SVMBOLic ato~s, e.clusive of any 
GENSYM number. It produces the pri~ted representation of all 
othpr internal types and converts the characters into a string. 

SUBST - SUBSTitute one itea for another in S-expression. 

<SUBST NEW OLD EXP) - Returns a copy of the third parameter, EXP, 
an S-e.pression ~ithoutcycles, with all occurr~nces that are 
congruent (EQUAL) to the seccnd parallleter, OLD, altered recu,.
sively to the first parameter, ~EW. The returned S-expression 
creates new ~ONSEO nodes only for subexpress;on which have been 
a l t e re d. 

SUS1 - decrement argument. 

(SU81 X) - Subtracts 1 f,.om the parameter X. If X has floating
point type, SUR1 returns the salle type. Other.dse, SUB1 returns 
an integer. 



123 

SYS - call UNIX operating SYStem. 

(SYS X ARG1 ••• ARGn) - calls the UNIX operating system by con
stucting an indirect "Sys" instruction call using the parameter 
X, which SYS converts into a 1ixed-point nUMber, as the offset, 
low oroer byte. by bitwise, logically ORfng the values. SYS 
passes any remaining para.eters as paraMeters following the NsyS" 
call, after appropriate conversions. It passes the values of 
fixed-point numbers, pointers to floating-point. numbers, the 
texts of arrays, and the I-space addresses of othe~ function 
LINKERs. If needed, SYS converts strings, the print naaes of 
SYMBOLic atoms, and lists, whcse meMbers SYS assumes to specify 
single characters, into strings which have a zero (null) byte, 
the deliMiter for strings passed to the UNIX operating system. 
SYS also places the last two values computed froD the parameters 
into registers, R1 and RO. SYS returns an integer representation 
of the valu~ returned in CPU regist~r RC by the operating systeu. 
Only UNIX VLISP oefines SYS. 

TERPRI - TER.inate and send PRInt buffer. 

(TERPRI FILE) - Sends any outpa.t in the printing composition 
buffer to the logical, ;nter~al file-nUMber given by the para
meter FILE, a iixed-point number obtained from the operating sys
tem as the vat~e of OPEN or similar function calls under UNIX. 
It TERPRI gets no parameter, TERPRI se~ds the composition buffer 
contents to the current output file. If FILE is NIL, the current 
output is sent to the standard cutput 1ile. TERPRI saves the 
current parameter fILE, as the constant (global) binding of the 
SYMBOlic atom, *TERPRI, to redefine the current output for calls 
to PRINT, PRIN1 and PRIN2. The LISP supervisor resets the cur
rent output file to the standard output file before printing 
values. 

TIME - TI~E in clock ticks. 

(TIME) - Returns an octal representation of the low order word of 
the current time measured in system clock ticks by the operating 
system. The SYS or TRAP function may obtain the high-order word 
of the time unoer UNIX or DOS, respect" \lely. 



124 

TIMES - multipLy arguments. 

(TIMES ARG1 ••• ARGn) - Multi~lies the paraMeters from lett to 
right, converting either the rext paraMeter or the current sub
product to the type of the one ~ith higher precision if either 
has floating-point type. If VLISP supports double-precision 
floating-point and the product of two fixed-point values, w;tti 
signs, cannot be represented by a 16-bit, signed, fixed-point 
number, TIMES converts the sub~roduct to double precision to 
avoid losing information. If VLISP supports single-prec.ision but 
not double-precision, TIMES converts a fixed-point product that 
overflows into a single-precisicn value. If VLISP does not sup
port floating-point arithmetic, TIMES ~ses the low order word of 
all products, even if multiplication overflows. If the TIMES 
function geots no parameters, lIMES returns integer on@! (1), the 
eMpty product. The single-character-ato. "*" is a synonYM for 
TIMES. 

TOKEN - scan next input TO~EN. 

(TOKEN) - Scans and creates an atom froD the next position in ~he 
input buffer. TOKEN ignores the readmacro status of .ost 
characters. It skips ASCII blarks and co •• as before starting the 
scan and converts any alpha characters which are not in the stan
dard case into the corresponc;ng characters in the other case. 
If VLISP uses Lower case characters ior system defined atom 
names, TOKEN will convert upper case characters in SYMBOLic naMes 
into lower case characters as t~ey are scanned. TOkEN terminates 
scanning after encountering a character with delimiter status and 
positions the read routine input buffer pointer so that the deli
miter character will be reac first by the next call to READ, 
TOKEN, or READCH. When TOkEN encounters an escape character, 
initially exc tamation point (!), whi le scanning any atoll other 
than a string, TOkEN uses the fcllowing character as is, regard
less of any deli.iter or readmacrostatus of the character. The 
result of scanning an atom which possessed an escaped character 
is a SYMBOLic dtom, even if the format of what was read ;s other
wisp. that ot a number. When TCKEN encounters a string delimiter 
c h a r act e r, ; n; t i all y do u b l e QUO t e s (I' ), i nth e fir stu n ski P p e d 
position, TOK~N creates a string using the characters as they 
appear, regardless of read.acro or deli.iter status, using each 
pair of string oelimiter characters as a single string deli.iter 
character, until TOKEN finds an un~aired string deli~iter 
character which ends the strin£ scan. When TOKEN scans the list 
opening or closing characters as the first unskipped character of 
the input buffer scan or any ottler character with deli.iter sta
tus on whiCh it does not perform exceptional actions, it returns 
the corresponding single-character ato. and positions the input 
buffer point to read the follo~ing character on the next call to 
READ, lOKEN, or READCH. If TOKEN has notco.pleted scanning but 
has reached the end of the input buffer, it obtains a new line of 
input from the current input fi te. 



125 

TRAP - call DOS or VOS operating system. 

(TRAP ARGO ARG1 ••• 'ARGn) - Calls the Virtual Operating System' 
( V 0 S )' 0 rOE C ' 's Dis k 0 per a tin 9 S )' s tell ( 0 0 S ) t h r 0 ugh the V 0 S 
emulator, performing an indirect syst~m call'using the TRAP in
struction offset given by the first parameter, ARGO, a fixed
point number. TRAP converts any remaining parameters into values 
which it places in CPU registers RO to R4 before the indirect 
call. It converts numbers to their values, obtains the starting 
adaress of array data when giver a function linker to an array, 
uses the start of data of strirgs and the print name of SYMBOLic 
atoms, and the CAR pointer of ceNSED nories. It converts NIL into 
a zero value. TkAP returns a CeNSED nooe (dotted pair) of octal 
representation of the values the operating system returned in CPU 
reg; sters, RO ana R1.' Only DOS and VOS VLISP define TRAP. 

UNBREAK - UNdo the BREAK fLnction binding. 

(UNAREAK ATM) - Recreates any ccnstant function or special form 
constant (glooal) binding of the parameter ATM, a SYMBOlic atom, 
a variable, wh~ch existed before a prior BREAK call. with ATM as 
the first parameter of the EREAK call. If ATM has no binding 
createo by a B~EAK call, UNBREAK changes nothing. UNBREAK re
turns ATM with any changed binding. 

U~FLAG - remove FLAG from J;roperty list. 

(UNFlAb ATM FLG) - Removes the second'parameter, FlG, a SYMBOlic 
atom, trom the property list ot the first parameter, ATM, another 
SYMROLic atom. 11 the property list does not contain the flaq, 
UNfLAG makes no changes. UNFLAE returns the first parameter, 
ATM. 

'WAIT - WAIT tor concurrent process termination. 

(wAlT) - Pause~ if the current process has active' children, 
usually created by the FORK predicate, and no child has ter
minated whose remnants still exist~ Upen finding an existent, 
terminated child~ WAIT removes the remnants of the child prricess 
and re tu rns a CONS ED node (dot ted pa i r) of two int eger 5 returned 
by the UNIX operating system in registers RO and R1, which give 
the child's process identification number (PID) and termination 
status word, as the CAR, 'lefthand side, and CDR, righthand side, 
respectively. It the current process has no children, WAIT gen
erates an internal-type-zero (e) error. Only UNIX VLISP defines 
WA IT. ' 



126 

ZEROP - ZERO Predicate. 

(ZEROP X) - Returns T (true) if the high-order word, of its. nu
.erical parameter )( is zero; other .. ise NIL (false). If the 
high-order woro of floating-po;nt values is zero, floating~point 
hardware treats the ~alue as zero. fixed-point values consist of 
the high-order word. ' 

*8EGIN - bEGIN new area for compiled code. 

(*BEGIN ARG) - Qeturns a Master LINKER ~hose I-space address be
gins a new area which May receive co_piled code and whose *CDR 
( l eft han d side) ; s the par a '" e t erA R G • e y con v e n t ion ,A R G should 
be an S-expression which evaluates back ,to the .aster LINKER that 
*BEGIN creates. VLISP defines .BEGIN only if supporting co_piled 
LI S P code. 

*CAR - unrestricted CAR. 

(*CAR ARG) - Finds the unrestricted CAR Clefthand side) of the 
parameter ARG. The *CAR of CO~SED nodes is the saMe as the CAR; 
of LINKERs, the associated pcinter; of SYMBOlic atOMS, any 
constant (global) binding or a J:ointer .. hose value is zero if the 
SYMR.OLic atom has no constant tinding. The *CAR of strings is a 
word consisting of the first two ~ytes; of floating-point 
numbers, the second word; and cf fixed-point nu.berst the value, 
each returned as a value ;nsteac of a pointer to the value. Such 
values should not be retained while any other node is allocated. 
since garbage collection ~aY be .isled. 

*CDR - unrestricted CDR. 

(*CDR ARG) - Fines the unrestricted CDR Crighthand side> of the 
parameter ARG using the value indicated as a pointer. The *COR 
of CON SED nod e sis the sam e as the CDR; 0 f S Y M 8 0 lie at 0 m s, i tis 
the property list. The *COR of nUlIlbers (the high-order word) and' 
of strings (the byte length), and of LINkERS (the I-space 
adaress), each returned as valuEs rather than pointers to values, 
should not be retained while allocating any other node, since 
garbage collection may be Mislec. 

*CHAIN - cbtain definition of CAR-CDR chain function. 

C*CHAIN ATM) - Returns the defiring string of any CAR-COR chain 
function which is constantly bound to the paraMeter ATM, a 
SYMBOlic atom; otherwise NIL (f~lse) •• CHA~N calls .CAR to ob
tain any constant binding of AT~. 

-- ~--.--------------



127 

*OEf - obtain lA~BDA function definition. 

( .0 E FAT M) - . Returns . the LAM BOA par a • e t ,e r 5 (in a l·i s t ) . which 
used to create' the function constantly ·(globally) bound to 
parameter ATM, a SYMBOLic atom; otherwise NIL (false). 
calls *CAR to obtain any constart bindi~g 01 ATM. 

*OEPOSIT - create master LINKER for binary input. 

were 
the 

*0 E F 

( * 0 f PO SIT A R G ) - Ret urn s .. a III a s t e r LIN K E R who s e I - spa c e add res s 
specifies an area of user coce read fro. the file given by the 
constant binding of *lOAO, a previously-opened, logical file
nUMher given as the last paramete.r of the most recent LOAD func
tion call. The file read is in DEC absolute or a.out format de
pending 'on whethE'r VOS, possibly er.1ulated by DOS, or UNIX ;s the 
host operating system, respecti~ely. The lefthand side (*CAR) of 
the created' master LINKER is the parameter ARG, which convention
ally is an S-expres.sion which evaluates back to the .ast~r 
LINKER. VlISP defines *OEPOSIl only if supporting compiled LISP 
cod E' ~ 

* EM I T - ins tall ,va l u e i n tow r ita b leI - spa c e • 

(*EMIT MASTER POINTER POINTER-OfFSET ARG-OFFSET ARG) - Places the 
last parameter, ARG, a pointer to a node' as .odified by the 
penultimate paraMeter, ARG-OFFSET, a fiXed-point nUMber, into a 
location determined by/adding the optional parameter, POINTER
OFFSET, a fixed-point number, to the pointer given by the table 
of pointers location, the paraMeter POINTER, a fixed point 
number, from the st'art of the lJser I-space area indicated by the 
*COq 01 the first~ optional parameter, ~ASTER, a master function 
LINKER. The parameters may be omitted in the order third, 
second, first, and fourth, which are POINTER-OFFSET, POINTER, 
MASTER, and ARG-OFfSET, respectively. If *EMIT gets only the 
last two parameters, *EMIT places ARG as modified by ARG-OFFSET 
into the next avai lable location for generated code, and places 
an entry which references the' mcdified I=aralleter into 'the table 
of offsets at the end of the user code area. If *EMIT gets only 
the last parameter, ARG, a fixec-po;nt number in this case, it 
places the va-lue of the number into the next available' I-space 
generated code location. *EMIT always returns NIL. VlISP only 
definE'S *EMl~ if supporting com~iled LISP code. 



12d 

*EPT - obtain location frow Entry Point Table. 

<*EPT x) - Ret urns tne function LINKER or pseudo-function LINKER' 
counted by, the pa rameter X, a fixed-point number, from· the be
ginning of the entry point table, ~hich starts in the first page 
of function LINKERs. The ertry point table begins with the 
pseudo-function linkers used by system readrnacros. If VLISP sup
ports compi led code, the readmacro pseuco-function LINKERs pre
cede pseudo-functions, giving I-space addresses used by compiled 
code and constants within the system workspace. The system func
tion LINKERs follow the pseudo~function LINKERs. 

*~XAM - obtain ~alue .from Lser code area. 

(*EXAM MASTER POINTER POINTER-OFFSET) - Returns an octal repre
sentation of· the value at the user-code-area I-space address ref~ 
erenceo by the second parameter, POINTER, a fixed-point number 
which indicates a pointer address, modified by the optional thi·rd 
parameter, POI~TER-OFFSET, another fixed-point number, found, by 
adding the offset found from the end of the table of pointers at 
the end of the user code area indicated by the first parameter, 
MASTER, a master LINKER, to the I-space address given by the 
master LINKER. If *EXAM gets orly the first parameter, MASTER, 
it returns an octal representation of the value at the address 
referenced by MASTER. If the calculated address is not in the 
user code area, *EXAM returns NIL (false). 

*MACRO - obtain MACRO defirition. 

(*MACRO ATM) - Returns the function LINKER which DEFMAC used to 
create a macro special form anc constantly (globally) bind it to 
the parameter ATM, a SYMBOLic atom. *MACRO calls *CAR to obtain 
any constant binding of ATM. If *~ACRO finds no appropriate 
bindiny, it returns NIL (false). 

*ORG - return LINKER to next available code location. 

(*ORG ARGO ARG1 ••• ARGn) - Returns a function LINKER whose 1-
space address is the next available location for compiled code 
and '-Ihose lefthand side (*CAR) ;s the first parameter. ARGO, an 
S-expression which conventionally is the master LINKER to the 
current code area. It *ORG receives additional, optional 
parameters, it sums the parameters anc uses the total as the 1-
space address of the returned function LINKER. VLISP defines 
*ORG only if supporting compileo L'ISP code. 



129 

*REVERSE - REVERSE List without generating new nodes. 

(*REVERSE lST) - Returns a list by altering the righthand sides 
(CDRs) of the parameter LST, a list, whose members <CARs) 
*REVERSE returns in reversed oroer. If LST is NIL, *REVERSE re
turns NIL, the e.pty list •• RE~ERSE generates no new nodes while 
reversing LST. 

*SPEC - obtain SPECial forM definition. 

C*SPEC ATM) - Returns the function LINKER which OEFSPEC used to 
create a special form and constantly (globally) bind it to the 
parameter ATM, a SYMBOLic atom. *SPEC calls *CAR to obtain any 
constant binding of the parameter ATM. It *SPEC finds no appro
p,. i a te bind; n g, i t ret urn s NIL (f a ls e ) • 



------------------------------------- --------



con.B..EC::LIION 'ro :!:R'~'546 

=rlhe narne fl"VLISP ZI s!lo'l.:d.d be changed throughout: to ULISP Q 

1976 .. The aU'chor apo'J.og:Lz8.S for the inadvertent name 

duplication. 



.------.-~-~- -----------



COMPUTER VISION LABORATORY 
Image Analysis 
Picture Processing 

ULISP DISTRI8UTION I~FORMATION 

301-454-4526 

ULISP can be sUD~orted by PDP-lIs with memory manaaement, 
i.e. II/an, 11/45, and 11/7~~, using either the U~IIX operating 
syste~s or DOS.· In order to sup?ort LISP com?iled code under the 
UNIX ogerating syste~, at least 30K words of pri~ary memory 
should b~ available and the UNIX ooerating system will need some 
mo~ification. ~ore information is available in the manual: 

ULISP for PDP-lIs with Memorv ~anaqement, TR-546, 
R b t-r- ~.--- ----.. o.er •. '.lroy 
Computer Science Center 
university of M~ryland 
Colleqe Park, ~aryland 2~742 
Ju n e, . 197 7 • . 

If you want a co~y of ULISP, please send: 

I} A check for $75.60 (US) payable. to the Comnuter Sci~nce 
Center, University of Maryland (or ourchase order) for the 
di~tribution costs (no warr~nty or service is i~plied); 

2} A signed co~v of the ULISP copyriqht license which will be 
returned to you with my signature; 

3) Choi~e(s) of oneratin~ system (DOS or UNIX) which will 
.su!)~ort ULISI?; 

4) Scecifications of the density of the 9-track ta~e (800 or 
1 5 ~1 Q F PI) and for mat ( UN I X II t P II for in a tor DOS - PI l? f () r r:1a t ) 
which will be sent cont2ini~q two copies of: 
a) a load module version of ULISP, 
b) the ULISPsource code, 
c) LISP software, 
d} if the UNIX 09~rating system is to be used, UNIX syste~ 

~odification instructions and short manuals; 

5) A descriotion of each configuration which will support OLISP. 

The descri~tion will be uS8d to create an 3P?rooriate 
ULISP load module. The description shoul~ include: 

~) the number of words of primary memory, 
b) the Qroc~ssor model (,I t1 0, /'15, etc), 
c) the av~ilability of a flo2tina ?oi~t Qrocessor, 
el) thp. ?rint ~\lidt~ (in columns) of ter~ninals. (Give the 

narrowest 9rint width of terminals which will not 
wrap-3roun~ when s8nt characters beyond the last 
column. ) 

C,?mputer Science Center, University of Maryland, College Park, Maryland 20742, U.S.A. 



--------~.---.--.--. 



COMPUTER VISION LABORATORY 
Image Analysis 
Picture Processing 

ULISP CCPY~IGBT LIC8NS8 

I qrant the licensee, (name and address) 

301-454-4526 

oer~ission to us~, copy, and modify my ULISP, LISP int~rpreter, 
PLISP related software, and documentation for use by the licensee 
~nd for distribution to other ULISP c09yriqht licensees provided 
that: 

1) The cODyriaht notice 
COPYRIGHT 1978, Robert L. Kirby 

is cons~icuouslv placed on all copies and versions 
~hysicai ~edia ~sed for transmission (such as magnetic 
~ithin cocies of source code; 

2) T~e interactive-mode sign-on ~~ssa~e of the ULISP 
continues to include t~e co~vright notice~ 

i ~c Iud ing 
ta pe s) 3. nd 

interpreter 

3) Copies and versions are trans~itted only to the licensee or to 
other ULISP copyriqht licensees; 

4) If the ULISP version for the U~IX 
contai~s ~odified U~IY software, is 
maintAins a U~IX license agreem~nt 
Co r 00 rat io n ;3 flO 

o?eratin~ syste~, w~ich 
renueste~, the licensee 

t'l i t h j.~ est ern E 1 e c t ric 

5} A responsible aqent of the licensee has acknowledge~ agreement 
to these conditions. 

Fobert L. Kirby 
COTiputer Science Center 
F!l i ve r sit y 0 E ~I! a r y I a nd 
Colleae Park, ~arvland 20742 

Sa ted: 

For the licensee: 

Computer Science Center, University of Maryland, College Park, Maryland 20742, U.S.A~ _______ ---



.----~ ~--~---- ~-----~ -------------~ 


