
o T~ -Sx x
D C R - 7 ? -, :' (: "-A '~, 3

Ma rc h, i 977

poLISP for PDP 4~S with Memory ~anagement.

R ob e r t L. < i r by

Com~uter Science Center
University of ~aryland

College °ark, ~arylahd zr742

ABSTr~ACT

~ nc;.w lar'~e scale imolE'lilE'ntation of LISP, opLISP, for PDP
11'5 with nemJry-~anaQe~ent mouelea after ~isconsin's U~IVAC 111C
LISP, ;s :Jescrioed oS i.llplr.:-fliente6 3t the University of f'iarylard ..
FOJr versions ~re available: ~n interoreter for use with the
Virtual OJeratin~ System (vas) bei,Q developed at the University
of ~arylanj, a v~rsion compatibLe -with DEC's Disk Operating
Syst.en (D)S) ~sin~ a VOS eTuta~or, a sta00 alone versi9n wh~ch
also emulates v0S, and a verSlon tor uSP wlth 2~ll lab s U~IX
0~eratin0 system~ Tne ~ocumentation explains how to start and
us:: the 1 fl, J l e '1) tC n 1: a t ion; J; s c u sse s the pro b l ems, L i ITI ; tat .j 0 n s , and
intern,:d confiGuration; t:riefly jescrices the avaiLablp system
s~ftware including 3 Cretty Printer, an S-exoression eoitor, a
LISP functiJn conpiLer, a~u ~icro-FLANNER; and provides a
s y no psi S 0 f the pre ~ a e fin E.' d LIS P f U'i C t i en S •

COPYRIGHT, ~977, Robert L. Kirby

This d~cument may be copied for non-profit purposes or any
purDOS~ of the Unit2u States governnent ~rovided that any copy
includes the copyri~ht notice and this statement~

The support of the Offic~ of Comouting Activities,
National Science Foundation under Grant DCR-72-r361~-A~3 is
gratefully ackno~lejgeJ as is th~ h~lp of Prof. Azriel Rosenfeld,
Pr:>f .. Chuck r:~iJr:;'r, ["S~ Jean \<Jeszka~ r,lr~ Ed Luczak, and ~lr. <en
Hayes in the PfE'j...>arat;on of·this dccument ..

j

(-_ ... u

~~----.. ----- -... -~--- .. _----.- ---_. ----~------~.-----

ReviseJ PDP i1 LISP Documentation. 1

1. The LISP interpreter.

PpLISP for PDP 1·1"s with memory mananement. foll9:.1S
University of ",isconsin LISP for the UNIVAC 1-:'" serles
COli put e r s • Fa mi l i a r ; t y wit h the pro 9 ram min 9 lang u a q eLI S Pis
assumned. The m~nu3Ls describing Wisconsin UNIVAC 1~DG LISP give
a nore ,jet:dleo descriPtion of th<::> Lan;luage. The differences and
peculiiJrities of the PDP! i LISP di3lect are described here.

PpLISP is a moderate-scdle, in-core implementation using
t w;) s t a c k s ! dee p 0 r glob alb i n din 9 s, rn u L t ; p led a tat y pes fan d
ty;)e deternlnation through address locationv The initial code
and jata for the LISP lnterpreter occupy approximately QK words
of core. The Virtual Operating System I Distribute~ Computer
Networ~ (JOS/DC~) developeri at the University of Maryland, a vas
e~Jl~tor fJr use witn DEC's Disk Operatin1 System (DOS), and a
stand alone system ~hich emulates some V0S functions are operat
in~ systems WhICh support the LISP interpreter. With a smal~
operating sys~em, the LISP iryterpreter needS nearly 16K words 01
core Just to slgn on. Expdndlng Just the potentlal aata area,
42< words of ~ore could be SUD~ortet. Prnbaoly, 2?K words of
core would be needej for much useful co~~utina. Comniled and
assembled code coulj use yet another 24K words.- With the maxinum
co~fiJuration of 60~ words, about ,~K CO~S'ed nodes could be used
for 3bta r assuffiin~ that almost all proqrams are co~piled. The
SJJDor~abLe core is-re~uced on PDO 11~s -which do not support
seoer3ted instruction (1) and data (D) spaces, such as the PDP
1'l1£.,. The host computer must also support the Extendea
Instruction Set (EIS) consistin~ of the MUL, DIV, ASH, and ASHe
instructi01S. EIS comes standara with FDP 11/455 and PDP "/7Js.

3ell Lab's U~IX operatina system may also support ppLISPe
Conditional a5sE~Lly instruct~ons select t~e host operating
syste~. 8~fore the LISP co~piler C3n b~. used under UNIX on ,PDP
'j 'J I 4 5 S 0 r P D ::> ~ i 1 /' ~: 5, the U t .. I X 0 per a tin.; s y s t e m nl U S t b €' a l t ere d •
The alterations consist of two paqes of straight-forward adji
t i ::l n s .. tot he It c II cod e 0 f the. UN I I. 0 r> era tin 'J S Y s t em. The r e c :) ,"'
piled u~lX can support an ~oditional, wrlteable I-space oer
process follo~in~ the write protected code in seperated-I-and-D
soace mode. Tne cpLISP compiler ca~ then write instructions into
the I-scace are~ increasing efficiencys A second, smaller
mOjification of the UNIX operatin~ 5yst~m provides one-line-at
a-tim! inpJt from other files ':lesid::s teletypes. After the
m :> :l ; fie a t i J n , which ad d sa .. s y s " call t h r 0 u 9 h ? II lin e s 0 file II
coje additions, callers can read input from file systems and
pioes uo t~ ana including the first new-line, line-feed character
encounterej. without the second U~!X nodification, LISP reguests
ASCII-character inout one-character-at-a-tione so that f!'ultl-file
inJut m3Y ::>€ selectlve, but sLowing the OVeraLL process. LISP
so f twa r e nay ace e sst h e p ower f u l f eat u re S 0 fUN I X s u c has FOR K s ,
EX:: C s, DIP =. san d the 0 the r II s y s" an:l .. she l t.. call s des CT ; bed i n
the U~IX Programmer's Handbook.

i It 1 • AvaiLable functions.

Except as noted in subsequent sections, the following
functions have been implemented consistently with the definitions
in the ~isconsin U~IV~C li8 LISP R!ference ~anual by Eric Nornan
anj the additions produced at the University of Maryland. An
aPJendix prnvides a synopsis of these pre-defined functions.

ADD1 ~LISl A~d AND APP~ND
~T~M ~TSVM8 ~TTEMPT

3hCKS::> 8Rt.AK

ARR~Y ARRAYL ARRAYP

CLEAR3UFF CLOS:: C3MPLEMENT CJMPRESS CONt) CONS

zl ., c'

ASSOC

CSET

:0

--_. __ . __ . ----

Revise:j PDP 11 LISP Documentation.

CSETQ CURRCOl

DEFINE DEFMAC .DEFSPEC DELI~ DIFFERENCE DO DOUBLE DUMP

ENTIE~ E~ EQUAL ERASE ERROR EV~l EXEC EXPLODE EXPLODE2

FIXP FLO!)'T FlOA.TP FLAG FORK FU'JCTION

GE\lSYVI GET GO GREATERP

I FF LA:; IF T Y PEl N D E X I NT 0

LA~8D' LAMDA L~FTSHIFT LENGTH LESSP LISP LIST LOAD
LOGAN) L1GOk .LJGXOR

~ANIFEST MAP MA.PC ~APCAR MAPLIST ~EM8ER ~INUS MINUSP

NCONC NOT NTH ~ULL NUMBERP

08LIST ONDEX O\lTO OPEN OR

PIPE ~LENGTH PlENGTH2 PLIMIT °LUS PRINT PRIN1 PRIN2
PROG ;:)ROP PUT

~UOTc QUOTIeNT
.

READ ~EADCH READMAC P~MAINDEq REMOa RE~OBP REMPROP
RE~UE5T RETURN REVERSE RPLACA qPLACD

SET SETCOL SET~ SH SINGLE SPACE STACK STRING SUeST SUB1
SYS -

TERPRI TINE TI"'ES TOKEN TkAP

JN3REA.K UNFLAG

iJAIT

Z iR OP

*BEGI'J *CAR *CDR *CHAIN *DEF *~EPOSIT *E~IT *EPT *EXAM
*MACRJ *ORG *REVERSE *$PEC

1.2. Additional Features •

2

. PDP '1 LISP has some ne~ features which are not provi~ed
on ~Jis(.onsin UNIVA.C 11 .:),-:-, LISP.

1 .. 2.i. Arrays.

Array functions may manipulate a numerically-index~d
~ontiguous area.of S-pxpression, lo~ical, or numerical data.
1.2.1.'0 Creatlng II.rrays .

Evaluatiny the LISP expressi,n

(CSETQ ARR (ARRAY SIZE TYPE»

cr~ates a lne dimensional array of length SIZE and globally binds
it to the atom ARR. If TYPi:: is omitted, I\RRAY produces an array
of pointers. The value of the AR~AY function is a function whose
values may be obtained by evaluat'n~:

(ARR X·)

where ARR evaluates to the c~eat~d function and X to a positive,
fixed-point numoer. An element of this array may be set to the
value of V~L by ~valuating:

(ARR X VI\L)

The createj array function, ARR, returns the value of VAL

c)

~.

(,

\. /
~

kev; se::i PDP 11 LISP Documentation" 3

r e ;; a r:l l e S S 0 f ~ hat r.. R R s tore sin the a r ra y •

:3 0 t h the l 09; cal s; ze and ph y sic a l s; z e ; n by t e s m u s t be
positive, non-z~ro, fixed-point nunoers <octal or integer) which
a i~-oit nJrnber, i.2. Less than 3?,7b8 and greater than zero can
ex~ress. If AKRAY attempts to create an array with an improper
SIl,: Odrameter, the LISP interpreter wilL produce an internal
error -~ as if evaLuating

(ERROR _0) •
If the r..TT~~PT speciaL form had bee' previously invoked to catch
errOr -~, Drocessing continues at the resta.t point, Otherwise,
the interpreter prints the message

WARNING, X B~D INDEX

where X is the offending SIZE parameter. The interpreter then
restarts at the Latest leveL of LISP supervision by reauestin~ a
ned express~on to evaluate. The ARRAY function rounds the
cre3tion S1ze uf the bit array types (looical and binary) up to
the next mJltiple of B to simpLify array index checking.

The function created by ARRAY checks that the array index,
th! first ~arameter of the cre~ted array function. is a fixed
point num~er which lies between one and the logical creation
size. The credted array function m3kes no conversions of the
array ind!x trom floating-point numbers into a fixed-point
nunber. Array indicips out of range also produce error -9 and,
if uncaught by ATTE~PT, the same message as above

WARNING, X 5~D IND~X

Where X is the offending array index. However, ATTEIVIPT may be
used while seauentially referenci~g array elements to catch the
error -'9 9t .an out-ot-range reference. Thus, the programs need
not expllcltly check for the last element of arrays during
se~ue~tiaL references. For example, ~valuat;n9 the following
S-expressiJn aefines a function CA~RAY which creates an array of
any desirej size and type whose eLements are their inte~er
injicies.

Figure ~ - Define CARRAY to create arrays.

{CSET1 CAR~AY ? EstabLish a global binding
(~AM3DA A ? ~ake a list of the function's parameters

(5 E T ~ A (A R RAY (STACK A}» ? Use l; s t of SIZE and TYPE
(~TTEMPT {PROS «X ~» ? Start indexin? at one

»}

LOOP <A X x> ? Install new value in array
<S ETQ X (ADD"! X» ? Advance index
<GO LOOP>]

[-9 0 ? Return array when done

As excepti~ns, the elments of logic~L type arrays created by
CA~PAY ~ill all be T (true). FLoatinc-point arrays use the
fix e d - poi n tin a i c i e 5 wit h 0 ut con v e r 5 ion • ~
'f.2.i • .::. Types of A.rrays.

The second p3ral1eter of ARRAY (or its absence) specifies
the type of array:

TYPE MEM8eR INITIAL
AR~UMENT DESCRIPTION VALUE

'1
?

4
r;
6

Pointer
L9g ical
Blnary

Undefined
N ~L

Signed byte
Uns;;:JneQ byte

16-bit integer
32-bH s .:.-wo rds

RI\NGE

Any S -e x pre s s ; 0 n
T (t ruE') 0 r NIL (f a L s e) o 0 r '';
-'28 to 127 o to 25::;
-322613 to 3'2267
NJtfor computations

----- _-----._.

" "

o

Revised PDP "I" LISP Documentation. 4

,;-tlod float ing
f.-dod floating

Singlp precision floating point
Do~ble precision floating point

All elenents of type "', pointE'r arrays, are initially undefined.
Values should be assigned to pointer array E'lements before they
are'refere1ce::!. It not, an error :>ccurs after referencing an
unjefin!~, pointer-array value. The ppLISP interpreter uses an
error -3 CiS it the S-expression,

(ERROR -~) ,

haj been evaluatej. If the ATTEMPT special form was previou~ly.
invoked to catch error -3, processino continues at the restart
point. OtherHise, the interpreter orints the message,

WARNING, X IS JNBOUND ,

where x is the index of the unbound array element,
the solicitation

Help:

followed by

which requests an expression whose value may be used instead of
the unjefi1eo array element.
1.2.';.3. L\rray Utility Functions.

Two uti lity functions for ret rieving an array's specifica
tions i2r€ avai labLe.

If the parameter of ARRAYP, the array predicate, is an
array, then ARRAYP returns a numoer indicatin9 the array type.
zero is returned if the parameter s:)ecifies a pOlnter array. If
the parameter of ARRAYP is not an 3rray, then ARRAYP returns ~IL
(false) as its value. For example, suppose the atom, ARR, has
been given an array value by evaluating

(CSETQ ARR (ARRa, Y 17 1» •
Then the expression

(ARRAYP a.RR)

wiLL retur1 a value of 1
an array which stores
non-null values.

(one), which specifies a logical array,
either NIL (the initial value) or T for

ARR4YL, the array length function, returns the logical
lenath of an array Jiven as an parameter. If the parameter of
AR~AYL is not ~n array, ARRAYL returns NIL. In the example just
given above, the expression

(A R-R A Y L a. K R)

ev~luates to 24. The logical length specified during the
creation)f logical and binary arrays is rounded up to the next
m~lti:)le of 8 to align logical and binary ar~ays (represented by
bits) on a byte boundary. Hence, when 17 is given for the tenJth
of a logical or binary array, ARRAY produces an array of logical
length 24. Other types of arrays just use the Lencth speclfied
by the first para~eter of ARR~Y as the logical lengih.

Full ASCII Character Set.

The f u l l AS C I I char act e r 5 e tis a va i lab l e for use ; n at om
nales and stri~gs. However, to avoid a proliferation of atom
naD~S that differ only in character caS~t upper case letters are
automatically converted to lower case before beinq ysed in symooL
nanes. This - feature can be overridden by ~s1nq an escape
c h :J r act e r(!) before each UD per case letter which is not to be
cO!"lverted to lower case. .

~hile usin; the DOS or stand-~lone versions of the LISP

....... _-------_._ _ ... _ ... _ .. _--.. ---._._-----

(' \

\)
',--~-.,/

('
I ,

~-j

Revised PDP n LISP Documentation. 5

interoreter,
In this case,

lower case ASCII may not be desired or supported.
the asse~bly line

.ENABLE LC ; Use lOwer case

sh~ul::l be com~ented out of the module TRAPS.MAC of the DOS
vers;~ns of the interprete-r source code. When the interpreter is
so assembled, READ and TOKEN wiLL convert Lower case characters
encountere::l to upPer case 'unLess the escape character, initialLy
ex c L a Tl at i 0'1 poi n t (!), pre CE' e d s the 11 •

Emoty AtOll and String.

~n empty string and an ato~ Nhose print name is empty have
been orovijed. ~oth have a print l~ngth of zero. When READ and
T:::><>=:N enc::>unter 3 lone pair of douClle quotation marks (""), they
reference the empty string. However, PEAD and TOK~N cannot
d ire c t L y s can the e'1l p t Y S Y HB 0 L i cat::> m • The ex pre s s ion

(ATSYN9 1111)

will evaLu~te to the empty atom, if it is needed.

vas and GDS ooerating syste'll calLs.

Only< the VOS and VOS emulator under DOS versions of ppLISP
pr)vide the vas dnu D0S operatin~ system calL functions.
'1.2.4. ,e The 'vOS ana DOS T'='AP Function.

The TRAP function provides a, interface to the VOS ooerat
in;:! systems via the TRAP instruction with offset zero L,,). The
VJS emulator m~y then use appr::>priate DOS system calls. The
first paraTIeter of TRAP, a fixed-point number, is placed in epu
re;ister ~5, %), for use as the TRAP instruction offset by the
ooerating system. The other, option6l parameters are used to
pL~ce valJes in registers from R" to P4 to be passed to the
ooerating system. A NIL parameter Jr omitted parameter passes
zero. Strings and 3rrdYs pass a oointer to the first word of the
data. At::>ms pass the print name li ke other strings. Numbers
pass the vslue of the number. eONSed nodes pass the pointer to
the C~R. The v~Lue of the TPA~ function is a eONSed pair of
octal numbers Qivin~ the values returned in registers RO and R1
by the operating system.
1.2.4.2. The VOS and DOS OPEN function.

The vas and DOS OPEN function provides the subset of the
s~rvices)rovided by the TRAP function with offset 370 (octaL).
The OPE~ function may oe used with fro~ one to three parameters.
For exa~pLe, evalu~te

(OPE~ FILE-STRING MODE FILE-NUMBER)

where the first parameter, FIL~-STRING, evaluates to a string or
SY~30Lic 3to~t the external name of the file to be assigned an
internal bg;cat fiLe number •. Under DOS each permissabte file
nunber has a oefault external meaning, the internal number ;s
associated with the external file name on the system device,
"SV:", whJse name is the inter"lal number suffixed with the
ext ens ion ... L S P ,. • The OP EN com Tl and rep lac est h e p x t ern a l
association with 3 new one givpn by the first parameter, FILE
ST~IN~. The first time the tile is accessed for either input or
outout, t"le vus emulator searches for a fiLe with the qiven name
u~in9 any Js~r Indentification.Code (UIC) ~iven as pari 01 .the
flle name 1n the standard DO~ syntax. IT no UIe was speclf,ed,
the VJS e~Jlator first searches the current UIC directory. If
the VvS emulator does not find the file under the current UIe
director~, the vus emulator th~n searches the supervisor Ule,
"[~'!.J', directory. 1'105t LISP system software shouLd be
al/:,ll3tLe unj~r the supervisor JIC, "[1, '\]", directory.
Conolete no-flnos produce a system error and a restart. It OPEN
g~ts no s~condparaneter, ~ODE, o~ ~ODE is NI~ or zero (r), the
f1rst ~r'te to the loglcal fll?-nunber wlll atte~pt to first
.I IT <.lnd .OPEN in contiguous mode {CiS) . in case. the file is

L

l)

(_. \

I
./ . ---

Revisf'd PDP 11 LISP Documentation. 6

co~ti;:Ju:Jus and, if impossible, wilt attemDt to .OPEN the file in
extension node (~) which defaults t:J outpu~ mode if the file did
not previousLy exist 0 On the other hand, the first read directed
t:> the· fi le will cause the VOS emulator to attempt to .INIT and
.OP~N the file in input mode (4). If OPEN gets a non-NIL,
non-zero, seconu parameter, MODE, the first 1/0 attempt will LJse
the given node if p:Jssible. This provides a way to .INIT and
~~PEN contig:Juos files in update node (!), so that the emulator
may use r3ndom access. When OP~N gets a third parameter,
FIL::-'JU·~Dci, a fixed-point number, OPEN uses that number as the
internal logical· file-number instead of searchinq for an
all:iilaDle, unusea, loqical file-numjer. OPEN returns-tl1e logical
file-nunber which mar be used by CLEAPBUFF, TERPRI, and LOAD to
ace e sst hen ewe x t ern a f ill' ass 0 cia t ion. The e x. t ern a l f i l e -n arne
strin~ nay also C:Jntain oath switch~s and a second file name·
follo~in9 the standard input-and-output-file-seo~rator character,
LeSS than «). The five possiole modes available through the
sec 0 n ::j 0 a ram e t e r, [-I 0 D t , can a l sob e s pee i fie d b Y s wit c h e s :

II Input (4) from existina file,
IE Extension (3) of an eXlst;ng file,
10 O'Jtput ("2) to a new file,
IU Uodate (I) an existing contiguous file, and
Ie C:Jntiguou5 (Tl3Q) file startej empty.

The lo;!ic~l number association :ivai lable through a third
parameter, FIL~-NUM3ER, can be given by a numeric switch, such as
"IS". An allOCation size for credtin:;! contiguous files aiven as
a ~L-btte-::>lock COUrlt is specified by the switch "/AL:ft", for
example by evaluating,

(OPEN IIN~WFIL.LS:;)/AL :3~/C")

where 32 is a switch parameter allocating 32 contiguous blocks of
file space. ~PEN may also rename a,d append files through the
switches "IRE" an::! "lAP", respectiveLy. In order to append the
linke:; file tlFiLi::.2.LSP" to the end of the linked file
IIFILE!.LSPIl, evaluate

(OPEN It S Y : F I LEi • L S P < S Y : FI L E '? • L S P I A P ..)

D05 pads FILE: .LSP Jith nulls before appending the other linked
file. In DJS dATCH mode, the ooening facility with switches is
availaule to command strings in the run stream with the standard
syntax~ i.e. p~eceded by a number sign (n). For ex.ample, when
the B~ICH comnand

"NE~FIL.LSP/~<OLDFIL.LSP/RE

is encountere::l, the file "OLDFIL.LS:;)II ; s renamed tlNEWFIL.LSPIi clnd
associdted with logical fi le-n-umber 4.
1.2.4.i. The VOS and DOS CLOSE function.

The VOS and DOS CLOSE function calls the operating system
to close and release any external fi le and device associated with
the param~ter, a fixed-point nunber usually obtained from the
OPEN function. The logical file-nunber given may be reassi~ned
by a subsequent ~PEN call to a different external associatf~n.
CLJSE makes the Duffer space and dellice control blocks in the DOS
monitor available provided more rec?ntly opened files are also
cl~sej, since the DOS monitor allocates buffer and control bl~ck
space from a stack. The CLOSE function returns NIL.

1.2.5 •!.J!i.I-X--~pLlSP Operating Systell Ca lls.

UNIX poLISP orovides complete access to operating
calls. Either speci fie system caLLs us ing the

sysJ ; buff I indirect system cal~

systE'm

machine instruction like "c" and "as" prOQrams or qeneral calls
tot h e she l l, It 5 hit, may b e mad to • U 'on x p p LIS P f a c i l 1 tat e spa s sin 9

->:>'

(

/----,

L)

Kevised PDP 1'1 LISP Documentation. 7

strin~s e1ded by a zero byte which many system-call syntaxes
re~uire. The LI~P interpreter conv?rts internal types STRI~G,
SY~]Ol, a1d CONSED into STRING and insures that the data is
follo"n::J by a Lcro ::lyte, even if this forces creating a slightly
loncer copy of the original. The i~terpr~ter uses the print name
of SY~cOLic atoms, the LISP variables, as a string except for NIL
wnich is used directly as zero. If a system call receives a
CJ~Sej node parameter, ppLISP assum?s the node heads a - list of
si'n:)le-charactt:r atOlnS, sinole-character strinos, or fixed-point,
ASCII-character values. Th~ interpreter concafonates the inplied
characters into a string. The system call eventuallY passes a
pointer to the first word of the strin~ followed by a guaranteed
zero ~yte. Proorams need not suoply a zero byte after strin~s
themselves. In s~stem cal ls, ppLIS~ passE'S the value of fixed
point-numb!r parameters and a pointer to the first word of
flJatin~-PJint-nu~ber Dara~eters. The interpreter handles
function LINKERs in two ways. System calls pass the I-space
address (*CDR) of non-array LI~KER parampters so that signals
COJld be caught by user-written, machine-code routines. When
poLISP receive-san array function LINKER, a pointer to the first
~ord of the drray data is passed! If the array data, which has
lntt>rnol type STRIN:J, ... ere used dlrect ly as a parameter, the
interoreter ~iqht create a copy of the array in order to satisfy
the zer~ byte re4uire~ent. Hence, in order to pass an array of
data via a systell c<lll, e.g. flgttyfl or "fstat", the. invocation
shJuld use the array LINKER, not the array data. Provlde arrays
long enou~h to receive all Data ret~rned by system calls. The
operating system overwritinQ the area following an array does
grave aama~e to ppLISP storage allocation.

When the U~IX operatin~ system detects a venal error
durin:) a system call, the operatinl system returns from the call
with tne carry CCl bit on in the Dr~cessor status register CPS)
to si~nal an error condition. ~h€n ppLISP detects this error
condit~on after a syste~ call, except CLOSE and EXEC, ppLISP
generates an internal error C, system error, as 1f the s
ex;:>ression

(ERROR ;)

haj been evaluated. This condition may be caught by a previously
invoked ATfEMPT catchina error r, which then continues with some
restart action. Other~iset the int~rpreter prints the message,

WARNING, X SYSTEf-l ERROR,

wh~re X is the inteaer error number returned in CPU register RJ
by the J~;r)(s Y s t e:n call, a nd res tar t sat the l ate s t lev E' l 0 f LIS P
suoervisio,.
1.2.5.i. fhe SYS Function.

The SYS funct ion allows access to most of the UNIX ooerat
in~ system cal ls. UNIX ppLISP provides other functions in the
ren3ining cases for which SYS cannot efficiently handle the
syntax. Programs shouLd invoke the SYS function with at least
one parameter, the SYS offset number. In

(SYS ARGJ ••• ARGn) ,
The interpreter CDnverts the first ~arameter, ARGC, the offset
nynber, to integer type, and -uses it to create a machine instruc
tl:>n

ibuff: sys argD I start of indirect buffer

fDr use in an indirect system call

sys G ; ibuff I indirect.

The interpret~r converts any remaining parameters according to
the a~ove, gener~l rules and places them after the syst~m call in
the indirect ciJll buffer. SYS also places the last two para:ne-

() ,,-j

u

f<evised PDP 11 LISP DOCUlnentation. 8

ters in CPJ registers R1 and R0~ respectively just before the
injirect sYstem call. If the system call returns with an error
con d i t ion ,i • e. t h t;; C (C a r r y 0 r err 0 r) bit i son, the i n t e r pre t e r
uses the LISP-system-error procedure. Otherwise, SYS returns the
value ~s an inteser noJe which the J~IX operating system returned
in CPU reyister ~~ •. The system call section (Part II) of the
U~IX Programmers ~anual contains the particulars of each U~IX
syste~ call. Using instructions of the UNIX Programmer's manual
f~r assemoly languaqe format. calls, the program supplies, in
orjert the SYS offset, any in-line :>~rameters, and any val~es to
pass ,n re~isters. The LISP interpreter convert~ ~ost paramet~rs
to the natural, U~IX-syst~m-caLl format to mlnlmlze programmlng
efforty The available support software includes a file,
II/l;so/sy", whicn sives examples of system calls.
1.2.5.,. The OP2N Function.

The OPEN function calls th~ U~IX operating system to
obtain an internal, logical fiL?-number used to access a pre
existing fi lee The OPEN function ~ay receive two parameters,
e.;; •

(OPEN EXTERNAL-NAME I/O-~ODE) •
The fi rst ::larameter, EXTEHN,I\L-t~M1E, specifies an external fi le
na'lle which oPt:iJ '.Jill convert to internal type STRING, ended with
a z e r 0 - b y t 2', i f n E' e d e d • The s to con d 0 p t ion a loa ram e t e r, I / 0 - ~1 0 D E 1
a fixeo-point number, sets the permissable I/O modes, zero (-)
for read only, one (:) for write :>nly, or two (2) for both read
anj ~rite al lo~ea. If the sec~ndparameter, lID-MODE, is
o~itteo, O~EN uses zer~ (-) to set read-onLy mode. If UNIX opens
a file f::lr writing, UNIX pldces ~utput at the beqinning of the
file overwriting any existing aata ~ithout first truncating the
file. To extend an existing file, before sending any output,
evaluate the S-exoression

(SYS ;q n 3 FILE-NUM9ER)

to perform a seek (sys 19.) to the end of the file (offset=" and
ptrnan~=3) where FILE-NUM9ER is ooun~ to the value returned by
th:: O?~\j c3ll. In order to create :lr truncate a UNIX file, a
function C~EAT could be defined by evaluating the following.

Figure 2 - Define C~EAT function.

{CSF:n CRBT
<LAt'13DA. (\l,~~lE • "10DO

(5 Y S .3 NA i>lE
(CO"lD (\l(jl)E <CAR

[Do60]»)}

~ Define constant binding
? Optional mode parameter
? CalL system to create external
~OD~> ? Jse any given mode
? Else defauLt to read/write for

nane

all
Ci\EAT coulj then return a logical, internal file-number of a new
or previously-existin~-truncated file. If UNIX detects an error
while proc!ssing an OPEN, CqEAT, or SEEK call, the interprete;
generates an internal-type-~ system error which an ATTEMPT call
may lntercept.
1.2.5.3. The CLOSE Functiono

The CLOSE function removes the external file connection to
the i n t ern:; l, log i cal f i l e -n u m b e r 0 i v e n b y the C LOS Epa r arne t e r .! a
fixed-point number. If CLOSE removO's such a connection, CLJSE
returns NIL. However, if the internal to external file connec
tion JOE'S not exist or the paramet~r is out of range, CLOSE
returns the jn~eser error number returned by the.UNIX operating
systen. If CLuSt gets the parameter NIL, CLOSE dlsconnects the
standard input, logical fiLe-number zero (u).a.s CLOSE removes
the last internal connecti on to a fi te, the operating system lIay
perform .other acti~ns ~u~h as rewinding magnetic tape, ~~turning
enj of f,l! to thp recelVlnn ene of a Dlpe, or recLalmlng file
S~3ce which is no Longer referenced by any directory.
1.2.5.4. The PIPE Function.

The PIPE function, a iunctio~ of
UNIX ooerating system to ohtain a oaif
which PIPE returns as a CONSED noie,

no arquments, calLs the
of PIPE file descriptors,
a dotted pair, of two

(\

--)

o

Revised PDP '11 LISP Documentation. 9

integers, the reaj 3nd write internal, logical, PIPE-file
nunbers.' The current invocation of ppLISP and any subseQuent
offsprinu created by the FORK re~uest may share the PIPE-file
nunbe~s for int~r-process communicdtion. ~ process receives
output in the order sent by any ~ther process on anyone PIPE.
Pr~cesses not intendin~ to use one side of the PIPE or pass
further copies of that PIPE descriptor to offspring should CLJSE
the unustd side of the PIP~ descriptor so that receiving pro
cesses may detect an end of file when all other processes are
done SEnding data ~nd so that sendin~ processes may be stopoed
when nu other process intends to read the data sent via the PI?E.
If a :ll P E call is unsuccessful, the LISP interpreter generates an
internc:.l, tyoe-' error.
" • 2. • 5. J • The F 0 k K Pre c ida t e •

The FORK predicate, a function of no arguments, creates a
second process which is a copy ~f the oria1nal process. Ea~h
prpcess maintains d distinct copy of the data-area and any user
code in th! writea~le I-space. The two processes determine th~ir
id~ntity JY eXcininina the result of the FORK ~redicate. F~RK
returns NIL (false) to the chiLd prJcess hut returns the Process
IDentification (PI~), a true value, of the chiLd process, to the
parent process. If UNIX cannot cre3te a second process, FORK
generat?s a LISP internal system error of type zero (w), which
may be cauJht oy a previously invoked ATT~MPT. Any files which
were ODen before the FORK call are available to both procpsses,
including ~ny ~IP~ filesT which may he used for inter-process
conmunlcatlon. Ihe Chlld process suopresses the prompt message
and the value return prefix used by the LISP supervisor and the
r~start sian-on message. Tnus the parent process may continue
sendina prJmpt messages to the user while the child process
su~presses prom~ts in order to co,verse cleanly with the parent
through rejir"ecteJ standard input/output files. For example, in
orJer to redirect the stanuard Jutput to a previously created
PI?F. on which th~ parent may receive data, the child process
WOJld close the standard output file, one (~), by evaluating

(CLOSE i) ;

then duplicate the write descriptor of the pipe, dotted-pair
descriptor, PIPE-PAIR, by evaluatin;:J

(SYS 4'1 (CDR PIPE-PAIR» ? System DUP call

which allJcates the lowest
descriptor; and close the
descriptor by evaluating

available nu~ber to the file
child's unused copies of the file

(DO [CLOSE (CDR PIPE-PAIR») [CLOSE (CAR PIPE-PAIF»))

so that lo~ically unused pipes may return end of file status.
Sinilarily, the p3rent woubJ close the PIPE write descript::>r.
Thereafter, the ·parent would read the standard output of the
child, irJithout any "Eval= .If prompt ~r uValue: It prefix,. using the
PI?E read-file descriptor. Eith~r process may overlay itself,
usually th~ child ~rocess, to perform a different activity as a
satellite of the other process usinJ the EXEC function. Finally,
t~e. parent proc~ss ma~ suspend its own ~ctiviy until the comple
t,t10n of the chllaus1ng the ~AIT functlon.
1.2.5.6. The UNIX opLISP EXEC Function.

U~IX allows a process to overlay itself with a replacement
activitYt .,hose initial data and coje any executable, UNIX file
may defln:? The initial, zeroth parameter of the UNIX ppLISP
EXEC function, gives a complete external tile name that UNIX
passes as the parameter ot the· "?xec" call to replace the LISP
interoreter activity. !:XEC calls the function STRING to convert
all of the parametprs into strin~s terminated by a zero (null)
byte, constructs an array .of pointers to the start of each
null-termi,at2'd string, and pass!S's the array, as the second
parameter in a con5trIJcted, indirect "pxec" call to the U\JIX
operating system. ~NIX conventionally expects the zeroth element
of a string-pointer array to specify ~he overlay file, as the

.-.-~---,~-~--------------- ----

/

" ,

()
\ ,
"--/

t; e vis e d PDP
...
I • LISP Documentation.

EXEC function provides. The other parameters often specify
Dot ion strin1s, usually starting with minus (-), anrl externaL
fiLe nci~es maAipulated by the replacement activity. The standard
II) fi Les ..Jse:i by the replacement activity may be redirected
before cal Li!l~l tile EXr:C funct ion. If the EXEC function returns
to LISP instead of overlayinq LISP, EYEC returns the inte~er
error numoer tnat the UNIx ooerating system returned in CPU
r e ;J i s t c:' r R: t rift il e r t han 9 en era' tin SaL IS Pin t ern ale r r 0 r •
1.~.5Q7. The wALT Function.

The WAIT function suspends activity in the current process
until ony one of its previously created chiLdren terminates.
W~IT removes the remnants of a terminated child and returns a
dottej oair, CUN~ea noje, of two integers. The CAR, lefthand
sijp, is the Process IDentification (PID) of the terminated
chi ld. Th! CDk, ri~hthand side, is the status value returned by
U~IX in C~U register R~, composed ~f the child'S exit-value byte
anj the chi ld's ternination status in the high and low order
bytps resoectively. If a t~rmin3ted child has not been waited
for previoJsly, the call to WAIT ~ill continue i~mediately
withoJt sJspendin~ activity. If the calling process has_no
renaining children, wAIT ~enerates 3n internal, tyoe-zero (J),
LISP c'rror cancitian. Since SH, the shell command interpreter,
waits for 3 s::>ecific terminated child, SH silently removes the
rennants)f a.ny ::>ther terminate:i chil::Jren, who will disappear
without inforllin;;; interoreted code whi ch could have been ex
pecting th!ir de~ise.
1.2.5.0. The ~hell COTilland Internreter Function, SH~

The SH function orovedes convinient access to the U~IX
conmand lanJua~e interoreter, the shell. SH may get one
parameter, I.Jh;ch SH converts to a strina followed bY a null
(zero) byte, Hlat the shell conmand lnterpreter uses with an
i:nolicit "-c" option as d single COl1mand line. If SH gets no
parameter, SH calls the command i~terpreter to receive commands
fr;)m the C:Jrrent standaro input up to an end of file. SH expects
to fino ttl~ shell command ;nterpeter named "/bin/sh u • !,~hile the
sheLL conmana interoreter processes comm~nds, SH suspends
activity i~norins the standard, aelete-key (DEL) interrupt and
the }UIT, fi le-seDerator (FS) i')terruPt (ControL-SHIFT-L or
Control-~ackslasn), waiting untiL the sheLL command interpreter
terminates. While waiting, SH removes any other children ~ho
ternindte ~ithout returninc any status about the terminatea
childr~n. When the shell-comman:i interpreter terminates, SH
restoreS tne ~revious LISP interrupt handlina and returns the
octal numoer returned by UNIX in C~U registe~ R1 as the termina
tion status word.

oifferences in Implementation.

Due to machine architecture ~iffErences, some features are
imllementej differently in opLISP than in ~isconsin UNIVAC 11 0 0
LI S p.

Arithl1etic.

Un l ike the u'l I V A C '1) ", ,; s e r i e 5 mac hi n e s w hie h use 36 -b i t -
word, one's-complement arithmetic, DEC PDP ~1s use '6-bit-word,
t~J's-complement, iixea-point arithmetic and si9ned-maanitu~e,
32-bit-sinJle-precision and 64-bit-double-precision froatin~
point aritnmet ic~ PpLISP proviaes ~ne-word, 16-bit, octal-and
iQtPg2r-re::>r~sentatio~, fi!ed-point nuwbers and stores negatj~e.
flxeB-polnt lntegers In two s complement. Inteaers from -32r67
to 32767 may be created by the READ and TO~EN routines. The
function MINUS proouces the integer two's comp'Lement neaation of
a fixec-Joint para:neter~ PpLISP defines a new- function
C~~?LEM~NT to provide an octal representation of the one's-
conoLement ne~ation of its oarameter, i .e. CO~PLEMENT reverses
each of the ;~ bits. .

Sig1ed-magnitude,
optional ~ith PDP ~1s.

floating-ooint-arithmetic h~rdware is
If the host PpP 11 provides floating-

l)

u

Revisej PDP !1 LISP Documentation.

point drithrnet ie, poLISP can support floating-point data tY:Jes
deJenjing on the, setting of fl3YS for conditional assemoly
statements 1n the lnteroretef sourc? codeo PpLISP may support
either ~-~orjt sin)le-orecision, or 4-word, double-precision, or
both, float in]-point, s;qned~mQ~;nit'Jcie data typE'S and m;xed-m;)de
arithl1etic between ?ny- floatlng-'oo;nt-type or fixed-point-type
nunber. The standard muLti-parameter, arithmetic functions,

PLJS, UIFF~RENCE, T!~ES, QUJTIENT, and RE~AINDER;

anj the st3ndard comparison functions,

E QUA L, L!: SSP 1 a n::f G REA T E R P ,

convert an operand ~ith Lesser precision than the other to the
tyoe of the operan::! with greater precision before computing each
intermejiate result. rhe final result of arithmetic functions,
incluj;n~ the single-argument functions,

ADD1 t SU8 1 , and ~INUS,

has the tYJe of sreatest precision of any of the parameters, if
ppLIS? SUJports floatina-ooint numbers. If ppLISP supports no
floatirq-PJint nUllGerS, the arithmetic functions use all paral1e
ters 6S fixed-point intecers and return an inte~er resuLt. The
TI"1::S function converts arlY fixeo-point-muLtipl1cat;on, inter
me::Jiate r~sult which overflows into a numeric type with the
hiJhest available precision in order to avoid lossing
intorn~ti01. It poLISP supports a,y floating-point type, ppLISP
defines ajditional floating-point conversion functions and
preciicates,

ENTlER, FIXP, FLOAT, and FLOATP o

The functiJn FLOhT, which Wisconsin UNIVAC 11": LISP does not
pre-define, converts any fixed-point parameter into a towest
availatJle-Jrecision, floatins-point result and returns fLoatin:;
para~eters as is. if ppLISP supoorts toth the sinqle and dou~te
fLoating-pJint type, opLISP defines t .. ,o additionaL conversion
functions

SINGLE and DOUBLE

which convert parameters to the aopropriate
precision. The bitwise Logical functions,

floating-point

CO~PLEMENTt LEFTSHIFT, LOGA~D, LOGOR, and LOGXQP,

treat any Jaramet~r as a fixed-point number and return octal
reoresE:ntation 7 ,~-bit resuLts. The bitwise looical functions of
poLIS? treat, like their Wisconsin IN!VAC ~10n (ISP counterparts,
floating-pJint p~ra~eters as 16-bit quantities without conversio~
using the high-order, most-significant ~ord.

1.3.2. CL2:AR3UFF and TERPRI Parameters.

The LISP I/O functions CLEAR3UFF and TERPRI can take an
ogtiondl Jarameter, ~ fixed-point nUllber or NIL. T~e parameter
9 1 ves a ne~ tempurary lnput or output jevlce, respectlvely. ~IL
may bE' used to return to the standard port. If CL~ARBUFF or
T~~rRI get n~, parameter, the ap~ropriate ~uff~r is handled
wlthout cnanJ1ns the current I/O file, unlike ~isconsin UNIVAC
1'! \ LISP. System messages are always sent to a standard port.
Also, after 3 system ~essaqe input is expectea from the standard
po r t •

Syste"ll COllnl3nds.

?pLISP does not implement th!
sy5te~ conmands which De?in wit~
These inclJde:

wi sconsin
a colon

UNIVAC 1"jf"'O
in col:.Jmn one

LISP
tn.

l/

Rev; s e ::l P D ?; 1 LIS P Doc u men tat; 0 n •

:3!\CK :i:.XcC :LISP :OOPS :PEEK :STOF and :TIME •

Uti [;ty Functions ~.;ot impLe1'lented.

'" -,e,

Dth?r utility functions incLuoed in Wisconsin UNIVAC
LISP are as yet uni1'lplemented.

1 j 00

BACKTR CO~C~T DATE DTIM~ GCTIME GROW MEMORY *PACK

ConpiLer Functions.

PpLISP defin!s functions usej with the
manipuLate generated code, namely

LISP compiler to

*8EGH" *DEPOSIT, *c"iIT t *::PT, *::XA"i, *ORG, DUI"IP, and LOAD,

differentlv fro~ ~isconsin UNIVAC ~1rr LISP. Since most of the
conpiLer functions are machine dE::>en:ient! and would have little
uti L ; t y for pro ':: r:3 m sot her t han t h = c om p 1 l e r , the a iff ere n c e s
have littl~ effect on the transportability of code, except that
DJ~P and LJAD have different purpos=s. Instead of usina DUMP to
outout conpiled code as is done with ~isconsin UNIVAC ~irc LISP,
the Pretty Printer should bp used as described below. The LOAD
fJnction coula then restore the code into ppLISP by reading
S-expressions inter~ixed with binary code modules instead of
restoring an aosolute loader format file as is done with
~ii5consin J'HVAC It""lI LISP. If ppLISP does not support compiled
coje, 35 is the case ~ith ppLISP on a PDP 11/40, ppLISP does not
pre-define the functions

* 3 f. GIN , * D E P 0 SIT, * :: i'1I T, and * 0 R G ;

defines the functions

*EXAi'l and DU'1P

so that th=y r~turn NIL when called; and defines the functions,

*EPT and LOAD,

with a redJcej caoability_ The settin3 of an assembly-time
C P L C P L, i nth e ilia (J u L e .. T RAP S • tl A C " d e t e r min e 5 i f p p LIS P
SUDoort conpiled coje.

f l a q ,
.... i II

1 • 4 • LISP Systems Soft~are.

Systems pr00rams, written in LISP, are available to heLp
the DrO~r3'11mer. They arf' Kept on flle in a form that can be
brought lnto core by evaluatiny the LISP S-expression,

(LOAD FILE)t

where the 3to~, fILE, evaluates to the logical file-number of the
prograrr..

1 • It .1 • Pretty Printer.

The Pretty Printer, DRETTYD, displays non-circuLar LISP
ooj<>cts 11 an or:.ierly, -:nciented format that can be read as inDut
to rest~re the Dojects. The functi?n, PR~TTYPt takes from one
(f) to three (.:.:) p '" ram e t e r s.

(p~ETTYp DU~p-LrST ASCII-FILE BINARY-FILE)

The first Ji1rameter, DU"lP-LIST 1 evaluates to a list of
~onstant binuinqs t~ be displayed or sublists,t~~ CAR
1S a ::>roJerty or t La::; or the SUbS?quent ato:ns In the
be rjis\.JlaY2d. If the seconri para11eter, ASCII-FILE, is

atoms with
of which

sublist to
SJiven it

(.

~)

o

i~ e v ; s e :i PDP 'j '1 LIS P Doc u men tat ion •

specifies that output will be sent to a logical file-numoer
insteaa of to th~ keyboard. If PRETTYP gets the secJnd
parameter, ASCII-FIL~, an internal, fixed-polnt, Logical file
nunber, PR~TTYP sen:is the S-expression output to the specified
file inste30 of the current file. ~RcTTyD sends binary output of
conpil~~ code to the internal, fixed-point, Logi~al file-numoer
gi~en by the last paramEter, BIN~RY-FILE, prov1ded that the
parameter is non-~IL. If the l&st parameter is NIL, or if
P~ETTYP cets onLy one parameter, PRETTYP produces no binary
outout. ~Often, the second oarcimeter .may also be the last so that
ASClI-chciracter output of S-expression representations and bin&ry
output of compile:! coje .till be aopropriately intermixe>d in the
sane file. The ASCII ana binary lo;;ical file-numbers should have
previously been ~iven an external dssociation by a call to OPEN
or a si]il3r function such as PIP~ under UNIX. PRETTYP returns a
list of the atoms i~ the first paraneter, DU~P-LIST, which had no
constant binding anJ suolists with two elements giving a na~e and
atom whose property list did not contai n ei the,. the property or a
flag with the name nentioned in a sublist of the first rarameter,
DJ~P-LIST. ~hen °retty Printiny compiled code, the expression
bo~nd tJ t~p. naster LI~KER, the function entry to the start of
the conpiled cude area, should be output first so that the
exoression may later be restored. Usually the safest ~ay to
outout expressions which have oeen compiled is to output them all
with ~ sinule caLL to PRETTYP passin~ as the first parameter, a
list of atJm~ bound to the compiled fu~ctions in the same orjer
as the functions were compiled. After Pretty-Printing, the files
co~ld je re-read to re-establis~ the indicated bindings by
evaluating the S-ex::>ression, -

(LOAD ASCII-FILE BINARY-FILE)

where ASCII-FILE and BINARY-FILE are internal, fixed-point,
l:nical file-(lUmberS, p'r~viously associate? with an exter:ni3l
f'le-na~e Jf flLes cont31n1n9 the S-express10n representatlons
anj conpiled code i:nages respectively. If LOAD gets only Jne
parClmet?r, it may input a file of intermixed ASCII and binary
infornation. L1AD repetitively reads S-exores5ions until
r e :i chi n ;) a, end of file. Under UN Ii(P P LIS P t t h ef irs t parameter
(but not the secono) of LOAD may specify an external file whiCh
the interpreter will o~en, read, an~ close.

Th2 LISP Expression Editor.

The LISP editor
allow the program.er
function d2finitions.
by

speciaL form, EDIT, and function, EDIT1,
to easiLy aLt~r in-core expressions and

Once the editor is envoked, for ex~mple,

(EDIT FU'fC)

sinpLe comnan:1s., usually one letter, can:

f·i #
HI
-ti
P
pp
lEX;>
I EX;'
D
R EX~
S AT~
REST)R£
STOR::

- move the focus horizontally ~ithout descending;
- move the focus horizontally in list and descenj;

ascend # times in a List structure;
- print the curr~nt focus;
- PRETTY PRINT ttle focus (if PRETTYP loaded);
- evaluate the expression, EXP; .
- insert the value of EXP before the focus;
- delete the current focus and ascend one le~eli

repLacE the current focus with the value of EAP;
save current focus as f tuid binding ofATM;

- start over from the top; or
install the edited object and return.

Note that ~ represents any integer, its sign giving the direction
of travel. EXP represents .any LISP S-expression. ATM represents
a SYM30Lic atom, a variable.

o

KE'vised PDP ;'1 LISP Documentation. 14

The D?bu~ Package.

The deb u 9 pac k n;; e p ra v ide s f ~ u r r 0 uti n e s , uti liz i n 9 the
syste'll fU'l'ctions, 8RC:AK and UNBPEI\K, whose first parameter is a
list vdriSJles or atoms with consta~tly bound functions, macros,
or special forms.

:;TR!I,CE trclces
functions, macros,
values.

the
and

call anj exit of constantly bo~nd
soecial f~rms giving parameter and exit

for
~aR~AK is si~ilar to !TRACE)ut stops, querying

expressions to eVnluate until the expression, T, is
the user

. M
rece've,~"

$TR~CtV prints the
SET, and S~TQ alter them.
alterea by co~pileo code.

new values of variables as CStT, CSET~,
Tracing is ineffective for varaibles

SUN3UG removes tracing from the atoms in its parameter
list or if no param?ter list is provided it removes all tracin~.

If oossible use a compiled version of the debug package to
aV01C internal conflicts between tr3ced varaibles and functlons.
If compile) COdE is not availaole, ~vaLuate the S-expression,

(:5 r'1 A N I F EST D 6 - LIS T)

after loading the d~bug package and before initiating tracing to
renovesone of the confLicts involved in tracing functions using
functio~s ~hich ~i~ht De traceq.

Mic ro-PLA\HlE R.

, A version of Micro-PLANNER C3n be used on PDP '1/45's on a
small uata base. A 32< word USER d3ta area is required. After
lO:ldin::it typing

(PL~4R)

starts ''';cro-:>LAN'Jc.~. \1icro-PLANNc~
ex~ressions to evaluate by orintins

wi II then prompt for PlAN'JER

THVAL: •
If the Pretty Printer is also loaded, the PLA~NERdata
be dumped to a file by typing ,

base nay

(THDUi"1P F! LE)

where FILE is t'valuates to a logical fi le number. Later the data
base ~ay be restored while using ~icro-PLANNER by typing

S&(LOAD FILE) •

" -,,',,----""'.~---

/ '.---~"

") \~

n.ev;seJ POP i1 LISP Documentation. 15

2. Intern3l Confisuration.

The PDP '; I LISP intE'rpreter is 'Tlodeled a'fter the <-lisconsin
LIS P J i~ I V A C '; 1 ," i n t e r pre t cr. t a chi n t e r pre t e r i s w r itt e n i n
assetnDly. lan;JuJjE' to facilitate its opti'l1ization with respect to
the archlt2ctur~ of its host. 30th interpreters have been
mOJularly or:Jdn;zej to aid in the; r desiqn and improvement.
St~nd3rjiz!d interf3ces and ~ata structures ar~ used between most
int~r~reter rDutines. Documentation is provided ~ithin the cDde
listinJs for deviations from th~ standard interfaces. Both
inter~r2ters 3ssu~e an operating sisteffi has been orovided to
h3~dl2 syste~ overhead chores. ~oreover, the physical Layout,
the al;orithms, dne even many assembly labels used are, in
general, similar. Understano;n,? the workings of either inte,r
preter should aiu in the understanaing of the other.

v8S Jperating System calls.

Jnder VOS 7 the poLISP interpreter uses the "TRAP" instruc
tion (,It,4KX) to perform innut/outP'Jt, to rE'cover from errors and
intFrruoti~ns, and to do other miscellaneous system functions.
CPJ rl~istprs pass the parameters. In order to be compatiole
wit h t11 ;: ~) P \ I I '-+ :~, , the 00 era tin S! s Y ~. t P 11 use son l yon e CPU
~~~i~!er set pno make~ no at~empt to change register ~ets in PDP 
,1/4) s fr)11 tne startlng reglster set. The operatlng system 
f2turns t~e contents of CP~ registers not used for sending or 
receiving parameters una ltered. Any operating system which 
suoports tne followinn "TRAP" definitions and provides sufficient 
aj~ress Slace can house the PD~ 11 LISP interoreter. The 
stand-alon;: ooerating system and tne VOS emulator under DOS take 
advantaJe of the uniformity of the VOS interface. The Label for 
each "TRAP" instruction offset bela" preceeds its octal value in 
parenthesis. The value ana action correspond to the "TRAP"s of 
the vas control machine. . 

2 • 1 • .'~ • 

Offset TRPTRD (~) simuldtes 3ny other TRAP. The low order 
byte of CPJ r~yister %5 passes the TR~P offset. The other CPU 
re~;sters pass pdrameters in the nornal manner according to the 
sinulated trap. 

R E <l. D (t) - S tar t I op u t 0 f Lin e • 

Off 5 e t REA D (,,) con d 1 t ; 0 n s t'1 e ; n put r 0 uti n e s sot hat the 
ne~t character will be transferred from the beginning of the next 
inout lin? Any unread chdract!rs from the oreVlOUS line are 
lost. The end of line flag from the previous line is cLeared. 
Re;:;ister ;~r~, \ihicn contains flaes used by vos, is cleared by the 
LISP inter::Jreter before the calL: leqister i~': is used to specify 
a logical Jevicc, process, or port fr6n which the next line wilL 
be obtain~d. If zero is used in %~, the default device assi~n
ment ;s used for input. 



( \ 

, ) 

o 

f\evised PDP 11 LISP Documentation- '16 

RD~SC (7) - Read ASCII Character. 

Offset kDASC (2) returns the next input character from the 
current in,ut line in CPU register ~Ce Register %~ contains a 
non-zero flag. 'llihen. all characters from the current line have 
already been reac, zero is returned in register 1.1. The next 
line is not start?:; until a "Ti<AP R:::AD" is performed. 

In the current system, register %2 contains a count of 
characters already received. The stand-alone operating system 
decren~nts th~ value returned in CPU reoister R2, %?, to 
backsoace. ~eturnin() zero in CPJ reo;ster·R2, %7:, deletes the 
inout line. ~ore ~eneral operating systems need not attempt this 
ki~d of shJrtcut. 

~RITE (5) - Send With No Carriage Centrols. 

The WRITE TRAP provides compatiblity with vas. In the 
stand-idon? systel1s, it performs no action. Under vas, the ~RITE 
TR~P sign3ls the enj of the current line of output characters, 
insurina message co~pLetion to receivina processes. CPU reqister 
%.;, in ~hich V\J5 passes flass, is cleared to zero before the 
"T~;\P" by the LISP interpreter. 

2 •. ! .5. C R L F (6) - Sen d Line wit h C 3 r r -i age Con t r 0 l s • 

A C~RRIAGE RETURN and LINE FEED are added to the current 
line of :>utout. Then the "TRAP" performs the actions of "Ti1AP 
WRITE". 

2 •. j .6. PRt\SC (7) Send ASCII Character. 

The character in resister %. is added to the ,current line 
for output. V0S uses the 7 low order bits of register %0 and 
conputes a1 even parity bit. 

2 ••• 7. s y:; P R T ( '.. ::: \,» - C h a nq e S y s t e Tl Po r-t s • 

The logical Dort number specified by register 
to temoorarily change the standard 1/0 streams. 
byte of %1 is nonzero, the Loaical ocrt seecified 
inout. Other~ise the logical-port specified by the 
used for OJtput. . 

% 'j is us e d 
If the upper 

is used for 
lower byte is 

2 .... 8.· SETRAP (.>-,24) - Prepare to Process Contingencies. 

Register ~J contains the address at which the LISP inter
Rreter wants to start orocessi'9 continQenc;es. Attention 
i n t f" r r u p t s , s t a c k 0 II e r flo w s, ilL e q ali n s t r u c t ; 0 n san d I I 0 err 0 r s 
WOJld all oegin processing at the soecified point. 

ERINFO (1.32) - Get Status After Contingencies. 

After a contigency, "TRAP ERIj.JFO" obtains 
aODut the contin~ency necessary for a restart. Thus 
aole oper3tions can be resumed before an attention 
prJcessed. The LISP interpreter must ensure that an 
able process ~id not cause th~ interrupt. 

i nformati on 
uninterruot
interrupt is 
uninterrupt-

UPO"l return, CPU reqister % •• contains the virtual program 
count!r (PC) location, reg~ster %1 contains the vir~ual processor 
status word CPS), and register %2 contains the error type in the 
lo~ oroer oyte. ~ttention interrupts return a negative error 
coje in this byte while other types are positive. 

Function C~ll Conventions. 

The LISP interpreter code section consists of a collection 
of mostly independent subroutines. External routines, which the 



( 
~-- .. 

Revise::l PDP ~1 LISP Documentation. 

interDr~tej data ~ay caLL directly, all have a common caLling and 
exit conv~ntion. Thus injividual routines may be added or 
m:>::Jified . .Jithout fear of affecti ... ~ other sections of coJe. 
InternaL subroutines, such as the carbaqe coLLector, which have 
differ~"lt conventions, are documente~ wit~in the LISP interpreter 
CDJE l~sting. HONever, almost all suoroutines follow the 
co~ventlon that the return address is on top of the control 
stack, ~hich ~rows Jownward, pointej to by CPU register SP, ~6~ 
%S. 

2 • 2 •. ~ • On Entry. 

On entry, external routines expect CPU registers %4, %S, 
and SP tJ be pointerso As notea above, SP, the hardware stack 
pointer, pJints to the control stack which crowns down to LONer 
unsigned addresses. On too of this inve~ted stack is a retu~n 
a::J::Jress Which may Lie accessed oy the instruction 

RTS PC • 
CPJ re~ist!r %4 points to tbe top of the value stack, which grows 
up~arj. Register %4 points to the ~ext free word on this stack. 
CPJ reuister %5 points to the first paramoter on the value stack 5 

If th~ rJutine ~as called with nJ oarameters %4 and %5 contain 
the sa~e vaLues. Otherwise, succ~ssive parameters OCCURY 
successively hi0hEr ~ords on the control stack starting at %5'5 
value cind ending ju~t ~elow register %4-s vaLue. Data ,tems in 
LISP consist ot oointers, wnich nay te foLlowed during garbage 
collection. Tne iterrs on the value stack are such pointers and 
hence the garbage colLector marks the items referenced by the 
vaLue staCK to keep thel1 from oein:; rec Laimed. ALL parameters to 
functions nust hdve such protection ~nj thus are placed on the 
vaLue stack. Dtner adjresses, SUCh as return addresses, pointers 
into the stacks, or raw values, as opposed to the pointers to 
values, are stored on the controL stack during evaLuation. The 
it?ms on the controL stack are not referenced during garbage 
coLLections .. 

HOIli to Call External Functi::>ns. 

Two internaL procedures facilitate subroutine entry and 
return. 3efore usin; the routines, any temporary data item 
pointers w~ich may "leej protection frol1 qarbage collection are 
pushej onto the value stack o Next the current value in reaister 
%4, the vaLue staCK too, is pushed onto the control ~tack, 
pointea to by register %6. 

External subroutine calls use the internal subroutine 
E~TRY, externally naned XNTRY. To use ENTRY a special LIN<~R 
noje oointer is pushed onto the value stack. The LINKER node 
consists )f a s~broutinp entry aicress and a pointer to a data 
ite~. The data iten wilL be markea by the garoage collector to 
avoid reclamation, such as a LA~8DA expression which is to be 
interpretej. The subroutine entry 3ddress is not marked by the 
garba;~ c~Llector. LINKfR node usage permits one numerical 
ajJress to have t~c sil1ultaneous meaninos, which the PDP 11/45 
menory se~mentation hardware per~its~ ENTRY must also be used 
for so fI, e i ') t ern a l sub r 0 uti ne call s ..J hi c hex p e c taL I Ii K t R nod e t 0 
be placed on the value stack. After the LINKER node, the 
param~ters are ~ushed onto the value stack befor ENTRY is called. 

A si~plifiea entry procedure named ENTRyn, externally 
naned XNT~Y., is used for calLin~ acceotable subroutines. The 
parameters are sinply pushej onto t~e value stack without any 
lI\j!(E~ noj? The adaress of the calLed subroutine is then put in 
C P J res i s t ;:> r :~ ,., JUS t b e for e cal Lin ~ t. N TRY .,. 

30th entry subroutines ~re then called 
su::>routine instruction, JSR, using :F'L! register 

J~R i~5,:::NTRY· 

using the 
%5', i.e. 

jump 



/ 

I: 
\ 
"- / 

( I 

~j 

kevisej PDP 11 LISP Documentation. 18 

or 

JSR 1.5,ENfRY" 

Both entri subrout ines call the specified function in the 
conve'1tional day. 8n exit, the stack ;:lointers %4, %5, and ~6 are 
restorej to their values before the ~arameters and LINKER node 
were Dushej onto ttle stack. Tile otl;er req;sters may be used by 
the calle) oroceaure without having to-savp. their values. CPU 
r e :; ; s t e r K J, :: '.' , ret urn s the poi n t e r tot her e t urn e d d a t a i t em, 
the vdlue of the C3 lled function. The caLling routine must save 
ani re;ister values on the appropriate stack before oeginning 
function c3lls~ 

Internal Suo routines. 

A jump-sutroutine instruction using CPU register R7, ~7, 
%7, the or01ram counter (PC), (JSR PC,SU3ROUTINE) calls most 
interndl subr5utines. Para~eters arf transmitted in a manner 
oeculiar to each subroutine. In general, CPU register R~, ~n, 
'returns v;jlues. 
2.2.:5.i. :>rir)t;n:-: Subroutines. 

~ost of tn~ printing sU0routines expect just one parameter 
on the valJe stack. This o~rameter is poppee from the value 
s t :. c k 0 n r = t urn i n t:) % ~.1 • The vaL u e i nO;, 5 i sun e f f e c tea • 
2.2a3.~~ )btaininc Data Nodes. 

The procedu~e NJD~, externaLLy ~2med NNODE, provides data 
noj~s. (:>U re0ister R3, %3, contains the type of data node 
r e qui r e::i • CPU reg i 5 t e r s R , ~~ , an:! R'" /; '1 ,or flo a tin 0 - poi n t 
accumulator ~C, if needed, contair) the value to be used ~n node 
construction. Aajitional entry points provided Load CPU register 
R5, %5, before entering the NODE routin~. CPU register Rr; ~l, 
returns a pointer to the node created. NODE saves only CPU 
re~ister:s ~{f, ;~4, and ;:(5, ;~c:. Calling ~';oDE may cause a garbage 
cOllectlon. 
2.2.3.3. )btainin::; Noje Tyoes. 

Small, ext2rnaLly-availabLe subroutines return the type of 
a ;iven noie in CPU register %3~ Routines GETYPE, GETYP?, 
Gcrvp', 2"ld GETYP, externally naTiE'd GTVPC:, GTVPE2, GTYPE~, and 
GTVPE t ar~ used to obtain tne types of nodes in R3, R2, R1, and 
R", respectively. Only reqister %3 may De altered. Other 
su~routines whicn use node ty~es assu~e the node type is in 
re~ister %:5. 
2.2.3.4. Catching LIS? Errors and ~on-standard Returns. 

Several orocedures, sucn as LISP, DROG, and ATTEMPT place 
restart p)ints ~n the value and control stacksa These restart 
points ~ro~iae stack reset positions after a non-standard return, 
the E~.'~8R :ina GO oroce::Jures 1 and internaL errors. The function 
UN~IND, externally naTied UN0ND, fi~ds the aporopriate restarting 
point on tne stacks. "~hen called COUre2ister R1,%'t contains 
the return index and CPU register R', /,~, an aporoprlate value, 
such as a:;O label or RETUR7'! vatu!>. After findina a match to the 
return index, the oriQinal orocedure restarts immediatelY after 
the ooint where it established the restart ooint. The associa
tiJn lis~ existing ~hen the restart point was created is also 
reest3ul1s~ed. " 
2.2.3.). Internal List Maniputation. 

Internal suoroutines for manipulatino the current associa
ti:>n list, an::! property li st flags 3nd attrlbute-value oa;rs pass 
parameters anj return values through registers %0 to %3~ 

2.3. hegister lIsase. 

~lthough most registers have no fixed usages, register 
u~aqe folL~~s some ~eneral patt~rns. R~~;ster~ %~ to %~ are usea 
wlthout 021n:2 sdve3 by suoroutlnes, whlle reolsters %4 to %6 arE' 
normally f2storeu after subroutin!~ catls o 

"' 1'\ , 

R"r 
= i: 
= %-1 

is usea to calculate and 
is ]e~eral purpose. 

return values. 



" ( 

\ 
~, 

/,/-----. \ 

~---'/) 

r\ e v; sed P D pi iLl S P Doc urn e- n tat ion 0 

F? ,- = °1 ") is 'tl' ... use d as a loop COU"lter • 
1\3 = %3 contains the type of 'l da ta item. 
K r. = %~ lJoints just be;1 0 n d t h 2 top of the value stack. 
k5 = 1.5 points to parameters oIithin the value stack. 
R6 = SP = j~ S jEfines the hardi-Jare control stack top. 
k? = PC = 'j. ? i s the instructi:>n countf.'r .. 

2. It • Stonge Allocation. 

The user mode D-space area at storage is divided into 
e~Jal size contiguous areas c~llea pages. Data within each page 
ha~2 a unifor~ tjoe. A paa€ tabLe records the current type 
within eac~ pa~e. 3iven a pointer to a data item, the paae taole 
1S usej to deternine the type from the address& The p~ges are 
aliqnea on paoe bounoary addresses oIhich are muLtipLes of the 
pa~~ size. -Thus the high order bits of any pointer can be used 
as an index into the caqe tabLe to determine thp type. The 
nunericaL byte coje f6r each tyoe is included ;n parentheses in 
the descriotion ~hich foLLo~s. All the types are even numbers to 
faciLitate muLtiple branch instructions, e.g. 

AD~ %3,PC ; Branch according to type. 

Figure 3 - Initial VOS anj DOS LISP data area. 

+------------------------------------ [I ----+ 

I 
'2 r ;JO -+ 

I Fixed workspace 

+------------------------------------

I 
1nOnO + 

I 
+--------------------~---------------

Has h tau le and a toms 

I Linker ne>des , 
+------------------------------------ 1;:000 + 

I I Single character strings 
I and 

Other strings and arrays 
t------------------------------------ 16000 + 
I 

I Free pa~es 

I I t------------------------------------ 154400+ 

I Value stack I I 
I V I +------------------------------------ 16"n00+ 
I Unallocated (stack overflow protection) I 

i--------------;:::::~-:::::--i------ 16U1GDl 

i--~~:-::~~:::-:::-:::=:~~::::::-~:::g~::nQQi 
+------------------------------------ 166100+ ! ~\ore free oages I 
+----------------------~------------- i77777+ 



( 

Rev i s e:J PDP i "1 LIS P Doc urrlf:? n tat ion. 

2.4.'-:. SY3TE~ an~ Stacks (-6). 

?' .. ~) 

The value anj controL stacks, 110 buffers, tables, error 
meS5a~e string, and Dermanent aidresses are Located in SYSTEM 
p3;;es. Ths- contr0L ana va lue stacks e}(t~and to the Lowermost and 
part of the top hardware secment. At least one block is Left 
unallocatej so that if eith~r stack overflows, a hardware 
interruPt occurs. 

2.4.2. ~j 0 t A v ail :I b l e (~J A ) (-4) • 

Thi~ 
purooses. 
that couLd 
which are 
durin;; the 

type is reserved for oaoes used for non-standard 
1 his ill; 9 h tin c lUG e w:) r k s r ace s for 0 the r n roc e d u res 

be linkej to the LISP interpreter code. Also pa~es 
not incLuded in the hard~are mapping are given type NA 
start-up procedure. 

FR~E (-2). 

Pages which are available for conversion to other types 
when needed have fREE type. ~hen the ~arbage coLLector reclaims 
an entire Jaae it is qiven type FRE~. Type FREE paces remain 
uninitializeo until neeoed. A COU"lt is maintained of-the numoer 
of FR~L tYJe oaqes. 0hen an avaiLaole free page is needed, the 
stJra]e aLlocator searches the page table to compute the starting 
address of a FK~E pa~e. 

CO~SED Nodes ( ). 

CONSED noaes. tne list connectives, are four oytes (two 
fJ 0 r d s) l 0'1 9 :3 n ci are aLi an e:::! 0 n t 'W 0 W 0 r d b 0 un dar i e s • The tow and 
hi~h or~er WOfJS are poi~ters to the CAR and CDR of the node 
resoectiveLy. F-oir')tE'rs to Cl.dlSED nodes Doint to the hiah orjer 
(CDR) word. Takln0 a~vantale uf the hardware decre~ent- before 
adjress;na, both CAR ana CDR can be reached directly without 
using th~ Longer index aodressi1S mode. During garbage 
col l e c tiD n s, i i i:l C () N SeD n od e 1 sma r ked, its CAR and CDR are a l so 
marke::i 4 

Figure 4 - CONSED node. 

I 
V 

+-----------------------------+-----------------------------+ 
! CA.R I CDR I 
+-~---------------------------+-----------------------------+ 234 

2.4.5. LI\lKER Nodes en. 
Two-wore (four-byte) LINKE~ nodes are used to enter 

functions anj transmit auxiliary information. The high order 
word (*CDR) of a LINKER node is the starting address of a 
fU"lction whose code is in the memory-manaaement-hardware instruc
t10n (I) space. This address shouLd ~ot be used as a pointer 
since the address soecifieo may have a different meaning in the 
data soac~. Tne lo~ order word (*CAR) of a LINKER node for a 
syste~ jefinej function points to a strinq giving the originaL 
nane of the function. The *CAR of a LINKER node of a LAM3DA 
exoression points to a list of the oarameters given to LA~8DA to 
Creat€. the. funttion. T~e *CAR of a node crea~€a by LAMEDA and 
F~~CTIU~ pJlnts to 3 CO~S=D node whose CAR 1S the captured 
associdtio1 list an~ wnose CDR is a list of the parameters of the 
c r ? Ci tin ~ L II r't '3 lJ /.. Co alL. The * C D I:': add res S 0 f S u c haL INK ERn C) d e 
s~eciti;s 3n audress ~here the c30tured association list is 
estabLishej as the current one and ~he dummy arquments are qiven 
vaLues fron the value stack. Un entry to this f~nction, the-*CAR 
of the LIN(~R naae is ~l~ccd on the value stack just beLow the 
first :)i:lr~meter. rh~ *CAR of thp LI~KER node of 'an array points 
to the strlng contcilnln~ the v0lues of the array. The address 
gi~en oy the *Cu~ of such a LIN{ER node specifies whether the 



F.evisej PDP "11 LISP [locumentation. 21 

strin~ contains pointers whose values must be marked during 
Qarba]e collection. The *CAR of tile LlriKt::R node for the function 
ALIST points to the head of the association list. 

The * C D k, I - spa c P. add res S, 0 f L I 1; I< ~ R nod e s de t e r min e i f 
the associ<Jteu routine involves a function at a soecial form .. 
All functi)ns have an unsiqnecl I-space address greater than. or 
e~uaL to the I-soace a~dress of the system interoreter functl~n, 
EV~L. Other I-space addresses soecify special form routines. 
30th types of LI~KER noces are aLigned on two-word (four-byte) 
boundaries. Function paral)leters ore evaluated before bein,;} 
passed to the procedure. Special form and macro parameters are 
not eVdLuated betore being pas~ed. 

Figure 5 - Function and S::>ecial Form LINKERs. 

I 
V +-----------------------------+-----------------------------+ I !: )( pre 5:; ion I I -s pac e Add res s I 

+---------~-------------------+-----------------------------+ ii " 2. ~ 4 
(*CAi-{) (*CDR) 

2.4.6. s Y V! B () L P. torn ~, 0 j e s ( 4. ) s 

SYM30L ato~s, the named entities of LISP, are four words 
(eioht bytes) LonJ. The first, low order word is a hash link. 
The-hash tabLe bUck~t heads arE E''llDodied in the singLe character 
atoms, ~hich are created by the data initialization at the lowest 
unsigned addresses of the first SY~60L ato~ cage. The hash code 
is con~utej by aGJ;nq the ASCII character bytes in the symool 
nane, truncatin~ t~ the Low order seven bits and multiplyino by 
e1;.1ht, i.E. algeuraic shift left by three, in order to tina a 
bucket heaj in tne haSh taole. The last hash Link in a bucket is 
markej by a zero ~orj. G~NSYM atoms, which are not on the hash 
chains, have hasn links ,.Jhich point to an integer index~ The 
second word points to the ,A,SCII strine ",hich gives the name of 
the ato~. The thirj ~ord. the *CAR of an atom, aives the 
co~stant oinJin~ of an "atom. If the atom ;s not constantly 
bound, the thi rd woro is zero. If the third word is zero, d 
fLuid binjin~ of an atom may be placed on or retrieved from the 
associatio, llst. ::ach fluid oindi'1g on the association list is 
an atu~ and attribute pair~ Th~ fourth, hiQh order word of a 
SY~?OL aton is tne property List. ~ property [;st consists of 
flags, which are other SYMB0L atoms, and attribute-value pairs in 
which the C~R of the ~air is a SYM30L atom and the CDR of the 
pair is th? value or property~ Poi~ters to the atom adcress the 
fourth word, the property List, which serves as the*CDR of the 
at O!Tl • 

Figure 6 - SY~BOL atom noje. 

I 
V t--------------t--------------+--------------+--------------+ I Hash Link I Print name I Value !Prooerty list. I +--------------+--------------+--------------+--------------+ 

.1 'j c:. 3 4 5 6 '7 "1"'\ 
(* CA R ) ( * CDR) . 

OCTAL (6). 

OCT~L nodes are '6-bit words aliened on word boundaries. 
Althou0h a sign ~ay be scecified ~n inout, OCTAL nodes are 
pr;ntea as unsignea octal radix num3ers followed by a HOlt. Gits 
of the bytes at the oeginnin~ of each page of octal nodes serve 
a S 'l1 ark i n 9 f l a ~ s for gar b a ge col L e c t ion • 



2.4.8. 

Revisej PDP 11 LISP Documentdtion. 

I 
V 

Figure 7 - OCTAL nnde. 

+-----------------------------+ 
I Value I +-----------------------------+ 

Integer (INTGt:R) (~:lD. 

.. 
[ 2 

22 

Integer no:Jes are s ignea, ~6-t';t, two"'s complement words 
alianed on ~ora boundari~s. Bits of the bytes 3t the beginning 
of each pa}e of integer nodes serve as marking flags for garbage 
c3llection. 

figure Q 

I 
V 

Integer (INTGER) node4 

+-----------------------------+ 
I Value , +-----------------------------+ 

1 2 
S T i I ~J G a n jAr ray (.," 2 ) • 

Strings and arrays, which ~oth have the same format, 
occupy the sa'Tle fJa~e type. Pointers to arrays or strings address 
a wore wnich ~i~es the length in oytes followed by string or 
a~ray oata. Strin~s and arrays must be less than 32K bytes long 
Slnce the high order bit of the length word is used by the 
gar!>qe collector t:J mJ~k strings anD arrays. Strin:::~ ~onsist of 
! J1t ASCII characters 1n each byt!. Context speclfles array 
data, i.e~ 3 soeciaL LI~KER noje's *CAR points to the array_ 
Arrays of Jointers! whuse values must be marked durinc garbage 
colLection;, muSt have exactly one LIN~FR node whose *CDR address 
is AR~~YA, the ~oint~r array internal function, so that the 
garbage collector wi lL mark the memOErs of the array exactly once 
anj wi II maintain ;:;ointer inteqrity. The starts of strings and 
arrays align on w:Jrd ooundarles, ~ven when the precedina string 
lenqth is 6dj. Strings and arrays may extend acro~s page 
bOundaries. 

I 
V 

Fi~ure 9 - String or array nodes. 

+-------------------+-------------------------------------------+ 
I Length ('J} I Chardcters, bytes or pointers I 
I in bttes I 1 
+---~---------------+-------------------------------------------~ -2 -1 1 2. •• N-1 N 

z ~;) • Garb~g~ Collection. 

Storage mana~ement and garbage collection differ 
from those in 0isconsin UNIVAC ~1~O LISP. 

2 .• 5.';. KnJth's Alsorithm. 

greatly 

Each n!w oata item created is stored in a node drawn from 
the free storage lists. ~hen a free stora~e list is exhausted, a 
FR~~ page is converted .into a oage of nodes of the requested 
type. flnally, when no FR~~ p~aes remain, tne aarbaae collect:Jr 
is called to aetermine whic~ nojes are no [bnqer-used to hold 
current values. These free nooes, dnich cannot be reached by an" 
ch~in of pointers ~ccessible to the user~ are placed back ont~ 
the free stora0e c~ains. If an entire pace consists of free 
nojps, the no~es in the page are re~oved from -the free stor~ge 



( \ 

"---) 

il:evisej PDP i-; LISP Documentation. 23 

ch:tin dnd the; r pa:je reverts to type FREE. 

Khuth~s aL~orith~ .E underlies the markinq method which 
only !narks nodes 5ti II in use. Node rna rking starts from the hash 
taole,the v~lu! stack, some unrenovabLe atoms used as flags or 
LI~KERs within tne interpreter corle, and any current pointers 
which wilL Ot:' incluJed in the aatd item aoout to be generated. 
KnJth~s alJorithm E maintains 6 stack within the dat~ by re
versing t~e direction of the m3rkeri chain of pointers. It 
r!~uires o1ly d SWal l fixed amount of additional storace for 
chain heaj Dointers, which are kept in registers. FGrther, 
KnJth's aL~orithm operates in a linear time ord~r with respect to 
the . n J r;; b E r 0 f ra ark e ::l nod e s. .~ 0 0 the r rn ark i n 9 met hod can s i 9 n i f i -
cantly inprove upon Linear time order. 

After the TIarking operation is compLeted~ each page ~s 
s~~Pt for un~arkea nOjes. For each pace, the paqe type is founa 
to determi1e the ~ethoj of marking ~sed-and curre~t position in 
the free stora~e chain of a ~iven type. The free storage chain 
for each type 1S kept in unsigned ascending order. Ne~ly 
reclaimeu nodes are placed in order on the appropriate chain. 
The free cnain, current position pointers may be advanced when 
markejnojes are encountered. Als~, the marking is removed from 
marked nod=s. A.tter sweeping each ::lage, a count of the free 
no:Jes within tne pa;]e is inspIO'cted to de-termine if the entire 
pa~e is.free. The sweeping aLyorithm operates in a Linear time 
order wlth respect to the amount of storage. 

Com~lications arise if the garbage coLlector is 
interruotej. ~hi le oeinq marked, pointers do not necessari ly 
give the expect~d value. Some marking is done by settiny the low 
orJer bits of word ;)ointers. If these pointers were used as word 
ajjresses, the ood-address hardware trap would occur. Moreover, 
sone free stora~e chdins may be temporarily disconnected during 
the sw~epi~q oroceuure. The unalLocated string chain, however! 
must remai~ int~c[ to ~etermine wh~ther a given p~rtition (slot) 
of a strin~ page is either (I) on the unallocated string chain, 
(2) marke3, or (3) aLlocateb but un~arked. The partition's 
Lenqth is founa in different p~sitions within the. sLot 
accordin~ly. Similar problems may occur during node allocation. 
One solution i5 to disdble interrupts durlng the criticaL 
periods. Unfortunately, disabling interrupts involves excessive 
overhead for such frequent operation~ as node allocation. 
Hardware interruots could not b? disabled for the duration of 
garba~e coLlectio~ jurinc any simultaneous reaL time operations. 
Garha5e colLection uses ~n the order of a second. Alternatively, 
a fla~ is set and cleared when entering and leaving critical 
areas. hhen an interrupt is intercepted, this fLag is ex~mined. 
If the flag is set, the operati~n proceejS from the interruot 
PJlnt to the ooint where interrupts can occur, the point at which 
the flag w~uli be cleared. There, the normaL processina is 
discontinued and the interrupt ~rocpssin~ is completed. ~Note 
th~t the u1interruptable operations must not aenerate hardware 
interrupts themselves, for the syst~m could not-continue. 

2.5.2. Free Storage Lists. 

Each of the free storage chains for each node type is in 
unsigned 3scending order. The end of each chain is indicated by 
a zero where the next link pointer is expected. Unlike allocated 
no:Jes, the chain links of each type always point to the unsigned 
lo~ oreer ~o.rj of the next slota 

For all node types except strings, aLL nodes are linked 
onto the free storage chain after their page is given the new 
ty~e-. The chain then consists of a forward linked L1St. 

~ithin pades of strings and arrays, a chain of free slots 
is kept. The unsigned Low order first word of -each slot gives 
the link t~ the next slot. If the free slot consists of just two 
bytes (one ~lord) then the low order bit is set, i.e. the pointer 



\ 

Revised PDP i1 LISP Documentation. 24 

is oda. Following this convention, if the last unallocated sLot 
is just tWJ bytes, it contains the numoer oneo Free slots lon~er 
than one w)rd nav~ zero in the low order bit of the first warde 
The seconj ~oru of such a slot qives the slot's length. When a 
slot is adjed to the free storaGe chbin it is immediatel¥ mer~ed 
with dny contiauous slots. Th~ full len1th of the comb, ned sLot 
will then oe availa:;lLe without possible ~Ji.lste. 

2.5 .. 3. Packing Storaqe. 

Storage packing has not yet been implemented. Storage 
should not be packed after each garoage collection, but onLy u:;Ion 
re=luest or garba~e collection failure. ;here wiLL probably b'e a 
need to imolenent-this complex and time consu~in9 procedure. 

After the LISP ;nteroreter has been running for a l:;lng 
tine, all of the paqes will probably contain more or less 
per~a~entLy al located n~aes. ht the sane ti~e, many of the pa2E'S 
p r :) f) a:;l l y wi l l be 11 0 S t l y una l L 0 cat e d • T h us, a l tho ugh u nu sed s P 3 C e 
is available, the ~arbane coLlector may eventuaLly fail becaJse 
it cannot allocate a new page for 3 ty~e which densely populates 
its :;Iresent pages. Aith fewer free pages available for 
recyclin~, the ti~e consuming garbage colLector witl be called 
more often. 

Packino stor3ye consists of outtino nodes of ~ach type in 
as 1e .. o3ges as p:;Issible. For fixed-node-sizE' page types, some 
pa~es Houlj be mdrKed to have their nodes placed in other pa~es 
of the sa:ne type. Pointers to these nodes must also be adjusted. 
For varia::>le node sizes, the free slots must be rer.>cved from 
between aLLocatee nodes oy shiftin; the allocated nodes, nrefera
bLy do~nward, ana srouping the free slots into one large free 
slJt at. the end of the ~rea. The greatest storaae economy is 
obtaine::i bt al so ensuring that pages W1 th variable tength no:.les 
aOJt, so that allocated slots may ~xtend across page ooundaries. 
Of course, the pointers to variable lensth slots must also be 
ajjuste::i. Noues in the hash table and LINKER nodes and symool 
flag nodes used by the system must not be moved since their 
positions are referenced oy the LIS~ interpreter code_ Moreover, 
references to moved data nodes must be altered in any compiLea 
coje .. 

2.S. Hindsight. 

2.5.~. 32<. 

The size of the data space, even using a virtual memory or 
ad::iitionaL core, is limited to :ZK ~ords. This is the largest 
nunber of words that can be airectly addressed by a !6-bit word 
without mo:iification. This restriction limits the absolute size 
of. pro~ra~s whiCh may De interpreted by PDP 11 LISP. Limited 
ajjitional progra~ space can he obt3ined by compilinq functions 
into the hardWare siJpported I-53ace, but absolute limits -0-A 

pr:)or3fll siz.e r-t~md.in. Futurp ImpLenentations of PDP. i'l L1S1U.'. 
workin,j in a virtu3l envi ronment, could use 16-bit word pointers 
w hie h n, us t be moo i tie d be for e use, CJ r 3 0 r 4 by t e poi n t e r S to 
increaSe the effective addn~ss spac~.- . 

Tw::> StaCKS. 

~si,g two stacks, the vdlue stack for pointers and the 
contrJL stack for addresses ani binary v~lues facilitated 
pr::>gram'l1ill,Jo hOwever, havins two stacks places restrictions on 
any laraer virtual soace versio,o Separate pointers and data 
areas mi.J~t be maintainedo If the stacks are allowed to overfLew 
o~to acdition3l j.J3"E'S of virtual menory, each stack ~ ... ould need to 
be s epa rat ely [1 an::! l e j.~ \10 reo v e r ! i f s· t a c k sec t ion s . we ret 0 be 
use d a s d a t a, as i n [(,or e a dv a nee d ve r s i on s of LIS P , bot h s t a c k s 
would have to be 'l1anipuldted, with double the overhead. 



--~ / , 
( \ 

U 

Revised PDP '11 LISP Documentation. 

Alternatives are to use a method whereby point~rs may be distin
guished from aa::lresses and raw data on a sinale stack, or to 
elimindt~ the value stack as a secarate contigLo~s area. With 
the latter alternative, the value stack wouLd be ke~t amidst the 
CD~SED nodes, thereby slowing acccesses into the value stack. 

2 .. ,'.3. Alternatives to Knuth's Al9~rithm E. 

Knuth's algorithm E, used by the garbage collector, has 
disadvdnta]eS a~ noted above. The proc~ss cannot be interrupted 
durin) ~aroa~e collection, an intolerable situation for some real 
tine apDlicafions~ Using other al~orithms in virtual space, 
multiorocessinu envi ronments, simultaneous aarbaoe, collection can 
take '~lace ~~ile Droc~ssing conti1ues. F~rthe~more, restarting 
after interruots wouLd be simplifie:f. 



C~) 

------- ------------ - ------------------- -----

Rev;seJ PDP '!": LISP Documentation. 26 

3. Machin! Code Generation. 

User createo machine code can be dynamically added to the 
LISP'inter:>reter within machines wh:>se IT·emory manaGement supports 
se:>erated I (instruction) and D (aata) spaces, in particular PDP 
11/455 and PDP ·~1/7-:s. The operating system, such as VOS, must 
also provide for the dynamic expansion of the USER-mode I-space 
in units c1rresponaina to full len~th hardware segments (n20~'G 
octJl bytes). JSlng functions wi thin LISP, pre-assembled 
rOJtin~s of machine coje can be a1ded to the repertoire of LISP 

·functions in order to periorm slowly interpreted or non-standard 
actions such as system caLls in a more efficient manner. LISP 
L~~3D~ ex:>ressions may ue compiled into macnine code in order to 
speed their ~xecutiDn, avoid unnecessary overhead, and allow the 
nojes original ly occupied by the LA~8DA expression to be returned 
toqeneraL uset thus increasing the FREE storage space. 

The us~r's machine code may refer~nce S-expressions which 
are dynamicaLly dlLocated by the LISP interpreter. Possibly a 
refer~nce to an expression would be the only reference. To av~id 
garb2ge collection of references ~hich are only known to the 
user s machine code, a table offsets which point to the refer
ences is kept following the user's machine code croups in 
I-space. These tables are consuLtRd by the garbage-collector 
durin~ its markin~ chase. All S-exoressions thus referenced are 
markej as in-Jse to avoid recldimation. Storage packing routines 
~oJld kno~ ~hich locations specify addresses to alter witnin 
USER-~ode I-s~ace when S-exoressions are moved in D-space. If 
th~ user makes cupies of the-macnine code, the table of offsets 
following the machine code specify which addresses must be 
reallocatt~d by d later invocation of the LISP interpreter if the 
machine c:>de is ever dynamically reloaded. LISP S-expressions 
written after the eoae specify how reloaded code must be altered 
to Doint to the real located S-expressions that the code 
references. 

Readin; Locations within USER mode I-space by USER-mode 
prJqrams cannot be done directly. Although the USER-mode 
instructio" ~TPI (~ove To Previous Instructions), can write into 
USER-noje I-soace, the hardware des;;n circumvents the USER-mode 
instructio" ~Frl (~ove From Previous Instructions), from reading 
US~R-mode I-space by diverting the reference to the D-space. 
This unfortunate des inn was intenaed to suo port execute only 
prJgraffiS, which n6 widespread operating system currently 
su:>portSa Instead, the design has forced a system call to be 
ajjed to operating systems to enable reading locations within 
USER-;no:::!e I-sodce. 

3.1 • Manioulating the USER Instruction (I) Space. 

Sev!ralfunctions have been jefined in PDP 11 LISP to 
manipUlate the USER instruction (I) space which is not occupied 
by the LIS~ interpreter code. Althouah these I-space functions 
have names ~hich match the names of Wisconsin UNIVAC 1110 LISP 
functions, their machine dependent definitions are different. 
Th2 coje for the I-space functiJns is conditionally assembled 
with tne LISP ;nt;>roreter when the flag IICPLCPL" in the assembler 
source Tlodule ItTRAPS" is set to O'1e. tJhen the code is not 
assembled the int~rpreter may occupy less than 4K words (r20)00 
octal bytes), one hard~are seament. With the I-sRace functions 
incluj~jt the LIS? interDr~ter code resides in two hardware 
seJments. This le~ves a maximum of 6 hardware segments, 24K 
words (14)001 octal bytes), for 3llocation to user code areas, 
depenjiny Jpon tne operating system. 

The LISP interpreter' manages the USER I-space as a forward 
linked chain of user code areas. T~o (:) words precee1 each user 
coj! area. The first word points just beyond the end of the 

:_----_ .. _.--" ...... _ .. _ .. _-- ---



H P. vis e j PDP I 1 LIS P Doc urn E' n tat ion II ?7 

contiJuous user code area to the ~ext area's pointer word. The 
second, fl3g doro is normally" zero •. System.programs ~uch as the 
PRETTY PRI~T~~ 3n~ the S-ex~ress,on edltor examlne the word 
prec~eGing an audress specified ~y a LINKER node. If the 
preceeoing word is. z~ro, tbe start of a code are~ has Drobaoly 
oeen fauna. Hence, 1t 1S unWlse to place any other zero (U) wDrd 
withi1 ~ser coop. such as a HALT instructione Each user code area 
consists of two parts: the instructions and a taDle of offsets. 
The taole of ofisets, described belo~;, has exactly one zero' word 
which is used to ~ark the unsignej-lowest address within the 
taole. Only the last user code area on the chain may be eXDanded 
or lbaded. 

System conventions should he followed for LINKER nOJes 
which ooint to a~dresses within the user code areas. The *CDR 
ajjress of one master LINKi~ node should specify the beginning of 
each user code area, the word pr~ce~ded by a zero flag ~ord. The 
*C~R of th~ master LI~(ER should DOlnt to an S-expressl0n WhlCh 
is a formul·a ~hich evaluates back t~ the master LINKER. The *C~R 
of other LI~KER nories which specify other addresses within the 
sane user code area ShDULd co;nt to the master LINKER nnde of the 
area. Thi~ c~nvention facititdtes jumping user code areas which 
may be l~aded at a later invocation of LISP. During garbage 
c~~lection before storage packing, any marking of .secondary entry 
pOlnts to 3 c~de area ~ouLu aLso lead to marklng the master 
lI~KEP, which in turn coule le3d to marking the flag w~rd 
preceatiing the co~e area. Thus any reference to a code area 
would Keep the entire area from bei~9 reclaimed. 

Fi~ure ~~ - Tyoical Structure of Pointers to User Code Area. 

, , 
t 

1->1" f Secondary 
1 I V LI~KER node 

I V +------+------+ I S-exo I *C~R I *CDR I , +------+------+ I \ :.: I .:: I 4 B yt e s 

I Maste>,l ~. 
D-space 

I lINKER V \ 
I +------+------+ \ I l-:£~~-l-:~~~-! \, 
, / 2 I. if , " . \ 

\ <-I t \ 
• • • • • II I • • • • • • \ • • • • • • • • • • • • • • • • • -j 

1 start I Secondary I-space 
"v of Code V entry poi nt 

t------+---+---------------------------+---+---------------_+ I Next 11 I User CODE I ;:, Offset Table I 
+------+---+---------------------------+---+----------------+ -4 I -2 ,-. n n+2 ntm 

A 
I 

iJ 
\ 

3.l'·~. 

master 
ne?::ieJ 
ch~in. 

\----------------------------------------------------> I 

Descriptions of each I-space management function follow. 
*3~GI~ New User Code Area. 

*3E::;IN creates a 
LI'JKER t~ it. 

it is requester:! 
Any prev;::>us 

new area for user code and returns a 
If another I-soace hardware seQment is 

and integr3ted "into the USER -I-space 
user aata area under construction is 



Kevi sed PD P : '" , I LISP Documentation. 

finished by movin~ the previous table of offsets do~n to 
previ::>usr end of- instructions. T'1e Dointers to the ends of 
areas ~re idjusted. The onp arou~ent to *3~GIN is used as 
*C~R of the master LINKER which-kgt;IN returns. 

*EKAMine a ~ord in I-space. 

the 
the 
the 

*EX~M returns the octaL value of a specified word in USER 
I-soace. *EXAM mclY have from one to three arguments. The first 
ar3umentt Jsu~lLy d LI~<~R node, q;ves an address in tne I-space, 
WhlCh may alone oe uspj. The sec6nj argu~ent, if given, provides 
a numericaL offset from the arldress given by the first argument. 
When the thi rd clrcument is given, it soecifies ~n entry within 
the tabLe )f ::>ffsets: The third argument, usually a negative 
nunber, is the off set of the table entry in oytes from the high 
ajjress end of the offset taole. The fir~t argument should be . a 
master LI~<ER an~ the second zero in this case. The entry in the 
taJle of offsets determines an address amona the instruct;)ns 
whJse octaL value is returned. If the specifled addr'ess lies 
within the LISP interpreter code, NIL is returned. 

*E~IT a ~orj to I-space. 

*EMIT writes a value in a specifierl location of I-space. 
*E~IT ~ay have from one to five arguments. If one argument is 
given, usu3lLy a nunber, its vdlue ;5 added to the open user code 
area, the last area on the I-space chain created by *9EGI~e If 
tWJ or nore arguments are given, the last two arguments determine 
an offset ana pointer. The Last ar:Jument, the address of some 
S-express;on, is nodified by the value of the penultimate 
eXJress;on, usualLy a pointer to a numeric node. This modified 
value is tnen outout to the specified Location. If exactly two 
(2) arquments ~re qiven, the soecified location is the next 
availaDle lOC3tion of- tne open user code area. *EMIT also 
ex::>anjs the tabLe of offsets by adding the offset to the next 
c ;) j e l 0 cat ion. T h u s the S -e x pre s s i :) n '4 i v e n b y the las tar gum e n t 
will he'lceforth be protectea tro'n qarbaae collection 
r e c l a i Il' a t i J n .. The tab l eo f offsets of the last user code area is 
keJt at the extreme, unsigned-hi;h-address end of the allocated 
I-space. The instructions ana table of offsets in the last area 
gr:>w tOAard one another. ~hen not enough space is avaiLable to 
adj a new instruction word or offset table entry as recuested by 
one or two ar~umLnts to *E~IT, *E~Ir trys to expand the last US~R 
I-soace area oy adoinn a new contigJous hardware segment to the 
existing Jser coce area, updating the chain pointers to incLude 
the adelti)n and ~ovin~ the table of offsets to the extreme hiqh 
end of the new are~. If the attempt to gather more I-spa~e 
fails? the interpreter wilL call ti,e operating system in error 
mode after sending the message 

NO. SPAC~. 

*~~~T uses any arguments given before the last two, the offset 
an j poi n t e r! L ike the a r 9 U (lie n t s 0 f * E X A~' to S Dec i f y a l 0 cat ion i n 
I-space. dlth three or more arGuments, *E~IT expands neith~r ~he 
co~e area nor the offset t6Sle, but simply alters an eXlstlng 
word in a Jser code area. With three or more arguments to *EMIT, 
the first argument specifies an I-soace Location. With four or 
more arounents, the second arounent q;ves an offset from the 
first argunent~ Lastly, with five 3rgurnents, the third arqument 
givps an offset fro~ the high adjr~ss end of the offset table. 
The offset taDle entry in turn specifies a Location within user 
code to re)lace. 

*O~iGinate a Secondary Entry Point. 

*ORS creates a secondary LIN(ER node to a computed loca
tion within a user code area .. *ORG uses its first argument, 
which shouLd oe the master I~KER n~de of the cod! area, as the 
*C~~ of the seconaary LINK ~ createc. If no other arouments are 
given, the *CDk of the crea ed LINK~R points to the neit location 



t\ e vis e j PDP 'j"1 LIS P Doc urn <':' n tat i on 0 ?9 

which mi~ht reci~ve code from *EMIT. Otherwise, *ORG uses the 
value aT its second arQU'I1ent as the. *U)[~ of the created LIN<~R 
nojp. The VaLl!p of any other arguflIS'nt would additively modify 
the ajores5 soecified oy thp secone ar9ument. 

3. '/ • 5. *L)AD USer Code and S-expressions. 

LOA) inputs S-expressions anj code in DEC absolute loajer 
format iron soecifi9J Logical fiLes. Since each operatinq system 
has its own conventions for openinG a~d assigning LDgic~L nanes 
to files a,d jevices, fiLe and devic~ opening and naming must 
occur oefore Lu40 ooerat~s on 3 specified fiLe. If LOAD has 
ar~uments, the first argument ~pecifies an inout file from which 
S-expressions are read in ~ RcAD-EvAL lODo untiL the eno of file 
is reached or a top level RETURN or ERRO~ 1unction is evaluated. 
The last ar~unent specifies a file to ~c used later for inputting 
bin'3ry co::ie. if LOAD has no arlu71ents, LOAD inputs binary code 
in DEC absoLute lOci~er format fro~ the logical name last speci
fied by an invocation of LOAD with arguments for binary input. 
L8~D performs *aisr~ before initiating the input. If not enough 
space is avaiLable for the inpJt code, the LISP interpreter 
prints the messa9E' 

NO SPACE 

anj calls the oper6tin~ system in error mode. If the input 
for mat i sin cor r e c tor a c h e c I< S U '11 ;co r rOo r i s f 0 u n d, L o,~ Dca II s the 
interpreter routines for internaL error handling. The input code 
inane shouLd contain instructiGns follo~ed by an offset tabLe. 
LO;~ creates tne necessary cod~ chain pointer and zero flag word. 
Wh~n LJAD finds the end ot the code imaae as indicated by a 
transfer a::idress recor], LOAD closes the newly created user code 
area and returns a naster LI~~~R to the start of the cojee 
Supse~uently evaLuclteri S-expressions should amend the *CAR of the 
returnej master LI~K~R node to point to a formuLa which evaluates 
back to the ~'3ster LINKERa 
...,. ·t • 
..). i .0. Du~r User Code and Peferenced S-expressions • 

DUM~ uses either two (?) or three (3) arguments to outout 
a user c)de area in OEC absolute loaj~r format and to further 
invoke routines to hdnjle each S-ex)ress;on which ;s referencej 
by an address known to the taole of offsets. The first araument 
mJst be a naster Lr~KER of a user code area; otherwisp,- DJMP 
illnediately returns NIL. If the s?conc arqument is not ~iIl, the 
3rJument is used as the logicaL nam? of a file to which an image 
of the user coje area is sent in DEC absolute LoaDer format. 
OU~P oLates the start (bottom) of c)de at location zero en) in 
the co::ie im3ge. No DOS communications directory (COMO) is 
produced. DU"1P pro::iuces records shorter than 'j;"'".:) (octaL> with a 
fe~ ~ULL (zero) padjing chdracters between records and Lon;er 
pajding before anj after the image. S-expression references are 
ch~nged t) 177777 (octal) in the image to protect aaainst 
inJrooer r?loading. The last recorj signals a transfer a3dress 
of one (, 'j.; "I), which normaLly inG;cates the transfer address is 
not to b? useD as a start address by a DEC absolute loader. 
Next, if the thirj DUMP argument is ~iven, DU~P checks to insure 
t hat the a r '1 u men tis a f un c t ion. l) U \\ rca l l s the t h ; l' dar Q u men t 
function o~ce tor each entry in the offset table. Three -ar~u
ments are passed whose values may be used by a *EMIT recreatlna 
th? S-expression~ when reloaded" First, an octal nooe qives the 
offset of the S-exoression address from the start of the code 
area. Sec~nd, an integer nooe whos? value must be subtracted 
from the refer~ncea pointer to make it conform to the standar~s 
of other pointers of its tyoe. For example, a pointer to the 
hl~h order ~yte of an OCTAL node would need one (+1) subtracted 
from it to make the pointer worG-~djressa~Le Like normal OCTAL 
noj1" ~ointerso Thir::lf the pointer referenced in the standord 
f?r~at usej for its ty~e,that is, with any offset remov~d. 
Flnally, )U~~ returns the master LINKER node, the first araument 
of DU~P~ . 



R~vise::l PDP 11 LISP Documentation. 

3.2 • Assenbling Co::lc • 

. Hani encoded assembly routines may be prepared for pro
cessin~ by the available assemoler ana link editor. A oroup of 
LISP S-exoress;ons shouLd also be prepared to command the LISP 
inter~ret~r to ~yn3micalLy install the load module output of the 
link euitor ana to redirect locatio~s within the code to point to 
dynamically alLocatea storane dreas. ~hen the LISP system itself 
is link ejitea, a symbol table, probably called LISPST or 
LIso.ST3, is created so that later ;lobal references within user 
c~::Ie to filed locations within the LISP system may be resolved by 
the link e::litor. 

The fol lowing example, prepared for use with DEC's DOS 
MACPO assembler and LINK link e~itor, explains how to perf~rm 
this proceiure. Suppose a LISP function lIi'-lIN is desired which 
returns a, unsi~ned ~inimum of 3n arbitrary number of integer 
arJuments. If no arguments are supJlied, minus one (-1), the 
larqest u,sianeu two's complement intpger, is returned. Such a 
fun~tion, J~Iq, ~ould oe relatively lencthy and sLow if ~ritten 
as a LA~3DA exoression since unsig~ed comparisons are not 
currently, directly su~oorted oy th= LISP int~rprp.ter. A fast, 
machine-encoded JMIN would not need to create binding nodes ~na 
could ~ssune the validity of arguments unlike interpretpd LAM3DA 
ex~ressions. A second functlon, ULESSD, an unsigned-tess-tnan 
pr=rlicate, can also De defined besii~ the same code. Assume that 
th= cooe belo., has been placed in a DOS file labeled "U~'IN.PAL" .. 

F;"ure 1j - Assembler Source for U'YlIN and ULESSP Example. 
i~ 

; 

, 
, 
U'" UJ: 
AD)RSS: 

L:)P: 

LA3EL: 

; 
, , 
ULESSP: 

RETUR"J: 
i 
; 
; 

• G LOB L U \1 1 N ,U L E SSP ; Ext e r., ali zed d e f ; nit ; 0 n s 
.GL03L TRG,~IL ;External references 

Find unsi~ned ~inimum among integer arguments. 

t>':OJ 
.. d) RD 
SR 
C 1'1::1 
BU S 
MOil 
C iP 
8HI 
RT5 

(PO +,R"! 
j 7 7777 
LA8EL 
(Rv) ,@-CR4) 
LA bE L 
~ R .. ) f. R; 
k4,R:> 
LOOP 
PC 

;Load immediate a pointer to -1 
;Placeholder for pointer to -1 
;Jump to end of Loop 
iCneck ar~ from value stack top 
i-> This arg is not smaller 
;Curre~t arc is smaller 
;First arJ reached? . 
;No, -> more args to compare 
;R0 -> minimum arg 

Unsigned-less-than oredicate 

MOV RTRU,RJ ;Assume true = T 
CM~ ~-(R4),~-CR');Is 2n~ arg > 1st arg? 
8HI RETURN. ;-> Yes 
MOil ;;:HL,RU ;No, return rHL for false 
RT5 PC ;T or ~IL is returned in R0 

Table of offsets to dynamically allocatted addresses 

.\-DRD 

.w)RD 
• E"J D 

d 
ADDRSS-UMIN 
U'1 I \I 

;Marker for beginning of table 
;Offset of pointer from code start 
;Any transfer address is ignored 

The user code must be position independent. Prooram 
co~nter (~C) relative references (node 6 7 ) to the data space-and 
to loca~io,s Nlthin ths LISP interpreter code should not be made. 
In partlcular, su~routlne caLls to the LISP interpreter must be 
m a j f' . ina J sol ute ( .. i.J it ':) m od e (37), rat her t han i nth e ubi qui t 0 u s 
relat1Vf' mlde found 1n much ass!mbly. programming. However, 
ref ere n c E' s 0 f the use,' c od e to; t s elf, s u c h . ass u b r 0 uti n e cal l s 
should ~e relative. Storage packing. routines may move the 



c __ ) 

rlE'vised PDP :1 LISP Documentation. 

absolute lOC3t;ons of :lfOUPS of code 0 The changes in location 
will ~nly ~e reflected in- the address portion (*CDR) of the 
LI~KE~ nojes which reference the Jser code areas. Hence refer
ences from one US2r coJe area to another must only be make 
throu;Jh LI'HER no:::Jes. 

~ t3ble of offsets to references must be provided at the 
end of each user code area. Th~ first word of the tablet which 
must be pr)vi~ed even if the rest of the tabLe is empty, is zero. 
Th! other entries ~hich foLlow are the offsets from the start at 
the coje area to addresses within instructions of the I-space 
which reference S-expressions which must be dynamically allocated 
by th;:: LIS:'> interoreter. In the present exarnote, the word at the 
laoel "f...D)RSS;" is ;nentioneo in the table by the offset, 
.. A i) I:' R S S - U '~ I ~j " • T his '" 0 V ins t r u c t ion 0 per and i s ass e !Ti b led a s 
-177777 (octal) 50 that if the code is used before the prO::l,er 
dynamic storaye ciLlocation is complete, a hardware byte error 
trap ~ill )CCUf. furthermore, the address 177777 (octal) in 
D - s ~ ace has t y peS Y S T ;: i-I. Hen c e, the ~1 arb age col l e c tor wi l l not 
attem;)t to ~ark the location specified as an in-use S-expressi~na 
The W 0 r:J ' .. ill evE' n t u a II y c on t a i nth e add r e 5 s 0 fan I N T G t R n:) d e 
wh:)se contents are a two's com;)Le~ent minus one (-1 = ~77777 
octal). Tne D-space references to ~IL and TRU are not included 
in the table since they have )ermanent locations which are 
ext e rn all y de fin e d -; nth e sy m b 0 l t a j L e II LIS P • S T8 II • The ref e r
ences to NIL an~ T~J can be resulvej by the link editor bef3re 
load ins the user coje. 

In the example, the user code could be assembled and 
lillke:J in JOS GATCH rno:le by the foLt.owing commands. 

FiJure 12 - DOS Comnands to LI~K and AssembLe UMIN Example. 

tKUN ~ACRO ; Assemole 
USY:U~lN.0RJ,LP:<SY:UVIN.PAL 
tRUN LINK ; Link Edit with start of code at zero. 
tf S Y : U·~ IN. L D A , L? : < S Y : U .It IN .. 0 b J , LIS P • S T B [ ; , 1 ) /8 : \ ; / E 

DOS incLud2s a '\6 (?iJ octal) word communications directory (CO''1D) 
as the first record of load macuLes. The COMD is normaLLy loajed 
into core and then overwritten. In order to avoirl interference 
with the Ofnanic cuje Loader (*DEP0SIT) by the CO~D, the user 
cO:le loade.::l must ~e CIt least ~6 C?~ octal) words long, under DJS, 
so that the CQ"1D may be cornpteteLy overwritten. The "SOTTO'>\" 
s~itch, "/3:", must be specified to the r)OS link editor so that 
th! vlrtU3L start (bottom) of the Jser code is at zero (0). The 
LISP loader (*DEPOSIT) expects the load moduLe to be in DEC's PDP 
11 absoLute lo~der fornat, which the DOS link editor provides. 
The format incLuoes d transfer adjress record at the end of the 
mojute. The LISP loader (*DEPOSIT) uses the transfer address 
record to signaL the end of user code. Exactly one (~) address 
off set tab lea s des c rio e d ab 0 v emu s t ex is tat the end 0 f the 
conbinej link ejited user code area. If severaL object modules 
are incLuded, the offsets in the ta~le must be computed from the 
be~inning of the entire user coje area, not from the start of 
each injividu3l mooule. If paodin~ words are needed to make the 
us~r code area ~t least ~6 (2~ pctal) words long, the padding 
must orece::ie the orfset table. 

In the ex~~ple, the printe~ output of the Link editor 
should be consulted to fine the offset of the secondary entry 
point, ULE3SP, from the start of coje, UMIN. In this case, the 
offset fO..Jnd, .::2(.; <pctalin LISP notation), is used while 
preparing 3 set of LISP S-expressions to create bindings and 
allocate the S-eaoressions referenced by the code through the 
taole of offsets. ~ssu~e the foLlo~ing S-expressions are placed 
in the DOS file "sy:ur'q,'J.LSP". 

---------_._--------_. 



,..-'--~ 

(-) 

Revised PDP '11 LISP Documentation. 

Figure 13 - S-exoressions to Binj and Allocate UMIN Fxample. 

(PRO; <> A <~VAL (RErD» <GO ~» 
?Comnent - Create primary function binding and load code. 
(C S Erg U i'i I r" (* DE PO SIT ' U h IN) ) 
?Comnent - L03d module coul:::J ~e placed here 
?Collnent - Create seconcldry funct ion bindinc: 
(C SET Q U L E SSP ( * 0 R G U '.1 IN U \i I N 22:;)) -

';2 

? C 0 III n en t - Ins tal l I l'lT G ERr. 0 d e for -1 us i ng 1st 0 f f set, - 2 ( * E ;'1 I T U h I N ~ - ~ '; - ~ ) 
(RETJRN "U!"ilN and LJLESSP loaded") 

The follo~in~ comnands would then: start LISP under D~S, 
ass 0 cia tel 0 9 i cal f i Len u m be r 5 t 0 f; l e s, rea d the cod e and c rea t e 
pointers t::> It, dna close the files. 

Figure 14 - LISP Commands to L03d U~IN and ULESSP Example. 

l>RUN LISP; Invoke thp interpreter fro~ system file area 
(T RA::> i 7 Q .. "J [>'1 I \j • L D A It) ? L 0 id mod u l. e f; l e 
(TRA::> 37£.:i :) "UNIN.LSPIt) ? S-expression file 
(LvA) 5 4) ? S-exp file closed as end reached 
(TRA? 4000 4) ? Close load module file 

• • • 

The assembled user code would then be ready to use. 

This re lative Ly short user code 
generated :>y the fol LOwing sequence of 

sequence could 
S-expressions. 

also be 

Figure ~5 - S-expressions for Directly Generating UMIN Example. 

( C S := T Q U~; I 'l ( * (3 r.: GIN "u '1 IN) ) 
( * :; \; IT') '; :~ 7 .~. J::l ) 
C * E '~ IT·) - I ) 
(""\PC '( 

? i'iOV (:>()+ ,R' 
? Location(-;) <Note? arcs> 
? Generate the rest of UMf~ 
? 8R LA3EL 
? LOOP: CMP (PJ),3-CR4) 
? 8LOS LABEL 
? i'lOV (Rl.),2'-' 
? LABEL: C'"lP r.>4,R5 
? 8HI L)OP 
? R TS PC 
? One arg calls to *EMIT 

? Generate code for ULESSP 
? 1'10V (::>C)+,R··; 
? Oct a l val ue 0 f address of 
? Uti P (l;-(R4),J-(R4) 
? B HI R::TLJRN 
? MOV (DC)+,R'"' 
? Oct a l val ue 0 f address of 
? RETIJR\l : R TS PC 
? One arg call s to *EMIT 
? Close code area 

T 

NIL 

~or lOr1:;1er sequences of code the direct generat Ton method beco"nes 
11l:>ractl cal. 

3 • :> • Com pit; n 9 LIS D S - e x p re s s ion sin t 0 ~;1 a chi nee ode. 

The LISP compiler is used in the same manner as the lina 
LISP cOllpilers 



C) 

i<evise::J PDP j'/ LISP Documentation. 33 

4. References .. 

8i;Jital EqJiprnent,C::>r'poration, ThE' DOS(8A1CH4 Handbook, 
D 3 H A - A - D, ~1 a y na r J, [', ass a c hu set t s, e.. p r 1 , i 97 • 

DEC-i1-

DiJital Eq~Jipllent Corporation, Kri-C 
Maintenanc2 ~anual, DEC-~~-HKTCA-C-Dt 
Novembi:r, ; 974. 

~emory Manaaement Unit 
~aynard, Maisachusetts, 

D i :; i t:3 l E qui 0 men t Corporation, PDP '11 P a 0 e r Tape Software 
Proqraml1in~ Handbook, Viaynard, "'ass3chusetts, 1973" 

Di;lital :::.juiClment Corporation, P~ P ~ 1 Peripherals Handbook, 
~1 a y n a r d, ~: 3 5 sac h use t t s , ',975. 

D;3 1 tal Equioment Corooration, P!) P .. 'j Processor Handbook, 
Maynara, ;''13ssachusetts, '( 9 /4 • 

D. ::. Knuth, The Art of 
A l ~ 0 r; t h ITi S , P;l 4 I 7 - i, 2', 

Computer Dr::Jgramming, Vol.;: Fundamental. 
Addison-wesLey Fublishing Company, 196~. 

w. \'. Lay, D. L. I!\i.lls, r~. 1/9 ZeLko,.itz, Design of a Distributed 
COllputer Ijetwork for Resource Sharing, AAIA Computpr Netw::>rk 
Systens Co~ference, Huntsville, Ala~ama, ~pril, 10 73. 

~. ~. Lay, D$ L. ~ills, ~. V. Zelkowitz, Operatinq Systems 
Architecture for a Distrihuted COl1puter ~ptwork, Proc~edings of 
IEEE/~C~ CJnferenc~ on Trends and AJplications of Mini-computer 
Net W 0 r k s, :; a i the r 5 C, U r q, r'1 a ry l a nat A 0 r i l, 1974. 

J. '1cCi:1rthy, P. <'io ,~brahams, D. J. ::dwards, T. 
Lev in, . LIS::> .;. 5 Pro;J ran mer .... s r·1 u nu a l, T h f: ...". I. 

E. Norrr,an, LISP, The University of 
~1aj;son. Wisc::>nsin, April, ~969. 

iiisconsin 

P. Hart, M. I. 
T .. press, 1962. 

Computing Center, 

E. Nor'l1an, l)npublishecl report on 
ACadellic COTlput;ng Center, '121, 
Wisconsin 531~6, un~ate~. 

1 '.,-~ 
~~ est 

LISP 
Day ton 

implementati:Jn, 
St .. , Madison, 

G. J c Sussman, T. Winograd, Micro-Planner Reference 
PL'JR.V!E\l 226, Stanford, California, April, 1971. 

~'anuatt 



( \ 
',"", j 

I/-~··' 

~-./) 

Revised PDP ;"J LISP Documentation. 

5. Append; ces. 

5. ; • Available Operating Systems. 

PDP .; 'j L I ::; 0 i s a v ail a b t e ins eve r a l v e r s ion sliT hem a j 0 r 
differ~nces ~etween them ~re the Jperating systems and machines 
which house LISP. The coding of the interpreter is nearly 
ijent;cal for aLL of the versions. 

5 • : ,< . ~ . St3nd-ALone Systems • 

I nth e db 5 e n ceo far e I. i a b L e, a v aiL a b l e, 0 per a tin 9 s y s t.e m 
to develoo LISP, a rudimentdry ooerating system has been used. 
The stand-3 Lone o:Jerating s,ystE'm is a c lass project for a data 
concen:rator ~hich was modifiej and rewritten. The system is 
loadej into core oy a oootstrappin~ process. Once in core it 
ex~~ines ~ow much core is availa5Le (at least ;6K and up to 3?K 
words) a n J which c O"il rn u n i cat ion s device is present (D C ~J or D L 1 i ) • 
The system then continues usinl only what has been found5 
PrJorams nay be l03Jed or printej out usina either the console 
ielety~e, Dr one cunmunications d~vice, or a Eomoination of the 
t w J • 1\ s m J l l 0 e 0 LI U:j i n:d poe k act' i s 3 v ail a b let 0 e x ami n e and a l t e r 
a050Lute core loc~t ions with the consoLe teLetypeG This permits 
patches to known ~u~s and trial corrections to prObLems with the 
interoreter code. Program. patches should be make using the 
facilities of the LISP lan;'luage. 

The st3nd-~Lohp system is aV3ilat:le in severaL formats. 
5.1 • ;. '; • C I "1 S E '3 - Can b err a ,',1 a '::3 net i eTa c e S y s t e m 0 

LIS~ is available on magnetic tape cartridge used by 
CPISES <C:'lnb:.>rra \1agnetic Tdpe ::'perdting System). "t present 
LISP is keJt on a separate cartrid~E by the author. Perhaps 
later, wh?n d more finalizea version is produced, LISP will be 
inclu:le::! as a IJroct'ssor on the syst2m tap? 
5. ( • '; • _ • :> D P ; \ 1 4 5 wit h Dis k • 

LIS=> is available on the disk cartridge of Some machines 
anl the fixed diSk of others. The syste~ is loaded and run with 
the aot-lropriate (.isk loacier. 
5.; .':.~~. =>DP 1 1 /4,., with Disk. 

LIS:> is available on the cartridge disk of the PDP 11/4~. 
An e f i 0 r t has OJ e e n m (j jet 0 k e e p PDP; ~ LIS P dow n war d com pat i 0 l e 
with tne P)P 1 :/4~. However, the protection of separate instr~c-
t i J nan ::I ::J ~ t asp ace sis not pro v ide jon the PDP '\ o! I L. I'; ~ M 0 reo v e r , 
the a::Jares5 soac~ avaiLable tor dat3 on the PDP 11/4~ is ulti
m~tely ~ore restricted, even if virtuaL memory couLd be providede 
Tnus future verSlons of the operatinc system may not support LISP 
on the PDP ;;1'-7. -
5.1. i.i.. ~aper Tape Software -Systen. 

A CODy of the DEC proyram DU~PA3 (Dump in Absolute Format) 
ca~ be appendea to the code. This would enable paper tape 
aosolute ~ersions of the system to be produced for systems 
withoJt op=rative mass storage. Due to copyright restrictions, 
the pru9ran D~MPA3 nay not be transnitted to systems outside UJ~. 

VirtualOoeratlng System <VJS). 
- ---~ 

The originaL intent was to write L!SP for an enVlronment \ 
with virtual dajress space and cooperating processes. The . 
interfoces of the LISP interpreter have been desianed to be 
cOhoatiole with the OC~/VOS (Distrijuted Computer Net~ork/VirtuaL 
Ooerating System) being deveLcpeo 2t UO~. Once ~OS is running, 
lar~1(~ scale LISP acventures into artifical intelligence may be 
posslole. /----- .------""',,/' 

Disk :lperating System ([lOS). 

A VJS emulator exists fer use between the LISP interpreter 

) 
/ 

/' 



( 
'-

o 

k e v; S EO' j PDP; '1 LIS f) Doc u men tat ion • 35 

anj D~C's Disk Operating System (DOS). The emuLator intercepts 
the TKAF instructions qiven oy thE' LISP interpreter for I/O and 
other services. Tne 'C'TluLator converts the interpreter requests 
into L.'1T instructions uspci by DJS. Buffers, link clocks, and 
filename bLocks ar0 maintained in th~ e~ulator for use by DJS. 
The e~ulator si~ulates the needej features of VOS for the LISP 
interpreter whiLe providing access to the DOS file structure. 



\ 
I 

/ 

u 

Kevised PDP ~1 LISP Documentation. 36 

5. , • Usinj the Operating Systems. 

5 • 2 • "j • 80::>tst ra~ping. 

Aft?r turnin~ on a computer the contents of core may be 
unkno~n or unusa~le. A small procejure, 3 bootstrap, is initial
ly usej to start uo whatever o::>erating system is to be used. 
Hooefull Yt a hdroware 600tstrap will be dvaiLable or the boot
s t r 3 P ..J i L " l rea C '! b e inc 0 r e • I f not, the boo t s t ra p can b e 
ent~reu usinq the s..Jitches on the front of the machine. A 
list in; of the CIMSES bootstrap is included at the end of the 
CI~SES system document~tion. The ~~K CIMSES bootstraD starts at 
-137 7 :.. ..• 1\ listin~ of a cartrio)€ disk bootstrap laheled-"I~"S 
Bootstrap" is on pa~e .. of a spiral bourd manual labeled "Disk 
Docum2ntation". For'SK core machines, the disk bootstrap starts 
at' ? 7 4 ~', for S 7' Kat ; S ? 7 r" ,'e The dis k s h 0 u l doe Dower e d u ~ aft e r 
th? systen, then the run-loao switch moved to the run positi~n8 
Wait for tne run lioht to co on (in less than a minute). (Po~er 
d~~n in reverse ~rder.) - The D~C pa~er taoe software handb~ok 
contains tne Daper ta8e bootstrap ane procedures. The tape and 
disk Dootstraos cire st~rted by the foLlowing procedure: 

A. ~ake sur~ the console teletype is online and the disk 
or taDe reader is on. 

3. Put the rlALT-ENA'3LE key in the HALT (down) position. 
C. Pl3ce the 'b~Dtstrap start addrE'Ss in keys. 
D. Pr:?ss the load aodress k?y on the console. 
~. Press tne START key. 

! .Fo Put the HALT-ENABLE key in the ENABLE (up) position. 
S • Pre sst 1"1 e con t i nu e (C 0 '!T) key. 
H. If nothing happens, start over after checking the 

bootstrap for errors; otherwise, the loading operation can begin. 

5.2.2. St~nd-Alone Systems. 

The st3nd-aL~ne systems diff?r only in the medium on which 
they are hJused dno the method useJ to load them. 
5.2.2.1. Loadin~ ~nd Running the L~ader. 

After the bo~tstrapping proc~dure, the following proce
dures ... i II l03d and run the lOdder. 
5.2 •. ~.:. i. Cartrio]e Disk Systems. 

A. If the s,!stel1 tYDes "R'::A[lY TO DIAL u or "/JAITING FOR 
CA.KP.lc,,;" some tel2ph.:>ne connection must be made with the appro
p ria t e device, either DC Ii or D L i i • Any terminal may be caLLed 
or even an::>ther comouters 

3. It the system tyres "S~L::CT SP~ED •• • " type "c" for 
iL. baud lines or "?" -for :sr'ij baud lines. 

c. Th~ system must be inforned of the location of the 
pr~'Jr:1f1i on :lisk. This is current Ly sector 5;j~)n or 5~00 on the 
cartriu~e, unit • To signaL this type ALT-MODE A. The sxstem 
wiLL resp::>nd by querying U, F, and then D. After U tyoe "0 I for 
unit ',. After F 3n:l D type the startin9 sector location (s'''':!;)). 

Ds To start the Loading ooeration type ALT-i':ODE L. 
E. If the system asks tor a loader disk address use 16 

(at present). 
F. ~hen the system asks for a loader address, type 

carriaye return or any address higher than the highest address 
loade:l t currently ~'~1). 

S. ~hen the system halts at an address near 225 7 f, the 
LISP interlreter has been Loarled. 
5 .. 2 • Z. i.;::. C I ,V; S cS - ,;.:. K Cor e • 

A. ~nsure the CIMSES 24K system tape is mounted on unit 
1, the leftmost (a~e drive. 

3. If the system ;s rfO'ady t:) receive commands it .sill 
typ03 left braCket ("C")" If not, try the bootstrap procedure .. 

c. ~o~nt a tbpe containing the LISP interpreter 
uSJalty on unl t .:.:~ 

D. Positi:Hl the tape at the start of a copy of the· LISP 



Revise::J PDP . ". I I LISP Documentation • 

i n t e r pre t e r • U S U:3 l l Y ;) res sing the r e ... i n d butt on ; s :; u f f i ci e n t • 
'=,. TypE: "fUf~'1 follOWE:d by an ALT-r~,ODE to load the 

rn:qnetic t:lDe loa::lt-r. 
F. When the system queries "]utt ll type "2" (if 

approDriate) givin~ the unit numCler which is positioned at the 
be~innin~ Jf the interpreter. 

;; When th~ syste~ halts ne3r location 
interDreter has ueen lo~~ed. Otherwise a 
occurrej and the bu;)tstrao procedure shouLd be 
5.2.(,0:.3. Pal=)l?r T:.i.H" Soft\~dre Systemsa 

2 ? 5 7 ,) , the LIS P 
loading "error has 

restarted. 

A. Load the ~aper tape absolute Loader and modify it if 
DC}~'s anj telephone Lines are to be used instead of the console 
TELETYP~& 

3. L03d d 
anClther machine. 

c ooy 

C •. A.fter loaaing, 
a::ldress for later use. 

of the . s tan j -a l 0 n e LISP 

the LIS P ; n t e rp ret e r hal t s • 

system into 

Note t,h e 

D. Set '4~~~4 in the switches of the sending machine, set 
the halt s,.Jitch, or2SS load aadress, press start, set enaote 
switch, a1d press continue. A mo~ified copy of DUMPA5 (dump in 
DEC absoLute form~t) can be provi~e::l foLlowing the data area. 
DJ~PA3 wiLL haLt to wait for an aodress to negin dumping coje. 
The coue f~r DUMPA~ is overwritten once the LISP interpreter 
beiJins. 

E. Connect the two machin2s by telephone. If using 
DC i ') '" s at 3 :iJ b 0 U a ens u ret hat :I l l err a r ~ its i n t he i r d e vic e 
s tat us r e cis t e r s are of f a nr! t h Cl t l 0 cat i on s 774 r en a no 774 J :14 
both have-JctaL ~~ set. 

F. Start th~ absolute loader in the receiving 
s. Start DU~PA3 in the senuinq machine. Note 

and device re~ister queries nave be2n-preset to use a 
a jumCl start and stop location are needpd. 

machine .. 
the st3ck 

DC', ": .. 0 n l y 

H. In the sendinu machine, Jut 411 in the keys 
dune start location. -

for the 

I. Press (O\)T, the machine should halt aqain. 
J • Put '3 7; '" " ink e y s for las t dum p e dad d res s • 
<. Press continue (CONT), the sending machine 

start the transfer. 
should 

L. If the sen::linc machine ha lts ",hi le the receiving 
machine does not, the LIS~ interpreter ~as been loaded, otherwise 
try a~ain fro~ tne be?innino of the bootstrap. 

- ~o St3rt th2 LISP interpret?r at the address 
sendiny machine nalted. 
5.2.2.~. Startinq the LISP interor?ter. 

where the 

~ft2r LISP-is loaded, the kernel stack pointer is set and 
the operatin~ system halts. Patches can be made at this point. 
If DC1~'s are to be used at;~ bau~ instead of the preset 12~C 
baJd, the device status renister reset values located at ,n4 and 
4~5 should be changed from '~1 to i~"! using the switches on the 
machine. If a uifferent device, such as a DC1 1 instead of a 
DL,', is tJ be used, the receivinq and transmitting status 
r e ;J i s t e r . 3 d d res S e :; at l DC at i on 5 4 tJ and l~! 2 01 us t be c han 9 e d • 
After dny such pcitches have been maje, press continue (CONT) to 
restart the system and initialize the data area. The initializa
ti::>n code, which is lJsed only onC2, is later overwritten by the 
Us!r contrJl stack. At th~ ena of jata initialization, a H~LT 
instructio1 in user mode occurs which generates an interrupt. 

The illeoal user mode HALT interrUPt is fielded by a small 
deDug~ing Jroce2ure which is part of the stand-aLone operating 
systen •. ~henth! jebugger starts, it sends a message and prints 
the tal-' '\6 words of the kernel syst?m stack. The first ~Jord of 
each Line is tne starting adcress dumped. When an error inter
fuJt occurs this stack contains: 

tI, • 
3 .. 
C • 
D • 
:: . 
F • 

A return address. 
CPU rc:::ist"O'rs ;~ '. to R5 from reqister set f'. 
AnClthe~ return addr2ss~ -
The stack pointer forth? R rev i 0 U S mode. 
The. pro",ram counter (PC) of the inter'fupt .. 
The processor status worj CPS) of the interrupt. 

" I 



·0 

Kevisf'j PDP 11 LISP Documentation. 38 

The values on the kernel stack are used when a restart is 
maje. 

The debugger accepts commanas of the form: 

OP1 OP? ::: r"D 

OPl and OP? are. octal numbers of which only the last six digits 
are si~nific3nt. If an error is nade while typing a number, 
slllPly ret)"pe all six digits o-f the correct number. An unknown 
conmanJ wi II sin~ly repeat the previous command. The second 
ar~ument may be omitted. The command letters are: 

A - Restart usin~ the current values on the stack. No 
ar~uments 3re nee:le:l. 

3 - Jump to location of Op1 resetting the kernel stack 
pointer to OP",-. 

C - Change the contents of locat ion op1 to the contents of 
OP2. The old ane ne~ values of location OPi are displayed. 

D - Dump UPe Locations startino at address OPl. Each line 
printed c01sists of an address folLow~:l by 8 dumped words. 

E - Restart the LISP interpreter at its error recovery 
point. No 3rgunents are nteded. Th~ old PC and PS from the 
stack are saveu for use by the interpreter. Thus if the LISP 
interoreter is. gdrQa~e collectin~ or doing some other unint~r
rUDta~Le oDeratlon, It may restart t~ complete the operatlon 
without irreparable Damage to itself. 

At this point any patches ~ay be made using the debug~er 
instead of tne switches on the m3chine. After any patches are 
conDleted, the LISP evaluation process is initiated oy typing the 
con 'TI a n a .. A II tot h e :j e b Ll Q 9 e r. The LIS P ; n t e r pre t e r w ill the n t y p e 
a sign-on nessage and -request an expression to evaluate by 
tY;:>1n;;= 

EVAL: • 
5.2.2.3. Changing 1/0 Paths. 

The st3ndard 110 paths may be altered by commands issued 
at the console. Three ent it ies may sene and receive character by 
character 1/0. These entities and their logical device na~es 
are: 

A LISP interoreter process. 
3 Conputer console teletype. 
C Auxillary serial 1/0 device (DC11 or DL11 modems). 

The conmand: 

bELL LOGICAL-~AM~-FRO~ LOGICAL-NAME-TO 

issued at any time, including the middle of a line, at the 
console teletype, causes further output from the entity specified 
by LOGICAL-N~~E-FkOM to be sent to the entity specified by 
L~~!C~L-NA~~-TO. Note that if the oreset speed of the DC11, 12~C 
~aJdl is t~ be chan3ed, a program pat~h must be made. 
~.~.~.~. TYPoJraphlcal Error Correctlon. 

_ WhiLe typing an input line characters may be corrected 
uSlng the backspdce character (3S), CONTROL/H, and then typing 
the correct charcter~ Do not attemot to backspace beyond the 
be~inning of d line or once the ~nj has been passed. The entire 
line ~ay ~e deleted by typing the character cancel(CA~)t 
C:)~TRJL/X, before any other control character which will end the 
line! After a line has been sent to the process by typing 
carrlaye return (CR) or some other controL character, cancel and 
backsDdce have no effect on the line. 
5.2.2.5. Stoopino LISP Under Stand-Alone Systems. 

The process may be interrupted by typing the three 
character sequence: 

BFLL. CHAR ENQ 

._-- - _ ..... _ ... _---------_ .. 



o 

---_. ----------------_._---- ----

Revised PDP:~ LISP Documentation. 39 

(3ELL is CONTROL/G and ::~;Q is CONTROL/E.) 
If th~ secJnd chdracter, CH\R,· is also ENQ then the process ~ay 
be stop~ej as is and the dpbu~ procedure called. Control may he 
retur~ to the LISP interpreter proc~ss to continue by giving the 
COl1 man G I. r\ It tot he ::l e bug 9 e r. _ I f C H,\ R i s not EN Q the nth e pro c e s s 
wilt complete any - garbage collection 3nd return to the latest 
le~el of sJpervisiun using CHA~ as the ~rror type code. In order 
to sen~ a 3ELL to the process type t~o SELL-s. 

vo:;. 
The VOS may oe brouqht into core from disk by first 

bo~tstrapping the aisk lO~der. Then the disk loader is used to 
bring in the VOS code5 The computer l1ay then be halted, 3ny 
patches ma::!e, an:! then restarted at ajdress zero (il). Next, the 
follo~in9 orocedure is used to load and start the LI.SP 
interpreter. 

4. The cOl1manrl language interpreter sends a period e.) in 
or:ier to s:>licit the next command. TypE' a carriaae return to end 
ant current commana. If after l03ding, th~ p~riod does not 
aOJear, ttoe trH.' command "TesT" to recelve a test messaJe. 
T~oinJ CO~rROL/E shJuld interrupt any current processing ~nd 
prJ~uce t~e coml1dna solicitation, the period. If neither of 
these ~orks, the syste~ may need to be restarted or rebooted. . 

3. fype the co~mand 

Open F J3UCD U SP OLD (. 

in order tJ ooen the existing file "LISP" which contains the 
intprpreter initialization procedure. The logical number, ~30:G, 
will DE associate,) "'itn thi., file. Note that only the upper byte 
of this :1 u m b e r is significant. The fourth arc u men t , PI;", 
s;> e c if i est he d r i ve w h; c h ho l d s the f i lee. Sin c e Z e r 0 is the 
defauLt vaLue of ttle fourth ar0ument it may be omitted. 

C. Type the command -

Lin K J3uC·l G -j C,) ~01 

to map the s~~ment 1 of the just Jpened file, 03000, to the 
def3ult virtual address ;', with I and 0 space enabled with an 
execute onLy seement and to link to the initialization procedure 
just mapped Cit virtual locdtion ". This procedure assi;}ns 
tenparary jata workspacE'S, initializes the data areas, and maps 
the LISP inter~reter code segment into the LISP interpreter, 
which shouLd seno ~ sign-on message. 

After the VUS LISP interpret~r initialization proced~re 
has been started, the interpreter should send a sign-on messaqe 
anj proceej to req~est an expression to evaluate by typing: -

--

_ EV AL: • 

Any patches should be nade before Loading, using the map segment 
e~?)f dis~lay storaQe (DS) and alter storage (AS) commands. 
Except to nake perm3n~nt patches and start the LISP initializa
t i :> r) pro c e d u r e , the f i L e "L IS r II· S h au l d not be use d by the 
pr~graml1er. In~jvertently, the jata initialization or code 
se~me"ts,,~glJld :,e altereu •. Similar:ily, use of the logical fiLe 
nUllber, '.<,_.;,i"i, should be avoloed Slnce VOS does not prcvlde 
systen file protection. 

The process may be interrupted by typing the ENQ 
character. The process comDletes any uninterruptable operation 
anj th€n links to the command lanqu30e interpreter which solicits 
a com 'Il " n d J Y t Y pin :: ape r i 00 (.). r h e too 0 f the use r s t a c k i s 
the error cooe wh ich wi II DC' usej by the process. The process 
mat b 2 res tar t t:: d by the c 0 rwn a n (i "S P II , w h i c h - stops t h ec 0 m man d 
langu3be interpreter and returns to the LISP interpreter orocess. 

If the LISP interpreter must be restarted after operator 

.. - ---------.- ..... ---- ---- ---_._----------_ ... -



(~evise::i PDP LISP Documentation. {, t.' 

intervention, 
olj st.:.cks and . ~. 

stack ov~rflow, or 93rbaQe collection failure, the 
association list: ",ill be lost aLong with any SETQ 

::>1 n" 1 n i;J S • 

Disk ~perating System (DOS). 

The DOS-LISP interface has been developed and tested under 
DOS/BATCH version o. 
5.2.4. i. ;ettin~ DJS LISP Started. 

The fot Lo .. ;n:1 procedures tOEd and start the DOS version of 
LISP, assuning tnatJDOS has just been bootstrapped. If DOS 1S 
alreajy rJnning, ::>nly the ldst portion of the nrocedure may be 
nee1ed. N::>te thdt DOS system com~ands ~ust be typed in upper 
case dnd that only the first t~o letters of the command are 
si:Jnif icant. 

A. After beino bootstrapped, DOS should sign-on with a 
ve r s ion n J m b era n d J: r 0 rn p t for a c 0 Tl n, and wit h .. $" • Not e t hat the 
disk must not oe ~ri te protected if the sign-on messace is to 
ao~ear. If another progra~ is active type-CONTROL/C foLLowed by 
"I<ILL" in order to stop it. 

3. Specify the date and ti~e (24 hour cLock) to the 
system oy COm~anQS such as: 

DA TE 
THiE 

:4-JJL-76 
i3:,~:'·) 

Files prodJcej will be marked with Jiven time and date. 
c. Lo~-in to the system by typing a command Like this. 

LOGIN '3,~;3 

Th! nJmbers must specify a User groJP numher and user n~mber, the 
User Iuentification Code (UTC), bet~een T' and 376 1n octal, 
kn:>wn to the system fi le 5tructure. New UIe numbers may be 
e n t ere c i n tot h e f i l e s y s tell: u sin 9 the s y s t e m pro 9 ram ? I P 
(Peripheral Interchanae Pro~ram). If a different UIC is desired, 
other than the one current ly in use, type the command "FINISH" to 
lo~ off th! systt::n before logging in under a new number .. 

D. Type the command: 

RUN LIS" • 
Th! a~ove commano orinas in overlay segments used in code and 
data initialization, opens the primary inout and output datasets, 
and sets values used by DOS. When the initialization is 
c~nDlete, the LI~P interpreter signs on and requests an expres
si:;!n to ev:duate by typing: 

EVflL= • 
5.2.4.2. Interruotin,?, Restarting, Kil Ling DOS LISP. 

Once LISP is running, the attention of the monitor may be 
o b t :3 in €:j 0 Y s i Hi U l tan eo u sly s t r i ki n 9 the CO tJ T R 0 Lan d II e" key s • 
The monitor responos by echoinq, tyoinQ a dot (.), and inter
ruotiny ant current output. O~e of s~~eral one Line commands nay 
th2n be gillen: 

A. RESTART - Restart the interpreter at the interruot 
point established by the program. This controls runa~ay 
p f. J 9 ram s • Don (> t use "3 E GIN" tor e ::; tar t !) J S LIS P • 

3. PRINT - Turn console Dutout either off or back on 
again. This command, which is transparent to the program, c~n 
eliminate excessive output. . 

C. ASS I G N - Ass 0 cia tea log i cal n a me f for e.x amp l e : 

ASSIGN SY:NEWFIL.LSP,4 • 

This conmand specifies a lo~ical po~t or dataset number between 
three () and eicht cn which;c; to have the external n'ame oiven. 
In the above exa~ole the logical nort number ~ is associatea with 
tl12 jatas?t SV:N;;:i'lFIL.LSP on the system device, "S,(:"; with· file 



.-\evised PDP '11 LISP Documentation. 

nane, II~JEAFIL"; i:lna with file name !!xtention, ".lSP" t to denote a 
IISP code source file. Further det3ils and examples can be fOJnd 
in the Df.:C DOS mc.lnuals. 

D. KILL - This command stops the current program in a 
tijy f3shion. Files ~re closed ~n~ an or.derly return is made to 
the monitor re9ar~Less of what the LIS? interpreter may have been 
do i n g. 0 nee "K ILL" i sis s ue d the pro 9 ram can not be res tar ted. 

After a system error message, eGg. 

F345 i,)·:.13·.16 or "rr)3i4;~,676 

the "(ILL" or tJRi:::STII.RT II commands may also be c;ven. 
errors, SJch as st:.ck overflows, ar'e intercePted by 
interfdce, which prints sOllie Systl;'ll stack values 
directly t::> the LISP interpreter. 
5.2.4.3. Input ana Outeut Datasets. 

Some system 
the DOS -L I S P 
ann returns 

The LISP interpreter refers to input/output ports or 
datasets by logical nu~ber. The DOS-LISP interface provides link 
and filenane blocks for Logical numbers between one (1) and ei;;ht 
un. Lo~ical nU11bers, one (-1) and two (-:.'), are used for default 
inout and Jutout. )OS looical na31es, "COl" and IICNO", are usee 
i nth (:- i r lin k b l ::> C k s r e sp e c t i vel y f sot hat lIS P m c: y be use din 
batch riiode. In interactivE' mooe the device, IIK8:", console 
keyboard, ;s usee for default in~ut end output. The remaining 
lo~ically 1umbere:J ports, three (~) to eight ef), USE', as 
de tau l t s , thE' S}' s t e in :J e vic e, .. S Y : " ; ext ens; 0 n" tI. L S P II, to den 0 t e 
LISP source fi les; default filt:: namE'S, "OUTPT<:' to "OUTPTC'''; and 
DOS l O;} i C 3 l n a m e- s , .. "3 .. to" b .. • The d a t a set sma y b e' rea S S ; 9 ned 
using the 'SSIGN conman~ or by a TR~P instruction issued by a 
LISP Program. ~or example the LISP expression, 

(TRA:> 370 4 tlSY:OLDF!L.LSP~1,1]1I) , 
wiLt change the file n3me blOCK to Jse "SY:", the system device; 
.. 0 L !) F I L" 3S the f i len a me; ". L S p" as the ext en s i on t 0 den 0 tea 
LIS P sou r c =- pro q r a in; and U se rId en t i f i cat ion Cod e (U Ie), .. [ 1 , i ] It 

to eXactly specify the entry. The fi rst TRJI.P function araument 
gives the TRAP offset, 37Q (octal), which says to open a -file. 
The seconj argument, in this examole 4, specifies ~hich logical 
file is to be ~(tered. The third argument of the function 1S a 
strin2 in stanaard DOS command string syntax. The standard 
conmand string drop-out rules apply: the system device is assunec 
i f nod eo vic e iss p e c if i e d an d the cur r e n t use r ' sUI Cis USE' d i f 
none is sp=cifieu. 

- ... _-------_ .. _--_._._-------------_ .. _--_. ._----_ .. __ ._-_._-_._ .. _---- ----



I{ t> vis e j PDP 'j 1 LIS P Doc u men tat ion. 42 

i 
5.3 • Coding and AssemoLy. 

The PDP 1 i LISP intprpreter is written in a modified 
v e r S ion 0 f P [) P :; Ass E' m b L y Lan 9 U il:J e (P A L) • 1-1 0 d i fie d PAL can, b e 
used ~ith 3 cross assembler on the University of Marylanj's 
U '.J i V ft. C, 'j :,' 3 a r1 a ,j" 5 • Pro <; r a In S W r itt e n i n PAL can be t ran s p 0 r ted 
to other ~DP ~1 install~t~ons. ~oreover, optimization involving 
the use of ad~resses, as in the LISP interpreter, would be 
difficul.t in higher leveL languages. 

The University of ~aryldnj's modified PAL i~ Quite similar 
to the orginal DeC PAL. A Lthaugh m3ny of the features of the DEC 
M4CRQ assenbly ldn0~aqe werp availajle in moaified PAL, they are 
unused in ::lrjer to ~aintain transportablity. Unfortunately, some 
different features were used. Users outside the University of 
~arrL~nj may have ~o prrigram around them. These differences 
1nc UJe: 

.TIfLE in ~dryt3nd 
onLy. In )ther versions, 
LI'.JK orocessor. 

P~L provi~es assembly listing headings 
.TITLE also provides information to the 

.EJ=CT in ~aryland PAL has the same meaning as .PAGE in 
listing on the other assemblers. .EJECT ana .PA3E continue the 

ne)(tod~e • 

• ALIGN advances the current location counter to the next 
location ~hich is a multiple of the power of two given by the 
ar~ument •• eVEN is equivalent to 

.ALIGN ~. 

The .ALIGN directive was usefuL in jeveloping the growing LISP 
syste~. Its. effect can be.emuLated by resetting the location 
counter, provloeo pruner care 1S taken. For example, suppose 
th3t " previous lanel, "FLOOf:"!._ ;.serF.' defineo on a hardware 
se;:3ment bOJndary, a muLtlpLe of t.J~d]uD (octaL), such as at the 
be~inning of the co~e. The statement 

.ALIGN :2'""-3 i 

WOJld dlign the assembly location counter (.) on the next segment 
bOJndary. Notins (in octal) that 

then the location counter alte~ing statement 

a = .-FLOOR+G2nGrG-1/J?COJr*~2GJ00+FlOOR 
could repl~ce the .ALI3N 015 statement • 

• IF be~ins a section of code which is conditionaLly 
as~embLed. If the argument to the .IF statement ,is false, the 
COJe follo~in~ .IF is not assembled up to a matching statement 

.E~DC ; End conditional assembly 

which ends the conditional 
a j; f fer e n t sy n t i;i x for the 
the ~ciryl3nJ PAL cross 
recognize the st~tenent 

assembly area. 
.IF statement. 
assembler and 

Each assembler accepts 
As. an exampLe, both 
DEC's MACRO assembler 

.IF~E,CPLCP~ ; hssembLe only if compiler used 

which is freq~ently usej within the LISP interpreter code. The 
,COle is assem~L€';::; only if the Label "CPLCPL" is not equaL (NE) to 
zero. DcC"'s mdcro dssembler also recpgnized the statement if 



( 
I 

\ 
I 
I 

/ 

h: e vis p j PDP .~., LIS P Doc u men tat ion • 43 

"'JE." is re~laced by "'-:Z" , 
not. DEC"s Pi,L- i~ S dnd 
the e~uivalent statement 

for not z?ro, whi le Maryland PAL does 
P,r"L-'/IR assE'mLlers would only recognize 

,IF'~1 CPLCPL ; Assemble o'"lly if compiler used 

which is also reco~nized by DEC"s M~CRO assembler. Bell Lao's 
U\lIX c>ssenblS'r, [135", recognizes yet another, different, but 
e~Jivalent statement 

.if cplc;:>l I Assemble only if compiler used 

to be~in the conuitional assemoly area and the statement 

• end i fIE nd con d i t: ion a las s em b l y 

to end the condition~l assembly area. 1n order to reduce the 
difficulty in transfor~inq COdE for different assemblers only the 
above formats tor the o!F- statement are used. 

The assembler source code mo:iule "TRAPS" contains comllom 
definitions which are used with all of the assemblieso Several 
par a OJ e t e r s de fin t j by" T RA PS" may n", edt 0 be c han qed de pen din 9 
Ui);)n thE' host confil1ur3tion. The value, "OBPSTV" tOutout guffer 
r~set value), shoul~-be set to the column width (in octal) of the 
nOlrrO.J02st ::levice usee for primary )ut'Out, usually the consJle 
key boa r cl • T h l' V d t U e s!, " ( 72 ) ,i 2 J (~ • ) ), 0 r 2 r 4 (I '? 2) may b e 
used for TELiTYp~, LA3J, or LA~6 respectively. The flag, 
"CPLCPL", is set to one (1 = on) :1r zero (J = off) depending on 
w h e the r 0 r not, res p e c t i vet y, the c :> rr, p i led cod e fun c t ion 5 are t 0 
b e ass;;> rr, b l e ,j a SOd r t 0 f t rl e i '1 t e r prE' t er • The com p i led t::J d e 
functions should not be includ~d with an interpreter for use with 
a ?~P 1~/4~ or similar PDP ~"s ~ithout memory-management
s2;.>erated: and l) soaces. 

Procedures for assembLing each version of LISP follow. 

Stand-Alone Systems. 

The stalld-alone version of the LISP interpreter and a 
small, in core,~peratina system are assembled together on the 
Un i v e r sit y 0 f r', a r y l and LJ r..; I V A C ' '1 ..., 2. 0 r ~ ~ :' b by the f 0 l l 0 \oj i n 9 
control c3rds. The source elements are assummed to reside in a 
file n,,'fled "C .... 

~SUS~END • Divert the listing to a temporary file 
~PDP*~joASM,ICDS K,Y • Invoke the assembler 
wADD, P C .SVECS • Ope rating system workspace 
~ADD,P C.TKAPS • Common valu~s 
c.,ADD,P C.PLIS? • LISP interor?ter code 
a..ADD, P C .C;YS • Ope rating syst£1\ code 
wADD,? C.U~~NUS • Operating system initialization code 
Ulll.DD,P C .STLISP • LISP data initialization code 

• _ = _ ~ 74 I ~~~: i.. R es e ~ v e so 11 ~ .~ ~ 9n t r 0 l ~s t a c k spa c e 
.Al.l.oi~ 'I'::; Al1gn on ,-.1 byte Doundary 

(l)ADD,P C.\·IU~KS • LISP fixed workspace and tables 
a;AOD,P C~p:!O~iS • SY~b(lL.. LPjK~Rt ann STRIN~ 1n~ti~l dC?ta 

.t~U DRIVeR i Start ~'th system lnltlallzatlon 
ii;RESJ~1E,P. Print the listing efficiently 

The 
using the 

load moaule, "ytf, is the") sent to the 
lU3 transmittion program PUNCH: 

storage medium 

5.3.2-. 

liPDP*'! i .PUNCH, eXT Y • 

VirtuaL uoerating System (V1S). 

The V 0 S ve r s i on 0 f PDP '1 LIS Pis ass e [;] b l e.d 
Maryland U~IV~C(l~S with the follOwing commands: 

on the 



!/~.~-- ...... \\ 

"'~) 

Rev; Sf'::.l PDP 11 LISP Documentation. 44 

@SUS~END • Divert the listing to a print file 
OJ PDP Ie ') ~ • A S [oj , .l CDS X, C • V .~ Put loa d mod u Lei n per man en t f i L e 

.TITLe .LISP interpreter for VOs. 
e = .; Physical address o"f virtual origin of code 
@ ADD, PC. T i-\ II P S • C 0 fIi mo n val u e 5 
~ADD,P C,PLISo • LISP interpr?ter code 

.ALI~N 2J-3; Start data on seament boundary 
Ei = .; Physi eal address of virtual origin of data 
@ADD,P C .STLISP • LISD data preprocessing code • = PASSIlI2+S ; Alloe3te some control stack space 
u; A. DDt PC. \,; 0 R K, S • LIS P fix e d w:) r k spa c e and tab l e s 
ru 1\ D D, PC .. A T 8 IV, S • S Y '-1 COL, L I 'Ij K t: f\, and S T R I N Gin i t i a l d a t a 

.ALISii ::.-3; Stdrt LISP Loader on segment boundary 
@ADD,P C.LS?LD • VOS LISP loajer creates mapplngs 
iii RES J i"l E, P • P r ; n t the lis t ; n 9 e f f i c i e n t l y 

The VOS LISP load module c.V can then be transmitted to 
the VOS file system. Seoments from the VOS "file "LISP", three 
0), tw:) (2), ana one (i) snould be mapped into hardware data 
s e 3 men t s z e r :"l (.' ) ,on e ( .; ) " ani two (2 ) res p e c t ; vel y • The 
tr~nsnittej LOdd module is then loaded into these segments. 
~e~m£;nt tNo. U) of the f~ le IIL!~PIl, containing unpreprocessed 
lnlt15L data 1 s then maoped lnto US~R hardware seament zero (J). 
The cod e ( S T lIS P) ; !'i. s tar ted a t l 0 cat ; 0 n z e r 0 (.t ) too rep roc e s s 
the initiaL data. After a backup e:"lpy of the segments is maje, 
VJ;) lI'$? is reaciy tor use as described above. 

Disk Operating System (DOS). 

, The foLlowin; DJS system com~an~s, without the comments, 
construct the DOS LISP interpreter, "for the PDP 1i/4 or 11/45, 
assumin) that the source ;5 on the J-traek mdgnetic tape devicp, 
"Vir:". The eommanus below are written in batch mOde for clarity; 
hO,Jever, the sequence ;5 more safely performed in interactive DOS 
'Tl 0 j e i.:J y s 0 iT! eon e q u ; t e f ami L i a r wit h DOS. 0 v e r '1 5 .', p a a e s 0 f i 3 2 
column wide output nay be produced. If the available p~inters do 
not support 132 column orint width, the statement 

.NlIST TTM 

must be deleted from the fiLe, TRAPS.'AC, using the system 
P ,. j q r a 0', , = D IT. The a moun t 0 f 0 u t put may beg rea t l y red u c e d b y 
inclujing the no-list switches (/NL/NL:SY~) on MACRO output. 



kev;spj PDP ;1 LISP Documentation. 

:;, J 0 S ~1 A K eLI S P [ .' ,i J 
1> VI f S e. G ~ ;~, 0 u n t LIS P sou r c e ~1 A:; T II P E 
i~ES AG~ when ready type CONTINUE 
1';{II 

45 

1RUN PIP; Reolace LP~ hy K:.3: if no Line printer configured 
Ii L P : < ", T: [* , * J I D I ; r .. u l t ; p l e C J pie s are 0 n tap e 
~SY:rRAP~.~AC<fT:TRAPS.~AC ; Com~on vaLues 
Ii S Y :::. • P !\ L < ;'1 T : E • PAL ; C\ n end c ':l r d 
'SY:LlSPSY.~AC<~T:LI SCSY.~AC ; ~ain DOS-LISP interface 

~ ~,Y : LIS f-' EX .. I'i A C < f'i T : LIS P:: X • i'i A C ; X A P lab e l s, s tor a =l e all 0 cat 0 r 
il S Y : LIS P I ~I • \1 A C < r~ T : LIS C I I) • n A C ; I n t E' r f ace ; nit i ali 7. at; 0 n 
HSY:~LIS~.FAL<MT:PlI5P.PAl ; Interpreter code 
H S Y : S T LIS P • P i\ L < ,., T : S T LIS P • PAL ; D a tap rep roc es sin 9 cod e 

#SY:wJRKS .PAL<~T:~ORKS.PAL ; Fixed LISP workspace and tabLes 
~SY:~TO~S.PAL(MT:ATO~S.PAL ; SY~30L LINKER STRING data 
:t. RUN '1 A C k 0 
HSY:LIsc5Y,LP:<SY:TRADS,LISPSY,E 
;; S Y :;.. IS P t. X, L P : < S Y : T K AD S ,L IS PE)( , E 
HSY:LISP,LP:<SY:TRAPS,PLISP,STLISP,WORKS,ATOMS,E 
#SY:L!SPIN,LP:<SY:TRAPS,LISPl~ 
SRUN LI~K ; (reate load module and symbol table 
IiSY:LISP[:, :J,LP:,SY :LISP[;, ,J<SY :LISP,LISPEX,ODT/OD 
;; LIS ~ , LIS P 1 :\ / T :~ . 4:~' J E 
~RUN PIP ; ~enove the scraps 
#SY:~.P~L,TRAoS.~AC,LISP.03J/)E 
ii S Y : :> LIS I-' • P t\ L , S T LIS P • Q A L , \" 0 ;~ K S • PAL tAT 0 ~ S • PAll D E 
#SY:LISP5Y.~~C,LISPSY.OBJ/DE 
#SY:LISPcX.~AC,LISPEX.OSJ/DE 
ilSY:LISPH'.",IAC ,LISPlrhOSJ/D': 
i{ S Y : [ I t 'i ] < H T : * • L S P ; LIS P s Y s tern pro 9 ram s a v ail a b let 0 aLL 
U~T:fRU .. 
~~ESSAGE LISP is now ready to go 
.I>FINISH 

If) D T ( 0 n - l ; ned e b ug gin g) i s no 
omitteo from the commands to LINK 3nd 
oct :1 lr 4 ~.:J by us i n '~ the s Vi i t c h If / T : 7[, 
of cOJe specifieo t6 U\Jk shaul lie on 
example octal 7'\;':'-.:, 74 i:iLJ, or ;J}u"'C}. 

rlesired, ODT/GD may be 
he top of code lowered to 
~ .. '\01 • Not e t hat the top 
a LISP page boundary, for 



,/ '\ 
\, I 

'---~) 

() 

i<evise::i PDP '~1 LISP Documentation. 46 

561, .. Di str ibution. 

The preferrej medium of distribution is 9-track, odd
parity, D)S_ ;'lagtaoe recordeu at ?ither 3 i ,:-NRZ frames per inch 
(F?l) or '15 '-phdse-encodea FPl by )EC's nos system program PIP 
( Per ; 0 her a lIn t ere han:1 e Pro 9 ram ~ • The f i l e son the 1·1 a 9 tao e 
incluJe assembler source code, obJect modules, and load modules 
for the LISP interpreter desioned for the Virtual Operating 
Systell/Distribut(,!j Computer Network (VOS/DCN) develooed at the 
University of ~~ryl~nd and a vas ellulator to use LISP with DEC's 
DDS. LISP coje tor a PRETTY P~INT~~, a LISP S-expression edit~r, 
a jpbu9 packa;e, and PLA~NER are aLso included. NormaLly, coples 
of the DOS files are placed under UIC-s [',1], [13,13], and 
[ .; 3 , 31 ] i nor d e r tom in i III i ze the po s sib lee t fee t s 0 f tap e err 0 r s • 
The fi Les recorrle::! represent a current version working under DDS. 

The University of Maryland's UNIVAC 1108 computer ~ay 
produce other aistrioution media. 3ackup copies of the assembler 
S~Jrce coje for the LISP interpreter, the vas emulator for DJS, 
and the st3nd alone ocerating syste~ which also emulates V8S, 
re3dy for assembLy by the Marylani PAL cross assembler together 
with the LISP systen programs may b? recorded on 9 or 7 track 
ma~netic tape in one of the U~IVAC i~0g supported fc~mats. 
~loc~eo tard image ~aanetic tapes wit~ 9dd pari~y mal be encoded 
In /-traci<-BCl.l or l)-track-EclCDIC. Lven-par1ty, 7-track tapes 
should not be projuced since the tape hardware truncates ~ny 
physical record with a zero frame, the value produced by a 3CD 
encodec amoersana (~). BCD ana E3C)IC tr3nsLation also lose the 
upper/lower case lualities of the prosrams. The normally lo~er 
case v~riaole names used by PLA~NEH must be preceded by a douole 
exclanGltion si.;n (!!) in cod€' to be reilO by the LISP interoreter 
to rjist;n~Jish them fro'l1 upoer case varia!1les when either teD or 
E3C~IC tr3nslation is to be used. Unless other~ise reqUest~d, 
the physical record~ of blocked carj imace tapes each contain 7?J 
characters which reoresent nine (J) P~-character-card imagesn 
The aj:.prox;mateLy ~2,.' card imaQ?s are recorded several times, 
each cooy oeing followei by a file mark ~nd the last copy 
followej oy 7lultipte tile marks, the logical end of tape. Taoes 
are norllally projuced at 6:-;-Ni:U-FPI. ·:6~,:-phase-encoded-FPI 
9-track maonetic tapes and 2Cu or ~56 FP! 7-track tapes are also 
possible. Since the PDP ~~ assembler scurce code kept on the 
UNIVAC ~~J~ is intended for use Jith the cross assembLer, some 
modification 7 mostly syntatic, may be needed before USe with 
other assenblers, such as the DOS M-CRO assembLer. 

Tape requests should specify the medium desired including 
format, number of tracks. density, parity, and ~ny encoding 
method. Perrnissdble variations on these tape parameters should 
also De specifiec to allow altern3te methods to be used in case 
of hardware faiLures. Usually a listing of one copy of the 
tape's contents ~nd basic documentation are included. 

The material is copyrighted and may only be copied, used, 
t~3ns~it~ejt or aLtereo as alLowej by a copyright license. The 
llcense 15 lntenaeu to protect the system from unauthorized 
c~nmercial expLoitation. Requestors may prepare a suitaole 
license for signciture or a license wiL l be created for them. 
GeneraLly, the license permits the syst€~ to be copied, used, 
transllittej or altered provided that the copyricht notice· is 
inclujej 0' all copies and versions created Dy the-licensee. 

The University of MaryLanj, Computer Science Center, 
Picture Processing LaDora tory requests a charee of fifty dollars 
~$5·,. ) f:>r orocuction and shippin:l costs. 11 a maanetic tape 
15 not SJPpliP0 3n additionaL t~enty five dollars-($2~.~J) is 
Charged to nurchase a ~agnetic taoe. ~oreovert if the DO$-PIP
~a~taDe format is una~ceptable, there may be additional, variaole 
costs. A check or money oreer maoe payable to the Unfversity of 
Marylani, Co~outer Sci~nce Center ~ould be suitable payment. 



( 

\ 

/,/r' -, ""\ 

! I 
\~/ 

I~evi sed PDP 1" LISP Documentation. 47 

5.5 • Kno'.t') Problems. 

Som~ bugs sti II remain. 

5. 5 • -j $ Pro b l ems 'rJ i t h the DO S V e rs ; J n .. 

Jhe') usin0 the vas emuLator ::>n DOS some problems may occur 
invoLving the interfac~. , 
5.5. I. ,. '\tt0nt;on lnterruot and Free ~t.ra;Je Lists. 

The syst~m m3Y not properly restarl at the Latest leveL of 
sUJPrvisio') as d~scrih~j above if free storage lists are being 
ma,ipulatcj. Tnis may occur during ~arbage colLection or wnen 
alLocating strinus or array space. 
).) .: • .:.. Too [/:any :)ppn Fi leSe 

Althougn c8mnunications pack~ts have been provided for ten 
(1~) files, if LISP is LINKed close to the DOS operating system 
buffer area onLy a few fiLes may be open at once. When the maJic 
nUllber of ooen fi les is excep.a~c, the DOS monitor wiLL Loop, 
probabLy hJntina for non-existant DJffer space. The system must 
then ue reboott'd: it cannot be restarted froll the console 
TELETYPE. This con::lition i~ especiaLly Likely in 9AT(H moje, 
since the syst':'7\ must allocate extrtJ buffers for the BATCH I/O 
files. 
5.5.1.~. Jnsuccessful Storage Allocation Looping. 

4fter an unsuccessful attempt to allocate storage after a 
garba::j&::, collect;()n the system wi II attempt to restart by re
settin~ the stacks and the association list to their initial 
values. If this recovery is unsuccessful, it will nonetheless be 
atternated again. The only ways to halt this Loop are through 
ooerator i,tervention, output tiLe overfLow, or exceedin9 a time 
Linit. Each att0~pted recovery projuces a register dump follo~ed 
by the T.essage, 

if again u')successfuL. 
5.).1.~. ~an::lom Disk l/Oo 

NO SPt\(~ t 

Althoulh coce has been incluj 
1/) to contiguous ::lisk fiLes, 
Unexpected results may occur when us 

d to support random address 
t has not been debugged. 
n9 random I/O. 



/ 
~-.; 

~., 

/ \ 
\ ! , ) 

\'--"/ 

Kevised PDP i~ LISP [,cclJmentation. 48 

I 

5. S • Alph3betic~L Function Synopsis 

ADD~ - incre~ent argument. 

(ADD~ X) Adus one to parameter. If the parameter ha5 
fl~atin~-PJint type, ADD1 rpturns the same tyP£. Otherwise, ADDi 
returns an int~ger. 

ALIST - return system Association LIST. 

(ALIST) - Jbt3ins the current system association· list. T.he 
syste~ association list starts 3t the *CAR of the function 
Li."lker. 

AM3- AM3iguity function. 

( A .., ':3 X·~ • • • X n) - Ret urn s a ran don s e l e c t ion fro man arb i t r a r i -
ly lons parameter list. 

Ar"D - evaluate arJuments white true • 

(A\JI) EXP! • 
parameters 
A'J) returns 

• • EXPn) - Special for~ secuentially evaluates its 
until :lone or a param?ter evaluates to NIL (false). 
the valuE' of the last evaLuated parameter. 

APPEN) - create a new list fron argu~ent lists_ 

(APPE~D X Y) - Creates a new list by CONSing the mem~ers of the 
first list onto the second list. ftPPE~D makes a COPy of the 
first list whi le usinq the second list ?IS is. If the first 
parameter is NIL, APPEND returns the second parameter. If the 
seconj oar3meter is NIL, APPEND creates a copy of the first 
parameter. 



Revised PDP ·)1 LISP Documentation. 49 

ARRAY - credte in ARRAY. 

(A~RAY SIZ~ TYPE) - Creates a function which can ~ccess or alter 
the el~~ents of cin array of lenuth SIZE. If the created function 
receives one ~arameter, a 1ixej-point numbert the created 
function returns the array member indE'xed. IT the created 
function receives·a ~econd parameter, whose type matches that of 
the array, th~ created function returns the spcond parameter and 
retain~ its value in th~ array nember referenced by the first 
parametert a fixej-oo;nt nU"'lber. T~e parameters of ARRAY,. SIZE 
anj TYPE, shoul~ be fixed-point nJmbers. If ARRAY does not ~et 
the ootion=.d TYPe parameter, AkRAY oroduces an array of pointers 
by default. 

TYPE ~1E""bE RS RA~G~ 

Pointer Any S-expression ".; 
~ 

2 LO;Jical T (true) or NIL (false) 
8 ina r y ., 0 r i 
Signed oyte -~2a to 127 
Unsi~nej bytp 0 to 255 
""ie-cit word -3?dS to "'1:2267 

3 
to 
5 
S 
7 
3 

2-word long integer (Not for computations) 
2-ioIord sinqle precision floating point 
4-word double precision floating poi!}t 

POLISP supoorts aLL of the flodtinS p~int array types and long 
integer array types only if ppLISP supports at least one type of 
fL~3tin~ OJint arithmetic. PPLISP ~rovides lona integer arrays 
only f5r I/O purposes, arithmetic nay not be p~rformed using the 
values directly. 

~RRAYL - ARRAY Len~th oreGicat:.>. 

(AKRAYL ARK) - Returns the loqical length of ; ts parameter, ARR, 
if it is an array_ Otherwise the Jreoicate returns N~L (false>. 
The len:Jth of lo~ical and binary arrays, the bit arrays, is 
rounde~ uo to the least multiply of eight (2) greater than or 
e~uaL to tne length given as the first ~arameter of ARRAY when 
creating the arr~y access function. 

A R RAY::> - A R RAY t y peP re d i cat e • 

(A~RAYP AR~) - Returns the type, an integer, of its parameter, 
ARR, if it is an array. Otherwise the ARRAYP predicate returns 
NIL (faLse). 

ASSOC - search a~ ASSOCiation list. 

(ASSOC ITE'~ LST (aU'll) - Returns th:.> COUNTth occurance in the 
seconj param:.>ter, LST, a list, of a CONSed pair whose CAR in 
E1JAL to the first oaralleter, lTEN. If the third parameter, 
CJJNT, the count, is o'nitted, one is used. 

ATOM - ATOM predicate. 

(ATOrl X) - Returns r (true) if the oarameter, X, has an atonic 
type. Otherwise, ATO~ returns NIL (false) when the parameter is 
a CONSe::! n::>de. 

ATSYM3 - create ATomic SYMBol. 

(ArC;Y"lb X) - Finus or creat~s, if n~eded, an atomic symbol whose 
p r i n t n i.:I m :? i s ~ ; v e n t.; y t h~ P d ram e t e r, X. I f the par a met e r i s a 
SY"lqOlic atom, !\ISVV!t; retu~ns it. Jtherwist', ATSYM8 co"nverts the 
parameter to internal tYlJe STRING and searches for an atom with 

..... __ ._ ... _ ..... _ .. _----------



) 
"/ 

Kevised PDP '11 LISP Documentation .. SCi 

this print name in the hash lists, 03LIST, used by the READ and 
TJ(EN routines. After not finding an atom with the print nane, 
ATSY~3 cre3tes one and enters it lnto the hash tables. 

ATTE~~T - catch errors after ATTE~PTing evaluation. 

(ATTE'~PT EX:P 
['J ~ t.l - I • • • El -nJ 

• • • 
[ \j m E m -; • • • Em -n m ] 
) 

SO~Ci3l form evaluates the first oarameter, EXP, and returns its 
v~lue if no system errors have occurred. However, if an error 
does occur whi le evaluatinG EXP, the interpreter exorrines the 
otner arQJments tor a [ist whose etR is a number whose vaLue 
!II a t £ I) e ~ t ~i ~ err 0 r t y 0 e • If. the i n t e r 0 r E: t e r . fin 0 S i? mat c h , 
Po. T T <: t;;? I e j a L lJ d t est her em a 1 n 1 n q e x pre s s , 0 r: 5 1 nth eel) R 0 f the 
list. ATTE~PT returns the vaLue of the last expression 
ev:du3t~d. 

3ACKS~ - BACKSPace the R~AD routine buffer pointer. 

(34CKSP) - Returns T (true) and prepares the RFAD, TOKEN, or 
RE~DCH function to read the previou~ character in the R~AD buffer 
if the rlJffer oointer was not set to read the first character. 
Otherwise 3<\c<sr 'returns 'HL (false) and Leaves the bufter 
p:> i n t e rw h 2 rei t 'ttl as. 

3REAK - intercept functions beforeaPDlication. 

(3~~AK <\TM NEdFN) - Functional uses the second parameter, NEWFN, 
a functio1, in ~ldce of the function or special form which is 
c :> n s t 3 I) t l y (: lot; c: l l Y ) b 0 u nd tot h = fir s t par arne t e r , AT ['1 , a 
SY~SOL1C 3tO~. ~hen ca tled, the new fUnction, N~WFN, bound to 
AT~ receives at least two parameters. The first para~eter is the 
at:>m ~T~ wnose binainq 3REAK alterej. The second parameter is 
the function LINKER bound originaLly to the atom ATM~ ALL other 
parameters fol low dS they woulu have been passed to the oriqi~aL 
unoroken function. If JR~AK acts on an atom bound to a sp~cial 
form, thethira oara~eter passej to the new, intercepting 
function, ~EWFN, is a list of the unevaluated parameters intenjed 
for the originaL speciaL form. 



Revisej PDP ';1 LISP Documentation. 

C ••• R - fino CARs and CDRs. 

e c • • .; A • • • D • • • R r., R G) - R:>:t urn s the poi n t e r de r i ve d by 
recursively takin~ CARs and CDRs of the parameter, A~G, a tONSED 
nOje, a oottej pair. rhe caR of a ~otted pair is the first part 
as printeJ, th~ lefthand side. T~e CDR of a dotted pair is the 
seconj ~art as printed, that which follows a dot in a simole 
dortej pair, tne ri~hthand side. For example, if ARG were the 
dotted pair 

(X • y) 

the n 

(CAR ARG) = (CAR '(X. V»~ = X 

anj 

(CDR ARG) = (CDR '(X. V»~ = y • 

The input rout tries R E.AD and TOKEN bi nd any atom whose name 
conslsts :>f the characters, "eH, followed by an arbitrary numoer 
of "Ails anj "D"s, ended by an "RH t::> a composition function of 
CA~s and CDRs. The order of evaluation is from right to left. 
For exu~ple, evaluatin~ the S-expression 

(CAD.A.DR :XP) 

is equivalent to ev~luat;ng 

(CAR (CDR (CAR (CDR EXP»» • 
If the interpreter attempts to follJW the pointer into an ato];c 
Deject, a1ythinu ~ut a dott~d pair, ~hile evaluatinn a CAR-CDR
chain function c~ll, tne interpreter prints a warningJmessage. 

CLEAR3UFF - reset input BUFFer for new line. 

(CL~AR8UFF FIL~) - Resets the input buffer to input a new line on 
the next call to Rt:.AD, TOKEN, or ~E~DCH. If CLEARBUFF gets the 
optional oarameter, FILEt a fixed-,oint number, subs~quent inout 
will con~ froll the logica file num,er specified. The operating 
systellmust have oreviousLy provijed an external meaning to the 
intprnal, Logical fi le-number createa by OPEN or other system 
calls such as rlPE under UNIX. A ~IL parameter returns. input to 
the stl)ndard, def:wlt file. CLEARBJFF saves the oarameter as the 
constant (~lo~al) binding of the atom *CLEAR3UFF. 

CLOSE - CLOSE logical file number. 

(CLOSE FIL~) - Closes the internal, fixed-point, logical file
nu~ber specifieo by its parameter, FILE. If CLOSE get a ~IL 
parameter, the olJeratino system closes the standard, default 
in~ut. If successfuL; CLOSe returns NIL. Otherwise, CL)SE 
returns.th?_inteyer error number returned by the UNIX operating 
systell 1n ~'.'. 

CO~PL~ME~T - logical one's COM'LE~ENT negation. 

(CO"·PLt:.~ENr X) - Conputes the octal, logical one's complement of 
the P:I r a. net e r , . X • COl'; P L Hl EN T use s the h i 9 h - 0 r d e r , m 0 s t -
si~nificant word of a floating point parameter as a fixed-poin~ 
value. 



.. 
Hevisp.:.::l PDP j,! LISP Documo::ntation. ·s 2 

CO~PR~SS - CDM~RESS list into 3 node. 

( C ::> .~ P R c. S S L S T ) - Use s the TO K F i~ r 0 uti n e s (t h esc ann e r ) t 0 con v e r t 
a list of 5in~le cnaracter eLements into an appropriate atonic 
nojp. The list elements may oe either singLe character atons, 
si~al! character strin~st or fixed Joint nUffierical ASCI! values. 
The- TO<EN routine examines the syntax of the character to 
detprnine the type of node to create. User defined readmacro 
characters cause no special actions. Thus readmacros ~ay use 
CO~PRcSS without escaping the user.readmacro characters 1" the 
in;:>ut list. 

CO~D - C~~Diti~nally evaluate 3rgu~ents. 

(COND· [EXP! • • E '1- n" ] 
• • • [exPn Ell-1 ••• Em-nm] 

) 
Special form excects oarameters which are lists of at least one 
ex 0 res s ion • ~ t lea s ton e p.~ r a ITi e t e r. ali 5 t, m u s t be q i ve n • C 0 ~! D 
ev~luates the CAR of each list until one returns a no~-NIL (true) 
value or until evaluatinn the C~R of every oarameter. At the 
first inst3nce of a true value, CQND sequentially evaluates the 
re~aininq ex~ressions, if any, in the CDR of the current 
p a·r am=- t e r, ali st. C 1):\1 D ret urn s the V.3 l u e 0 f the las t ex pre s s ion 
ev::lluated. 

CO~S - create a CONSolidated p~ir. 

(Cl~S X Y) - Creates a new CONSED n~ae of two pointers, its CAR, 
X, and its COk, Y, the left and right hand sides respectively, 
cal ted a dJtted pair. 

ex • y) 

CSET - create a new Constant (JlobaU binding. 

(CSr:T AT~l ::XP) - Functi~n creates or replaces a constant binding 
on the first parameter, a SY~80Lic-atom variable, AT~r using the 
second parameter, EX? Any old constant (global) binding 
disapoears. Any fluid bindings on the system association list, 
ALIST, ~ecJme hieden, since the interpreter checks the constant 
binding c~ll <*CAR AT~) before searching the ALIST for fluid 
blnd1ngs. 

CSETQ - Quote the first argument to CSET. 

(C5~TQ ~AM:: EXP) - Special form serves as an abbreviation for 

(C~ET .... NAf'l~ EX p) 

since CSET) only evaluates thp setond parameter to change the 
c~nstant Jinjin~ of the first par3meter, NA~E, as givpn. Thus, 
unlike CSET, in £his examole, the bindinQ of ~AME itself wduld be 
changeo insteaa of ~hatever variable which might have been bound 
t 0 ~J A ~ E. 

CURRC)L - determine CURRent COLlu~n in output buffer. 

(CJRRCOL) - Return~ an integer which r~presents the next column 
in the out~ut composition buffer which will receive a character. 

,......---,.,.,-------~---



( \ , ) 
\_-_/ 

r.:evi sed PDP ":1 LISP Documentation. 53 

DEFHE - establish a tist of constant bindings. 

(DEFI~i LST) - Apolies CSETQ to e~ch sublist of 
L S r, aLi sl ,c 0 n ~ tun t l y bind i n ::J the first member 
a SY".1u::JLic-atom v3ria:)le, to the value of the 
the sUtllist. i.JF.:FII.E creates a List of the 
received bindings. 

D E F ~; A C - [) E F ; n e a ~ A C ('0 S P e c ; a l for 11\ • 

the parameter, 
of each sublist, 
second mE'mber of 
variables which 

(D~FMAC NA~E FUNC) - Special form cJnstantly (globally) binds a 
macro s~e:ial for~ createrl from the evaluated second parameter, 
FU~C, a fu~ctiun Ll~KER, to the unevaluated variable which is the 
first paraneter, \A~E. The created macro oasses the unevaluated 
p~r~meters receivej, if any, to the oriainal function LINKER, 
FJ~C. The interpreter then evaluates the- results. Thus the 
created M'CRO can pre-process une~aluated para~et~rs into a new 
S-express;:>n Jhich the interpreter finally E'valuate.!. 

D~FSPEC - D~Fine SPECiaL form. 

( D E F S P t C N tI. /.., E F U :'l C) - ;) p e cia l for m con s tan t l y (g lob all y) bin d s a 
soeciaL f)rffl either 9iven as the c:>nstant .binding of a variable, 
the sec:>nd parclmeter, fUNC, or eLse createC from the evaluated 
sec 0 n d par a 01 e t e r , FUN C , a fun c t ion L ! N K E R tot h e un e val u a t p d 
first paraneter, ~AWE. If the unev3luated second parameter ~as 
already b:>unj to a sPE'cial forn or MACRO, DEFSPEC oerforms a 
renaming s) that the first oarameter variable will have the same 
meaning as the second parameter. Jtherwise, the created speciaL 
form retur~ed as the value of the second argu~ent of DEFSPEC will 
pass any p3ra~eters it receives to the function, FU~C, unevalu
ated by the interpreter. 

DELIM - specify inout scanner OELIMiters~ 

(DELI~ STR FLG) - Converts the first parameter, STR, into a 
sinGle character 01 internal type STRI~G. If the optional second 
parameter, FL6, is 3iven, the character specified by the first 
parameter, ST~, has its delimiter status changed. A NIL (false) 
second parameter removes deLimit~r status. Any nther second 
parameter (true) turns delimiter status on. Re~ardLess of the 
pr~sence )f the second paramete~t D2LIM returns the previous 
delimiter status of th~ character, T (true) for on and ~IL 
(false) fJr off. READ and TOXEN use delimiter characters to 
terminate the input scanner's creation of a name. A SY~80Lic 
atom name being created does not include a non-escaped delimiter 
character JnLess no previous Characters have been read. If a 
deLimiter character is not also a readmacro character, the 
s c :3 nne r ~ iLL ret urn ita s a sin Cl Lee h a rae t e r S Y M B 0 L i cat 0 m w 11 en 
encounterej initially. The string scanner and READCH ignore 
delimiter status. 

OIFFE~ENCE - compute D!FFERENC~ of arguments. 

(~IFFERENC~ X y) - SubtraCTS the second parameter, Y, from the 
flrst paraneter, X. The result uses the areater orecision of its 
two para:neters. )IFFEREi:CE retur'lS integer fixed-point results 
if neither parameter has fLoating type. The sinQle-character-
at:>m "_to is a synonym for DIFFERENC::. -

DO - unconditional evaluation special form. 

(OJ EXP'l ..... EXPn) - Special ·form sequentially evaluates· its 
arauments. D) returns the vaLue of the last parameter evaluation 
anJ discarjs all :Jther results of evaluation. 



Revised PDP j1 LISP Documentation. 

DLiUBLE - convert to DOllBLE precision floating. 

(DJUBLL ~R~) - Converts the paraneter, A~G, into a 
precision· floating-point value (four IS-bit words). 
defines DOJ9L= only Nhen supportinQ both double and 
precision flo~tin~-ooint-number types; 

DU~P - o~·trut compiled code anj pointers. 

54 

doubl!."
P pLI S P 
sin~le 

(DJMP LINK FILE FUNC) ~ Returns NIL if the first paramete~, LI~K, 
is nota master LIN([R whose I-space address (*CDR LINK) points 
to the beJinning of a compilea COG! area. Otherw'ise, ~U~P senrls 
a ~inary inage ot the compiled code area to the internal, logical 
filp.-nunber so~c;fied oy the second fixed-point-number parameter, 
FILE. VOS and theD0S emulator of vas pplISP use DEC absolu.te 
lOdder format. JhIX DPlISP uses a.out load module format. DJ~P 
performs an implicit *]EGIN to compact the code area. If the 
second parameter, FILEl is NIL, DJMP inhibits the binary outout 
phase. ~ext, if DU~P receives the ortional third parameter, 
FU~C, a function of three ar1u~ents, DU~P applies the third 
parameter, FU~C, to each pointer offset at the end of· the 
conpilej code area. The first argument of PUNC aets the octal 
offset fron the start of code of the specified 6ointer. The 

·seconj aets that inte~er which must be added to a normal pointer 
t~ produce the pointer~given in the code. The third gets the 
normal point?r derive3 from the given pointer. lastly, DJ~P 
returns the mast~r LI~KER given as the first oarameter, LINK. 

ENTIE~ - rouna up to next· whole integer. 

(~~TIER X) - Returns an integer nDde whose value is the greatest 
whole, si]ned number less' than or equal to the parampter, X, 
after performing any conversion neejed for a floating parameter. 
If the C01verteo value cannot be represented by a slgnpo, 16-oit 
intoger, E~TIE~ returns in~eQer zero. PpLISP defines ENTlER only 
if supporting floating point; 

EQ - test pointer EQuality. 

(E~ X Y) - Returns T (true) if the two parameters are the salle, 
otherdise, NIL (false). EQ returns ~IL when comparing two 
different 10des even though they ~ay have the same value. 

EQUAL - test arguments for con~ruence. 

(E~UAL X Y) - Returns. NIL (false) o~ly if its two parameters, X 
anj Y, cannot be made coniruent; otherwise, EQUAL returns T 
(true). E)UAL converts two numeric3l parameters to the type of 
greatest comllon precision before test ina for equality of value. 
E~JAL tests two string para~eters charact~r by character. EQJ~l 
recursivelt decends two CONSED node parameters to see if both the 
CA~s dnd CD~s are also EQUAL. The right recursive descent llay 
l::>:>o if presenteo twocon9fuent, circular lists. EQUAL tests 
o the r t y pes for jJ 0 i n t ere q ua lit Y • 

ERt\SE - remove atom constant binding and property lis·t. 

(t~I\S:: LST) - Expects a parameter which is a list of Sn"BOLic 
at::> ~ s • E i{ AS Ese t s the c on s t iJ n t (oJ L 00 a l) bin din Q c ell ( * CAR) 0 f 
e~ch atom to its unJefined state ~nj sets each atom's property 
l1st to ~IL, the initial state. Any hidden bindinas to these 
atj~S ontne sys~2m.associatio~ list, ~LIST, will reap~ear since 
the constint blndlng cell 1S un~eflned. Slnce user readmacro 
definitions are ke~t on the property list of the associated
sin?le-character dtom, ERASE wiLL remove such READMACros as a 
si j e -e f f E- ct. 



/ 
I 

\~ 

hev;sf..'d PDP '11 LISP Documentation .. 55 

EkROR - generate LISP internal ERROR condition. 

(ERROR ~UM) - SimuLates the LISP internal ERROR condition qiven 
by tht.: fixed-point-number parameter, ~;ur". If t,;Ur'l is ,omitted, 
ERROR prOdJCeS a ty~e ~ error. Some non-oositive error numbers 
h3ve 5~ecial me6nings to the ppLIS~ interpretera These reserved 
error types I.ill Cduse speciaLized 3cticns it- not caucht by a 
previously invoked ~TTc~PT: 

-i 
-? 

-~ 
-4 -;.) 
-9 
- 'i i) 
- i '1 

System errors, 
RETUR~·J valuE', 

- GO Label, 
- Asyc~ronous interru~ts, 

PreVlOus error tyoe ~as not 
UnDounJ variable or pointer 

- bao array index, 
- Elo:ltin1.point exceotions, 

end of flle. 

caught, 
array element, 

D uri n;:; t he i nit i a L f i L e load i n 9 ) f the UN I X P P LIS Pst art up 
)r~cejuret most'uncaught errors cause a premature error termina
ti~n (18T) of the U~IX ppLISP inter)reter. 

EVAL - interpret argument. 

( E Ii {O, L A R G) Cal L s the p p LIS Pin t'e r pre t e r toe vol u ate the 
p3r~meter, A~G. If the parameter, ARG, is an atom with internaL 
ty~e Sy~aOL, EV~L first checks the constant Dindin~ ceLL (*CAR). 
Up~n finding a non-zero pointer to a norie, a defined reference, 
in the constant winjin~ cell, cVAL returns this pointer as the 
value. If the :"Yh8JLic atom h'ls no constant binding, EIIAL 
searcheS the syst:::>rn association list, ,l\LIST, for a binding CONSED 
pair whose CAq is the atom and whose CDP is the value of the 
AT:)"', 3 n::>n-zero r.;ointer. If C:V~.L sti Ll cannot find a value for 
the ato~, ::>pLISP orints a warning m~ssaye and queries the user 
for a v:; l u e to use e If the par am e t e r, .t>. R G , of E V A Li $ a CON SED 
noje, iVAL aS5u~es thp Dara~eter he3Js a list. EVAl checks if 
the CAR of the List is a SYMBOLic qtaTI which is constantly bound 
to a speci~l form LINKiR by comparing the I-space address of any 
suc~ LI~K~R (*CD~) with the I-space address of EVAL$ If the 
unsigned, I-soace ajdress of the LI~KE1 is Less than that of 
EV~L, the LIN<~q specifies a sppcial form. Upon findino that the 
C.o,::\ of the parameter, .A.DC" in this case a List, is constantly 
bOJnd to a special for~, EVftL calls the soeciaL form using the 
renainin~ me~bers of the parameter. (CDR ARG), as parameters to 
the soeclal f~rm witho~t further eV3luation. However, if EVAL 
finds that the parameter, !lPG, a list, is not a special form 
call, :c.VAL recursiveLy evaludtcs the fi rst memoer (C·~R) of the 
parameter, a List, ana checks that the returned value is a 
function LINK~~. If not, ~VAL prints a warning message and 
queries the user fur a new function LI~KE~ to use. By recursion, 
i: V ~ Leva l U:I t e San y rem a i n i ng m e m b e r 5 0 f ; t spa ram e t e r , ( CDR A R (; ) , 
anj passes their values as 6arameters to a call of the previously 
Obtained function. EVAl returns ~Ll other types of nodes, namely 
LI~KERs, numbers, and STRINGs, used as the parameter, ARG, 
without further eVGluation, i.e. as is,. 

EXEC - EXeCute progrdm in place of intepreter. 

(E~EC ARG~ ••• ARGn) - caLls STRI~G to convert all of its 
parameters, incluaino Lists of characters, into strings followed 
by 2 zero oyte, tht=· format useG by the UNIX sys EXEC ca Ll. EXEC 
creates an integer array of pointers to the start of data of each 
strinJ, which it passes as the second parameter of the system 
caLL. The first parameter is also ~asses as the file name to the 
sys call. If the caLL returns, EXEC returns theinteoer error 
r;u11g er • ~,:}o LI;;P system error is gE'nerated. Only ufjIX ppLISP 
aeflnes ::.X:.C. 



Rev i 5 E' J PDP 'j 1 LIS P Doc u men tat ion • 56 

EXPLO)~ - create List from print namee 

(EXPLJDE' /..~G) - Uses the Pf-:IN'l, out:>ut routines to create a list 
of singLe-ch~racter, SY~BOLic atoms which represent the 
characters which P~INl would use to ~rint the parameter, ARG. 

EXPLO)E2 - create list from print name with escapes. 

( :: X P L J [) E;: !\ R G ) - J 5 ? S the PP IN '-, 0 u t put r 0 uti n est 0 C f' eat e ali s t 
of sinyle-character ato~s which represent the chardcters which 
P~I~2 would use to orint the oarameter, ARG, in a format with 
eSCi'lpes so that the RE\D or TOKEN routines couLd recreate the 
pri nte.:l obj ect. 

FIXP - FIXed-point Predicate. 

<FIXP X) - Returns T (true) if the oararneter, X, is a fixed point 
nUTlber (octaL or integer), otherwise,~!IL (false) .PpLISP 
defines FIKP ~nly if SUDportins floating point. 

FL!\G - put FLA::; on ato" property list. 

( F L ,4 G ,-\ T r·j F L G ) - Put s the f t a q 9 i v e n b y the 
FL~, ~ SYMQOLic aton, on the prooerty list 
p3ram~ter, AT.." ,"nother SYf';80Lic at::lm. 

FLOAT - convert to a FLOATing type. 

second para~eter, 
(*CDR) of the first 

(FLOAT X) - Returns a floating-point numb~r by converting the 
parameter to fl~atin;-point type, using sinaLe precision if 
av~ilaule, otherwise double precision. If th~ parameter has 
fl:>ating ttpe, FLJAT returns it as is.PoLISP only defines FL~AT 
if su~porting flu3tin':1 ooint. 

FLOAT:> - FLOATing-Doint predicate. 

(fL0ATP X) - Returns T (true) if the parameter, X, has floating
point type, otherwise, NIL (false) PpLISP only defines FLOATP 
if sU::lporti n9 float; ng poi nt" 

FORK - soawn a chiLd process .. 

( F ) R K) - C r f> ate sac hi l d p ra c e s s, a cop y 0 f the cur r en t pro c e s 5 , 
by cal lin,; the U iH}, 0 per a tin 9 s y 5 ten, ret urn s the ; n t e 9 e r pro c e s s 
identification (OlD) of the cnili orocess to the parent process, 
an:! returns I\jIL (fdlse) to the chilj process. Only UNIX ppLISP 
defines the FOf\K predicate. 

FU~CTION - create function which captures the ALIST. 

(FJNCTIO~ FUNC) - Creates a new function from its parameter, 
FJ~C, which captures the current system association list, ALIST, 
the st~tus of ftuic oindina pairs. when this new function is 
in~okeu, the captured ALI§T, ~hich contains the bindina environ
me:"\t durin;; t~t: creation of the function, ;s temporarily re
establishej for the duration of the function call. The created 
fJnct;on then caLls the ola functiDn parameter, FUNC, in this new 
en~iron~ent with th~ parameters passed to the created functionu 



--', 

(~) 

Revised PDP -:'1 LISP Documentation .. 57 

.sE"JSY~i - G:=iler:Jte a temporary :3tOll1C SY:vibol. 

(SE~SYN AT~) - Cre~tes a new atomic sy~bol which is not on the 
hash list;, the J8lIST. If the caLler provides the parameter, 
AT~, its prjnt nane is used as th~ print name of the ne~ly 
createo syntJol. If the eil ller provlaes no oarameter, G~NSY~ uses 

. the S Y i.; 3 0 Lie a tom G. The ere a. ted d tom w -i l L· bed; f fer EO' n t t han 3 n 'j' 
previ:)us atOll. !>'hen the atom is printed, its print name will be 
foLlowed by () coLon (:) and a ·unique ;nteoer. Since the atom is 
not on th~ hash Lists, READ and TO(EN ca~not directly access the 
nan o , even when its na~e, as printej, is input. Instead an atom 
lot ill be:; rea te u 0 nth e has h lis t s, :) [) L IS T ,. for the i n put n a 11 e • 
Unlike atons on the hash lists, whe, an atom created by GENSYM is 
no lon~er explicitLy referencea, its space may be reclaimed9 

SET - obtain property from aton property list. 

(G~T AT~ P~P) - Obtains the prop~rty specified by the second 
parameter, PRP~ d SY~SOLic atom, from the property list of the 
first ~3raneter, ~TV;, anothpr atome If the first parameter, AT~, 
; s not t y p ~ d S Y [·1 .i 0 Lor C 0 ~.J S:=: D, a r i f the 0 r 0 per t y lis t ( * CDR ) 0 f 
the fir s t par a OJ e t 2 r doe s not con t a i nth e pro pert y 9 i ve n b y the 
seconj parameter, PRP, GET returns ~ILe 

G .0 - :; 0 toP R 0 S lab e l • 

(SJ L~6EL) - Special form continues evaluation with the next 
ex~ression following the ~iven la~etf LA3~L, in the most recent 
PRJG. If the most recent pqOGdoes not use the GO parameter, 
LA3FL, as a label, the interpret~r recursively searches in the 
next ~ost recent P~OG for LAGEL unti l r~aching a level of LISP 
supervisio,. If a level of LISP su~ervision intercepts the label 
search, t,e interpret~r prints an error message and restarts the 
LISP supervisor. 

3REATERP - GR~ATE~ than Predicate. 

C;REATERP X y) - Returns T (true) if the first parameter, X, is 
greater than tne second paramet?r, Y. Otherwise, GREATERP 
returns NE. (false) .. The comoariso"l is signed, i.e. positive 
values ar? ~reater than neoative or-es. In interpreters SJP
p:)rtin9 flJating ~oint, if the-tyee of the parameters differ and 
at least one para~eter has floating type, GREATERP converts the 
parameter 3f le~ser precision to the tyre of the parameter with 
greater precision before making a cJmparison. 

IFFLA3 - FLA3 existance predicate. 

(IFFLAG AT~ FLG) - Returns T (true) if the property list (*CDR) 
of the fi rst para11eter, AT~, a SY~BOLic atom1 contains the flag 
given oy tne seconu parameter, FLG, an~ther SYMBOLic atom as a 
menber. Otherwiset IFFLAG returns ~IL (faLse). 



l~evise::J PDP ';"1 LISP Documentation. 58 

IFTYPE -ili~! LISP internal noj€, TYPE predicate. 

(IFTYPt. NO[)~ TYPE) - Retu,-ns T (truE') if the type of the first 
parameter, NODE, has an internal type which corresoonds to the 
Wi s .c on s; n J rJ IV A C1 i 'J:j LIS P ; n t ern a l t yo E' S P e c if; e d by the sec 0 n d 
par a '" e t e r , T Y P E , 3 fix e d - poi n t nun, b t? r • The ': 1 ,., [; LIS P ; n t ern a l 
tyoes used by IFTYPE differ from the internal types used by 
poLISP. 

I 'H:"\ Int e rna l pp LI S P 
type nall€' type 

n 
1 
2 
3 
4 
5 
6 
7 

'8 
( 5) 

CONS ED 
I'JiG t::R 
ClCTl\L 
SItl:;LF 
SYSTE~'1 
Comoiled 
LI NI( ER 
S Y ri3 OL 
STRING 
DOU3 LE 

' .. J 
.~:.! ~ (~ 

6 
,',~ 2 
-?, - t., a!'l d - 6 
~ot indata spaCe 
;:; 

4 
.. ' '''2+(2* number of floating types] 
";1 2 + [2 i f SIN C L F use d, e l s e ;.' ) 

INDEX - recu~sively apol~ function to CARs. 

n\JDEX LST END FU'.J() - Functional aopl-ies the third oarameter, 
FJ\JC, d fu~ction of two arauments, recursiveLy to each element of 
the first parameter, LSi, a List, and the value of subsequent 
calls to the remainino members of the first parameter, LST. When 
ap~lyinq the third pa~~me~er, fUNC, to the last element of the 
parameter, LST, l~DEX passes the second parameter, END, as the 
second oar3meter to the third function parameter, FUNC. Thus if 

LST::. (Xi X~ ••• Xn) 

then the c3ll is equiValent to 

(FJNC "X i (FUNC 'X 2 ••• (FU~:C 'Xn END) • 0 • » 

Ir~TO - list of values of function application to CARs. 

(I~TO LST FUNe) - Functional creates a list of the values of 
d;J;>lying the secon:i oarameter, FUNC, a function of one araument, 
toe a c h men be r I sue c e s si ve CAR, 0 f the fir s t p a -r a met e r t [ S T , a 
list. ~APCAR is a synonym • 

. _ .. _---- _ ........ ------- .. ---"-----.~--.-----



( ) 
/ 

-------------

Rev; sed PDP Ii LISP Documentation .. 59 

L/I"1SDa. - create funct ion. 

(L~~BDA ~R;-LIST EXC ••• EXPn) Special form creates a 
function ~hich uses the first ~araffieter, ARG-LIST, a list of 
ar;uments is argunent~ of the cre~ted. fun~tion. The argument 
llSt, I\FG-LIST, need not be a true llst Slnce the rigntmost CI)H 
of th2 list need not be ['dL, wtlich ::>rdinarily specifies the ;;>nd 
of lists. The rne'lllierS of the ",rguni;;>nt list, ARG-LIST, which \~iLl 
act as variable!;, nust be atoms with internal type SY"'''OL. When 
callej, th;;> creat;;>~ function binds its arluments, the ~embers of 
~h;;> arqu:n;;>n~ list 1 AP'G-LI~T, to, t~e values t?asses as paraf!1et~rs 
1n the lunctlon c::!ll by addlng CO~S::D nodf'.' palrs to the beg1nn1ng 
of the system association list, ALIST. The CAR of these binding 
pai.rs consist of the argument nane as ~iven by a me~ber of the 
a r ? u men t lis t, ,\ i~ S -l 1ST, a nd the C D.~ con sis t 5 0 f the res p e c t i ve 
val u e P d sse ~i a sap a r a me t e r tot h c fun c t ion caL l • The n,e w 
binjinu obscures any previous oindin~ on the ~LIST with the same 
v a ria 0 I e 1 a met () r t n e duration 0 f ~ the fun c t i 0 ne val u a t. ion • If 
the eno of the ar:-rU'llent list, ARG-LIST, the rightmost CDR, is 
NIL, i .. e. the list has the form, 

• • • Xn), 

then the nJmber of ::lara'Tleters passej to the function must be the 
SallE' as the nUfliDEr of arguments Siivenin the argument list. If 
th;;> ar~ume1t List is NIL, the degen;;>rate case, then calls nay 
pass no Jarameters to the createj function. If the end of the 
ar~urrlent List, i.e. rightrnost CDR, is not rnl f then it must be a 
SY~~OLic a to'll to which the createj function binds a List of any 
parameters passed which remain after the. created function has 
DOJnd the Jther variabLes. For exanpLe, 1f 

ARG-LIST = (X Y • Z), 

durinJ a fJnction call, the createc function wouLd bind X and Y 
to t~~ first two oaraneters of th! function caLL, create a List 
of any rem3inino parameters, and then binrl that list to the last 
"list" variable, Z. Cal Ls to the created function :nust provirie 
suf'f;cient paraml'ters for each vari3bLe exclusive of any "list" 
variabLe. If the ar~ument list, n~G-LIST, consists of a sin~le 
S Y 'i ? 0 L i c - a tom v a ria b l eft h e d e 0 e n e n t e cas e 0 f " lis t .. v a ria b l e s , 
t :) rex a '11 p L ?, itA R G - LIS T ; s the S Y r'l 3 0 L i cat 0 m Z, the n d uri n 9 e a c h 
call, the creat~j function makes a list of any parameters passed 
ar'l:::l birds that list to the solitary "li st" variable, Z. After 
the crecit;;>d fUnction has bound any parameters passed to its 
variaotes, the function evaluates the other parameters of LA M3DA 
se~uer'ltially in the new hinding ;;>nvi ronment. After evaluating 
the las t e)( pre $. s ion, the c re ate d fun c t ion res tor est he s y s t em 
association List, ALIST, to its state at function entry, thus 
restoring the.oriJinaL binding environment ~ith any previously 
oJscurej bindlnQs. The created function returns the value of the 
last eXDression eVdluateo. 

LA~DA - apply FUNCTION to LAMbDA expression. 

(L~MD4 A~G-LIST ~xp' ••• EXPn) Special form serves as a 
shJrthanc for the function FUNCTIO~ apolied to the LAM3DA 
eXJression soecified by the parametrrs of LA~DA. When caLled, 
th;;> function created by LA~DA instal ls the bindino environment 
caJtured wnen LA~DA was evaluated, oinds any varia6les to the 
parameters of tne created function caL L, evaluates the remaining 
eXJressions of LA~U~, reinstates th! oriqinal bindinc environment 
in effect Jefore the created function carL, and retufns the value 
of the last expression evalu~ted. . 



t\2vise::J PDP'J~ LISP Documentation. 6 C. 

Li:FTS-lIFT - SHIFT LEFT f.or positive counts. 

{LEFTSriIFT X (uUNT) Returns the two~s complement 
arith~etically-shifted octal reJresentation of the first 
p3 ram::: t 2 r, X, d fix e c: - poi n t n u m be r, u sin 9 the sec on d par a met e r , 
CJJ~T, a si~n~G, fixed-point numJer~ If the second parameter, 
CJJNT, is Jositive, LFFTSHIFT performs a leit arithmetic shift 
with zero fill enterin~ from the ri)ht into the least significant 
bit s • I f the sec 0 n u par a n: e t e r i '3' n e a a' t i ve, the fir s t par a 'TI e t e r , 
X, is risht circut.Hily shifted, as a J 'i6-bit value. Other.rise, 
given a zero count, LEFTSHIFT creates an octaL node of the first 
parameter ~alue. LEFTSHIFT uses the most significant word of 
fl?atin~-~)int parameters as is without converting to fixed-
pOlnt-numDer type. . 

L~NGTrl - count LE~GTH of list. 

(LENGTH LSr)- Returns an integer CJunt of the number of members, 
C6,)\S, of the oararneter, LST. LENGTH reretitively performs *CARs 
on th~ ar1u~ent, LST, until ~IL is found, which represents the 
enj of lists in correct for~at, or until the count overfl~ws 
which prodJces a syste~ error condition. 

L~SSP - LESS than Predicate. 

(L:'SS? )( y) - Returns T (true) if the first parameter, X, is less 
than the second pa~amet~rt Y; otherwise, LESSP returns \JIL 
( f a l s e ) • r h e C 0 HI par 1 son 1 S s i 9 ned, i. e. n e 9 a t i v e val u e s are l e s s 
than positive ones. In ppLISP interpreters supportino floatina 
point, if ~ither one of the paramet2rs has tloa~ina-oo~nt tyoe; 
LE5SP con~erts th~ parameters to the type with gre~ter preci~ion 
before ~aklng a comoarlS0n. 



hev;sej PDP ;j LISP Documentation. 61 

LISP - IISP sUDervisor. 

{LISP KE~D-FU~C) - It~ratively prints the results of evaluatinc 
the expresion obtained by its para~!ter, ?EA~-FUNC, a function of 
no arsume,ts. The LISP supervis~r prefixes the returned value 
wit h 

Value: 

except under UNIX in child proc~sses of the original LISP 
inllocation or if LiS? is invoked tlith "_" as a parameter of the 
call fromthe ::-.hell. If the (LIS::» call does not supply a 
paramet~r, ~~AD-FU~C, the interpreter supplies a rlefault S
eXJre5sion-PE~DinJ function. At each call of the default READing 
functiun by the LI3P suoervisor, th?defauLt function resets the 
in;) u t b J f fer, res e t S to use t h t: S tan dar din put, res e t s to use t·h e 
standard Jutout, senes a prompt for the user on the standard 
output saying, 

Eva l : 

anj calls ~EAD to obtain the next S-expression from the standard 
input as the value of the default-rEADing-function calL. In 
thJse case5 in which the LISP supervisor does not use the 
"value:" Jref ix, the default READing function does not print the 
u::vaL: H pr::>mpt eitn:or. The LI~P sUJervision handles any· errors 
whiCh are not cdu~ht by ATTEMPT-sp?cia L-form calls by orintin~ a 
warnin~ me5Sa?e dn~ restarting the ~EADing, EVALing, and value
printinq seouence. The supervis~r ~ay te exited by using the 
RE::TUR'J function or by providin:; an :ond of fiLe condition on the 
stand3rj input <lith Uf...rX EOT (co'ltrol!r-,). The LISP supervisor 
call retur"lS any vaLue of the kETUk~ function or NIL if no vaLue 
is pruvij?j~ At the end at the start-up procedure, the ppLISP 
interoreter invokes a Level of th~ LISP supervisor with the 
default e~oression-obtainin; function which converses with the 
user. The ppLlSP interpreter printS any non-NIL and non-fixed
point-numeric vaLue RETURNed by the top level of LISP supervision 
anj uses the value as the UNIX exit status with NIL converted to 
zero. 

LIST - create a LIST trom argunents. 

(LIST ARG1 ••• AR~n) - Creates a list from any parameters. If 
the call orovides no parameters, LIST returns the empty list, 
NI,-. For exallple, evaluating 

(LIST '\~"'x 'y 'z) 

produces the list 

(101 X Y Z) 

w hi chi s ash 0 r t han d use d by 
dotted-oair expression, 

the interpreter for the CONSED, 

(',J • (X • (y • <z • NIU») • 

_._-------_ .. _ .. __ ._. __ . __ ._-----_._--_._-----_ .... _--._._-------_.--- .~--~----



(' '. 
\ ,I 
"--.~/ 

K e vis e ::I PDP 'j, LIS P Doc u men tat ion. 62 

LO~D - LOAD clef initions from fi lee 

(L)AD ~SCII-FIL~ 31~ARY-FIL~) - Repetitively reads and evaluates 
S-expressiJns fron the the file specified by th~ fir~t narameter, 
ASCII-fILe, a fixed-point logical fi le nunlber, until reaching end 
of f'i l e :> r (: v.:; L U.3 tin J a q t: T U r< l\l f J n C t ion cal l .L 0 A D closes the 
file if unjer UNIX and ~eturns the lOGical file number used. 
Unj~r UNIX, the first parameter ma~ 3lternatively specify an 
external fi le name, Iflhich theinter::>reter .. Jill open. Under UNIX, 
if the LIS~ interpreter invocatio'l provides file names, the 
interpreter LOADs them before in~okin9 a level of LISP 
sUJervisi'o'l. A parameter u+tI must then be explicitLy used to 
product a sign-on line and inv~ke the LISP supervisor. The 
parameter II II coulo also DC used to invoke the LISP supervisor 
without promots under U~IX. If the call provides the second 
parameter, BI'L·\RY-FILE, an intern3l,. fixed-point, logical na,ne, 
LO~D saves the para~eter as the constant bindins of th~ atom 
*L)AD f~r use with the next *DEP)SIT call. Otherwise, LJAD 
constantly binds "'LOAD with the LO:lical file nUiober computed for 
the first ~arameter, t(SCII-FILE. Tfie oinary fiLe number speci
fies a file containin; binary machine co~e in load module fornat 
to be inst3lled in I-s~ace later by *DEPOSIT. 

LOGAND bitwise LOGical AND. 

(LJGA~u AR~1 ••• ~kGn) - geturns 3 16-bit octal representation 
of the bitwise logical AND of any parameters. LOGA~D uses the 
hiJh-orjer, llost-s;snificant wor; of tloating-point-numoer 
parameters as ~ flxed-point value. If the call to LOGAND 
pr~vides no parameters,. LOSAND returns octal negative one, 
'l777"?7i,;" all bits on (true) .. 

LOGOR - bitwise LOGical OR. 

(LJGO~ 4RG1 ••• ARGn) - Returns a 16-bit octal reoresentation 
of the bitwise logical OR of any parameters. LOGOR uses the 
hiJh-:>r::ler, nost-significant wod of floatinq-point-r)Um::>er 
parameters as a fixed-point value. If the call to LOGOR provides 
n () par a iii e t E: r s, L 0:; 0 R ret urn soc tal z e r 0 t-~'Q , all bit s 0 f f 
(f:.!lse). 

LOGXO~ - bitwise LOGical eXcLusive OR. 

(LJGXOR AR;1 ••• ARGn) - Returns a 16-bit octal reoresentation 
of the bitwise l~gical exclusive OR of any parameters. LOGKOR 
uses the high-oraer, most-significant word of floating-point
hunber parameters as a fixed-point value. If the call to LOGKOR 
provides no ~arameter~t LOGXOP returns octal zero, ~Q, all bits 
off (fdlse). ' 

~A~IFEST, - sisnal compile time computation. 

('rJ~NIFt:ST ~RG) 
value. PoLISP 
able functi ens 
be evaluated 
co:npilej c~de. 

- ~hen interoreted returns the parameter, ARG, as 
defines ~ANIFEST for use with potentially compile
to signal to tht: comoiler that the parameter is to 
at compile time instead of being evaluated by the 

~AP - apolyfunction to each final segment. 

'''1"p L5T FJNC) - Functional applies the second parameter, FUNC, a 
function of one araument to each final seoment of the first 
parameter, LST, ~list. The final segmenti are the successive, 
non-NIL CD~s of a list. Thus if the first parameter, LST, is 
NIL, the de~enerate case, it has no final segments to which to 
aooly to the seconu parameter, FUNCe ~AP always returns NIL. 

-----_ .... _--_._._-_-.-._---_.-



Revised PDP ":1 LISP Documentation. 63 

~APC - aoply function to aLL m~mbers of a list. 

(~'PC LST FUNC) - Functional applies.the second parameter, FU~C, 
a functio~ of on~ a'raument, to ~ach member (CAR) of the first 
parameter, LST, a List. -MAPC always returns NIL. 

"1P,PCA:: - synonym for HITO. 

(~'PCAk LST FU~C) - Functiorial performs the same as INTO. 

~APLIST - synonym for ONTO. 

O'I\PLI~T LST FUN() - Functional performs the same as ONTO. 

vtE\lBEi - l'lEf'l3iR of list predicate. 

(~E~BER IT~M LST) - Searches the second parameter, LST, a l1st, 
for tne first cDn~ruent occuranc~ of the first parameter, ITE~, 
us; n 9 t:. ~ U A L. tot est for C 0 na rue n c e • ! f f 0 un d, ~i E r~ 8 ERr e t urn s the 
fi~st.final ~esm~nt of the second para~etert LST, whose CAR 
COlnClces Wlth the first argument, ITEM. Otherwise, MEM3ER 
ret urn s t~ 1 L ( f a l s e ) • 

~I~US - arithmetic negation. 

(~INUS X) - Returns the signed magnitude negation with the same 
tyoe as 3 floating-point parameter, X, otherwise, the integer, 
two's-complement, arithmetic negati~n of the parameter, X. 

MINUS;! - negative number Predicate. 

("1INUSP X) - Returns T (true) if the hiGh-order, sign pit of its 
nunerical parameter, X, is on, i.e. the parameter is negative, 
otherwiset NIL (false). 

NCONC - CONCatonate two lists. 

(~CONC XV) - Returns the concatonation of the two pa~ameters, X 
aryj Y, lists, formed by alte~ing the end, rightmost CDR, of the 
f1rst paraneter, X t so that the end bE'comes the sE'cona parameter, 
Y. If either parameter is NIL, NCO~C returns the other. 

~OT - logical ~OT predicate. 

(~JT ARG) - Returns T (true) if 
(false), otherwise, NIL. NULL is 

the parameter, 
a syn onym. 

NTH - count to the NTH final segMent. 

AR G , is ~IL 

(~rH LST CJUNT) - Returns the final segment, CDR, of the first 
parameter, LST, a li st, specified by the second parameter, COU~Tt 
a fixej-ooint number. If the second parameter, COUNT, is 
positive, ~TH counts from the Left, the head, of the list. If 
th2 count is neg.ative, NTH counts from the right, the tail, of 
the list. Other .. i~e, if the count is zero, NTH returns the first 
parameter 35 i~.rf the absolute value of the count exceeds the 
length of the first parameter, LST, a list, NTH returns NIL. 

~ULL - NULL argument predicate. 

(NJLL ARG) - Returns T (true) if the parameter, 
(false), otherwise, NIL. NOT is a synony~. 

ARG, is 'JIL 



" ( ) 
"------ ' 

Poe-vised PDP :1 LISP Documentation. 64 

~u~aE~p - NU~bER type Preuicat? 
i 

(\!lP18Et{P X) - i<etllrrlS T (t rue) if the parameter, X, has a numeric 
internal type,cctCll, integer, or fLoating-point. Otherwise, 
N U ~ '? E R F ret urn S i~ I L ( f a l s e ). 

OBLIsr - apply function to mem~ers of the 03ject LIST. 

(03LIST FJNC) Functional applies the parameter, FUNC, a 
function If one argu~ent, to each Sy~eOLic ~tom which is on the 
hash lists US?J oy the READ ana TOK~N routines. OBLIST r~turns 
NIL as its value .. If the call omits the parameter, OBLIST uses a 
default fJnction ~hich prints each SY~80Lic·atom on the current 
outout starting each bucket, the riivisicns of the object list, 
which the hash vclLues reference, on a new line. 

O'NDEX - recursively apoly function to CDRs. 

(O~DEX LST END FU~C) - Functional alplies the third parameter, 
FU~C, a function of two arguments, recursively to each final 
se;J'I1ent, C)R, of Ule first parameter, LST, a list • .,Ihen apolying 
the third )arameter, FJ~C, to the l35t final segment, penultimate 
CDR, 0 f t h ? par arne t e r, L S T, I N 0 EX u'> est h e sec and par a met e r, E '~ [) , 
as the second parameter of the thirj function parameter, FU~C. 
Th-.Js i i 

LST = ex'; x2 • • • Xn) 

then the call is equivalent to 

(FLINC LST (FUNe (CDR LSn • • • ( FUN C "( Xn) EN D) • • • » • 

ONTO - list of values of function application to list CDRs. 

(O~TO LST FUNC) - Functional creates a list of the values of 
applyin) the second parameter, FUNe, a function of one argument, 
to each final sesme~t, successive non-NIL CDR, of the first 
parameter, LST, a list. MAPLIST is a synonym •. 

OPEN - prepare to use external file. 

(OPEN A~G ~ODE NU~) Returns an integer which can be used 
internally by CL~ARBUFF,.TERPRI, LOAD. ~nd CLOSE to specify ~he 
externdl name yiven by the first para~eter, ARG, d strlngor 
SY~80Lic ato~. Th~ optionaL second parametert MODE, a number, 
specific to the host operating system, is zero it not aiven or if 
NI~. The OPtional third oarameter, NU~, used only wit~ the DOS 
operating system, force~ DOS to return that integer as the 
lo~ical file numoer •. An unkno~n external name, first parameter, 
causeS.3 sfstem error. 

OR - evaluate arguments until true. 

(O~ EXp1 ••• EXPn) - Special form sequentially evaluates its 
parameters until ~one or a parameter evaluates non-NIL (true). 
OR returns th~ value of the last evaluated parameter. 

PIPE - create UN!XPIPE. 

(PIPE) - Returns a CONSED node, dotted pair, of two integers 
whJ~e CA~ and CD~ t left and right, specify read and write 
lO;PCill, Hlternal tl e-numbers usei by ClEARBUFF and TERPRI, 
re5DeC~ivelY, to com~unicatP arbitrarily amonqst the future 
offsprlng of the current process anj itself. Only UNIX ppLISP 
defines PI::>~. 

---- .. - ....... ----.... ---....... ---~----'---..... _ ...... -.. _-



Rl:'visej PDP 11 LISP Documpntationo 65 

PLENGTH - Print LENGTH count. 

(?L~N~TH A~G) - Returns an integer ~hich represents the number of 
characters which would be used by P~IN1to print the parameter. 
A R :;, ill i tho J t e So C il P t:: s 0 r l i n~ fee d s • 

?LENGTH2 - Print LENGTH with escapes. 

(PLENSTH2 <\RG) - Returns an integer which represents the num:ler 
of chvructers which would De 'used by PRIN2 to print the 
parameter, ~ES, ~ithout line feeds ~ut with any escapes which 
WOJld be needeo DY R~AD to re-read the output of PRIN2 as input~ 

PLPlIT ,.. manipulate Print routine LItUTs. 

(PLIMIT AR~) - Returns a CONSed nOde, dotted pair, of integers 
which represent the maximum print depth and length limits of 
lis t s.w h =' n D a s So eo, the optional p 3 ram « t e r, ,a, R G , a dotted pair 
of intecers in the same format as that returned, chances ·the 
respective print limits.' ~ihile composing output, the- print 
rOJtines Jse ampersand (&) in p·lac? of sublist~ which exceed the 
de~th limit and use two hyphens (--) in place of the CDR of 
suolists which exceed the length linit. 

, 
PLUS - sum jJarameters. 

( P L lJ S A R G" • • • A R G n) - S um s the p 3 ram e t e r s fro m left tor i 9 h t , 
cQnve~ting either the next parameter or the current sUDtotal to 
th~ type of the one with higher ~recision if either has 
f l ::> a t i rl 9 - P J i n tty p e • P L US doe s n:) t c he c k for add i t ion 0 v e r fLo \oj 

when 30din3 t~o fixed-ooint vaLues. The value returned has the 
tyoe ~f the hiahest precision oarameter used. If all of the 
parameters have f1xeo-point type, PLUS returns an ;nte~er total. 
If the PLUS calL 9iv~s no ~aramet!r5, PLUS returns i~teger zero 
(J), the enpty total. The slns;le-character-atom "+" 1S a synonym 
for PLUS. 

PRINT - comp6se Doject for PRI~Ting and send. 

(P~INT AR~) Conposes ~n external r~presentation of the 
parameter, ARb, in the output buffer; sends the entire contents 
of the ~utJut buffer t3 the current output logical-file given by 
*T~RPRI; 3nd prepares the output D~tfer to compose a new line of 
output. Whenever P~INT ft lls the output buifer, PRINT sends the 
butferand continues composition at the beginning of a new line. 

PkIN1 - compose object for PRI~~ing. 

(PRIN! ARG COL) - Composes the external representation of the 
first paraneter, ARG, in the output buffer startina at the column 
given by the optional second parameter, COL,- a fixed-point 
nunber. Skipped.columns which_have not previously received a 
ch~racter contaln blanks CASC!I spaces). PRIN' r€places an 
onltteo seconj p~raneter, COL, wlth the curr~nt outout column. 
PRIN: senjs th~ contents of the output buffer to the current 
output fiLe when the lenqth of the external reoresentation 
re~uires ~ositions beyond the end of the output buffer and 
continues com~ositi~n cit the beginning of an empty buffer • 

.. -. __ . -.---- .- ._---_. __ . __ .. _._--_._---. ---... _._._ ... _ ......... -.. _ ... -----------'-------------



f~ e v; sed PDP ... 1 LIS P Doc u men tat ion • 66 

P~IN2 - compose re-readable output. 

(PRINZ ARG COL) - Composes an external representation of the 
first paraneter, ~k~, in the output buffer in a format which READ 
could use to reconstruct a conqr~(nt obiect. PRIN2 rlaces the 
m:)st rece'ltly c:ietine::.J escape i:h3ractE'r~ which ;s· initially 
e x c l a Tl d t i 0 t) 0 0 i n t ( ! ) , be for e· C h 0 ra c L e r s wit h rea d rn a c roo r 
delimiter status usee in SYM30L atom print names and before 
SY~30Lic 3tons names whose first character is a number (C-;). 
P R I ~::: sur r 0 u n j sst r i n::l s w; t h t n e ITI:> s t r P, c e n t l y de fin e d s t r ina 
delimiter charilcter, which is initially double-quotes (") ana 
dDu~les ant inst<lnc2 of a string delimiter character within 
strln~s. PRI\) starts composing in the column specified by the 
00 t ion d l sec 0 nap a ram e t e r, r 0 L, a - fix e ::i -p Q i n t n u m be r, i n leu 0 f 
conoosin; into th~ next available column. Skipped coLumns which 
have nut previously received a character contain blanks (ASCII 
s p 0) C e) • :> f< I \j ,: S l" n d s the con ten t s 0 f the 0 u t put b u f fer tot h e 
current outout file ~hen the lencth of the externaL representa
ti:>n requi res posi tions beyond-the end of the output buffer and 
continues comDosition at the beginning of an empty buffer~ PRI~2 
cannot comoose re-readabLe external representations for function 
LI~KERs, the interpreter workspace, and stacks. The print 
rOJtines compose the "unprintable" :Jbject within souare brackets 
( [ }) Hit h e i the r the n a '11 e 0 f s y s t e IT! d e fin e d fun c t ion L I ~! K E R s, the 
LA~?D~ Oar31T!eter list of user defined function LINKERs, ~he bytes 
as charClcters of short arrays (less than 1?8 bytes), or a 
question mark (?) preceedinq an octaL ~umber for long arrays and 
parts of the interpreter workspace and stacks. 

PKOG - PROGram speciaL form,. 

(PROG ARG-L.IST 
LA8 c;XP'" 

• • • 
C::XPnl 

Special form places bindina pairs on the system association list, 
ALi S T t for e a C 11 me 111:::1 e r, C A !::, 0 f the fir s t par a met e r, A R r: - LIS T , a 
list of arguments consisting of SY~~0Lic atoms ana subLists. 
PR)G binds each r112mjer af the arClument list, ARG-l.IST, which is a 
SY~30Lic atom to ~IL. The CAR of each sublist of the araument 
list is 3ls~ a SYM~OLic atom ~hich PkOG binds to the-value 
obtaine::i Ot evaluatinn the second nember of the sublist, the 
CADQ. Ii the aqument list, A~G-LIST, ;s NIL (empty), PROG 
places no new oindin0s :::In the association list. After PROG binds 
ant ar~uments, PR)G sequentially evaluates any remaining, 
n:J n - a t U 11 ; cpa r a Iii e t e r sun til e i t rl ~ rev a L u a t in 9 the GO s p e cia l 
f~r~f evalJating the RETURN function, or reaching the end of the 
param.~t2r li~t. The uneva luated at::'Ji!l;c ppra:neters qre labels for 
the ~U speclal f~r~. After evaluatlnc tne GO speclal form, PROG 
restarts the sequentially evaluatio1 following the PROG Laoel 
used as the unevaluatec parameter of CO. If PROG evaluates the 
RETUR~ function, PkOG uses the value of any RETURN function 
paramet?r as tne value of the P~OG call ane ceases seauential 
eV::lluation of further PROG parameters. If PROG evaluates a 
R~rUR~ function call without par3meters or if DROG exausts the 
suooly of oaralrleters to eVdluate, P~OG ceases and returns NIL as 
valUE! .11 ~ny case, as PROG returns, it restores the system 
aSSOclatlon llst, ALIST, the old ~ind;ng environment existing 
before the PRJ~ call. 



Rev i s P. d PDP 'j '1 LIS P Doc u men tat; 0 n • 67 

PROP - obtain PROPerty list pair. 

(P~OP AT~ ~RP FUNC) - Functionul returns any property binding 
pair onth? property List of the first parameter, AH', ~ Sn1BOL;c 
at;) To • T h :- 0 r 0 per t y b ; n {1; n 9 P air con 5 i 5 t s 0 f a C or I S ~ D no j e ,. 
dottej oair, whc~e left part, CAR, is the second oarameter, P~~, 
a 5YM3ULic atom, tne oroperty name, and whose right part, CDR r 1S 
the curre~t binding, vaLue, of the nroperty. If the f1rst 
parameter, AT~7 has no appropriate oroperty binding, PROP returns 
a \I a l U t bye all; n 9 its t hi r d par arne t ~ r , F U t~ C, a fun c t ; 0 n 0 f no 
ar!juments. 

PUT - PUT property binding on oroperty List. 

(PJT AT~ PRP ~HG) - Replaces the pro~erty value of the prope~ty 
nane, PRP, a SYM30Lic atom, on the property list of the first 
parameter, ATOM, another SY~BOLic atom, with the third parameter, 
AR~. If no property previously existed on the property list, PUT 
creates a property binding p~ir. PUT returns the first 
parameter, AT"'. 

JUOTE - use ar~ument as is. 

(QJOT~ AF\G)- SpeciaL form returns its parameter, ARG, as is. 
Since special forms receivE' parameters without prior evaluation, 
riU:)TE returns it5 parameter, AriG, without evaluation. The READ 
function recocnizes the sinale quotation mark (') followed by an 
S-expressiJn 3i a shorthanc for a list of the SY~80Lic atom 
"QJOTE" a,d the S-exoression. For example, if READ enCDunters 
the characters 

'(A 9 C> 

RE~D produces the list 

(Q UO T E (A Be» • 

a U 0 TEN T - d i vi de a r 9 urn e n t s. 

(~JOTIl~T X Y) - Returns the Quotient of dividing the first 
parameter, X, by the second paro~€ter, Y. If either parameter 
has floati,q-ooint-numeric type, QUJTIE~T converts the parameter 
of lesser precisinn to the type of the other before aividino. 
Other~ise, QUuTIENT returns an integer whose value is tfie 
nUliber-theoretic quotient. The sin;;;Le-character-atom "l" is a 
synonym for QJuTIE~J. 



Revispj PDP 11 LISP Documentation. 68 

R~~D - create S-expressions from input characters. 

(RE~D) - Returns an S-express'ion cr~ated from input characters 
startina at the current input Duffer p~sition. Upon encountering 
a list ope'")in) character (10(11, 11[11, "<,., or "{II), R~AD recursive
ly calLs it~elf to o~tain members of a list expression. After 
E'ncouterin~ a list close chi'lracter (II)", "~", ">",.or "}"), .. .READ 
co~pletes each sublist under cO'1structlon untll matchlng a 
c~rresponding ~ist opening character. RE~D .creatE's a C0NS;D node 
of the expreSS10ns o~fore and after a perlod (.). READ 19nores 
excess list close characters and any characters after the comment 
character, question ~ark (?), up to the next nory-printing ASCII 
c h 3 r act e r, s u c h d S 3 n e",.j lin e c h a r act e r (""'r 2), w h 1 C h del 1 m , t san y 
token ~einJ scannea. ~hen READ enc)~nters user defined read~acro 
chiracte~s, READ uses the vaLue of a caLL to the assoclated 
readmacro. JtherwisE', READ calls the scanner, TOKEN, to return 
the next item scanned in the input buffer. For example, the 
S-expressiJns READ creates from the characters 

[<A 'B> (C. D) fHL} 

or 

«A. «:lUOTE • (3 • '-JIL» • NIL» • «c • D) • (NIL • NIL») 

or 

(A '8 • <C • D> [) 

are con;ru!nt. ~henever, READ reaches the end of the 
buffer, R~AD calls the operatin~ system to obtain more 
ch2racters from the' current input fi lee 

~EADCH - READ a single-CHaracter atom. 

inout 
ASCII 

(READCH) Returns a single-character, SYMBOLic atom which 
reoresents the next character in the input buffer, re:}ardLess of 
any delimiter or re30mdcro status of the charact~r. If REA~CH 
finds no fJrther characters in the input buffer, PE,L\DCH calls the 
oJerating system for another line of ASCII characters. 

READML\C - manipulate character RfADMACro status. 

(READ~AC C~AR AR&) - Returns the existing readmac~o status of the 
character specified by the first parameter, CHAR, which STRI~G, 
cal l e::l by REA ~ 1'1 A C , con ve r t sin t 0 3 sin Q l e c h a r act e r s t r ; no. I f 
the character is not a read~acro ch3ract~r, REA~MAC returni ~IL 
(false). It the charact~r specifies a user d~fined readmacro, 
READMAC returns the function LINKER that the user established to 
be called by kEAD whenever READ !ncounters the character whil~ 
looking for the start of a new token. Otherwise, READ~AC returns 
a pseuGo-fJnction LINK~R used oy a system defined. readmacro, e.g. 
the question ~ark (?), comment character, or the single quotation 
mar k ("), ;} U 0 T i:. S - e)( pre s s i on c h a r act e r • I f REA D "1 A C get s the 
second, ootionaL oarameter, ~EADM~C establishes a new readmacro 
status following the S3me rules usej to return the old readmacro. 

R t. VI A I\J D E ~ - R E'~ A I ill D ERa ftc- r d i vis i on. 

(RE"1AINDER X Y) fH'turns the number-theoretic remainder of 
dividing the first oa~am~tert X, by the second parameter, Y, when 
both Oclrameters are flxeo-polnt numDers. 



Revised PDP j'T LISP Documentation. 69 

R t. "l 0 i3 - R t: ['-10 v e 0 F3 j e c t fro rn has h li s t s • 

(REM03 AT~) Searches .the appropriate hash list for the 
par~meter, AT~, ~ SYMROLic atom. If RE~08 finds the atom and the 
u~er crea~ed the ato~ as OPp05~C to the atom existing during 
Sl~n-on, R:~03 removes the paramet?r from the hash l1st ana 
returns the parameter. ~EMOB also accepts a us!r-code-area, 
function m3ster-LH.i(t.r~ as the parameter, flRG. If REf':OB had not 
previously marked the user-code area specified by the I-space 
address of the mdster-LI~KER as unused, REM03 marks the code area 
as unused so that any points referenced by the code area may be 
reclaimed and returns the para~eter, the function master-LINKER. 
Otherwise, RC:"108 re~urns NIL (faLse). 

RE~08~ - ~~MoveabLe OBject Predicate. 

(REM03P ARS) - Returns T (true) if the ~3rbage collector COJld 
pot e n t i all 'I r eel d i In the para met e r, 1\ R G , 1. e. the use r d e fin edt h e 
ooject after invoking IISP. Other~ise, REMOBP returns ~Il 
(false). 

R01PR)P - Rt,'v1ove PROPerty from prorerty list. 

(REVPROP ArM P~~) - Re~oves any pro~e~ty bindina pair indicated 
by the second para~eter, PRP, a SY~BOLic atom,-from the property 
list (*CDFD of the first parameter, 1\ PI , another SYr~SOLic atom. 
RE"'PR~P returns the first parameter, ~TM, whose property list 
RE'1PR::>P altered. 

REQUEST - output query for S-expression input to evaluate. 

(REQU~ST A~G) - Forces output of the parameter, ARG, 
current output file without a carriace return and then 
the eVdluatio, of the next S-expression- read from the 
inout. 

RtTUR~ - RETUR~ to caller. 

to the 
returns 
current 

(R~TUR~ ARS) - Returns the most current invocation of the PROG 
special form, the lOAD function, or the IISP supervisor to their 
caller. Th~ c~ller uses any optio,al parameter, ARG, as the 
value of a call of PROG or LISP. It RETURN has no narameter, 
RETUR~ ret~rns NIL. When R~TURN le3ves the top level of IISP 
suoervisio,~ the interpreter may exit back to the operating 
systen using any RtrUR~ parameter as status. 

REVERSE - create REVERSEd list. 

(REVERSE LST) - Creates a new list whose elements, CARs, are the 
elements of the parameter, lST, a list, in reverse order. If the 
parameter, lST, 1S "li.l, the empty list, R::VERSE returns ~IL. 

RPlACI\ RePLACe CAR. 

(Q?LACA AR; ITEM) - Replaces the l!fthand side, *CAR, of the 
first oar3meter, ARG, usually a List, with the second parameter, 
IT~~. RPl~CA returns the altered first parameter, ARG. In order 
to preserve systen integrity, the first parameter of RPLACA 
sh:Jul::J not be an integer or string node. 



-~ 

l ) 
/ 

_/ 

Hevised PDP 11 LISP Documentation. 

RPLACD - nePLACe CDR. 

(R~LACO ~R3 ITEM) - Replaces the ri~hthand side, *CDR, of the 
first par3meter, AqG, usualLy a list, with the second parameter, 
ITE~. RPL\CD retur~s th_e altered first parameter, ARG. In orjer 
to oreserv~ syste'll integrity, the fi rst parameter of RPLACD 
sh:>ulj not be dn integer or string node. 

SeT - change fluid binding. 

(SET ATM EXP) ~eplaces any ~reviously existing constant 
(3lobal) ~injin~ glven by a non-zero pointer in the constant 
blndin~ cell, *C"R, of the first oarameter, ATM, a SYM30Lic atom, 
with the second parameter, EXP. If the first parameter, AT~, has 
no constant bindin~, SET searches the system association list, 
ALIST, for a oin:lin9 dotted-pair, whose lefthand sioe, CAR, -is 
the first oarameter, AT'I!, and whose rigbthand side, CDR, is the 
previous f luia bin~ing value which SET ~ill replace with the 
second par3~eter, lXP. If SET can find no bindino oair for the 
first par3meter, ~T~, SET inserts a new binding-pair consisting 
of a CO~SE) nod!, catted pair, whos! CAP is the first Darameter, 
AT ''1 , and wh::>se cu~ is the second ;>arameter, EXP, on the current 
systell ass:>ciation list just below 'l marker, the atom LISP, adjed 
to the list by the TlOSt current level of LISP supervision. Any 
such oinding ~isapoears as the current l~veL of LISP supervision 
exits. If SET cannot find any marker to use as the last resort, 
Usually because a level of LIS~ supervision is not in effect 
durin~ LOAlin9 at start-up under UNIX, the LISP interprpter exits 
in error m~de (lOT). 

SETCOL S::T next COlumn to read input. 

(SETCOL X) - Sets the input routines, ~EAD, READCH, or TOKEN, to 
obtain the next characters from the input-buffer column indicated 
by the parameter, X, a fixea-point number. 

S':TG - Quote the first argument of SET. 

(SETa NAME EXP) - Soecial form serves as an abbreviation for 

(SET 'NAME EXP) 

since S::TQ only evaluates thes!cond parameter, EXP. SETQ 
fluidly binds the first parameter, ~A~F, a SYMBOlic atom, as is, 
without ev:llu3tion. Tnus, in the example, SETQ alters the fliJid 
binding of ~AMi rather than any SYM30Lic atom which could have 
been-bound to NA~E. 

SH - JNIX SHell. 

(SH ARG) - Invokes the UNIX shell, the operating system command 
i n t r:> r pre t e r , wit han ; m p l i c ; t II -c" 0 P t ion f u sin 9 any 0 p t ion a l , 
gillen paraneter, I\kS, .. hicn SH converts to a strine: followed by a 
zero oyte, as a shel l command line. If SH cets no-parameter, SH 
invokes the U~IX shell without options or p~rameters, so that the 
shell will read com~ands from the current standard input file. 
while Sri IHits for the shell corr,man:i interpreter to finish, SH 
i~nores the standard (DEL) and quit (CNTR-SHIFT-L or CNTR-
8~ckslash) a~Yt;.hror.lOus interrupts. whi le .waiting, SH absoros, 
~l~hout n?tlf~catlon, any other offsprlng created by forking 
WhlCh termlnate concurrent ly. SH returns an octal value which 
reoresents the status word which the operating system returns in 
R~. Only JNIX ppLlSP jefinr:>S SH. 

-------~---'-------------.-----------------------------------~----



. ., 

( ) 
\""-../ 

Revisej PDP ~1 LISP Documentation. 

Sl~GL~ - convert to SINGLE precision fLoating. 

(DJUBLi AR~l - Converts the paraneter, ARG, into a 
precision floatin~~ooint value (two 16-bit words). 
defines DOJ8LE only when defining both double and single 
sion flo~ting-point-number types. 

SPACE - set vertical output SP~CE count. 

7 1 

single
PpLISP 
oreci-

(SPACE ~RG) - Sets the number of vertical spaces, line feeds 
(J~?), civen by the parameter, AQG, & fixed-point number, that 
will ore~e!d the next output from the output composition buffer. 
If the p:lrallt::ter, AR3, 'is zero, S:lACE outputs a carriage return 
(; '. <;) an 0 r) 0 lin e fee d w h i c h wi l L 3 II 0 W many out 0 u t de vic e s to 
overprint the current [ine with the next. If the parameter, A~G, 
is large (greater than 6~) or ne~ative, SPACE outputs an ASCII 
form feed (·· .• 14) instead of any line feeds, which causes many 
output devices to oerform top of form actions. AlternativeLy, 
the parameter, ARS, may be NIL which causes the next line of 
out put t 0 b e sen t \oJ i t h Oil t car ria q e con t r ole h a r act pros • T h us. 
SPACE with a ~IL parameter may be usea to send a prompt without 
ajvancin~ to a n~N line. SPACE sends any control characters to 
the current output file immediately. 

STACK - STACK list as arguments to function calL. 

(STACK LSr> - Special form uses the memt:ers, CARs, of the list 
obt3ine~ jy evalu3tinc the parameter, LST, as parameters to the 
most im~ediate function-call which is being constructed. For 
exa~pLe, evaluatiny a function call 

(F N A '8 or CD) 

is equivalent to evaluating the function call 

(FN A '9 <STACK (LIST .... e D») 

which uses a STACK invocation. 

S T R IN:; - con v e r t t 0 S TR I NG i n t ern a l t y p e • 

(STRI~G AR:;) - Converts the parameter, ftRG, into internal tyoe 
ST~IN:;. If the parameter, ARG, already has type STRING, STRING 
returns it. STRING uses the print name of SY~BOLic atoms, 
exclusive of any GENSYM number. STRING produces the printed 
reoresentcltion of all other internal types and converts the 
characters into ~ string. _. 

SU3ST - SUBSTitute one item for another in S-expression. 

(SJ9ST NEW OLD EXP) Returns the 
S-expressi:>n without cycles, with 
conqruentt EQUAL; to the second 
r e cur s i v e y, tot h e t irs t' pa ram e t e r , 

S U 3 1 - dec r e 11 e n tar 9 u me n t • 

third parameter, EXP, an 
all occurances which are 
parameter, OLD, altered 

NE w. 

(SJ~; X) Suotracts one from the parameter, X. If the 
par ~ me t e r, - . X! has flo a t in 9 type, SUS'" ret urn s the sa me t y p e • 
Otherwise, SU~ j returns an integer. 



" 

Hev; sed PDP 'II LISP Documentation. 72 

SYS - calL U'HX operating SYSt?m .. 
I 

(SV5 X ARG! ••• A1Gn) - calls th~ UNIX operating sy~tem by 
cOr)stuctin;; an indirect "o,ys" instruction call uSlng. the 
parameter, X, ",hich SYS converts into an integer, as the otfset, 
lo~ order byte, by looically oring the value. SYS uses any 
renO'li');n; oarameters as parameters "'hich foLLow the "sys" call, 
after aoprooridte conversions. SYS uses the value of fixed-point 
nUT/bers, a point",r to floating-ooint ncJrr:bers, the text of arrays, 
anj the I-seace address of other function LINKERs. If needed, 
SY5 converts strinSs, the print name of SYM80Lic atoms, and 
lists, whose [;le'noers SYS assumes to specify single characters, 
into strin~s which have a zero (nulL) byte, the delimiter for 
strin~s passed to the J~IX operatin~ system. S!S also ~laces the 
last t~c vaLues comout~d from the parameters 1nto reY1sters, R1 
an J H ; • S Y S ret urn san 1 n t e ::l e r \oJ h 05 e val u e 1 s the val u ere t urn.e d 
in R by the operating systpm. Only UNIX ppLISP defines SYS. 

T~RPRI - TERminate and send PRInt buffer. 

(TEOPRI FILE) - Sends any output in the printing composition 
bufter to the logical, internal file-number given by the 
parameter, FILe, a flxed-point numb~r obtained from the operating 
syste.l1 as the value of OPEtJ or similar function calLs under UNIX. 
If TE~PRIJets no p3ra~eter, TcRPRI sends the compostion buffer 
contents to the current output file. A NIL TERPRI parameter, 
FIL~t causes the current output to De sent to the standard outout 
fiLe. TER;)?I saves the current Qarameter, FILE, as the constant 
(global) oinding of the SYM80Lic atom *TERPRI to redefine the 
current output for caLls to PRINT, ;)RIN~ and PRIN2. The LISP 
suoe rvi sor re sets t he cur rent outpJt f ill? to the standard output 
file before printin] values. 

TI~E - TIME in clock ticks. 

( T 1'''' E) - R? t urn san 0 c t 3 l nu m b e r w h 1 c Ii rep res en t s the low 0 r j E' r 
word of the curr~nt time measure) in syste~ clock ticks by the 
ooeratin£ system. The SYS or TRAP function may obtain the 
hiJh-order word of the tim~ under U~IX or DOS, respectively. 

Tl~ES - mUltiply arguments. 

(TIMES ARG~ ••• A~Gn) - Multiplies the parameters from left to 
riJht, converting either the next parameter or the current 
suoproduct to the type of the one ~ith hioher precision if eitner 
has fluatina-ooint tyoe. If ppLISP sUDPorts double-precision 
floatin~-point ana ~he product of two fixed-point values, with 
siJns, cannot be reo resented by a 16-tit, signed, fixed-point 
nu~ber, TIMES converts the subproduct to double precision to 
avoid Lossing infornation. If ppLISP supports sinole-precision 
but not jouble-precision, TIMES converts a fixed-~oint product 
which overflows into a single-precision vaLue. If ppLISP does 
not suoport floating-ooint arithmetic, TIMES uses the low orjer 
word 01 all products, even if multiolication overflows. If the 
TI~ES ~ets no p~rameters, TIMES returns inteaer one (1), the 
en:Jty prodJct. The sin:;le-character-atom "*" is ~a synonym for 
TIV);::S. 



CI 

Revisej PDP 11 IISP Documentation. 73 

TOKEN - scan next input !OKEN. 

(TOKE~) - Scans ana creates an atom from the next position in the 
inout buffer. TOKEN ignores the readmacro status of most 
characters anu. skins ASCII bldnks and commas before startino the 
SC3n. TOK~N converts any alpha characters which are not in- the 
standarj c~se into the correspondinc charatters in the other 
case. If ~DLIsr uses lower case ch3racters for system defined 
atom namesr T0Kc~ will convert UPp?r case characters in SYMBOlic 
nanes into ower cuse characters as they are scannerl. TO(EN 
terminates scannin8 after encounterina ~ character with delimiter 
status ani ;osit{ons the read r~uiine input buffer pointer so 
that ttie deli71iter character will be read first by the next c:3Ll 
to R~AD, TO<tN, or READCH. When TOKEN encounters an escape 
character, initialLy exclamation point (!), whiLe scanning any 
at)~ other than a strinGr TOKeN uses the foLLowinq character as 
is, re~ardLess of any d~ imiter or readmacro status of the 
character. The resuLt of scanning an atom which possessed an 
escapee character is ij SYMbOlic ato~, even if the format of what 
~"as read is Dtherwi se tha t of a nunber .tJhen TOKEN encounters a 
strinJ clELimitt;'r cnaracter, initiaLly double quotes (It), in the 
first unsKipoed position, TOkEN creates a strinq using the 
characters as they appear, reaaraless of readmacro or delimiter 
status, usin;} pairs of strlng delimiter characters as a sin;Jle 
strin~ deli~iter chara~ter, until T)KE~ finds an unpairedstrlng 
dellmlter :nardcter WhlCh enos the stnno scan. When TOKEN scans 
the List openin2 or closin~ characteFs as the first unskipoea 
character )f the lnout buffer scan Dr any other character with 
deLimiter status on ~/hich T0KF:N does not perform exceptional 
actions, T)KE~ returns the corresoonding sin~le character atom 
an j 11 0 V est he i n put b u f fer poi n t t :) rea d the - f 0 l low ina c h a r·a c t e r 
on the next call to KEAD, TOKE:~, or HEADCH. If TOKE~J has not 
co~oLeteQ scanning but has reachej the end of the input buffer, 
TO(~N ootains d new line of input from the current input file. 

TRAP - call DOS or VOS operating system. 

(TRAP ARG~ ARG i ••• ARGn) - Calls the Virtual Ooerating System 
<VJS) or DEC's Disk Operating System (Dns) throuah th.e VOS 
E'n;Jl3tor po>rforminJ an in1irect system call using -the· TRlIP 
instructio"l offset given ~y the first parameter, Af{G'~, a fixed
point numb~r. T~AP converts any renainin~ parameters into vaLues 
which TRAP uses to load registers Rl to R4 before the indirect 
call. TR~P converts numbers to their vaLues, obtains the 
starting ajjress of array oata when oiven a function linker to an 
array, uses th~ start of data of strlngs and the print name of 
SY~~Olic atons, and the CAR pointer of CONSED nodes. TRAP 
convert ~IL into a zero value. T~AP returns a CONSED node, 
dottej pair, of octal Qumbers whose values the operating system 
returned in registers, Ru and R~. JnlY DOS and vas pplISP defin~ 
TR A P. 

UN3RE~K - U~jo the BREAK function binding. 

(U~3REAK AT~) - Recreates any constant function or special form 
constant (~LoQaL) oinrling of the Odrameter! ATM, a SYMBOLic atom, 
which existej before a prior SRE~K cal l wlth the oarameter, AT~, 
as the f·irst oard~eter of the bRE;K cal l. If the parameter, ATM, 
has no binjinq created by a 8P~AK caLL, UNBREAK chanoes nothing. 
U~3REAK retur~s the parametpr, AT~, with any changed-binding~ 

U~FlA; - remove FLAG from prop2rty list. 

(U~FlllG AT~ FLb) - ~emoves the secono parameter, FlG, a SY~80Lic 
at:>nl, from the projJerty List of the first parameter, ATr", another 
SY~90Lic atone If the flao was not on the property list, UNFLAG 
m a k P S n 0 C !1 a n;1 e s • U i'l F lAG ret urn S the fir s t par a :n e t e r , .A. T ~~ • 

... -.-------------



C,) 

... --~ ......... L) 

Revised PDP 11 LISP Documentation. 74 

~Alr - A_IT for concutrent process termination. 
! 

(~'IT) - P3uses if the current process has active children, 
uSJally created oy the FORK function, and no child has te~minated 
whose rem n ) n t s s ( ill e)( i st. Upon fin din ; an ex is. tan t, t e r IT; ina ted 
child, ;4Alr removes the remnants of the child process and returns 
a CO~SED node, ootted pai r, of two inteqers returned by the U~IX 
OJ) ! rat ; n 9 s Y s t em in r E';J i s t e r s k ; ani Ri, . which give the chi l j ,. s 
process ijentification number (prD) and termination status word, 
as th~ CAR, lefthani si~e, and CDR, righthand side, respectively. 
,If the curr,€',nt,;:>rocE'SS has no chilL~.ren, "IAIT ·,generat,es an 
intern~l ttpe zero (L) error. Only UNIX ppLISP defines WAIT. 

ZtROP - l~RO Predicate. 

(ZEROP X) - Returns T (true) if high-order word of its numerical 
parameter, X, is zero, otherwise NIL (false). If the high-order 
word of floatlnq-point values is zero, floating-point hardware 
treats the value as zero. Fixed-point values consist of the 
h i ;J h -0 r d e r W 0 rd. 

*bEGI~ - BEGIN ne~ area for conpiLed code. 

(*3EGIN AR3) - Returns a master LINKER whose I-space address 
be;Jins a n=~ area.which may recieve co~~iled code and whQse *CDR, 
lefthand s1de, 1S the parameter, ~Ru. 9y conventl0n, the 
parameter, ARS, should be an S-exoress;on which evaluates back to 
the master Ll~K~k that *8EGIN creates. PpLISP defines *BE~IN 
on l >' i i suo po r tin::l com p ; led LIS P c o::t e • 

*CAR - unrestricte~ CAR. 

(*CAR ARG) - Finds the unrestricted CARt lefthand side, of the 
parameter, ARG. The unrestrictec.i CAR, *CAR, of CONSED nodes is 
the same as the CAR, of LINKERs is the associated pointer, of 
SY~80Lic atons is any constant (clobal) bindina or a pointer 
whose value is zero if the SYMcOLic aiom has no conitant bindinq. 
The *CAR of strin~s is a word of the first two bytes, of 
fLoatin~-p)int numbers 15 the second word, ~nd of fixed-point 
nunbers is the value, each used as a value instead of a pointer 
to the vaLue. Such values should not be retained while any other 
nO;le;s allocated, sinCe garbage collection may De misLE'd. 

*CDR - unrestricted CDR. 

(*CDR ARG) - Finds the unrestricted CDR, righthand side, of the 
parameter, ARG, usinJ the value inaicated as a pointer. ap The 
unrestric~~d ~[jR, *CDP. t of CONSED nodes.is the same as the CDR, 
anJ of SY-;:iOL1C atol1s 15 the property llst .. The *CDR of numbers, 
the hi~h-Jrd~r Jord, and of strinos, the byte length, and of 
LI~KEqS, the I-space address, each used as values rather than 
pointers to values, shouLd not be retained while any other node 
is alLocatej, since garbage colLection may be misled. 

*CHAI~ - obtain definition 6f CAR-CDR chain function. 

(*CHAIN AT~) - Returns the defining string of any CAR-CDR chain 
fU1ction ~hich. is constantly bound t6 the parameter, ATM, a 
Sy~gOLic atom, other~ise NIL (false). *CHAIN calls *CAR to 
ootain any constant binding of the oarameter, ATM • 



Revised PDP :1 LISP Documentation. 75 

*DEF - obtain LA~3DA fun~tion jefinition. 

(*DEF ATM) - Returns the LA~aDA para~etersin a List, which were 
usen to create the function constant ly (gLobalLy) bound to the 
parameter, AT~, a SYMBOLic atom. otherwise ~IL (faLsp). *DEF 
uses *CAR to ootaln any constant binoing of the parameter, ATM. 

*DEP05IT - create master LINK!:~ for binary input. 

( * D ::: P::> SIT 0\ R G ) - Ret ur n sa' 11'1 a s t e r L n~ K E, P ... h 0 S e I - spa c e add res s ' 
sp~cifies an area of user code read from the file given by the 
constant bindine of *LO/l,[), a previously-opened, Logical fiLe
nunbe~ given ~s the last parameter of the most rpcent LOAD 
function caLL. The file read ;s in DEC absoLute or a.out fornat 
depenjin~ on whether VDS, possibly emuLated by DOS, or UNIX is 
the resDectiv! host ooeratina systen. The Lefthand side, *CAR, 
of thE created master LINKeR is the parameter, ARG, which 
c01ventionaLLy i~ an ~-expression which evaLuates back to th~ 
master LI~KER. PoLISP defines *DEPOSIT only if supporting 
conpiled LISP code. . , 

*E.\lIT - instaLL value into writeable I-space. 

(*EMIT ~ASrER POI~TER POINTrR-OFFSET ARG-OFFSET ARG) PLaces 
last '~araneter, ARG, a pointer to a node as nodified by the 
penultillat= param!:'t!?r, ARG-OFFSET,,, fixed-point number into a 
Locatio~ determined oy adding th= optional parameter, POINTER
OFFS~T, a fixed-point number to the pointer ~iven by the tabLe of 
pointers l:>cation, tr1f'~ parameter POINT:P, a fixed point number, 
frJm . the start of the user I-space area indicated by the *CDR ot 
the first, optional parameter, fAST~R, a master function LINK~R. 
The D~ra~eters may be omitt~d in the order third, second, first, 
anj fourth, which are P0INTER-OFFS~T, POINTER, MASTER,and 
AR3-0FfSET, respectively. If *EwIT gets onLy the last two 
par am e t e r s, * E 1"1 ! T p lac e s th eta s t par am e t e r , A R G , a poi n t e r 
modified :>y the oenultimate parameter, ArG-OFFSET, a fixed-point 
nunber, into t he next avai lable location for generated code and 
pLaces an entry whi~h references the ~odified parameter into the 
taol~ of offsets at the end of th~ user code area. If *EMIT gets 
only the last parameter, ARG, d fixed-point number in this case, 
*E~IT ~Laces the value of the ~umber into the next availa~Le 
I-space generatec code Location. P~LISPonly defines *EMITi'f 
sU~Dorting compileuLISP code. 

*EPT - obtain location from Entry Point TabLe. 

(*EPT x) - Returns the function L!N(ER or pseudo-function LIN~ER 
cOJnted by the parameter, X, a fixed-point number, from t~e 
be3inning ~f th~ entry point tabLe, which starts in the first 
pa;e of fJnction LINKERs. The entry point table begins with the 
pseud~-function linkers used by system read~acros. If ppLISP 
SUDDorts comoiled code, the reajmacro pseudo-function LINKERs 
precede pseudo-functions giving I-space adoresses used by 
conpiled cod~ ana constants within the system workspace. The 
system function LINKERs follow the ~seudo-function LINKERs. 



c\ 

Rev;sej PDP J'! LISP Documentation. 76 

*EXAM - obtain value from user co~e area. 

(*EXA~ ~ASTER ~OlNT~R PDINT~R-OFFSET) - Returns the octal value 
at the user-code-area I-space adjress referenced by the secDnd 
par am e t e r, POI I~ T c. R, a fix e d - poi n t n J m b e r w h i chi n d ; cat e s poi n t e r 
a j j res s, no 0 if; i.: d by the op t ion:'l l t hi r d par a met e r, POI NT E: R -
OFF~ET, Cln:)tner fixea-point nUII",ber, found by addinfj the offset 
found fran tne e~d of the tabl~ of pointers at the end of the 
user coje area injicateJ by the first oarameter, MASTER, a master 
LI~KE~, to the I-s~ace address give~ by the master LINKER. If 
*E)(P;[<i ;Jets only the first ;Jarametcr, "'1ASTEf"(, *EX:A,~l return~ an 
octaL nu~b?r of the vaLue at the ajjress referenced by the f,rst 
parameter, ~ASTER. It the caLculated address is out of the user 
co j e :0 rea, * EX id\1 ret urn s NIL (f a l s e) • 

*M~CRJ - obtain MACRO ~efinition. 

(*~AC~O AT~) - Returns the function LINKE~ which DEFMAC used to 
create a ni':lcro special form ana cO"lstantly (globally) bind it to 
the parameter, AT~, a SYMBOLic atom. *MACRO calLs *CAR to obtain 
any consta1t ~inuin~ of the paramet~r, AT~. If *~ACRO finds no 
a p 0 r {) p ria t :: bin din 9; * .'\ A C R 0 ret urn s h I L (f a l s e ) • 

*ORG - return lINKE~ to next avatLabl~ code location. 

(*JPG ARG0 ARG t ••• ARGn) - ~eturns a function LINKER whose 
I-space ::ddress is the next availa:>le location for compiled c::>de 
anj whose lefthand side, *C~R, is the first parameter, APG~, an 
S-expressi~n whiCh conventionally is the master LINK~R to the 
current c)de areae If *ORG receives additional optional 
parameters, *OPG sums the parameters and uses the total as the 
I-space adjress of the returneu function LINKER. PpLISP defines 
*O;;;G only if sup!-'Drtin:;j comoited IISP code. 

kREVERSE - REVERSE list without generating new nooes. 

(*RFV::RSt LSI) - Returns a list by 3ltering the righthanci sides, 
CDRs, of the oaraJleter, LST, a list, whose members, CAR, *REVERSE 
returns i~ reversed order. If the parameter~ lST, is NIL, 
*REVERSE r~turns ~lL, the empty list. *R~VERSE generates no new 
nojes whil:? reversin9 the parameter, LST. 

*SPEC - obtain SPi:C;al form definition. 

C*SPEC ATM) - Returns the function LINKER which DEFSPEC used to 
create a speciol form and consta~tly (olobally) bind it to the 
parameter, 4T~, ci SYM30Lic atom. *SPFC c~lls *CAR to obtain any 
constant )injinc of the parameter, AT~. If *SPEC finds no 
a p 0 r 0 p ria t e bin d 1 n s , * S PEe ret urn s IJ I L ( fa l s e) • 



\ 



I 
:1 


