
/ --'\

The Design of GRASPER 1.0:
A Programming Language Extension

for Graph Processing

John D. Lowrance and Daniel D. Corkill

COINS Technical Report 79-6

February 1979

Computer and Information Science

The Design of GRASPER 1.0:
A Programming Language Extension

for Graph Processing

John D. Lowrance and Daniel D. Corkill

COINS Technical Report 79-6

February 1979

This work was supported by
The National Science Foundation

under grant number
MCS75-16098 A01.

The Design of GRASPER 1.0:
A Programmiong Language Extension

for Graph Processing

J'ohn D. Lowrance and Daniel D. Corkill'

COINS Technical Report 79-6

Computer and Information Science Department
University of Massachusetts
Amherst, fvIassachusetts 01003

February 1979

ABSTRACT

GRASPER 1.0 is a programming language extension. Once appended to
a host language, GRASPER 1.0 introduces graphs, diagrams consisting of
points connected by 1 ines or arrows, as a pr hoi tive data type.

The primary feature of GRASPER 1.0's design is that the language,
its documentation, and its implementation all share a common
organizational structure that groups GRASPER 1.0 primitives according
to their scope of application and the underlying concepts from which
they are formed. Although this report is of a descriptive nature, a
similar approach might well be prescribed for other applications.

GRASPER 1.0 is based on a small number of underlying concepts.
GRASPER 1.0 primitives are constructed from these concepts according to
a small set of rules. The name of each GRASPER 1.0 primitive
systematically reflects its underlying concepts. This generative
nature of the language organizes a large set of primitives in a
cognitively efficient way. This makes GRASPER 1.0 easier to learn and
retain; provides an indexing system for GRASPER 1.0 documentation; and
serves as an outline for well-structured implementations.'

GRASPER 1.0 has been implemented with LISP 1.5 as the host
language. This implementation supports a software-level virtual memory
management system for graph storage. Spaces, user defined subgrdphs,
are used by the virtual memory manager to group logic&lly related
information on the same pages, helping to reduce paging. Multiple
storage schemes allow users to optimize the way graphs are stored based
on their particular applications.

ACKNOWLEDGEMENTS

We wish to thank Richard S. Brooks, Allen R. Hanson, Daryl T.
Lawton, Edward M. Riseman, Janet E. Turnbull, Thomas D. Williams, and
Bryant W. York for their contributions to this report.

This work was supported by The National Science Foundation under
grant number MCS75-16098 A01.

TABLE OF CONTENTS

, Section Page .
I. INTRODUCTION

~ II. DESIGN APPROACH 6

III. LANGUAGE DESIGN 9

III.l Syntax 9

III.2 Semantics 10

IV. DOCUMENTATION DESIGN 20

IV.l Primer 20

IV.2 Reference Manual 21

V. IMPLEMENTATION DESIGN 33

V. 1 Host-Independent Design Decisions 33

V.2 LISP 1.5 Dependent Design Decisions 37

VI. POSSIBLE EXTENSIONS 41

VII. SUMMARY 43

BIBLIOGRAPHY 45

I. INTRODUCTION

Graphs, diagrams consisting of points connected by lines or

arrows, are commonly used to depict situations of interest. GRASPER 1.0

is a programming language extension that provides graph processing

capabilities. The ability to program directly in graph primitives is

an obvious advantage in those areas where problems are naturally cast

in graph terms (see Table 1).

GRASPER 1.0 was developed as a data base facility for the VISIONS

system [HAN78a,bJ, a computer system for the segmentation and

interpretation of visual scenes. VISIONS required that GRASPER 1.0

support large, dynamic graph structures. The design of GRASPER 1.0

(GRASPE ~xtended and !evised) is closely modeled after that of GRASP£

1.5 [PRA71). GRASPER 1.0's formal foundation lies in set and graph

theory. Informally, GRASPER 1.0 is based on the natural pictorial

semantics of graphs.

GRASPER 1.0 consists of a set of operators that could potentially

be appended to any list processing system. Once appended to a host

language, GRASPER 1.0 introduces GRASPER-GRAPHs as a primitive data

type (see Figures 1 and 2). GRASPER-GRAPHs consist of nodes, edges,

1
and spaces. Nodes, edges, and spaces all have names and values.

Edges are directed connections between pairs of nodes. Spaces are

1
GRASPER spaces, though similar, differ from those of Hendrix [HEN75J.

2

sociograms

simplexes

GRAPH

state transition networks

Markov chains

PERT networks

data structures

flow charts

crystal structures

bonding structures

transportation networks

family trees

computer system configurations

semantic networks

augmented transition networks

neural networks

phrase markers

FIELD

psychology

economics

automata theory

probability theory

management decisions

computer science

chemistry, programming

physics

chemistry

operation research

genealogical theory

computer architecture

artificial intelligence

artificial intelligence, linguistics

neurophysiology, cybernetics

linguistics

TABLE 1 - Examples of common graph applications

subsets of nodes, edges, and values, i.e •• subgraphs. GRASPER-GRAPHs

are created, queried, modified, and destroyed through GRASPEH

operators. The arguments to these operators, and their results, are

lists and atomic elements of the host language.

This report describes GRASPER 1.0, highlighting the features of

its design. The primary design feature is that the language, its

documentation, and its implementation all share a common organizational

structure. Although this report is of a descriptive nature, a similar

organizational approach might well be prescribed for other

applications.

Throughout the remainder of this report "GRASPER 1.0" is

abbreviated "GRASPER."

3

Phrase Marker

This GRAPH represents the following phrase marker.

-------.--------
_/w~. ,/.~.

/""-'l-n_ PAST

I I
"'" ""'-.0 11.1.,

The direction and labeling of edges in the GRAPH are used to incor

porate the information implicit in the position of the. terminals and

nonterrninals in the phrase marker. All edges poInt (down) towards the

surface. Numbers on edges order the nonterminals to which they pOint.

S-edges point to surface terminals.

Radio

TIll'" OE~OUlATOfl: A""'lIFIO.

This GRAPH represents the following schematic for a radio.

?~ t ~TU
The labels on the GRAPH translate as follows.

ANT - antenna ~

GRNO - ground ~

TRNF - transformer J[
VCAP - variable capacitor ~

o lODE - diode '--Il<f--'

CAP - capacitor ~ ~

RES - resistor ~

TRNS - transistor ~

SPKR - speaker ~

BAT - battery .,>'-
TN - bread board terminal

W - wire

srlAKEIt

The undirected edges indicate two edges labeled the same with

opposite direction. The spaces indicate the major components of the

radio.

FIGURE 1 - Example GRASPER-GRAPHs

....
,.1"

'"' .,

J::-

lIailroad

WEST - 80
EAST = 345

(200 75)

UNIVERSE c 545
8=(15040) T5=75

The above GRAPH repre~ents a railroad's system of tracks servicing

five cities. Each city is represented by a node. Tracks are represented

by edges between cities. Commuter tracks local to a city are represented

as edges which originate and end at that city. The cirection of each

edge indicates the direction trains travel on that track during morning

rush hour. The names of tracks correspond to routes. The universal

value of each city indicates its cartesian coordinates within the rail

road system. The universal values of the tracks indicate their length.

The east and west division of the railroad are delimited by spaces.

The value of each space is the total amount of track within it.

Tree

SPRING

ALWAYS

SUKK£R

COLOR
GREEN

WINTER FALL-

The above GR~H is a semantic network describing trees over the

seasons. The space ALWAYS contains information about trees that is

true during all seasons. Each of the other spaces contains information

about trees that is true in the corresponding season.

Note tl~t unlike the previous illustrations, each space has been

broken apart from the rest of the GRAPH. That is why some of the nodes

and edges appear more than once (e.g the node LEAVES and the edge

HAS-AS-PART from node CROWN to node LfAVES appear in spaces SL~R and

FALL) •

FIGURE 2 - Example GRASPER-GRAPHs V1

6

II. DESIGN APPROACH

A wholistic approach was taken in designing GRASPER. Design

decisions were made only after considering their impact on all aspects

of GRASPER: the language, its documentation, and its implementation.

This approach centered on the development of an organizational

structure that groups GRASPER primitives according to their scope of

application and the underlying concepts from which they are formed (see

Figure 3).

GRASPER primitives are divided into three groups according to

their scope of application. Group I primitives apply to individual

units of GRASPER-GRAPHs. Group II primitives apply to major portions

of GRASPER-GRAPHs. Group III primitives control memory management for

GRASPER-GRAPH storage. For example, it is Group I primitives that

create individual nodes and edges, Group II primitives that create

entire graphs, and Group III primitives that move graphs between

short-term and long-term storage.

All GRASPER primitives are based on a small number of underlying

concepts. They are constructed from these concepts via a small set of

composition rules. The name of each primitive systematically reflects

the underlying concepts from which it is formed. This generative

nature of the language, along with the grouping of primitives by scope,

organizes a large set of primitives in a cognitively efficient way.

-,
I

alphabeticall)
ordered

names

I
~

names
of

primitives

r na
~ compos
l rul

me } ition
es

I
.l

names
of

underlying
concepts

I--

DOCUMENTATION
ORGANIZATION

-
I-

LANGUAGE
ORGANIZATION

~
~

{
naml.ng }

conventions

I
I

linearly
ordered

semantics I-
~

I

semantics
of

primitives --

H1PLEHENTATION
ORGANIZATION

{semantic }
composition

rules
J

semantics
of

underlying
concepts

~
-

7

GrouE III
GrouE II

Group I

I

implementation
of

primitives --

{subrou
linka

I
!implementation

of
underlying

concepts -
I-

tine}
ges

FIGURE 3 - Organizational Structure of GRASPER 1.0

8

This makes GRASPER easier to learn and retain, provides an indexing

system for GRASPER documentation, and serves as an outline for

well-structured implementations.

9

III. LANGUAGE DESIGN

-, III.1 Syntax

The syntax of GRASPER is largely that of its host. The syntax of

atomic elements, lists, and operator calls depends exclusively on the

host language. The syntactic design decisions embodied in GRASPER

relate to operator names and the order of their arguments.

The name of each GRASPER operator systematically reflects the

underlying concepts from which it is formed. For example, DOG is the

GRASPER operator that ~estroys the £utpointing ed~es of a node.

Operators with similar names have similar semantics; operators with

dissimilar names have dissimilar semantics. A novice quickly learns to

predict the names of operators given their semantics, and the semantics

of operators given their names. The alphabetical ordering of operators

by name corresponds to a reasonable semantic ordering. This is

particularly important to the organization of a reference manual where

a linear ordering is required. All operator names are pronounceable to

facilitate verbal interchanges.

The order of GRASPER operator arguments is consistent across all

operators. Arguments which play similar roles are in similar

positions. No operator has more than one optional argument, which

always refers to a space and always appears in the last position.

10

111.2 Semantics

Graphs, by their nature, are pictorial. GRASPER primitives model

what a person can easily do while looking at a drawing of a graph. The

pictorial semantics of graphs motivates the semantics of GRASPER, while

set theory and graph theory provide its formal foundation.

Most GRASPER operators have an optional space argument. When this

is included, the scope of the operator is restricted to that space.

When this argument is not included, a space named UNIVERSE is assumed.

UNIVERSE is a special space maintained by GRASPER that contains all the

nodes and edges in the GRASPER-GRAPH. If a node or edge is deleted

from UNIVERSE, it is deleted from all spaces. For example, if an

operator that destroys a node is given a space other than UNIVERSE, the

node is only removed from that space. If that same operator is called

with UNIVERSE or no space argument, it is removed from all spaces.

The Group I primitives form the basis of GRASPER. A small set of

Group I concepts combine to form all of the Group I operators. These

underlying concepts are divided into four categories, operator types,

operator objects, object qualifiers, and qualifying objects. Every

Group I operator has an operator type, an operator object, and an

object qualifier, but not all have a qualifying object.

There are six Group I operator~. These types are grouped

into two classes, functions and pseudo-functions. Functions are

executed for the value they return. Pseudo-functions are executed for

their effect. The function operator types include those that return

sets of graph entities, those that return values of graph entities, and

those that determine if graph entities exist. The pseudo-function

operator types include those that create graph entities, those thHt

destroy graph entities, and those that bind values to graph entities.

Operator objects of Group I operators specify the types of graph

entities the operators manipulate. Operator objects include nodes,

edges, spaces, and pairs. A pair is an edge and a node to which that

edge is connected.

Object qualifiers include outpointing, inpointing, adjacent, and

unqualified. Outpointing, inpointing, and adjacent qualifiers specify

the means of accessing the operator object(s) from a node. Outpointing

means to follow only edges which point away from a node; inpointing,

only edges that point towards a node; and adjacent, all edges

connected to a node. Unqualified is used when access is immediate

through the object's name.

Qualifying objects are used to further restrict operator objects

by specifying additional graph entities associated with them. Nodes

and edges can be used as qualifying objects.

11

12

The Group I rules of operator composition describe how tllese

underlying concepts can be combined to form Group I operators. The

name of each operator is formed by concatenating single-letter

abbreviations for the underlying concepts embodied in the operators.

The role played by each letter is determined by its position in the

operator name. These letter positions are ordered: operator type,

object qualifier, operator object, and an optional qualifying object.

For example, SAN returns the set of adjacent nodes of a node, DOG

destroys the outpointing edges of a node, DOGN destroys the outpointing

edges of a node that lead to a specified node, XIP tests whether an

inpointing pair of a node exists, and CUN creates a node. The full set

of Group I operators is summarized in Figure 4.

The Group II primitives are similar to the Group I primitives

except they have greater scope. Where Group I primitives deal with

units of GRASPER-GRAPHs, Group II primitives deal with major portions

of GRASPER-GRAPHs. For example, the Group I operator CUN can only

create a node in a single space, the Group II operator CREATE-NODE can

create a node in multiple spaces with connecting edges and values.

Group II DESCRIPTORs are specialized list structures that describe

portions of graphs (see Figure 5). Most Group II operators either are

passed a DESCRIPTOR as an argument or generate one to be returned.

Group I GRASPER Operators:

Polyhedral Summary

13

~nqualified

The operators represented here as cubes
are read

<left face><right face><top face> .. , .. ®" <~" "<,,"

FIGURE 4 - Group I Operator Summary

(NIL
(S NIL «1 NP1) (2 VP»)
(NPI NIL «1 ART) (2 N»)
(ART NIL «S THE»)
(N NIL «S UNICORN))
(VP NIL «I V) (2 NP2»)
(V NIL «I V-STEM) (2 PAST)))
(V-STEM NIL «S KISS»)
(PAST NI L «S EO»)
(NP2 NIL «1 PRO))
(PRO NIL «S YOU»)
(THE)
(UNICORN)
(KISS)
(ED)
(YOU))

,,'"

sr.,",

ALWAY'S %'""'"
hoAlo-.H-part

IUDS

,

"'NTEA fALL

«ALWAYS FALL SPRI fIG SUHl1ER W I tiTER)
(BRANCHES (ALIIAYS»
(BUDS (SPRI NG»
(CROWN

(ALIIAYS FALL SPRING SUMMER)
«HAS-AS-PART BRANCHES (ALIIAYS»

(HAS-AS-PART BUDS (SPRING»
(HAS-AS-PART LEAVES (FALL SUMMER»»

(GREEN (SUMMER»
(LEAVES

(FALL SUMMER)
«COLOR GREEN (SUMMER))

(COLOR RED (FALL)
(COLOR YELLOW (FALL»»

(RED (FALL)
(TREE (ALIIAYS)

«HAS-AS-PART CROIIN (ALIIAYS»
(HAS-AS-PART TRUflK (AlI.IAYS»»

(TRUIIK (ALIIAYS»
(YELLOII (FALL))

FIGURE 5 - Example Group II DESCRIPTORs

.j::-

Group II operators are composed from a small set of Group II

concepts, similar to the way that Group I operators are composed. Each

is composed of an operator type and an operator object. Operator types

include functions that return DESCRIPTORs describing portions of graphs

and pseudo-functions that create portions of graphs from DESCRIPTORs,

destroy portions of graphs, and pretty-print descriptions of portions

of graphs. Operator objects can be nodes, spaces, or graphs.

The Group II rules of operator composition describe how operator

types and objects can be combined. The name of each Group II operator

is a hyphenated compound word consisting of an operator type followed

by an operator object. For example, CREATE-GRAPH creates an entire

graph from a DESCRIPTOR, DESCRIBE-SPACE returns a DESCRIPTOR of a

space, and PRINT-NODE pretty-prints a description of a node. The Group

II operators are summarized in Figure 6.

Group III primitives provide a means for specifying views through

sets of spaces, control the GRASPER virtual memory system for

GRASPER-GRAPH storage, and move GRASPER-GRAPHs in and out of long-term

storage. Although the Group III operators can be viewed as being

composed of operator types and operator objects. composition rules are

not given since there are few shared underlying components.

A virtual space is a view through a set of spaces. GRASPER

operators can be given virtual spaces as space arguments. The result

15

16

Group II GRASPER Operators: Polygonal Summary

DESTROY
DESTROY-

GRAPH

CREATE- CREATE-
CREATE GRAPH NODE

DESCRIBE- DESCRIllE- DESCRIBE-
DESCRIBE GRAPH NODE SPACE

PRINT PRINT- PRINT- PRINT-
GRAPH NODE SPACE

GRAPH NODE SPACE

FIGURE 6 - Group II Operator Summary

.'

is the same as if a space containing all the entities in the spaces

that the virtual space is defined over were given to the operator. For

example, the nodes BRANCHES, CROWN, GREEN, LEAVES, TREE, and TRUNK

would be returned by the Group I operator SUN when given a virtual

space defined over spaces ALWAYS and SUMMER in the graph of Figure '(.

Virtual spaces can be used like CONTEXTs in other languages

[RUL72,McD72] to represent incrementally different alternative worlds.

The Group III function VIRTUAL-SPACE defines a virtual space.

GRASPER supports a virtual memory system for GRASPER-GRAPH

storage. GRASPER-GRAPHs that are too large to be stored in primary

memory are partitioned into pages and moved between primary and

secondary memory as required. The Group III operators SET-SIZE and

SIZE set and return the values of memory management parameters. The

Group III operators REALIZE-UNIVERSE and VIRTUALIZE-UNIVERSE select

between two different storage schemes for the space UNIVERSE. These

issues are discussed further in the section on implementation design

(pp.36-38).

GRASPER-GRAPHs are moved between short-term and long-term storage

by the Group III operators INPUT-GRAPH and OUTPUT-GRAPH.

GRASPER errors occur whenever requests are made through GRASPER

operators that do not make sense in the context of the current

GRASPER-GRAPH. These are usually references to nonexistent

17

Q:)

virtual space real spaces

SPRINC

ALWAYS

I
SUHHfR

WINl[R f-.Ll ,-

FIGURE 7 - Example virtual space defined over real spaces ALWAYS and SUM}lliR

J).'

GRASPER-GRAPH entities. When an error is detected an error message is

printed. GRASPER error messages are short, concise, and

understandable. They are in English, contain no criptic codes, and

share the same basic format. Each error message includes the name of

the operator causing the error, a description of the cause, and any

offending arguments to the operator.

19

20

IV. DOCUMENTATION DESIGN

The user documentation for GRASPER eventually should consist of a

reference manual and a primer. A reference manual and primer can not

be successfully combined since they are inherently incompatible. A

reference manual is like a dictionary. It should contain complete,

concise descriptions of all primitives organized in a manner that

allows the description of any primitive to be located quickly. A

primer needs to introduce concepts in an incremental fashion to

facilitate learning. This usually requires that oversimplified

descriptions precede complete descriptions. A primer is meant to be

read in its entirety. A reference manual, like a dictionary, is not

meant to be read in its entirety.

IV.1 Primer

A GRASPER primer has not been written. Time permitted the writing

of a primer or reference manual, but not both. Since a reference

manual is of more general use over a longer period of time, it was

written. Although a primer would present a better introduction to

GRASPER, an experienced programmer can learn the language directly from

the reference manual.

.'

IV.2 Reference Manual

The "GRASPER 1.0 Reference Manual" (LOW781 contains a full

descrlption of each primitive in the language. Each description

consists of the primitive's name, an informal definition, a formal

definition, and numerous illustrations. (The reader is encouraged to

refer to Figures 8-15 containing excerpts from the "GRASPER 1.0

Reference Manual" while reading this section.)

Most GRASPER primitives have acronyms as names. When this is the

case, the derivation of the acronym is described. A phonetic spelling

of the name is included whenever there is some doubt concerning its

proper pronunciation.

Informal definitions consist of prose descriptions of the

primitives including all error conditions. Pictorial descriptions

accompany these whenever appropriate. This is in keeping with the

pictorial motivation of the language.

Formal definitions, written in set notation, are included to

assist both users and implementers. Error conditions are an integral

part of these formal definitions. Unlike the formal definitions of

many other languages, most of these are short and easy to understand.

Users and implementers alike are encouraged to use these since they

provide the most accurate and concise description of GRASPER.

21

114 GRASPER I.O/GROUP I

(DOG node)l]estroy Qutpointing ed~s

Informal Definition

The pseudo-function DOG is. an EXPR which has the effect of

destroying all outpointing edges of 'lOde. Given node, DOG

destroys all edges gi where for each i, edge &i points to

some node Dl
i

from node. If node has no such edges, DOG has

no effect. DOG returns node.

gl_~ -./

~ ..
' -~ gt

error condition:

- node does not exist

Formal Definition

DOG!n] = n

with effects:

NGN := NGN - «n g m)lg < G, mEN)

\'dog\

NGNSV := NGNSV - ««n g m) s) v)lg < G, m < N, 8 < S, V < V}

error condition:

- n ~ N

lSee alternative form on page 116.

Illustrations

7 (DOG 'e3)
C3

7(DOG 'el)
Cl

1(OOG 'e5)
e5

7(DOG 'ex)

~PER I.O/CRUUP I

T5

*H DOG ERROR: ex IS NOT A NODE

FIGURE 8 - Excerpt from "GRASPER 1.0 Reference Manual"

@l

T5

115 1'.1
N

DOG

116 GRASPER 1.O/GROUP 1

(DOG node 8paae)I Qestroy Qutpointing ed£cs

Informal Definition

The pseudo-function DOG is an EXPR which has the effect of

destroying all outpointing edges of r~de in spaae. Given

node and spaae, DOG removes all edges 8 i from spaae where

for each i, edge &1 points to some node m
i

from node. If

spaae is UNIVERSE, DOG removes each such edge gi from all

spaces. If node has no such edges, DOG has no effect.

OOG returns node.

---~~ -,
. I
~ I

spaae , UN I VERS E

e~or conditions:

81 ~.,..._Jm'"\
~:~ : g- __ fm\

t ~

space ~ UNIVER~E

- node does not exist in space

- space does not exist

Formal Definition

DOG[n,s] - n

with effects:

if s • UNIVERSE

then DOG[n]

\'dog\

else NGNSV := NGNSV - {«(n g m) s) v)lg € G. m < N, v € V}

error conditions:

- «n s) v) (NSV for all v < V

- B (S

lSee alternative form on page 114.

Illustrations

1(OOG 'C3 'EAST)
C3

HOOG 'Ct 'WEST)
Cl

1(OOG 'C2 'UNIVERSE)
a

1(DOG 'CS 'EAST)
C5

1 (DOG 'CX 'EAST)

'.

GRASPER 1.O/GROUP I

*** DOG ERROR: CX 15 NOT A NODE IN SPACE EAST

1(DOG 'C3 'SX)

*** DOG ERROR: SX IS NOT A SPACE

FIGURE 9 - Excerpt from "GRASPER 1. 0 Reference Hanual"

117

"
EAST

TS

DOG

N
VJ

124 GRASPER I.O/GROUP I

(DOGN node1 nodeZ space)l Qestroy Qutpointing edQes given a Eode

Informal Definition

The pseudo-function DOGN is an EXPR which has the effect of

destroying all outpointing edges of node1 that point to nodeZ
1n spaae. Given node1 and nodeZ' DOGN removes all edges g1

from spaae where for each i, gi points from node1 to nodeZ•

If space is UNIVERSE, DOGN removes each such edge 8i from all

spaces. If no such edges exist, DOGN has no effect. DOGN re

turns node]"

gl
",.-

Q~j . B->
--~

space ~ UNIVERSE

error conditions:

- node
1

does not exist in space

nodeZ does not exist in space

- space does not exist

Formal Definition

DOGN(n,m,s] ~ n

with effects:

if s ~ UlIIVERSE

then DOGN(n,m]

8 t

space & UNIVERSE

else NGNSV:= NG!ISV - {«(n g m) s) v)\g' G, v < V)

error conditions:

- «n s) v) NSV for all v , V

- «m s) v) NSV for all v , V

- s ~ S

lSee alternative form on page 122.

\'dog-in\

Illustrations

?(DOGN 'C3 'e4 'EAST)
[3

?(DOCN 'el 'el 'WEST)
el

GRASPER 1.O/GROUP I

?(DOGN 'e3 'e2 'UNIVERSE)
e3

?(DOGN 'C5 'e4 'EAST)
e5

?(OOCN 'ex 'e4 'EAST)

*** OOGN ERROR: ex IS NOT A NODE IN SPACE EAST

?(OOGN 'e3 'ex 'EAST)

*** DOGN ERROR: ex IS NOT A HODE IN SPACE EAST

?(DOGN 'C3 'c4 'SX)

*** OOGN ERROR: SX IS NOT A SPACE

125

TS

N
.l:'-

DOGN Doell

FIGURE 10 - Excerpt from "GRASPER 1.0 Reference Manual"

. '

A generous number of illustrations accompanies the description of

each primitive. These illustrate both appropriate and inappropriate

uses of the primitives. Drawings are included whenever useful •

The information describing each GRASPER primitive is localized to

a few consecutive pages in the manual. This helps assure that a reader

will not overlook pertinent information. The information on facing

pages almost always pertains to the same primitive. This visually

separates descriptions of different primitives. Alternative forms of a

single primitive are described as if they are distinct primitives, but

are always described on consecutive pages. Footnotes direct the reader

between descriptions of alternative forms.

The typography of the manual is based on the premise that things

which are the same should be visually similar, and things which are

different should be visually distinct. Consistent formatting

conventions are used throughout the manual. This helps a user to find

desired information by sight rather than by reading. Different

headings. margin settings, type fonts. page positions, and spacing are

some of the techniques used to produce a desirable visual impact. A

reader need not be aware of the typographic conventions to benefit from

them [SAC79].

The manual's indexing system allows the description of any

primitive to be located quickly. Each group of GRASPER primitives is

25

XIP

234 GRASPER I.O/GROUP I

(XIP node1 edge node2)1 e!istence of lnpointing fair

Informal Definition

The function XIP is an EXPR which tests for the existence

of the inpointing pair (edge node
2

) of node
l

•

. edge, and node
2

, XIP returns T if edge points

to node1 and NIL if it does not.

edqe

error conditions:

- node 1 does not exis t

- node 2 does not exis t

Formal Definition

XIP[n,g,m] ~ x

where if (m g n) (NGN

then x = T

else x = NIL

error conditions:

- n l N

- m l N

lsee alternative form on page 236.

Given node
l

,

from node
2

GRASPER I.O/GROUP I

\ 'zip\

Illustrations

TS

1(XIP 'C3 'T4 'C4)
T

?(XIP 'c4 'T4 '0)
T

?(XIP 'Cl '12 'C3)
T

?(XIP 'Cl 'Tl 'CO
T

7(XIP 'C2 '13 '0)
NIL

1(XIP 'C2 'TX 'C3)
NIL

7 (X I P 'cx 'T4 'C4)

.~. XIP ERROR: CX IS NOT A NODE

?(XIP 'C3 'T4 'Cx)

*** XIP ERROR: CX IS NOT A NODE

FIGURE 11 - Excerpt from "GRASPER 1.0 Reference Manual"

.<

235 N
0'

XTP

XIP

236 GRASPER I.O/GROUP I

I (KIP noa.,1 edge 'lOdeZ space) e!istence of Inpointing fair

Informal Definition

The function XIP i. an EXPR which tests for the existence

of the inpointing pair (edge nodeZ) of node1 in space.

Given node1, edge, no~2' and space, XIP returns T 1f edge

points from noa.,2 to node1 in space, and NIL if it does

Dot.

space ~e:d~g~e __ ~ ____ ~~::~

error conditions:

- node1 does not exist in space

- nodeZ does not exist in space

- space does no texis t

Formal Definition

XIP(n,g,m,s] = x

where if «(m g n) s) v') € NGNSV for some v' € V

then x a: T

else x ., NIL

error conditions:

- «n s) v) NSV for all v f V

- «m 8) v) NSV for all v € V

- 8 f s

lsee alternative form on page 234.

'.

GRASPER I.O/GROUP I

\ 'zip\

Illustrations

T5

7(XIP 'C3 'T4 'c4 'EAST)
T

7(XIP 'Cl 'T2 'C2 'IIEST)
T

7(XIP 'Cl 'TZ 'C3 'UNIVERSE)
T

7(XIP '[3 'T2 'C2 'EAST)
NIL

7(XIP 'C3 'TX 'C4 'EAST)
Nil

7(XIP 'ex 'T4 'e4 'EAST)

*** XIP ERROR: CX IS NOT A NODE IN SPACE EAST

?(XIP 'C3 'T4 'ex 'EAST)

*** XIP ERROR: CX IS NOT A NODE IN SPACE EAST

?(XIP 'C3 'T4 'c4 'sx)

*** XIP ERROR: SX IS NOT A SPACE

FIGURE 12 - Ex.cerpt from "GRASPER 1. 0 Reference Manual"

237

XIP

N
-....J

280 GRASPER 1.0/GROUP II

(DESCRIBE-NODE node)l

Informal Definition

The function DESCRIBE-NODE is an EXPR which returns a NODE

DESCRIPTOR for node in the existing GRAPH. Given node,

DESCRIBE-NODE returnS a NODE-DESCRIPTOR describing node

including information about all the spaces node is in.

DESCRIBE-NODE does not describe NIL values, inclusion in

the universal space when the universal value is NIL. or

entities whose corresponding switches are off.

error condition:

- node does not exist

Formal Definition

DESCRIBE-NODE[n] - DESCRIBE-NODE[n, sus[nJ U {UNIVERSE}]

error condition:

- n ~ N

IScc alternative form on page 284.

DESCRIBE-NODE

GRASPER I.O/GROUP II

Illustrations

1(PROGN (PRINT-SWITCHES) (DESCRIBE-NODE 'T04»

SWITCH-S ~ T
SWITCH-N - T
SWITCH-DP - T
SWITCH-IP = T

SWITCH-NS = T
SWITCH-OPS - T
SWITCH-I PS = T

(T04 (TUNER)
«C2 H:lF (TUNER» (W T08) (W VCAP (TUNER»)
«C2 IP.NI" (TUNER» (W T08) (II YCAP (TUNER»»

1;

1(PROGN (PRINT-SWITCHES) (DESCRIBE-NODE 'C2»

SIiITCH-S = T
SWITCH-N = T
SWITCH-OP = T
SWITCH-IP = T

SWITCH-NS - T
SWITCH-OPS = T
SWITCH-I PS = T

SWITCH-SV - T
SW ITCH-NY = T
SW ITCH-OPV = T
SWITCH-IPV = T

SWITCH-SV = T
SWITCH-NV = T
SW ITCH-OP'" - T
SWITCH-IPV - T

(C2 (EAST UNIVERSE ~ (100 110) WEST)
«T2 Cl (UNIVERSE - 70 WEST» (T3 C3 (EAST UNIVERSE - 80»))
«T2 C3 (EAST UNIVERSE = 70»»

FIGURE 13 - Excerpt from "GRASPER 1. 0 Reference }:!anua1"

,.
"

281 N
co

DESCRIBE-NODE

282

DESCRIBE-NODE

GRASPER I.O/GROUP II

"' ...

[LJ ,-

[~
' &;._.

~,

... _. _ ... '_.

~I~~I ,- '_.. - ,-~~ .. '-' ~

r-l r ~-'[.. ~ I
~~

1(PROGN (PRINT-SWITCHES) (DESCRIBE-NODE 'CROWN»

SWITCH-S c T
SWITCH-N ~ T
SWI TCH-~.P c T
SWITCH-IP z T

(CROWN

SWITCH-NS c T
SW I TCH-OPS c T
SWITCH-IPS· T

(ALWAYS FALL SPRING SUMMER)
«HAS-AS-PART BRANCHES (ALWAYS»

(HAS-AS-PART BUDS (SPRING»
(HAS-AS- PART LEAVES (FALL SUMMER»)

«HAS-AS-PART TREE (ALIIAYS»»

SWITCH-SV = T
SWITCH-NV z T
SW ITCH-OPV = T
SIll TCH-I PV ~ T

'.

GRASPER 1. O/CROUP II

r~- I
~
"~' ~ - -..........

- ,_I - ,-.... -_. _. ~I~=I
.,''" .-

~
.

D~
1 (PROGN (PRI NT-SWITCHES) (OESCRI BE-NODE 'CROWN»

SWITC~-S c T
SWITCH-N = T
SWITCH-OP = T
SWITCH-IP = T

(CROWN NIL

SWITCH-NS c NIL
SWITCH-OPS = NIL
SWITCH-IPS = NIL

«HAS-AS-PART BRANCHES) (HAS-AS-PART 8UDS)
(HAS-AS-PART LEAVES»

«HAS-AS-PART TREE»)

1(DESCRIBE-NODE 'NX)

*** DESCRIBE-NODE ERROR: NX IS NOT A NODE

FIGURE 14 - Excerpt from "GRASPER 1.0 Reference Manual"

SWITCH-5V = T
SWITCH-Nil = T
SWITCH-OPII = T
SWITCH-I PV = T

283

DESCRIBE-NODE

N
1...0

30

described in a separate section of the manual. The primitives

described within each section are in alphabetical order. Running

headings and footings contain all the information a user is likely to

need to navigate through the manual. The section names appear at the

tops of the pages and the names of the primitives being described

appear in the lower outside corners. A user locates a description of a

primitive by first flipping through the manual until the name of the

desired group appears at the tops of the pages and then leafing through

that section. alphabetically directed by the names of the primitives in

the lower corners, until the desired name appears.

Even when the name of a primitive is unknown, often it is possible

to find a primitive with the desired effect. This results since

physical locality in the manual corresponds to semantic locality.

Primitives that are alphabetically near are physically near in the

manual and semantically similar. A user can find a portion of the

manual describing semantically similar primitives and then scan that

area for a primitive with the desired effect.

If this indexing system fails, the user still has one last

recourse. The manual has a combination index and glossary. This

directs the user by page numbers to explanations of key GRASPER

concepts. It also defines many of the terms and notations used in the

manual.

,
•

328 GRASPER 1.0/GROUP III

(OUTPUT-GRAPH file>

Informal De.finijiotl

The pseudo-function OUTPUT-GRAPH is an EXPR which has the

effect of outputing the current GRAPH to file. l If file

does not already exist, OUTPUT-GRAPH creates it and stores

GRAPH in it. If file does exist, its contents are replaced

with GRAPH. OUTPUT-GRAPH returns file.

Formal Definition

OUTPUT-GRAPH!f) : f

IT he me~~peCifYing a file 18 implementation dependent.

OUTPUT-GRAPH

I
'.

GRASPER I.O/GROUP III

Illustrations

WEST

1 (OUTPUT-GRAPH 'F I LE!)
FILEI

?(PROGN (OUTPUT-GRAPH 'FILE!)
(O£STROY-GRAPH)

FI LEI

(CUN 'CIO)
(INPUT-GRAPH 'FI LEI»

e

FIGURE 15 - Excerpt from "GRASPER 1.0 Reference Manual"

329

EAST

T5

OUTPUT-GRAPH

w

32

A separate section of the manual describes each error message.

These also are in alphabetical order. Each error message description

includes a brief description of the error condition that causes it to

be printed and a list of the GRASPER operators .that can generate that

error condition.

' ..

. '

V. IMPLEMENTATION DESIGN

GRASPER has been implemented with LISP 1.5 [McC65J, extended to

include random access 1/0 capabilities, serving as the host language •

This implementation is faithful to the definition of GRASPER in the

"GRASPER 1.0 Reference Manual." Implanentation design decisions can be

grouped into two classes: those independent of the host language and

those specifically related to the choice of LISP 1.5 as the host.

V.1 Host-Independent Design Decisions

GRASPER was implemented with human performance as a guide. The

speed of each operation is related to the difficulty a person would

have performing that same operation on a drawing of a graph. For

example, since a person can follow inpointing and outpointing edges

with equal ease, the implementation stores each edge twice, once as an

inpointing edge and again as an outpointing edge. This makes

operations involving inpointing edges as efficient as those involving

outpointing edges. This technique gives users a guide to the relative

efficiency of GRASPER operations.

GRASPER-GRAPHs are implemented as collections of space

descriptions. Each space description consists of a space's value and a

node description for each node in that space. A node description

33

34

contains all the information about a node in a space: its value, its

connecting edges, and their values. A description of each real

(non-virtual) space is maintained in memory. The description of a

virtual space is not stored but dynamically determined from the spaces

it is defined over. Virtual spaces are more memory efficient but have

slower access times than real spaces.

The universal space is normally maintained as a real space. In

this real-UNIVERSE mode, UNIVERSE contains a complete inversion by

nodes of all the information contained in the other spaces. However,

GRASPER can be instructed to maintain UNIVERSE as a virtual space

defined over all other spaces. When GRASPER is in virtual-UNIVERSE

mode, the amount of memory required to store the graph is approximately

one-half that of the same graph in real-UNIVERSE mode. Updates to the

graph are faster in virtual-UNIVERSE mode since UNIVERSE need not be

updated each time a space is updated. But as with all virtual spaces,

retrieval times for UNIVERSE are slower in virtual-UNIVERSE mode.

Several Group III operators control the mode of UNIVERSE.

These modes correspond to two different ways of drawing graphs

(see Figure 16). One way is to draw each node once, overlapping spaces

which contain common nodes. Another way is to draw each space

separately, duplicating nodes which exist in more than one space.

Drawn the first way (corresponding to real-UNIVERSE mode) all the

information about a node is gathered in a single place. Drawn the

'.

'.

real-UNIVERSE mode virtual-UNIVERSE mode

SPRING

Al'WhVS

SUMMER

SUMMER

COLOR
LEAVES

.... ltnER FAll

FIGURE 16 - Alternative drawings of an example GRASPER-GRAPH

CoRErN

\.oJ
\n

second way (corresponding to virtual-UNIVERSE mode) the information

about a node is scattered among all the spaces in which that node

exists.

The implementation was greatly influenced by the requirement that

it support large graphs. Since there is no guarantee that large graphs

will fit in primary memory, the implementation supports a

software-level virtual memory management system for GRASPER-GRAPH

storage. Graphs that are too large to be stored in primary memory are

partitioned into pages and stored in secondary memory. Pages are moved

between primary and secondary memory as required. Spaces, meaningful

subgraphs containing logically related information, are used like

segments in other virtual memory management systems to partition graphs

along meaningful lines. Users can reduce paging by grouping references

to the same spaces in their programs. Previous attempts to reduce

paging in graph data bases, without the aide of spaces, were largely

unsuccessful (8IS77J. The memory management system requires a minimal

amount of user interaction. Users without special memory management

requirements do not need to make memory management declarations.

Many GRASPER operators are defined to return sets. In this

implementation, (alphabetically) ordered sets <Ire r<::turned. This

permits the writing of more efficient user programs; makes it easier

for users to visually locate particular elements in returned results;

and, since the same ordering is used by the memory management system

'.

,
•

. '

for graph storage, paging is minimized when graph references are

similarly ordered.

A high read/write ratio was assumed with respect to graphs •

Therefore, some additional expense during write operations is incurred

in favor of more efficient read operations.

The organization of the language and reference manual carries over

to the implementation. Source files are structured in a way that

closely resembles this organization. Semantically similar primitives

are implemented along similar lines, with common underlying concepts

manifest as common subroutines. A test system for the implementation

generates the examples that appear in the manual. DESCRIPTORs for all

the graphs in the manual are included in the implementation to assist

users while learning the language.

V.2 LISP 1.5 Dependent Design Decisions

Node descriptions are implemented as multi-leveled linked lists.

It was assumed that the number of edges attached to any given node

would be small enough for linear retrieval. Space descriptions are

implemented as balanced binary (AVL) trees [ADE62] of node

descriptions. These trees are implemented as linked lists. Another

AVL tree is used to store all space descriptions. Therefore, the graph

37

38

data base is an AVL tree of AVL trees of multi-leveled lists. Figure

17 illustrates this structure.

If a space description becomes large, it is split into two partial

space descriptions. If a partial space description becomes small, it

is merged with another partial space description of that space.

Graphs that are too large to be stored in primary memory are

stored in secondary memory on random access files. Complete

(undivided) space descriptions and partial space descriptions, the

pages of this virtual memory system, are loaded into primary memory as

required. Deactivated pages are paged-out using a least-recently-used

strategy. Page size and the amount of primary memory available for

graph storage are controlled by the user through several Group III

operators.

The results of GRASPER operators must be usable in the same way as

the result of any other LISP function. A result must not "disappear"

from the user when paging occurs. In this implementation, pages are

transferred into primary memory by copying them into LISP free space.

The normal garbage collection process "deletes" paged-out pages without

deleting those portions still referenced by the user.

This approach was selected for several reasons. First, there was

a strong desire for the implementation to be highly compatible with

'"

.~

.'

(-) (-) (-)

SPACE-DESCRIPTION-CATALOG
(AVL Tree)

SPACE-DESCRIPTIONs
(AVL Trees)

39

(-)

NODE-DESCRIPTIONs
(Linked Lists)

FIGURE 17 - GRASPER 1.0 Data Base: An AVL tree of AVL trees of linked lists

40

LISP. This approach allowed the memory manager to be implemented

entirely at the LISP level. Second. this combined storage approach for

graphs and LISP data permits better memory utilization since available

memory is dynamically allocated. Third, since pages are implemented as

LISP lists, page size variations do not fragment memory. Finally, this

combined storage approach is nicely suited to LISP implementations

which have concurrent garbage collection.

This implementation includes a set of auxillary operators that

extend LISP 1.5, making it an improved host environment for GRASPER.

These operators include: common set-theoretic operators, additional

mapping operators, paging monitors, and operators which print the

GRASPER news. The additional mapping operators, functional combinators

[FRI74], provide a more general mapping facility than is available in

LISP 1.5. Because GRASPER operators have multiple arguments, a more

sophisticated mapping facility is desirable. Paging monitors aid users

with extreme efficiency requirements in tailoring their programs for

high memory management performance. The news facility informs users of

the peculiarities of their particular implementation installation.
, .

.'

VI. POSSIBLE EXTENSIONS

GRASPER has been constantly evolving over the last three years.

GRASPER 1.0 represents a stable set of concepts arrived at through this

evolutionary process. A number of shortcomings still remain. This

section describes a few ideas for the future development of GRASPER.

The greatest single improvement to GRASPER probably would be the

addition of a graph matcher. This could take the form of Group II

operators that perform analogous operations to the Group I "X"

(existence-of) and "s" (set-of) operators. Such operators might use

DESCRIPTORs containing variables to express graph patterns.

A set of Group II plotting operators for the graphic display of

GRASPER-GRAPHs would be extremely useful. There should be a Group II

PLOT operator for every PRINT operator. This would make the pictorial

aspect of GRASPER more apparent.

Graph typing would be a welcome addition. This would allow a user

to associate meta-descriptions with spaces. These meta-descriptions,

possibly graphs themselves, would describe what graphical

configurations can legally appear on their associated spaces. A type

error would occur whenever a type is about to be violated.

41

42

Another addition might be user-defined automatically-activated

procedures triggered on particular graph operations. These are

commonly referred to as "demons" [HEr/71J. Whenever the tr iggering

condition of a demon occurs. control automatically is transferred to

that demon.

Multiple storage modes have proven to be an extremely useful

feature. Currently, virtual-UNIVERSE and real-UNIVERSE are the only

storage modes available. A third storage mode. where only the

universal view is maintained, also might prove useful.

GRASPER implementations might benefit from the addition of a

software cache, retaining the most recently used space and node

descriptions. If references to the same spaces and nodes tend to be

grouped, such a cache would shorten the average access time for graph

entities.

. '~

VII. SUMMARY

The primary feature of GRASPER's design is that the language, its

documentation, and its implementation all share a common organizational

structure. This structure lends itself equally well to the language,

its documentation, and its implementation.

GRASPER primitives are systematically composed from a small set of

underlying concepts. They are divided into three groups according to

their scope. The name of each GRASPER primitive directly reflects the

group it is in and the underlying concepts from which it is formed.

The alphabetical ordering of primitives by name, within each group,

corresponds to a reasonable semantic ordering.

This structure organizes a large set of primitives in a

cognitively efficient way. A user quickly learns to predict the names

of primitives given their semantics and the semantics of primitives

given their names. Each group of GRASPER primitives is described in a

separate section of the reference manual. The primitives described

within each section are in alphabetical order. This allows the

description of any primitive with a particular name or desired effect

to be quickly located. Semantically similar primitives have similar

implementations. Common underlying concepts are manifest as common

subroutines.

43

44

This consistency in design helps to make GRASPER a more reliable

system for users and implementers alike.

BIBLIOGRAPHY

[ADE62] G.M. Adel'son-Vel'skii and E.M. Landis (1962). An Algorithm
for the Organization of Information. Soviet ~1ath 3. No.5, pp.
1259-1263. ---

[8IS77] Roberto Bisiani (1977). Paging Behavior of Knowledge Networks.
Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.

[FRI77] Daniel P. Friedman (1977), Functional Combination. Computer
Languages, Vol. 3. pp. 31-35.

[HAN78a] Allen R. Hanson and Edward M. Riseman (1978). Segmentation of
Natural Scenes. Computer Vision Systems (A. Hanson and E.
Riseman, Eds.), Academic Press, New York, New York.

[HAN78b] Allen R. Hanson and Edward M. Riseman (1978). VISIONS: A
Computer System for Interpreting Scenes. Computer Vision
Systems (A. Hanson and E. Riseman, Eds.). Academic Press, New
York, New York.

[HEN75] Gary G. Hendrix (1975). Partitioned Networks for the
Mathematical Modeling of Natural Language Semantics.
Department of Computer Science Technical Report TR NL-28.
University of Texas, Austin, Texas.

[HEW71 J Carl Hewitt et al. (1971). Procedural Embedding of Knowledge
in Planner. Proceedings of IJCAI2, London.

[LOW78] John D. Lowrance (1978). GRASPER 1.0 Reference Manual. COINS
Technical Report '{8-20, University of Massachusetts, Amherst,
Massachusetts.

[McC65] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P.
Hart, and Michael I. Levin (1965). LISP 1.5 Programmers
Manual. The MIT Press, Massachusetts Institute of Technology.
Cambridge, Massachusetts.

[PRA71] Terrance W. Pratt and Daniel P. Friedman (1971). A Language
Extension for Graph Processing and Its Formal Semantics. CACM,
Vol. 14, No.7, pp. 460-467.

[RUL72J John F. Rulifson, Jan A. Derksen, and Richard J. Waldinger
(1972). QA4: A Procedural Calculus for Intuitive Reasoning.
SRI Technical-Note 73, Menlo Park, California.

[SAC79J Jonathan Sachs (1979). Some Notes on Typography 1n Tectmical
Documentation. Systems Documentation Newsletter, Vol. 5, No.
5, p p • 1 0-1 5 •

