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ABSTRACT 

GRASPER 1.0 is a programming language extension. Once appended to 
a host language, GRASPER 1.0 introduces graphs, diagrams consisting of 
points connected by 1 ines or arrows, as a pr hoi tive data type. 

The primary feature of GRASPER 1.0's design is that the language, 
its documentation, and its implementation all share a common 
organizational structure that groups GRASPER 1.0 primitives according 
to their scope of application and the underlying concepts from which 
they are formed. Although this report is of a descriptive nature, a 
similar approach might well be prescribed for other applications. 

GRASPER 1.0 is based on a small number of underlying concepts. 
GRASPER 1.0 primitives are constructed from these concepts according to 
a small set of rules. The name of each GRASPER 1.0 primitive 
systematically reflects its underlying concepts. This generative 
nature of the language organizes a large set of primitives in a 
cognitively efficient way. This makes GRASPER 1.0 easier to learn and 
retain; provides an indexing system for GRASPER 1.0 documentation; and 
serves as an outline for well-structured implementations.' 



GRASPER 1.0 has been implemented with LISP 1.5 as the host 
language. This implementation supports a software-level virtual memory 
management system for graph storage. Spaces, user defined subgrdphs, 
are used by the virtual memory manager to group logic&lly related 
information on the same pages, helping to reduce paging. Multiple 
storage schemes allow users to optimize the way graphs are stored based 
on their particular applications. 
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I. INTRODUCTION 

Graphs, diagrams consisting of points connected by lines or 

arrows, are commonly used to depict situations of interest. GRASPER 1.0 

is a programming language extension that provides graph processing 

capabilities. The ability to program directly in graph primitives is 

an obvious advantage in those areas where problems are naturally cast 

in graph terms (see Table 1). 

GRASPER 1.0 was developed as a data base facility for the VISIONS 

system [HAN78a,bJ, a computer system for the segmentation and 

interpretation of visual scenes. VISIONS required that GRASPER 1.0 

support large, dynamic graph structures. The design of GRASPER 1.0 

(GRASPE ~xtended and !evised) is closely modeled after that of GRASP£ 

1.5 [PRA71). GRASPER 1.0's formal foundation lies in set and graph 

theory. Informally, GRASPER 1.0 is based on the natural pictorial 

semantics of graphs. 

GRASPER 1.0 consists of a set of operators that could potentially 

be appended to any list processing system. Once appended to a host 

language, GRASPER 1.0 introduces GRASPER-GRAPHs as a primitive data 

type (see Figures 1 and 2). GRASPER-GRAPHs consist of nodes, edges, 

1 
and spaces. Nodes, edges, and spaces all have names and values. 

Edges are directed connections between pairs of nodes. Spaces are 

1 
GRASPER spaces, though similar, differ from those of Hendrix [HEN75J. 
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sociograms 

simplexes 

GRAPH 

state transition networks 

Markov chains 

PERT networks 

data structures 

flow charts 

crystal structures 

bonding structures 

transportation networks 

family trees 

computer system configurations 

semantic networks 

augmented transition networks 

neural networks 

phrase markers 

FIELD 

psychology 

economics 

automata theory 

probability theory 

management decisions 

computer science 

chemistry, programming 

physics 

chemistry 

operation research 

genealogical theory 

computer architecture 

artificial intelligence 

artificial intelligence, linguistics 

neurophysiology, cybernetics 

linguistics 

TABLE 1 - Examples of common graph applications 



subsets of nodes, edges, and values, i.e •• subgraphs. GRASPER-GRAPHs 

are created, queried, modified, and destroyed through GRASPEH 

operators. The arguments to these operators, and their results, are 

lists and atomic elements of the host language. 

This report describes GRASPER 1.0, highlighting the features of 

its design. The primary design feature is that the language, its 

documentation, and its implementation all share a common organizational 

structure. Although this report is of a descriptive nature, a similar 

organizational approach might well be prescribed for other 

applications. 

Throughout the remainder of this report "GRASPER 1.0" is 

abbreviated "GRASPER." 

3 



Phrase Marker 

This GRAPH represents the following phrase marker. 

-------.--------
_/w~. ,/.~. 

/""-'l-n_ PAST 

I I 
"'" ""'-.0 11.1., .. .... 

The direction and labeling of edges in the GRAPH are used to incor

porate the information implicit in the position of the. terminals and 

nonterrninals in the phrase marker. All edges poInt (down) towards the 

surface. Numbers on edges order the nonterminals to which they pOint. 

S-edges point to surface terminals. 

Radio 

TIll'" OE~OUlATOfl: A""'lIFIO. 

This GRAPH represents the following schematic for a radio. 

?~ t ~TU 
The labels on the GRAPH translate as follows. 

ANT - antenna ~ 

GRNO - ground ~ 

TRNF - transformer J[ 
VCAP - variable capacitor ~ 

o lODE - diode '--Il<f--' 

CAP - capacitor ~ ~ 

RES - resistor ~ 

TRNS - transistor ~ 

SPKR - speaker ~ 

BAT - battery .,>'-
TN - bread board terminal 

W - wire 

srlAKEIt 

The undirected edges indicate two edges labeled the same with 

opposite direction. The spaces indicate the major components of the 

radio. 

FIGURE 1 - Example GRASPER-GRAPHs 

.... 
,.1" 

'"' ., 
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lIailroad 

WEST - 80 
EAST = 345 

(200 75) 

UNIVERSE c 545 
8=(15040) T5=75 

The above GRAPH repre~ents a railroad's system of tracks servicing 

five cities. Each city is represented by a node. Tracks are represented 

by edges between cities. Commuter tracks local to a city are represented 

as edges which originate and end at that city. The cirection of each 

edge indicates the direction trains travel on that track during morning 

rush hour. The names of tracks correspond to routes. The universal 

value of each city indicates its cartesian coordinates within the rail

road system. The universal values of the tracks indicate their length. 

The east and west division of the railroad are delimited by spaces. 

The value of each space is the total amount of track within it. 

Tree 

SPRING 

ALWAYS 

SUKK£R 

COLOR 
GREEN 

WINTER FALL-

The above GR~H is a semantic network describing trees over the 

seasons. The space ALWAYS contains information about trees that is 

true during all seasons. Each of the other spaces contains information 

about trees that is true in the corresponding season. 

Note tl~t unlike the previous illustrations, each space has been 

broken apart from the rest of the GRAPH. That is why some of the nodes 

and edges appear more than once (e.g .... the node LEAVES and the edge 

HAS-AS-PART from node CROWN to node LfAVES appear in spaces SL~R and 

FALL) • 

FIGURE 2 - Example GRASPER-GRAPHs V1 
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II. DESIGN APPROACH 

A wholistic approach was taken in designing GRASPER. Design 

decisions were made only after considering their impact on all aspects 

of GRASPER: the language, its documentation, and its implementation. 

This approach centered on the development of an organizational 

structure that groups GRASPER primitives according to their scope of 

application and the underlying concepts from which they are formed (see 

Figure 3). 

GRASPER primitives are divided into three groups according to 

their scope of application. Group I primitives apply to individual 

units of GRASPER-GRAPHs. Group II primitives apply to major portions 

of GRASPER-GRAPHs. Group III primitives control memory management for 

GRASPER-GRAPH storage. For example, it is Group I primitives that 

create individual nodes and edges, Group II primitives that create 

entire graphs, and Group III primitives that move graphs between 

short-term and long-term storage. 

All GRASPER primitives are based on a small number of underlying 

concepts. They are constructed from these concepts via a small set of 

composition rules. The name of each primitive systematically reflects 

the underlying concepts from which it is formed. This generative 

nature of the language, along with the grouping of primitives by scope, 

organizes a large set of primitives in a cognitively efficient way. 
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GrouE III 
GrouE II 

Group I 

I 

implementation 
of 

primitives --

{subrou 
linka 

I 
!implementation 

of 
underlying 

concepts -
I-

tine} 
ges 

FIGURE 3 - Organizational Structure of GRASPER 1.0 



8 

This makes GRASPER easier to learn and retain, provides an indexing 

system for GRASPER documentation, and serves as an outline for 

well-structured implementations. 
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III. LANGUAGE DESIGN 

-, III.1 Syntax 

The syntax of GRASPER is largely that of its host. The syntax of 

atomic elements, lists, and operator calls depends exclusively on the 

host language. The syntactic design decisions embodied in GRASPER 

relate to operator names and the order of their arguments. 

The name of each GRASPER operator systematically reflects the 

underlying concepts from which it is formed. For example, DOG is the 

GRASPER operator that ~estroys the £utpointing ed~es of a node. 

Operators with similar names have similar semantics; operators with 

dissimilar names have dissimilar semantics. A novice quickly learns to 

predict the names of operators given their semantics, and the semantics 

of operators given their names. The alphabetical ordering of operators 

by name corresponds to a reasonable semantic ordering. This is 

particularly important to the organization of a reference manual where 

a linear ordering is required. All operator names are pronounceable to 

facilitate verbal interchanges. 

The order of GRASPER operator arguments is consistent across all 

operators. Arguments which play similar roles are in similar 

positions. No operator has more than one optional argument, which 

always refers to a space and always appears in the last position. 
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111.2 Semantics 

Graphs, by their nature, are pictorial. GRASPER primitives model 

what a person can easily do while looking at a drawing of a graph. The 

pictorial semantics of graphs motivates the semantics of GRASPER, while 

set theory and graph theory provide its formal foundation. 

Most GRASPER operators have an optional space argument. When this 

is included, the scope of the operator is restricted to that space. 

When this argument is not included, a space named UNIVERSE is assumed. 

UNIVERSE is a special space maintained by GRASPER that contains all the 

nodes and edges in the GRASPER-GRAPH. If a node or edge is deleted 

from UNIVERSE, it is deleted from all spaces. For example, if an 

operator that destroys a node is given a space other than UNIVERSE, the 

node is only removed from that space. If that same operator is called 

with UNIVERSE or no space argument, it is removed from all spaces. 

The Group I primitives form the basis of GRASPER. A small set of 

Group I concepts combine to form all of the Group I operators. These 

underlying concepts are divided into four categories, operator types, 

operator objects, object qualifiers, and qualifying objects. Every 

Group I operator has an operator type, an operator object, and an 

object qualifier, but not all have a qualifying object. 



There are six Group I operator~. These types are grouped 

into two classes, functions and pseudo-functions. Functions are 

executed for the value they return. Pseudo-functions are executed for 

their effect. The function operator types include those that return 

sets of graph entities, those that return values of graph entities, and 

those that determine if graph entities exist. The pseudo-function 

operator types include those that create graph entities, those thHt 

destroy graph entities, and those that bind values to graph entities. 

Operator objects of Group I operators specify the types of graph 

entities the operators manipulate. Operator objects include nodes, 

edges, spaces, and pairs. A pair is an edge and a node to which that 

edge is connected. 

Object qualifiers include outpointing, inpointing, adjacent, and 

unqualified. Outpointing, inpointing, and adjacent qualifiers specify 

the means of accessing the operator object(s) from a node. Outpointing 

means to follow only edges which point away from a node; inpointing, 

only edges that point towards a node; and adjacent, all edges 

connected to a node. Unqualified is used when access is immediate 

through the object's name. 

Qualifying objects are used to further restrict operator objects 

by specifying additional graph entities associated with them. Nodes 

and edges can be used as qualifying objects. 

11 
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The Group I rules of operator composition describe how tllese 

underlying concepts can be combined to form Group I operators. The 

name of each operator is formed by concatenating single-letter 

abbreviations for the underlying concepts embodied in the operators. 

The role played by each letter is determined by its position in the 

operator name. These letter positions are ordered: operator type, 

object qualifier, operator object, and an optional qualifying object. 

For example, SAN returns the set of adjacent nodes of a node, DOG 

destroys the outpointing edges of a node, DOGN destroys the outpointing 

edges of a node that lead to a specified node, XIP tests whether an 

inpointing pair of a node exists, and CUN creates a node. The full set 

of Group I operators is summarized in Figure 4. 

The Group II primitives are similar to the Group I primitives 

except they have greater scope. Where Group I primitives deal with 

units of GRASPER-GRAPHs, Group II primitives deal with major portions 

of GRASPER-GRAPHs. For example, the Group I operator CUN can only 

create a node in a single space, the Group II operator CREATE-NODE can 

create a node in multiple spaces with connecting edges and values. 

Group II DESCRIPTORs are specialized list structures that describe 

portions of graphs (see Figure 5). Most Group II operators either are 

passed a DESCRIPTOR as an argument or generate one to be returned. 



Group I GRASPER Operators: 

Polyhedral Summary 
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~nqualified 

The operators represented here as cubes 
are read 

<left face><right face><top face> .. , .. ®" <~" "<,," 

FIGURE 4 - Group I Operator Summary 



(NIL 
(S NIL «1 NP1) (2 VP») 
(NPI NIL «1 ART) (2 N») 
(ART NIL «S THE») 
(N NIL «S UNICORN)) 
(VP NIL «I V) (2 NP2») 
(V NIL «I V-STEM) (2 PAST))) 
(V-STEM NIL «S KISS») 
(PAST NI L «S EO») 
(NP2 NIL «1 PRO)) 
(PRO NIL «S YOU») 
(THE) 
(UNICORN) 
(KISS) 
(ED) 
(YOU) ) 

,,'" 

sr.,", 

ALWAY'S %'""'" 
hoAlo-.H-part 

IUDS 

, ...... 

"'NTEA fALL 

«ALWAYS FALL SPRI fIG SUHl1ER W I tiTER) 
(BRANCHES (ALIIAYS» 
(BUDS (SPRI NG» 
(CROWN 

(ALIIAYS FALL SPRING SUMMER) 
«HAS-AS-PART BRANCHES (ALIIAYS» 

(HAS-AS-PART BUDS (SPRING» 
(HAS-AS-PART LEAVES (FALL SUMMER»» 

(GREEN (SUMMER» 
(LEAVES 

(FALL SUMMER) 
«COLOR GREEN (SUMMER)) 

(COLOR RED (FALL) 
(COLOR YELLOW (FALL»» 

(RED (FALL) 
(TREE (ALIIAYS) 

«HAS-AS-PART CROIIN (ALIIAYS» 
(HAS-AS-PART TRUflK (AlI.IAYS»» 

(TRUIIK (ALIIAYS» 
(YELLOII (FALL)) 

FIGURE 5 - Example Group II DESCRIPTORs 

.j::-



Group II operators are composed from a small set of Group II 

concepts, similar to the way that Group I operators are composed. Each 

is composed of an operator type and an operator object. Operator types 

include functions that return DESCRIPTORs describing portions of graphs 

and pseudo-functions that create portions of graphs from DESCRIPTORs, 

destroy portions of graphs, and pretty-print descriptions of portions 

of graphs. Operator objects can be nodes, spaces, or graphs. 

The Group II rules of operator composition describe how operator 

types and objects can be combined. The name of each Group II operator 

is a hyphenated compound word consisting of an operator type followed 

by an operator object. For example, CREATE-GRAPH creates an entire 

graph from a DESCRIPTOR, DESCRIBE-SPACE returns a DESCRIPTOR of a 

space, and PRINT-NODE pretty-prints a description of a node. The Group 

II operators are summarized in Figure 6. 

Group III primitives provide a means for specifying views through 

sets of spaces, control the GRASPER virtual memory system for 

GRASPER-GRAPH storage, and move GRASPER-GRAPHs in and out of long-term 

storage. Although the Group III operators can be viewed as being 

composed of operator types and operator objects. composition rules are 

not given since there are few shared underlying components. 

A virtual space is a view through a set of spaces. GRASPER 

operators can be given virtual spaces as space arguments. The result 

15 
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Group II GRASPER Operators: Polygonal Summary 

DESTROY 
DESTROY-

GRAPH 

CREATE- CREATE-
CREATE GRAPH NODE 

DESCRIBE- DESCRIllE- DESCRIBE-
DESCRIBE GRAPH NODE SPACE 

PRINT PRINT- PRINT- PRINT-
GRAPH NODE SPACE 

GRAPH NODE SPACE 

FIGURE 6 - Group II Operator Summary 
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is the same as if a space containing all the entities in the spaces 

that the virtual space is defined over were given to the operator. For 

example, the nodes BRANCHES, CROWN, GREEN, LEAVES, TREE, and TRUNK 

would be returned by the Group I operator SUN when given a virtual 

space defined over spaces ALWAYS and SUMMER in the graph of Figure '(. 

Virtual spaces can be used like CONTEXTs in other languages 

[RUL72,McD72] to represent incrementally different alternative worlds. 

The Group III function VIRTUAL-SPACE defines a virtual space. 

GRASPER supports a virtual memory system for GRASPER-GRAPH 

storage. GRASPER-GRAPHs that are too large to be stored in primary 

memory are partitioned into pages and moved between primary and 

secondary memory as required. The Group III operators SET-SIZE and 

SIZE set and return the values of memory management parameters. The 

Group III operators REALIZE-UNIVERSE and VIRTUALIZE-UNIVERSE select 

between two different storage schemes for the space UNIVERSE. These 

issues are discussed further in the section on implementation design 

(pp.36-38). 

GRASPER-GRAPHs are moved between short-term and long-term storage 

by the Group III operators INPUT-GRAPH and OUTPUT-GRAPH. 

GRASPER errors occur whenever requests are made through GRASPER 

operators that do not make sense in the context of the current 

GRASPER-GRAPH. These are usually references to nonexistent 

17 
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virtual space real spaces 

SPRINC 

ALWAYS 

I 
SUHHfR 

WINl[R f-.Ll ,-

FIGURE 7 - Example virtual space defined over real spaces ALWAYS and SUM}lliR 

J).' 



GRASPER-GRAPH entities. When an error is detected an error message is 

printed. GRASPER error messages are short, concise, and 

understandable. They are in English, contain no criptic codes, and 

share the same basic format. Each error message includes the name of 

the operator causing the error, a description of the cause, and any 

offending arguments to the operator. 

19 
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IV. DOCUMENTATION DESIGN 

The user documentation for GRASPER eventually should consist of a 

reference manual and a primer. A reference manual and primer can not 

be successfully combined since they are inherently incompatible. A 

reference manual is like a dictionary. It should contain complete, 

concise descriptions of all primitives organized in a manner that 

allows the description of any primitive to be located quickly. A 

primer needs to introduce concepts in an incremental fashion to 

facilitate learning. This usually requires that oversimplified 

descriptions precede complete descriptions. A primer is meant to be 

read in its entirety. A reference manual, like a dictionary, is not 

meant to be read in its entirety. 

IV.1 Primer 

A GRASPER primer has not been written. Time permitted the writing 

of a primer or reference manual, but not both. Since a reference 

manual is of more general use over a longer period of time, it was 

written. Although a primer would present a better introduction to 

GRASPER, an experienced programmer can learn the language directly from 

the reference manual. 
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IV.2 Reference Manual 

The "GRASPER 1.0 Reference Manual" (LOW781 contains a full 

descrlption of each primitive in the language. Each description 

consists of the primitive's name, an informal definition, a formal 

definition, and numerous illustrations. (The reader is encouraged to 

refer to Figures 8-15 containing excerpts from the "GRASPER 1.0 

Reference Manual" while reading this section.) 

Most GRASPER primitives have acronyms as names. When this is the 

case, the derivation of the acronym is described. A phonetic spelling 

of the name is included whenever there is some doubt concerning its 

proper pronunciation. 

Informal definitions consist of prose descriptions of the 

primitives including all error conditions. Pictorial descriptions 

accompany these whenever appropriate. This is in keeping with the 

pictorial motivation of the language. 

Formal definitions, written in set notation, are included to 

assist both users and implementers. Error conditions are an integral 

part of these formal definitions. Unlike the formal definitions of 

many other languages, most of these are short and easy to understand. 

Users and implementers alike are encouraged to use these since they 

provide the most accurate and concise description of GRASPER. 

21 



114 GRASPER I.O/GROUP I 

(DOG node)l ]estroy Qutpointing ed~s 

Informal Definition 

The pseudo-function DOG is. an EXPR which has the effect of 

destroying all outpointing edges of 'lOde. Given node, DOG 

destroys all edges gi where for each i, edge &i points to 

some node Dl
i 

from node. If node has no such edges, DOG has 

no effect. DOG returns node. 

gl_~ -./ 

~ .. 
' ........ -~ gt 

error condition: 

- node does not exist 

Formal Definition 

DOG!n] = n 

with effects: 

NGN := NGN - «n g m)lg < G, mEN) 

\'dog\ 

NGNSV := NGNSV - ««n g m) s) v)lg < G, m < N, 8 < S, V < V} 

error condition: 

- n ~ N 

lSee alternative form on page 116. 

Illustrations 

7 (DOG 'e3) 
C3 

7(DOG 'el) 
Cl 

1(OOG 'e5) 
e5 

7(DOG 'ex) 

~PER I.O/CRUUP I 

T5 

*H DOG ERROR: ex IS NOT A NODE 

FIGURE 8 - Excerpt from "GRASPER 1.0 Reference Manual" 

@l 

T5 

115 1'.1 
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DOG 

116 GRASPER 1.O/GROUP 1 

(DOG node 8paae)I Qestroy Qutpointing ed£cs 

Informal Definition 

The pseudo-function DOG is an EXPR which has the effect of 

destroying all outpointing edges of r~de in spaae. Given 

node and spaae, DOG removes all edges 8 i from spaae where 

for each i, edge &1 points to some node m
i 

from node. If 

spaae is UNIVERSE, DOG removes each such edge gi from all 

spaces. If node has no such edges, DOG has no effect. 

OOG returns node. 

---~~ -, 
. I 
~ I 

spaae , UN I VERS E 

e~or conditions: 

81 ~.,..._Jm'"\ 
~:~ ....... : g- __ fm\ 

t ~ 

space ~ UNIVER~E 

- node does not exist in space 

- space does not exist 

Formal Definition 

DOG[n,s] - n 

with effects: 

if s • UNIVERSE 

then DOG[n] 

\'dog\ 

else NGNSV := NGNSV - {«(n g m) s) v)lg € G. m < N, v € V} 

error conditions: 

- «n s) v) ( NSV for all v < V 

- B ( S 

lSee alternative form on page 114. 

Illustrations 

1(OOG 'C3 'EAST) 
C3 

HOOG 'Ct 'WEST) 
Cl 

1(OOG 'C2 'UNIVERSE) 
a 

1(DOG 'CS 'EAST) 
C5 

1 (DOG 'CX 'EAST) 

'. 

GRASPER 1.O/GROUP I 

*** DOG ERROR: CX 15 NOT A NODE IN SPACE EAST 

1(DOG 'C3 'SX) 

*** DOG ERROR: SX IS NOT A SPACE 

FIGURE 9 - Excerpt from "GRASPER 1. 0 Reference Hanual" 
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EAST 

TS 

DOG 

N 
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124 GRASPER I.O/GROUP I 

(DOGN node1 nodeZ space)l Qestroy Qutpointing edQes given a Eode 

Informal Definition 

The pseudo-function DOGN is an EXPR which has the effect of 

destroying all outpointing edges of node1 that point to nodeZ 
1n spaae. Given node1 and nodeZ' DOGN removes all edges g1 

from spaae where for each i, gi points from node1 to nodeZ• 

If space is UNIVERSE, DOGN removes each such edge 8i from all 

spaces. If no such edges exist, DOGN has no effect. DOGN re

turns node]" 

gl 
",.- ...... 

Q~j . B-> 
--~ 

space ~ UNIVERSE 

error conditions: 

- node
1 

does not exist in space 

nodeZ does not exist in space 

- space does not exist 

Formal Definition 

DOGN(n,m,s] ~ n 

with effects: 

if s ~ UlIIVERSE 

then DOGN(n,m] 

8 t 

space & UNIVERSE 

else NGNSV:= NG!ISV - {«(n g m) s) v)\g' G, v < V) 

error conditions: 

- «n s) v) NSV for all v , V 

- «m s) v) NSV for all v , V 

- s ~ S 

lSee alternative form on page 122. 

\'dog-in\ 

Illustrations 

?(DOGN 'C3 'e4 'EAST) 
[3 

?(DOCN 'el 'el 'WEST) 
el 

GRASPER 1.O/GROUP I 

?(DOGN 'e3 'e2 'UNIVERSE) 
e3 

?(DOGN 'C5 'e4 'EAST) 
e5 

?(OOCN 'ex 'e4 'EAST) 

*** OOGN ERROR: ex IS NOT A NODE IN SPACE EAST 

?(OOGN 'e3 'ex 'EAST) 

*** DOGN ERROR: ex IS NOT A HODE IN SPACE EAST 

?(DOGN 'C3 'c4 'SX) 

*** OOGN ERROR: SX IS NOT A SPACE 

125 

TS 

N 
.l:'-

DOGN Doell 

FIGURE 10 - Excerpt from "GRASPER 1.0 Reference Manual" 
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A generous number of illustrations accompanies the description of 

each primitive. These illustrate both appropriate and inappropriate 

uses of the primitives. Drawings are included whenever useful • 

The information describing each GRASPER primitive is localized to 

a few consecutive pages in the manual. This helps assure that a reader 

will not overlook pertinent information. The information on facing 

pages almost always pertains to the same primitive. This visually 

separates descriptions of different primitives. Alternative forms of a 

single primitive are described as if they are distinct primitives, but 

are always described on consecutive pages. Footnotes direct the reader 

between descriptions of alternative forms. 

The typography of the manual is based on the premise that things 

which are the same should be visually similar, and things which are 

different should be visually distinct. Consistent formatting 

conventions are used throughout the manual. This helps a user to find 

desired information by sight rather than by reading. Different 

headings. margin settings, type fonts. page positions, and spacing are 

some of the techniques used to produce a desirable visual impact. A 

reader need not be aware of the typographic conventions to benefit from 

them [SAC79]. 

The manual's indexing system allows the description of any 

primitive to be located quickly. Each group of GRASPER primitives is 
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XIP 

234 GRASPER I.O/GROUP I 

(XIP node1 edge node2)1 e!istence of lnpointing fair 

Informal Definition 

The function XIP is an EXPR which tests for the existence 

of the inpointing pair (edge node
2

) of node
l

• 

. edge, and node
2

, XIP returns T if edge points 

to node1 and NIL if it does not. 

edqe 

error conditions: 

- node 1 does not exis t 

- node 2 does not exis t 

Formal Definition 

XIP[n,g,m] ~ x 

where if (m g n) ( NGN 

then x = T 

else x = NIL 

error conditions: 

- n l N 

- m l N 

lsee alternative form on page 236. 

Given node
l

, 

from node
2 

GRASPER I.O/GROUP I 

\ 'zip\ 

Illustrations 

TS 

1(XIP 'C3 'T4 'C4) 
T 

?(XIP 'c4 'T4 '0) 
T 

?(XIP 'Cl '12 'C3) 
T 

?(XIP 'Cl 'Tl 'CO 
T 

7(XIP 'C2 '13 '0) 
NIL 

1(XIP 'C2 'TX 'C3) 
NIL 

7 (X I P 'cx 'T4 'C4) 

.~. XIP ERROR: CX IS NOT A NODE 

?(XIP 'C3 'T4 'Cx) 

*** XIP ERROR: CX IS NOT A NODE 

FIGURE 11 - Excerpt from "GRASPER 1.0 Reference Manual" 

.< 
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XIP 

236 GRASPER I.O/GROUP I 

I (KIP noa.,1 edge 'lOdeZ space) e!istence of Inpointing fair 

Informal Definition 

The function XIP i. an EXPR which tests for the existence 

of the inpointing pair (edge nodeZ) of node1 in space. 

Given node1, edge, no~2' and space, XIP returns T 1f edge 

points from noa.,2 to node1 in space, and NIL if it does 

Dot. 

space ~e:d~g~e __ ~ ____ ~~::~ 

error conditions: 

- node1 does not exist in space 

- nodeZ does not exist in space 

- space does no texis t 

Formal Definition 

XIP(n,g,m,s] = x 

where if «(m g n) s) v') € NGNSV for some v' € V 

then x a: T 

else x ., NIL 

error conditions: 

- «n s) v) NSV for all v f V 

- «m 8) v) NSV for all v € V 

- 8 f s 

lsee alternative form on page 234. 

'. 

GRASPER I.O/GROUP I 

\ 'zip\ 

Illustrations 

T5 

7(XIP 'C3 'T4 'c4 'EAST) 
T 

7(XIP 'Cl 'T2 'C2 'IIEST) 
T 

7(XIP 'Cl 'TZ 'C3 'UNIVERSE) 
T 

7(XIP '[3 'T2 'C2 'EAST) 
NIL 

7(XIP 'C3 'TX 'C4 'EAST) 
Nil 

7(XIP 'ex 'T4 'e4 'EAST) 

*** XIP ERROR: CX IS NOT A NODE IN SPACE EAST 

?(XIP 'C3 'T4 'ex 'EAST) 

*** XIP ERROR: CX IS NOT A NODE IN SPACE EAST 

?(XIP 'C3 'T4 'c4 'sx) 

*** XIP ERROR: SX IS NOT A SPACE 

FIGURE 12 - Ex.cerpt from "GRASPER 1. 0 Reference Manual" 
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280 GRASPER 1.0/GROUP II 

(DESCRIBE-NODE node)l 

Informal Definition 

The function DESCRIBE-NODE is an EXPR which returns a NODE

DESCRIPTOR for node in the existing GRAPH. Given node, 

DESCRIBE-NODE returnS a NODE-DESCRIPTOR describing node 

including information about all the spaces node is in. 

DESCRIBE-NODE does not describe NIL values, inclusion in 

the universal space when the universal value is NIL. or 

entities whose corresponding switches are off. 

error condition: 

- node does not exist 

Formal Definition 

DESCRIBE-NODE[n] - DESCRIBE-NODE[n, sus[nJ U {UNIVERSE}] 

error condition: 

- n ~ N 

IScc alternative form on page 284. 

DESCRIBE-NODE 

GRASPER I.O/GROUP II 

Illustrations 

1(PROGN (PRINT-SWITCHES) (DESCRIBE-NODE 'T04» 

SWITCH-S ~ T 
SWITCH-N - T 
SWITCH-DP - T 
SWITCH-IP = T 

SWITCH-NS = T 
SWITCH-OPS - T 
SWITCH-I PS = T 

(T04 (TUNER) 
«C2 H:lF (TUNER» (W T08) (W VCAP (TUNER») 
«C2 IP.NI" (TUNER» (W T08) (II YCAP (TUNER»» 

1; 

1(PROGN (PRINT-SWITCHES) (DESCRIBE-NODE 'C2» 

SIiITCH-S = T 
SWITCH-N = T 
SWITCH-OP = T 
SWITCH-IP = T 

SWITCH-NS - T 
SWITCH-OPS = T 
SWITCH-I PS = T 

SWITCH-SV - T 
SW ITCH-NY = T 
SW ITCH-OPV = T 
SWITCH-IPV = T 

SWITCH-SV = T 
SWITCH-NV = T 
SW ITCH-OP'" - T 
SWITCH-IPV - T 

(C2 (EAST UNIVERSE ~ (100 110) WEST) 
«T2 Cl (UNIVERSE - 70 WEST» (T3 C3 (EAST UNIVERSE - 80»)) 
«T2 C3 (EAST UNIVERSE = 70»» 

FIGURE 13 - Excerpt from "GRASPER 1. 0 Reference }:!anua1" 

,. 
" 
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DESCRIBE-NODE 

GRASPER I.O/GROUP II 

"' ... 

[LJ ,-

[~
' &;._. 

~, 

... ..... _. _ ... '_. 

~I~~I ,- '_.. - ,-~~ .. '-' ~ 

r-l r ~-'[ .. ~ I 
~~ 

1(PROGN (PRINT-SWITCHES) (DESCRIBE-NODE 'CROWN» 

SWITCH-S c T 
SWITCH-N ~ T 
SWI TCH-~.P c T 
SWITCH-IP z T 

(CROWN 

SWITCH-NS c T 
SW I TCH-OPS c T 
SWITCH-IPS· T 

(ALWAYS FALL SPRING SUMMER) 
«HAS-AS-PART BRANCHES (ALWAYS» 

(HAS-AS-PART BUDS (SPRING» 
(HAS-AS- PART LEAVES (FALL SUMMER») 

«HAS-AS-PART TREE (ALIIAYS»» 

SWITCH-SV = T 
SWITCH-NV z T 
SW ITCH-OPV = T 
SIll TCH-I PV ~ T 

'. 

GRASPER 1. O/CROUP II 

r~- I 
~
"~' ~ - ........ . -.......... 

- ,_I - ,-.... -_. . ... _. ~I~=I 
.,''" .-

~
. 

D~ 
1 (PROGN (PRI NT-SWITCHES) (OESCRI BE-NODE 'CROWN» 

SWITC~-S c T 
SWITCH-N = T 
SWITCH-OP = T 
SWITCH-IP = T 

(CROWN NIL 

SWITCH-NS c NIL 
SWITCH-OPS = NIL 
SWITCH-IPS = NIL 

«HAS-AS-PART BRANCHES) (HAS-AS-PART 8UDS) 
(HAS-AS-PART LEAVES» 

«HAS-AS-PART TREE») 

1(DESCRIBE-NODE 'NX) 

*** DESCRIBE-NODE ERROR: NX IS NOT A NODE 

FIGURE 14 - Excerpt from "GRASPER 1.0 Reference Manual" 

SWITCH-5V = T 
SWITCH-Nil = T 
SWITCH-OPII = T 
SWITCH-I PV = T 

283 
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described in a separate section of the manual. The primitives 

described within each section are in alphabetical order. Running 

headings and footings contain all the information a user is likely to 

need to navigate through the manual. The section names appear at the 

tops of the pages and the names of the primitives being described 

appear in the lower outside corners. A user locates a description of a 

primitive by first flipping through the manual until the name of the 

desired group appears at the tops of the pages and then leafing through 

that section. alphabetically directed by the names of the primitives in 

the lower corners, until the desired name appears. 

Even when the name of a primitive is unknown, often it is possible 

to find a primitive with the desired effect. This results since 

physical locality in the manual corresponds to semantic locality. 

Primitives that are alphabetically near are physically near in the 

manual and semantically similar. A user can find a portion of the 

manual describing semantically similar primitives and then scan that 

area for a primitive with the desired effect. 

If this indexing system fails, the user still has one last 

recourse. The manual has a combination index and glossary. This 

directs the user by page numbers to explanations of key GRASPER 

concepts. It also defines many of the terms and notations used in the 

manual. 

, 
• 



328 GRASPER 1.0/GROUP III 

(OUTPUT-GRAPH file> 

Informal De.finijiotl 

The pseudo-function OUTPUT-GRAPH is an EXPR which has the 

effect of outputing the current GRAPH to file. l If file 

does not already exist, OUTPUT-GRAPH creates it and stores 

GRAPH in it. If file does exist, its contents are replaced 

with GRAPH. OUTPUT-GRAPH returns file. 

Formal Definition 

OUTPUT-GRAPH!f) : f 

IT he me~~peCifYing a file 18 implementation dependent. 

OUTPUT-GRAPH 

I 
'. 

GRASPER I.O/GROUP III 

Illustrations 

WEST 

1 (OUTPUT-GRAPH 'F I LE!) 
FILEI 

?(PROGN (OUTPUT-GRAPH 'FILE!) 
(O£STROY-GRAPH) 

FI LEI 

(CUN 'CIO) 
(INPUT-GRAPH 'FI LEI» 

e 

FIGURE 15 - Excerpt from "GRASPER 1.0 Reference Manual" 
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A separate section of the manual describes each error message. 

These also are in alphabetical order. Each error message description 

includes a brief description of the error condition that causes it to 

be printed and a list of the GRASPER operators .that can generate that 

error condition. 

' .. 
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V. IMPLEMENTATION DESIGN 

GRASPER has been implemented with LISP 1.5 [McC65J, extended to 

include random access 1/0 capabilities, serving as the host language • 

This implementation is faithful to the definition of GRASPER in the 

"GRASPER 1.0 Reference Manual." Implanentation design decisions can be 

grouped into two classes: those independent of the host language and 

those specifically related to the choice of LISP 1.5 as the host. 

V.1 Host-Independent Design Decisions 

GRASPER was implemented with human performance as a guide. The 

speed of each operation is related to the difficulty a person would 

have performing that same operation on a drawing of a graph. For 

example, since a person can follow inpointing and outpointing edges 

with equal ease, the implementation stores each edge twice, once as an 

inpointing edge and again as an outpointing edge. This makes 

operations involving inpointing edges as efficient as those involving 

outpointing edges. This technique gives users a guide to the relative 

efficiency of GRASPER operations. 

GRASPER-GRAPHs are implemented as collections of space 

descriptions. Each space description consists of a space's value and a 

node description for each node in that space. A node description 

33 
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contains all the information about a node in a space: its value, its 

connecting edges, and their values. A description of each real 

(non-virtual) space is maintained in memory. The description of a 

virtual space is not stored but dynamically determined from the spaces 

it is defined over. Virtual spaces are more memory efficient but have 

slower access times than real spaces. 

The universal space is normally maintained as a real space. In 

this real-UNIVERSE mode, UNIVERSE contains a complete inversion by 

nodes of all the information contained in the other spaces. However, 

GRASPER can be instructed to maintain UNIVERSE as a virtual space 

defined over all other spaces. When GRASPER is in virtual-UNIVERSE 

mode, the amount of memory required to store the graph is approximately 

one-half that of the same graph in real-UNIVERSE mode. Updates to the 

graph are faster in virtual-UNIVERSE mode since UNIVERSE need not be 

updated each time a space is updated. But as with all virtual spaces, 

retrieval times for UNIVERSE are slower in virtual-UNIVERSE mode. 

Several Group III operators control the mode of UNIVERSE. 

These modes correspond to two different ways of drawing graphs 

(see Figure 16). One way is to draw each node once, overlapping spaces 

which contain common nodes. Another way is to draw each space 

separately, duplicating nodes which exist in more than one space. 

Drawn the first way (corresponding to real-UNIVERSE mode) all the 

information about a node is gathered in a single place. Drawn the 

'. 
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real-UNIVERSE mode virtual-UNIVERSE mode 

SPRING 

Al'WhVS 

SUMMER 

SUMMER 

COLOR 
LEAVES 

.... ltnER FAll 

FIGURE 16 - Alternative drawings of an example GRASPER-GRAPH 
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second way (corresponding to virtual-UNIVERSE mode) the information 

about a node is scattered among all the spaces in which that node 

exists. 

The implementation was greatly influenced by the requirement that 

it support large graphs. Since there is no guarantee that large graphs 

will fit in primary memory, the implementation supports a 

software-level virtual memory management system for GRASPER-GRAPH 

storage. Graphs that are too large to be stored in primary memory are 

partitioned into pages and stored in secondary memory. Pages are moved 

between primary and secondary memory as required. Spaces, meaningful 

subgraphs containing logically related information, are used like 

segments in other virtual memory management systems to partition graphs 

along meaningful lines. Users can reduce paging by grouping references 

to the same spaces in their programs. Previous attempts to reduce 

paging in graph data bases, without the aide of spaces, were largely 

unsuccessful (8IS77J. The memory management system requires a minimal 

amount of user interaction. Users without special memory management 

requirements do not need to make memory management declarations. 

Many GRASPER operators are defined to return sets. In this 

implementation, (alphabetically) ordered sets <Ire r<::turned. This 

permits the writing of more efficient user programs; makes it easier 

for users to visually locate particular elements in returned results; 

and, since the same ordering is used by the memory management system 

'. 
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for graph storage, paging is minimized when graph references are 

similarly ordered. 

A high read/write ratio was assumed with respect to graphs • 

Therefore, some additional expense during write operations is incurred 

in favor of more efficient read operations. 

The organization of the language and reference manual carries over 

to the implementation. Source files are structured in a way that 

closely resembles this organization. Semantically similar primitives 

are implemented along similar lines, with common underlying concepts 

manifest as common subroutines. A test system for the implementation 

generates the examples that appear in the manual. DESCRIPTORs for all 

the graphs in the manual are included in the implementation to assist 

users while learning the language. 

V.2 LISP 1.5 Dependent Design Decisions 

Node descriptions are implemented as multi-leveled linked lists. 

It was assumed that the number of edges attached to any given node 

would be small enough for linear retrieval. Space descriptions are 

implemented as balanced binary (AVL) trees [ADE62] of node 

descriptions. These trees are implemented as linked lists. Another 

AVL tree is used to store all space descriptions. Therefore, the graph 

37 
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data base is an AVL tree of AVL trees of multi-leveled lists. Figure 

17 illustrates this structure. 

If a space description becomes large, it is split into two partial 

space descriptions. If a partial space description becomes small, it 

is merged with another partial space description of that space. 

Graphs that are too large to be stored in primary memory are 

stored in secondary memory on random access files. Complete 

(undivided) space descriptions and partial space descriptions, the 

pages of this virtual memory system, are loaded into primary memory as 

required. Deactivated pages are paged-out using a least-recently-used 

strategy. Page size and the amount of primary memory available for 

graph storage are controlled by the user through several Group III 

operators. 

The results of GRASPER operators must be usable in the same way as 

the result of any other LISP function. A result must not "disappear" 

from the user when paging occurs. In this implementation, pages are 

transferred into primary memory by copying them into LISP free space. 

The normal garbage collection process "deletes" paged-out pages without 

deleting those portions still referenced by the user. 

This approach was selected for several reasons. First, there was 

a strong desire for the implementation to be highly compatible with 

'" 
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(-) (-) (-) 

SPACE-DESCRIPTION-CATALOG 
(AVL Tree) 

SPACE-DESCRIPTIONs 
(AVL Trees) 

39 

(-) 

NODE-DESCRIPTIONs 
(Linked Lists) 

FIGURE 17 - GRASPER 1.0 Data Base: An AVL tree of AVL trees of linked lists 
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LISP. This approach allowed the memory manager to be implemented 

entirely at the LISP level. Second. this combined storage approach for 

graphs and LISP data permits better memory utilization since available 

memory is dynamically allocated. Third, since pages are implemented as 

LISP lists, page size variations do not fragment memory. Finally, this 

combined storage approach is nicely suited to LISP implementations 

which have concurrent garbage collection. 

This implementation includes a set of auxillary operators that 

extend LISP 1.5, making it an improved host environment for GRASPER. 

These operators include: common set-theoretic operators, additional 

mapping operators, paging monitors, and operators which print the 

GRASPER news. The additional mapping operators, functional combinators 

[FRI74], provide a more general mapping facility than is available in 

LISP 1.5. Because GRASPER operators have multiple arguments, a more 

sophisticated mapping facility is desirable. Paging monitors aid users 

with extreme efficiency requirements in tailoring their programs for 

high memory management performance. The news facility informs users of 

the peculiarities of their particular implementation installation. 
, . 
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VI. POSSIBLE EXTENSIONS 

GRASPER has been constantly evolving over the last three years. 

GRASPER 1.0 represents a stable set of concepts arrived at through this 

evolutionary process. A number of shortcomings still remain. This 

section describes a few ideas for the future development of GRASPER. 

The greatest single improvement to GRASPER probably would be the 

addition of a graph matcher. This could take the form of Group II 

operators that perform analogous operations to the Group I "X" 

(existence-of) and "s" (set-of) operators. Such operators might use 

DESCRIPTORs containing variables to express graph patterns. 

A set of Group II plotting operators for the graphic display of 

GRASPER-GRAPHs would be extremely useful. There should be a Group II 

PLOT operator for every PRINT operator. This would make the pictorial 

aspect of GRASPER more apparent. 

Graph typing would be a welcome addition. This would allow a user 

to associate meta-descriptions with spaces. These meta-descriptions, 

possibly graphs themselves, would describe what graphical 

configurations can legally appear on their associated spaces. A type 

error would occur whenever a type is about to be violated. 
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Another addition might be user-defined automatically-activated 

procedures triggered on particular graph operations. These are 

commonly referred to as "demons" [HEr/71J. Whenever the tr iggering 

condition of a demon occurs. control automatically is transferred to 

that demon. 

Multiple storage modes have proven to be an extremely useful 

feature. Currently, virtual-UNIVERSE and real-UNIVERSE are the only 

storage modes available. A third storage mode. where only the 

universal view is maintained, also might prove useful. 

GRASPER implementations might benefit from the addition of a 

software cache, retaining the most recently used space and node 

descriptions. If references to the same spaces and nodes tend to be 

grouped, such a cache would shorten the average access time for graph 

entities. 

. '~ 



VII. SUMMARY 

The primary feature of GRASPER's design is that the language, its 

documentation, and its implementation all share a common organizational 

structure. This structure lends itself equally well to the language, 

its documentation, and its implementation. 

GRASPER primitives are systematically composed from a small set of 

underlying concepts. They are divided into three groups according to 

their scope. The name of each GRASPER primitive directly reflects the 

group it is in and the underlying concepts from which it is formed. 

The alphabetical ordering of primitives by name, within each group, 

corresponds to a reasonable semantic ordering. 

This structure organizes a large set of primitives in a 

cognitively efficient way. A user quickly learns to predict the names 

of primitives given their semantics and the semantics of primitives 

given their names. Each group of GRASPER primitives is described in a 

separate section of the reference manual. The primitives described 

within each section are in alphabetical order. This allows the 

description of any primitive with a particular name or desired effect 

to be quickly located. Semantically similar primitives have similar 

implementations. Common underlying concepts are manifest as common 

subroutines. 
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This consistency in design helps to make GRASPER a more reliable 

system for users and implementers alike. 
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