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ABSTRACT 

A complete series of LISP functions is descri~ed, whereby the 

commonly recognized properties of finite groups may be analyzed. The 

analysis includes the determination of the subgroups of the group, its 

normal subgroups, the H-classes, cosets and double cosets, commutator 

subgroup,. center, and other specialized subgroups. Factor groups, direct 

and semidirect products can be constructed. and analyzed in terms of 

their constituents. The information required for the analysis is a 

definition of the group multiplication, either in terms of a group table 

prepared in a certain form or a.LISP function yielding the product of 

any two group elements. 
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GROUP ANALYSIS PROGRAMS 

The analysis of the ~ropert~es of a finite grou~ is a challenging 

task which can conveniently be ~erformed by s~bolic mani~ulation ~rogrems 

written for an electronic computer. The determination of these prO]?erties, 

such as the enumeration of the subgroU]?s, the calculation of the classes 

or of the cosets of a subgroup, can be done with a knowledge of the 

group multi~lication, usually gained from the consultation of a table 

of possible ~roducts. Since the calculations required are not numerical 

in nature, but rather logical, involving the searching of lists, comperiso:.. 

of s~bols, and so on, the operations can be performed by a programming 

language such as LI$P, especially designed for this purpose. 

By a group \Ve mean a set G, together 'vith a multiplication satisfying 

the following axioms: 

·1. The set is closed under the ~ltiplication. 

2. The. multiplication is associative. 

3. There exists an identity element .. 

4. Each element has an inverse. 

The properties of a finite group are thoroughly di~cussed in 

many textbooks on modern algebra to which the reader may refer for the 

definitions and concepts used in this paper. 

Since the structure of an abstract grou~ is determined solely by 

its multi~lication, for purposes of calculation we have only to define 

this multiplication, representing the group elements by any convenient 

s:ymb~ls. For finite groups this can be done in a table, usually of 

the follOWing form: 
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n 

.' p . . . . .pq . . . . 

n 

.. Here the group elements are listed across the top commencing with the 

identity. and. in the same order down the left hand side. The element 

. th th 
~n the p row and q column corresponds to the product pq; 1-re shall 

generally denote this as the Etandard f~ of a group tsble. 

One example of a relatively simple finite group to ~'Thich 1re shall 

refer throughout this paper is the group of symmetries of a square, 

D4, 1-1bich is the dihedral group of degree four. This group and its 

multiplication table are given below . 

., 0 
E = identity 

A = 900 counterclockwise' rotation 

A2 = 1800 counterclocID-1ise rotatio~ 

- L A3 = 270
0 counterclockwise rotation 

... 
f~:~~:~: R = reflection through axis' L 

RA= reflection through axis N 

RA2 = reflection through axis M 

M RA3 = reflection through axis 0 

By the product of two s~etrie s, ab, lye mean the symmetry obtained by 

applying b first, and then a. The group table 'VTould then be: 
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E A A2 A3 R ~ RA2 RA3 

E E A A2 A3 R RA BA2 RA3 
A A A2 A3 E RA3 R RA RA2 

A2 A2 A3 E A RA2 RA3 R RA 

A3 A3 E A A2 RA. RA2 RA3 R 

R R RA RA2 RA3 E A A2 A3 
RA RA RA2 RA3 R A3 E A 112 

RA2 RA2 RA3 R RA A2 A3 E A 

RA3 RA3 R RA RA2 A A2 A3 E 

c::::: To represent such a function in LISP, it is essential to have a 

rapid and convenient access to the product qp for any grou:p ele!Iler..ts; 

. th th that ~s, an access to the p rm'T and q element in that revT. He 

find that such a representation is most easily accomplished by the use 

of altern~ting lists. By an alterna.ting list \Ve mean a list 

L = (AI Bl. A2 B2 ... AN· BJ.\f) of even length, serving as a d:lction.n.r:'r .. 

The odd elements AI serve as references, and the even elements BI are 

their eq1..:ivalents. To use such a list, a LISP function (ASSOC X L) 

is defined to search the odd elements fU.., A2, ... in turn 1.".ntil the 

desired element AI is found; its successor BI is then taken as the valuew 
'-::::::. 

The definition of ASSOC is as fol19v .... s: 

(ASSOC (LlliVffiDA (X L) (IF (EQ, X (CAR L)) (CADR L) (ASSOC X (CDDR L))))) 

T"nis tech"lique can be employed t'\vice to represent a group te.ble; ona 

uses the alternating lists to pair the TO\TS of the table with tbe 

corresponding rmv headings, \-rhile the ro'\vs are represented by' a list 

1:'1 1'7hich the column headings alternate with the products themsel·J'es. 
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Trr.1S if the group G has the elements (Al Jl2. ••• AN) i the group table 

. representation can then be retained as a LISP function of no variables: 

(GROUPNAME (LAMBDA () (QUOTE 

(AI (Al AlA! A2 AlA2 ••• AN AlAN) 

A2 CAl A2Al A2 A2A2 ••• AN A2AN) 

AN (Al ANAl A2 ANA2 ••• AN ANAN) 

where the s~bol AIAJ is understood to mean the product of AI and AJ. 

In this format the group n4 lvouJ.d be represented as' follows: 

(D4 (LAMBDA () (QUOTE 

(E (E E A A A2 A2 A3 A3 R R RA RA RA2 RA2 RA3 RA3) 

A (E A A .A2. A2 A3 A3 E R RAJ FA R RA2 RA RA3 RA2) 

A2 (E A2 A A3 A2 E A3 A R RA2 RA RA3 RA2 R RA3 RA) 

A3 (E A3 A E· A2 A A3 A2 R RA RA RA2 RA2 RA3 RA3 R) 

R (E R A RA A2 RA2 A3 RA3 R E RA A RA2 A2 RA3 A3) 

RA (E RA A RA2 A2 RA3 A3 R R A3 RA # RA2 A RA3 A2) 

RA2 (E RA2 A RA3 A2 R A3 RA R A2 RA A3 RA2 E RA3 A) 

RA3 (E RA3 A R A2 RA A3 RA2 R A RA A2 RA2 A3 RA3 E»») 

He may then define a function (GP A B) to calculate the product A B 

of two group elements: 

CGP (LAMBDA (A B) (ASSOC B (ASSOC A T»» 

The free variable T in the above expression refers to the name of the 

particular group table" and is not bound until a higher level, usually 

not until the function is actually executed. 
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To find the inverse of a group element AI from this table format, 

lle need the element in the AIth row which .... Then multipled by A gives the 

unit element. In our alternating list structure, L = (AI Bl ..• ), 

where B1 = ATAJ. vTe then need to search the Brl s for the identit:" 

and select the corresponding AJ; this is done by the function (ASSOC* X L): 

{ASSOC* (LAMBDA (X L) (IF (EQ X (CADR X» (CAR X) {ASSOC* X (CDDR L»))). 

Letting the identity element be represented by a specific function, 

(UNIT), our definition of the inverse of an element X, (A-l X) "ro'Uld 

be as follows: 

(A-l (UMBDA (X) (ASSOC* (UNIT (ASSOC X T)) 

Finally, in the calculation of various group propertie s, we often 

need to have a list of the group elements, to 1"hich end we define a fun.cticr~~ 

(GELEMENTS), to provide such a list. It may be extracted from the gro,-w 

table as follows: . 

(GELEMENTS (LAMBDA () (GELEMENTS* T») 

(GELElvENTS* (LAMBDA. (L) 

(IF (l'lULL L) L (CONS (CAR L) (GELEMENTS* (CDDR L»))) 

To enable the program to be as flexible as possible, we must allo-o;" 

it to accept all types of groups--l-1here the multiplication may not be 

given in a single table, but perhaps in a combination of tables, o~ 

even as a rule. We therefore choose to base the entire program on a 

foundation of the four functions GP, A-l, UNIT, and GELEMENTS. For 

each means of describing a group we require that only these four funct:i.mis 

be redefined for the particular purpose. 
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This idea becomes especially useful ",V'hen lTe desire to represent 

the direct or semi -direct product of two groups in LISP.. All "We 

essentially need to do is define a multiplication for ordered pairs (A B), 

and the same program may be used intact for this new group. 

From the central function GP, various other types of group products . 

can be defined. The function (MULTIGP A1 A2 ••• AN) will calculate 

the product of an arbitrary number of group elements, not being re~tricted 

to simply two. The functions (rop X L) and (RGP ~ L) calculate respec-

tively the left and right translations xL and Lx, of the complex L by 

the element x, while the function (COMPLEXGP L!vI) calculates the complex 

product of the subsets L and M. (The definitions and some examples 

of these functions may be found in the appendix.) 

One can analyze the structure of a group according to three mai.n 

classifications; its substructure, factor structure, and product struc-

ture. 

The first of these, the substructure, deals mainly with the study 

of the subgroups of a group and the internal group structure within 

r.:: .. ~;:.. the group itself" The problems then dea11rl.th such calculations. as 

listing all of the subgroups of a group, or of computing particular sub-

groups such as the normal subgroups, the comniutator subgroup, the center 

of the group, and perhaps the normalizer and stabilizers of certain 

elements and complexes. 

One of the primary functions necessary in this area is one to 

calculate the hull of a complex, C, which is the smallest subgroup 
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containing the complex, denoted by «C»). Since a necessary and 

sufficient condition that a complex C of a finite group be a subgroup 

is that it be closed under multiplication, 1fe have that 

«C) = c ~) C
2 

C C 

An explicit way to calculate the hull would be to square the complex, 

testing to see whether ar not the resul.t was the same set. If not, 

we adjoin all of the new elements so obtained, and again compute all 

/ 

possible products. Since the group is finite, and the supply of addi-

tional elements available for adjunction is limited, we must eventually 

arrive at the desired subgroup. 

The calculation involved in this If squaring" of the complex can 

be materially simplified by eliminating scme of the redundant products. 

If C is the complex, and if C f is the new set of elements obtained lIgon 

squaring C, then when we again square the resulting complex C U ct, 

there is no need to again recalculate the products in C2 . Consequently, 

(C u C t ) 
2 

= (C U C I) U [( C 1 C U CC I V C
2 

]. 

The LISP function (HULL C), which calculates the hull of ·the complex 

f:::::· C, works on exactly thi s p:rinciple. For an example we calculate the 

hull of the elements (RA2 R), yielding the subgroup (E A2 RA2 R). 

(APPLY (LAMBDA (X) «LAMBDA (T) (HULL X») (n4») «RA2 R») 
(A2 E RA2 E) 

With the use of this function we can proCeed to a calculation of 

all the subgroups of a group. 

Every subgroup is a union of certain of its cyclic subgroups. Tlrl.s 
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can be seen by considering the bull of one of the elements of the sub-

group, that is" the cyclic subgroup generated by this element. If this 

hull y:lelds the entire subgroup, then the subgroup itself 'Was cyclic 

and 'We are through. Othenrise,pick an element not in this hull and 

proceed in the same fashion. Since every subgroup is so generated, ve can 

first calculate all of the cyclic subgroups of the group" and consider 

only their distinct unions. By testing in each case as to vhetber or 

not a particular union actuaJ.ly forms a subgroup, 1ve may in this fashion 

'{~~~~~. obtain all the possible su'l:D:c'U'1's. The LISP function (SUBGROUPS) is 

....... 
:::::::-

based on this idea; the subgroups of n4 ere computed as an example: 

(APPLY (LAMBDA () «LAMBDA (T) (SUBGROUPS» (D4») (» 
«E) (RA3 E) (RA2 E) (RA E) (RA3 RA A2 E) (R E) (RA3 RA2 RA R A A2 A3 E) 
(ru~ R A2 E) (A2 E) (A A2 A3 E» 

In addition to HULL, tl-TO subsidiary functions are used in the defi-

ni tion of SUBGROUPS, (cycm X), and (CYCLICGROUPS). The first' of these 

ca1culates the cyclic subgroup generated by the elements X, vhile :the 

second yields all the distinct cyclic subgroups of the group. For 

example, in n4, 'VTe calculate the cycle generated by the element A, and 

the cyclic subgroups of n4 • 

(A."DPLY (LAMBDA (X) «LAMBDA (T) (CYCLE X) (D4») (A» . 
(A A2 A3 E) 

(AT?PLY (LAMBDA () «LAMBDA (T) (CYCLICSGROUPS» (D4») (» 
«E) (RA3 E) (RA2 E) (RA E) (R E) (A2 E) (A A2 A3 E» 

Another important problem is that of caJ.culating the invariant, 

or normal subgroups of the group. By its defining property a normal 

subgroup is a subgroup stable under conjugation by all the elements 
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of the group. Consequently, it must be a union of certain of the classes 

of the group, since the classes are the only complexes stable under 

conjugation. Moreover, t\10 elements sit in the same class if and only 

if their inverses do, and if a particular union of classes is to be a 

subgroup, the inverse classes must be present as 'Well. Therefore to 

calculate the normal subgroups ,re first adjoin each class to its inverse 

class and consider all possible unions of the resuJ.t1Dg set. By testing 

to see if each individual such union is a subgroup, and discarding those 

......... 
\:::::: which are not, we have a method to give all the possible normal subgrot:ps 

of the group .. Tbe LI~P function (NSUBGROUPS) performs this calculation, 

giving a list of the norma1 subgroups. For an example we calculate the 

110rmal subgroups of D4. 

(APPLY (LAMBDA () (LAMBDA (T) (NSUBGROUPS)) (n4))) ()) , 
«E) (E A2 A A3) (E A2) (E R RA2 A2) (E RA RA3 A2) (E RA Rli3 R RA2 A2 

A A3)) 

Finally the functions (CENTER, (COMSGROUP), (NORMALIZER X), 

(STABILIZER C), and (CENTRALIZER C) calculate the center of a group, 

the commutator subgroup, the normalizer of an element, an~ the stabilizer 

and centralizer of any complex respectively. By the stabilizer of 

C we mean the subgroup of aJ.l those elements in the group which conjugate 

the complex into itself, ,·;hile the centralizer of C is the subgroup whose 

elements commute with all the elements of C. The following are examples 

of these' functions. 

(APPLY (LAMBDA () «LAMBDA (T) (CENTER)) (n4))) ()) 
(E A2) 

(APPLY (IJtMBIlA. () «LAMBDA (T) (COMSGROUP)) (n4))) ()) 
(E A2) 
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(APPLY (LAMBDA eX) «LAMBDA (T) (NORMALIZER X» (D4») (RA» 
. (E A2 RA RA3) 

(APPLY (LAMBDA (c) «LAMBDA (T) (STABILIZER C» (D4») «A A2») 
(E A A2 AS) 

(APPLY (LAMBDA (x) «LAMBDA (T) (CENTRALIZER X» (D4») «R A2») 
(E A2 R RA2) 

The second main classification of the structure of a group is according 

to its factor structure. By this we mean the possible equivalence relations 

definable on a group such as the cosets of a subgroup or the classes 

and systems derivable from" the equivalence structur~, such as factor-

E::::: groups. Since an equivalence relation on a group partitions the group 

into disjoint fibers, after calculating the elements in the first fiber, 

we need consider only those elements of the group not in that fiber for 

the next calculation, and so on until the group elements are exhausted. 

The principal function used in the calcuation of such equivalence classes 

is the function (EQRELATION R L) 1>1hich is defined: 

(EQRELATION (LAMBDA (R L) (IF (NULL L) L « LAMBDA (W) 

(CONS W (EQRELATION R (ERASE W L»» (R (CAR L»»» 

In this case, R is a fUnction of one variable 1vhich yields all the elemer;ts 

equivalent to a given element. Using this function we can define the' 

function (LCOSETS S) to calculate the left cosets of the subgroup S, 

(LCOSETS (LAltIBDA (S) (LCOSETS* (GEIE-1EN'IS ) ) ) ) 

(LCOSETS* (LAMBDA (G) (EQRELATION (FUNCTION (LAMBDA (X) 
(LGP x S») G») 

and in an identical way, the function (RCOSETS S) to calculate the right 

cosets of S. As an example, we compute the left and right cosets of' 

the subgroup (15 RA) of D4. 
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(APPLY (LAMBDA (X) «LAMBDA (T) (LCOSETS X» (n4») «E RA») 
«E RA)(A R) (A2 RA3) (A3 RA2» 

(APPLY (LAMBDA (X) «LAMBDA (T) (RCOSETS X» (D4») «E RA») 
«E RA)(A RA2) (A2 RA3) (A3 R» 

The double cosets of two subgroups H and K are the complexes of 

the form HaIL They are the fibers of an equivalence relation so that 

we may in similar fashion define the function (DBLCOSETS H K) to compute 

the double cosets. 

(DBLCOSETS (LAMBDA (H K) (DBLCOSETS* (GErnMENTS»» 

(DBIDOSETS* (LAMBDA (G) 

(EQRELATIqN (FUNCTION (LAMBDA (X) (COMPLEXGP H (rop X K»» G))) 

Again, for an example, we calculate the double cosets of the sU~groups 

(E RA) and (E RA2) of D4. 

(APPLY (LAMBDA (X Y) «LAMBDA (T) (DBT"cOSETS X Y» (D4») 
«E RA)(E RA2») 

«E RA2 PA A) (A2 R RA3 A3» 

One of the equivalence relations of greatest :importance is that 

defining the classes of a group. In order to find -all the classe s, 1-re 

need to be able to compute the class of a given element. To c10 this 

effectively v1e make use of- the theorem that t'-TO elements p and q con-

jugate an element a into the same element if and only if they lie in 

the same right coset of the normalizer of a. That is, . 

-1 -1 -1 -1 
pap=qaq # gpa=aqp 

• 
<=> en:> -1 e N a ~ q e NaP 

To find the equivalence class of an element, 'or the distinct 

conjugates of that element, 'He need only conjugate the ele!:1Gnt bJ" Ol"le 
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member in each right coset of the normalizer of that element. Conse-

quently, again using the function EQRELATION, we define the LISP function 

(CLASSES), to calculate the classes of the group. 

(CLASSES (LAMBDA () (CLASSES* (GELEMENTS»» 

(CLASSES* (LAMBDA (G) (EQRELATION (FUNCTION (LAMBDA (X) 

(CONJUGATES X (XSECTION (RCOSETS (NORMALIZER X»»» G») 

Each class is thus obtained by conjugating the element X by each of 

the elements in a cross section of the right cosets of the normalizer 

t:::.::' of X. Using this function 'tie compute the classes of D4: 

(APPLY (T.zAMBDA () «LAMBDA (T) (CLASSES» (D4») (» 
«E) (A A3) (A2) (n RA2) eRA RA3» 

Analogously, 'tn th the function (HCLASSES H) we can calcuJ.ate t:C.e 

H-classes of the group. These are the classes in which the conjugating 

element comes from a particular subgroup H. In this case we obtain dist:tnct 

conjugates of an element a by selecting the conjugating elements fro:.n. 

a cross section of the right cosets of N ('\ H, in H. As an example 
a 

we calculate the H-classes of the subgroup (E A A2 A3). 

(ArPLY (LAMBDA (X) «LAMBDA (T) (HCLASSES X» (n4») «E A A2 A3)) 
«E) (A) '(A2) (A3) (R RA2) (RA RA3») , 

Finally, there is the problem of' computing the group table of a 

factor group of G by same normal subgroup N of G. By selecting a cross 

section of the cosets of N, lie can discover ,,,bich coset any particular 

product of these elements is in, and consequently generate the multi-

plication table of the cosets. This table is obtained in the LISP 

format for a group table, so that we may be able to deal with factor 
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groups by using the same LISP functions as for groups. The LISP function 

(FACIDRGROUP N) ~ w'here N is the normal subgroup, perf?rIns this calculation .. 

As an example we compute the factor gro~p of the normal subgroup (E A2) 

of D4. 

(APPLY (LAMBDA (X) «LAMBDA (T) (FACTORGROUP X)) (n4») «E A2») 
(E (E E A A R R RA RA) A (E A A E R RA RA R) R (E R A RA R E RA A) RA 
(E RA A R R A RA E» 

By rebinding the free variable T to this group table after it bas been 

calculated, we may extract properties such as the classes from this 

F;;;:' factor group. 

(APPLY (LAMBJJA (N) «LAMBDA (T) «LAMBDA (T) (CLASSES» (FAC~ORGROUP u»)) 
(D4)) «E A2») . 
«E) (A) (R) (RA» 

The finaJ. classification of the group structure is its proCiuct 

structure... An important element of this structtU'e CO!lcerns the question 

of whether or not the group may be a direct or semi-direct product of 

certain of its constituent subgroups. If this :ts the case, vTe need 

only the multiplication tables of these sma1le~ subgroups, and hence 

quite large groups can be ha..'t'ldled by giving th~ir product decomposition. 

Another case "There this decomposition is useful is in calculating repre-

sentations since the matrix representations of a semi-direct product 

may often be obtained from the subgroup factors themselves .. 

Given two groups G and G', the elements of a direct or semi-dixect 

product are elements of the cartesian product GxG', and thus can best be 
" 

handled as ordered pairs (a b) 1vhere a E G, bEG'. As was mentioned 

before, all that is necessary to use such elements in the program is 
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to redefine the multiplication and inverses, GP and A-l, along· with 

. (GELEMEN'IS) and (UNIT) for such ordered pair s • 

For a direct product this might be done as follows: we let the 

free variable T be (Tl T2) 'Where, if G = G1xG2, then Tl is the group 

table for Gl,and T2 the group table for G2. Since multiplication for 

the direct product is defined coordinatevise: 

(a b)(a' b t ) = (sa' bb') 

the function GP would then be: 

(GP (LAMBDA (A B) (LIST 

(ASSOC (CAR B) (ASSOC (CAR A) (CAR T») 

(ASSOC (CADR B) (ASSOC (CADR A) (CADR T»»)) 

and similarly for A-l, etc. 

In the case of the semi-direct product, the situation is somewhat 

more complicated since three group tables need to be specified.· If 

G = G:G' = [(a b) \ a E G, bEG'], then G' is an operator group 

on G ~th the multiplication defined: 

(a b)(a t b t ) = (ab(a') bb'). 

Consequently, along 1vith the group tables of G alld G' respectively, 

we also need a table of the group Gt acting on G. This latter table 

may be kept in the standard form by extracting b(a) from the table as 

though it were a ::u"oduct bea. By letting T = (Tl T2 T3) be a list 

of the three tables in question, ,rith Tl the table of G, T2 the table 

of G t, and T3 the table of G t acting on G, we have the some'tvbat complicated, 

but nevertheless adequate definition for the function GP: 
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{GP (LAMBDA (A B) (LIST 

(ASSOC (ASSOC (CAR B) (ASSOC (CADR A) (CADDR T) 

(ASSOC (CAR A) (CAR T») 

(AsSOC (CADR B) (ASSOC (CADR A) (CADR T»»» 

An example of this is again in the group D4, which is the semi-direct 

product of the two sub~oups A = (E A A2 A3) and R = (E R); that 

is, n4 = A:R, where the automorpbisms of R o~ A are given by conju-.. '. 
gation. If x € A, and Y € R, then y{x) = y.lxy. For an example" 

'We compute the functions (GEIiEMENTS), (CLASSES), and (CENTER) of n4 

in the semi-~ect product notation. 

(APPLY (LAMBDA () «LAMBDA (T) (QELEMENTS» (D4») (» 
«E E) (E R) (A E) (A R) (A2 E) (A2 R) (A3.E) (A3 R» 

(APPLY (LAMBDA () «LAMBDA (T) (CLASSES» (D4») (» 
«( E E» «E R) (A2 R» «A E) (A3 E» «A R) (A3 R» «A2 E») 

(APPLY (LAMBDA () «LAMBDA (T) (CENTER» (D4») (» 
«E E) (A2 E» . 
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APPENDIX 

I. General List Processing Functions 

(EQUAL (LAMBDA (X 1) (OR 
(EQ X Y) 
(AND (NULL X) (NULL y» 
(AND (NOT (OR (NULL X) (NULL y) (A'roM X) (ATOM Y») 

(EQUAL (CAR X) (CAR Y» 
(EQUAL (CDR X) (CDR y»»» 

The time required for computing group theory functions can be 

significantly decreased by using instead of EQUAL, a function EQUAL*, . . 

f~~~: which is to be defined in each case to test equality of group elements 

which are of a specific form. For exam:ple, if it is known that the 

grOl,Q elem~nts are atoms, the definition 

will suff'ice. 

(Y.rIST (LA..~DA L L) 

(APPEND (LAMBDA (L M) 

(EQUAL* EQ) 

(IF (NULL L) 1·1 (CONS (CAR L) (APPEND (CDR L) M»») 

(ELEM (LAMBDA (X L) (AND 
(NOT (IruLL L» 
(OR (EQUAL* X (CAR L» (ELEM X (CDR L»»» 

(SUBSET (LAMBDA (S L) (OR 
(NULL S) 
(AND (ELEM (CAR S) L) (SUBSET (CDR S) L»») 

(SAME:* (LAMBDA (L M) (AND (SUBSET L M) (SUBSET M L»» 

(MmMBER (I&ffiDA (L M) (AND 
(NOT (NULL M» 
(OR (S.AME* L (CAR M» (l~ER L (CDR M»»» 

(RElIDVE (LAMBDA (X L) 
(IF (IroLL L) L (IF (EQUAL* X (CAR L» (CDR L) (CONS (CAR L) (REMOVE X 

(CDR L»)))) 
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(ERASE (LAMBDA (L M) 
(IF (NULL L) M (ERASE (CDR L). (REMJVE (CAR L) M»») 

(WDNG* (LAMBDA eX L) (IF (ELEM X L) L (CONS X L»» 

(TALLYCOMPLEMENT (LAMBDA (L M) 
(IF (NULL L) M (TALLYCOMPLEMENT (CDR L) (CDR M»») 

(ANONGLIST (LAMBDA (L M) 
(IF (NULL L) M (IF (ELEM (CAR L) M) (AMONGLIST (CDR L) M) 
(CONS (CAR L) (AMONGLIST (CDR L) M»))) 

(INTERSECTION {LAMBDA (L M) 
(IF (NULL L) L (IF (ELEM (CAR L) M) (CONS (CAR L) (INTERSECTION 
(CDR L} M» (INTERSECTION (CDR L) M»») 

(UNIONS (LAMBDA (L) (UNIONS-X· L (LIST»» 

(UNIONS* (LAMBDA (L M) 
(IF (NULL'L) M (UNIONS* (CDR L) (CONS (CAR L) (APPEND (UNIONS** 
(CAR L) M) M»»» 

(UNIONS** (LAMBDA ex L) . . 
(IF (NULL L) (LIST (CONS (APPEND X (CAR L» (UNIONS** X (CDR L»»» 

(ASSOC (LAMBDA (X L) 
(IF (EQUAL* X (CAR L» (CADR L) (ASSOC· X (CDDR L»») 

(ASSOC* (LAMBDA (x L) 
(IF (EQUAL* X (CADR L») (CAR L). (ASSOC* X (CDDR L»») 

II. Basic Group Theory Functions . 

(GP (LAMBDA (A B) (ASSOC Y (ASSOC X T»» 

(A-l (LAMBDA (X) (ASSOC* (UNIT) (ASSOC x T») 

(UNIT (LANBDA () (CAR T») 

( GELEMEN'IS (LAMBDA () (GELEMENTS* T») 

(GELEMENTS* (LAMBDA (L) 
(IF (NULL L) L (CONS (CAR L) (GELEMBlNTS* (CDDR L»»» 

(LGP (LAMBDA (X L) 
(IF (NULL L) L (CONS (GP X (CAR L» {LGP X (CDR L»»» 
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(RGP (LAMBDA (X L) 
(IF (NULL L) L (CONS (GP (CAR L) X) (RGP X (CDR L»»» 

(MULTIGP (LAMBDA L (M:>NOGP L») 

(MONOGP (LAMBDA (L) (GP (CAR L) (IF (NULL (CDDR L» (CADR L) (M)NOGP 
(CDR L»»» _ 

(COMPLEXGP (LAMBDA (L M) 
(IF (NULL L) L (.AM:>NGLIST (LGP (CAR L) M) (COMPLEXGP (CDR L) M»») 

(COMMU'.M.WR (LAMBDA (A B) {MULTIGP A B (A-l A) (A-l B» » 

(CONJUGATE (LAMBDA (p X) (MULTIGP (A-l p) X p») 

(INVERSES (LAMBDA (L) 
(IF (NULL L) L (CONS (A-l (CAR L» (mvERSES (CDR L»»» 

(CONJUGATES (LAMBDA (X L) 
(IF (NULL L) L (CONS (l,ruLTIGP (A-1 (CAR L» (CONJUGATES (CDR L»»» 

(GP X Y); 
(APPLY (LAMBDA (X Y) «LAMBDA (T) (GP X Y»( D~.») (A RA3» 
RA2 
(A-1 X); 
(APPLY (LAMBDA (X) «LAMBDA (T) (A-l X» (D4») (A3» 
A . 
(GEI.E~~nTS) ; 
(APPLY (LAMBDA () «LANBDA (T) (GELEMEmS» (D4») (» 

(E A A2 A3 R RA RA2 RA3) 

(rop XL); 
(APPLY (LAMBDA (X Y) «LAMBDA (T) (rop X Y» (D4») (R (A A2 A3») 

(RA RA2 RA3) 

(RGP XL); . 
(APPLY {LAMBDA (X Y) «LAMBDA (T) (RGP X Y» (D4») (R (A A2 A3 ») 

(RA3 RA2 RA) 

(MULTIGP X Y Z W ••• ); . 
(KPPLY (LP.MBDA (X Y z W) «LAMBDA (T) (MULTIGP Z W Y X» (D4») (A R A2 

RA» 
A2 
(COMPLEXGP X Y); 
(APPLY (LAMBDA (X Y) «LAMBDA (T) (COMPLEXGP X Y» (D4») «R RA) (A RA2») 

(RA A2 RA2 A) - -
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III. Substructure Functions 

(HULL (LAMBDA (C) «LAMBDA (H) (HOLI.l C (ERASE C 1-1») (COMPLEIDP C C»)) 

(HULLI (LAMBDA (U V) , 
(IF (NULL V) U «LAMBDA (X) (HULLI X (HULL2 X V») (APPEND V U))) 

(HULL2 (LAMBDA (C1 C2) (ERASE C1 (AMONGLIST (COMPLEXGP C1 C2) (COMPLEXGP 
C2 U»») 

(CYCLE (LAMBDA (A) (CYCLE* A») 

(CYCLE* (LAMBDA (X) 
(IF (EQUAL* X (UNIT) (LIST X) (CONS X (CYCLE* (GP A X»»» 

(CYCLICSGROUPS (LAMBDA () (CYCLICSGROUPS* (REMJVE (UNIT) (GELEMENTS» 
(LIST»)) 

(CYCLICSGROUPS* (LANBDA (G L) , 
. (IF (NULL G) L «LAMBDA. (X) (IF (MEMBER X L) (CYCLICSGROUPS* (CDR G) L) 

(CONS X L») (CYCLE (CAR G»»» 

(SUBGROUPS (LAMBDA () (CONS (LIST (UNIT» « LAMBDA (X) 
(SUBGROUPSI X X (LIST») (CDR (CYCLICSGROUPS»»» 

(SUBGROUPSl. (LAMBDA. (C* C L) 
(IF (NULL C) C «LAMBDA (X) . 

(SUBGROUPS2- (CAR C) X X» (SUBGROUPSl (CDR C*) (CDR C) L»))) 

(SUBGROUPS2 (LAMBDA (C L* L) 
(IF (NULL L*) (CONS C L) «LAMBDA (H) 
(IF (OR (MEMBER H L) (MEMBER H C*» (SUBGROUPS2 C .CDR L*) L) 
(SUBGROUPS2 C (CDR L* (CONS H L)'») (HULL (AIvDNGLIST C (CAR L*))))) 

(NSUBGROUPS (LAMBDA () (CONS (LIST (UNIT» (NSUBGROUPS* (CLASSPAmS 
(UNIONS (CDR (CLASSES)) (LIST»») 

(l'TSUBGROUPS* (LAMBDA (L M) 
(IF (NULL L) M «LAMBDA (X) 
(IF (NULL (TALLYCOMPLEMENT X (COMPLE1.'GP X X») (NSUBGROUPS* (CDR L) 
(CONS X M» (NSUBGROUPS* (CDR L) M») (CONS (UNIT) '(CAR L»»») 

(CLASSPAIRS (LAMBDA (L) 
(IF (NULL L) L (IF (ELEM (A-I (CMB L») (CAR L» (CONS (CAR L) 
(CLASSPAIRS (CDR L» «LAMBDA (Z) (CONS (CAR Z) (CLASSPAIRS' (CDR Z»» 
(PAIR (CAR L) (CDR L»»») 
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(PAIR (LAMBDA (X L) 
(IF (NULL X) L (IF (ELEM (A-l (CAR X» (CAR L» 
(CONS (APPEND X (CAR L» (PAIR (LIST) (CDR L») 
(CONS (CAR L) (PAIR X (CDR L»»») 

(CENTER (LAMBDA () «LAMBDA (X) (CENTER* (CAR X) (CDR X») (GELEMENTS»» 

. (CENTER*" (LAMBDA (A G L) . 
(IF (NULL G) (CONS (UNIT) L) (CENTER* (CAR G) (CDR G) (NORMALIZER* L))) 

(NOBMALIZER (LAMBDA (A) (NORMALIZER* (GELEMENTS»» 

(NORMALlZER* (LAMBDA (G) 
(IF (NULL G) G (IF (EQUAL* (GP (CAR G) A) (GP A (CAR G») 
( CONS (CAR G) (NOBMALIZER* (CDR G») (NORMALIZER* (CDR G»»» 

(COMSGROUP (LAMBDA () (HULL (COMSGROUP* (GELEMENTS»») 

(COMSGROUP* (LAMBDA (G) 
(IF (NULL G) G (ANONGLIST (COM)P (CAR G) (CDR G» (COMSGROUP* (CDR G))))) 

(COIIDP (LAMBDA (X L) 
(IF (NULL L) L (CONS (CO:MMUTATOR x. (CAR L» (COllDP X (CDR L»»» 

(STABILIZER (LAMBDA (C) ( STABILIZER* (GELElvIENTS ) ) ) ) 

(STABILIZER* (LAMBDA (G) 
(IF (NULL G) G (IF (SAME*' (LGP (CAR G) C) (ROP (CAR G) C» . 
(CONS (CAR G) (STABILIZER* (CDR G») (STABILIZER* (CDR G»))) 

(CENTRALIZER (LAMBDA (C) (CENTRALIZER* (GEILEMENTS»» 

(CENTRALIZER* (LAMBDA (G) 
(IF (NULL G) G (IF (CENTRAL (CAR G) C) (CONS (CAR G) (CENTRALIZER* 
(CDR G») (CENTRALlZER* (CDR G»»» 

(CENTRAL (LAMBDA (A C) (OR (NULL C) . 
(AND (EQUAI,.X- (GP A (CAR C» «GP (CAR C) A» (CENTRAL 1'.. (CDR C»»» 

IV. Factor Structure Functions 

(EQRELATION (LAMBDA (R L) 
(IF (NULL L) L «LAMBDA (Vi) 
(CONS W (EQRELATION R (ERASE W L») (R (CAR L»»» 

(LCOSETS (LAMBDA (S) (LCOSETS* (GELEMENTS»» 

(LCOSETS* (LAMBDA (G) (EQ,RELATION (FUNCTION (LAMBDA (X) (lGP X S») G») 
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(RCOSETS (LAMBDA (S) (RCOSETS* (GEIEMENTS»» 

(RCOSETS* (LANBDA (G) (EQRELATION (FUNCTION (LAMBDA (X) (RGP X S») G») 

(DBLCOSETS ~. (LAMBDA (H Ie) (DBLCOSETS* ( GELEMENTS) ) ) ) 

(DBLCOSETS* (LAMBDA (G) (EQRELATION (FUNCTION (LAMBDA (X) 
(COMPLEXGP H (LGP X K»» G») 

(CLASSES (LAMBDA () (CLASSES* (GEIID1E!NTS»» 

(CLASSES* (LAMBDA (G) (EQRELATION (FUNCTION (LAMBDA (X) 
(CONJUGATES X (XSECTION (RCOS~ (NORMALIZER X»»» G») 

(HCLASSES (LAMBDA (H) (HCLASSES* (GELEMENTS»» 

(HCLASSES* (LAMBDA (G) (EQRELATION (FUNCTION (LAMBDA (X) 
. (CONJUGA~S X (XSECTIOU «LANBDA (A) «LAMBDA (5) 

(LCOSETS* H» (NORMALIZER* H») X»») G») 

(FACTORGROUP (LAMBDA (N) «LAMBDA (C*) «LAMBDA (G*) (FACTORGROUP* G*») 
(XSECTION C*») (LCOSETS W»» 

(FACTORGROUP* (LAlvlBDA (G) 
(IF (NULL G) G ( CONS (CAR G) (CONS (FACrroRRO~l (CAR G) G*) 
(FACTORGROUP* (CDR G»»») 

(FACTORROW (LAMBDA (A G) 
(IF (NULL G) G (CONS (CAR G) (CONS (COSETREP (GP A (CAR G» C* ) 
(FACTOBROvT A (CDR G»»») 

(COSETREP (LAMBDA (X L) 
(IF (ELEM X (CAR L» (CAAR L) (COSETREP X (CDR L»»} 

V. Product Structure Functions 

A. Direct Product Functions 

(GP (LAMBDA (A B) {LIST (ASSOC (CAR B) (ASSOC (CAR A) (CAR T») 
(ASSOC (CADR B) (ASSOa (CADR A) (CADR T»»» 

(A-l (LAMBDA (X) (LIST (ASSOC* (CAAR T) (ASSOa (CAR X) (CAR T») 
(ASSOC* (CAADR T) (ASSOC (CADR X) (CAnR T»)) 

(UNIT (LAMBDA () (LIST (CAAR T) (CAADR T»» 

(GELEMENTS (LAMBDA () (CARTESIAN (GEIEMENTS* (CAR T» (GELEMENTS* (CADR T»») 
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(CARTESIAN (LAMBDA (L) 
(IF (NULL L) (LIST L) (BICARTESIAN (CAR L) (CARTESIAN (CDR L)))) 

(BICARTESIAN (LAMBDA (U V) 
. (IF (NULL U) U « LAMBDA (U*) (BICAR'H18IAN* V» (CAR U»») 

(BICARTESIAN* (L.4MBDA (V*) 
(IF (NULL V*) (BIC.ART:reSIAN (CDR U) V) 
(CONS (CONS U* (CAR V*» (BICARTESIAN* (CDR V*»»» 
B. Semi-Direct Product Functions 

(GP (LAMBDA (A B) (LIST (ASSOC {ASSCC (CAR B) (ASSOC (CADR A) (CADR T»)) 
(ASSOC (CAR A) (CAR T») 

(ASSOC (CADR B) (ASSOC (CADR A) (CADR T»»» 

<~~\\\.... (A-l (LAMBDA (X) «LAMBDA (Z) {LIST 
(ASSOC {ASsoe* (CAAR T) (ASSOC (CAR A) (CAR T») (ASsoe z (CADDR 

T») z») 
(ASsoe* (CAADR T) (ASSOC (CltoR A) (CADR T»»» 

(UNIT (LA..~DA () (LIST (CAAR T)( CAADR T»» 

(GELEMENTS (LAMBDA () (CARTESIAN (GELEMENTS* (CAR T» ( GELt!~Tvfu:J""').iTS* 
. (CADR T»») 

(D4 (LAMBDA () (QUOTE 
«E (E E A A A2 A2 A3 A3) 

A (E A A A2 A2 A3 A3 E) 
A2. (E A2 A A3 A3 E A3 A) 
A3 (E A3 A 11= A2 A A3 A2» 
(E (E ERR) 
R (E R R E» 

(E (E E A A A2 A2 A3 A3) 
R (E E A A3 A2 A2 AS ~A}»»)) 




