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ABSTRACT 

In addition to the primitive functions contained in MBLISP 
which perform operations on integers in the range 0-2**15, a number 
of LISP functions are described by which simple arithmetic operations 
belonging to a number of systems, such as complex numbers, matrices and 
vectors, may be performed. 
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ARITHMETIC FUNCTIONS 

Since most of the computers on which one would wish to implement 
LISP lack a non-arithmetical flag bit, the introduction of arithmetical 
data words on the same par with list linkages causes no small amount of 
inconvenience. The functions described here use the 15 bit decrement 
of the IBH 709 as a binary number. with a prefix 2 (PTI'J) to indicate 
that the number is not a data linkage. Nevertheless they are described 
in a thoroughly hardware-independent fashion so that when flag bits 
become very co~~on, no change in existing LISP programs will be required 
to increase the number of figures handled as a unit. 

The arithmetic functions themselves each have two values rather 
than one. In this way none of the information concerning the operation 
is lost, although it can be discarded by the appropriate auxiliary 
functions. For example, since the product of two 15 bit numbers is a 
30 bit number, the two values of the product yield respectively the high 
and low order bits of the product. The functions produce two values 
rather than a list of their tt~O values in order not to place the 
burden of constructing a list upon purely arithmetic functions, as well 
as to yield a slight improvement in their operating efficiency. 

The auxilh,ry functions to be used to select one of the two 
values are: 

lost. 
write: 

(ISTVAL (G X V»~ which selects the first value of the 
two-valued function G. 

(2NDVAL (G X V»~ which selects the second value of 
the two-valued function G. 

Under the action of ISTVAL or 2NDVAL the value not selected is 
If one wishes to use both values of such a function he should 

((LAHBDA (U V) ,( ••• )) (G X V)) 

whereupon U will become the first value of G, V the second. 
Being operators rather than functions, lSTVAL and 2NDVAL 

may be written anywhere in a pro~rarn, even as functions of no 
variables. Good coding practice, ho~ever, demands that they enclose 
their tl'm-valued function as an argument so that the time of their 
operation "dll be 'Precisely known. 

The purely arithmetical functions have beeR introduced within 
the system with the character $ appearing as a prefix to their name. 
The purpose of this is to render these names unusual, so that they 
will clearly be understood to be system functions, not ordinarily 
used by a programmer. They would be embedded in more sophisticated 
arithmetic functions having more universally accepted naMes. 
Observation of this convention will permit definitive versions of 
functions using arithmetic operations to be written, while still 
a11m,Ting a certain freedom for experimetlietiim in the actual 
constitution of the primitive arithmetic functions. 
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The arithmetical functions are: 

($PLUS X Y) The first value is a predicate assuring 
us that overflow has not occurred in the sum; 
its value is F for overflow, T for no overflow. 
TIle second value is the actual nUMerical sum, 
modulo overflow. Both X and Yare assumed to 
be positive. 

($MINUS X Y) The first value is a predicate telling 
whether the difference X-Y is positive, for 
which it is T; if negative F. The second value 
is the absolute value of the difference. Both 
X and Yare assumed to be nositive. 

($THmS X Y) The first value is a numeral, the first 
15 bits of the product, or more generally the 
hi~hest order bits of the product. The second 
value, also numerical, yields the last 15, or the 
low order bits of the product. If X and Yare 
interpreted as integers, 2NDVAL would normally 
be used to select their product, while if they 
were regarded as fractions, ISTVAL would be used. 
Since the representation of the numeral is 
binary, only· octal or binary fractions may be 
used conveniently, which somewhat limits the 
usefulness of the latter represnetation. 

($DIVIDE X Y) The first value is the quotient; the 
second value the remainder. The latter can be 
used in calculating a number modulo a base. 

Certain words of caution apply to the use of these functions. 
First, they aSSUMe that their arguments are positive integers, so 
that one must already write a composite LISP function to deal with 
signed integers. This restriction is partially an artifact of the 
details of construction of the MBLISP processor, which reserves the 
sign bit of a memory cell as a flag for the garbage collector. The 
ability to deal directly with signed integers is sufficiently valuable 
that the processor will probably be reorganized accordingly. 

Secondly, al ~hough ,"e speak of the arguments of the arithmetical 
functions and certain of their values as being numerical, these 
functions make no effort to make any identification of their arguments. 
If the arguments are numerical, the values will result properly, but 
the addition, for instance, of two non-numerical arguments will result 
in a non-numerical second value. The difference of non-numerical 
arguments presents a particular hazard to the unwary programmer, for 
MBLISP detects atoms by a test of numerical magnitude, NIL, which 
terminates lists, being the lowest atom. Thus the ALIST may appear 
to be prematurely terminated by such a difference. 

Some static test is necessary to distinguish numbers from 
addresses at least in that part of the memory store which contains 
the list structure. For instance, the garbage collector must be 
restrained from confusing the two cases; by either attempting to 
save spurious list structure, or falsely interpreting an end of list 
and neglecting to save the remainder. Likewise, since lists and 
numbers may be passed back and forth between pro~rams which have no 
dynamic ability to make the distinction, it must be made statically. 

•• 



L 

ARITHMETIC-3 

For example, PRINT must ba forewarned whether to make an ocol or 
decimal conversion before attempting to deliver its ar~ent to the 
output tape. 

For these reasons, a predicate is provided to sense the prefix 
which denotes a number. 

(NUM X) is true if its argument is a numeral, false 
otherwise. 

This flag is presumed set by the conversion routine which first 
creates the numeral; all functions having a numeri~al value (or values) 
will automatically preserve· the flag. The functions CAR, CDR, CONS 
will automatically copy the numerical. flag when it is_attatched to their 
arguments. 

Two functions allow us to make comparisons of numerals: 

(EQ X Y) takes the value T if its arguments are both 
numerals and both equal. It will take the value 
F if either argument is a numeral and the other 
not. In addition it has its usual significance 
for atoms and lists. 

(SL X Y) is true if its first argument, X, is strictly 
less than its second argument, Y; otherwise it is 
false. It ignores the numeral flag, so that it 
may also be used to compare an absolute core 
address (which is the way atoms and lists both are 
actually represented in the memory store) to a 
numeral. 

Four functions may be used to convert an atomic symbol to the 
number which it represents, or back again: 

(DEC N) The value of this function is the binary 
equivalent of the atomic symbol N which is 
supposed to be a string of not more than 5 
decimal die-its. 

(OCT N) makes the cor~esponding octal conversion 
of the atomic symbol N, which is a string of 
not more than 5 octal digits. In both cases the 
capacity of the conversion is 3276810 = 777778 

(UNDEC Xl converts the number X into the atomic 
symbol representing the decimal equivalent of X. 
No checking is performed to ensure that X is in 
fact a numeral, so that if it is a list connector 
which appears as the argument X, the result will 
be the decimal address of the referenced 
exPression in the memory store. 

(UNOCT X) makes the analogous conversion of X into 
its octal equivalent as an atomic symbol. 
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For the present, no conversion of floating point numbers 
or of exponential notation is attempted. Thus, only integers can 
be dealt with directly. 

There is some question whether the conversion of a numerical 
atomic symbol into its binary equivalent should be explicitly commanded 
or not. Often, one adopts the convention that any string of numerals 
is to be converted upon initial readin, and any string containing 
other markings, such as decimal points or E's should be dealt with 
accordingly. Such a decision presents the difficulty that one cannot 
use numerals to designate variables, at least in the present 
constitution of the porcessor, for instance. Admittedly such practices 
are rare, but they do occur. Also, the automatic conversion releives 
the programmer of the corresponding responsibility. l'!e nevertheless 
prefer to order the explicit conversion as necessary. 

Continual conversion is wasteful and time consuming, so that 
in those contexts where it is known that all arpuments of a series 
of functions are numerical, it is preferable to make an initial 
numerical conversion, and a final conversion to allow the printing 
of the functionvalues. This precaution, of converting the arguments 
must also be followed in tracing, or in printing intermediate results. 

While numerals may easily enou!!h be located in output by the 
aid of the predicate NUH, one r.rust establish conventions concerining 
input expressions. Rather than disintegrate each atom, to see whether 
it is a digit-string, it is more convenient to let context determine 
numerical arguments. In that case, the a~gument is automatically 
converted, whether or not its constituent atoms are numerical, and it 
is the responsibility of the proerammer to follow the proper format for 
such expressions. 

The format in question is the following: All atoms are presumed 
to represent numbers save the minus sip,n, -. A positive number is a 
single atom, as ~, 1, 3, 967, etc. A ne~ative number is written as 
a list of two atoms, the first a minus sign, as (- 1), {- 911), etc. 
Other quantities, such as vectors, complex numbers and the like, are 
expressions having these former quantities as elements. For example, 
we write the complex number x + iy as (x y) j instances of '''hich 
would be 1 = (1 0), i = (0 1), 3 - 2i = (3 (- 2)), and so on. 

The following three functions are useful for ~erforwing 
conversions: 

(NUMBE1HERE (LAMBDA (L) (COND 
((EO L (OUOTE -)) L) 
((ft.TOH L) (DEC L)) 
((NULL L) L) 
((AND) (CONS (NUt-ABE11iEPE (CAR L): ;, 

(NUMBETlIERE (CDR L)))) ))) 

(NUMBEGONE (LAMBDA (L) (COND 
((NUH L) (UNDEC L)) 
((ATm.,' L) L) 
(NULL L) L) 
((AND) (CONS (NUHBEGONE (CAR L)) 

(NUNBEGONE (CDR L)))) ))) 
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(PRINT* (LNTBDA (L) «LAHBDA (X) L)(PRINT (NUMBEGONE L»))) 

This last function avoids a repetitous conversion at the price 
of an additional LAMBD!.; for short expressions one might also write 
an alternatitive definition, 

(PRINT* (LN4BDA (L) (NU~1BETHERE CPPINT (NUlvlBEGONE L))))) 

The configuration, ••• (NUMBEGONE C ••• (NUHBETHERE L))) ••• must occur 
at some level of any LISP function handling numerical quantities. 

It is not difficult to systematically produce a series of 
compound functions designed to perform arithmetic operations upon 
specialized sorts of numbers. Since the addition of positive integers, 
for instance, is different from that for siRned integers, vectors, 
complex numbers, and other quantities, it is convenient to give the 
particular operations systematic names which denote the type of 
quantity to which they are to be applied. The unadornec symbols, 
+ - * I ** and so on, are preferably reserved to have anpronriate meanings 
for a definite problem area in which a series of functions are applied. 

Toward this end, the following system of prefixes may be 
used to designate different classes of operations: 

I operations on positive integers 
G operations on signed integers 
R operations on rational numbers 
K operations on complex numbers 
V operations on vectors 
M operations on matrices 
Q operations on quaternions 
S scalar operations on vectors and matrices 

I operati ons The arithmetic functions, $PLUS, $r.~INUS, $TUtES, 
$DIVIDE are designed to treat their arguments as positive integers 
(or zero). However, they possess t''10 values, to alloW the possibility 
of writing multiple precision functions using a list of integers in 
the range 0-777778, or to allow the detection of overflow and the 
like. If one assumes that he is dealing with small positive integers 
always, this additional information can be neglected, and it is only 
necessary to comnose each of the functions with 2NDVAL in order to 
discard it. Thus we define: 

(1+ (LMlBDA (X Y) (2NDVAL ($PLUS X Y)))) 

(1- (Uu~IBDA (X Y) «LA~:BDA (X Y) (IF X Y 
(LIST (QUOTE -) V»~) (%HINUS X V»))) 

(1* (LA~.1BDA (X Y) C2NDVAL (%TIHES X V)))) 

(II (LA~fBDA (X Y) (lSTVAL ($DIVIDE X Y)))) 

(REH (LAMBDA (X Y) (2NDVAL (%DIVIDE X Y)))) 

All these functions yield positive values save 1-, which 
will yield a negativl> Integer, represented as (- n), if its second 
argument is la!g~r than the first, so that x-y is actually negative. 
II yields th~ Integral part of the qu~tient x/y; REM the remainder. 
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G operations To represent signed integers. we adopt the 
convention that an isolated numeral is to renresent a positive 
number, while the list (- n). in which n is a numeral, represents 
the negative nu.'Tlber -no Consequently the predicate NUM may be 
used as the test for positiveness of a number. All the signed 
operations procede by an enumeration of the four possible sign 
combinations of the two arguMents. 

(NEG (LAMBDA (X) (IF (NUM X) (LIST (QUOTE -) X) 
(CADR X)))) 

(G+ (LAMBDA (X Y) (IF (NUH X) (IF (NUN Y) (1+ X Y) 
(I- X (CADR V»~) (IF (NUH Y) (1- Y (CADR Xl) 
(LIST (QUOTE -) (1+ (CADR X) (CADR V»~»~ ») 

(G- (LM1BDA (X Y) (G+ X (NEG V»~»~ 

(G* (LAMBDA eX Y) (IF (NUH X) (IF (Nt»1 Y) (1* X Y) 
(LIST (QUOTE -) (1* X (CADR V»~) ) 
(IF (NUM Y) (LIST (QUOTE -) (1* (CADR X) Y» 
(r* (CADR X) (CADR V»~ ) ») 

(GI (LM,mDA (X Y) (IF (Nm1 X) (IF (NUV Y) (II X Y) 
(LIST (0UOTE -) {II X (CADR V»~) ) 
(IF (NUM Y) (LIST (QUOTE -) (II (CADR X) V»~ ) 
(1/ (CADR X) (CADR V»~ ) ») 

(GREM (LArvffiDA (X Y) (IF (NmI X) (IF (NUH Y) (REH X Y) 
(REM X (CADR Y» ) (IF (NUM Y) (LIST (QUOTE -) 
(REi'l (CADR X) Y» (LIST (QUOTE -) (REt" (CADR X) 
(C.~R V»~) ) ») 

K operations Complex numbers are conveniently represented as 
a list consisting of their real part followed by their imaginary 
part. Both real and imaginary parts may be presumed to be signed 
integers; thus one would represent 3-5i as (3 (- 5». One Must observe 
the precautionthat com~lex numbers with imaginary part zero are only 
isomorphic to the signed integers and not identical to them, as may 
be seen by contrasting I with (1 0). 

(KCON..T (LM'<BDA (Z) (LIST (CAR Z) (NEG (CADR Z))))) 

(K+ (LN:lSD!. O~1 Z) (LIST (G+ (CAR W) (OR Z» 
(G+ (CADR ~'J) (CADR Z))))) 

(K- (LN,1BDA e'T Z) (LIST (G- (CAR 'tJ) (CAR Z)) 
(G- (CADR \41) (CADR Z))))) 

(K* (LA1\1BDA (W Z) (LIST (G- (G* (CAR W) (CAR Z» 
(G* (CADR W) (CADR Z»)) (G+ (G* (CAR to,,) (CADR Z)) 
(G* (CADR l'J) (CAR Z») »} 

(5/ (LAHSnA (A Z) (IF (NULL Z) Z {CONS (GI (CAR Z) A) 
(SI A (COR Z») ») 

(K/ (LA~1BDA (W Z) (5/ (CAR (K* Z (KCONJ Z»)) 
(K* \1 (KCONJ Z)) ») 
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V operations Vectors, being n-tuples of numbers, are readily 
represented as lists, upon which appropriate operations may be defined. 
In fact, one such operation, 5/, was included in the definitions for 
complex operations in a sufficiently general form to be useful for 
dividing each elenent of a vector by a certain scalar. 

(V+ (LM1BDA (X Y) (IF (NULL X) Y (CONS 
(G+ (CAR X) (CAR V»~ (V+ (CDR X) (CDR V»~) ») 

(V- (LAHBDA (X 'I) (IF (NULL X) Y (CONS 
(G- (CAR X) (CARY» (V- (CDR X) (CDR V»~) ») 

(5* (LN~BDA (A X) (IF (NULL X) X (CONS 
(G* A (CAR X» (5* A (CDR X») ») 

(IP (LAMBDA (X 'I) (IF (NULL X) (DEC (QUOTE 0» 
(G+ {G* (CAR X) (CARY» (IP (CDR X) (CDR V»~) ») 

For testing purooses, it is convenient to have a way of applying 
an arithmetic function to atomic arguments, without having to continually 
write DEC and UNDEC in the program. The style of the control function 
used for such purposes may be varied according to the number of arguments 
expected by the function to be applied. 

(OPER (LAMBDA (O X Y) (NUMBEGONE (0 (NUMBETHER.E X) 
(NUMBETHERE V»~ ») 

A general purpose function of this nature, which will apply a 
function irrespective of the number of its arguments, can be written 
using the functions EVAL and ALIST, which give direct access to the 
corresponding portions of the interpreter: 

{OPTEST (LAHBDA L {NUr-mEGONE (EVAL {CONS (CAR L) 
(APPo. (NUMBETHERE (CDR L»» (CDDR (ALIST») ») 

where we have 

{APPQ (LAMBDA (L) (IF (~~LL L) L (CONS (LIST (QUOTE QUOTE) 
(CAR L» {APPo. (CDR L») ») 

To illustrate the use of OPTEST, we might write 

(OPTEST V+ (1 (- 3) 2) (0 2 (- 1») 

which will result in the vector sum (1 (- 1) 1) of the last two arguments. 

Many specialized representations of numbers may readily be devised 
in LISP; for instance wh-n one is dealing with the complex nth roots of 
unity, it is more natural to represent exp(2pi i kIn) as the]pair (K N) 
with the rule that 

(Kl N1).(K2 N2) = «KI.N2+K2.Nl) Nl.N2), 

the left hand sum being reduced modulo N1.N2. 
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The following function will perform such a calculation f 

(KE* (LAMBDA (X Y) (IF (EQ {CADR X) (CADR V)) 
(LIST (REt,,, (1+ (CAR X) (CAR Y)) (CADR X)) 
(CADR X))) (LIST (REt1 (1+ (1* (CAR X) (CADR V)) 
(1* (CADR X) (CAR V))) (I* (CADR X) (CADR V))) 
(1* (CADR X) (CADR V))) ))) 

It is likewise possible to devise functions which will handle 
integers represented as a list of exponents of their prime factors, 
or other specialized representations. 
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