
-~UPJ.;Tt.Jl.I TIICOTIY PROJECT
FOR RESEARCH IN ATOMIC, MOLECULAR AND SOLID STATE

CHEMISTRY AND PHYSICS
UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA

THE DI&\C GROUPS

By

Victor A. Dulock*

PROGRAM NOTE fl=8

25 July 1963

*Physics Department, University of Florida

ABSTRACT

A Dirac group is defined and same facts concerning the structure

of Dirac groups are d$acussed. A method is then described for calcu

lating products and inverses of the elements of a given Dirac group

using MBLISP.

-

ACKNOWLEIGMENTS

The functions described in this note ~re prepared as exercises

in an informal course in LISP programming presented by Harold V. McIntosh.

It is a pleasure to ackn~vledge the interest displayed in programming

languages and symbolic programming by Professor J. E. Maxfield and the

committee directing the operation of the University of Florida computer

center, who have granted the IBM 709 computer time used to prepare and

verify the programs herein described.

Victor A. Dulock

Gainesville, 25 July 1963

THE DIRAC GROUPS

I. Properties:

Consider n quantites which satisfy a general exchange rule

1)

vrhere e.g. for Dirac matrices (" .. :;:: -1. Assume that for each 'Yi there
~J

exists same integer ni (not necessarily the same for each different 'Y i)

such that

2) = ~i

where ~i is a scalar (in the case of Dirac matrices, a multiple of the

unit matrix).

NovT consider quantities of the form

where the '\ are scalars. Forming all possible products of the quan

tities in (3) we have

4) =

Note that some of the y. may be repeated several times. By choosing
].

an ordering for the 'Y. we can vrrite this product in a canonical form
~

using properties (1) and (2) and the fact that the Ai' gi' and "'ij are

scalars,
m

i~l '\y i = ~ "2 ... Am"'iI' 'jI

where a i < ni the characteristic exponent of 'Y i and k is an integer equal

to the numbers of Y1 s originally present divided by ~, etc. for

1, Since the Ai' ~i' and "'ij are scalars ,,,e have the form

-1-

6)

-2-

II 'VaIl all
... 'I I'll

where 1.1. is a scalar coefficient and the I"S form an ordered product.

Before proceeding we should note some properties which follow from

eqs. (1):

First, if we take the determinant of both sides of (1) we see that

Wij is one of the n roots of unity if the I'i are n ~ n matrices. Nml

if we require the product of 2 of the forms (i.e. eq, (6)) to be of

the same form (closure), then the ~ and si are also roots of unity.

Note for the Dirac group all ni = 2 are N = 4, and the number

of distinct possible products (elements) is 2.24 = 32. In general it

is 2.~, all n. = 2.
1

From nov on we drop the Roman numeral subscripts and use Arabic

numerals and assume the order of 1" s is 1, 2, ... Furthermore since

the I' i ~e assumed Immm and also have a particular ordering we can

6 st write eq () as an n-tuple '\-Those 1 element is the scalar coefficient

and whose subsequent elements are the p~rs of the I'i' i.e.,

=

II. Pl'oduct.

Consider the product of 2 of these elements

n
::; (AI.I.(II

i(j
i,j=l

where ki is the number of times ni divides ai+bi and ni is defined in

eq. (2). Note that there are n(n-l)/2 ("ij each ,dth its characteristic

exponent.

-3-

Since all of the scaJ.ar coefficients are roots of unity, we know

that there exists a root of unity p such that

98) ci
p = A:t

b) rij
p = wij where ci ' r ij , and si ere integers.

c) si
p = ~i

For example, if we ha.d three roots of unity

A = e 2~i/M W = e2~i/L ~ = e2~i/R
then p = e2~i/K

where K = least CommDn multiple of the product MLR.

One of our problems will be to find p.

TIl. Some Properties of wij :

From eq. (1)

) -1
10 hence wij = U'ji • However, since the wij are roots of unity

(hence in general complex)

Therefore

ll) ("ij = I~'ji *
also YiYi = (uiiY i Y i

12) Therefore wii = 1

From eqs. (11) and (12) we deduce that the matrix formed by the !"ij is

hermitian,

Also from (1), if
n" Y J = ;j then j

13) U'ij
nj = I,," " ni

= 1
l.J

1-
!

-4-

At this point we have the following scalars.

a matrix of (·,ij.l S

a vector of ~ 's
i

and whatever A.'s we care to use.
J

IV. Restating the Problem in Order to Program it in LISP:

We would like to write a LISP program i-Thich would multiply the

elements of our group. To do this we must write things in a different

form.

14)

Define a matrix vI with elements w •. such that
~J

(., = e (2'ii/K) Wij
ij

where p = e2~i/K. For LISP W has the form of a list of the columns

From the definition of the wij and the hermitian character of ('Jij we

see that the 1'1 matrix can be made antisyrnmetric.

Neglecting the multiplicative factor 2rr.i/K the product of (,' I s ij

in eq. (8) in terms of the w's is

15)
n
L:

i j
i,j=l

a.w .. b.
J J~ ~

which is aJlnost aWb if ~-e could set all elements above the main diagonal = 0

in W.

To perform the summation of products in (15) l-Te define a LISP

function... Quadratic Form - QF ,.,hich performs this task QF(W X Y)

where W is as in (14) and

16)

where the powers to ~-rhteh the y's are raised in each element- of the

product are X and Y. We assume 1'0sitive integers only.

(QF (LAMBDA (W X Y)

(IF (NULL W)

(DEC (QUOTE 0)

(I+ (I* (CAR Y)

(IP (CDR X)(CAR W)))

(QF (CDR W)(CDR X)(CDR Y))))))

QF uses IP (inner :product). IP is a function which ca.1culates

the inner product of two vectors, i.e., if the vectors are A "" (al an)

n *
and B = (bl •• , bn), IP ca.1culates the sca.1ar i:l a i b i ·

Another auxiliary function which we will need is one which, when

given the two lists (eqs. (16) and (17)) above and a list of the form

18)

where the n i are the powers for which y i ~ = Si and the Xi are the powers

to which p must be raised to gi ve ~i' i, e. ,

Xi (2rci/K)xi
~i = p = e ,

~Till give the final pmrers of the various y i mod ni and a scalar coeffi-

cient due to the l'roducts of the ~i' We ca.11 this function PREPRODUCT

and define it as follmTs:

19) (PREPRODUCT (LAMBDA (~l X Y)(PREPRODUCT* (DEC (QUOTE O))(LIST) N X Y)))

*H. V. McIntosh, ~t.Program Note No.6," This Note contains a detailed

description of IP and a.1so of other useful arithmetic functions.

-6-

20) (PREPRODUCT* (LAMBDA (D L N X Y)(IF (NULL X)

(CONS D (REVERSE L))

«LAMBDA (U V)(PREPRODUCT* (I+ (I* U (CADR N») D)

(CONS V L)

(CDDR N)

(CDR X)

(CDR Y))

($DIVIDE (2NDVAL ($PLUS (CAR X) (CAR Y»)) (CAR N»))))

(LIST (LAMBDA L L)

(REVERSE (LAMBDA (L) (REVERSE*" (LIST L»)

(REVERSE* (LAMBDA (M L)

(IF (NULL L)

(REVERSE* (CONS (CAR L) M)

(CDR L»»))

It should be noted that the lists X and Y must be of equal length,

hence if one of the factors in the product has e.g. Yi missing, then

we must explicitly write 0 for a. or b. whichever is the case.
l. l.

We will also need a function vlhich will add an arbitrary number of

terms which we now define,

21) (+ (LAMBDA L (IF (NULL L)(DEC (QUOTE 0» (++ J.J»»

22) (++ (LAMBDA (L)(IF (NULL L)(tEe GQUOTE 0)

(I+ (CAR L)(++(CDR L») »)

Defining 1 to be that power to which p must be raised to give A

in eq. (8) and similarly m for f,l, we can nOtv define a function, which

-7-

'We''Wi11 call DP (Dirac Product) that will give the product of 2 elements

as in (8). The element lists will be of the form

23) X (1 ~ ~ a3 ... an)

24) Y (m bl b2 b 3 ... bn)

25) (DP (LAMBDA (X Y) «LAMBDA (Z) (CONS (REM (.,. (CAR X)

(CAR Y) (QF (H) (CDR X) (CDR Y»

(CAR Z» (K» (CDR Z»)

(PREPRODUCT (N) (CDR X) (CDR Y»»)

(2~i/K, b where K, the integer which identifies p p = e J is defined y

26) (K(LAMBDA () (DEC (QUOTE K»»

W is the matrix W· dafined by

(W (LAMBDA () (NUMBETHERE (QUOTE (»»)

and N the alternating list given in (18) is defined by

K, W, and N are to be given for a. particular problem.

We now wish to have a means of finding the inverse of one of the

elements, (A ~ ~ .•• an)' The inverse "-rill be of the form (Il bl b2 ..• bn).

We see that

29) where
n'

'l J =
j

Thus to find the correct powers of the 'lIS in the inverse we define

(DINV* N X*) where X* = (al a2 .•• an~. = CDR X where X = (7\ ~ a.2 ... an)

and N = (~Xl n2 ~ •.•) given in eq. (28).

30) (DINV* (LAMBDA (N X*) (IF (NULL X*)

(CONS (REM (I-(CAR N) (CAR X*» (Ie» (DINV*

(CDDR N) (CDR X*»»»

-8-

To produce unity the element and its inverse must satisfy

31) I-l + A + QF + ~ + x2 ••• = nK, n = 0, 1, 2, .•.

32) I-l = (K - (A + QF ~ x2 ...)b1od K)mod K

Now only those Xi will contribute for ~hich the corresponding

ai ~ 0, i.e., the corresponding 1i is present in X.

Hence we define

33) (DINV (LAMBDA (X) (IF (1TULL x)

where

x

«LAMBDA (Z) (CONS (REM (I- (K) (REM (+

(CAR X) (QF (W) (CDR X) Z)(XI (N) (CDR X)))

(K») (K) Z) (DINV* (N) (CDR X»»»

34) (XI (LAMBDA (N X-l~) (COND «NULL N) (DEC (QUOTE 0))

«EQ (CAR X*) (DEC (QUOTE 0») (XI (CDDR N) (CDR X*»)

«AND) (I+ (CADR N) (XI (CDDR N) (CDR X*»»)))

