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ABSTRACT 

A Dirac group is defined and same facts concerning the structure 

of Dirac groups are d$acussed. A method is then described for calcu

lating products and inverses of the elements of a given Dirac group 

using MBLISP. 
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THE DIRAC GROUPS 

I. Properties: 

Consider n quantites which satisfy a general exchange rule 

1) 

vrhere e.g. for Dirac matrices (" .. :;:: -1. Assume that for each 'Yi there 
~J 

exists same integer ni (not necessarily the same for each different 'Y i ) 

such that 

2) = ~i 

where ~i is a scalar (in the case of Dirac matrices, a multiple of the 

unit matrix). 

NovT consider quantities of the form 

where the '\ are scalars. Forming all possible products of the quan

tities in (3) we have 

4) = 

Note that some of the y. may be repeated several times. By choosing 
]. 

an ordering for the 'Y. we can vrrite this product in a canonical form 
~ 

using properties (1) and (2) and the fact that the Ai' gi' and "'ij are 

scalars, 
m 

i~l '\y i = ~ "2 ... Am"'iI' 'jI 

where a i < ni the characteristic exponent of 'Y i and k is an integer equal 

to the numbers of Y1 s originally present divided by ~, etc. for 

1, . . . . Since the Ai' ~i' and "'ij are scalars ,,,e have the form 

-1-



6) 

-2-

II 'VaIl all 
... 'I I'll 

where 1.1. is a scalar coefficient and the I"S form an ordered product. 

Before proceeding we should note some properties which follow from 

eqs. (1): 

First, if we take the determinant of both sides of (1) we see that 

Wij is one of the n roots of unity if the I'i are n ~ n matrices. Nml 

if we require the product of 2 of the forms (i.e. eq, (6)) to be of 

the same form (closure), then the ~ and si are also roots of unity. 

Note for the Dirac group all ni = 2 are N = 4, and the number 

of distinct possible products (elements) is 2.24 = 32. In general it 

is 2.~, all n. = 2. 
1 

From nov on we drop the Roman numeral subscripts and use Arabic 

numerals and assume the order of 1" s is 1, 2, ... Furthermore since 

the I' i ~e assumed Immm and also have a particular ordering we can 

6 st write eq () as an n-tuple '\-Those 1 element is the scalar coefficient 

and whose subsequent elements are the p~rs of the I'i' i.e., 

= 

II. Pl'oduct. 

Consider the product of 2 of these elements 

n 
::; (AI.I.( II 

i(j 
i,j=l 

where ki is the number of times ni divides ai+bi and ni is defined in 

eq. (2). Note that there are n(n-l)/2 ("ij each ,dth its characteristic 

exponent. 
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Since all of the scaJ.ar coefficients are roots of unity, we know 

that there exists a root of unity p such that 

98) ci 
p = A:t 

b) rij 
p = wij where ci ' r ij , and si ere integers. 

c) si 
p = ~i 

For example, if we ha.d three roots of unity 

A = e 2~i/M W = e2~i/L ~ = e2~i/R 
then p = e2~i/K 

where K = least CommDn multiple of the product MLR. 

One of our problems will be to find p. 

TIl. Some Properties of wij : 

From eq. (1) 

) -1 
10 hence wij = U'ji • However, since the wij are roots of unity 

(hence in general complex) 

Therefore 

ll) ("ij = I~'ji * 
also YiYi = (uiiY i Y i 

12) Therefore wii = 1 

From eqs. (11) and (12) we deduce that the matrix formed by the !"ij is 

hermitian, 

Also from (1), if 
n" Y J = ;j then j 

13) U'ij 
nj = I,," " ni 

= 1 
l.J 
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At this point we have the following scalars. 

a matrix of (·,ij.l S 

a vector of ~ 's 
i 

and whatever A.'s we care to use. 
J 

IV. Restating the Problem in Order to Program it in LISP: 

We would like to write a LISP program i-Thich would multiply the 

elements of our group. To do this we must write things in a different 

form. 

14) 

Define a matrix vI with elements w •. such that 
~J 

(., = e (2'ii/K) Wij 
ij 

where p = e2~i/K. For LISP W has the form of a list of the columns 

From the definition of the wij and the hermitian character of ('Jij we 

see that the 1'1 matrix can be made antisyrnmetric. 

Neglecting the multiplicative factor 2rr.i/K the product of (,' I s ij 

in eq. (8) in terms of the w's is 

15) 
n 
L: 

i j 
i,j=l 

a.w .. b. 
J J~ ~ 

which is aJlnost aWb if ~-e could set all elements above the main diagonal = 0 

in W. 

To perform the summation of products in (15) l-Te define a LISP 

function... Quadratic Form - QF ,.,hich performs this task QF(W X Y) 

where W is as in (14) and 

16) 



where the powers to ~-rhteh the y's are raised in each element- of the 

product are X and Y. We assume 1'0sitive integers only. 

(QF (LAMBDA (W X Y) 

(IF (NULL W) 

(DEC (QUOTE 0) 

(I+ (I* (CAR Y) 

(IP (CDR X)(CAR W))) 

(QF (CDR W)(CDR X)(CDR Y)))))) 

QF uses IP (inner :product). IP is a function which ca.1culates 

the inner product of two vectors, i.e., if the vectors are A "" (al an) 

n * 
and B = (bl •• , bn), IP ca.1culates the sca.1ar i:l a i b i · 

Another auxiliary function which we will need is one which, when 

given the two lists (eqs. (16) and (17)) above and a list of the form 

18) 

where the n i are the powers for which y i ~ = Si and the Xi are the powers 

to which p must be raised to gi ve ~i' i, e. , 

Xi (2rci/K)xi 
~i = p = e , 

~Till give the final pmrers of the various y i mod ni and a scalar coeffi-

cient due to the l'roducts of the ~i' We ca.11 this function PREPRODUCT 

and define it as follmTs: 

19) (PREPRODUCT (LAMBDA (~l X Y)(PREPRODUCT* (DEC (QUOTE O))(LIST) N X Y))) 

*H. V. McIntosh, ~t.Program Note No.6," This Note contains a detailed 

description of IP and a.1so of other useful arithmetic functions. 
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20) (PREPRODUCT* (LAMBDA (D L N X Y)( IF (NULL X) 

(CONS D (REVERSE L)) 

«LAMBDA (U V)(PREPRODUCT* (I+ (I* U (CADR N») D) 

(CONS V L) 

(CDDR N) 

(CDR X) 

(CDR Y)) 

($DIVIDE (2NDVAL ($PLUS (CAR X) (CAR Y»)) (CAR N»)) )) 

(LIST (LAMBDA L L) 

(REVERSE (LAMBDA (L) (REVERSE*" (LIST L») 

(REVERSE* (LAMBDA (M L) 

(IF (NULL L) 

(REVERSE* (CONS (CAR L) M) 

(CDR L»»)) 

It should be noted that the lists X and Y must be of equal length, 

hence if one of the factors in the product has e.g. Yi missing, then 

we must explicitly write 0 for a. or b. whichever is the case. 
l. l. 

We will also need a function vlhich will add an arbitrary number of 

terms which we now define, 

21) (+ (LAMBDA L (IF (NULL L)( DEC (QUOTE 0» (++ J.J»» 

22) (++ (LAMBDA (L)( IF (NULL L)( tEe GQUOTE 0) 

(I+ (CAR L)(++(CDR L») ») 

Defining 1 to be that power to which p must be raised to give A 

in eq. (8) and similarly m for f,l, we can nOtv define a function, which 
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'We''Wi11 call DP (Dirac Product) that will give the product of 2 elements 

as in (8). The element lists will be of the form 

23) X (1 ~ ~ a3 ... an) 

24) Y (m bl b2 b 3 ... bn) 

25) (DP (LAMBDA (X Y) «LAMBDA (Z) (CONS (REM (.,. (CAR X) 

(CAR Y) (QF (H) (CDR X) (CDR Y» 

(CAR Z» (K» (CDR Z») 

(PREPRODUCT (N) (CDR X) (CDR Y»») 

( 2~i/K, b where K, the integer which identifies p p = e J is defined y 

26) (K( LAMBDA ( ) (DEC (QUOTE K»» 

W is the matrix W· dafined by 

(W (LAMBDA ( ) (NUMBETHERE (QUOTE ( »») 

and N the alternating list given in (18) is defined by 

K, W, and N are to be given for a. particular problem. 

We now wish to have a means of finding the inverse of one of the 

elements, (A ~ ~ .•• an)' The inverse "-rill be of the form (Il bl b2 ..• bn). 

We see that 

29) where 
n' 

'l J = 
j 

Thus to find the correct powers of the 'lIS in the inverse we define 

(DINV* N X*) where X* = (al a2 .•• an~. = CDR X where X = (7\ ~ a.2 ... an) 

and N = (~Xl n2 ~ •.• ) given in eq. (28). 

30) (DINV* (LAMBDA (N X*) (IF (NULL X*) 

(CONS (REM (I-( CAR N) (CAR X*» (Ie» (DINV* 

(CDDR N) (CDR X*»»» 
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To produce unity the element and its inverse must satisfy 

31) I-l + A + QF + ~ + x2 ••• = nK, n = 0, 1, 2, .•. 

32) I-l = (K - (A + QF ~ x2 ... )b1od K )mod K 

Now only those Xi will contribute for ~hich the corresponding 

ai ~ 0, i.e., the corresponding 1i is present in X. 

Hence we define 

33) (DINV (LAMBDA (X) (IF (1TULL x) 

where 

x 

«LAMBDA (Z) (CONS (REM (I- (K) (REM (+ 

(CAR X) (QF (W) (CDR X) Z)(XI (N) (CDR X))) 

(K») (K) Z) (DINV* (N) (CDR X»»» 

34) (XI (LAMBDA (N X-l~) (COND «NULL N) (DEC (QUOTE 0)) 

«EQ (CAR X*) (DEC (QUOTE 0») (XI (CDDR N) (CDR X*») 

«AND) (I+ (CADR N) (XI (CDDR N) (CDR X*»»))) 




