
.J .... 

QUANTt!r··l THEQRY. PROJECT 
FOR RESEARCr! IN ATor-ue, MOLECULAR, AND SOLID STATE 

CHEHISTPY AND PHYSICS 
UNI"EI1SITY OF FLORIDA, GAlf\TESVILLE, FLORIDA 

OPERATORS FOR f'!BLISP 

PHOGRAf.t NOTE #I 9 

26 July 1963 



i:::::·:. 

AbSTRACT 

The primitive opera.tors contained ,",ithin MBLISP are described, 
together l'!ith an example of their application. The operators fall 
into three cntegories: list processing operators, input-output operators, 
and data movement operators. Some of the operators are predicates; 
this perMits programs to be constructed using them, controlled by the 
functions AND' and OR. 



f.:::::: .......... 

AC!~Ol']LEDGE~~ENTS 

The choice of an operator complement for !\·1BLISP has depended 
to a great extend on Lm'lell l!al'Jkinson' s thOl"ough analysis of LISP 
processors and the resultant insight into the most efficient form of 
the recursive processor. Considerable experimentation has gone into 
the choice of input-output operators, as \'le11 as data movement, but 
they owe their final form to the experience gained in the use of a 
preliminary set by T .A. Brod)' in his studies of LISP compilation. 
Many of the studies perforned 'tlhen \'le used much clumsier operators 
were carried out by R.A. Smith, Jr., and were indispensible in setting 
the style of the present operators. 

Most of the development of ~1BLISP \~as completed during the period 
of my employment by RIftS, and it is a pleasure to thank the director, 
Mr. Welcome ~,!. Bender, for his continued interest in and support of, 
this work. It is not often realized ho\'l much the success of the 
development of any program depends upon the skill, interest, and coopera
tion of the members .of the computing center at which the work is done, 
and for this reason it is a particular pleasure to express my gratitude 
to the Digital Computations Section of HARTIN BAL TI~:Or~. Were it not 
for their continued willingness to make their programs and facilities 
available, continued development of MBLISP would have been impossible. 

The time required to verify the operators reported in this note 
was made available at the computer center of the University of Florida, 
for which time I am grateful to the committee and personnel associated 
with the operatio~ of the Center, as well as their courtesy in making 
time available for Prof. Brody. . 

Harold V. Nclntosh 

Gainesville, 26 July 1963 



QPEHATORS-l 

OPERATORS 

Due to the recursive nature of its oper~.tion, no information 
. in the memory store Nhich is accessible to 8. LISP -progr2.m is ever 
desrtoyed, because it may have to be replaced in its orip,inal state 
at SOMe later staee in the execution of the .progrCL~. Gradually, 
information is abandoned, in the sense that no o!leration in the proeram 
can ever locate it again. From time to time the oemory store may be 
examined, in order to recover the abandoned cells for further use. 
During this rennovation, or garbage collection as it is usually called, 
information will be destroyed, so that to be precise we should say that 
no information available to the pro~ram is ever altered in any manner. 

Although different technical schemes may be ima~ined to realize 
such a manner of operation, the one generally chosen is to have a 
large resoirvoir of cells, called the vacuum, available for use by the 
program. ' The only primitive LISP function which writes information is 
CONS; all the others readinfonnation. Thus the only function which can 
modify the memory store is CONS. Rather than search the memory for a 
cell containing the desired linkages, if indeed one exists, CONS removes 
one cell from the vacuum, which, modulo garbage collection, has never 
before been used, and writes the necessary linkages into it. For 
example, the LISP function (APPE~ID U V) which adjoins the list V to 
the end of the list U in no way modifies either the list U or the list 
V. Rather, a ne\,1 list is constructed 'whose head is an entirely nel1 
copy of the list U and whose tail points to the list V. Consequently 
if the bound variables U and V appear an)Tl-!here else in the same 
~xpression they still refer to the same lists, and not the one gotten 
by tacking V onto the end of U, which would have changed the meaning of 
the symbol U. 

Needless to say, such a procedure is quite extravagant of memory' 
cells and would ordinarily be felt to be justified only when one felt 
that he had to retain the identity of the list U intact for fUrther use 
by the program. For so~e bu~ hardly all programs this would be true. 

Although automatic recursion is sometimes much more rapid from 
the point of view of writing a program, the necessary saving and unsaying 
of registers takes its toll on the o~erating speed, and often by paying 
attention to the organization of 'the memory store, such waste motion' 
may be avoided. 

In addition to the situations in lA!hich one voluntarily foregoes 
the recursive mode of operation, there are others which are iTh~erently 
irreversible. Thus, if one were to introduce a LISP function which 
would read one record from the input apparatus to a certain portion of 
memory, repeated use of this function would result in repeated recoras 
being read in, ~ost likely destToying the old records in the process. 

For such reasons we distinguish operators from functions. The 
distinction is that a LISP function receives its arguments from a 
certain pushdm"ln list, and delive!"s its values to this same pushdown 
list. By contrast, an opeTator ~ay receive information frOM any register 
as well as modifying any register. Of course, in addition it may work 
with the pushdo~m list patronized by the functions, 50 that one must 
recognize a mixed case. 

',) 



t······ 

t.::.:.:.:.:.:~ 

OPERATORR-2 

In planning ~ fnrmal pro~ran~ing l~~nguage, it is cesirable to 
keep the number of pri:Ttitive operators to a minimm!l" as "!ell as the 
number of priwltive functions. For list ~rocessing purposes, only 
three opera.tors are needed. These allo\'l one to locate a free cell 
in the vacumn" over,-.'rite an address linkage, or overl'lrite a decrenent 
linkage. ~.iore extensive operators are. needed to perform input-output 
operations" movement of date" or arithEetic operations. Hm .. levor" the 
three list processing operators are: 

(SAR E X) causes E to become (CAR X). Its value is T. 

(SDR E X) causes E to become (CDR X). Its value is T. 

(BILE) is a function of no variables whose value is a 
fresh cell from the vacu~~ [PZE *""NIL1. 
Its value is thus an empty set. Repeated usage 
of (BILE) produces a string of fresh cells. 

From these primitive o~erators certain variants may be 
constructed \\'hich will be useful in particular contexts. For example, 
SAR and SDR have been designed as ·predic~.tes, to facilitate their 
inclusion in programs. However, instead of returning the value T to 
the LISP processor, it would shorten the corresponding program if they 
would occasionally return other values. Although the variants might 
be written as LISP functions of SAR and SDR,· in actual practice t1.ley 
would profitably be coded as machine langua?,e programs. For example, 

(XAR E X) causes E to become (CAR X). .Its value is the 
displaced·value of (C~ X). 

(XDR E X) c~uaes E to beCOMe (CDR X). Its value is the 
displaced value of ·(CAR X). 

Their respective LISP definitions are: 

(XAR (LAr.mDA (E X) «(LMfBDA (Z) «(LAi'f;BDA (T) Z) 
(SAR E X))) (CAR X)))) 

(XDR (LAMBDA (E X) ((LAMBDA (Z) «(LAMBDA (T) Z) 
(SDR E X))) (CDR X)))) 

Yet another variant would yield the argument Xas the value of 
SAR and SDR instead of the oven~ritten linkage. In the la.tter case, one 
\",ould perhaps be using CAR. of an expression as a temporary storage 
position, and is simultaneously updating the location, and retrieving 
its old value. By receivinp: the new value E instead of the di.splaced 
value, one would have a variant which would make it convenient to store 
the srune expression in a series of locations by simply nesting the 
appropriate SAR or SDn variants with appropriate second arguments. 
Finally, in the last variant we have proposed, a series of quantities 
could be stored at the same or a chain of addresses, since the value 
of the operator \\'ould always be the last location at \'lhich the storage 
took place. 



O!'EPJ\.TO RS-3 

Besides operators \llhich are useful in the various aspects of 
list precessing, another ir:l!,ortant class ~ay be used for data 
transmission pu~oses. The details of this latter class are somewhat 
machine dependent in that they l..,ill vary according to whether the 

. memory store is decimal or binary, or \\'hether it has fixed or variable 
word length and so on. They are in this sense only \t!eakly machine 
dependent; the exip-encies of the IB~1 709 design Fake the follo\'dng 
collection seem desirable: 

($PEAD Z) causes words to be read from SYSPIT (A-2, 
decimal) as specified by the title Z. 

($l'JRITE Z) causes \-yords to be written on the printed 
output tape, SYSPOT, (A-3, decimal) as specified 
by the title Z. 

($PUNCH Z) causes words to be written on the punch tape 
PCHTAP (B-4, decinal), as spec~fied by the title 
z. 

Each of these operators Eakes use of the title of a buffer area. 
By a title we mean a description of an array [PTH AflRAY+N, ,N] \I~hich 
occupies one cell, containing a flag indicating an array, the number of 
words comprising the array, and the final "Yord plus one. The title 
itself occupies this last location unl~ss other provision is made, 
allowing the garbage collector to recognize arrays and save them if 
necessary. All arrays are referred to throu~h their titles. 

The functions $READ, $NRITE, and $PUNCH really do little more 
than activate the re levant rC1CD command. They are all predicates, ''''hose 
value is- T if they are functionin~ l'1ithout incident. Ho\t1ever, they are 
only semipredicates, and may return information to the LISP processor 
concerning possible error conditions, end of file or end of tape, and 
so on. 

The ~~oice of three functions such as these lirits the nuwber 
of tapes accessible to the LISP programmer, and no ~rovision has been 
~ade for reading or writin~ binary tapes. All these variations may 
eventually be provided by internally compiled operators, so that 'oJe have 
described only the three essential for ordinary operation and made them 
inherent operators in the systeM. 

The reason that these three operators have been given names 
commencing with the character $ is to indicate that they are not intended 
to be a portion of ordinary programs. The reason for this is that they 
make no prOVision of themselves for controlling various error conditions 
or other imnediments to the free flow of information to and from the 
input-output mechanism. Concern with these latter conditions is not 
properly a part of a LISP program, and should be accomplished by standard 
data transmission operators which incorporate the proper tests and 
remedies to handle such problems. ShOUld this latter treatment varyl 
or the style of input-output vary, the standard operators may be 
redefined without affecting any LISP 'Programs in the slightest. 



t)PErtATORS-4 

In order to allo\\f a LISP pro[!ra.r.l to tlctively manipulate the " 
me~ory store .. ll'e £urther irAtroduce operators l\'hich \t.ri 11 a1lO\o1 bits 
to be read from .or stored in desil'ed locations. It is convenient to 
distinguish a numerical frc~ a DeD mode, the latter treating the 
,",ollerith characters as the basic units, \'lhile the forl":'.er treats 
octal numbers as the units. Again this choice is moderately machine 
dependent. Rather than carry an excessive number of arguments 
continually, each of the main :~unctions is 1)!'ovided t'lith a satellite 
which initializes it to work from a given array. It will then work 
throueh the array, fron"left to right, low address to high address 
until the limit to \"lhich it has been set has been exceeded. This event 
"ii 11 produce a characteristic reaction by the function. 

(PACK X) is a predicate, which stores its argument X in 
the location to which it has been set, and whose 
value is T if additional space remains in the 
array to pack an additional Character. Otherwise 
its value is F. 

(PACSET Z) is an operator predicate whose value is T and 
\-'lhich prepares the operator PACK to store 

"successive characters, left packed, into the array 
whose title is Z. 

(STORE X) is a predicate, entirely analogous to PACK, 
save that its ar~~ent is a single atomic symbol 
representing an octal digit, and that only 3 bits 
at a time are stored, rather than 6. 

(STOSET Z) is the analogue of PACSET, initializing STORE 
to the array whose title is Z. It takes the 
value T. 

(DISINT) is a function of no variables, \!lhose value is 
either the next character in the array to which :. 
it is set, or else () if none remain. Repeated 
usage from an exhausted array 1-:i11 continue to 
yie14 ()'s. Characters are removed from the array 
6 bits at a time, non-destructively. The array 
is considered to be exhausted when either its upper 
limit is reached, or the illegal hollerith character 
77 (which is used to fi.11 out l-10rds) is encountered. 

(DISSET Z) is a predicate, value T, which initializes 
DISINT to the array whose title is Z. 

(DISSOC) yields the contents of the array ro which it is 
set, 3 bits at a time, in the form of octal digits." 
Its value is () when it reaches the upper limit of 
its array. TI1e readout is non-destructive. 

(DSCSET Z) is a predicate, whose value is T, which 
initializes DISSOC to the array \"hose title is 
Z. 



ePEPATORS-S 

Operators are typical of iterative programs, which are rather 
the antithesis of LISP. To follo\\' cor:pletely the iterative fomat 
pertaining to operators l'!ould logic,.lly lead to the introduction of 
the LISP "program feature" \-lherein sequences of statements ,,,ould be 
written in the style of FORTRAN or ALGOL. Such a ste~ is unnecessary, 

, and may be avoided by the use of o~erator predicates, allowing such 
LISP functions as IF, COND, MiD, and OR to exercise control over the 
prc;>gram. 

Another characteristic of iterative programs is that the variable 
names have a permanent meaning and cummulate the effect of op~rations 
perfomed upon theEl, \'1hereas in a recursive program variable names are 
transiently bound and while bound never vary. By properly a.rranging 
the internal structure of atomic symbols, and using the operators 
which we have defined, it is possible to arrive at a system which may 
be used both redursively and iteratively. The diagram below shows the 
canonical arrangement of an atomic s~bol: 

(CDR X) 
(INCR (CDR X)) 

title pushdown 
list 

__ x_~; ... ' .").~\' ~,--.§ 
~ \ 
1;: • •• 77 J 
~~ ·:11111'" ":"1",· ~-- ----

The internal constitution of f1BLISP is such that \~fhenever an 
atom appears in a LISP program, it actually appears as an address in 
the menory store. That address is the address of a title, which refers 
to an array which contains the print )1ar.te of the atom, its function 
definition and its value. By the print:name we mean the string of 
hollerith characters by which it is represented in printed output and 
input. These are allocated six at a time to whatever number of words. 
not exceeding six, required to hold them. Any vacant space at the 
right of the last word is filled with 77's, rather than blanks (60's), 
for convenience in collating, as \,1ell as to allo~\' blanks to appear in' 
internally stored nessages. (CAR X) is a numeral, which is the size of 
this array. (CDR X) is the cell follo\~ing, which is used to contain 
information, if any, concerning the use of that atomic symbol as a 
function name. If it is a primitive function or a machine language 
function, the decre~entl of this cell contains the address of the subroutine 
corresponding to it. If it is .a defined function, the decrement 
contains the definition, so that for example, (CADP. (OUOTE APPEND}) is 
the definition of APPEND. The address of this cell is the address of 
the appropriate sllbroutine to cause the arguments of the function to 
be evaluated; in the case of a defined function, this is the subroutine 
EXPARG of the nroceSSOT. 

The next cell, (INCR (CDR X)) in the diagram, holds the "value" 
of the atom in its decrement. INCR is equivalent to (2NDVAL ($PLUS 
X (DEC (QUOTE 1)))), arid is used to add 1 to its argument, assumed 
numerical. ~~!e may regard the value simply as a special storage space 
associated with the atOM 

Since this arrangement is subject to sliflht change as growing 
experience warrants a shiftine of priorities for different storage 
locations, it is better to introduce certain special functions to 
manipulate this storage, which may be later redefined without affecting 



--. ---- ------------_ .. 

r::::::· 
\:::::: 

c::::: .. 

---------_. _._._---_._ .. _-_ •.. _-- ---------------

OPEBATORS-6 

the functions using the~. 

(SET (LAHBDA eX Y) (SAR X (INCH (CDR Y))))) 

(VAL (LAMBDA· eX) (CAR (INCR (CDR X))) 

(SEQ (LAt.-rSDA* (X) (XAR «CP.DR X) (CAR (INCR (CDR X)) 
(INCR (CDR X) »)) 

eXEC (LAf.·~BDA* ex Y) (SAR (X (CAP. (INCR (CD~ Y») 
(INCR (CDR V)~ ») 

(SHELVE (LAr.ABDA (X Y) (SAR (CONS X (CAR (Il'!CR (CDR Y»)) 
(I~CR (CDR V»~ ») 

(UNSHELVE (LN1BDA* (X) (CAR (XAR (eDAR (INCR (CDR X))) 
«INCR (CDR X)) ) »)) 

(~UEUE (LA~~BDA (X Y) (SAR (APPEND (CAR (INCR (CDR Y))) 
(LIST X) (INCR (CDR V») »)) 

The significance of. these functions is the follc\.,in,,: With every 
atom there is supposed to be associated an abstract quantity called its 
value. In RLIST LISP this would be the same as the value to which it 
was bound if it were a bound variable; ho\~ever it may be simply regarded 
as an abstract property. The functions enumerated above manipulate 
this value, and as occasion demands deliver it to the LISP processor's 
pushdown list. . 

(SET X Y) causes the value of Y to become X. Ordinarily 
Y would be a quoted atom, since SET is defined 
in terms of LAi··1B::>A. Any previous value is lost, 
and the value is retained until altered by Clliother 
operator. 

(VAL X) yields the value of X. Since it.is defined 
in tenns of LAMBDA*, its argument need (indeed 
must) not be quoted. 

(SEQ X) regards S as a function of one variable, which 
it applies to the value of X to obtain a new 
value, which displaces the old value; the latter 
becoming the value of SEQ reported to the processor. 
SEQ is an adaptation of the concept of a sequence 
node or a sequenced variable used by Perlis in 
connection with THREADED LISTS. (VAL X) corresponds 
to his notation x¢, while (SEQ X) corresponds to 
x*. Tne motivation of (SE*1 X) is to have a "lay 
that X can automatically be replaced by the next 
value of a predetermined sequence each time that 
it is consulted. (VAL X) offers us an opportunity 
to consult X arbitrarily often without going on 
to the next value, hO\,lever. 
As with VAL., the arpument of SEQ should not be 
quoted. 



;::::::: . .. ~::::. -

OPERATORS· 7 

(XEC X Y) causes ~he value of Y to be rC:!llaceG by (X Y). 
It is a predicate, al\.;ays taking the value T. It 
is used lIlhen one has a v3riable "ll!ich is to be 
sequenced in several alternative ways. It is no 
longer possible to give the sequence functions all 
the same name as the sequence variable, so that 
XEC may be invoked to apply the chosen one. 
Beyond doubt, one could c1.efine appropriate functions 
to apply a particular sequence function to a variable, 
50 that XEC stands as a sort of general case. 

(SHELVE X Y) replaces the value of Y by (CONS X (VAL Y» J 

so that it acts like the shelving operation in 
Yngve's COHIT. It is a predicate, having a value 
of T to assure us that the shelving has taken place. 
orne "shelf" is simply a list hung under the atom 
V, which must be set to () or some other list 
initially. The shelving operation consists in simply 
inserting the given expression X on the front of 
this list. 
Since it is defined by LAMBDA, so that the expreSSion 
X may be evaluated before being shelved, it is 
necessary to quote the argument Y. 

(UNSHELVE X) deletes the first item from the shelf X, taking 
that item as its value. X should not be quoted. 

(qUEUE X Y) works in the same fashion as SHELVE save that 
·X is placed at the end of the "shelf", or· list 
hanging under V, rather than on the front. 

Programs ";ritten in terms of these functions remain entirely 
ignorant of the structure of the atoms, and thus will be uninfluenced 
by changes in this latter structure. 

As an example of an application of a sequenced variable J 

consider the following definition of a sequence function: 

(l!RIFU (LAMBDA (X) (IF (EQ X ($\1RIBUl)) ($WRIBU2)' 
($t1RIBUl) ))) 

($WRIBUl) and ($11RIBU2) are t\10 functions \']hose values are the titles 
of two arrays each holding one record for the output tape, SYSPOT. We 
wish to construct the output records alternately in one array and then 
in the other, so that ,~e may use one \"hile the other is being written 
on tape. l~lRIBU is then a variable whose values under (SEQ l'lRIBU) 
alternate between these two arrays. 

Operator ~redicates, in conjunction with LISP 1 s innate ability 
to define functions, yield a very powerful techni~ue for constructin~ 
~rograms. By usin~ the Boolean functions AND and OR, we can require 
respectively that as many as possible of a series of operations be 
performed, or that as many as necessary be performed. There is no 
provision for an analo~e of a transfer order, but the possibility of 
a function definition allows a portion of the vrogran to be regarded -. 
as a unit and repeated as often as desired, so that the repetition 
characteristic of an iterative program can still be achieved. 



... - .... _--------------------

r!'ERATrRS-3 

. In order to illustrate the construction of a program, as well 
as tC' exhibit a tVl)ical exa~'T)le of the llSp.~e to '''hich the coerators' 
\'1hich \.'.'e have defined !"C'.y be' put, let us c~nsicler the function 
CO~~PACTIFY. Its p'J.rpose is to ~~oduce a card deck serving as the source 
progran for a LISP function, from l\'hich all superfluous blanl~s have 
been removed. "'hen subj ected to this treatment, the program for a 
\'1orking function r.1ar be reduced to 1/2· or 1/3 the number of cards \\'hich 
would be found convenient during the testing stages, when separate 
statements are placed on individual cards and ~ple rOOM is left on 
each card for le!!ibility and Modification. When a card deck has to 
be read on-line frequently, this saving in volUMe can result in an 
appreciable saving in time, 

(C~·1PACTIFY (LMmDA L (AND 
(SET ($PCHB~l) (QUOTE PCHBU)) 
(PACSET (VAL PCHBU)) 
(NcrI' (I I I)) 
($PUNCH (SE'1 PCH~U)) 
(PACSET (VAL PCHBU)) 
(COHPACTIFY* L) 
(NOT (//1)) 
{$PUNCH (SEQ PCHBU)) 
(PACSET (VAL PCHBU)) ))) 

CO~lPACTI FY is a function of an arbitrary number of arguments. 
which l'lill compactify each of them in turn. HONever, it is only the 
control function \~hich initializes a number of variables J prepares a 
blank card (with the help of the function 1//) to precede and follow 
the output,and calls on the satellite COf':'PACTIFY* for the actual 
compression. 

(COHPACTIFY* (L.t\r.1BDA (~) (OR 
(NULL L) 
(AND 

(NOT (I 1/)) 
($PUNCH (SEO PCHBU)) 
(PACSET (VAL PCHBU)) 
(COMPEXPR (CAR L)) 
(NOT (I I I)) 
($PUNCH (SEq PCHBU)) 
(PACSET (VAL PCHBU)) 
(COMPACTIFY* (CDR L)) ) ))) 

CONPACTIFY* in its turn simply ensures that a blank card 
intersperses each ease, as ~'Jel1 as ensuring that the terminal line 
is completed with blanks and punched out. Since the termination 
requires three lines of ~rogram it could perhaps profitablyb~ 
defined as a separate function. 

(COJWEXPR (LAMBDA (E) (OR 
(AND (ATOH E) (PUNCHATCM E)) 
(AND (PUNCHAT.Or.1 (LPAREN)) 

(COHPLIST E) 
(PUr\CHATOM (RPAREN)) ) ))) 

Cor·~PEXPR distinguishes whether the expression to be compactified 
is an atom or a list. In the for~er case. the atom is sent to PCHtAP 
through the intercession of PUNCHATOr', \'1hilE in the latter, the list 



CPEnATOPS-9 

is surrounded by parentheses and broken into its constituent parts by 
CO:WLIST. 

(COMPLIST (LA?'.n3DA eL) (OR 
(NULL L) 
(AND 

(AND 

(ATOF (CAR L)) 
(PUNCHATO~·! (BLANK)) 
(COHPLIST* (CDR L)) ) 

(COHPEXPR (CAR L)) 
(COMPLIST (CDR L») ) ))) 

(COHPLIST* (LAMBDA (L) (OR 
(NULL L) 
(AND 

(AND 

(ATO~f (CAR L») 
(PUNCHATOM (BLANK)) 
(PUNCHATOr.f (CAR L) 
(COMPLIST* (CDR L))!) 

(COMPEXPR (CAR L») 
(CO~"PLIST (CDR L)) ) »)) 

These two functions are used alternatively, denending upon 
whether two consecutive blanks appear in the expression or not. They 
both terminate upon an empty list, and otherwise see that every 
subexpression of their argument is compactified. 

(PUNCHATOU (LAMBDA (X) (ANT> 
(DISSET X) 
(PUNCHATOr·~* (DIS!l\.1'f)) )) 

(PUNCHATOM* (LM~BDA (X) (OR 
(NULL X) 
(AND 

(OR 
(PACK X) 
(AND 

($PUNO-I (SEQ PCHBU) 
(PP.CSET (YAL PCHBU)) ) ) 

(PUNCHft.TO~1* (DISINT» ) ») 

These last two functions dissect the print na~e of an atom 
character by character, and simultaneously place it in the output 
buffer. 

The function PCHBU is a sequenced variable defined analogously 
to the example t1RIBU. 

The reason that PUNCHATOH is used consistently, even to store 
the punctuating blanks and parentheses, instead of PACK, is that it 
sends a filled line i~mediately to the output tape, whereas PACt might 
overflo,'l the buffer area without notice of this fact being takeR. 

5/11/63 
1/15/63 
7/26/63 




