UNIVERSITY of PENNSYLVANIA

PHILADELPHIA 19104

The Moore School of Electrical Engineering D2
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

May 22, 1978

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

545 Technology Square

Cambridge, Massachusetts 02139

Attn: Dr. Guy L. Steele, Jr.

Re: UP-MS-CIS-76-34 - LISP 7/16 Implementation Report
Dear Dr. Steele:

We are pleased to enclose herewith the technical report that
you requested on May 14, 1978.

Very truly yours,

Y Fada)

G. Yerkes

enc.

W

P =MS-C/5~ 76 3%

LISP 7/16 Implementation Report

Thomas Kacrmarek:

LISP 7/16 - LISP on the Interdata

_ This document is designed to describe the implementation of LISP on the
Interdata 7/16 minicomputer. It is organized into two major sections. The
first of these will describe the representations used for the various types of
data. The second will describe the various modules which are used in the LISP
interpreter. Throughout this document it will be assumed that the reader is
familiar with LISP. This document is not a user's guide; rather it is intended

as a guide for maintaining and or modifying the interpreter.
DATA STRUCTURE
Cells

Many of the structures which will be described later will consist of a
collection of cells which are linked together. A cell in LISP 7/16 consists
of two Interdata halfwords which have been fullword aligned. The fullword
alignment is done to force pointers to have values which are multiples of four.
This frees the two low order bits for marking purpcses. How these bits are
used will be explained later. All of the cells in the system are contained in
an area of the pro;vam that is identified by the label SPACE. The label BOTSPC
refers to the first cell in SPACE (the cell with the lowest address). The
label TOPSPC refers to the last cell in SPACE. The variable TCPSP holds a
pointer to TCPSPC. During execution, whenever any module needs to know where
the last cell is, it checks TOPSP. The size of S?ACE may belmodified by chang-
ing the valuc stored in TOPSPC. When LISP is executed, the program Beﬁinﬂ by
linking togethor all of the cells in SPACE which are not part of predefined
structurcs., 'The pnvdofiﬁvd structures are used to hold the OBLIST, the défini-
tions of prodet Dned atoms and 1%1-- hish fists for the print nues of the atoms.

(Those will all be Jdescrsitsad lator.) The label STRESE is used 1o rofer to thas

-2 -
first available cell at initialization time. Every time the LISP program is
started at its starting address, the list of available cells is initialized.
As mentioned above, each cell consists of two halfwords. The first of these,
the one with the lower address, is referred to as the CAR of the cell; and the

second is referred to as the CDR of the cell.
Atoms

Literal atoms -

A literal atom in LISP 7/16 is represented as a single cell. It is marked
as an atom by setting the bit corresponding to a x'2' in the CAR of the cell.
If the CAR of any cell has this bit set, it is considered to be a literal atom.
The CAR of the atom is x'FFFE' unless it has a value assigned to it by either
the SET functiz. or through a LAMBDA binding. If a literal atom has a value
assisned then the CAR of the cell contains a pointer to thervalue plus two.
ihe plus two is a result of the x'2' bit being set. Past values of an atom are
stored on a stack whenever a LAMBDA binding has taken place. LAMBDA bindings
will be described more fully later. The CDR of an atom points to the property
list of the atom. If there is no property list, the CDR points to the special
atom NIL. The property list and NIL will be described later.

Fixed-point numeri; atoms -

Fixed-point numeric atoms consis£ of one cell and may contain valuess
between ~32768 and 32767, i.e. 16-bit two's complement integers. The CAR of
a fixed-point atom always points to itself. Any cell whose CAR is a pointer to
itself is considered to be a fixed-point atom. The CDR of the atom contains
the value in 16-bit two's complemont not.ation.

Floating-yoint muner ie o dtoms -
Flotting-point num\-!.‘ic‘ atone: consist of throee (:ell:r;. The [loating~poin!

atom has thee stiucture of a dotted pair of Fixed-point atoms. Any Straactone

-3 -
that looks like a dotted pair of fixed-point atoms will be treated as a floating-
point atom. The CAR of the fleating-point atom points to a cell whose CDR con-
tains the 16 high order bits of the value. The CDR of the atom points to a cell
whose CDR is the 16 low order bits of the value. The value of the floating—
point atom may be obtained by concatenating the low and high order bits. After
performing this operation, the result is in standard Interdata single-precision

floating-point format.
The OBLIST

The OBLIST in LISP 7/16 is a list which begins at the label POBLST. The
OBLIST points to each atom in the system through its print name (pname). The
OBLIST is a list of 16 lists. The 16 -sublists are hash buckets which are accessed
by using the four low order bits of the ASCII representation of the first
character in the print name of the atoms. -Thus, the first list points to all
atoms which begin with the letter 'P', since the first character must be a let—
ter; and 'P' is the ﬁnly letter with an ASCII representation ending in four
zeroes. The second list points to all atoms which begin with the letter 'A!
or 'Q', having ASCII representations of x'41' and x'51' respectively. Fach of
the 16 sublists cogsists of pointers to the print names of the atoms which are
stored in the pname area. The section following will describe the print names
and the pname area. Figure 2 in Appendix C illustrates the relation between

atoms and the QOBLIST.
Print Names

The print nu=- in LISP 7/16 are not cells. They are stored] in a special
area referrod to by the Tabel PHAMES., The label LSTOB refers to the first
available space in this arva upon initialization. The variable TOPOB is initial-

1zed Lo point to this location and 1n updated as the space is il led vp. ISP

-

-4 -
7/16 checks to be sure that LSTOB never exceeds BOTSPC which is the first
location above PNAMES. The individual pnames are stored as variable-length
items in this area.” The first byte of the pname tells the number of characters
in the pname. It is followed by the ASCII characters in the print name. The
characters are followed by a pointer to the atom. This pointer is halfword
aligned on the next available halfword. Oné byfe of zerces is placed between

the ASCIT characters and the pointer if necessary. Refer again to Figure 2 in

Appendix C for an illustration.

Property Lists

The property lists in LISP 7/16 are pointed to by the CDR of the literal
atom they are associated with. Property lists are always of even length. If
the elements of the list are numbered 1,2,3,...52n, then the odd elements of
the list (1,3,...,29—1) are taken as pointers to the properfy indicators. Tha

even numbered elements (2,Y4,...,2n) point to the values associated with those

indicators preceding them in the list.

The Stack

The stack in LISP 7/16 is used to save function calls and argument bindings.
The stack begins at the location PSIDN, and TOPCOR is the last location availahle
to the stack. The variables PUSHD and TOPCR are used to hold pointers to these
locations. Every time a SUBR is executed, an element is pushed onto the stack.
This element consists of eight halfwords. These halfwords are the contents of
registers 8 through 15 upon entry to the SUBR. Registers 8 through 10 point to
the argunents of the 3UBR. Thore may be at most three arguments passed. Registopr
11 is used to point to structres which are to be saved in case of garbape onl-
Tection, thic is used by CUBR'G which b Ll up Structhimes and oest pr\'{tra:t AT

structures being built, Register 12 is used to 1ink the stack clements, onel it

e

-5 -

tells where the next element may be placed. Register 13 points to the atom
which is defined as the SUBR being exccuted. Register 14 contains the return
addiress and register 15 is uéed as a pointer to the last element on the stack.
Thus the stack is doubly linked. The pointers to the last and the next element
on the stack are needed since the stack is also used to hold LAMBDA bindings

and these are not of fiwxed length. LAMBDA bindings are stored as a pair of
halfWérds on the stack. One pair is used for each variable which is bound. The
first of these is a pointer to the atom which is having a value bound to it, and
the second points to the old value of the atom. (Recall that the CAR of the

atom points to the current value.) Figure 3 in Appendix C depicts the stack.

NIL

NIL is a special literal atom. It is represented by the value zero. Any

pointer with a value of zero is considered to be a pointer to NIL.

e -6 -
LISP 7/16 MODULES

This section of this doéument will déscribe each of the modules which make
up the executable code of LISP 7/16. The modules will be described in the order
in which they appear in the program. The program has three types of modules:
interpreter deulgs whigh serve to initialize the program and direct the operatioﬁ .
of'the basic interpretive cycle; LISP SUBR's which are LISP functions available
to the user as machine language routines; and internal subroutines whiéh are used
by the various SUBR's either to structure the code or to provide a function which
several different SUBR's may have need for. Table 1 in Appendig D lists and
classifies these modules.

A set of naming conventions has been adopted in LISP 7/16. LISP atoms are
given their print names each truncated to six characters as a label. Thus the
cell for the atom PRINT has the label PRINT. The routine to perform a-SUBR is

given as label the print name of the atom truncated to five characters and suf-

‘fixed with the character 'S'. Thus the routine to do printing is labeled PRINTS.

(RPLACA and RPLACD are exceptions to this rule. The rule would not yield unigue
names. RPLCAS and RPLCDS are used.) The print name data is labeled bv the print
name truncated to five characters suffixed with the letter 'P'. Thus the print
name of PRINT has the label name PRINTP.

it - :

Initialization is done by the code beginning at the label INIT and rﬁnning
to the label RESTRT. This code links the cells beginning at‘STRTSP and ending
at the location pointed to by TOPSP, setting the CAR of each cell to zero and
the CPR of each cell as a pointer to the next cell. The loop botween LOCPT!H
and ENDLP initializes this list. At FNDLP the CDR of the last cell is sei to
NIL to mawwx the end ef the list. The objeet hash list is then initialinzed.

Thic is accomplishesd by placing MIL in 16 Tocations 1o mirk the onl of the 16

g

-7 -
sublists of the OBLIST mentioned above. INIT then initializes the counter used
to generate atoms via the GENSYM function. Finally, INIT initializes TOPOB to
point to the next available location in the pname area and saves the pointer to
the-next available celi in SPACE in case an error causes the pointer maintained
in the register NXTAVL to be destroyed.
RESTRT -~

RESTRT marks the bottom of the stack by pushing a durmy element with a
next element pointer of x'FFFE', It then resets the pointer to the next avail-
able location in SPACE which was saved in INIT. RESTRT is the location that
all errors return to, and it may be used to restart the program from the
operating system to preserve previously defined functions.
EVALOP - |

This loop is the basic interpretive cycle. It does a READ followed by an
EVAL folldwed by a PRINT. The linkage to each of these routines is via the
standard linkage conventions used throughout LISP 7/16. These conventions are
described in Appendix B.

ADDS - SUBS - MULTS - DIVIDS -

These four labels are dummy entry points into the routine ARITHS. Each
of these loads into register CELLFT an index which will be used inside ARITHS

to branch to the proper arithmetic instruction.

LESSS - GREATS -~ EQUALS -

These are also dummy entries to ARITHS. Once agafn these load the index
of the proper instruction in register CELILPT. In this case, however, they all
cause the execution of a compare instruction. A branch and link is usix] when
transferring to ARITHS. The arithmetic operators mentioned above do a simple
branch into ARUTHS. Upon completicn of the compare instruction, ARTTHS retiut.s
1o these comparizon moutines and the condition code is tosted. Oxit From e

rout it pastes cither thioush REZTE or REPT Gepending on whetlers the oo oo

e

-8 -
was false or true respectively. If the result is false the atom NIL is returned.
If the result is true the atom T is returned.

ARITHS -

Arithmetic operations and comparisons are doﬁe by the routine ARITHS. This
routine, li}ce all SUBR's that will be described, begins by saving a stack ele-
ment, saving the number of arguments passed to it and then checking if the number
passed ' is correct. The n@er of arguments paésed is saved in case of an error,
and a later section will describe why this is done and how it is used. ARITHS
then checks if both arguments passed are fixed-point arguments. If so, it gets
the value of each in the appropriate pair of registers and then uses the index
passed in CELLPT to branch to the proper instruction. Before doing so, it checks
to see if the second argument is negative. If it is, it expands it to a 32-bit
fixed-point number by loading a -1 in the appropriate register. This is done
because the Interdata multiplication and division instructions require it. If
the operation was a compare instruction then ARITHS returns via the link regis-
ter for testing the condition code. If it is not a compare, a new numeric atom
is created using the CONSEM routine. -This new atom is returned as the result.

If the first argument passed to ARITHS is a fixed-point atom and the
second is not, an error results. If the first argument is not a fixed-point
atom, ARITHS tests if it is a floating-point atom. If not, an error is r*epor-téd.
If the first argumcnt is not numeric an error 1s also reported

If the first argurent is not a fixed-point atom, ARITHS branches to TSTFPT.
This code tests if the two arguments are floating-point numbers using TSTTLT.
This routine requires the CAR and the CDR of the atom in quostion to be pointed
to by registers WORK? and WORK3, respectively. If they are valid, the operatinn
is perforned as mentioned above for the {ixed-point casa. Affor' the opertion

is perfoonod and if the operation was not a comparicson, a new flooating-ivint

-y -
atom is created. This is done by using the CRATTP routine. This routine finds
the value to use in the location FLTNUM. Thus ARTTHS stores the result there
before branching and linking to CRATFP. If a comparison operation was performed,
ARITHS returns via the 1link register to have the condition code tested.

CRATFP -~
This is an internal routine used to create a new floating-point atom. It
gets the value to use from the location FLENUM; and linkage is.via register
RIN2. It creates the result by first creating the cell for the low order bits
of the floating-point number. It uses the internal routine CONSEM to get the
new cell. It saves this partial result in case of garbage collection by making
it the CAR of the next cell it will request. This secord cell is used to hold
the high order bits of the floating-point number. CONSEM is called a second
tim» to cbtain the second cell. CRATFP then completes the creation of the
floating-point atom by calling the CONSEM routine a third time. When CONSEM is
called the two arguments are passed in the locations NEWCAR and NFWCDR. These
two arguments are placed in the CAR and the CDR of the cell returned. The cell
~is returned by placing a pointer to it in the register CELLPT. The first two
calls to CONSEM are followed by Steps to make the cells returned lock like fixed-
point atoms. This is done by setting the CAR's of the cells to point to them-
selves.
NUMBES -
This SUBR is used to test if the argunent passed is a number. It tests
if the argurment passed is either a floating-point or a fixed-point atom. If
the CAR of the argument points to itself, then the argument is a fixed-p~int
atom. MRABLS rests for this condition. If the CAR points to itself the atom

T is returned, IF not, it tests if the CAR and the CDR of the aryanent are

both fixed-point atoms, Tf they are, it returns the atom T. If the arpracent

16 not o mreericy it rvcture: Nil.

e

- 10 -
FIXS -

The SUBR FIXS uses a routine in the Interdata double-preéision floating-
point package to convert‘a‘floating—point atom éo a fixed-point atom. This
routine is named FFIX. FIXS begins by testing to see if the argument passed
is a floating-point atom. TSTFLT is used to make the test. TSTFLT stores the
floating-point number at FLTNUM. FFIXris called indirectly through the LISP
7/16 internal routine FPT2FI. The routine FPT2FT has two arguments which are
passed to it in a parameter block pointed to by register 1. The first element .
of the parameter block is a pointer to the floating—ﬁoint number, and the
second is a pointér to-wheré the result is to be placed. Since TSTFLT puts
the number to be converted in FLINUM, this is the first parameter. FIXS will
call CONSEM to create the fixed-point atom which is‘the result. Thus the second
argument will be NEWCDR. After returning from FPT2FI, FIXS calls CONSEM to get
the new cell. After returning from CONSEM the cell is modified to be a fixed-

point atom by setting the CAR of the cell to point to itself.
FLOATS -~

FLOATS calls the Interdata routine FFLOAT to convert the fixed-point atom
passed as the argument into a floating-point argument. The argument passed is
tested to be sure that it is a fixed-point argument. FFLOAT requires the value to
be passed in fegisfer 8 (WORK1) and linkage is via register 15. The result is
returned in registers 8 and 9. FLOATS stores this value at FLTHUM and calls
the routine CRATTP to get the atom. The result is returned in the fegister RECULT
by CRATTP. This result is then returned by FLOATS.

RPLCDS ~ RPICAS ~

This pair of routines Jdo RPLACA's and RPLACD's respectively. FEach checks
the number of arpuments makine sure that it is correct. The atom MTL is uot

allowd as the tirst argnsenty, cceer these pontines chech tor Thal o ceqel it e, it

utines atioo cheok the addees paed G be sure thoat e Tocat o fee For

gy

- 31 -
modified is within the limits of SPACE. These functions are performed by storing
the second argument in the CAR or CDR of the first.

SETS -

This routine checks to see if the first argument passed is a literal atom.
If it is, it sets the x'2' Bit in the second argument and places it in the CAR
of the atom’s cell. It returns the value assigﬁed as the result.

INPUTS - ‘

This SUBR checks the argument to be sure it is a fixed-point atom. It’
then uses the value of the atom to set up the proper function codes for the
prompting and reading SVC's. If the device being read from is the Univéc 70/u4E,
the prompting is left in, otherwise, it is supressed. This situation is de-
tected because the 70/46 is always assigned to logical unit x'D'. This is done
because the 70/46 waits for the 7/16 to ask for more data when sending source
programs via the program SRCLOAD. ftm’devices other than the 70/46, it is
assumed that thay are storage devices; such as the floppy disk or paper tape.
In this case prompting should not be given.

OUTPUTS -

This SUER is like IN?UTS except that it is used to change the output devics.
The argumen’ o th% SUBR is the logical unit to which the output is to be sent.
This routiné also modifies the function code in the proper SYC parameter bloclk.
EOTS -

This SUFR has no arguments and serves to return the input device to
logical unit 0. It also turns prompting on by setting the flag.

DEFSUS -

The firet argument of this SUBR is tested to be sure that it ig an aiem,
[t also checra 30 the second avpument is a fixed-point atom. Tr mes rhe SOl
PUES to place the property SUPR on the property Tist of the alom with .1 vl

euitl to the abne of the Hixed-point atom which s poemed o e v i) arons

i

- 12 =
The value of the property SUBR is the address of the routine for performing the
SUBR. Linkage to -the routine PUIS is done using t};e standar‘d.LISP 7/16 linkage
conventions. A | |
PUIS -

This SUBR makes sure that the first argument passed is a literal atom. Tt
then uses the SRCHP routine to search the property list of that atom. In order
to link to SRCHP it places a pointer to the property indicator in register WORK2
and the atom in register WORK3. If the indicator is found, the routine returns
to the next instruction after the BAL. Otherwise, if returns to the return
address plus four. If the property was found, the new value is stored in the
property list. SRCHP returns a pointer to the occurence of the property indicater
in the property list in the register CELLPT. PUTS uses this result to knbw
where to place the new value. If the property indicator was not found, it is
placed at the head of the property list. The structure to be added is.formed
by 1wo calls to CONSEM. The location NEWCDR is used to save the pcinter to the
property in case of garbage collection during the first call to CONSEM. After
the two new cells are obtained and linked to the old property list, RPICDES is
used to change the CDR of the atom to the new list. The standard LISP 7/1§
linkage is used *o link to the SUBR RPLCDS. |

This routine uses SRCHP to see if a value exists. SRCHP returns the valua
if found in register RESULT. GETS returns the result obtained from SRCHE.
EVALS -

The definition of EVALS is taken directly from the definition of EVAL in

the LISP 1.5 Programmer’s Manual (MeCarthy et. al.). The definition is found on
page 71 of that document, and the code follows that definition. The only nejrr
differences are that thoere is no ascociation list either passed as an argoment

or built Cehad Tow acees Bnamed to sovee variabile Bimedinges)y o] VEHCTENT §- p

-

ot

- 13 -
supported. The code follows the manual in a very straightforward manner and will
not be discussed here. Appendix A contains the definitions of EVAL and APPLY as
used in LISP 7/16.

This routine is a non-recursive version of EVCON as described by the LISP

1.5 Progranmer's Manual on page 71. This routine makes sure that the argument

is not NIL. It then gets the CAAR of the argument and calls EVALS using the LISP
7/16 linkage conventions to evaluate it. If the.result is not NIL, the CDAR of
the argument is evaluated, once agéin using EVALS. If the result of the first
evaluation was NIL, the routine loops to LOOPEV after going through EVCDR to get
the CDR of the argument. If none of the CAAR's are non-NIL, an error is re?orted.
EVLISS -

This routine is a non-recursive implementation of EVLIS as described by the

LISP 1.5 Programmer's Manual on page 71. It tests if the argument passed is NIL.
If it is it returns NIL. If not it goes to the loop which evaluates the CAR of
the argument using EVALS. The partial result is CONSed with previous results
using CONSEM. The results are saved from garbage collection by making the partial
results the new CDR, i.e. storing it at NEWCDR. After using CONSEM the CDR cf the
cell returned is set to NIL. If this is the first pass through the loop the result
is initialized by é;tting both registers WORK3 and TEMP to point to the cell re-
turned. On succeeding times through the loop, TEMP will be unchanged, but regic-
ter WORK3 will always indicate where to add the next result Peturned’by EVALS.
This loop continues until a NIL is found as the CDR of the argument at which tine
the whole result is returned.

CONSEM -

This iz the internal roatine to got colls from the list of freo cells. T
arpuienls arv pasaed to it via the vardables NMEWCAR and MEZODR. “hese arguments

Will heother CAR el CHE ot the ocd] relurtesd. Poprpator MaIPAVEL Toaaewsd cons bty

il

-1 -
by this routine, and it keeps track of the current available cell. If it is NIL,
then garbage collection must take place. If not, NXTAVI is set to the CDR of the
next available cell; and the two arguments are placed in the cell being returned.

The cell returned is pointed to by register CELLPT, and linkage is via register
RINI.

GABGCL, -

This is the internal routine to do garbage collection. It must protect
certain lists from the collection. It protects the NEWCAR and the NEWCDR. It
also protects the structure pointed to by register TEMP. This is done so that
if a SUBR needs to protect a structure it is building, it can use this register
to protect it. Also stack bindings are saved, as well as the OBLIST.

The routine begins by saving the registers since they will be needed to do
the collection. It then marks the top of the stack by séving its .locaticn at
TOPSTC. It then gets the OBLIST and marks it using the routine MRKSUB. After
it has marked the OBLIST, the collector marks the current structure pointed tc
by TEMP. The statements between MRKTMP and MARKCA are used to pop up through
all the values on the stack and mark passed LAMBDA bindings and old structures
pointed to by TRMP.

To see if IAMBDA bindings have been done, the routine adds 16 to the
register ISTPSH to:see if this equals register NXTPSH. If equal, then no bind-
ings have occurred. If not, then bindings have been made and they must be marked.
It also makes a quick test for an error in the stack handling. If no bindings
have occurred the stack is Fopped. If rot at the bottom, denoted by NXTPSH vaiue
of x'FITF', the Joop continues back to MRKTMP. If [AMRDA bindings ha've-cu:cur*r‘f:d_,
they are popped from the stack and m- irked, also using MRKSUB. The value of
NXTPGH and LSTPSH are checked again in the loop starting at [AMBLD and ending ar
MARKCA to be sure that all bindinges arce marked. After the old stack olements

are moeckae b, NEWOAR caud MENOCPE e markod aoing MRESUR,

g

- 15 =

The loop starting at DONEMK and continuing to TSTDNE does a linear scan to
collect all free cells and convert marked cells back to unmarked cells. Marking
cells is accomplished in MRKSUB by setting the lowest order bit of the CAR of
cells which are being used. Cells which are collected are linked together to
form a list and a count is kept of the number of free cells found. Register
NXTAVL is set to point to the first element of the list after printing a garbage
collection message and displaying the number of free cells on the front display
panel. After garbage collection is done, the collector returns to CONSEM to
CONS the NEWCAR and the NEWCDR.
MRKSUB -

This routine is used to mark a list that is passed to it. The list is
passed by a pointer in register 3. Linkage to this routine is via register 0.
A depth first tree traversal is used to mark the list. The marker descends
through the CAR's of a list saving the CDR's on the stack. Descent through the
tree stops if the current element is any of the following: NIL, an already
marked structure, or a numeric atom. Additionally there are a couple of special
conditions which are implementation-dependent and which the marker mﬁst detect.
One of these is if the current element pointed to is a pname. Recall that the
OBLIST is really a list of pointers to pnames and that the OBLIST is one of the
structures which m&st get marked. Thus when a pointer to the pname area is en-
countered, special handling must be done to follow the list because pnanes are
not constructed from normal cells. When such a pointer is encountered, the
marker must calculate the position of the pointer to the atom and continue itc
traversal at that pointer. This is done by taking the first byte of the pnane
entry, which is the length of the ASCIT character string, adding two and trun-
cating to a hallwerd adiiess. This is done beeause the pointer to the atom in
always halfword alipned. The mnker then continues using the pointer o the atom

as the current strachnes b mnk. 1 g pointor is out of ramgye of STACEL te

L3

kit

- 16 -
the marker does not follow it. " If this happens it is probably an ernér, but
the marker doesn't report it as such. One other special condition is tested
for. During reading in LISP 7/16, partial structures are built up and saved on
the stack. These structures lock like LAMBDA bindings to the marker. The first
element points to the head of a partial structure and the second points to where
to add new cells. The first element gets markéd, but the second element should
not be marked. The second element is always a'pointer to the éDR of a cell or
has the value 1,2 or 3. These constants are used by the reader for the special
handling of quotation marks and "dots." These low values are taken care of by
the fact that the marker does not follow pointers which are out of the range of
space. In the case that the pointer is indicating where to add new structures,
it is always a pointer to a CDR of a cell. Thus it must bé an odd multiple of
two. The marker, looking at such a pointer treats it as if it were the CAR of
a literal atom because the x'2' bit is set. The marker thus subtracts two from
the pointer and continues the search. If the value was Placed by the reader,
then subtracting two will leave a pointer to the CAR of the cell. Tt will al-
ways turn out that this is marked already because the first of the two elements
on the stack was marked first. When the CAR of a literal atom is really encount-
ered, subtracting two will also yield the correct result. In this case, the
CAR of the cell pofﬁts to the value of the atom plus two. If the atom has no
value assigned then the CAR has a value of x'FFFE': subtracting two will yield
X'FFTC'. The marker will not follow this because it is out of the range of
space.

Marking is accomplished by setting the lowest order bit in the CAR of the
cell. Only previously marked cells should have this bit set. The conditions
mentioned above are tested in the following order:

1.} If NTL then pop a CDR if there is one.

2.) Tt dinside the praame arca calemlate the adhoess of the pointer oo thee

R i

o

- 17 -
atom and follow it.

3.) If above SPACE then skip this item.

4.) If an odd multéple of 1wo then subtract two and follow it.

5.) If previously marked then pop a CDR if there is one.

If none of these special conditions are met then the cell is marked, the
CDR is pushed onto the stack, and the marker follows the CAR unless the cell is
numeric, in which case a CDR is popped. Since a floating-poinf atom is really
a dotted pair of fixed-point atoms, no special handling is needed for floating-
point atoms.

When a CDR is popped from the stack, the marker tests +o see if it is empty.
If it is then the marker returns. If not then it puts the top stack element in

register 2, decrements the top of stack pointer and gees back to the code to do

the marking.

READS -

This is the largest routine in LISP 7/16. The basic strategy is to build
up structures using tﬁe stack to hold partial results. The occcurrence of a
left parenthesis in the input signals the need to introduce a new stack element.
Right parentheses indicate a stack element should be popped and returned to a
higher level. Two haifwords are pushed onto the stack whenever a push is done.
The first of £hese4will point to the structure being built and the second will
point to where to add new elements to the structure. The second element is alsoc
used to mark the occurrence of the special characters, quotation mark (apestirophe)
and dot (period). This routine has o argurents. It begins by marking the top

of the stack by saving a pointer to it a¢ TOPSTK. The result is tentatively set
Y) i

to NIL, .ued checking 1 done 1o 5o 30 prometine should be done. If reading

k] ?J 14 t s 3
from a storae doviee then peva fine should ot he done. The prompt ing 1o donee
using the spocial MY U @hich Lo el fol low every Tine o toxt with o one-

Plage retuen and ine teasd, o HOU TVCT s st b1y by Wt b Pt md 11,0
I 4 ¥ 14

g

R

- 18 -
done or not, the routine then reads a line of text from the input device. A
dummy wait loop has been addéd for communication with the Univac 70/46.1 After
reading a record, the prompting character is modified to indicate that continued
input is being read. The routine also tests if it was called from +the loop
EVALOP which is the basic evaluation loop. A different prompting character is
used if this is not the case.

After reading the line of text, 'leading blarks are skippea over. Register
TEMP is used to point to the current character in the input buffer and the code-
at INCTMP is used to update this value when scanning over the buffer. If a non~
blank character is found, the reader tests for leading ASCIT null characters.
These may occur in reading from the 70/48. The current character is tested to
see if it is a comment character. If it is then control transfer to a section
of code called TSTND1 which tests if the reader is at the top of the stack. If
it is, then the reader will return, otherwise; it will request more data. READS
next checks for the occurrence of a left parenthesis, a right parenthesis, a
dot or a quotation mark. If one of these are found then the reader will trans-
fer to LEFTP, RIGHTP, DOT, or QUOT respectively. Fach of these will be described
later. If the current character is none of these special characters, the reader
tests if the current character is a letter. If the current character is less
then the character§’A' (in ASCII representation) then it may be a number and that
possibility is checked at MAKNUM. If the character is greater then 'Z' then a
syntax error has occurred, and the crror is reported. If none of the branches
above have occurred then the current character should be the start of the pname
of some literal atom. Two internal routines are called upon to operate on it.
The first of these, GETHAM, will extract the name from the input stream, check

to mike sure it is valid, amd place it at the location PMAM with its length
Lo Univae 70750 coamnmioations requive that the commmioar D o homds b
enongh time to turn the Tine qaround.

R

-1y -
prefixing it. ‘The second is FNDPNM which will test to see if the atom exists
already. If it does, then a.pointer to it will be returned; if not, then an atom
and pname entry will be created and the pointer to it returned. The readep will
then branch to RETSTR which is the code used to build the structures. |
GETNAM searches the inbut stream using the value in TEMP as a pointer to
the current character. The scan continues until a delimiter is found. The
delimiter may be a parenthesis, a dot, a space, a carriage return, or a non-
alphanumeric character. The scan may also end if twenty characters have been
read since this is the limit of the number of characters allowed. If more than
twenty characters are found then an error is reported. The characters in the
input string are moved into the area starting at PNAM+1 as they are scanned.
FNDPNM begins by storing the length of the pname at PNAM in the first byte.
The four low order bits of the first character of the pname are then used to
hash into the OBLIST. The low order bits must be multiplied by four to get the
proper cell in the OBLIST since each entry is four bytes long. The label OBHASH
points to the head of the hash list and it is used in conjunction with the hash-
ing value to get the correct list. The code at HSHLP to SAVPNT is a linear
search through the list. If the list is NIL then the pname contained at FNAM
is not in the QBLIéI;and conirel transfers to NOTIN. If not NIL,then the length
of the'pname in question is compared to that of the first element in the list.
If equal, then the characters are compared one by one by the code at the label
NAMIP. 1If all the characters are the same then the pname already exists and con-
trol passes to INTHER., If not, then the process is fepeated with the CDR of the
list. Before going back to lock at the remainder of the list, the current ele-
ment of the list is saved at SAVENT. This is done because the next element may
be NIL which mxus a new element of the list must be added and SAVPNT will tell

where that element should be added.

ko

- 20 -

If the pname was found then the code at INTHER will get the pointer to the
atom and load it into register RESULT to return it as the result. If the pname
was not there then the routine MAKEAT is used to create the atom. MAKFAT must
move the pname to the pname area at the next available location, get a cell,
mark it as an atom with no value assigned, place the pointer to it in the pname
area, add it to the hash list and return a peinter to the atom.

The variable TOPOB points to the next available space in %he pname area.
MAKFAT calculates the length of the entry it will make and then checks if room
is left in the pname area. The length of the entry is the length of the ASCIT
string plus one for the length byte, plus two for the pointer to the atom, plus
one, rounded to a halfword address. The extra one is added in case padding is
needed to align the atom pointer on a halfword boundary. If ther? is enough

space for the new entry, the pointer TOPOB is updated. The new literal atom

cell is created with a NIL CDR (the property list pointer) and a CAR of x'FFFE!

(no value assigned). This new cell is acquired using CONSEM. This cell is the
result,and so a pointer to it is stored in RESULT. The loop at BYTELP moves
the characters one at a time into the proper place in the pname area. Another
cell is acquired using CONSEM and this cell is placed in the OBLIST by using the
address saved at SAVPNT. In the special‘¢ase of an initially empty hash list,
the pointer to the pname entry is saved directly in the top level of the OBLIST.
Otherwise, it is inserted as the CDR of the last element of the old hash bucket.
In case of a quotation mark in the input, special handling is required.
This mark implies a set of parentheses. If a quotation mark is found, a new
stack element is created. The second halfword of the stack element is set to
x'3"' to mark the occurrence of the quote. The firgt halfword is set to point
to the structure being built. In this case, the CAR éf that struo%nn*:ﬂv#:hl
beothe atam QUOTH. The CBR of the stracthice will be a pointer t. the sitpee toaee,

That structure has ot been read yet. CONSEY is used to bepin the constrct jon

4

- 21 -
of the structure. A cell is obtained and the CAR of it is set to pdint to QUOTE.
After doing this, control passes to INCIMP to continue scanniné the input buffer.

If an open parenthesis is found then the code at OPENP is executed. Ié
creates a null stack element with both elements set to zero. These elements will
be filled in by RETSTR when the elements inside the parentheses are scanned and
returned.

If a dot is found then the code at DOT will be executed. This code will
first check to see if the reader is at the top of the stack. This is a syntax
error since a dotted expression must appear inside a.pair of parentheses. If
the first element of the stack is zero then this is also a syntax error since
something must precede the dot. The routine checks to see if the second half-
word of the stack element is a pointer to the CDR of the cell bointed to by the
first halfword. This is the proper set of circumstances since it means that
only one element has preceeded the dot. If this is not the case either several
elements have preceeded the dot (eg. (A B - ©)) or more than one dot appearsd
at the current level (eg. (A..B) or (A.B.C)). If the occurrence of the dot is
not a syntax error then the stack is marked by placing a x'1' in the second
halfword of the current stack element. This indicates to RETSIR that a dot has
occurred.

RETSTR takes the structure passed in register RESULT and patches it into
the structure pointed to by the top stack element. RETSTR first tests if a quote
has occurred. If one has then it uses CONSEM to build the list consisting of
QUOTE and the structure being returned. A new cell is acquizéd with CDR of NIl
and CAR the structure being returned. This new cell is patched in uéiﬁg the in-
formation stored on the stack. In this case, the first halfword points to the
CAR of the cell whose CPR must be set to the new cell acquired., After the pitch-
ing is done, control passes fo CLOSEP since a quote implics a pair of parenttenos

in the input. If not clasing a quote, RIISIR tests if is completing a dot ted

- 22 -

pair. If it is, then the second halfword of the top stack element is set to
x'2', which prevents multiple dots at the same-level. The routine also makes a
test to be sure that the structure was not (.) which is not allowed. Control
passes to INCTMP to continue scanning. RETSTR checks to be sure that two dots
héve not occurred by testing to see if the second halfword of the top stack
element is a x'2'.

If the second halfword of the top stack element is not x'1', x'2', or
x'3', then a normal list is being built. In this case, RETSTR obtains a néw
cell using CONSEM. The CAR of this new cell is set to the structure being re-
turned, and the CIR is set to NIL. The cell is then patched into the structure
being read by using the second halfword on the stack. The new cell is placed at
the position that this halfword indicates. A pointer to the CDR of the new cell
+ds placed as the, recond element of the stack. The routine then passes to INCIMP
T~ continue the scan of the input buffer.

" Wien a closing parenthesis is found, the stack is popped. If there is no
element to pop, a syntax error has occurréd. The code at CLOSEP does the popping.
It checks to make sure that if a dot has occurréd there is an expression between
it and.the closing parenthesis. The absence of such an expression is indicated
by a x'1" in the second halfword of the top stack element. The first halfword of

the tup stach element is the result, and it is returned in register RESULT. I°f

fl

ihe siooN is empty then the READ routine is exited. IE not, then the result is
returned via RETSTR to the next higher level. Before leaving in the case of an
empty stack, the routine checks to make sure there are no unscanned charactars
in the input buffer other than comment chanacters.. If there is, then an error is
reported,

MARRERY 16 nsed to create numobic atom: whon needed. The string, is teaioed
to see If 3t starts with o mesber befwoon 0 and 9 o a plus or mins siegn. 78

sl thent o syt oreore i reporteds Otherwise, Fhe vorttine ASTPRL §o e 1 o10e

[t

R

o

- 23 -
get the number. Upon return the character that follows the number found is
examined. This is done becauyse the routine which actually converts the characters
to numbers reads up to six characters and stops. If the next character is a
Qecimal point or another numbeg,then the number was a floating-point atom. In
this case control passes to FLTER. If the nurber was not a floatiﬁg-point number,
a new cell is acquired using CONSEM; and it is converted into a fixed-point atom
by setting the CAR to point to itself. This cell is returned to RETSTR. If the
number is floating-point then the routine ASF2BI is used to get the mumber. This
routine will place the result at FLTNUM. The routine CRATEP is {hen used to
create a floating-point atom. The result is returned by CRATFP in regiéter RESULT,
and this is returned to RETSTR. Both ASF2BI and ASI?BT properly adjust TEMP so
that it points to the next character.

GENSYS -

This routine begins by using the routine SIBTOD which is supplied by
Interdata. It is used to convert the value stored at NXTSYM to a printable
character string. After doing this the value of NXTSYM is.incremented so that
the next call to GENSYM will create a new atom. The length of the pname of the
atom and the character 'G' are prefixed to the ASCII string. FNDPNM is then
used to create the atom and place it on the OBLIST. FNDPNM returns the result
in register'RﬁSUBTaand GENSYS passes it along as the result.

CARS - CDRS - CONSS -

These three SUBR's use the internal forms GCARW1, GCDRW1 and CONSEM,
respectively, to perform the operations.
s -

This routine tiests if the two Jrpiments passed are equal, i.e. have the soame
value, 10 thoy are the same it returns the atom Ty otherwiss, it returns the cotom

NTI..

W

- 24 -
ATOMS -

This routine begins 5y testing if the argument passed is a fixed-point atom.
Tt then uses TSTFLT to test if it is a floating-point atom. Finally it tests if
the x}2' bit is set to indicate it is a literal atom.

SPREAD -

This rbutine is used by APPLY to place poin%ers to arguments in the registers
WORK1, WORK2 and WORK3. It can take at most three arguments. It counts the num-—
ber of arguments in the list and leaves the count in the register NUMARG fér
checking by SUBR's. .

PRINTS -

This routine prints its arguments and returns the argumént passed as the
result. The SUBR begins by marking the top of the stack. PRINTS will use the
nfack in doing a print of the structure passed. PRINTS i; essentially a recufsive
routine. If the argument passed to it is an atom, it will pfint it and return.

If the argument is not an atom, it will push the CDR of the structure on the
stack and print the CAR. After printing the CAR, it will pop the CDR and repeat
the process. PRINTS will try to print its argument as a list. If it cannot
(because some S-expressions are not 1istsz.this means the last element of the
structure is not NIL. In this case it will print a dot ('.') followed by the

-

last element of théwstructure. Thus (A B . C) will be printed for the structure
(A. (B.CH.

PRINTS marks the top of the stack by saving a pointer to it at SAVARE. It
will use register RESULT to point to pnames of the‘atoms whenrit must pass them
as parameters to the subprogram MVPNAM which will move them into the bpint buf fer.
Register CHAR is used to hold a character to be moved into the print buffer when
calling the suljrosvam MVCHAR. The register TEMP is nned to hold the numbvr of
wusitched Tett parenthesss in the oatpat. This count is used in . "pretty peint”

rout Liee built into PRINTG

o

- 95 -

PRINTS begins by marking the stack, initializing the count.of unmatched
parentheses to zero, initializing the length of the item to be printed to zero,
and 'saving the argument passed so that it might return it as the result. PRINTS
also places the CAR and the CDR of its argument, which is passed in WORK1, into
the registers WORK2 and WORK3, respectively. A

At the label PRNTAT, PRINTS tests if its argument is an atom, either NIL,
fixed-point, floating-point, or literal. If it is none of these then PRINTS trans-—
fers to the label NOTATM. Since its argument is not an atom it must be a struc-
ture. Therefore a *(' must Se printed. The routine MVCHAR is used to move this
character into the print buffer. The argument passed, its CAR and its CDR are
saved on the stack;and control passes back to PRNTAT which again begins by
checking for an atomic argument. If an argument passed is an atom then the
appropriate print name is moved into the print buffer. If a'fixed'point atom
is detected then the subprogram MOVNUM is used. If a floating-point atom is

detected then MOVFLT is used. If NIL is passed as the argument then a pointer

- to the print name of NIL is passed to the subprogram MVPNAM. TIf any other lit-

eral atom is detected then the subprogram FNDMAM is used to find its pnare, anc
the result is then passed to MYPNAM. MOVHUM, MOVFLT and MYVPNAM will move the
appropriate ASCIT characters into the print buffer. After doing so, conirol will
pass to POPCIR. Tﬁé cede at POPCER tests if the stack is empty. If so, printing
is complete; and PRINTS returns. If the stack is not empty a CBR is taken off
the stack, and control rasses to RTTURN.

L

RETURMN tests if the CDR popped from the stack is NIL. If it in, then it
marks the emd of a list. In this casc a ')' is neved into the print buffer using
MYCHAR, and <ontrol passes to POPCDR to pop the stack again. Tt the CDR paased
to RETUHRN 1o atomic then it ol the end of a strusture which is net g list.

Therefore oot sust be peinted o lowed by the atom aned 4 "), As Delors., choed -

e s dene to tent tor o onmer i oo Liderad atem. Alsvey s Dafore, the e Te

- 26 -
MVPNAM, MOVIUM, and MOVILT are used to move the appropriate characters into thé
print buffer. If the CDR passed to RETURN is not atomic then a pointer to it is
loaded into register WORKL, its CAR and CDR are placed in WORK?2 and WORK3 and
control is passed to PRNTAT once again. Thié is done at the label SETQS.

The subprogram MVCHAR is used to move single characters into the print
buffer. Linkage is via register RTNl. The subprogram MVCHAR counts the number
of left parentheses it has moved into the print buffer. If it is paésed a'¢
it will flush the existing buffer using PRNTIT and.then place the character into
the buffer. The print buffer contains a leading byte which defines the length
of the string in the'buffer. MVCHAR uses this byte in the code following NOTRP
to calculate wheré to place the character. MVCHAR decrements TEMP, the count of
unmatched left parentheses, whenever it is passed a right parenthesis. In the
case of a right pafenthesis, it does not print the buffer. When inserting a
right parenthesis into the print buffer, MVCHAR will delete spaces preceding it.
This deletion is done with.the code beginning at INSERT and ending at TSTLNG.

The code at TSTLNG tests if the print buffer is full. If so.then it calls PRMTIT
to print the buffer. Otherwise, it returns to the place from which it was called.
The subprogram PRNTIT is used to print the buffer. It saves the linkage
register, RTN2, at SAVREA*E, since RTN2 will be used by PRNTIT to link to anothar

subprogramn, INDENTJE Before printing the buffer, a tape-off (ASCII character)
and a carriage return are inserted into the buffer. The tape-off is inserted in
case the output is going to the 70/46. The carriage return is used to mark the
end of the buffer for the BOSS SVC's. After printing the buffer, PRNTIT cails
the subprogram TNDENT in onder to indent the proper amount for pretty printingeo.

MVPNAM 15 used to move a print name into the print buffer. Linkage to

MVPNAM is via royister RTNT. RESULT points to the print name to bo moved.

! i
MVPNAM first checks i there is room Toft in the buffer. If not, it is printesd
using PREVIT. The Dlest byte of the bulfor is amed to calotlate the Tengeth o f

e

- 27 -
the resultingAbuffer after the print name is moved in. The loop at PNLOOP is
used to move the characters into the buffer beginning with the last. After all
are moved in MVPNAM returns. |

INDENT is an internal routine to indent.the proper amount at the start of
each line to be printed. It is linked to via the register RIN2. The count of
unmatched parerntheses is used to do this. The number in TEMP is tested to see
if it is zero. If so then no indentation is needed and control passes to INBLM
which sets the length of the buffer to zero in this case. If TEMP is not zero .
then it is decremented by one and multiplied by two. The result is the number
of spaces to indent. The ioop at INLOOP actually moves the spaces into the
buffer.

MOVNUM is used to move fixed-point numbers into the buffer. It uses the
routine BI2ASI to convert the number into the aﬁpropriate ASCIT character string.
BI2ASI is passed its parameters in a block pointed to by register 1. The para-
meters are the address of the number to convert and the address of where to placa
the result. MOVNUM places the number at FIXNUM, and the result will be —ound at
PNUMBR. The parameter block is located at CNVRT. The length of a fixed-point
print name is always six, and this length is stored at PNLENT+l. The data stored
at PNLENT+1l and PNUMBR thus looks like a print name. MVPNAM is called to rove
it into the'pfinr buffer. RESULT is loaded with a pointer to PNLENT+1 before the
call to MVPNAM. After moving the print name conirol passes back via the link
register.

MOVFLT also uses the 1link register RTN?. It is very similar to MOVNDM, andt
it shares the code at RITNUM inside 0V MOVFLT will first set up a paranmetsr
block for BI2ASY. This paramcoter block is passed in register 1. The parmaotor
block contains the adidress of the nanbor and the address for the reault, Porbor.
arriving ar MOVIET, 0 cnll to TSTELT must have Peen mute. This reatipe 1oawves

the Floatim-point fweabor that it Lowe! o PURES. MoV usos this et gy

G

- 28 -~
the number to BI2ASF. After calling BI2ASF, control passes to the common code
at RETNUM. BIZ?AST returns a pointer to the last byte of the result it constructed.

MOVFLT uses this to calculate the length of the result. RETNUM will store this

length in the result.

SRCHP -

SRCHP is an internal routine to search a prbperty list. It is passed
argurents in registers WORK2 and WORK3. WORK?2 points to-the property indicator
and WORK3 points to the atom whose property list is to be searched; RESULT
will return NIL upon return if the indicator was not found. It will return a
pointer to the value associated with the indicator if it is found. CELLPT re-
turns a pointer to the occurrence of the indicator in the property list. WORK?
and WORK3 are Tot changed. Linkage is via register RTN1. If the indicator is
found on the property list SRCHP returns to the location in RTN1. Otherwise, it
réturns to the location in RTN1 + 4. SRCHP checks to make sure that the proper-
ty list is of even length. If not,then an error is reported.

GCARW1 -~ GCARVW? - GCARYZ -~

These routines are used to get the CAR of register WORK1, WORK? and WORX3
respectively. Linkage is via register RIN?. The result is returned in register
RESULT. If the argument passed is a literal atom then these routines will re-
turn the value of the atom unless it is.undefined[in.which case an errcr will
be reported.

GCDRW1 - GCDRW? ~ GCDRW3 -

These routines are similar to the above routines except that they pet the
CDR of the argurent.
The SUBE APPLYS is o machine Lowmoam:s voraion of APPLY at oiven on D AN

of the LISP 1.5 Proveammer'ss Muviat, The major JdilfSemenees are Phe o Tmin it 1o

ol PUART LABE Gnd the vosoeTat Do Pt Aprasndis A pivess o b fndt i o0 Aft 0

- 29 -
PAUSES ~

This routine uses the BOSS SVC to cause a break to the operating syétem.
TSTELT -

This routine is used to test if a cell is a floating-point atom. Upon
calling the routine, WORKl should point to the ceil; and WORK?2 and WORK3 should
point to the CAR and the CDR of the cell, respectively. The routine returns
the atom T if the cell is a floating-point cell and NIL otherwise.l The floating- |
point number is stored at FLINUM if the cell is a floating-point atom.

BI2AST -

This routine is used to convert binary numbers to ASCII integers. It links
to the Interdata routine, SIBTOD.
ASIZBI -

This routine reads up to six characters from the input buffer and returns
the proper binary integer. This routine begins by saving the registers 10
through 15. The parameters are passed to the routine in a parameter block whizh
is pointed to by register 1. The first parameter is the address of the place to
return the result. The second parameter 1s the address of the ASCIT character
to be converted. Register 10 is used as a pointer to the binary and register 11
as a pointer to the ASCII string. Register 12 is used to hold the value of the
result. Register 13 is used to hold the current character extracted from the
buffer. Register 14 is a temporary used in multiplication, and register 15 is a
count of the number of characters read. The routine initializes some repisters
and looks for a sign. 7f a plus sign is found, if is skipped over. If a nesative
sign is fownkd, the flag MEGHIG is set; and conwversion continues. The reop LT
is usd o ovtract the ASCLT characters from the buffer. They are checke-! to s
P they v winerie . T8 oty the end of the string 1s asmsmeels Hach oboe ooter
is strippsd of high bits and the proevious resnult is multipbied by benoaeine b

GRITES et o onbde Hhe e caliee B then adkbed Tnn Whens thee Loepe Bt

LAY]
-

- 23U -
either a non-numeric character has been found or five digits have been extracted.
After leaving the loop, NEGI'G is tested to see 1f the complement is needed. If
80, the result is complemented. The result is stored at the proper address, and
the address of the last ASCII character used‘is returned in the parameter block.

FPT2FT - ASF2BI - BI2ASF -

These routines are used to link to the Intérdata routines, FFIX, FDBCNV and

.

FBDCNV,. respectively. They fix a floating-point number, convert an ASCIT floating -
point number to binary and convert a binary floating-point number to ASCII respec-

tively. FPT2BI has two parameters which are passed in a parameter block via

g

register 1. The first parameter is the address of the floating-point number and
the second is the destination for the result. ASF2BI and BI?AST have two para-
meters also. The first is the address of the binary number and the seccnd is the
E address of the ASCII number.

| PUSH -

This routine is called by all SUBR's upon entry. It saves registers 8
through 15. It tests for stack overflow and clears register TEMP. TEMP is
cleared since the garbage collector preserves structures pointed to by TEMP, and
therefore clearing it helps prevent the inadvertent protection of garbage.

POP -

This routine is branched tc by each SUBR to return. It pops the stack,
checking for IAMBDA bindings. If any are found, thev are release? and old values
are restored. The bindings on the stack consist of two halfwords. The first of
these is a pointer to the atom and the second a pointgr to the old value plux
two. The plus fwe is fhere 5> that when the value is restorad to be the CAR 7
= the atom, it wii! look tike a Tireral atom. TAMBPA bindings are detecked thrciat
the e of the tomand and bastwand seinters stored on the stact . TE theey o for
by sixtoon then ne Blncdioees howe oeerred ag thin 1 the Lottt 0 fhae capchy f oo

o endry oo URE

RECOVR -~ NCOVER -

These routines and the short sections of code before them handle errors.
Each of the error routinés loads an error code into register LEN and passes té
one of these routines. RECOVR is used for errors which are recoverable. MNCOVER
is used for more seriocus errors which may not always be recovered from. RECOVR
prints an error message and moves the error code passed‘in register LEN into the
error message. The routine then prints the atom poihted to by the register ATMENT.
This register should contain a pointer to the function being executed when the
error occurred. EVAL and APPLY load this register when interpreting a SUBR, EXPR,
FSUBR, or FTEXPR. 'All SUBR's except PRINT store the number of parameters passed
at ARGMUM. This is done so that in case of an error, the arguments may be printed.
PRINTS is called to print the arguments; thus it is not allowed to medify this
number. After printing the arguments the routine does a PAUSE to the operating
systeﬁ. If the user continues, the program branches to RESTRT. This does not
free LAMBDA bindings, but the stack is effectively popped. NCOVER acts similarly

except it only prints the error message and then pauses.

Definition of EVAL and APPLY

evall forml}=[
null{ formJ+NIL;
numberpl form}+form;
atom[form]»[get[form,APVAL}»apval
T>{eglcar[form];QUOTE l+cadr{ form];
eqlecarlforml; COND]»evcon{cdr[form]}
eqlcarl form1; PROG l+prog*: [cdr[forml]
atOmEcar[fbrm]]+[
getlcar! form];EXPR]>
applylexpr*jevlislcdrlformi1l;
getlcarl form];FEXPR]+
applyl fexpr®;listlcdrl forml1];
getlcar{ form];SUBR 1+
spreard{evllsfcdﬂ{fbmwﬂ]],
i BAL RTNADR »Subr?
getlcarl form];FSUBR]+
;WORKl:=cdr[formJ;
(BAL RTMADR, fsubr®
T+evallcons[value[car{ form];
error{VA]l;cdr{ formi11];
T»applylear{ form]; evlls[cdr[form]}]}]

value[X;Y]

The function value retrieves the value of the first argument ¥ which must
be a literal atom. If X has no associated value then the form Y is
evaluated. .

errorlindicator]
The function error prints the indicator passed as an argument.

apply[fnjargs]=[
null(fn]-NIL
atom{fnl+{get[fn;E¥PRI*applylexpriargs1;

get{fn;SUBRI+ spread args ;
= ‘BAL R’INADR subp¥
T-apply{valuelfn; error[”%]] args 1]
eqlcar{fnl; L “B“A]+blnd[cadr[fn3 args 1
evallcaddrl: fnlls

Tsapplvlevallfnl;arss1];

bind[var-list;val-list]
The functicn hlnd take two lists of equal leneth as arcuments. The fiegt

list must bo a 1ist of 11rer11 non-NTL, atoms. The values in the second list
are boundd to the First list in the order ?hey APpoar.

FThe Vaiue of mv 1o set aside. Thia is the meaning of the aprarosnt e
vz:ilblm

:‘\lﬂmuml progoarpears. it is npot supported. The sube for nroes simply
AN PRI e oo ;'I‘.(‘.',:'..!_:“‘.

LISP-716

Appendix B:

Register Convention and Linkage Conventions

Register Conventions

NUMBER

0

L&
;_a

10

)

11

NAME,

RTN1

NUMARG

RTNZ

CELLPT

RESULT

RTN3

LEN

CHAR
ARGPNT

NXTAVL

SUBADR

WORK1

WORK?2

WORK3

TEMP

USE

General purpose linkage register for internal
subroutine calls. It may be used as a temporary.

Holds the number of arguments passed to a SUBR.
It is set up by the routine SPREAD. It may be
used as a temporary within a SUBR.

General purpose linkage register for internal
subroutine calls.

Returns a peinter to the cell returned when re-
questing a cell by using CONSEM. It may be used
as a temporary.

Used to return results when exiting. _It may be
used as a temporary.

General purpose linkage register.

Used to return and error code to the recover
routine. It may be used as a temporary.

It is used within READ and PRINT to hold the
length of a pname.

May be used as a temporary. It is used by READ
and PRINT to hold charzcters.
Used by EVAL to peint to argument it was passed.

Holds address of next available cell in free
space - not to be used or changed by subrs!

Holds the address of the SUBR. May be used
as a temporary.

Holds address of the first argument pasced a
SUBR. .

Holds address of the second argument passed
a SUBR,

Holds address of the third argument passed
a SUBR.

A general Femporary which can e nmed] o s
A structure from gartbaee cocTloot fon basine o
call to CONCERL

Appendix B (continued):

NUMBER NAME USE

12 NXTPSH Address of next element in the stack.
The value passed in this register must be returned
in it when exiting a SUBR. A SUBR may use the stack
locations starting at the one pointed to by this
register; but on exit the value should be restored
to original value passed.

13 ATMPNT Pointer to the atom associated with the SUBR being
executed. It is used in’error printing and may be -
modified after all error checking has been done in
the SUBR. .

1y RTNADR Return address for the SUBR. POP uses it to
return. The user may use it as a temporary after
& call to PUSH which saves it.

15 LSTPSH Address of the last element on stack. Should not
be changed. :

Linkage Conventions

Upon entering a SUBR the following instructions should be executed to maintain

compatability with LISP 7/16 SUBRS:

NAME: BAL RTNI ,PUSH PUSH A STACK ELEMENT
STH NUMARG , ARGNUM SAVE NUMBER OF ARGUMENTS
CLHI NUMARG, MUMER TEST FOR PROPER NUMRER
BNE ERROR GO TO ERROR ROUTINE

PUSH and ARGNUM are entry points in LISP- 7/16 and should be EXTRNS +o +hs SUBR
being executed if it is to be linked to LISP. The variable NUMER is a loeal
variable which is the number of arguments expected. Errors are handled by
loading the register LE! with a two character ASCIT error code which will be
printed. The SUBR should then branch to RECOVR or NCOVER depending on whether
the error is fatal or not. Upon leaving the SUER, the register RESULT should
be loaded with the result;and the SUBR should branch to FOP. POP, PECOVE, and
NCOVER are entry points in LISP 7/16 and should be EXTRNS in the SUBR if is to
be linked to LISP. Tf a SUBR-is not going to call any other SURRS and there
dare no recursive calls to itself, then the call to PUSH may be eliminated. The
SUBR can then return via the link register RTNADR.

Appendix C:

I1lustrations at ATOMS, the OBLIST, property list, and the stack

Fig. 1la. Structure of literal atoms

X'FFFE? pointer to
property if not value assigned
list or NIL :

% . ! g ’ ,‘:l," 'S;

) pointer to pointer to E
current property list | if a value is assigned
value + 2 or NIL :

Fig. 1b. Structure of fixed point atoms

"

I 16 bit
- i halfword
I | integer
. 1
Fig. lc. Structures of [loatingpoint atoms

: 186 high !

16 1ow
. order bits ’ i uz‘(h“ bito
/? . at floating f ! R
/ point i ‘ { iy, '-f:”
= '/// o L

[——

3 e 'PUT” \ 4 | eriusar
LENGTH | ASCII CHARACTERS LINGTH |ASCII CHARACT RS (
... PNANME_AREA : N .
SPACE \\‘\
;
the OBLIST ~ 16 linked cells - S
] - _“ ’ > = 1 —reD e e e e———D \

\ r—-———f{[gD s e g e

s
\ bark lint 3 ~ characters 'C' & 'S*
GO T — %
hagh liet O ~ character 'PY
,
\) the akom PUT property list for PUT '
ot . | the N
x'?FFﬁ% _ Addrens| S /-
Value | ¢ 2! P of the
| j SUBR
N) UIL pronerby list
the }x'FFF
atom virjue
sSUBR l

Thie Tigure 1ilsviroies e 930150, e, Jewpervby lisbte 2ed thedry rei-ut

It chove the abane YPUPTY pd 2033, Phe property lint of SUIR is Wli. ©h
property lisk of TUT ban 2 paieter to SUBH “ed the nddress of ite subr.

&

g

NXTPSH

LSTPSH

.

r

Y Y

r

PUSHD

(lowest addeens)

e

1
e e | e

YY Y Y

. f

.. [}

.. !
e i
™)

B e ke i e ettt e e

e e . - . gy
-4
ST - — ———
£
e o - rm——an o -
[
P ———

WORKD?),

The Stack

pointer to atom
pointer to old valu

pointer to atom
pointer to old valuye +2
pointer to atom
pointer to old value +2

roturn acklres::
atom being cogy Nippread
Mearks 1ot ey oY

HH PRTR
'I'i?‘l[‘ = ibrapctiee e et
WORE

AT e L

WORK]

MODULSE CLASSIFICATION AND LINKAG

NAME TYPEy LINVAGE ARGIIGENT S /CORENTS
Iyit ‘ ioterp. Ivitializes d-ta areas
RESTRT interp. 'Restart‘address
EVALOP interp,. Basic ioterpretive cycle
ADDS ; SUBR standardg LISE SUBX : (ADD X Y)
3UBS SUBR staodard | LISP SUBR : (SUB X Y)
MULTS SUBR standand | LIGP 3UBR : (MULY X Y)
DIVIDS 3U3R standard | LISP 3UBR (DIVIDE 1Y)
L8353 SUBR stondard | LISY BUBR : (IB33 X Y)
GREATS SUBR etacdard LIJP 3UBR : (GREATIR X Y) ’
BOUAILS 3U3R staodard IISP SUBR : (EQUAI £ ¥)
ARITHS internnl | RTN3 i P0RY aed TORLZ / uses ITH2 oely for comoere,
: otherrire, returne vriong POP,
CHATFP interpal | 3PH2 FLTNUY muet bold oumber. Returor result ice
RESUID,
NU'BES sUB3 standard | LISP SUBH : (WUKMAR X)
PILS - SUBR standard | LIS? 5U3R @ (PIX X)
FLOATS L3 strndard | LI.7 LUBT 3 (FLOAT K)
RPILCDS . 3UBR standnrd | 152 U8B+ 1 (2PLACD X Y)
 RPLCAS SUBR steoaderd | TI.» LUBR : (3PLACA £ Y)
SETS - SUBR #taedard | LI5S U2 ¢ (SEM £ Y)
INPUTS LUBR ehipdard | LI.0 SUBR ¢ (INPUT? X) / remd from logicert unis

Wl

QUSEUS

ZOTS
¥ DWELSUL

PUTS
GETS
BVt 3

1l ‘Iﬂii 3

ISR I

LSU3=

SU3H

SUBR
S8
1NN
U
SUln

interpe]

'rtxnﬁ*rd

Cetooadord

ptondard

standarad

ft=pd:-rd
shaedard
standard
atpndard

HTil

F1ow

Ty 24
Does

PEIP

ait

C.
=
e
LX)

REE

-.JL’.)J M
vy 1
FRONS I
TTTY y

H),}it :

s

=1 voit;

N s‘;;\. UD’% -
Frbire enllectine if
durin;

(2U2PUL L) / write ta lozigs:

(Z0T) / eecd of fropspisedan
read from losieal

(LoFSUBR L Y) ./ Define
locstion Y,

(sU2 £ Y
(Gur £ Y)
(Bval)
(GAUSTH NG
(VI1 £)

Z)

nespll

returocd
eoedea,

farboge enllectinng

-

i

Tote

X T
H T

voir

N

3

b i U
urit

NAME

TYPH

LINKGE

TABLE 1.

(cootivued)

ARGUERLENT /COUELENTS

&3

GCh. 3

GABGCL
MREKSUB
READS
GAN3Y.J
CARS
CLRB
CONG
1o

AT O

SPREMLL

Geag .l
- ’
CAR.2

Ggyu,l
GoORA.2

GLJ}R-!B

PATILES

THIFLD

12441

ZAs108I

FPPETI

internal
internal
3U3BR
SUBA
SU8s
SUBR
SUBR
oUB2
SUBR

internal

31130

internal

internal
17

113
1"
1

oty
internn)
ll"l'-.-"rt" 1

internnd

inkeyna

R

 sEkangard

etapndard

standnrd

C 2tandard
. e#tandard

ehandard

stnpdnrd

TN

atandard

nol

LI

Doea garbage collection,
Register 3, WMarks sbtructure pas: ed,
LI:ESP

SUBR ¢ (READ)

LIsP sU32

e

(GIN3YH)
LISy

,
~F
—
LN
o
aw

(CAR 1)

Li
=
=

LI3P (2bx 4) -

LISY SU3% @+ (CoNs «)
TISP 3UB% ¢ (B2 X Y)

SUBL ¢ (ATOWM)

RESULT poidds to lirt to SFREAD, 3
and L03k3 veturo Argunerte. HULLLRG rftU?pF =
covel of Fthe =zyzunente,

LI3¥ UBR @ (BRIND &)

wO0d¥2 poictr to oroperty, RT3 woiets &9 bue
abktom, REMLY returoe repult CELIPY oojebs -
sccurence 2f jodicator io the Aroper by liex,
Retvrors tn IPU14+4 iT eof fourd, / serrehnes Lae
property lirt loaskios for = oroperty,

Gets (AR of #ORK] .,

" n " LORK?2,
" " " %ORAB-
1 DR LRV,
I 1] n i'f OEI§2 L]
i " "o

01K 3.

S1o¥ 530 1 (APPIY £ Y)

.15 SUBX
eyrtom,

(PAUSE) / Pause 2 the aner-tin

Ml paiete ta
AR ol it a7
[T UNE R MR

the cell.
t=e cril.

TORK2 e e ~ie
IDNANY v Taros: s 3a

biock in
T1ee Al

Tarnmeter
vheore b9

recictery 1. Addreco o i
i

Parameter
binery apd

Dlack jo rericter 1.
ndidrpee af A001I.

iGidreer to ploe

Parameter block ip rersicster 1,

vddy e
iog ed vhere to pliace [ired,

TABLE 1. (cootionued)

1. Joterord:
cycle

veed by
od/ar iritializat

Tt
JU Ve,

L

GBRs LIy

ioon,

NAVE TYP LIWKaG &RGUM}:‘-N'ES/CO?JE-:‘IBI\II_‘S
ASF2BI interonl | RTV] Parameber bioek in regicter 1, Addresa of
ASCII and . where to place bipary, ‘
’ BI2AGT interoal |RTN1L Parameter blzcek jn regicrter i. Address to
pluce ASCII =2pd address of binary,
PUGH interoml [RTHI Saves the parvsmeters to a SUBR oy FUSHieq -
stack element,
" pop interonl POP's av elemcot off the shack,
RECOVER intrrnnal LENW holds the ervor code. Eriote the cnde,
the furctiso being executed, the ATFuMcots,
Aard papser to the 2perating systen,
B)
NCOVIR internnl LI holde t2e ervor cnde. Friote the errnr oo
and pavrses £n fhe 2peratbtiog sysben,

SU3d; deterp,: boeric iotorvoret iv-

“2. Stoedard _ISP 7/1. licksage corventinopg,

