
NO. 1 
T h i s  f i rst  ( l o n g  d e l a y e d )  LISP B u l l e t i n  c o n t a i n s  samples  o f  

most of  t h o s e  t y p e s  o f  i t e m s  which t h e  e d i t o r  f e e l s  a re  r e l e v a n t  
t o  t h i s  p u b l i c a t i o n .  These  i n c l u d e  announcements o f  new ( i . e .  n o t  
p r e v i o u s l y  announced h e r e )  imp lemen ta t i ons  of LISP !or  c l o s e l y  r e -  
l a t e d )  sys tems;  q u i c k  t r i c k s  i n  LISP; a b s t r a c t s  o. LISP  r e l a t e d  
p a p e r s ;  s h o r t  w r i t e u p s  and l i s t i n g s  o f  u s e f u l  programs;  and l o n g e r  
a r t i c l e s  on problems o f  g e n e r a l  i n t e r e s t  t o  t h e  e n t i r e  LISP com- 
muni ty .  Printing- o f  t h e s e  l as t  a r t i c l e s  i n  t h e  B u l l e t i n  does  n o t  
i n t e r f e r e  w i t h  l a t e r  p u b l i c a t i o n s  i n  f o rma l  j o u r n a l s  o r  books .  
S h o r t  w r i t e - u p s  o f  new f e a t u r e s  added t o  LISP a r e  o f  i n t e r e s t ,  
p r e f e r a b l y  upward compa t ib l e  w i t h  LISP 1 .5 ,  e s p e c i a l l y  i f  t hey  are 
i l l u s t r a t e d  by programming examples .  

A NEW LISP FEATURE - 
Bobrow, D a n i e l  G . ,  B o l t  Beranek and Newman I n c . ,  50 o u l t o n  

S t r e e t ,  Cambridge, Massachuse t t s  02138. 
An e x t e n s i o n  o f  r o  2,  c a l l e d  p rogn  i s  v e r y  u s e f u l .  Tht r a l u e  

o f  p rogn [e l ; e  ; ,..; e  Y- i s  t h e  v a l u e  o f  e  . I n  BBN-LISP on t .e 
SDS 940 we ha6e ex t enaed  - cond t o  i n c l u d e  $n i m p l i c i t  p rogn  i n  e a c h  
c l a u s e ,  p u t t i n g  It I n  t h e  g e n e r a l  form 

(COND (e l l  . . . e  ) (e21 . . . e  
In1 2n2) ... (ekl ... e ) )  

kn,_ 
where nl > 1. T h i s  form i s  i d e n t i c a l  t o  t h e  LISP 1 . 5  form i f  n - 
n i  = 2 .  I f  n  > 2  t h e n  each  e x p r e s s i o n  e  i n  a c l a u s e  i s  e v a l u a t e d  
( i n  o r d e r )  w h h  e i s  t h e  f i r s t  t r u e  ( n o h k N 1 ~ )  p r e d i c a t e  found .  
The v a l u e  o f  t h e  &And I s  t h e  v a l u e  o f  t h e  las t  c l a u s e  e v a l u a t e d .  
T h i s  i s  d i r e c t l y  G a p o l a t e d  t o  t h e  c a s e  where n, = 1, b x r e  t h e  
v a l u e  o f  t h e  cond i s  t h e  v a l u e  o f  t h i s  f i rs t  n o n - ~ I L  p r e w c a t e .  A s  
a n  example o f t h e  u s e  o f  t h i s  c o n s i d e r  

(SETQ z 
(COND ( ( C D R  XI) 

(T (SETQ X (COPY A ) )  
(CONS Y X)))) 

which s e t s  z t o  cd r [x ]  i f  cd r [x ]  i s  n o t  NIL ( w i t h o u t  recomput ing  t h e  
v a l u e  as woirld be n e c e s s a r y  i n  LISP 1 . 5 ) .  I f  cd r [x ]  i s  NIL, t h e n  & 
i s  set and t h e  v a l u e  o f  z i s  s e t  t o  cons[y;x].  T h i s  form o f  cond 
i s  a l s o  used  i n  LISP 1.6-for t h e  PDP-6/10; it h a s  p roven  very-- 
v e n i e n t ,  and h a s  no a p p a r e n t  drawbacks ,  
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MLISP USERS' MANUAL 

Smith, David Canfield. Stanford Artificial Intelligence Project 
Memo AI-84. 1969 January. 

MLISP is a LISP pre-processor designed to facilitate the writing, 
use, and understanding of LISP programs. This is accomplished through 
parentheses reduction, comments, introduction of a more visual flow 
of control with block structure and mnemonic key words, and language 
redundancy. In addition, some "meta-constructs" are introduced to In- 
crease the power of the language. (Abstract) 

The MLISP pre-processor was written by Horace Enea for the I2M 
360/67. The author has implemented MLISP on the PDP-6/10 and has 
added a few auxiliary features, among them compiled object programs, 
floating point numbers, a new FOR loop, improved error messages and 
recovery, and additional string manipulation facilities. 

TOWARD A PROGRAMMING LABORATORY 

Teitelman, Warren. Bolt Beranek and Newman Inc. (International 
Joint Conference on Artificial Intelligence). 1969 April~ 

This paper discusses the feasibility and desirability of con- 
structing a "programming laboratory" which would cooperate w~h the 
user in the development of his programs, freeing him to concentrate 
more fully on the conceptual difficulties of the problem he ~ishes 
to solve. Experience with similar systems in other fields indicates 
that such a system would significantly increase the programmer's 
productivity. 

The PILOT system, implemented within the interactive BBN-LISP 
system, is a steD in the direction of a programming laboratory. 
PILOT operates as an interface between the user and his programs, 
monitoring ooth the requests of the user and the operation of his 
programs. For example, if PILOT detects an error during the exe- 
cution of a program, it takes the appropriate corrective action 
based on previous instructions from the user. Similarly, the user 
can give directions to PILOT about the operation of his programs, 
even while they are running, and PILOT will perform the work required. 
In addition, the user can easily modify PILOT by instructing it about 
its own operation, and thus develop his own language and conventions 
for interacting with PILOT. 

Several examples are presented. (Abstract) 
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LISP 1.5 Systems 

,, 

The following are LISP systems the editor has been told about. 
Please send information about other systems - including wrlte-ups 
and manuals. 

Machine OS 

IBM 360/50 ADEPT 

IBM 360/50 OS/DOS 

IBM/360/91 OS 

PDP 6/10 ITS 

CDC 3300 

CDC 6600 

SDS 940 

10/50 

BBNTS 

Location 

System Development Corporation 
Santa Monlca, California 

Rensselaer Polytechnic Institute 
Troy, New York 

& 

IBM - Yorkto~ ~, New York 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Stanford University, Stanford, California 
Bolt Beranek and Newman Inc., Cambridge, 
Massachusetts 

University of Waterloo, Ontario, Canada 

University of Texas, Austin Texas 

Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 
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COMMENTING LISP PROGRAMS 

Shaw, Christopher J. System Development Corporation• 2500 
Colorado Avenue. Santa Monica, California 90406. 

Many observers have commented on the lack of comments in LISP 
programs, and it is truly unfortunate that the designers of LISP 
never saw fit to incorporate in their systems a capability for dis- 
regarding comments. 

Though some LISP programmers may disdain them, comments are an 
indispensible part of any code that is mear~to be easily comprehended 
by humans• And there is really no good excuse for doing without them 
in LISP; a comment purging process is easily prefixed to most any 
LISP processor, and if that processor has a macro capability, the 
Job is almost trivial, as show, by the following macro definition: 

MACRO 
( ( ( NOTED 

(LAMBDA (FORM) 
((LABEL PURGE 

(LAMBDA (X) 
( COMb 
((ATOM X) X) 
((ATOM (CAR X)) (CONS (CAR X) (PURGE (CDR X)))) 
((EQ (CAAR X) (QUOTE NOTE)) (PURGE (CDR X))) 
(T (LIST (PURGE (CAR X)) (PURGE (CDR X)))) 

))) 
(CDR FORM) 

))))) 

This macro operates on any list beginning with the atom NOTED-- 
ordinarily, this would be the list following the DEFINE--by elimi- 
nating NOTED and purging any sublist beginning with the atom NOTE. 
For example : 

DEFINE " 
(NOTED 
(NOTE THAT THIS LIST GETS PURGED) 
::" 

) 

would be replaced by 

DEFINE 
( 
::: 
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A PROGRAM TO DOCUMENT LISP PROGRAM STRUCTURE 

Bobrow, Daniel G. Bolt Beranek and Newman Inc. Cambridge, 
Massachusetts. 1968 January. 

In trying to work with large programs, a user can lose track of 
the hierarchy which defines his program structure; it is often con- 
venient to have a map to show which functions are called by each of 
the functions in a system. The program PRINTSTRUCTURE, and its six 
auxiliary functions PRINTSTRUC, PROGSTRUC, A LL~ALLS~, PRGSTRC~ PRGSTRC1 
and NOTFN provide an aid for the documentation of this aspect of a 
system. If FN is the name of the top level function called in your 
system, then typing in 

PRINTSTRUCTURE(FN) 

will cause a tree printout of the function-call structure of FN. To 
describe this in more detail we use the PRINTSTRUCTURE program itself 
as an example. (its listing is appended to this document) For this 
function, we get: 

-PRINTSTHUCTURE(PRINTSTRUCTURE) 

PNI NTSrRUCTURE PR] NI'STRUC PRI NTSTRUC . . . . . .  
PROGSTRUC PRGSTRC NOTFN 

PROGSTRUC 
PRGSTRCI PRGSTRC 
PRGSTRC 

ALLCALL5 ALLCALLS 

( P ~ i N r S r R u c r u ~ g  PRINTSTRUC PROGSTRUC PRGSTRC NOTFN PRG~TRCI 
ALLCALLS)  

The upper portion of the printout is the usual horizontal 
(teletype) version of the tree: 

J 
PRINTSTRUC 

! 
NOTFN PROGSTRUC PRGSTRC1 PRGSTRC 

i 
PRGSTRC 

PRINTSTRUCTURE 

PROGSTRUC LLCALLS 

ALLCALLS 

This tree is straightforwardly derived from the listing of the 
functions: PRINTSTRUCTURE calls only three functions PRINTSTRUC, 
PROGSTRUC and ALLCALLS in that order; PRINTSTRUC only calls itself, 
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and PROGSTRUC only PRGSTRC; PRGSTRC calls four functions, NOTFN, 
PROGSTRUC, PRGSTRC1 and PRGSTRC. Note that a function whose sub- 
structure has already been shown is not expanded in its second oc- 
currence in the tree. The list following the tree printout repre- 
sents a "reasonable" order for the listing of functions, and is 
available as the value of the variable DONE, used free in the program. 
The variable TREE contains a list structure version of the tree 
printed out. 

The function NOTFN is a predicate which determines which functions 
should (not) be listed. It has value T for input an atom which should 
not be listed as a subfunction, either because this atom is a system 
function, or not defined as a function at all. In the BBN-LISP system, 
the function GETD (for e~ting function definitions) returns NIL for 
undefined func~ns, and a number for system and compiled functions. 
Therefore, for NOTFN we can use the simple definition (ATOM(GETD X)) 
as shown in the listing. An alternative definition would utilize a 
list of "interesting" functions; NOTFN would then return T if the in- 
put atom were not a member of this list. Only these "interesting" 
functions would then appear in the tree. 

In addition to the tree, it is often important to know all 
functions which call a specified function. PRINTSTRUCTURE can be given 
a second (optional m) argument which should be a name, FN1, of a 
function which can be reached from FN. PRINTSTRUCTURE uses the list 
structure tree which is the value of TREE to determlne the set of 
functions which call FN1 (which can be gotten to from FN). If the 
first argument to PRINTSTRUCTURE is NIL, it uses the value of the 
tree computed earlier. An example is: 

,.PRINT.STRUCTURE(NIL PRGSTRC) 

PRGSTRC I S  CALLED BY: 
(PROGSTRUC PRGSTRCI PRGSTRC) 

*in BBN-LISP if a function is given fewer arguments than re- 
quired, NIL values are provided. ~ 

LISTING 

( P R I  NTSTRUCTURE 
(LAMBDA (IrN I r N i )  

(COND 
(FN (SETQ DONE N I L )  

( TERPR ! ) 
( P R I N T S T R U C  (SETQ TREE (CAR (PROGSTRUC F N ) ) ) )  
( TERPRI ) 
(SETO DONE (REVERSE D O N E ) ) ) )  

(COND 
( F N I  ( 5 E T Q  A L L C A L L $  N I L )  

( TERPRI ) 
( P R I N I  F N I )  
( P R | N I  (OUOTE " I S  CALLED B Y : " ) )  
( TERPR | ) 
(DREVERSE ( A L L C A L L S  FNI  T R E E ) ) )  

( T  D O N E ) ) ) )  
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(PRINTSTRUC 
(LAHBDA (X N) 

(COND 
( (NULL N) 

(SET(~ N 8 ) ) )  
(SPACES (DIFFERENCE N ( P O S I T I O N ) ) )  
(COND 

( (ATOI4 X) 
(PRINT X) ) 

( (NULL (CDR X ) )  
(PRINT (CAR X ) ) )  

(T (PRINI  (CAR X ) )  
( SPAC ES 2 ) 
(5ETGI N (POSIT ION) )  
(HAPC (CDR X) 

(FUNCTION (LAMBDA (Z )  
(PRINTSTRUC Z N ) ) ) ) ) ) ) )  

(PROGSTRUC 
(LAHBDA (X D) 

(SETQ DONE (CONS R DONE)) 
( L I S T  (CONS X (PRGSTRC (GEtD X ) ) ) ) ) )  

(PRGSTRC 
(LANBDA (~ A) 

(COND 
( ( A T O H  X )  

(COND 
( (NOTFN X) 

N IL )  
( (HEHB X D) 

N I L )  
((HEHB X DONE) 

(SETQ D (CONS X D) )  
( L I S T  X ) )  

(T  (SETQ D (CONS X D) )  
(PROGSTRUC X N I L ) ) ) )  

(,T ,(SELECTQ (SETQ A (CAR X ) )  
((LAHBDA NLAHBDA 

PROG) 
(PRGSTRCI (CDR X ) ) )  

(COND 
(PRGSTRCI X ) )  

(FUNCTION. (PRGSTRC (CADR X ) ) )  
(NCONC (PRGSTRC A) 

(PRGSTRCI ~ ) ) ) ) ) ) )  
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(NOTFN 
(LAHBDA (FN)  

(ATOH (GETD F N ) ) ) )  

(PRGSTRC 1 
(LAMEiI,)A ( L )  

(PROG (A B) 
(SETQ A ( L I S T  N I L ) )  

LP (COND 
( ( N U L L  (SET~ L (CDR L ) ) )  

(RETURN (CAR A ) ) )  
( (NOT  (ATOM (SET@ B (CAR L ) ) ) )  

(LCONC (PRGSTRC B) 
A ) ) )  

(GO LP)  
) ) )  

(ALLCALLS 
¢ LAPII::IDA ( FN TR ) 

(PROG (A El) 
(SET@ A (CAR T R ) )  

LP (COND 
( ( N U L L  (SETQ TR (CDR T R ) ) )  

(RETURN A L L C A L L S ) )  
((E@ (sEr@ B (CAR TR) )  

FFN) 
(5ET~  ALLCALL5 (CONS A A L L C A L L S ) )  
(GO L P ) )  

( (ATOH B) 
(GO L P ) )  

( ( E g  (CAR B) 
F N )  

(SET9 ALLCALLS (CONS A A L L C A L L $ ) ) ) )  
(ALLGALLS FN B) 
( GO LP)  

) ) )  

Editor's Note 

The following paper represents a first (good) attempt to intro- 
duce some standardization into LISP for the purpose of communication. 
I fully support this standard, but recommend that it be expanded to 
include some new features, including the (implicit) ro~ described 
earlier. Readers comments on this topic will be appreciated. 
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Hearn, Anthony C. (Alfred P. Sloan Foundation Fellow) Stanford 
Artificial Intelligence Report (Memo AI-90), May 1969. Research 
sponsored in part by the Air Force Office of Aerospace Research, U.S. 

Air Force, under AFOSR Contract No. F44620-68-C-0075, and in part by 
the Advance Research Projects Agency of the Secretary of Defense 

($D-183). 
SECTION I. INTRODUCTION 

When it was first formulated in 1960, (I) the programming lang- 
uage LISP was a truly machine independent language. However, even 
the earliest computer implementation encountered problems in input- 
output control and the handling of free variables which were not 
considered in the original paper. Successive implementations of 
LISP on more sophisticated machines have solved such problems by 
independent methods and introduced extensions of the language pe- 
culiar to those machines. Consequently, a LISP user now faces con- 
siderable difficulty in moving a program from one machine to another 
and is often involved in weeks of debugging in the process. As a 
possible solution to this problem, this paper is an attempt to pro- 
vide a uniform subset of LISP 1.5 and its variants as it exists today. 
The version of LISP described, which we call Standard LISP, is suf- 
ficiently restricted in form so that programs written in it can run 
under any LISP system upwardly compatible with LISP 1.5 as described 
in the LISP 1.5 Programmer's Manual (2). As function names vary 
from system to system and input-output control is different, some 
modification of the code is of course necessary before function 
definitions can be successfully compiled in any given system:. ~w- 
ever, this modification is performed automatically by a prepro~ ~ssor, 
which is custom built for a particular system. This preproces~r 
is a LISP program which is loaded before any Standard LISP programs 
are run, and could be built automatically into a system if only 
Standard LISP programs are run. Parts of this preprocessor are 
similar for all systems, but some of it is peculiar to a given imple- 
mentation. Standard LISP preprocessors have been written for :~SARE- 
LISP for the IBM 7090 series machines, Stanford LISP/360 for Io~i 
System 360 machines, Stanford AI LISP 1.6 for the PDP-6 and PDP-10, 
BBN-LISP for the SDS 940 and Texas LISP for the CDC 6600. For con- 
venience in exposition we shall refer to the first four systems as 
SHARE LISP, LISP/360, PDP LIST and BBN-LISP respectively. 

In Section 2 of this paper, the structure of Standard LISP nro- 
grams is described. Standard LISP conforms as closely as possiSle 
to LISP 1.5 as defined in the LSIP 1.5 Programmer's Manual, and uhe 
necessary deviations and extensions are described in detail. In 
Section 3, the structure of the Standard LISP Preprocessor is des- 
cribed, and the preprocessor for LISP/360 is given in Appendix A 
as an example. The translation of general LISP programs into 
Standard LISP is also discussed in Section 3. A listing of all 
functions defined in Standard LISP is given in Appendix B, and a 
function for reading Standard LISP programs is given finally in 
Appendix C. 

The naming of new functions in a language and their definition 
is of course a very subjective matter, but little Justification will 
be offered for their choice. The author would however appreciate 
hearing from anyone with criticisms or suggestions for improvements 
in the formulation. 
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SECTION 2. STRUCTURE OF STANDARD LISP PROGRAMS 
2.1 Preliminary 
In or--der to achieve the greatest possible compatibility with 

existing LISP systems, Standard LISP is based as closely as possible 
on the language described in the LISP 1.5 Programmer's Manual. How- 
ever, there are six main areas where Standard LISP makes significant 
departures from the description in the Manual in order to offer 
maximum flexibility in programming. These areas are as follows: 

(i) Handling of free variables and constants 
(ii) Functional arguments 

(iii) Character reading and printing 
(iv) External file management 
(v) Function and MACRO definitions 

(vi) Array handling 
Each of these modifications will be described in detail in sub- 

sequent parts of this Section. A number of additional limitations 
forced on Standard LISP programmers because of deficiencies in the 
design of various systems are also given in this Section. 

Several functions given in the LISP 1.5 Programmer's Manual have 
been redefined in Standard LISP for maximum compatibility with other 
systems and several additional functions of proven utility have been 
included. These functions are defined in detail in Appendix B and 
are therefore not discussed in this Section. 

2.2 Free Variables 
One area in which the greatest differences between various 

LISP implementations can be seen is in the handling of free vari- 
ables. Most systems allow the use of a special cell (usually under 
an APVAL or VALUE property) for storing those free variables which 
are global to all functions or are constant in the system. In 
systems with compilers there is in addition a mechanism for storing 
and retrieving free variables in compiled functions on a push-down 
stack. However, communication between a free variable in a compiled 
and an interpreted function is not possible in general in such a 
system, as the mechanism for handling each is different. Two systems 
(PDP LISP and BBN-LISP) solve this problem by making all interpreter 
variables SPECIAL and using a push-down-stack rather than an ALIST 
for storing their bindings. Standard LISP, however, cannot assume 
that such communication is possible and therefore imposes certain 
limitations in the use of free variables on the user. In order to 
provide a partial solution, however, three classes of free variables 
are recognized, each of which is handled differently by the prepro- 
cessing stage of an assembly. The three classes are: 

(i) Constant variables or constants are variables which are 
global to all Jfuncti0ns and whose value remains fixed during the 
life of a given system. 

(ii) Global variables are variables which are global to all 
functions in that they d0 not appear in the variable list of any 
LAMBDA or PROG expression. 
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(iii) Extended variables are variables which are bound in a 
LAMBDA or PROG variable list of some function, but free in another. 

Constant variables are declared by the function CONSTANT during 
the preprocessing stage. CONSTANT takes a list of pairs of constants 
and their values as its arguments, and is defined in Standard LISP 
as 

constant[u] - deflist[u;CONSTANT] 
The preprocessor replaces all such constants by the list 

(QUOTE<value>) 
on assembly. This mechanism provides a convenient method for com- 
pensating for system differences in the handling of atomic symbols 
contaiqJng arbitrary characters. For example, the atom 'AN ATOM' 
would be written as $$$AN ATOMS in SHARE LISP and LISP/360, and as 
AN/ATOM in PDP LISP, so such a string cannot be introduced d~rectly 
into a standard LISP program. However, the programmer can use a 
free variable ANATOM for example to represent this string, and the 
appropriate value for the atom declared during the setup stage. Any 
necessary character value objects, such as COMMA and LPAR, for 
example, should also be declared using CONSTANT. An example of the 
call of CONSTANT for LISP/360 would be: 

CONSTANT((COMMA $SS,$) (LPAR $$$($) (ANATOM $$$AN ATOMS))) 
Global variables differ from extended variables in that only one 
~ixed Celi is necessary to store the value pointer for the variable, 
and therefore no push-down-stack/ ALIST conflict arises. Thus it 
is possible to communicate between such variables in interpreted 
and compiled functions provided that references to such variables 
in interpreted code are changed to references to the particular cell 
where the value pointer is stored. In most systems, any such vari- 
ables which appear in compiled functions must be declared SPECIAL 
before compilation. The SPECIAL declaration initializes such 

variables to NIL and sets up the necessary cell for storing the 
value pointer. Standard LISP introduces two functions GTS and PTS 
which allow the programmer to get or change the value of these 
special cells directly. In SHARE LISP for example these functions 
are defined as follows: 

gts[u] = cdar[prop[u; SPECIAL ;A[NIL;error[cons[u;(NOT SPECIAL)]]]]] 
pts[u;v] = rplacd[car[prop[u;SPECIAL;A[NIL;list[put[u;SPECIAL; 

llst[mlL]]]]]];v] 
in other systems, equivalent definitions are always possible. If a 
given function definition is to be interpreted and not compiled, 
then the preprocessor changes every reference to global variables 
in the definition to calls to GTS and PTS. No action is necessary 
by the preprocessor if the function is compiled. 

Extended variables are the only class of free variables which 
impose lim~tati0ns on the user. In all systems known to the author 
such variables require SPECIAL declaration before compilation of 
functions using them. However, it is not in general possible to 
mix interpreted and compiled functions using these variables, and so 
functions containing such variables should either be all compiled or 
all interpreted. 
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All references to global and extended variables are made 
directly to the variable in Standard LISP unless the user wishes 
to make an explicit call using GTS. Similarly all changes should 
be made using SETQ, or PTS for explicit references. The functions 
CSET, CSETQ and SET are consequently not defined or available in 
Standard LISP. 

2.3 The Free variables ALIST and OBLIST 
-Many systems aiiow the user to reference the ALIST and OBLIST 

directly. However, the structure and referencing (and even existence) 
of these lists vary so much from system to system that no direct re- 
ference can be made in Standard LISP. The interpreter functions 
EVAL and APPLY are however still available as *EVAL and *APPLY. *EVAL 
takes a single form as argument and returns its evaluated value. 
*APPLY takes two arguments, a function and a list of arguments for 
that function, respectively and returns the value of applying the 
function to the argument llst. Thus in SHARE LISP these two functions 
are defined as: 

*eval[u] = eval[u;alist[]] 
*apply[u;v] = apply[u;v;alist[]] 

where alist [] is defined by 
LAP ((ALIST SUBR ~)(CLA $ALIST)(TEA 1 4))NIL) 

2.4 Functional Arsuments 
Incorporating functional arguments in LISP systems poses many 

design problems which are still not completely resolved. However, 
most systems recognize the difference between a call to a functional 
argument which is essentially a quoted function definition, and one 
in which the form of the functional argument changes during the 
evaluation, as given in Saunders' famous example (3) for instance. 
Standard LISP uses the PDP LISP technique for distinguishing between 
these two types of calls, viz., a quoted definition as referred to 
by FUNCTION and a modifiable form by *FUNCTION. The uses of QUOTE 
to define functional arguments is not allowed. The preprocessor can 
of course modify these forms to whatever particular calling method 
is used in the relevant system. Free variables in functional argu- 
ments which are not constants require SPECIAL or COMMON declarations 
in most compiler systems. These declarations are made in a user- 
defined initialization stage of the preprocessor as described in 
Section 3. 

2.5 Character Reading and Printing 
In its purest formulati0n, the constituent characters of a LISP 

atom have no inherent meaning. HoWever many applications of LISP 
require the inspection and manipulation of these characters and the 
ability to create new atoms from a list of characters. It is also 
often necessary to read and write individual characters and exercise 
some control over the format of output. 

Standard LISP introduces the following functions for this purpose. 
All can be readily defined in most systems. 
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readch[] 
princ[u] 

explode[u] 

compress[u] 

llter[u] 

digit[u] 

otll[u] 

pos[] 

spaces[n] 

Reads and returns one character from the input buffer. 
Adds the character string u to the output buffer. Re- 
turns u. 
Returns a list of the constituent character atoms com- 
prising the literal atom u. u may be an integer, but 
not a floating point number, as various systems use 
different print representations for these. 
Creates an atom (literal atom or number) from the list 
of characters u, adds it to the OBLIST if one exists, 
and returns the atom. 
A predicate function which is true if u is one of the 
character atoms A through Z and false otherwise. 
A predicate function which is true if u is one of the 
character atoms 0 through 9. 
If u ~ NIL then this function returns the current 
length of the output buffer llne, otherwise it sets 
the buffer length to u. 
Returns the number of characters presently in ~ne out- 
put buffer. 
Adds n spaces to the output buffer and returns .... ~IL. 

In order to achlevecompatlbillty with all systems it is neces- 
sary to make a special distinction between character atoms as such 
and ordinary atoms. A character atom is one returned by READCH or 
in the list returned by EXPLODE. The functions LITER, and DIGIT 
should only be used with character atoms as arguments and COMPRESS 
can only take a llst of character atoms. Character atoms do not 
possess property lists in the usual sense and bear no relation to 
the ordinary atom of the same name. Thus the character a~om A is 
not equal in any sense to the atom A or the character atom 1 to the 
LISP number 1. If particular character atoms are needed in a pro- 
gram, they should be included as constants (e.g., ONE) in the main 
program and appropriately defined in the preprocessor. Alternatively, 
they can be created using EXPLODE. 

2.6 File Management 
The abillty of most modern operating systems to handle varying 

input and output devices for data was not foreseen in the original 
definition of LISP. Standard LISP therefore includes the following 
functions to handle such file management. It is assumed that in 
each system there is a standard input and output device initially 
offered to the user. 

open[u;INPUT] Declares the file u as an input file. 
open[u;OUTPUT] Declares the file u as an output file. 

..... rds[u] Declares that all input now comes from the file u. 
If u is NIL, then the standard input device is 
selected. If u is not NIL, then u must have pre- 
viously been declared through an OPEN statement as 
an input file. 

-] 
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wrs[u] Declares that all output now goes to the file u. If u 
is NIL, then the standard output device is selected. If 
u is not NIL, then u must have been previously declared 
through an OPEN statement as an output file. 

closeCu] Closes the file u. If u is an output file, then the neces- 
sary end-of-file marks are written. 

The form of the argument u for these functions will vary from 
system to system. In some, it will be an atom specifying the name 
of a file in some unique manner. In others it will be a list giving 
details of device, filename, project/programmer numbers, etc. How- 
ever, the differences should not affect the design of programs or 
tl~eir calling sequences. 

2.7 User-defined Functions and Macros 
Most LISP systems provide the user with a function DEFINE for 

introducing function definitions into the system. However, the 
action of DEFINE varies markedly from system to system. In SHARE 
LISP-like systems, the definition is added to the property list of 
the function name with an indicator EXPR. Other systems use CAR 
of the function name as a pointer to the definition and in some 
cases compile the function directly into the system. A Standard 
LISP function DEFINE is also available for introducing user-deflned 
functions into the system, but as its action varies from system to 
system its definition must be included in the system preprocessor. 
The Standard LISP DEFINE normally includes a call to the system 
compiler, but this may be varied as required. In addition, DEFINE 
calls the preprocessor translator which modifies the function de- 
finition before incorporation in the system as we shall explain in 
detail in Section 3. 

Special forms introduced as FEXPRs and FSUBRs may also be de- 
fined in Standard LISP. As the preprocessor also modifies the 
definitions of these forms, a special function DEFEXPR, whose argu- 
ment has the same form as DEFINE, is provided for introducing them. 

The advantages of FEXPRs and FSUBRs are not universally recog- 
nized among LISP system designers, and the current tendency is to 
incorporate a macro defining facility in order to reduce execution 
time in compiled code. In llne with this trend, Standard LISP 
also includes a function MACRO similar in form to that described by 
Weissman (4). As with DEFINE and DEFEXPR, the argument llst is 
modified by the preprocessor and the code is compiled if required. 
In systems with no macro handing facility the preprocessor can be 
used to expand any macros found in a function definition at DEFINE 
time as shown in Appendix A. On the other hand, if the system has 
no FEXPR or FSUBR facility, such forms can be handled with macros 
or again by the preprocessor. Consequently, all macros and special 
forms must be in the system before defining any function which uses 
them. 

Because function definitions are stored differently from system 
to system, Standard LISP includes a function GETD for retrieving a 

SO 



...... (LBI, plS), 

function definition when required. With interpreted code, GETD 
returns a pointer to the S-expresslon definition of the function. 
If the function has been compiled, GETD still returns a non-NIL 
value so that a test for an existing function definition can be 
made, but it is not possible to interpret this value in Standard 
LISP. 

2.8 Array Handllng 
Many-~ISP systems recently developed allow for the definition 

of arrays in which the elements may be numbers as well as pointers 
to S-expresslons. In order to maintain our downwards compatibility 
with SHARE LISP, however, Standard LISP restricts arrays to the LIST 
array described in the LISP 1.5 Programmer's Manual. Consequently 
the word LIST in the SHARE LISP array declaration is redundant, and 
is omitted in Standard LISP. Thus ARRAY is a function of one argu- 
ment which is a list of arrays to be declared. Each item is a llst 
containing the name of the array and its dimensions, an example 
being 

array [((ALPHA (7 10)) ((BETA (3 4 5))] 
After ARRAY has been executed, the arrays declared exist and their 
elements are all set to NIL. Indices always range from 0 to n-1. 

On the other hand, Standard LISP provides two distinct functions 
for setting array elements and getting their values. SETEL is a 
function of two arguments, the first a list consisting of the array 
name and the relevant coordinates, and the second the value of the 
element. Similarly, GETEL is a function of one argument which returns 
the value of an element. For example, to set the (3,4) element of 
the array ALPHA to3A we write 

setel [(ALPHA ~) ; A] 
and to get the value of the (0,1,2) element of BETA we write 

getel [(BETA 0 1 2)] 

2.9 Standard LISP program Restrictions 
In order to achieve comp--atibillty with as many systems as possible, 

the following additional restrictions and features must be borne in 
mind when writing programs in Standard LISP. 

(i) The programmer is talking to EVALQUOTE rather than EVAL. 
Moreover, there are no OVERLOAD cards in the SHARE LISP 
sense, so that a special reading function may be required 
in some systems. A suitable function to do this is given 
in Appendix C. 

(li) Literal atoms are limited tn 24 characters. Decimal integers 
are restricted to ? digits (2± 23 ) floating point numbers to 
8 digits plus an optional signed or unsigned exponent less 
in magnitude than 37. Numbers relating to other bases are 
not allowed explicitly and must be included as constants. 

(ili) Functions may not have more than five arguments and be com- 
piled in PDP LISP. 

(iv) A GO statement may only occur at the top level of a PROG or 
as one of the value parts in a top level COND statement 
within a PROG (otherwise the function will not compile in 
the 7090 and LISP/360 systems). 
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(v) The atom NIL represents falsity; F is not available for this 
purpose. Furthermore, all S-expresslons other than NIL are 
considered to be true in predicate tests. 

(vi) A COND form must terminate with a pair (T <form>) unless the 
COND occurs within a PROG form. 

(vii) Free variables should not have the same name as a function 
in the program (otherwise some compilers will fail). 

(viii) No atom may have more than 24 characters. 
(ix) Because the Standard LISP function DEFINE includes a call to 

the preprocessor, all FEXPRS and MACROS must be in the system 
before defing any function which uses them. 

(x) LABEL is not defined in Standard LISP. 

SECTION 3. THE STANDARD LISP PREPROCESSOR 
3.1 Preliminary 
The Standard LISP preprocessor is a LISP program which is res- 

ponsible for modifying any functions or MACROS defined in Standard 
LISP so that they conform with the particular properties of the 
system in which they are being assembled. The preprocessor is written 
directly in the particular LISP language under consideration and we 
cannot therefore describe in detail its form for each system. However, 
the general characteristics remain the same and we shall describe them 
here. 

The preprocessor divides naturally into three parts as follows: 
(1) The translator, which modifies the S-expression definitions 

of functions before they are compiled or interpreted. 
(ii) Definition of functions in Standard LISP not implemented in 

the particular system. 
(iii) A user supplied initialization section where free variables 

are declared. 
3.2 The Translator 
The standard LisP translator is a recurslve function TRANS which 

modifies the code of any function or macro introduced into the system. 
TRANS takes two arguments, the first being the expression to be modi- 
fied and the second NIL if the function is to be compiled and T if not. 
The code for the LISP/360 translator is given in Appendix A. This code 
is intended only as a guide for writing preprocessors for other systems, 
but in most cases it will not require revision except as indicated below. 

In order to use the function TRANS, it is necessary to define in 
the preprocessor the functions DEFINE, DEFEXPR and MACRO. These functions 
call an auxiliary function DEFi which performs four separate actions on 
each definition considered. 

(i) It checks each function name for a flag LOSE. If the flag 
is found, it does not introduce the function into the system. In this 
way any functions not needed in a particular implementation of a large 
system may be excluded without modifying the main program. 

(ii) If the function has no such flag, DEFi now checks for the 
existence of a functional property indicator. If it finds one, a 
message 

(***** <function name> REDEFINED) 
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is printed. This is very useful in checking for conflicts between 
LISP system functions and Standard LISP functions. If a conflict 
is found, the relevant function can be renamed using the NEWNAM 
mechanism described below. 

(iii) It now applies the function TRANS to the function name 
and its definition. The explicit action of TRANS is described 
below. 

(iv) The function is now compiled into the system, using in 
most systems the equivalent of the function COMi of the SHARE LISP 
compiler, or interpreted if the function has the flag NOCOMP on 
its property list or a global variable NOCMP is true. This code 
may need modification in some systems. In LISP/360, COM1 takes 
~hree arguments, the first the function name, the second the defi- 
nition of the function if it is an EXPR (or NIL) and the third the 
definition if it is an FEXPR (or NIL). 

The necessary flags for functions which are not to be included 
in an assembly or are not to be compiled are added by the functions 
LOSE and NOCOMP respectively. Each of these functions takes a list 
of function names as argument. Their definitions are given in 
Appendix A, and their use is obvious. 

As an alternative to flagging those functions which are not to 
be compiled, it may sometimes prove useful to interpret a whole 
batch of functions. In this case, the global variable NOCMP can be 
turned on and off by the function NOCOM also defined in Appendix A. 

After all functions have been considered in a given DEFINE or 
MACRO statement, a list of those functions which have been compiled 
into the system is returned (excluding those 'lost'). 

3.3 Modifications to Code Performed by TRANS 
Besides replacing any constants declared by CONSTANT with the 

corresponding quoted values as described in Section 2.2, and expand- 
ing any FEXPRs or macros in systems without facilities for handling 
them, TRANS performs two other types of code and modification on 
any definition given to it. These modifications are declared in 
advance by the functions NEWNAM and NEWFORM. 

NEWNAM, like CONSTANT, takes a list of pairs of atoms which it 
gives to DEFLIST with the indicator NEWNAM. If TRANS meets ant 
atoms with this property in a functional position, it replaces them 
by the corresponding value. This mechanism is useful for two purposes: 

(i) To rename those functions in a Standard LISP program whose 
names conflict with LISP system functions. In some cases, however, 
it will be necessary to define the renamed Standard LISP function in 
terms of the function with the old name in the LISP system. This can 
be done using the NEWFORM mechanism described below, or by renaming 
the functions with the NEWNAM mechanism and then defining them with- 
out applying the translator to their definition. An example of this 
is the function EXPLODE in the LISP/360 Preprocessor in Appendix A. 

(ii) To rename those functions in a Standard LISP program whose 
definitions coincide with system functions of a different name. 
Examples of this may be found in the call of NEWNAM in the LISP/B60 
Preprocessor. 
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NEWFORM takes a list of pairs of atoms and lambda functional 
definitions which it gives to DEFLIST with the indicator NEWFORM. 
When TRANS meets an atom in a functional position with such a 
property it modifies its translated arguments according to the 
prescription given by the lambda expression. This mechanism again 
has two uses: 

(i) To redefine Standard LISP functions in terms of LISP system 
functions whose definitions (and maybe even name) coincide, but the 
arguments are in a different order. For example, PDP LISP contains 
a function PUTPROP which is the same as the Standard LISP function 
PUT except that the second and third arguments are in the opposite 
order. So in assembling Standard LISP programs in this system, 
NEWFORM has an entry 

(PUT (LAMBDA (U V W) (PUTPROP U W V))) 
We note, however, that this translation will not be correct if 

a form depends upon the order of its arguments for its effect. For 
example, the Standard LISP form 

(PUT U (SETQ V (QUOTE NO)) V) 
would not translate correctly into PDP LISP using the NEWFORM entry 
above. 

(ii) To 'open compile' functions with a short definition in the 
particular LISP implementation. Examples of this are shown in the 
LISP/360 preprocessor. 

If the second argument of TRANS is true, indicating that the 
function is not to be compiled, then the translator checks for 
occurrences of special variables appearing alone or as the first 
argument of SETQ. In the former cases, it replaces the code by a 
call to PTS and in the latter a call to GTS. In some systems, how- 
ever, it may be easier to declare such variables as COMMON and use 
CSETQ to set their values. A check for common variables is there- 
fore included in the definition of TRANS for illustrative purposes. 

3.4 Translator Associated Functions 
In addition to the functions described above, references are 

made to the functions SUBLIS, PAIR and DEFLIST defined in Standard 
LISP. If these functions are not present in a given system, their 
definitions must be included with the translator, as with SUBLIS 
in the LISP/360 Translator in Appendix A. 

3.5 Standard LISP Functions Not in System 
No LISP system yet written contains all Standard LISP functions 

exactly as we have defined them, and it will therefore be necessary 
to include such definitions in the preprocessor, either as a function 
definition compiled directly into the system without using TRANS, or 
by using the NEWNAM and NEWFORM mechanisms described earlier. Examples 
of this are shown in Appendix A. 

3.6 User-supp!led Preprocessor Section 
The final section of the preprocessor initializes a user's free 

variables and must be supplied by the user for a given program. This 
section will contain the table of constants which the programmer 
uses as a call to CONSTANT, and also any necessary declaration of 
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other free variables which the system requires. These latter decla- 
rations cannot form part of the Standard LISP program, as the decla- 
ration mechanism varies from system to system. However, Standard 
LISP does allow use of a function SPECIAL to declare any free vari- 
ables in function definitions generated by a user's program so that 
these functions may be compiled at the time of definition if required. 

3.7 Program Translator 
Because Standard LISP-provides only a subset of the functions 

available in any given LISP system, it is not possible to automate 
completely the translation of any given LISP program into Stanaard 
LISP. However, it is usually only the system functions which deal 
with machine dependent properties which cannot be translated so that 
most programs can be converted fairly readily. 

A program translator from PDP LISP to Standard LISP for example 
has been designed on similar lines to the Standard LISP preprocessor 
described in this Section. Apart from using reversed entrles in the 
NEWNAM and NEWFORM tables, the program translator checks for three 
particular features in the PDP-LISP program being converted. 

(1) Any quoted expressions are checked for characters which are 
neither letters or digits. If any are found, the quoted expression 
is replaced by a generated symbol. 

(ll) Any forms containing functions with extended properties are 
converted by explicit routines designed for these functions. For 
example, a COND form can have more than one consequent in each term 
in PDP LISP, so that each COND expression must be checked and changed 
when necessary. 

(iii) If a function is found which is not translatable, the form 
in which it occurs is replaced by a generated symbol. 

Whenever replacement by a generated symbol occurs, the programmer 
is informed of this on his console. In addition, the generated 
symbol and its equivalent are placed on a table which is printed at 
the end of the translation. This table is searched for the prior 
existence of a non-translatable form before a new symbol is generated. 
In case (1) above, the generated symbol and its equivalent become 
CONSTANT entries in the Standard LISP preprocessor. In case (ill), 
the symbols can be replaced (using an editing program) by whatever 
Standard LISP form the programmer decides upon. 

Program translators will be constructed for other systems as the 
need arises. 

CONCLUSION 
The formulation of LISP presented in this paper offers the user 

a language which may be run on most machines with a minimum of fuss. 
It has been successfully used to run one very large LISP program5 in 
five different LISP systems without difficulty. We hope that this 
attempt at standardization will also have some influence on the 
design of new LISP systems and make easier the description of LISP 
algorithms and programs in the literature. 

35 



(LBi, p20) 

REFERENCES 
..... i. J~hn McCarthy, Comm of the ACM, 3, 184 (1960). 

2. John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy 
P. Hart, Michael I. Levin, LISP 1.5 Programmer's Manual, 
MIT Press, 1965. 

3. Robert Saunders, LISP -On the Programming System, in 
The Progra~.Ing Language LISP: Its Operation and Applications, 
edited by E.C. Berkeley and D.G. Bobrow, MiT Press, (1964). 

4. Clark Welssman, LISP 1.5 Primer, Dickenson, 1967. 

5. Anthony C. Hearn, REDUCE - A User Oriented Interactive 
System for Algebraic S_i.mpli~icati0n, in Interactiye. Sy'stems 
for Exper.lmental .Applied Mathematics , (Academic Press, 
New York, 1968). 

6. Daniel G. Bobrow, Daniel L. Murphy, and Warren Teltelman, 
BBN-LISP, Bolt Beranek and Newman Inc., Cambridge, Massa- 
Chusehts, 1969. 

36 



(I.,Bl t 1~-i) 
APPEND I X A 

*** T H .E S T A N D A R D 
*** F O R 

I. I S P P R E P R O C E S S O R * * *  
1. I S P / 3 6 0 * * *  

DEFI. IST ( ( (OOMMENT (LAMBDA "(U A) N I L ) ) )  FEXPR) 

CO~IHENT (STANDARD LISP TRANSLATOR) 

SPECIAL ((NOCMP)) 

(LAMBDA (U) (eOMPII.E (DEFINE U) ) )  ( (  

(DEFINE (LAMP, DA (lJ) 
(DEF1 U (QUOTE 6XPR)))) 

(DEFEXPR (LAHRDA (U) 
(DEFI U (QUOTE FEXPR)))) 

(MACRO (LAMB~A (U) 
(DEFt U (QUOTE MACRO)))) 

(DEFI (I.AMRDA (U V) 
(PROG (W X Y Z) 
A (COND ((NLJI.L U) (RETURN Y ) ) )  

(SETQ X (CAAR U)) 
(COND ((FLAGP X (QUOTE LOSE)) (00 B)) 

((GETD X) 
(PRINT (L IST (QUOTE * * * * ' 1 X  (QUOTE REDEFINED)))) )  

(SETQ Y (NOONC Y (LIST X ) ) )  
(SETQ Vl (OR NN~MP (FLAGP X (QUOTE NO~OMP)))) 
(SETQ X (L IST (TRANS X NIL) (TRANS (rADAR U) NOCOMP))) 
(COND ((OR W (EQ V (QUOTE MACRO))) (DEFLIST (LIST X) V) )  

(T (tOM1 (CAR X) 
(AND (EQ V (QUOTE EXPR)) (CADR X)) 
(AND (EQ V (QUOTE FEXPR)) (CADR X ) ) ) ) )  

B (SETQ U (CDR U)) 
(GO A)))) 

(TRAHS (LAMBOA (U V) 
(ROND ((NULL U) NIL)  

((ATOM U) (CONO ((NUMBERP U) U) 
((AND V (GET U (QUOTE SPECIAL)))  

(L IST (QUOTE GTS) (L IST (QUOTE QUOTE) U ) ) )  
(T ((LAMBDA (X) 

(COHD (X (LIST (QUOTE QUOTE) X))  
(T ((I.AMBDA (Y) 

(COND (Y Y) (T U) ) )  
(GET U (QUOTE NEWNAt.I)))))) 

(GET U (QUOTE CONSTANT)))))) 
((ATOM (CAR U)) 

(COND ((EQ (CAR U) (qUOTE QIIOTE)) U) 
((AND V (EQ (eAR U) (QUOTE SETQ))) 

(APPEND (COND ((GET (CADR U) (QUOTE SPECIAL)) 
(LIST (QUOTE PTS) 

(LIST (QUOTE QUOTE) (~ADR U)))) 

3? 



(I, B1 t p22) 
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((FI.AGP (~#,l")R tl) (qi;OTF on,iF!or,)) 
(I. IST (QtJOTF CSFTQ) ( r^ [ )p  U) ) )  

(T (I. IST (qUOTE SETQ) (C/~DP IJ ) ) ) )  
(TRAr!S (CAnnA tJ) T) ) ) 

(T (PROG (X) 
(RETUEH (COI'ID 

( (SETQ X (OET (r, AR tJ) (QUOTE {'.,IEt, IFflD*") ) ) 
(SUBLIS (PAIR (CADR X) (r*IAPTP (r, DP iJ) V)) 

(OAf)DR X))) 
((SETfl X ((:';ET (r, AR U) (ntJOTE r, IEVJr!Ar.l))) 
(CONS X (HAPTR (CDR U) V))) 

((SETQ X (nET (eAR U) (QUOTE t4ACRO))) 
(TRANS (APPLY X (eDR U) N i l . ) ) )  

(T (r.ONS (CAR U) (NAPTR (CDR U) V ) ) ) ) ) ) ) ) )  
(T (HAPTR U V ) ) ) ) )  

(tlAPTR (LAP,II'XDA (U V) 
(COP.!D ((.ATOM U) (TRANS tJ V)) 

(T (eOHS (TRANS (CAR U) V) (MAPTR (CDR U) V ) ) ) ) ) )  

(CONSTAHT (LAMRDA (U) 
(DEFLIST U (QUOTE CONSTANT)))) 

(LOSE (L~;'4F~DA (U) 
(FLAG U (QUOTE LOSE)))) 

(NEHFORN (LAMBDA (U) 
(DEFLIST U (QUOTE NEWFORN)))) 

(NEVJr~A;,I (LAMBDA (U) 
(DEFLIST IJ (QUOTE NEWNAM)))) 

(NOOOHP (LAMBDA (LJ) 
(FLAG U (QUOTE NOCOMP)))) 

(l'}OCOt4 (LAHR[')A (tJ) 
(SETQ NOCMP tJ))) 

)) 

UNSPECIAL ((NOCNP)) 

(LAMBDA (U) (COMPILE 

(GETD (L,AI'4BDA (U) 
(OR (GET tJ (qUOTE 

(GET U (QUOTE 
(GET U (QUOTE 
(SET U (QUOTE 
(GET U (QUOTE 

(DEFLIST tJ 

EXPR)) 
FEXPR)) 
SUBR) ) 
FSUBR) ) 
MACRO))))) 

(QUOTE EXPR)))) ( (  

(SURLIS (LAMRDA 
(CONO ((I'.IULL 

(T (( t .  
(C 

) )  

(U V) 
U) V) 

AMBDA (X)  
OND (X (CDR X))  

((ATOM V) V) 
(T (CONS (SUBLIS U 

(SASSOe V U N I L ) ) ) ) ) )  
(CAR V) ) (SUBLIS U (enR V ) ) ) ) ) )  
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CONSTANT 

) )  

(( 

(nLANK $$~ ~) 
(COMr~A SBS,~) 
(DOLI.AR $ $ / $ / )  
(LPAR ~,~$($) 
(RPAR $~$) .~) 
(STAR S$$*$) 

N EWN 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 

)) 

H ((  
DIGIT DIGP) 
FXPI.ODE *EXPLODE) 
LITER LETP) 
OPEN *OPEN) 
OTLL *OTLL) 
PRIHC PRIN1) 
RBS *RDS) 
SPACES XTAB) 
I,!RS *WRS) 
*FUNr, TION FUNCTION) 

NEWFO 
( 
( 
( 
( 
( 
( 
( 
( 
( 

)) 

(APPLY U V ALIST))) 
(CAAR (CAAR U)))) 
(CAAR (CADR U)))) 
(CAAR (qDAR U)))) 
(CAAR (CDDR U)))) 
(CADR (CAAR U)))) 
(CAOR (CAnR U)))) 
(CAnR (CHAR U)))) 
(CADR (CDDP. U)))) 
(CDAR (CAAR U ) ) ) )  
( ChAR ( CADR U ) ) ) ) 
(CDAR (CDAR U)))) 
(CDAR (CDDR U)))) 
(CDDR (CAAR U)))) 
(r, DDR (CADR U)))) 
(CDDR (CDAR U)))) 
(CDDR (CDDR U)))) 

RM ( ( 
*APPLY (LAMBDA (U V) 
CAAAAR (I.AMBDA (U) 
OAAADR (I.AMBDA (tJ) 
OAADAR (LAMBDA (U) 
CAADOR (LAMRDA (U) 
CAI'I,AAR (I.AHBDA (U) 
CADADR (LAMRDA (U) 
CADDAR (LAMRDA (U) 
CADDDR (LAMBDA (U) 

(CDAAAR (LAHBDA (U) 
(CDAADR (LAMRDA (U) 
(CDADAR (LAMBDA (U) 
(CDADDR (LAHBDA (U) 
(CDDAAR (LAMBDA (U) 
(CDDADR (LAMRDA (U) 
(CDDDAR (LAHBDA (U) 
(CDDDDR (LAHBDA (tJ) 
(DIVINE (LAMBDA (U V) (CONS (QUOTIENT U V) 
(ERRORSET (LAMBDA (U V) (LIST U))) 
(PUT (LAMBDA (LI V W) (PROG2 (ITIEFLIST (LIST 
(GENSYH (LAMBDA NIL (GENSYM1 (QUOTE $~$ 
(ONEP (LAMBDA (N) (EQUAl. N 1))) 
(READCH (LAMBDA NIL (READCH NIL))) 

(REMAINDER U V ) ) ) )  

(L IST U W)) V) W)))  
G $ ) ) ) )  

COMMENT (STANDARD LISP FUNCTIONS DEFINED 11'I TERMS OF SYSTEM 
FUNCTIONS OF THE SAME NAME) 

COMMENT (THE FOLLOWING LIST IS USED BY EXPLODN1 DEFINED BELOW) 

DEFLIST ( ( (NASL ( ( ( 0  . $~;S05) (1 . S$~;1S) (2 . $.~2~;) (3 . ~$$35) 
(~ . $ ~ $ ~ )  (5 . $$~;5$) (6  . $ $ S 6 ~ )  (7  . $ $ S 7 5 )  
(8 . 2 2 5 8 5 )  (9  . $ $ $ 9 , ~ ) ) ) ) )  SPECIAL)  
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(I.A~;~D ! (U) (OOt.IPII, E (DEFLIST U (NIJOTE EXPR)))) (( 

(*EXPi. ODE 
(CO;JD 

([.AMBDA (l!) 
((~UlqqERP U) (FXPI.OrII'! tJ)) 
(T (EXPLODE U))))) 

(EXPLOD~ 
(coNn 

(I.Ar',IRDA (lJ) 
((ZEROP U) (I. IST (QUOTE $~;$0~))) 
((HOT (FIXP U)) (ERROR (I. IST (QUOTE EXPI.ODN) U ) ) )  
((HIHUSP U) (CONS (QUOTE $$$-,~) (EXPLODIi (MINUS U ) ) ) )  
(T (EXPLODNI U)))))  

(EXPLOD~J1 ([.AMBDA (U) 
(PROn (X Y Z) 
A (nn~,n ((ZEROP U) (RETURN Z))) 

(SETQ X (REHAINDER U i0)) 
(SETQ Y NASL) 

B (COND ((EQUAL X (CAAR Y))  (~0 C) ) )  
(SETQ Y (CDR Y)) 
(GO B) 

C (SETQ Z (CONS (CDAR Y) Z)) 
(SETQ U (QUOTIENT U 10)) 
(nO A)))) 

(*OPEl'; (LAI'4RDA (U V) 
(PROG2 (OPEN U (QUOTE ((I.RECL . 80) 

U))) 
(BLKSIZE . 8 0 ) ) )  V) 

(.RDS (LAMRDA 
(COND ((l'vU 

(T ( 

(U) 
LL U) (RDS (QUOTE LiSPIN))) 
RDS U)))))  

(*;',IRS (LAH,~DA 
(COND ( (NU 

(T ( 
) )  

(u) 
LL U) (WRS (QUOTE LISPOUT))) 
PROG NIL (OTLL 72) (ASA NIL)  (WRS U)))))) 

UHSPECIAL ((NASL))  

CO/'.',MEiI'JT (STANDARD LISP FUNCTIONS NOT DEFINED IN LISP 360)  

DEFINE ( ( 

(COPY (LAMI3DA (U) 
(COND ((ATOM U) U) 

(T (COl,IS (COPY (CAR U)) (COPY (CDR U ) ) ) ) ) ) )  

(COt4PRESS (LAMBDA (U) 
(PROG2 (CONO ((DInlT (CAR U)) (MAPCAR U (FUrlCTION 

(T (MAPCAR U (FUNCTION RLIT)))) 
(MKATOM)))) 

RNUMB))) 

(GTS ( Lh,~4BDA (U) 
( (LA~.RDA (X) 

(COND ((NULL X) (ERROR 
(T (CAR X ) ) ) )  

(GET U (QUOTE $PEe I AL) ) ) ) ) 

(I. IST (QUOTE GTS) U ) ) )  
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(PTS (LAMRDA (LJ V) 
(CAR ((LAI'.'IBDA (X) (COND ((NUI. I. X) (PUT U (QUOTE SPFClhl.) (I. IST V ) ) )  

(T (RPLAO, A X V ) ) ) )  
(GET U (QUOTE S P E C I A L ) ) ) ) ) )  , 

(MAP (LAIIBDA (U PI)  
(PROG NIL 
A (COND ((NULL U) (RETURN N i l . ) ) )  

(PI U) 
(SETQ U ((DR U))  
(GO A ) ) ) )  

(MAP(ON (LAHBDA (U P I) 
(COND ((NULL U) Nil.) 

(T (NCONC (PI U) (MAP(ON (CDR U) P I ) ) ) ) ) )  

(REVERSE (LAMBDA (U) 
(PROG (V) 
A (COND ((NULL U) (RETURN V))) 

(SETQ V (CONS (eAR U) V)) 
(SETQ U (CDR U)) 
(GO A)))) 

(SURST (I.,AI'.IRDA (U V W) 
(COND ((EQUAL V W) U) 

((ATOM W) W) 
(T (CONS (SUBST U V (CAR W)) (SUBST U V (~DR W)) ) ) ) ) )  

(*EVAL (LAMBDA (U) 
(EVAL U ALIST))) 

)) 

DEFEXPR ( ( 

(PROGN (LAHBDA (U A) 
(PROG NIL 
A (COND ((NULl. ((DR U))  (RETURN (EVAL (CAR U) N I L ) ) ) )  

(EVAL (CAR U) NIL)  
(SETQ U ((DR U))  
(GO A)) ) )  

))  

COMHENT (THE FUNCTIONS POS AND *OTLL AND THE ARRAY FUNCTIONS ARE 
DEFINED IN LAP AND NOT INCLUDED IN THIS LISTING) 

COMHENT (E N O 0 F L I S P 3 6 0 P R E P R 0 C E S S 0 R) 
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APPENDIX B 

THE FOLLOWING FUNCTIONS DEFINED IN THE LISP 1.5 PROGRAMMER's 

MANUAL ARE AVAILABLE IN STANDARD LISP 

ADDi LENGTH PRINI 
AND SESSP PRINT 
APPEND LIST PROG 
ATOM LITER PROG2 
CAR...CDDDDR LOGAND QUOTE 
COND LOGOR QUOTIENT 
CONS LOGXOR READ 
COPY MAP RECIP 
DEFLIST MAPCON REMAINDER 
DIFFERENCE MAPLIST REMFLAG 
DIGIT MAX REMPROP 
EQ MEMBER RETURN 
EQUAL MIN REVERSE 
ERROR MINUS RPLACA 
EXPT MINUSP RPLACD 
FIXP NCONC SASSOC 
FLAG NOT SUB1 
FLOATP NULL SUBLIS 
GET NUMBERP SUBST 
GO ONEP TERPRI 
GREATERP OR TIMES 
LEFTSHIFT PAIR ZEROP 

PLUS 

The following functions defined in Standard LISP have the same 
names but different properties from the LISP 1.5 Programmer's Manual 
definitions. These changes are necessary in order to provide for 
maximum compatibility with other system definitions. 

array [u] 

define [u] 

divide [u;v] 

errorset [u;v] 

initializes arrays. Same definition as for 
SHARE LISP except that 'LIST' is omitted. 

introduces function definitions into system. 
Returns a list of function names introduced. 

returns cons [quotient [u;v] ; remainder 
[u;v]] where u and v are integers. 

if an error occurs during the evaluation of 
u, NIL is returned. The error message is 
printed if and only if v is T. If no error 
occurs, list [u] is returned. In systems 
which lack this facility, errorset [u;v] may 
be replaced by list [uS, but no error recovery 
is then possible except at the top level. 
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function [u] 

gensym [ ] 

setq [u; v] 

special [u] 

defines a quoted functional argument 

creates a new atom (e.g., G~123), adds it 
to the OBLIST if one exists and returns atom. 

sets the PROG or free variable u to the 
value of v. Returns value of v. 

initializes the list of u of free variables 
for compilation. Returns u. 

close [filename] 

compress [u] 

defexpr [u] 

delete [u;v] 

explode [u] 

fix [u] 

flagp [u;v] 

float [u] 

getd-[u] 

getel [[u;ml,..,mn]] 

gts [u] 

macro [u] 

mapcar [ u; fn ] 

open [filename; stat] 

princ [u] 

The following additional functions are defined in Standard LISP: 

closes filename by writing appropriate end- 
of-file marks, etc. Returns filename. 

creates an atom (literal atom or number) from 
llst of characters u, adds it to the OBLIST 
if one exists, and returns the atom. 

introduces special form definitions (as 
FEXPRs or FSUBRs) into system. Returns a 
llst of function names introduced. 

deletes the first top level occurrence of the 
S-expression u from the list v. 

returns a llst of the constituent characters 
of atom u. Must also work for integers, e.g. 
explode [123] = (i 2 3). 

returns integer part of number u. 

returns T if atom u has flag v on its property 
llst, otherwise NIL. 

Returns floating point equivalent of number u. 

returns pointer to definition of u, if u is a 
function or macro, and NIL otherwise. 

returns (ml,...,m n) element of array named u. 

returns ('gets') the value of the special atom 
U. 

introduces macro definitions into system. Re- 
turns a llst of macro names introduced. 

if null [u] then NIL else cons [fn[car[u]]; 
mapcar [cdr ~ fn]]?--- 

opens a file named filename on some external 
device, stat- INPUT or OUTPUT. Returns file- 
name. 

adds character string u to output buffer. 
Returns u. 

43 



(LBi, p28) 

pos [ ] 

progn[u I,. .. ,u n] 

put [u; ind; prop] 

rds [filename] 

returns number of characters presently in 
output buffer. Initialized to zero at every 
call of TERPRI. 

evaluates forms Ul,...,u n and returns value 
of u 

n" 
puts prop on property list of u with indicator 
ind. Returns prop. 

selects filename as input device. All input 
now comes from filename. Returns filename. 

setel [[u;ml,...,mn];V] sets (ml,...,m) element of array named u to 
v. RetOrns v.n 

spaces [n ] 

wrs [filename] 

mapply [u;v] 

adds n spaces to output buffer. Returns n. 

selects filename as output device. All output 
now goes to filename. Returns filename. 

applies function u to list of arguments v, and 
returns result. 

• eval [u] evaluates expression u (using current ALIST 
if one exists) and returns value. 

*function [u] defines a functional argument whose form may 
change during evaluation. 
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APPENDIX C 

The following function may be used to assemble a Standard LISP 
program in systems with OVERLOAD directives or EVAL listen loops. It 
is assumed that the atom STOP occurs at the end of the program. 

(SREAD (LAMBDA NIL 
(PROQ (X Y) 
A (TERPRI) 

( COND 

((EQ (SETQ X (CAR X)) (QUOTE STOP)) (BOB)) 
((OR (NULL (SETQ X (ERRORSET (READ) T))) 

(EQ (SETQ Y (CAR X)) (QUOTE STOP))) (GO ERR))) 
(PRINC (QUOTE $$$FUNCTION...$)) 

(PRINT X) 
(TERPRI) 
(TERPRI) 
(PRINC (QUOTE $$$ARGUMENTS... $)) 
(PRINT Y) 
(TERPRI) 
(TERP RI ) 
(SETQ Y (ERRORSET (*APPLY X Y) T)) 
(COND ((NULL Y) (GO A))) 
(TERPRI) 
(PRINC (QUOTE $$$VALUE... $)) 
(PRINT (CAR Y)) 
(PRINT (CAR Y)) 
(ao A) 

ERR ( TERPR I ) 
(PRINC (QUOTE $$$READ ERRORS)) 

B (RETURN (QUOTE $$$*$) ) ) ) ) 
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BALM - AN EXTENDABLE LIST-PROCESSING LANGUAGE 
i i  i , , , , ,  , ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Harrison, Malcolm C. AEC Research and Development Report 
(NY0-1480-i18). Courant Institute of Mathematical Sciences (New York 
University). 1969 June. 

This paper describes an extendable llst-processlng system cur- 
rently implemented on the CDC 6600 which includes the facilities pro- 
vided by LISP 1.5, and permits the programmer to write in an Algol- 
llke language. Additional data-types include vectors, strings, and 
entry-polnts. The language can be extended by adding new operators, 
and by specifying how expressions involving them should be translated 
into an intermediate language. (Abstract) 

i. IntrodUction 
...... The LIS~'i.5 programming language I has emerged as one of the 
preferred languages for writing complex programs, 2 as well as an 
important theoretical tool.3,q Among other things, the ability of 
LISP to treat programs as data and vice versa has made i~ ~ ~ prime 
choice as a host for a number of experimental languages. , However, 
even the most enthusiastic LISP programmers admit thab the language 
is cumbersome in the extreme. 

A couple of attemptsT,8 have been made to permit a more natural 
form of input language for LISP, but these are not widely available. 
The most ambitious of these, the LISP 2 project, bogged down in the 
search for efficiency. 

The system described here is a less ambitious attempt to bring 
llst-processing to the masses, as well as to create a seductive and 
extendable language. The name BALM is actually an acronym (Block 
And List Manipulator) but is also intended to imply that its use 
should produce a soothing effect on the worried programmer. The 
system has the following features. 

i. An Algol-llke input language, which is translated into an 
intermediate language prior to execution. 

2. Data-objects of type list, vector and string, with a Simple 
external representation for reading and printing and with 
appropriate operations. 

3. The provision for changing or extending the language by the 
addition of new prefix or infix operators, together with 
macros for specifying their translation into the intermediate 
language. 

4. Availability of a batch version and a conversational version 
with basic file editing facilities. 

The intermediate language is actually a form of LISP 1.5 which 
has been extended by the incorporation of new data-types corresponding 
to vector, string and entry-polnt. The interpreter is a somewhat 
smoother and more general version of the LISP 1.5 interpreter, using 
value-cells rather than an assoclatlon-llst for looking up bindings, 
and no distinction between functional and other b~ndlngs. The system 
is implemented in a mixture of Fortran (I) and MLISP, a machine- 
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independent macro-language similar to LISP which is translated by 
a standard macro-assembler. New routines written in Fortran or 
MLISP can be added by the user, through if Fortran is used a certain 
amount of implementation knowledge is necessary. 

The description given here is of necessity incomplete because 
of the flexible nature of the system. In practice it is expected 
that a number of different versions will evolve, with different sets 
of statement forms, operators, and procedures. What is described 
here is a fairly natural implementation of basic features of the 
intermediate language which will probably form the basis from which 
other languages will grow. We will illustrate the facilities by 
example rather than by giving a formal description, which can hope- 
fully be obtained from the manual.9 

2. Overview of BALM Features 
• Variabies' in BALM do not have a type associated with them, so 

each variable can be assigned any value. If we imagine the user sit' 
ting at a teletype the following conversation could ensue: 

-A = 1.2; 
-PRINT(A); 
1.2 

Lines starting with a dash are requests for the user to type. The 
third line is the result of the PRINT command. The usual notation 
is used for arlthmetlcoperations: 

-X = 2 , A ÷ 3; PRINT(X); 
5.4 

with a quote symbol being used to allow the input of lists: 
-A = "(A (B C) D); 
-PRINT(HD TL A); 
(B C) 

The operators HD and TL are synonymous with CAR and CDR in LISP. 
Vectors can be input in a notation similar to that for lists, but 
u slng square brackets instead of parentheses. Elements of vectors 
are accessed by indexing: 

-V = "[A [B C] D]; PRINT(V[2]); 
[B C] 

Lists can be members of vectors, and vice versa: 
-PRINT(TL"(A [B C] 
([B C] D) 
-PRINT(+[A (B C) D][2]) 
(B c) 

Arrays can be input as vect.or s of vectors, so a non-rectangular matrix 
could be written 

-W = "[1 [2 3] [4 5 6]]; 
and elements can be extracted either by the usual type of indexing 

-PRINT(W[2]) ; 
[2 3] 

or by repeated indexing 
-PRINT(W[2][1]); 
2 
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Assignments to vector elements are straightforward; 
-W[2][1] = "(A B); PRINT(W[2]); 
[ (A B) 3] 

A whole vector or list can be assigned from one variable to another 
variable in a single s'----tatement, of course, but then any operations 
which changes a component of one will change a component of the other. 
If this is not desired, the vector or list should be copied before 
the assignment : 

-Z = COPY(W); 
Character strings of arbitrary length can be specified: 

-C = <EXAMPLE OF A STRING) ; 
They can be concatenated, or have substrings extracted: 

-D = C CAT AND ANOTHER ; 
-E = SUBSTR(D,9,12); PRINT(E): 
<OF A> 

There is complete garbage collection of all inaccessible objects 
in the system, so the user does not need to keep track of particular 
lists or vectors with values of expressions as their elements, with 
storage being allocated dynamically: 

-LL = LIST(X+W, "ABC, S CAT<XY>); 
-VV = VECTOR)X+W, "ABC, S CAT<XY~); 

The equivalent of the LISP CONS operator can be written as an infix 
colon associating to the right, so that the first of the above state- 
ments could also have been written 

-IL = X+W: "ABC : S CAT~XY) : NIL; 
Note that NIL is the empty llst. 

A procedure in BALM is simply another kind of data-object which 
can be assigned as the value of a variable Machine-language procedures 
are specified by a name (as known to the loader) followed by 0)or i) 
deoending 0n whether they should have their arguments evaluated or not. 
Thus 

-FIRST = CAR0>; 
will assign the value of the variable FIRST as being the machine- 
language routine whose name is CAR. In fact, since the value of the 
variable CAR is also CAR0> this can also be accomplished by 

-FIRST = NOOP CAR 
wlnere we have used NOOP to indicate that the subsequent operator name 
CAR should be regarded as a variable. Either CAR, CAR0}, or FIRST 
can subsequently be used to invoke this procedure. 

A programmer-defined prpcedure is normally represented within 
the system in the form of a list, and is executed interpretively when 
invoked. The usual way of defining a procedure is to assign it as 
the value of a variable: 

-SUMSQ = PROC(X,Y),X¢2+Y~2 END; 
The translator translates the PROC...END part into the appropriate 
list, which would have the same effect as if we had written 

-SUMSQ = "(LAMBDA(X Y)(PLUS (EXPT X 2)(EXPT Y 2))); 
Of course we could equally well have produced this list ~ as the value 
of some expressions. 
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Instead of assigning a progedur ~ as the value of a variable, we 
can simply apply it, so that 

-X = 5 + PROC(X,Y),X+2+Y+2 END(2,3) + 0.5; 
would assign 5 + 13 + 0.5 = 18.5 as the value of X. Note that procedures 
can accept any data-object as an argument, and can produce any data- 
object as its result, including vectors, lists, strings and procedures. 
Thus it is possible to write 

-M = MSUM(Mi, MPROD(M2,M3)); 
where M1, M2, M3, and M are matrices. Procedures can be recursive, of 
course. 

Analogous to procedures we can also compute with expressions. The 
statement 

-E = EXOR A + B END; 
would assign the expression A + B, not its value, to E. Subsequently, 
values could be assigned to A and B, and E evaluated: 

-A = i; B = 2.2; V = EVAL(E); 
EVAL(E) could also have been written as $E. 

A procedure is essentially defined as an expression; for more 
complicated procedures, more complicated expressions can be used. The 
most important of these is the block, which is similar to that used in 
Algol, but ~an have a value. The statement: 

-REVERSE = PROC(L), COMMENT <REVERSES A LIST~ 
- BEGIN(X), COMMENT ~X IS LOCAL VARIABLE> 
- COMMENT <FIRST TEST FOR ATOMIC ARGUMEN~ 
- IF ATOM(L) THEN RETURN (L), 
- COMMENT ~OTHERWISE ENTER REVERSING LOOP> 
- X = NIL, 
- COMMENT <EACH TIME ROUND REMOVE ELEMENT FROM L, 
- REVEESE IT, AND PUT AT BEGINNING OF X~ 
- NXT, IF NULL(L) THEN RETURN(X) 
- X=REVERSE(CAR ~: COMMENT <: IS INFIX CONS 

x, 
- L = CDR L, GO NXT, ........... I~_ 

- END END; 

shows the use of a block dellmited by BEGIN and END in defining a 
procedure REVERSE which reverses a list at all levels. 

~ 

As well as the IF...THEN... statement there is an IF...THEN... 
ELSE,... as well as an IF...THEN...ELSEIF...THEN... etc. Looping 
statements include a FOR...REPEAT... as well as a WHILE...REPEAT .... 
A label should be regarded Just as a local variable whose value is the 
internal representation of the statements following it. Accordingly 
assignments to labels, and transfers to variables or expressions are 
legal, and can give the effect of a switch. A compound statement 
without local variables or transfers can be written DO...,...END. 
Of course any of these statements can be used as an expression, giv- 
ing the appropriate value. Note that a comma is used to separate 
statements and labels within a block and a compound statement. The 
semicolon is interpreted as an end-of-command by the system (unless 
it occurs within a string), even if It occurs within parentheses or 
brackets. Any unpaired parentheses or brackets will be paired auto- 
matically, with a warning message being issued. 
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3. Extendabillty 
...... The TRANSLATE procedure used by BALM to translate statements 
into the appropriate internal form is particularly simple, consisting 
of a precedence analysis pass followed by a macro-expanslon pass. 
Built-in syntax is provided only for parenthesized subexpresslons, 
comments, the quote operator ", the NOOP operator, procedure calls, 
and indexing. All other syntax information is provided in the form 
of three lists which are the values of the variables UNARYLIST, IN- 
FIXLIST, and MACROLIST. The user can manipulate these lists as he 
wishes, by adding, deleting, or changing operators or macros. 

Operators are categorized as unary, bracket, or infix, and have 
precedence values, and a procedure (or macro) associated with them. 
Examples of una~ operators are - (minus), CAR, and IF, while infix 
operators include +, THEN, and =. Bracket operators are slmila~ 
una~ operators but require a termlnat~-Inflx operator which is 
ignored. Examples of bracket operators art BEGIN and PROC, which 
both can be termlnated~bY the infix operator END. 

New operators can be defined by the procedures UNARY, BRACKET, 
or INFIX. These add appropriate entries onto UNARYLIST or INFIXLIST. 
For example the statement: 

-UNARY("PR,150,"PRINT); 
would establish the uDar~ operator PR with priority 150 as being the 
same as the procedure PRINT. Thus we could subsequently write PR A 
instead of PRINT(~. Similarly we could define an infix ooerator÷by 

-INFIX( "÷,49,50, "APPEND) ; 
to allow an infix append operation. The numbers 49 and 50 are the 
precedences of the operator when it is considered as a left-hand and 
rlght-hand operator respectively, so that an expression such as 
A ÷ B ÷ C will be analyzed as though it were A ÷ (B ¢ C) 

The output of the precedence analysis is a tree expressed as a 
llst in which the first element of each llst or subllst is an operator 
or macro. For example, the statement: 

-SQ = PROC(X), X * X END; 
would be input as the llst: 

(SQ = PROC(X), X * X END) 
and would be analyzed into: 

(SETQ SQ (PHOC (COMMA X (TIMES X X)))) 
This would then be expanded by the macro-expander, giving: 

(SETQ SQ (QUOTE (LAMBDA(X) (TIMES X X)))) 
the appropriate internal form. This would then be evaluated, having 
the same effect as the statement: 

(SQ = "(LAMBDA(X) (TIMES X X)); 
which would in fact be translated into the same thing. 

The macro-expander is a function EXPAND which is given the syntax 
tree as its argument. It is actually defined as: 

-EXPAND s PROC(TR), 
- BEG IN (Y) 
- IF ATOM(TR) THEN RETURN(TR) 
- Y s LOOKUP(CAR TR,MACROLISTI, 
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- IF NULL(Y) THEN RETURN (MAPCAR(EXPAND,TR)), 
- RETURN(Y(TR)) 
- END END; 

That is, if the top-level operator Is a macro, it is applied to the 
whole tree. Otherwise EXPAND is applied to each of the subtrees re- 
cursively. Most operators will not require macros because the output 
of the precedence analysis is in the correct form. However, operators 
such as IF, THEN, FOR, PROC ... etc. require their arguments to be 
put in the correct form for the interpreter. For instance, the IF 
macro can be defined: 

-MIF = PROC(TR), 
- BEGIN(X) 
- X = CAR CDR TR. 
- IF EQ (CAR X, "THEN) THEN RETURN 
- ("COND: LIST(EXPAND(CAR CDR X), 

EXPAND(CAR CDR CDR X)): NIL), 
- RETURN("COND: EXPAND(X)) 
- END END; 

where recursive calls to EXPAND are used to transform subtrees in the 
approDriate way. The statement: 

-MACRO("IF,MIF); 
would associate the macro MIF with the operator IF. 

. -  One particular outcome of this expansion procedure is the ability 
to write other than simple variables on the left-hand-side of assign- 
ment statements. There are conveniently handled by a macro associated 
with the assignment operator which checks the expression on the left- 
hand-side and modifies the syntax tree accordingly. It is this mechanism 
which permits an element of a vector to appear on the left-hand-slde, 
and also such statements as: 

-CAR(X) = Y; 
which will be translated as though it had been written: 

-RPLACA(X,Y)~ 
The assignment macro currently in use looks up the top level operator 
found on the left-hand-side in the list LMACROLIST, applying any macro 
associated with the operator to the tree representing the assignment 
statement. The set of expressions which can be handled on the left- 
hand-side can easily be extended by adding entries to LMACROLIST. For 
example the procedure: 

-LMACRO("PROP,MPROP); 
could be used to add the left-hand-side macro MPROP to permit assign- 
ments such as: 

-PROP("X,"P) = "V; 
which establishes the value V for property P of atom X. 

Note that the essential properties of the system are those of the 
intermediate language, the most important of which is its ability to 
treat data as program, and thus to preprocess its program. Even the 
TRANSLATE procedure described above can be ignored and the user's own 
translator substituted. Of course this will require a different level 
of expertise on the part of the programmer than simply the addition of 
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new operators. However, the current translator is only about 250 
cards, and quite straightforward, so this is not an unlikely possi- 
bility. 

We have not yet had much experience with the extendability 
features, but anticipate that we will be able to add the equivalent 
of the PL/1 and Algol 68 structures (as vectors with named components), 
and at least some of the flavor of the Snobol pattern match and sub- 
stitution rule. At the very least we will have a very flexible ex- 
perimental language with powerful ~st-processing facilities. 

The translator currently takes of the order of 2000 words in 
the CDC 6600, and we do not expect this to increase much, if at all. 
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J A LISP RANDOM NUMBER PACKAGE 

Palme, Macob. Research Institute of National Defense, Operations 
Research Center. Stockholm 80, Sweden. January 1968. 

i. Introduction 
This is a package of routines generating pseudorandom numbers for 

use in the LISP programming language. Included are routines for gen- 
erating random numbers with uniform and normal distribution. The 
package was written in LISP 1.5 for the IBM 7090 computer. I tried to 
write as much as possible of the routines in LISP, but three short 
functions (REMTI, FLOAT and IFIX) had to be written in machine code. 
These must thus be changed, if the package is used on another computer. 

The random number series is stored in the APVAL of an atom which 
is specified in each call to one of the random number functions. 
Several different random number series can thus be used simultaneously 
by using different atoms in calls to the routines. 

2. SETRND - setting an initial value for the generator 
_ _  ,m , , - . . . . . . . . .  

(SETRND (LAMBDA (RANDTAL HANUM) 
(CSET RANUM (LOGOR RANDTAL l) ))) 

setrnd(randtal ranum) 

The random number series is stored in the APVAL of ranum. This 
function sets an initial value to the series, using the number 
randtal. If randtal is even, randtal + 1 is used in the generator, 
because the generator requires an odd starting number. 

Examp!.e ' of use : 

SETRND 
(1234567 HANDNUM) 

3. REMTI - steps in the random number series 

LAP (((REMTI SUBR l) 
(SXA RMT1 4) 
(SXA RMT2 2) 
(PDX 0 2) 
(TSX FIXVAL 4) 
(XCA) 
(MPY RMT3) 
(XCA) 
(LDQ $OCTD) 
(TSX SMKNO 4) 
RMTI (AXT 0 4) 
RMT2 (AXT 0 2) 
TRA 1 4) 
RMT3 (1000003Q) 
)NIL0 

*Specific to this LISP 
Assembly 

Instructions: 

(MPY 0200Q8) 
(SSP 076000000003Q) 
PAC 0737Q8) 
(RQL -0773Q8) 
(LRS +0765Q8) 
(ORA -0501Q8) 
(LLS +0763Q8) 
(FAD +0300Q8) 
(UFA -0300Q8) 
(ALS +0767Q8) 

Entries int0 LISP system rgutine s, 

(NUMVAL +15343Q) 
(FIXVAL 14065Q) 
($SMKNO 13624Q) 
($FLOAT 533Q) 
($OCTD 540Q) 
($FIXD 532Q) 
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Random numbers are generated by the process x- - = k " x~(mod 2 n) 
where k is the octal number 1000003 and n is 35(de~al). RERITI takes 
as input xi, and gives as output xi+ I. 

4. EYALTIMES - useful for testlng random number functions 

(EVALTIMES (LAMBDA (FORM TIMES) (COND 
((ZEROP TIMES) NIL) 
(T (PROG2 (PRINT (APPLY (CAR FORM) (CDR FORM) NIL)) 

(EVALTIMES FORM (SUB1 TIMES)) 
))))) 

evaltimes(form times) 

The argument form must be an s-expression of the kind 
(func argl arg2 ...~. EVALTIMES applies fun__._c to (argl arg2 ...) 
and prints the result many times. The argument times is the number 
of times, that form is to be evaluated. 

5. RANDLA..P.- ~ives random number as full-wor d integer 

(RANDLAP (LAMBDA (RANUM) 
(CSET RANUM (REMTI (VALUE RANUM)) ) )) 

(VALUE (LAMBDA (TAL) (CAR (GET TAL (QUOTE APVAL))))) 

randlap (ranum) 

T~s function gives a random integer, uniform in the interval 
0 to 2~-1. The argument ranum is the name of the random number 
series to be used. 

Example of use: 

EVALTIMES 
((RANDLAP RANDNUM) i0) 
(153225101625Q) 
(203524305277Q) 
(120274120075Q) 
(i01161360267Q) 
(264013321045Q) 
(355107163157Q) 
(72504531515Q) 
(i1433014747Q) 
(51470046665Q) 
(243535164437Q) 

5~ 
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. 

LAP(((FLOAT SUBR i) 
(SXA FLTi 4) 
(SXA FLT2 2) 
(PDX 0 2) 
(TSX FIXVAL 4) 
(LRS 8) 
(ORA CC2) 
(STO El) 
(CLA CC3) 
(LLS 8) 
(FAD E1)~ 
(LDQ ZFLOAT) 
(TSX ZMKNO 4) 
FLTIi(AXT 0 4) 
FLT2 (AXT 0 2) 
(TRA 1 4) 
E1 (0) 
CC2 (243Q9) 
CC3 (466Q6) 
) NIL) 

FLOAT -converts an integer tO a floating point number 

Operation codes and entries 
into LISP system routines are 
defined earlier. 

7. NOLLETTRAND - Fives a uniform floating rand0m number between 
0 and 1 

(NOLLETTRAND (LAMBDA (RANUM) 
(TIMES (FLOAT (CAR (RANDLAP RANUM))) 

0.29103830E-i0))) 

nollettrand(ranum) 

This function gives a random number with uniform distribution 
in the interval between 0 and i. The argument ranu_.__m is the name of 
the random number series to be used. 

Exampl9 of use: 

EVALTIMES 
( (NOLLETTRAND RANDNUM) i0) 
0.4191065E0 
0.51431566E0 
0. 31393551E0 
0.25477194E0 
0.70321202E0 
0.92632463E0 
0.22903957E0 
0. 3731556E-i 
0.16253719E0 
0.63938313E0 
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8. FLOATRAND- Lives a uniform floating random number in a 
given interval 

,,, ,, 

(FLOATRAND (LAMBDA (FLOATMIN FLOATMAX RANUM) 
(PLUS FLOATMIN 

(TIMES (DIFFERENCE FLOATMAX FLOATMIN) 
(NOLLETTRAND HANUM) ) ) ) ) 

floatrand(floatmin floatmax ranum) 

This function gives a random number with uniform distribution in 
the interval between floatmin and floatmax. The argument ranum is the 
name of the random number series to be used. 

9. RANDSUM - gives the sum of a given number 0f uniform random 
numb er s 

(RANDSUM (LAMBDA (INT RANUM) 
(COND ((ZEROP INT) 0.) 

(T (PLUS (NOLLETTRAND RANUM) 
(RANDSUM (SUB1 INT) RANUM))) ) )) 

randsum(int ranum) 

This function computes Int different random numbers, all uniform 
in the interval between 0 and i. The value of the function is the sum 
of the int numbers. 

i 0. RNORM - giyes a .float in~ random number with normal distribution 

(RNORM (LAMBDA (MEAN DEVIATION RANUM) 
( PLUS MEAN 

(TIMES DEVIATION 
(PLUS -6.0 (RANDSUM 12 RANUM)))))) 

rnorm(mean deviation ranum) 

This function computes a random number with normal(Gaussian) 
distribution, mean is the mean value of the distribution, deviation 
is its standard-~iation. 

Example of use: 
, .... 

EVALTIMES 
((RNORM 0.0 0.1El RANDNUM) 10) 
-0.94025826E0 
0.15263649Ei 
-0. 19060186Ei 
-0. 9052363EO 
0.i0646668EI 
-0. 81394666EO 
0. 3982892E0 
0.48880923EO 
-0.52285045EO 
-0.13955505Ei 
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ll. 

LAP(((IFIX SUBR i) 
(SXA FLT1 4) 
(PDX 0 4) 
(CLA 0 4) 
(PDX 0 4) 
(CLA 0 4) 
(UFA CC4) 
(RQL 8) 
(LRS 8) 
(SCA) 
(FLTi (AXT 0 4) 
(LDQ ZFIXD) 
(TRA ZMKNO) 
CC4 (266Q9) 
) NIL) 

IFIX , ,  converts a fl0ating numb.e.r to an integer 

Operations and entries to the 
LISP system routines are defined 
earlier. 

IFIX truncates the floating number. Truncation is done towards 
zero, that is, positive numbers are truncated to the nearest smaller 
integer, and negative numbers to the nearest larger integer. 

12. FIXRAND - gives a u nifor.m inteser random, number 

(FIXRAND (LAMBDA (FIXMIN FIXMAX RANUM) 
(PLUS FIXMIN 

(IFIX (TIMES (ADD1 (DIFFERENCE FIXMAX FIXMIN)) 
(NOLLETTRAND RANUM) ) ) ) ) ) 

fixrand(fixmin firmax ranum) 

This function computes a random integer in the interval between 
fixmin and fixmax including both ends of the interval. The integer 
is uniformly distributed, fixmin and fixmax must be integers. 

Example of use: 

EVALTIMES 
((FIXRAND 1 10 RANDNUM) i0) 
5 
6 etc. 

Daniel G. Bobrow, Editor 
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