
ELISP - EXTENDED ADDRESSING LISP 

ELISP is an implementation of Lisp for the DECSYSTEM-20. It uses the 
full 24-bit extended address space. It can be reconfigured easily to 
use any address space of up to 30 bits. It requires TOPS-20 version 4 
or later and a KL-I0 model B processor. (Patches are included to turn 
on extended addressing in a version 4 monitor.) 

There are three design goals: 

1. To provide a version of Lisp that supports a very large 
address space. 

2. To provide most of the data types and other facilities of 
modern Lisps, but not facilities that imply great complexity 
or runtime penalties. 

3. To be upward compatible with UCI Lisp. 

Here are some major features of its design: 

Typed pointers, with 6-bit type fields and 30-bit pointers 
Immediate 32-bit integers and reals (i.e. no CONS's are needed 
to create 32-bit numbers) 
Arbitrarily large integers, integrated into the system 
transparently 
A two-space copying garbage collector 
The ability to load .REL files by calling LINK in a subfork 
A memory-mapped interface to EMACS 
A Single-stepper for interpreted functions 
A debugger, break package, and form editor adapted from Interlisp 
New data types, including hash tables, vectors, and records 

ELISP involves a complete recoding of the assembly language part of 
Lisp. The user facilities and many of the functions are Lisp code 
that was simply moved from Rutgers/UCI Lisp without change. The 
compiler is a somewhat modified version of the Standard Lisp compiler 
from the University of Utah. 

A few features, which were felt to require undesirably complex or 
expensive implementation, were omitted: 

There is no spaghetti stack 
There are no optional or &rest arguments. However arguments may 
be omitted, and default to NIL 
There is no lexical binding or similar mechanism 
Declaration mechanisms for the compiler. Generic arithmetic has 
been optimized as much as possible. Our philosophy has been to 
provide the best possible performance to "normal" users, rather 
than providing tools for experts to tune systems. 

Currently work is being done on an implementation of Common Lisp, to 
be done with the same technology. Although it will have many of the 
things that were left out of ELISP, This will result in an appropriate 
penalty in runtime. 



Page 2 

There is a subset of Interlisp implemented on top of ELISP. It 
implements "straightforward" parts of Interlisp, but not such things 
as the spaghetti stack or DWIM. (However it does implement a number 
of the macros that are normally done using DWIM.) The subset is 
sufficient to support UNITS, a widely-used AI system. 

For more information on ELISP contact: 

Rutgers University 
Center for Computers and Information Services 
Hill Center 
PO Box 879 
Piscataway, NJ 08854 
(201) 932-3088 

----- --- - ---------.---~---.- -----


