
,
@type <dooumentation>oommonlisp.doo

TOpS-20 Common Lisp

Red Pages

Cha~les L. Hedriok

1984

Swiss Cheese Edition
'~(very drafty)

~ .

Copyright (C) 1983,1984 Charles L. Hedriok

The information in this dooument is subjeot to ohange without notioe
and should not be oonstrued as a oommitment by Charles Hedriok or
Rutgers University. Charles Hedriok and Rutgers University assume no
responsibility for any errors that may appear in this dooument.

Note: The
Corporation:

following are trademarks of the Digital
DECSYSTEM-20, DECsystem-10. TOPS-20, TOPS-10

,Equipment

Table of Contents

1. Introduotion

1.1. How to read this manual
1.2. The genealogy of DECSYSTEM-20 Common Lisp
1.3. Design Goals
1.4. Overview of the Design

2. Current Status of the System

2.1. Effioienoy Issues

3. User Faoilities

3.1. Interrupt Charaoters
3.2. The Break Faoility
3.3. Traoe
3.4. The Stepper
3.5. The Editor
3.6. Special features for system builders
3.7. I/O Implementation

3.7.1. Opening files
3.7.2. Representation of files and lines
3.7.3. Devioe handling

3.7.3.1. Disk files
3.7.3.2. Terminals
3.7.3.3. Other devioes

4. Referenoe Manual - Additional Functions and Features

5. Differenoes between Spioe Lisp and Common Lisp

1

1
2
2
3

5

5

6

7
7
8

10
11
12
13
14
15
16
16
16
17

18

22

i

1. Introduction

This document contains implementation-dependent information describing
the Common Lisp implementation for the DECSYSTEM-20. In the rest of
the manual, I will simply refer to it as "Lisp". Lisp is designed to
be used with the Common Lisp Referenoe Manual, (Guy Steele,
Carnegie-Mellon University Computer Science Dept.) This manual
documents only the peculiarities of this particular implementation. I
hope that there aren't very many of those. Indeed many people will
probably never need this document at all.

1.1. How to read this manual

This document is organized into the following ohapters:

1 General material about the history and goals of DECSYSTEM-20
Common Lisp, and an overview of its internal organization.

2 A description of the current status of the system, including
the facilities that are not yet implemented, and various
issues affecting the speed of your program.

3 A description of the major user facilities of the system.
This chapter contains a number of sections, each giving a
general disoussion of some facility. It is intended to
cover the same material as the next chapter, namely all of
the implementation-defined facilities. However this chapter
is organized topically, whereas the next one is organized
alphabetically by function. Also, it is at a conceptual
level, whereas the next chapter is intended as a reference
manual. There is a section at the beginning of this chapter
that provides an overview of its organization.

4 This is intended as a oomplete referenoe manual for all
funotions that are extensions or whose definition is
implementation-dependent. In those oases where a full
desoription seems to belong in the previous chapter, there
is a cross-referenoe to the appropriate seotion. This
ohapter is organized alphabetioally by function or variable
name.

5 Hints for people who want to import system-dependent Spioe
Lisp code.

1

1.2. The genealogy of DECSYSTEM-20 Common Lisp

This Lisp is in faot an implementation of Carnegie-Mellon's Spioe
Lisp. Spice Lisp was originally intended for a micro-coded machine
with bit-mapped soreen. However implementations based on it are being
done for the DECSYSTEM-20 and VAX. We are attempting to keep the
Spioe implementations as similar as possible. Here are the pieoes of
DECSYSTEM-20 Common LiSp. with an indioation of whioh of them oame
from Spioe Lisp:

- Compiler - This will be the Spioe oompiler, with oode
generation rewritten to produoe oode for the DEC-20.

System oode This is the portion of the runtime system
written in Lisp. It includes most of the functions that the
user oalls. These funotions are taken direotly from Spioe,
with minor modifioations where the oode is representation-
dependent.

Kernel - This is the assembly language portion of the
system. It oontains low-level funotions, mostly things that
manipulate internal data representations, e.g. CONS and the
garbage oolleotor. Most of these funotions implement the
basio byte oodes of the Spioe maohine. These are dooumented
in the Internal Design of Spioe Lisp (Soott Fahlman et aI,
Carnegie-Mellon Computer Soienoe Dept.) That dooument
should be regarded as the blue pages for this
implementation. In addition, we have added some
higher-level funotions to the kernel, when it seems that
this would help performanoe notioibly. For example, the
interpreter (EVAL) and muoh of READ and PRINT are
hand-ooded. In general the assembly language oode follows
the Spioe Lisp oode very olosely.

The interior design is sort of a oross between the Spioe maohine and
Elisp, the Rutgers extended-addressing version of UCI LiSp. The Elisp
manual doouments most of the internal data struotures in detail. By
the final release, we will provide a real blue pages that integrates
the information in the Elisp manual and the Spioe internals manual,
but for the moment, those two doouments should allow you to find your
way around in the oode. Fortunately, the internal data
representations used by Spioe Lisp and Elisp are surprising similar.

1.3. Design Goals

In evaluating this implementation, you might find it useful to know
what goals we had in mind.

- We intend this implementation to stiok very olose to the
Standard. The extensions are largely tools for the
implementors, whioh we have made aooessible to users. There

2

are also a few features added to inorease oompatibility with
the VAX implementation. However our experienoe with Pasoal
has lead us to realize how important standards are. I
believe that Pasoal/s greatest weakness is that no
interesting program written in it is portable. We are
determined that this will not be the oase with Common Lisp.
[Note that what you have now is an development version,
intended primarily for boostrapping the oompiler. Thus some
pieoes of the system are still missing. Rest assured that
we will supply all of those missing pieoes before releasing
this version offioially.]

- We are quite oonoerned about performanoe. However we are
interested in the performanoe that a normal researoher will
see, rather than in providing tools to let benohmarks be
tuned to blinding speeds. This means that we worry most
about programs that use no deolarations and which are
written without undue oonoern for speed.

1.4. Overview of the Design

Lisp uses extended addressing, whioh gives it a muoh larger address
spaoe than oonventional programming languages. Lisp runs only on
Model B KL-IO processors running TOPS-20 release 5 or later. That is
beoause extended addressing is only implemented for those systems. In
particular, Lisp does not run on TOPS-lO, on older 2040 / s and 2050 / s
(those with Model A CPU/s), or on 2020 / s.

The internal design of Lisp is modelled after the Lisp Machine. All
Lisp objeots are type-ooded pOinters. They oonsist of 3 fields:

- high order bit is used by the garbage collector for marking.
It is normally off (for extended addressing to work).

- next 5 bits are a type oode, used internally by the system.

- last 30 bits are the data for the objeot. In most oases
this is the address of the objeot itself. However in some
cases the aotual objeot fits in 30 bits, and no pOinter is
needed. E.g. we have 30-bit integer oonstants.

There are two free spaoes. Most Lisp pOinters pOint to objeots within
one of these spaoes. When a space is full, a oopying garbage
oolleotor is invoked to oopy all ourrently used objeots to a new
spaoe.

This implementation is a shallow-binding Lisp. It stores atom
bindings in a "value oell" assooiated with the atom, saving old
bindings on a pushdown staok. List oells take two words, eaoh
oontaining one objeot. Atoms oonsist of small blooks of memory, with
the following struoture:

3

value oell

pOinter to property list

string pOinter to pname

funotion definition, or NIL if none

other internal information involving funotion definitions - set
by DE FUN or other funotion-defining forms, not direotly
visible to the user

4

2. Current Status of the System

This is a preliminary release of this system. The basio data
structures are in their final form. So is almost all of the kernel
oode. However a few features are not yet implemented. We also plan
to make some additional performanoe improvements to the system.

There are two serious omissions:

- There is no compiler. For this reason, the Lisp-level
system code is running interpretively. This oan slow down
some kinds of programs quite signifioantly.

- Irrational funotions suoh as SIN, COS, and SQRT
be loaded

are not
from the implemented. They will eventually

Fortran library.

There may be other oversights. If so, we would appreoiate having them
brought to our attention.

Bugs are documented in the file RUTGERS: :T:<SLISP.CODE>BUGS. Please
report any errors. even minor ones, that are not in this file.

2.1. Efficiency Issues

The most serious problem is, of
the compiler is written in
interpreted version before we
compiler. What you see now
support compiler work.

course, the lack of a oompiler. Sinoe
Common Lisp, we had to bring up an
oould do development work on the
is the bootstrap version intended to

The system code makes heavy use of interpreted maoros. Beoause of the
CPU time involved in expanding these systems of interlooking macros,
funotions tend to run very slow the first time they are called, and
then faster on later calls. For oomplex funotions suoh as the
sequenoe functions, this effect may ooour several times, as various
options are exeroized. Currently Lisp is set up so that it saves the
results of macro expansions. So any given maoro oall only needs to be
expanded once. Beoause of the heavy use of macros by system oode, we
strongly urge that you leave this feature enabled.

There are still major ineffioienoies in the system. We will fix these
over the next 6 months or so. These ineffioiencies can cause
slowdowns ranging from faotors of 2 to 50. The most serious slowdowns
are in the string and sequenoe functions. These use DO loops and
array indexing. We hope to hand-oode them to use small ILDB loops.
This will probably not affeot most traditional Lisp oode, however.

5

3. User Facilities

This chapter contains the following sections:

3 how to run the system, and what the top-level is like. A
description of the system-wide help convention.

3.2 - the break handler. This is an interactive system which is
entered when an error happens.

3.3 TRACE, a function that you can use to get a trace of your
program's behavior.

3.4 - STEP, a function that you can use to control your program's
execution on a expression by expression basis, seeing the
results of each evaluation.

3.5 - the editor. which is actually an interface to EMACS

3.6 some miscellaneous facilities primarily for system
builders: Customizing the top level (including changing the
prompt), creating a saved oore image file, loading oode into
a specified package, and calling DDT.

3.7 details about the 1/0 implementation, including how the
various OPEN options work, the way the Common Lisp and
TOPS-20 file models are matched, end of line handling, and
details about how 1/0 is done to specifio devices
(particularly terminals). This section has a paragraph at
the beginning that describes its organization.

We intend the
SYS:CLISP.EXE.

Lisp system to be installed
If it is, you start it by typing

on your system as

CLISP

Lisp has a simple EVAL top level. You type Lisp forms to it, and it
prints the result. If the form returns multiple values, you will see
all of them (each on a new line).

? should usually give you useful information about the context you are
ourrently in. In many cases you will have to type a carriage return
after the? At the top level, it tells you how to define functions,
and describes some of the most important facilities. In other
situations? is rebound to messages that are useful in that context.
We urge users to continue this oonvention for packages that they
write.

6

3.1. Interrupt Characters

Several interrupt characters are defined. When you type one of these
characters once, its effect will happen the next time the program
reads from the terminal. If you type it a second time, the effect
will happen immediately. most of the time. If your program happens to
be in the middle of a garbage collection, the effect will normally be
delayed until the end of the garbage colleotion.

~B (Break)
This oauses Lisp to enter the break package, just as if an
error had happened. This is sometimes useful if you think
your program is in an infinite lOop. You oan use the
oommands in the break package to look around. Currently
there is no way to continue your program after you have done
this.

~C This will return you to the EXEC. If you are in the garbage
oolleotor, it will delay the return until the garbage
colleotion is finished. If you type more than one AC, Lisp
will count them. If you 6 of them, it will return you even
if you are in the garbage collector. This is to protect
against bugs in the garbage oollector that would otherwise
make it impossible to esoape from Lisp.

~G [Note that AG is the bell.] This will return you to the top
level of Lisp. If you are currently in a break loop, it
will return you to the top-most break loop.

Ay This is a high-priority version of ~C. It always oauses
Lisp to exit, even if a garbage oolleotion is going on. It
takes preoedenoe over any other interrupts that may be in
progress. It is intended to make sure that you oan always
get out of Lisp, even if bugs exist in the AC oode. We may
remove ~y when Lisp is finally released, if ~C seems to be
reliable.

3.2. The Break Facility

oall a built-in break
loop. It evaluates
oan find the values of
following forms have

The default condition handlers for errors
package. This is a speoialized READ-EVAL-PRINT
forms in the oontext of the bad form. You
speoial variables by typing their names. The
special aotions when typed to the break
thought of as commands to it. ($ oan be typed
dollar sign. Escape is normal.)

system, and thus oan be
as either an esoape or a

$G Returns you to the top-level loop, i.e. exits the break
abruptly.

$P Attempts to prooeed from the break. This will only work if

7

the error is "correctable". For this to work, you have to
know how to correct the error. Some cases are obvious. If
a function is undefined, you must define it. If a variable
is unbound you must set it to a value. In fact these are
the main cases where $P is useful. Most other error types
require you to return a value, which will then be used to
repair the error. This requires (RETURN value), which is
documented below. $P is equivalent to (RETURN nil).

(RETURN <value»

$S

Attempt to prooeed from the break, returning the speoified
value. This value is returned to the error handler. It is
used in an attempt to repair the error. E.g. if the system
oomplains that something is not an symbol, you should return
a symbol. The system will attempt to do whatever it was
trying to do, using the symbol you return instead of the
original non-symbol.

Displays the
then the call
only oalls of
faoility is
final version

most reoent oall exeouted from user oode, and
staok. Exoept for the most reoent user oall,
user funotions are shown. (Yes. I know. This
a pretty poor exouse for a staok display. The
will have a more useful debugger.)

? Displays this list of oommands.

3.3. Traoe

The traoe faoility allows you to ask for printout whenever a oertain
funotion is oalled. The printout shows the arguments with whioh it is
oalled and the value returned. It is indented to show reoursion.
Here is a typioal example:

8

* (defun fact (n)
(cond ((zerop n) 1) (t (* n (faot (1- n))))))

FACT
* (trace fact)
FACT

0+ (faot 4)

0: (FACT 4)
1: (FACT 3)

2: (FACT 2)
3: (FACT 1)
. 4: (FACT 0)
. 4: returned 1
3: returned 1

2: returned 2
1: returned 6

0: returned 2424
*

There are a number of options, to allow for more seleotive output.
The full form of TRACE is

(TRACE funotion(s) :CONDITION form :BREAK form
:WHEREIN symbol-or-list
:ENTRY-PRINT list-of-forms
:EXIT-PRINT list-of-forms)

You may leave out the keyword parameters if you do not need them.
Here is what they do:

funotion(s)
A funotion or list of funotions to traoe. Note that you
should not quote function names.

: CONDITION
A form that oontrols whether the trace information is
printed. It will be EVAL/ed at eaoh entry to the function.

: BREAK
A form that controls whether a break will occur before and
after the function is exeouted. It will be EVAL/ed at each
entry to the function.

: WHEREIN
Allows you to speoify that tracing should happen only if the
function is called inside another specific function. This
may be either a symbol or a list of symbols.

: ENTRY-PRINT
A list of forms to EVAL and PRINT at the start of each call.

: EXIT-PRINT
A list of forms to EVAL and PRINT at the end of each call.

9

To turn off tracing, use (UNTRACE). Untraoe oheoks to see that its
args are all symbols. If they are, it returns a form which will
untrace each one. Otherwise, it signals an error, and none of the
forms are untraced. With no args, untraces all traced functions.

3.4. The Stepper

The single stepper is another facility to make it easier to debug
funotions. It allows you to watch the interpreter EVAL each form
individually. Here is an example of what it is supposed to look like
[see below for an explanation of why it does not]:

* (step (fact 3))

6

(FACT 3)n
3n
3
(COND ((ZEROP N) 1) (T (~ N (** **))))n

(ZEROP N)n
Nn
3

NIL
Tn
T
(~ N (FACT (1- N)))n

6
6

6

Nn
3
(FACT (1- N))s
2

* AC

I typed the lower-case "n"'s and "s" and pressed return. Notice what
it is doing: It types out a form, and then waits for me to type
something. If I type N, it evaluates that form and prints the result.
If this involves evaluating another form, it stops for that, too.
Typing S causes it to evaluate the form without showing what going on
inside it.

Here is a complete list of oommands to the stepper. If you type " ? "
while in step mode, you will get this list:

N (next)
evaluate ourrent expression in step mode.

S (skip)
evaluate ourrent expression without stepping.

M (maoro)
steps a maoroexpansion. signaled by a prompt.

10

Q (quit)
finish evaluation, but turn stepper off.

P (print)
print current exp (ignoring *step-prinlevel* & *step
prinlength~.)

B (break)
enter break loop.

E (eval)
evaluate an arbitrary expression.

? (help)
print this text.

R (return)
prompt for an arbitrary value to return as result of ourrent
expo

G throw to top level.

The stepper automatioally refuses to step through system code, even
when it is interpreted. If you need to debug system oode with the
stepper, you should look at the maoro STEP-STEP-FORM in STEP.CLISP.
This is where system funotions are made un-steppable.

3.5. The Editor

Lisp uses EMACS as its editor. You oan oall it with the funotion ED,
desoribed in the manual. or EDIT. EDIT is just like ED, exoept it
does not evaluate its argument. In most oases, EDIT is probably more
convenient. Otherwise these funotions are identioal.

As desoribed in the Common Lisp manual, there are three different
things you oan do with EMACS:

(ED symbol)
Edit a funotion definition. Lisp will pretty-print the
ourrent definition into the EMACS buffer and oall EMACS.
When you are finished editing. type ~X~Z (the normal EMACS
oommand to return to the superior). Lisp will read the
first S-expression baok in from the EMACS buffer and EVAL
it. Should you deoide that you don't want to redefine the
funotion, put something innoouous at the beginning of the
buffer (e.g. a NIL).

(ED pathname)
Edit a file. Lisp will simply oall EMACS and pass it a
request to edit the speoified file. When you are finished
editing. type AX~Z to return to Lisp. Lisp will not do
anything additional. If you want to write out the modified

11

(ED)

file, do ~X~S (or your favorite file-saving oommand) before
exiting. If you want to read in the file after modifying
it. you oan use the LOAD oommand.

With no arguments, ED simply reenters EMACS. Whatever you
edited last is still there. ~X~Z will return to Lisp. Lisp
will not do anything additional. suoh as reading in from the
buffer.

I am well aware that this interfaoe leaves muoh to be desired. The
primitives are present in Lisp to do as hairy an interfaoe to EMACS as
you like. We are planning an interfaoe modelled after the Maolisp
LEDIT.

There is also a funotion (KILL-EDITOR). It kills the EMACS fork.

3.6. Speoial features for system builders

This seotion doouments some internals of Lisp that you may find useful
if you are building a system of your own.

(%TOP-LEVEL) - never returns
When a copy of Lisp is started, it first prints out the
greeting message (set by SAVE - see below) and then oalls
LISP: :%TOP-LEVEL. LISP: :%TOP-LEVEL should be a funotion of
no arguments ~hat never returns. If you redefined
LISP: : %TOP-LEVEL , the redefinition should not take effeot
until a saved oore image is run. The ourrent inoarnation
will not be affected, sinoe Lisp has already started the
existing top level funotion, and it will never return.

If you intend to use the error handlers that we supply, your
top level funotion should inolude (CATCH 'LISP: : TOP-LEVEL
CATCHER ...) around any EVAL's. That is beoause the $G
funotion within the error handler THROWS to LISP: : TOP-LEVEL
CATCHER.

Should %TOP-LEVEL return, you will be in a READ-EVAL-PRINT
loop in the kernel. It prompts with a "*". It is a minimal
top-level. intended for testing the kernel.

XPROMPT* - variable
If you prefer to use the existing top level, you oan ohange
its prompt to anything you like. The variable *PROMPT~ is
PRINC'ed to produoe the prompt. It will normally be a
string, without any newlines. (FRESH-LINE is oalled right
before printing the prompt.)

(SAVE filename &OPTIONAL greeting-message)
The SAVE funotion oan be used to produoe an exeoutable file
oontaining the our rent Lisp system. The first argument is a

12

file name, which is passed to OPEN. The second argument
(which is optional) is a normally a string. It is PRINC'ed
when the saved core image is started. It is intended as a
greeting message. If this argument is not supplied, or is
NIL, the PRINC is not done.

(LOAD filename :PACKAGE package)

(DDT)

LOAD has an extra option, : PACKAGE. This allows you to
speoify the package into whioh the code is to be loaded.
The system oode must be in the internal Lisp package, not
the user's package. So if you wanted to load a new version
of PPRINT.CLISP (the pretty-printer), you would type

(LOAD "PPRINT.CLISP" :PACKAGE 'tLISP-PACKAGE*)
(LISP: :PPRINT-INIT)

(DDT) oalls DDT in section 1 (the section in whioh the
kernel code is loaded). It gives DDT access to the kernel's
symbol table. To return to Lisp, type

RET$X

where $ is an esoape. Be oareful about using $X in DDT to
single-step. There is ourrently a bug in DDT that causes
extended-addressing byte instructions to be inoorrectly
simulated in $X and $$X.

3.7. 1/0 Implementation

The Common Lisp specificiations leave some aspects of I/O up to the
implementor. This seotion will describe what has been done with some
of them. It has the following subsections:

3.7.1 opening files, including details of filename handling,
and how the various OPEN options are implemented.

3.7.2 - how the Common Lisp file model is
inoluding file structure, random
handling.

mapped onto TOPS-20,
access, and end of line

3.7.3 - details on how Lisp handles various devices. The most
interesting is the terminal. This section describes a
number of options you have to control how Lisp interfaces
with the terminal.

13

3.7.1. Opening files

A NAMESTRING is simply a TOPS-20 file specifioation. Host names go at
the beginning of the string, followed by 11 •• 11 For example
"RUTGERS: :PS:<HEDRICK>CLISP.EXE". Note however that host names don't
have any effeot at the moment. The filename parser understands all of
the options that TOPS-20 normally understands, inoluding wildoards and
the speoial version numbers 0, -1, -2, and -3.

There may be a slight problem with namestrings beoause of ambiguity
about null file types. In most oases, a field in the file
speoifioation oan be omitted if it is not speoified. Unfortunately,
there is no way to omit the file type if the version is speoified.
II SOURCE .. 3 11 is interpreted by TOPS-20 as having a null file type.
That is, the file type is speoified, and is the null string. If you
need to speoify the version and leave the file type unspecified, you
will simply have to leave the result in pathname format.

All of the keywords desoribed in the manual as I'suggested ll are
implemented exoept for INSTALLED. If someone oan suggest a reasonable
meaning for it in TOPS-20, I will be happy to implement it.

Currently Lisp oannot do network 1/0. Thus host names are ignored
when opening files. The funotions that manipulate namestrings and
pathnames do handle host names properly. We intend to implement
Internet I 0 eventually.

All of the OPEN options are implemented. Here are some details:

- NEW-VERSION operates aooording to TOPS-20 oonventions. That
is, if you speoify an explioit version number, that version
will be used, and NEW-VERSION will be ignored. This gives
an effeot similar to SUPERSEDE.

- If you speoify UNSIGNED-BYTE or SIGNED-BYTE without a
number, you will get 8-bit bytes. UNSIGNED-BYTE allows any
byte size up to 35, and SIGNED-BYTE allows any byte size up
to 36. Note that you may speoify UNSIGNED-BYTE or
SIGNED-BYTE even if you intend to use a file for text 1/0.
This allows you to handle text files with non-standard byte
size. For example, if you open a file for (SIGNED-BYTE 8),
READ-BYTE ~ill return a signed integer, but READ-CHAR will
still return a oharaoter. Note that the byte size may
affeot the way oertain devioes work. For example, opening a
terminal with a byte size of 8 will oause 1/0 to ooour in
binary mode.

- DEFAULT gives you STRING-CHAR. STRING-CHAR represents 7-bit
ASCII oharaoters. This is the normal Tops-20 representation
for text.

- RENAME and RENAME-AND-DELETE rename the file to have a file
type of "LISP-BACKUP". If there is more than one version of
the file, they are all renamed.

14

3.7.2. Representation of files and lines

The file model that Common Lisp uses is very olose to the DEC-20's
actual file model. Thus most 1/0 is qUite straightforward. TOPS-20
files have user-determined byte size. All 1/0 is done in terms of
these bytes. The file length as shown in a VDIRECTORY oommand gives
the number of bytes. This all corresponds nicely to Common Lisp. The
Common Lisp OPEN funotion allows you to speoify the byte size to be
used for the file. FILE-LENGTH returns the file size in these bytes.
NB: FILE-LENGTH will use the byte size that you speoified when you
OPENed the file. If you are reading an existing file, this might not
be the same as the byte size used to write the file. Thus FILE-LENGTH
might not return the same result as the length shown in VDIRECTORY.
If you don't speoify the byte size in OPEN, it will be 7 bits, which
is the normal byte size for text files.

Random-access is also qUite simple. Tops-20 stores files as simple
character streams. So if you do (FILE-POSITION file 23), Lisp will
position the file after the 23'rd byte. As with FILE-LENGTH, Lisp
will use the byte size you specified when you OPENed the file. As in
Common Lisp, end of line is indicated in a TOPS-20 file by characters
in the text. So if your lines are different lengths there is no easy
way to position to the Nth line. It is common for programs to
maintain an index into the file. You oan build such an index by
calling FILE-POSITION when you are writing the file, to tell you where
the object you are about to write will go. You can also arrange to
pad short lines with extra characters, so that all lines are the same
length. WARNING: Lines will be longer in the file than they are in
Lisp, because end of line is one oharao~er in Lisp, but two in the
file. See the next paragraph for details.

Unfortunately there is a slight disorepancy between Common Lisp and
TOPS-20 conventions regarding end of line. The Common Lisp manual
specifies that lines are terminated by a single end of line
characters, referred to as NEWLINE. TOPS-20 normally uses a
two-character sequence: carriage return (CR) followed by linefeed
eLF). Thus Lisp has to turn CRiLF into NEWLINE when reading files,
and NEWLINE into CR/LF when writing them. The manual allows the
implementor to choose the character code for NEWLINE, but it
recommends octal 12, which is LF. We have followed that
recommendation. Any possible choice has its consequences. The
consequences of this one is that a Lisp program will not be able to
tell the difference between CRLF and a bare LF in a file. Both will
show up as a single NEWLINE character. If you really have to be able
to tell what your end of line is, you should read the file with
READ-BYTE. This treats CR and LF just like any other oharacter.

15

3.7.3. Device handling

Lisp has three different sets of 1/0 routines for handling external
files. (There are also routines for reading from and writing to
strings and the EMACS buffer.) When you OPEN a file, Lisp will choose
the set of routines to use based on the the of device involved.

3.7.3.1. Disk files

If the file is on disk, Lisp will normally use a set of 1/0 routines
that use the PMAP JSYS. These routines are oapable of random access,
using FILE-POSITION. They will do 1/0 using any byte size that you
speoify in the OPEN. In a few oases PMAP is not possible. If you to
append to a file for whioh you have append-only access, of if you
write to a file for whioh you have write-only aooess, the PMAP JSYS is
not allowed. In this case. another set of routines is used. They use
BIN and BOUT for eaoh oharaoter individually.

3.7.3.2. Terminals

If OPEN is done to a terminal, there are several possibilities.
Normally, input is done with the TEXTI JSYS and output with BOUT.
TEXTI implements the normal TOPS-20 terminal handling conventions,
inoluding speoial aotions for rubout, ~R, ~U, and ~W. In order to
allow this editing. it keeps oharaoters in a buffer until you type and
end of line oharaoter (normally oarriage return, but line feed, ~Z,
~L, and esoape also aotiviate it). The Lisp program starts reading
from the buffer once you have typed the end of line. At that point
you oan no longer make ohanges on that line. If you print a prompt,
Lisp will automatically put it into the ~R buffer for the next read.
That is, you oan do something like

(PRINC "LISP>") (READ)

What you will see on the terminal is a prompt

LISP>

with the oursor waiting for input on the same line. If you type AR or
~U, the LISP> will remain at the beginning of the line. Lisp will
keep putting input and output into the AR buffer as long as you remain
on the same line. This is done on a stream by stream basis. If you
open a second stream on the same terminal, you should not print a
prompt from one stream and read the results from the other stream.
(Suoh a sequenoe would work, however ~R would not show the prompt in
the right way.)

Beoause output is done using BOUT for eaoh charaoter. Thus output

16

will show up on your terminal as soon as you generate it. You do not
need to do anything speoial to foroe buffers to be written.

If you OPEN a terminal with a byte size of 8 (by speoifying an
ELEMENT-TYPE of SIGNED-BYTE or UNSIGNED-BYTE), this has a speoial
meaning to both the operating system and Lisp. A byte size of 8
implies "binary mode". In this mode there is no eohoing, and normal
oharaoter prooessing (e.g. rub out and AU) is not done. In some
oiroumstanoes it is even possible to read AC in binary mode. Lisp
handles terminals opened this way by using simple BIN and BOUT jsyses
for eaoh oharaoter.

The ohoioe between normal and binary mode is made when you open the
file, on the basis of whether or not you speoify a byte size of 8.
You oannot ohange between these modes onoe the file is opened.
However if you open a terminal normally, you oan use the funotion
SET-TERMINAL-MODES to ohange some of its parameters. These inolude
the equivalent of the EXEC oommands TERMINAL WIDTH, TERMINAL PAUSE
END-OF-PAGE, TERMINAL ECHO, and RECEIVE/REFUSE SYSTEM MESSAGES. In
addition, you oan enable or disable PASS-ALL, TRANSLATE, and ESCAPE
modes, whioh have no equivalent in the EXEC.

- PASS-ALL mode is very similar to the effeot of opening a
terminal for 8-bit I/O. It allows your program to read and
write any oharaoter. AC and other interrupt oharaoters
beoome normal data oharaoters. ECHO is still done, unless
you have disabled it with SET-TERMINAL-MODES. In many
oases. PASS-ALL mode is not really required. If all you
want is to be able to output esoapes and other oontrol
oharaoters. disabling TRANSLATE is often enough.

- TRANSLATE mode oauses oontrol oharaoters to eoho as
followed by a letter, and esoape as $. If you disable it,
then your program oan output any oharaoter.

- ESCAPE mode is a designed to allow you to read the esoape
sequenoes produoed by terminals with speoial funotion keys.
When it is turned on, Lisp handles the esoape key speoially.
When it sees an esoape, it expeots one of these speoial
esoape sequenoes. It does not eoho the esoape, nor the
oharaoters that make up the esoape sequenoe. When it
reaohes the end of the esoape sequenoe. it aotivates your
program, as it would have if you had typed an end of line
oharaoter. At the moment ESCAPE mode has no effeot if you
are already in PASS-ALL mode.

3.7.3.3. Other devioes

If you OPEN something that is neither a disk nor a terminal, Lisp will
use the BIN and BOUT monitor oalls. It will do a separate oall for
eaoh oharaoter you read or write. These are TOPS-20 / s general-purpose
devioe-independent I/O oalls, so the results should be satisfaotory

17

18

for most devioes. However there is no speoial handling for tape,
networks, or other devioes.

4. Referenoe Manual - Additional Funotions and Features

This seotion contains dooumentation for all funotions and options that
are not part of standard Spioe Lisp.

(DDT) --) NIL
Go into DDT. To exit. type RET$X. (See also section 3.6.)

(ED thing)

(EDIT thing)
See section 3.5 for dooumentation on the editor. EDIT is an
additional funotion. It is just like ED, except that it
does not evaluate its argument.

FEATURES - variable
The following "features" are true
Thus you can use any of them
DECSYSTEM-20 TOPS-20.

~GC-TRIGGER~ - variable

in this implementation.
in a #+ test: COMMON

A variable, initialized to 1.0. This controls the how often
a garbage collection will happen. At the end of eaoh GC,
all used spaoe is compact. A certain amount of spaoe above
this compact, used space is then allocated for the system to
grow in until the next GC. This is called II free space".
Free space is computed as the number of words used x

GCTRIGGER. GCTRIGGER should normally be a floating point
number between 0 and 2. The default is 1.0. You will
always get at least 64000 words of free space, even if the
caloulation just documented leads to a smaller number.

(GET-TERMINAL-MODES stream) --) mode list
Returns a list of terminal parameters, of the following
form: (:BROADCAST T :ECHO T : ESCAPE NIL :PASS-ALL NIL
:PAUSE T :TRANSLATE T :WRAP 80) See SET-TERMINAL-MODES for
the meaning of these parameters. STREAM must be a stream
that has been opened on a terminal for charaoter 1/0 (i.e.
not :ELEMENT-TYPE '(UNSIGNED-BYTE 8)).

(KILL-EDITOR)
Kills the subfork that has EMACS in it. You may find this
necessary if EMACS because unusable for one reason or
another.

(LOAD filename :PACKAGE package)
LOAD takes an additional keyword, : PACKAGE. This speoifies
the package into which the file will be loaded. If the file
contains package speoifications of its own, they will take
precedence. This keyword simply rebinds * PACKAGE * for the
duration of the LOAD.

#\NEWLINE - a character

19

See seotion 3.7.2 for a desoription of the newline
oonvention that this implementation follows.

(OPEN file)
See seotion 3.7.1 for documentation on the effeots of the
various OPEN options. Various other 1/0 details are
discussed in the seotions following that one.

XPRINT-GC-INFO~ - variable
A variable. initialized to NIL. It you set it to non-NIL,
the garbage oolleotor will print a message showing the total
amount of free spaoe used before and after the garbage
collection. The differenoe between these quantities is the
amount of garbage that was removed.

PROMPT - variable
A variable, initialized to "CL>". The default top level
uses this is its prompt.

(SAVE filename &OPTIONAL greeting-message) --) NIL
Saves your entire core image on the file speoified. The
filename should probably end in .EXE. This funotion is
similar to the SAVE command in the EXEC. However you should
use this funotion instead of the EXEC's oommand, sinoe the
EXEC's oommand will not save the registers. Note that you
need lots of disk spaoe to use SAVE. The base oore image
(with just Common Lisp) is ourrently over 500 pages. This
will go up as we load more oode.

If you specify a greeting-message, it will be PRINC'ed when
the core image is started.

(SET-TERMINAL-MODES stream &key parameters) --> NIL
This funotion allows you to oontrol the way Lisp will handle
the terminal. STREAM must be a stream that has been opened
on a terminal for oharaoter 1/0 (i.e. not : ELEMENT-TYPE
'(UNSIGNED-BYTE 8)). In many oases these setting will affect
all processes using the partioular terminal, not just the
partioular stream that is set. Here are the possible
parameters. Unless otherwise stated, the default is taken
from the way your terminal is set up when you enter Lisp.

: BROADCAST

: ECHO

non-NIL if you want your terminal to reoeive
messages suoh as [You have mail from ... J, and
SEND's from other users. NIL to suppress these
messages. Note that a privileged user oan
override this setting. Changing this affeots all
users of this terminal.

non-NIL for input that you type to be "eohoed",
assuming that you are on a full-duplex terminal.
(On half-duplex terminals. the system never eohos
input.) NIL turns off this echo. Changing this

20

seems to affeot other streams open on the terminal
within Lisp, but not other processes than use it,
exoept in PASS-ALL mode, where it affects only
that one stream. Default is T.

:ESCAPE

21

non-NIL if you want esoape sequenoes sent by ANSI
terminals to be treated as terminators. Within
this, it is moderately hard to read these
sequenoes. The problem is that Lisp does not
normally prooess input until you type carriage
return, line-feed, esoape, form-feed, or AZ.
However typioally you want an esoape sequenoe to
be prooessed immediately. This mode oauses input
to be prooessed as soon as a oomplete esoape
sequenoe is seen. It also turns off eohoing
during prooessing of the escape sequenoe. The
esoape sequenoes recognized are a superset of
those aocepted by the ESCAPE option in VMS. This
inoludes all legal ANSI escape and oontrol
sequenoes, plus most of the sequenoes sent by the
older VT52-oompatible terminals. This affeots
only the one stream for whioh you issue it.
Default is NIL. Esoape prooessing ourrently does
not work for pass-all mode.

: PASS-ALL
non-NIL if you want to be able to treat most
special oharaoters as ordinary data. With this
turned on, rubout, AU, eto .. are just ordinary
oharaoaters for input. Also, output oharaoters
are sent as is. That is, esoape is not turned
into dollar sign, oontrol-X into AX, eto.
Interrupt oharaoters, suoh as AC. will be treated
as normal data oharaoters. This affects only the
one stream for whioh you issue it, except that
interrupt oharaoters are turned on and off
globally. Default is NIL. If eohoing is turned
on, you had better have opened the stream
: DIRECTION :10, sinoe Lisp will have do the
eohoing explioitly.

: PAUSE
non-NIL if you want the system to wait for AQ eaoh
time it fills your soreen. This is equivalent to
TERM PAUSE END-OF-PAGE in the EXEC. Changing this
affeots all users of this terminal.

: TRANSLATE
non-NIL if you want oontrol oharaoters and esoape
to be translated on output. That is, a oontrol
oharaoter appears as A followed by a letter, and
esoape appears as $. NIL if you want these
oharaoters to be sent as themselves. With
:TRANSLATE NIL, the setting of TERM TAB or TERM NO

:WRAP

TAB is still obeyed. That is, if your terminal is
shown as having no tabs, tabs are turned into
spaoes. The default is :TRANSLATE T.

non-NIL if you want the system to supply a
oarriage-return line-feed when it thinks it has
reaohed the right margin of your terminal. This
is equivalent to TERM WIDTH x in the EXEC.
Turning the feature off (NIL) is equivalent to
TERM WIDTH O. It is somewhat unfortunate that
there is no way to turn this off without losing
the terminal width parameter. If you know the
terminal width, you oan specify it as the argument
to turn wrapping back on. For example, you oan say
(SET-TERMINAL-MODES TERM :WRAP 80). Lisp will
remember the terminal width that was present when
you opened the terminal, if it was non-zero. (If
it was zero, Lisp uses a width of 80.) If you
speoify an argument of T, Lisp will use this
remembered value.

others
This funotion
it does not
implementations
that do not make

speoifioally ignores keywords that
know about, beoause other

of Lisp may have other keywords
sense on a DECSYSTEM-20.

It is sometimes oonvenient to save an old terminal state, as
returned by GET-TERMINAL-MODES. and then reset it. To make
this easier, SET-TERMINAL-MODES may also be used in the
form:

(SET-TERMINAL-MODES term modes)

In this oase, modes is a list of keyword-value pairs, as
returned by GET-TERMINAL-MODES.

(STEP form)
For dooumentation on the STEP faoility, see seotion 3.4.

(%TOP-LEVEL) - never returns

22

For dooumentation on oustomizing the top level, see seotion
3.6.

(TRACE funotion)
For dooumentation on the TRACE faoility, see seotion 3.3.

5. Differences between Spice Lisp and Common Lisp

~he section is really intended for the benefit of implementors and
maintainers. It describes the general nature of the changes we have
had to make to the Spice Lisp system code in order to use it as part
of Common Lisp. Such changes should not be necessary for user code,
so this should not affect normal users.

Unfortunately, we have not been able to use very many of the Spice
Lisp files unmodified. However in many cases the changes take only 5
minutes or so to put in. In general, our data representations are
qUite similar. %SP-TYPE converts the internal data type code to the
correct Spice Lisp type number. Thus there are few changes necessary
due to differences in types. Most of the changes are due to the fact
that we implement more in the kernel than Spice Lisp implements in
microcode. Here are the major things to look for in converting a
file:

- Look for (PRIMITIVE and %SP-. Spice Lisp is in the process
of changing its primitives. Some of them are %SP-foo and
others are (PRIMITIVE foo). We have normally used the old
%SP names, although we have HEADER-REF and HEADER-LENGTH
without the %SP. We do not have PRIMITIVE at all. When
Spice Lisp changes completely to using the (PRIMITIVE
format, we should define PRIMITIVE as a macro. This would
eliminate a lot of the conversion.

Look for code of the form (DEFUN CAR (X) (CAR X)). This is
used to provide Lisp definitions for the Spice Lisp
primitives. Since our kernel uses normal Lisp calling
oonventions, suoh definitions are not needed, and should be
deleted.

Look for functions that we define in the kernel. Large
parts of HASH, EVAL, PRINT, READ, and FILESYS are
implemented in the kernel. We have tried to be consistent
with Spice Lisp in the function names that we used for
kernel code. So often you just have to remove those
functions that are already in the kernel. In some cases it
was inconvenient to do all of the argument processing in the
kernel. so I supply a small Lisp function to do that. For
example, most of OPEN is in the kernel. But the kernel
function is called %SP-OPEN. In FILESYS.CLISP the actual
OPEN is defined in Lisp. It simply does some defaulting and
then calls %SP-OPEN. Arithmetic is done almost entirely in
the kernel.

- Some of the functions, particularly in FILESYS and MISC, are
inherently system-dependent.

- Some of our changes are simply bug fixes.

23

	Hedrick-TOPS_20_CL-19840001_a
	Hedrick-TOPS_20_CL-19840002_a
	Hedrick-TOPS_20_CL-19840003_a
	Hedrick-TOPS_20_CL-19840004_a
	Hedrick-TOPS_20_CL-19840005_a
	Hedrick-TOPS_20_CL-19840006_a
	Hedrick-TOPS_20_CL-19840007_a
	Hedrick-TOPS_20_CL-19840008_a
	Hedrick-TOPS_20_CL-19840009_a
	Hedrick-TOPS_20_CL-19840010_a
	Hedrick-TOPS_20_CL-19840011_a
	Hedrick-TOPS_20_CL-19840012_a
	Hedrick-TOPS_20_CL-19840013_a
	Hedrick-TOPS_20_CL-19840014_a
	Hedrick-TOPS_20_CL-19840015_a
	Hedrick-TOPS_20_CL-19840016_a
	Hedrick-TOPS_20_CL-19840017_a
	Hedrick-TOPS_20_CL-19840018_a
	Hedrick-TOPS_20_CL-19840019_a
	Hedrick-TOPS_20_CL-19840020_a
	Hedrick-TOPS_20_CL-19840021_a
	Hedrick-TOPS_20_CL-19840022_a
	Hedrick-TOPS_20_CL-19840023_a
	Hedrick-TOPS_20_CL-19840024_a
	Hedrick-TOPS_20_CL-19840025_a

