
I

! I.... I ~: I "'\ -~' 1 ~ r, '{ . . to.' • :'O.,- t _ -t (' ,. .; ~ f~

II~ f"> 1:, n <"; II :1 0:; ~ I., S I') r r "\ S (.'\ n t 5 -: (1 r. i (j U 0' r. h? 1 1 ~ n ':Y n

ill r~lrti0n

'. a v ; :--: ~ ~ (1 i .1 VI:1 r P '2 -: ! ~ ': , ,~~! 5 ('; 1: S t ~ : i 5 tic sun t ;, 0

! n·· ::-: :: (". / f. 7

,,-- ~. c '-,

i s • I I, 1-.'

, • ~ 4 •

• I ...

•
•

•

"

fr"''' .:(>11 ~t,)r.l'~(! (1!'11 ~(jO doubl~ \I\)r.!s} r·n·j 21fl: ·.Ior-is fnr

,:0: 1) j 1 (~,i .:o.!c. Un.!"r other confip;uriltions th~s(> 1 i,"'\its ;,1:"1Y b~

r:-is· ... ·~ s !,i,,:!~ ·IS 60r~ ;)n'l GO'~ rnsr>~~tiv~ly. U:>in<>; only thC'

int~l"prl~t"'r it is possiblp. to f'ltlkp ~v;:)ilal)l~ 'to thp usr>r 901(of

free cell storaec. For most LISP probl~Ms solvp.d loc"!l'y thesp.

sizps have b~cn found to be quite sufficient.

A Timp-Sharerl version of t~~ IISP Syst~M has br>en writt(>n

which opnratas undp.r n MonItor that usp.s the dynA~Jc r~lo~Ation

h:'lrownrE' of the IRr~ 360/67. This v~rsion W<=IS ori)!;Tnrllly \,Irittp.n

to us~ on 1 y the pt-)ys i ca 1 Inemory prov i ded for hy thp. !TIon i tor.

~njpr this restriction, th~ LISP system can only access 15K of

~r!~-cells with no room for the cOMpil~r. To ~~k~ it ~ossibl~ to

r~n l~~~Qr job~ such as those possible in the batch, ~ ~ew

version of the Tlme-5~ared LISP was written. This v~rslon, usin~

ser.vices nrovided for by the ,nonitor, bt'.'s the abil ity to use UP

to 64 pa~es (4Q96 hytes p~r page) of arum space for virtual

.1er:iOry. The total rhysical core ('Ivailable Is 24 pa~es.

The , .. anitor allo\"/s the LISP system to manage its swapping to

so~~ extent. In actuality, all control of pa~e swapping is Jone

!)y th(\ monitor, Jnd r.'\cHlrly provides the systqm \"Irit~r \.rith the

ability to define an algorithm for managing his pa~ns.

To do the work d~scribed above, it was ~ecessary to Jo ~

major re-write of thq ~arb~~e collector and the C~NS routine as

well uS <hIding a new -routine to han\.!1e th~ s\lappinl!. Som~ of the

methods des~ribed arp b~sed p~rtly on modifications of the work

! q

;,1'. J ,~ , ~) ~ ,j
, ,

..

,I

"'1 :~ohrow ,md I!ul"phy (') \Ii th r"5P~ct to the Cf)r;S i n;: .11 ,"",(,Ir i tl;:'1.

Tbis ~~per dAscribr>s ~rldition~l ~l~orith~~ to ~~lpct th~

I·/h i ch shou l.j flex t 1 ~ave phys i en 1 core', ,1nd sOln~ ~n"'c i a 1

considcr~tions for thp ~arba~~ collp~tor.

);)"';~

In whnt follows I will b~ continu~11y r~f~rrin~ to th~ t~r~s

"KEEP" anti "HOLD". KEEP may ~e thou;:ht of as the process of

havin~ a page of virtual ~~mory curr~ntly residln~ on th~ dru~

brou~ht into physical core. Th~ r~sponsibility for modifyin~

relative addressing is shared betl'J("C!n the hard.war('O of thp 360/G7

and the Ttme-Sharin~ Monitor. This \'Iork is not ,lonp. by the LISP

system. "HOLD" may be thought of ,JS the reverse process of

writing a physical page out onto the ,1ruM and makin~ the physic~l

page available. Aeain, the responsibil ity of ;lddressin!,; is

outside of the LISP system. Hence, a swap is HOLDing one page

and KEEPin~ another.

2. Virtual M~mory Allocation

Fhtur~ 1 shows a schematic of tim£> shared LlSP/350. T~is

version is described without the compil pr Includ~d. Th~ adrlition

of toe compiler will increase the size of the interpret~r

sli"htly and will removp. some pages from the total free-cell

space for the collection of compiled code. However, th('O

, ", fundamental s\'/apping algorithm will remain intact. As is true in

'~~:; " BRN LISP the
[':;':, ' :, " ",

comptl,er nnd Interpreter Il<'ly Interact with one

compatibilIty over S-expr~ssions and function ;:i~'.,' f' ,,". ,a~other wi th
~~2:~"~ ~~~)~: --- .. ', . .
i(!.t' > r ,,', '",f',defln I t Ions.

~~'" :. ~!:::!f~:"" ~.' •...

11."_ ~i)~.~>,.J,:~L_,.~~.w=lIC~~=:::::; '-1["~.~,~.,. ' ... _ ..
• 4~

.~

I~'C

T
always

in KEEP

1

I
always

hl KEEP

1

Figure 1
System Schematic
of Virtual Memory

Initial Physical Core

INTERPRETER

Relocatable constants

push down stack

initial object list

Free Cells begin

Free Cells

.

Swappable drum space g -~ .. _n I
.

I • I

,~, '«'t~~~f"'~"

500000

506FFF

700000
7005FF

701AAO

703C58

703FFF

704FFF

705FFF

706FFF

713FFF

700000
700FFF'

701FFF

702FFF

739FFF
:,'t, .>,';

I,: •

".

"
,,,,(,

", -
), ~ . "

•
~

· •

Thp <"l(HI"~ss"s shown '1"0 ~("X;'ld(\r.i"1,11. ~!()tjc" H'nt tl,,,

~jjrl~ss fOr" the systc:n cod~ 51-;0\/5 It Lo ~,~ in ;j liff"r"nt ')li1c~

thnn t"" l"~loc<lt(lhl~ dnt<l. This is ~() ;'ltd th~ [,lonito" i:l .. h'-,rin'~

. the same COI1Y of tho suhSystPnl ,'"10n;~ :'1<lny USP,r"<;. Tr. ... hit i;"'t 1

object list contains illl ato:n:.; prc-d"fined by thp. LISP 5YSt,.:"

(eharnct~r ohjects, function namps pte.). TIlA rplocat~~lp

constants, rush ~own stack, initin1 0~LIST, and th~ first na~e of

free cells remain in virtutll nemory ,1t .:111 tim('s. TI'-Is ,!!'eislon

was based on the hi~h usa~~ of thesp Jtn~s th~ou~hout n run.

1I0wever, thft garbage collector must stil'l collect over <111 it~l"1s

starting from the initial OBLIST. Thp. r'!st of virtual ::1"~mory !:,a:l

be used for swapping.

3. Free Cell List Maintanence

Initially, the user is ~iven sevpn pa~es of free-c~lls, th~

first two being the initial object list. A sepArate fre~ list

pointer is maintained for ~ach available page. When a r~~p

boundary is crossed the old pointer is saved ~nd th~ on~ for t~~

new pa~e becomes active. This is to ~Id in concp.ntrati~g the

creation of lists on single pages. Further work on doin~ this is

handled by the CONSing alr.orithm. Havln~ this comp~ctness (or

linearity) is a desirable property, for if lists can be kept from

crossing pa~e boundarys too freQup.ntly, then scannln~ these lists

'_ wi 11 cause fewer swaps.

I!:;,!;b; " ,:;:7 new

space Is requtrftd, and the current pat,e has no ~:,ore

~;~~',,",;'~~~t:"" ,· ,

-\,.,:- !

I
I

Ii

SO<lCP, ,1 ~11('ck Is ,11<ldp of the frne list t:-'lble. If n :"l;)r:~ ~xists

wit~ 50ACP. it is us~rl (aRnin the CONSin~ ~l~ortt~m will try to

~Qt ~ ~.,rticular ~ar:p to inCreRSp. ~o~~actncs~'. ~hcn no snAC 6 is

~vni'able on any active naRC 3 ~arbaRe collection takes ~lace.

If thp ~arb~~c coll"ctor (~ci~es morp space is need~d than the

amount collccterl a new entry is mnd~ In th~ free list tabl~ and a

new ~age becomes ~ctive and is inItialized. Initialization is

the process of linking each double word to the followin~ one an~

placing a special mark in the last cell indicating the end of

space on that page.

4. Th~ G~rba~e Collector

• The ~arbage collector must collect on all active pages

whether they are in KEEP or HOlO (the swappinR algorithm is used

to ~ring ~n HOLO pa~e. as t~ey ar~ needed). It is after t~p

garbage collection takes place that the decision Is made whether

a new page should be added to the list of 3ctive pa~es or not.

The criterion used is that a new page is added if the numbp.r

of cells collected is less than 10 percent of the total number of

current fr~e-cells. The choice of 10 percent is arbitrary and

seems to \'Iork \'/ell for IIl0St test cases. Two possibilities for

ch~nge p.xist here. H~ve the percenta~e be a parameter set by the

user, and/or determine the percentage dynamically based on the

,,.; i/o::

l,' ~ ,

" -..,... .• , ",""·,A _w !IL"{l.Pk"l

<rl;~

,.
.,

'.'

; ,.
, .
I. .

("ul"r"nt lISCll"':". "!n,"lly, it would hn I)~c;t for Ut(> li)r~"r ~rOo;r;Yl~

to ~et pn~es r~pldly at the hc~innin~ (A hi~h n"'rc~nt~~") .. ~~

th~n less :'IS the progrtlm's dern<lnd5 :H~dn to 1.cvp.l off.

\'!h~n thp. dec i s i on to ;=jd,j "1 nevI I)dr.;~ is ~~Jo ~ nunh~r of

possibllitj~s ('xist. Th~rp. may :;ti11 hp. room in virtu.:ll '"Nlory

to a~d a new Da~p. without swapptn~ nn old one; if so, this is

done. Ho,'/cver, whp.n no KF.F.P s,",,"'Ice Is "1vaf1<lblp. somi" r>e~p must bp.

put into HOLO so the page IIlay ue initial ized and hence the

swanping a130rithm is a~ain us~d.

The swapping algorithm itself mak~s decisions ~s to which

page should be swapped out based on criteria to be dIscussed.

HO\"lever, the swapping done in a ~arb<H~p. collection should not

affect these criteria as they are has~d on thp. status of the

running pro~ram and not the incident~l carbage collections.

H~nce, tables used in the swapping f'.!l~orithm are saved unon entry

to the garbage collector and restored upon exit.

s. Algorithms

S\~APP'NG OF PAGES. 11hen a referp.tlced pa~p. Is not in KEFP

status SOMe decision Is necessary ~s to which pag~ should leAve

" core to make room for the referenced PCl~e. The obv i ous cho I CPo is

the page which has been referenced the least. HO\'Iever, to count

the number of references to a ~a6e or th~ len~th of time that has
i'c: f. ~lapsed

~';~,:~,~\!/::~~; .. :. ,' ..
since a page has been referenced requires either some

-~~~f.:ttj'~~\~ ... _ ,

~ 1.

.
11'

Sfll"ci'll r.ardw_1r~ or somf1 intrir.ate softvlilrr> stmul<ltion of thnt

hardh'ilre. cnllEN (II) (~~scribes sOlTle of th~s~ t~chniCJu"'s in his

paper. In it, he conclud~s that time of inactivity is on~ of the,

best criteria for choice of the leavin~ paRe:

I propose a method for choosinr. n "reasonable" page to leave

wIthout computin~ an unreasonable number of statistics. Consider

the following blo f<1ctors:

1) Pap;e references tend to "cl um!>".

Particularly as the result of

linearity. So It is preferable

to keep in physical cort! "new"

!lages and throw out "old" ones.

2) Some oages nre heavily referenced,

re~ardless of age, and will be

required nlmost immediately If

they are thrown out.

The first factor can simply be Measured by the number of pages

which have b~en brought in (nUMber of page intel"'upts) since the

pa~e under consideration. The second factor can be based on

historical data, namely how many page interupts on the average

have occured between 'swap out and the next swap in of th~ page.

T"'~ rf.!latlve weights ~iven these factors determIne the

"conservativeness" of the alstorithm, i.e. how lon~ a J')age is

" , ,; \. * -.; ~ ,,'.' .' t' ~'

) I: '~-J

~'

,;,~ .. ;
~ ~j * ..

..

~.e.)t in i>hysical core sirllPly (In lhp. i,,1sis of C)~rh;'}r>s) .lncjpnt

51-tal' ,lata. If physical rleMory is 51'1:111, it is nrr>fpr;')bl n to ht>

able to use all pa~es of physical ~or~ for sw~p,in~ as o~~os~d to

keeping a pa~e because of hidl '-Jctivity, so ('<lcto,. 1 srolJl'i

domin;:)te. Hit!, la,.~~ physical rll":1lory, som~ "cle~ci\'/ood" C<ln h~ .
tolerated for better avera~e swappin~ hehavior.

Nith this in mind the followin~ ~/as Jone. An in-ct)r~ tahl~

with three entries for ~ach available pa~p (in corp or on the

drum) is created with the following information containn~ in It:

1) SC - The Swap Count - Thp nUMber of

times the page has been swappec

out.

2) SO - The Swap Differential - The total

number of swaps which have occured

while the page was not in Physical

core.

3) M The Maximizing statistic - This is

described below. Th~ page with the

largest M is the pa~e to leave core •

,::')~

~~};7:,1 ;;:"'?' ",:';"
'",t"

~'l. .. ,-,. "";,: ... ,, 'J'L .; .. , :;A4~'':{<i-i1-''~~~'i''~~dffllMJRt:&·4 .tW?u'fjtsze:.zn:ru~if'M'~·~6~.:l1:'~ .,,-,.0.-~~.~~; .. :J.,>l~, __ p ...

~.,

J
j

: I

Othpr v~ri~blcs used h~low in j~scrihin~ th~ ~l~orith~ nrc:

4) eel - The Curr~nt Count In - Thp ~otal

numb~r of swaps which ~avo taken

plac~ when th~ pa~o wns last

brouy,ht into physieal core.

5) S S\,lilPS - The'! total numbnr of swaps

which have taken ~lacp..

6) K A constant of proportionality.

The value of SO/SC is then the average number of tim~s A pa~e has

been out of core. H~nce, thp. "a«te \IIith the m~ximum SO/SC would

be ~he pa~e to throw out. However, a page could ~et a very small

SD/SC by hnvin~ an early high activity and never be swapped out.

To compensate for this we M~Y add to this figure the number of

times the paze is in cOl"e. This would be the total number of

swaps ''1h i ch hAve occul"'!d (5) 1 ess the count ~'Jhcn th~ pa~e was

brour,ht in (CCI). So thp. longer the page is in core the r.reater

(S-CCI) will be. EVentually, this value will become large enou&h

to dominate th~ followin~ ~xpresston:

SO/SC+K*(S-CCI)
, ~ o.
~\<': : : •

r:if'! 1)('1:~,"l \lith the larr~cst v<llup. for tid:; ~xpr('s'Si'>n is t~)1' ,">i'1";1'\

to l"':lv~ ~")hysical core. Trp. ~onstC'lnt ~ is us~d as thp \'!"'i,~I)tin,,:

factor J~scribed in thA orpviou5 D~r~~rn~h. For our syst~~ R r

of II \'Ias chosen. TIlp. cOJn;">lJt<ltion of S, SC, nnd eel are (hvious

hy ~I~fini.tion, Sf) may bo comnuto(j i)y suhtractinp; S frOM th~

curr~nt SO when the PA~P. is tak~n out, "Inri ;tddin~ S whnn th~ I')a~~

is brou~ht in. From an ~xamination of the eQu~tio~ wp ~an sae

that Sand K ;tr~ constants for eAch D~~P. p~r sw~p nnd m~y ~e

eliminated from the computation. Also, the valu~ obtained is

cnnstant while ~ pa~e is In keep ani h~nce we may computp it once

when a page is brought into KE~P ~nd thn value stored in t~e

table. The algorithm becomes therefore:

Compute the maximum value of ~ for those paces

which are in KEEP. M is computed from

M-SO/SC-4*CCI each time a pa~e is brou~ht

into KEEP.

This table can serve additionally to ~ivp. the status of thp

because M contatning a non-zero value ~eans the pa~e is in KEEP,

M of zero can be used to mean the paRe is in HOLD, and pn SC

which is negative can be the initialization to show ~ ~a~e which

has never been referenced.

~,;):~.':,; ", , ,', .

n .. ·1 "''I: "j'~ I '\' ." "

or;

,,' '.

'" <''11: , ;i~:, .,,! "

" ';)-;"

.'~~;

IfJO~:'···~~-' .,'. ;.;.,.. . .-~'.'·~;tf.:N~~~~l,i:o •• ?rPMM .. ifi ,,I" .. ' .'.
:.\;.:,l ,;.~

, I
. /(~", ;." "..'.:~,,,".,, .,.

'J_ _.

COt,SING ,\LGORIT!!'~. Since CONS is thll only LISP function uhich

requir~s ~~ttin~ n~w snaCA, it is ~t this point th~t thA rl~cision

as to wh('tt r>agc to ~At the space from sholll d ne m~dp.. t-,~ \·mnt tt)

keep the 1 ists \"lhich are created 1 inear ilnJ on (IS fm"l P:i~P.S as

nossrbl~ so that raferpncAs to lists do not CAuse ~n ~xcAssive

amount of swapolnR. ThereforA, CONS should try to ~~t new space

froM th~ same page that the items it is CONSing are on.

Prcferpnce should ~o to the second ~r~ument :is most lists ~re

scanned by moving along the COR elements. The method abov'! is

described by BORROW (lnd MURPHY in their paper. Their method is

slightly ("lore sophisticated due to some arfdltional information

about the nature of ATOMS. For the system being described here

all tha;: is done is the following:

To construct Z-CONSeX,Y), if there is room on Y's page put Z

there, else if there Is room on X's page put it there, else .
choose a page with space on it that i$ in core. Z is placed on

X's or yes page If there is room regardless of whether the pa~e

is In physical core or not. This is because the number of times

we scan this list ~ill ~sually be considerable as compared to

sin~le swap necessary to get XiS or yes pa~e.

6. Discussion

In examining some test cases, for which stattstlcs are given

below, it was found that a major problem Is in the object list.

'~ '1-
~,~ , t :. ".

.. , '~ -!

~ ~ ~~ '.~~lo· .. ~ •• ""I/lt~·?

, .
~"

Th~ scan fol";'l particular j'teM l"t'!C'lIlirr-s:1 linnar ~"'(lrrh rlf "PoLlST

~nJ the comparison requir~s thnt ~ach 0~~e on which ~n it~M of

the list occurs be brought into ~ore, rpsult~n~ in ~uch

<ldditlonal swapping. A hashing ;'leti1od for storjn~ onjp.cts could

consideraJ>lY reduce the number of SHaps. ThE' system heini!:

discussed in this paper is a ~odifiAd version of the "ATCH LISP

bein3 used at Stanford und under normal conditions it was found

that the chan3tng over to ~ hashin~ scheme for the object list

did not incl"ease the efficiency of the ~Rtch system. It wns

decided that to do this for the timeshared system would involv~

too much of a program re-write, 2nd so we decided to put un with

the OBLIST problem until another ~ethod for solving it could ~e

em~loyed. As the OBLIST is scanned only durln~ th~ initial

reading in of functions where ~a~in~ ?ctivity due to other

sources is usually relatively low, this problem has not created a

serious threat to the overall efficiency of the system.

STATISTICS. The test cases used to ~ain some rp.~rp.sentative

statistics were the Expression ~ccoi,nitton Routine (ERR)

described by ROSEN (5); the METEOR lan~uage written in IISP

described in Information International Inc.'s book (6); a

polynomial simpltfaction pro~ram; and so~e highly interactive

t student problems. The polynomial simplification pro~ram was used

',.. ~ because of Its size (approximately equivalent to a carrf deck of
"~: " f
':<::,,;< t. 800 cards) •. This was to check the effect the ObJect 1ist problem

r~:;:,t·:)~::: .

:...._~~!.~ ... ,IoiAI~I.JI...,...,..b !Y'!U1lL!I.MIIWIll~I.lDl.IJlIL.I1Iw1.~~~WIIIWJJ~""""'liiilllll/olliddolio/l,.io.dII~"""'liIlllllI!o'UIoillwliiiHMl_-.ioII*", __ IIIII&Iw.",1IiaI.I

J

...

\\'CluT.! t..,v~. nE'TFOr. ,",nd Fn~ tp.nd to crC'!<ltp. r<lthor 10n~ 1 is-ts ('!nd

h~nce help in chcckin~ how well the ~l~orithms lineariz~ lists.

The student problems ~re primarily exersises in ~efininR ~nd

trstin~ functions so th~t ~uch internction w~s rrquircd and

res{,)onse time \'lould be more observable.

One important fact should be mentioned at this point, and

that is with reguard to "number of s\'laps". \'Ihile I havp talked

about !llovinr: :'t page from physIcal memory (KEEP) to the drum

(H~Ln) as constituting a swap, there may indeed be no drum

refprence ~ade. This may be true for one'of two reasons. ~irst,

if the page bein~ put in HOLD has not been changed then no drum

reference to store the pa~e is made. Secondly, the monitor,

~lhich mqy at one time be handling many sub-processors may find

that even though a request for putttne.B page in HOlO is made,

there is sufficient core available to avoid making the drum

reference at that time (which means essentially that the size of

physical memory can vary). Since frequently in LISP large lists

are scanned but not changed, it is quit~ plausible that the

actua 1 number of drum references may therefore be some\'lhat 1 ess

than thp. number of "logical s\,/aps". Indeed, under controlled

conditions this seemed to be true for a consid~rable number of

test cases. For the test cases mentioned above the number of

swaps was about 30 percent ~reater then the actual number of drum

references. For other tests this figure varIed from IS to 40

percent.

_t}~. ;.
• ~I' '(~ ~'

, ~,," . :

t

'(; ~ ~

To tost th~ affic~ncy of th" SYSt 0 M countprs wnrn ~ut in to

count the nUPlber of CAR's, COR's, c()r!s'~, swnp!i, ";<lrb;)~n

collections, nnrl SWRns donp. in th0 ~~rb~~e collector.

~dditionally, time of run, time spont in swa~pin~, nn~ lim~ s~~nt

in ~arha~e collection were recorrlrd. As is m~ntionerl in (3) it

would be nxpecterl that if storn~~ wpr~ rlistribut~ri r~nrlo~Ty thpn

the percentage of cell references which caus~d swaps would be

about the same as the ratio of ~mount of physical space available

for the program to the a~ount of virtual spac~ used. It should

be pointed out that the number of CARS and CORS is ~ctu~lly

~reater than the number shown in the statistics. This is ~~causp

the LISP system does its internal CARS and cons "in line ll
• Th~

- number shown are those called for by the us~r program. To ~et a

true relationship between CARS, CORS, and swaps the swaps counted

are also only those swaps encountered during user calls to CAq

and CO~.

A test of the linearity of lists can be made by checking how

many swaps were necessary during a zarbage collection. The more

linear the lists the fewer swaps necessary. Slncp. ~ach ~ctive

page must be referenced, the minimum would be one swan for each

pa~e that could not reside in KEEP space.

r-igure 2 describes the values for the above mentioned

. factors. The size of physical memory for these runs w~s 10

,pages. Cases 1,2, and 3 represent the ERR and METEOR oro~rams

~;t,~:.l: '\~" ',' •.

~ I1L __]g ·-~~,~.jlL.,.~,~~,,;-:':=J~:::;::.~~ 0., ·lL_~_,.. . , , __ . I
" . ., . .'. ,"

~

j

run to~p.thp.r, thp. polynomi;ll simplification !"Iroro:r;l1'l, .,nd thp.

stu-!~nt nrol-,lcms r(,sl')~ctivr.ly. lines G. ;'Inri Ii. sho\,1 thrlt the

p~cin~ i'l1~orithm sa~ms to he rnther efficient for ~11 three

cases. For c~ses 1 and J it also nppears th~t the lists former:!

in the system ;Ire r~ther ~icely linenr, ~s shown in I. for the

reason stated ~bove.

The problem in case 2 demonstrates that the pro~r~m is rather

lar~e and Most activity is durtn~ the re~dlng In of functions

\'Jherc the OBLIST probleM mentioned above takes its toll.

Though the ~tatistics show that the al~orlthms used are

qu i te effect ive, it is the response time for the user ~'1h i ch

actual,y Jetermines the systems usefullness. For 5m311 pro~rams

and. lars:,er ones \'lith much interaction, r~sponse time is .~ood.

For larger, compute bound jobs, response time is too 'on~ to Make

the system effective. This problem is due to the complexity of

the Stanford system and Its requirement of serving many diverse

users in ~ ~nulti-p.rogramming environment. It is felt that a LISP

system such as the one described above would work remarkably well

in general on a machine wtth a much more single-minded purpos~.

• • I ~

~. /

:7
I .. "

· law ''//'~, ". , « < · < -" "- ~<

"

x
.... ; ~- \

~~<;·I<':<",,~,
!'

, \

Figure 2

Statistics

case 3 case 1 I case 2
ERR-METEOR POLY. SIMP. STUDENTS

A. number of 172,128 141,268 31,398
CAR-CDR-CON IS

.
B. CAR-CDR-CaNIs 1,560 3,239 191

page interrupts

C. number of garbage 131 81 22
Collections

O. Garbage Collection 4,597 27,507 484
page interrupts

E. Number of pages 19 35 20
used (512 cells
per page)

F. Average number of
cells collected

1,400 1,800 1,700

G. Percentage of 1.01 2.29 0.6
CAR-COR-CON 's
which caused
page interrupts

H. Expected val ue of 47.37 71.43 50.00
G, assuming random
cell distribution

I. Average number
of interrupts per
garbage collection

35 339 22

J. Total time spent 67 377 18
handling interrupts
(seconds)

, K. Total run time 272
(seconds)

1,191 130

~fllAAX4illiiliililio;'" .'~N-"";1I-.'l- .~\ ".-

	Berns-Paged_Lisp-19670001_a
	Berns-Paged_Lisp-19670002_a
	Berns-Paged_Lisp-19670003_a
	Berns-Paged_Lisp-19670004_a
	Berns-Paged_Lisp-19670005_a
	Berns-Paged_Lisp-19670006_a
	Berns-Paged_Lisp-19670007_a
	Berns-Paged_Lisp-19670008_a
	Berns-Paged_Lisp-19670009_a

