CS 206 CLASS NOTES

UCI LISP MANUAL
(An Extended Stanford LISP I, 6 System)

by

Robert J. Bobrow
= Richard R, Burton
Daryle Lewis

A reprint of UC Irvine Information and Computer Science
Technical Report No, 2I, October 1972

(™

Table of Contents

Introduction

Debugging Facilities
Introduction v
Temporarily Interrupting a Computation
BREAK1 - The Function that Supervises all
Breaks
What You Can Do In a Break
Break Commands
Leaving a break uwith a value
(0K, GO, EVAL,FROM?)
Correction of UNBOUND ATOM and
UNDEFINED FUNCTION errors (>, USE)
Aborting to Higher Breaks or the Top
Level (1, ™)
Examining and Modifying the Context of
a Break
Searching for a Context on the Stack
Editing a Form on the Context Stack
Evaluating a Form in a Higher Context
Back trace Commands
Printing the Functions, Forms and Variable
Bindings on the Context Stack
Breakmacros
User Defined Break Commands
Houw to Use the Break Package
Setting a Break to Investigate a Function
Tracing the Execution of Functions
Setting a Break INSIDE a Function
Removing Breaks and Traces
Using BREAK® Directly to Obtain
Special Effects from the
Break Package
Error Package - Getting Automatic Breaks
When Errors Occur
Summary of Break Commands

—
w [0 00 0o OD [da I

1.15

"1.17

1.18
1.18
1.18
1.18
1.21

1.23

1.24
1.25

The LISP Editor
Introduction
Commands for the New User
Attention Changing Commands
Local Attention Changing Commands
Commands That Search
Search Algorithm
Search Commands
Location Specification
Commands That Save and Restore the
Edit Chain
Commands That Modify Structure
Implementation of Structure
Modification Commands
The A, B, : Commands
Form Oriented Editing and
the Role of UP
Extract and Embed
The MOVE Command
Commands That "Move Parentheses"
TO0 and THRU
Commands That Print
Commands That Evaluate
Commands That Test
, Macros
~— Miscel laneocus Commands
Editdefaul t
Editor Functions

Extended Interpretation of LISP Forms
Evaluation of Sequences of Forms
Extended LAMBDA Expressions
The Functions PROG1 and PROGN
Conditiona! Evaluation of Forms - SELECTQ
Changes to the Handling of Errors
Miscellania - APPLY#, NILL

o . -

XNINOIDOY N NJT L& W w

NNNNNI\)[\)I.\).I\)I.\)NN NN NN NNRNNNM NN

WWWWwW w

.

WNNN
SO SN

W
VOO WNNPFOOOUT [l d¢] 00)

—

AL WN -

- ,

(™

‘s

Extensions to the Standard Input/Output Functions

Project-Programmer Numbers for Disk 1/0

Saving Function Definitions, etc. on Disk Files
Reading Files Back In

Printing Circular or Deeply Nested Lists

.Spacing Control - TAB

"Pretty Printing" Function Definitions and

S-Expressions

Reading Whole Lines

Teletype and Prompt Character Control Functions

Read Macros - Extending the LISP READ Routine
Functions for Defining Read Macros
Using Read Macros

Modifying the READ Control Table

New Functions on S-Expressions

S-Expression Building Functions
S-Expression Transforming Functions
S-Expression Modifying Functions
Mapping Functions with Several Arguments
Mapping Functions which use NCONC

S-Expression Searching and Substitution Functions
Efficiently Working with Atoms as Character Strings

New Predicates

Data Type Predicates

Alphabetic Ordering Predicate

Predicates That Return Useful Non-NIL Values
Other Predicates '

New Numeric Functions

Minimum and Maximum
FUBTRAN Functions in LISP

e e o

.

e o

:l-‘-&-\bl-\bb#\ LI SRS I R

e o o

Snmcnmcnmmcn

.

[epNopRep HopNep)

coNOTOV T A W NN = = s b

ONOONT W=

S WN ==

N - =

Functions for the System Builder
Loading Compiled Code into the High Segment
The Compiler and LAP
Special Variables
Removing Excess Entry Points
Miscel laneous Useful Functions
Initial System Generation

The LISP Evaluation Context Stack
The Contents of the Context Stack
Examining the Context Stack
Controlling Evaluation Context

Storage Allocation

[ndex

Qo Co 0o Co 0o Do 0o

QWWW

18.

INDEX.

S WNNN -

£ N

(™

({”\§

INTRODUCTION

. UCI LISP is a compatiblie extension of the Stanford LISP
1.8 programming system for the DEC POP-18. The extensions
make UCI LISP a pouwerful and convenient interactive
programming environment for research and teaching in
artificial intelligence and advanced list processing
applications. All Stanford LISP programs, (except those
using the BIGNUM package) can be run directly in UCI LISP,
In addition, the extended features of UCI L|SP make it much
easier to transfer interpreted LISP programs from BBN LISP
and MIT Al LISP (ue have already converted several large
programs, including a version of the Woods' Augmented
Transition Network Parser from BBN LISP, and a version of
Micro-Planner from MIT Al LISP.)

This manual describes the extensions to the Stanford
LISP 1.6 system, and should thus be read in conjunction with
the latest Stanford LISP 1.6 manual, currently SAILON 28.6
(Stanford Artificial Intelligence Laboratory Operating Note
28.6). As can be seen from the relative sizes of the two
documents UCI LISP represents a substantial extension to
Stanford LISP, and from our oun experience presents a major
improvement in the habitability of the system for both naive
and experienced users, (A majority of the extensions were
suggested by the features of BBN LISP, probably the best
interactive LISP system Iin existence, but unfortunately
available only on TENEX, a paged virtual memory system for
the PDP-18, produced by Bolt, Beranek and Newman Inc.)

The major extensions to Stanford LISP can be briefly
described as fo!llous:

1) Improvements in storage utilization:
a) UCI LISP is reentrant and compiled code may be
placed in the sharable high segment
b) the allocator allous reallocation of all
spaces (including Binary Program Space) at any
time

2) Pouer ful interactive debugging facilities,
including:
a) Sophisticated conditional breakpoint and
function tracing facilities

b) A powerful list structure editor for editing
function definitions and data

c) Facilities for examining, correcting and
continuing to run in the context of a program
which has been interrupted by an error or by a
user initiated temporary interrupt

3) Extensions to the 1/0 facilities available in the

4)

5)

6)

basic system, including:

a) Convenient 1/0 to disk files, including use of
project/programmer designations and ways to
save and restore functions and data

b) Read Macros (patterned after MIT Al LISP) for
extending the LISP READ routine

c) A routine for printing circular or deeply
nested expressions

d) Routines to modify the control table of the
LISP READ routine

e) Several useful functions for carriage
positioning, teletype echo and prompt
character control, reading input a line at a
time, etc.

Functions for examining and modifying the special
pushdown stack wuhich holds the context of ongoing
computations

Error protection facilities:
a) NIL, T and other atoms cannot be easily
damaged by RPLACA, RPLACO, SETQ.and SET
b) The system will no longer go into an infinite
loop when searching for the function
definition of the CAR of a form

Extended basic functions including:

a) New predicates for data types, and predicates
wuhich return useful values

b) New list construction and modification
functions

c) Multiple sequential form evaluation in LAMBDA
expressions

d) An efficient n-way suitch

e) Availability of the FORTRAN mathematical
functions

f) Mapping functions with several arguments, and
ones which build new tists using NCONC to join
segments

(-

(.

N\

As mentioned, we have made UCI LISP a reentrant system
which may be used by several users simultaneously. Thus,
while the new features of UCI LISP require a larger system
than the original Stanford LISP, this impact is minimized in
any environment with more than one LISP user. In addition,
since the basic LISP system contains many features
previously available only in the various extension files

- {guch as GMILE, ALVINE, TRACE, etc.) or which had to be

written by the user, it is possible to write and debug
meaningful jobs in the basic system, wWithout getting extra
core. The UCI LISP system has a sharable high segment of
14X and a user specific low segment of 8. Thus, if there
are tuo users the virtual core load is 38K, while getting
the same capabilities in Stanford LISP would require a load
of 32K for the two users, and of course the improvement is
even more noticeable with more users sharing UCI LISP (about
8K is saved for each additional user).

The ability to put compiled code in the sharable

'segment and to reallocate Binary Program Space makes it

possible to build systems in which much of the systems code
is compiled LISP expressions. All of the advantages of
higher level coding are obtained, and the LISP compiler
(borrowed from Stanford with some small modifications)
produceés better results than most assembly language coders.
Such partially compiled systems can now be used wWithout
closing off the possibility of the user extending Binary
Program Space to store his oun compiled code. In general,
it is now possible to compile a system incrementally., The
user can save the low segment ‘which contains the partially
compiled system, then test out new material in interpreted
form before extonding the Binary Program Space in the
segment to load the new compiled material.

The debugging facilities form the bulk of the
extensions to Stanford LISP, and are identical with the
equivalent facilities available in BBN LISP in the summer of
1971. (BBN LISP has been extended in the intervening
period.) They make it possible for the user to track doun
bugs in complicated recursive programs by making it easier
for him to investigate the context in which the bug occurred
(e.g. to see at what point erroneous data was passed as an
argument, or at what point the flouw of control went awry,
etc.) The user does not have to plan in advance or set
breakpoints to get access to the context of the error. The
system holds the context of any error automatically,

allouing the wuser to perform uhatever investigations he
wishes, and make any corrections uhich may be useful. This

also makes it possible to patch up a small error, like an
unbound atom or simple undefined function, n the middle of
a large computation and to continue the computation without
having to start from scratch. Similarly, <he user can try

out ideas for correcting the error, without leaving the
context of the error, and go on only when he has pinned doun
the error and its possible solution. If the information
available at the time the LISP system discovers the error is
insufficient to pin down the cause of the error, the user
can have the system repeat the computation, with a special
trace feature that prints out uhatever the user wishes to
know at various points in the computation. (The user can
specify both what data is to be printed and under uhat
conditions he wishes it printed.) The user can also force
the system to establish a breakpoint anywhere in his
computation, 8o he can investigate the context before the
error has covered its tracks.

The UCI LISP editor {(borroued with some modifications
from the BBN LISP system) is actually a language for
incremental modification of list structures. It can be used
by a user at a terminal to modify function definitions (even
during the middle of a break while the function is still on
the context stack) or to change complicated data structures.
It can also be used as a subroutine by other functions,
making it convenient for one function to modify another
function. This is. actually done by the BREAK package, to
implement the function BREAKIN which inserts a breakpoint at
any arbitrary point in a user function.

The editor can move around 1in a structure by small
local motions, or by searching for a portion of the
structure uhich matches some given pattern. 1t can insert
ned items, delete old ones, interchange items, change
structure, - embed old items in new structure or extract them
from old structure, etc. In order to be able to edit a
function uhich is still on the context stack and to have all
of the portions on the context stack be changed at once, the
modifications performed by the editor are physical changes
of the existing structure., Although all the modifications
are "destructive", using RPLACA and RPLACD to make changes
in the given structure, all of the modifications can be
selectively reversed by means of the UNDO feature. Thus the
user can make modifications without worrying about
completely destroying his function definitions by accident.

(/~ ™

The editor is a very large, complicated function, and its
documentation indicates that fact. Houever, the first part
of the editor documentation gives a convenient rundoun on
hou to use the editor as a novice, and with that the
beginning user can get quite a bit done. By skimming the
remainder of tha editor chapter the user can get some idea
of the many extra useful features available, and can slouly
extond hig capabilities with the editor. It has been a
common observation that in tha process of writing and
debugging a large system, or even a omall program, the
average user spends nmost of his time in editing his
functions. By becoming familiar with all the features of
the list structure editor the user can cut his editing time
conaliderably, and make large or subtle changes easily. The
user should also bear in mind that the editor is available
as a function which can be used by othsr functrons. This
can make many jobs substantially easier,

NOTE: ALYINE is no longer available in the standard
version of UCI LISP because we believe that the neu editor
and 1/0 facilities are substantiaiig better than those
provided by ALVINE. (There is an assembly suitch which
makes it possibla to run ALVINE in UCI LISP if necessary.)

Some of tha extanded 1/0 facilities of UCI LISP were
available in SMILE, etc., but putting them in the shared
system saves core. The Read HMacro facility is a great
convenience, and makes using Mlcro~Plannar much simpler., The
user-nodi fied READ control table is more general than that
avallable in the Stanford SCAN package (which is still

~usaful and available), and the new SPRINT is faster than the

original. The other functions are quite convenisnt, and
will make many tasks simpler, ‘

The special pushdoun list has been extended to provude
the equivalent of the BBN LISP context stack. This is the
backbone of the ERROR and BREAK packages, since it enables
running programs to examine their context, and to change it
if necessary. The stack functions, particularly RETFROM and
OUTVAL make it possible to experiment with various control
regimes, where subordinate functions can abort and return
from higher level functions on the basis of local
information. Indiscriminate fooling around with the stack
is likely to produce peculiar and unwanted results, but the
stack functions can be extremely helpful at times.

The error protection facilities are an attempt to catch
some of the common errors of novices (and experienced users
too) which can clobber the system, There are feu things
more confusing than wuhat happens to the system when the
value of NIL is no longer NIL, or if the value of T becomes
NIL. In Stanford LISP this could easily happen if SETQ or
SET received a list as a first argument. This can no longer
happen in UCI LISP. Similarly, Stanford LISP occasionally
went into infinite loops because a form had a CAR which was
NIL or had no function definition and evaluated to NIL.
This has been corrected.

The extended basic functions are ones which were of
great use in uriting the editor, BREAK package, etec., and in
bringing up translated versions of BBN LISP and MIT Al LISP
programs. The multiple form LAMBOA expression and the n-uay
suitch SELECTQ should make many programming jobs much more
convenient, as should the availability of mapping functions
Wwith several arguments. The user will almost certainly
profit from skimming through the chapters on these extended
features, just to know what is available.

.

(~

Credits and Acknouledgensents

The design and overall direction of the implementation
of this system are the responsibility of Robert Bobrow, who
also made the first modifications to Stanford LISP,
including the original error package, accessible context
stack and storage reallocator. In large part the existence
of the final system and its extensive documentation is due
to the Herculean offorts of Daryle Lewis, wuho did the bulk
of the modifications to the assembly language code
(including making Stanford LISP reentrant) and corrected the
compiler and LAP systems. He singlehandedly transferred the
entire BBN LISP editor and its documentation to our system,
and in general performed vital and arduous design,
programming and documentation tasks too numerous to mention.
Richard Burton did uysoman's labor by transferring (and
extending) the BBN LISP ERROR and BREAK packages, and
providing their documentation. MWhitfield Diffie of Stanford
has helped us out of several sticky problems with the LISP
system and its compiler. The original implementation of the
editor and several 1/0 functions is due to Rodger Knaus, as
well as many helpful suggestions. Finally, but of vital
importance, is Alan Bell, uhose great knouledge of the
POP-18 operating system helped us through many rough times,
and who has done much of the transferring of BBN LISP and
MIT Al LISP programs.

We are triply indebted to the designers, implementers
and documenters of BBN LISP, particularly Daniel Bobrow and
Warren Teitelman. Most of the debugging and interactive
facilities as well as the general design philosophy of UCI
LISP were inspired by the BBN LISP system. Secondly, we
were able to use much of their code directly, since it uas
written in LISP, making it possible to obtain a large,
well-written and debugged system in a fraction of the time
and effort it would have taken to write it from scratch.
Finally, we have made extensive use of the BBN LISP TENEX
REFERENCE MANUAL as a source of rau material for our
documentation. In particular, much of the material in the
chapters on the BREAK and ERROR packages and the editor is a
revised version of the material in the BBN LISP MANUAL. UWe
take full responsibility for the errors and deficiencies
produced by such an arrangement, while greatfully
acknouledging BBN's aid in providing much of the basic
documentation. We are also in debt to several people at BBN

8.7

‘for their aid in obtaining and explaining this material,
particularly Jim Gooduin, Alice Hartley and the director of
the Artificial Intelligence Group, Jaime Carbonell.

This manual is the work of many people as well as the
listed authors - in particular Warren Teitelman, formerly of
BBN and now at Xerox Paleo Alto Research Center, who produced
the original BBN LISP documentation and the lions share of
the original code. MWe are also in debt to Marion Kaufman
and Phyllis Siegel who did daily battle with the PDP-18 to
produce the RUNOFF files from which this documentation is
produced.

Last, but most assuredly not least in the roster of
those who have made this system possible are Lynette Bobrou,
Kathy Burton -and Connie Lewis who lived through the many
discussions, all night programming sessions and
battle-fatigue of the year during uwhich this system was
. implemented.

ENJOY, ENJOY!

o~

DEBUGGING FACILITIES

Introduction

Debugging a collection of LISP functions involves
isolating problems within particular functions and/or
determining when and wuhere incorrect data are being
generated and transmitted. In the UCI LISP system, there
are five facilities which aid the user in monitoring his
program. One of these is the Error Package which takes
control uhenever an error occurs in a program and uwhich
allous the user to examine the state of the world (see
section on 'ERROR PACKAGE'). Another facility allous the
user to temporarily interrupt his computation and examine
its progress. The other three facilities (BREAK, TRACE and
BREAKIN) allow the wuser to (temporarily) modify selected
function definitions .so that he can follow the flow of
control in his programs. All of these facilities use the
same system function, BREAK1, as the user interface.

BREAK, BREAKIN and TRACE together are called the Break
Package. BREAK and TRACE can be used on compiled and system
functions as well as EXPR’s, FEXPR's and MACRO’s. BREAKIN
can be used only with interpreted functions.

BREAK modifies the definition of a function FN, so that
if a break condition (defined by the user) is satisified,
the process is halted temporarily on a call to FN. The user
can then interrogate the state of the machine, perform any
computations, and continue or return from the call.

TRACE modifies a .cdefinition of a function FN so that
whenever FN is called, its arguments (or some other values
specified by the user) are printed. MWhen the value of FN is
computed it is printed also.

BREAKIN allous the user to insert a breakpoint inside
an expression defining a function. When ‘the breakpoint is
reached and if a break condition (defined by the wuser) is
satisfied, a temporary halt occurs and the user can again
investigate the state of the computation.

~ The tuo examples on pages 1.3 and 1.4 illustrate these
facilities. In the first example, the user traces the
function FACTORIAL. TRACE redefines FACTORIAL so that it
calls BREAK]1 in such a way that it prints some information,
in this case the arguments and value of FACTORIAL, and then

goes on uith the computation. When an error cccurs on the
fifth recursion, BREAK] reverts to interactive mode, and a
full break occurs. The situation is then the same as though
the user had originally performed (BREAK FACTORIAL) instead
of (TRACE FACTORIAL), asd the user can evaluate various LISP
forms and direct the course of the computation. In this
case, the user examines the variable N, instructs BREAKl to
change L to 1 and continue. The > command, follouing an
UNBOUND ATOM or UNDEFINED FUNCTION error, tells BREAK1 to
use the next expression instead of the atom which caused the
error, The > command does a destructive replacement of, in
this case, 1 for L, and saves an edit step by correcting the
typo in the function definition. The rest of the tracing
proceeds without incident. The function UNTRACE restores
FACTORIAL to its original definition.

In the second example, the user has written Ackermann’s
function. He then uses - BREAK to place a call to BREAK1
around the body of the function. He indicates that ACK is
to be broken when M equals N and that before the break
occurs, the arguments to ACK are to be printed. UWhile
calculating (ACK 2 1}, ACK is called twice when M = N.
During the first of these breaks, the user prints out a
backtrace of the function names and variable bindings. He
continues the computation with a GO which causes the value
of (ACK 1 1)}, 3, to be printed before the break is released.
The second break is released uith an OK which does not print
the result of (ACK 1 1l). The function UNBREAK with an
argument T restores the latest broken or traced function to
its original definition.

For further information on how to use BREAX, TRACE and
BREAKIN, see the section on The Break Package.

7

(™

™

*(DE FACTORIAL (N)
(COND ((ZEROP N) L)
(T (TIMES N (FACTORIAL (SuB1 N))J))))

FACTORIAL
* (TRACE FACTORIAL)

(FACTORIAL)

* (FACTORIAL 4)

ENTER FACTORIAL:

! N =4

ENTER FACTORIAL:

! N=3

ENTER FACTORIAL:

! N=2 ‘
| ENTER FACTORIAL:
bl N=1

! 1 ENTER FACTORIAL:
!

!
!
!
!
!
! Pt N=2

!
!
!
!
!
!
!
!
L

UNBOUND VARIABLE - EVAL

(L BROKEN)
1:N

8

1:5 1

| 1 | 1 FACTORIAL = 1
| 1 1 FACTORIAL = 1

| | FACTORIAL = 2

| FACTORIAL = 6
FACTORIAL = 39

39

(UNTRACE FACTORIAL)

(FACTORIAL)
* (FACTORIAL 4)

30

x(DE ACK (M N)
(COND ((ZEROP M) (ADD1 N))
{ (ZEROP N) (ACK (SuB1l M) 1))
(T (ACK (SUB1 M) (ACK M (SUBL N)))I)))

ACK
x (BREAK (ACK (EQ N M) (ARGS}))

(ACK)
x(ACK 2 1)
M=1
N=1

(ACK BROKEN)
1:BKFV

L]
—_—

ACK

ACK

P 4 =2 i 4
1]

=N QN

ACK
1:G0

M
N

nn
-

{ACK BROKEN)
1:0K

5
% (UNBREAK T)

(ACK)

.

Interrupting a computation-REE and DDT

A useful feature for debugging is a way to temporarily

suspend computation. [+ the wuser wishes to know how his
computation is proceeding (i.e. is he in an infinite loop
or is system response poor). Then type Control-C twice
(which will cause. a return to the monitor) followed by

either REE or DDT. After typing REE the user must respond
Wwith one of the folloning control characters; Control-H,
Control-B, Control-G, Control-E or Control-Z, Typing ODT is
equivalent to typing REE followed by Control-H.

1. Control-H: This uill cause the computation to continue,
but a break wuill occur the next time a function is called
(except for a compiled function called by a compiled
function). A message of the form (-- BROKEN) is typed and
the wuser is in BREAKL (see the next section). He can
examine the state of the world and continue or stop his
computation using any of the BREAKl commands. MWARNING It is
possible to get into an infinite loop that does not include
calls to functions other than compiled functions called by
compiled functions. These will continue to run. (In such
cases, - type Control-C twice, followed by REE, followed by
one of the other control characters).

2. Control-B: This will cause the system to back up to the
last expression to be evaluated and cause a break (putting
the wuser in BREAK1 with all the pouer of BREAK1 at the
user's command, This does not include calls to compiled
functions by other compited functions.

3. Control-G: This causes an (ERR ERRORX) which returns to
the last (ERRSET ERRORX). Thie enables the wuser to
Control-C out of the Break package or the Editor, reenter
and return to the appropriate command level. (i.e. if the
user were several levels deep in the Editor for example,
Control-G will return him to the correct command level of
the Editor).

4, Control-E:

the Jlast ERRSCT. (See section
ERRSET).
5. Control-Z: This returns the

LISP, (i.e.
INITFN).

This does an (ERR NIL), which return NIL to

on changes to ERR and

user to the top-fevel of

either the READ-EVAL-PRINT loop or the current

BREAK1

The heart of the debugging package is a furction called

- BREAK1., BREAK and TRACE redefine your functions in terms of

BREAK1. When an error occurs control is passed to BREAKI.
The DDT break feature is also implemented using BREAKL.

Whenever LISP types a message of the form (-- BROKEN)
followed by 'n:' the user is then 'talking to' BREAK1, and
he is 'in a break.’' BREAK1 allous the user to interrogate
the state of the world and affect the course of the
computation. It uses the prompt character ':' to indicate
it is ready to accept input(s) for evaluation, in the same
way as the top level of LISP uses "x'. The n before the ’:’
is the level number which indicates hou many levels of
BREAK1 are currently open. The user may type in an
expression for evaluation and the value will be printed out,
followed by another ':'. Or the user can type in one of the
commands described belou which are specifically recognized
by BREAK1 (for summary of commands see Table I, page 1.25).

Since BREAKL puts all of the power of LISP at the
user's command, he can do anything he can do- at the top
level of LISP, For example, he can define new functions or
edit existing ones, set breaks, or trace functions. The
user may evaluate an expression, see that the value uas
incorrect, call the editor, change a function, and evaluate
the expression again, all without leaving the break.

It is important to emphasize that once a break occurs,
the user -is in complete control of the flow of the
computation, and the computation will not proceed without
specific instruction from him. Only if the user gives one
of the commands that exits from the break (GO, 0K, RETURN,
FROM?=, EX) will the computation continue. I[f the user
wants to abort the computation, this also can be done (using
Tt or M),

Note that BREAK1 is just another LISP function, not a
special system feature like the interpreter or the garbage

. collector. It has arguments and returns a value, the same

as any other function. A call to BREAKl has the form
(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE)

The arguments to BREAKL are: BRKWHEN is a LISP function
which is evaluated to determine if a break will occur, If

BRKWHEN returns NIL, BRKEXP is evaluated and returned as the
value of the BREAKl. Otherwise a break occurs. BRKFN is
the name of the function being broken and is used to print
an identifying message. BRKCOMS is a list of command |ines
(as returned by READLINE} which are executed as if they had
been typed in from the teletype. The command tines on
BRKCOMS are executed before commands are accepted from the
teletype, so that if one of the commands on BRKCOMS causes a
return, a break occurs without the need for teletype .
interaction. BRKTYPE identifies the type of the break. It
is used primarily by the error package and in all cases the
user can use NIL for this argument.

The value returned by BREAK1 is called ’the value of
the break.’ The wuser can specify this value explicitly by
using the RETURN command described belowu. In most cases,
houwever, the value of the break is given implicitly, via a
GO or OK command, and is the result of evaluating 'the break
expression,' BRKEXP,

BRKEXP is, in general, an expression
equivalent to the computation that would have
taken place had no break occurred, In other

"words, one can think of BREAK]l as a fancy EVAL,
which permits interaction before and after

evaluation. The break expression then corresponds
to the argument to EVAL. For BREAK and TRACE,
BRKEXP is a form equivalent to that of the
function being traced or broken. For errors,
BRKEXP is the form wuhich caused the error. For
DDT breaks, BRKEXP is the next form to be
evaluated.

WHAT YOU CAN DO IN A BREAK

Break Commands

Once in a break, in addition to evaluating expressions,
the user can ask BREAKL to perform certain useful actions by
giving it atomic items as "break commands". The following
commands can be typed in by the user or may be put on the
list BRKCOMS. TABLE I (page 1.25) is a summary of these
commands.

All printing in BREAK1 is done by calling (%PRINFN
expr). %PRINFN is an atom (not a function) which should
evaluate to the name of a printing function of one argument.
%PRINFN is initialized to use PRINTLEY because it can print
circular Jists, which quite often result from errors.
PRINTLEV only prints lists to a depth of 6. This depth
parameter may be changed by setting the value of %LOOKDPTH.
PRINTLEV is necessarily slou and if you are not printing
circular structures, traces can be speeded up greatly by
changing the value of %PRINFN to PRINI.

GO

Releases the break and allous the computation
to proceed. BREAK1 evaluates BRKEXP, its first
argument, prints the value, and returns it as the
value of the break. BRKEXP is the expression set up
by the function that called BREAKl. For BREAK or
TRACE, BRKEXP is equivalent to the body of the
definition of the broken function. For the error
package, BRKEXP is the expression in which the error
occurred. For DDT breaks, it is the next form to be
evaluated.

oK
Same as GO except that the value of BRKEXP is

not printed.

EVAL

Causes BRKEXP to be evaluated. The break is
maintained and the value of the evaluation s
printed and bound on the variable !VALUE. Typing GO
or OK wuill not cause reevaluation of BRKEXP
following EVAL but another EVAL will. EVAL is a
useful command when the user is not sure whether or
not the break uill produce the correct value and

wishes to be able to do something about it if it is
wrong.

RETURN form
The form is evaluated and its value is returned
as the value of the break. For example, one might
use the EVAL command and follow this with
RETURN (REVERSE !VALUE).

FROM?= form
This permits the user to release the break and
return to a previous context with form to be
evaluated. For details see context commands.

> [or ->] expr .
For use either with UNBOUND ATOM error or
UNDEFINED FUNCTION error. Replaces the expression
containing the error with expr (not the value of
expr) e.g., ‘

FOO01

UNDEF INED FUNCTION
(FOO1 BROKEN)

1:> FOO

changes FOO1 to FOO and continues the computation.
Expr need not be atomic, e.g.,

FOO

UNBOUND ATOM
(FOO BROKEN)
1:> (QUOTE FGO)

For UNDEFINED FUNCTION breaks, the user can specify
a function and its first argument, e.g.,

MEMBERX

UNDEFINED FUNCTION
(MEMBERX BROKEN)
1:> MEMBER X

Note that in the some cases the form containing the
offending atom will not be on the stack (notably,
after calls to APPLY) and in these cases the

function definition will not be changed. In most
cases, houever, > Will correct the function
definition,

USE x FOR y

"M

ARGS

Causes all occurrences of y in the form on the
stack at LASTPOS (for Error breaks, unless aF
command has been used, this form is the one in uhich
the error occurred.) to be replaced (RPLACA'ed) by
x. Note: This is a destructive change to the
s-expression involved and will, for example,
permanently change the definition of a function and
make a edit step unnecessary.

Calls ERR and aborts the break, This is a
useful way to unwind to a higher level break. All
other errors, including those encountered uhile
executing the GO, OK, EVAL, and RETURN commands,
maintain the break.

This returns control directly to the top level
of LISP.

Prints the names and the current values of the
arguments of BRKFN. In most cases, these are the
arguments of the broken function.

Context Commands

All information pertaining to the evaluation of forms
in LISP is kept on the special push doun stack. MWhenever a
form is evaluated, that form is placed on the special push
down stack. Whenever a variable is bound, the old binding
is saved on the special push doun stack. The context (the
bindings of free variables) of a funciion is determined by
its position in the stack. MWhen a break occurs, it is often
useful to explore the contexts of other functions on the
stack. BREAK1 allows this by means of a context pointer,
LASTPOS, which is a pointer into the special push doun
stack. BREAK1 contains commands to move the context pointer
and to evaluate atoms or expressions as of its position in
the stack. For the purposes of this document, When moving
through the stack, "backuward" is considered to be toward the
top tevel or, equivalently, touwards the older function calls
on the stack.

F [or &] argl arg2 ... argN
Resets the variable LASTPOS, which establishes
a context for the commands ?=, USE, EX and FROM?=,
and the backtrace commands described below. LASTPOS
is the position of a function call' on the special
push doun list. It is initialized to the function
just before the call to BREAKI.

F takes the rest of the teletype line as its
list of arguments, F first resets LASTPOS to the
function call just before the call to BREAK1, and
then for each atomic argument, F searches backuward
for a call to that atom. The following atoms are
treated specially:

F
When used as the first argument
caused LASTPOS not to be reset to
above BREAK1 but continues searching
from the previous position of LASTPOS.
Numbers

I[f negative, move LASTPOS back
(i.e. towards the top level) that
number of calls, if positive, forward.

(.

Search foruard instead of
backward for the next atom

Example:

[f the special push-cdoun stack looks |ike

BREAK1 (13)
FOO (12)
SETQ (11)
COND (18)
PROG (9)
FIE {(8)
COND {7)
FIE (6)
COND (5)
FIE {4)
COND (3)
PROG (2)
FuM (1)
then
F FIE COND will set LASTPOS ta to (7)
F & COND Will then set LASTPOS to (5)
F FUM « FIE will stop at (4)
F&2 Will then move LASTPOS to (B)
F will reset LASTPOS to (12)

. 1¥ F cannot successfully complete a search,
for argN or if argN is a number and F cannot move
the number of functions asked, "argN?" is typed.
In either case, LASTPOS is restored to its value
before the F command was entered. Note: It is
possible to move past BRKEXP (i.e. into the break
package functions) when searching or moving
forwards.

When F finishes, it types the name of the
function at LASTPOS.

F can be used on BRKCOMS. In which case, the
remainder of the |ist is treated as the list of
arguments. (i.e. (F FOO FIE FOQ))

EDIT argl arg2 ... araN

?= argl

EDIT use¢ its arguments to reset LASTPGS in
the same manner as the F command, The form at
LASTPOS is then given to the LISP Editor. This
commands can often times <cave the user from the
trouble of calling EDITF and the finding the
expression that he needs to edit.

arg2 ... argN

This is a multi-purpose conmand. [ts most
common use is to interrogate the value(s) of the
arguments of the broken function, (ARGS is also
useful for this purpose.) e.g. .if FOD has three
arguments (X Y Z), then typing ?= to a break of
FOO, will produce:

n:?=

X = value of X
Y = value of Y
Z = value of Z

?= takes the rest of the teletype line as its
arguments, [f the argument list to ?= is NIL, as
in the above case, it prints all of the arguments
of the function at LASTPOS. [f the user types

?= X (CAR Y)

he will see the value of X, and the value of (CAR

Y),- The difference betieen using ?= and typing X-

and (CAR Y) directly into BREAK1 is that ?=
evaluates its inputs as of LASTPOS. This provides

a way of examining variables or forms as of a

particular point on the stack., For example,

F (FOO FOO)
?2= X
will allow the user to examine the value of X in an

earlier call to FOO.

?= also recognizes numbers as referring to the

‘correspondingly numbered argument. Thus

:F FIE
t?7= 2

1.13

3

—~

will print the name and value of the second
argument of FIE (providing FIE is not compiled).

?= can also be used on BRKCOMS, in which case
the remainder of the list on BRKCOMS is treated as
the list of arguments. For example, if BRKCOMS is
((EVAL) (?= X (CAR Y)) GO)), BRKEXP will be
evaluated, the values of X and (CAR Y) printed, and
then the function exited with its value being

. printed.

FROM?= [form]

EX

, FROM?= exits from the break by undoing the
special push doun stack back to LASTPOS, I FORM
is NIL or missing, re-evaluation continues with the
form on the push doun stack at LASTPOS. [If FORM is
not NIL, the function call on the push doun stack
at LASTPOS is replaced by FORM and evaluation
continues with FORM., FORM is evaluated in the
context of LASTPOS. There is no way of recovering
the break because the push dowun stack has been
undone, FROM?= allows the user to, among other
things, return a particular value as the value of
any function call on the stack. To return 1 as the

~value of the previous call to FOO:

:F FOO
:FROM?= 1

Since form is evaluated after it is placed on the

stack, a value of NIL can be returned by using
(QUOTE NIL).

EX exits from the break and re-evaluates the
form at LASTPOS. EX is equivalent to FROM?= NIL.

Backtrace Commands

The backtrace commands print information about
function calls on the special push doun list, The
information is printed in the reverse order that the calls
Here made. All backtraces start at LASTPOS.

BKF
BKF gives a Dbacktrace of the names of
functions that are still pending.
BKE
BKE gives a hacktrace of the expressions which
called functions still pending (i.e. It prints the
function calls themselves instead of only the names
as in BKF),
BK

BK gives a full backtrace of all expressions
still pending.

All of the hacktrace commands may be suffixed by a 'V’
and/or followed by an integer. 1f the integer is included,
it specifies how many blocks are to be printed. The
limiting point of a'block is a function call, This form is
useful when working on a Data Point. Using the integer
feature in conjunction with the F command, which moves
LASTPOS, the wuser can display any contiguous part of the
back trace. If a’'V' is included, variable bindings are
printed along uwith the expressions in the backtrace.

Example:
BKFV would print the names and variable
bindings of the functions called before
LASTPROS.
BKV 5 would print everything (expressions and

variables) for 5 blocks before LASTPOS.

N

.

The output of the backtrace commands deserves some
explanation. Right circular lists are only printed up to
the point uhere they start repeating and are closed with
'e..]’ instead of a right parenthesis. Lists are only
printed to a depth of 2. /8/ ls a notation which
represents "the previous expression". For example, (SETQ
FIE (FOO)) would appear in a BK backtrace as

(FOO)
(SETQ FIE /4/)

Breakmacros

Whenever an atomic command is encountered by BREAK1
that it does not recognize, either via BRKCOMS or the
teletype, it searches (using ASSOC) the |ist BREAKMACROS to
see if the atom has been defined as a break macro. The
form of BREAKMACROS definitions is (... (atom ttylinel
ttyline2 ... ttylineN) ...). ATOM is the command name.
ARGS is the argument(s) for the macro. The arguments of a
breakmacro are assigned values from the remainder of the
command line in which the macro is called. [f ARGS is
atomic, it is assigned the remainder of the command line as
its value. If ARGS is a list, the elements of the rest of
the command |ine are assigned to the variables, in order.
[f there are more variables in ARGS then items in the rest
of the command line, a value of NIL is filled in. Extra
items on the command line are ignored. The TTYLINEs are
the body of the breakmacro definition and are lists of
break commands or forms to be evaluated. [f the atom is
defined as a macro, (i.e. is found on BREAKMACROS) BREAK1
assigns values to the variables in ARGS, substitutes these
values for.all occurrences of the variables in TTYLINEs and
appends the TTYLINEs to the front of BRKCOMS. When BREAK1
is ready to accept another command, if BRKCOMS is non-NIL
it takes the first element of BRKCOMS and processes it
exactly as if it had been a line input from the teletype.
This means that a macro name can be defined to expand to
any arbitrary collection of expressions that the user could

type in. If the command is not contained in BREAKMACROS,

it is treated as a function or variable as before.

Example: a command PARGS to print the arguments of .the
function at LASTPOS could be defined by evaluating:

(NCONC BREAKMACROS (QUOTE ((PARGS NIL (?=)))))

A command FP wuwhich finds a place on the SPD stack and
prints the form there can be defined by: '

(NCONC BREAKMACROS (QUOTE (FP X (F . X)) ((PRINT (SPDLRT
LASTPOS)))1))

\ -

BREAK PACKAGE
How To Set A Break

The following functions are useful for setting and
unsetting breaks and traces.

Both BREAK and TRACE use a function BREAKB to do the
actual modification of function definitions. = When BREAKD
breaks a SUBR or an FSUBR, it prints a message of the form
(--- . ARGUMENT LIST?). The user should respond with a
list of arguments for the function being broken. (FSUBR's
take only one argument and BREAK@ checks for this.) The
arguments on this list are actually bound during the calls
to the broken function and care shouid be taken to insure
that . they do not conflict with free variables. For
LSUBR's, the atom N? s wused as the argument. It is
possibte to GRINDEF and edit functions that are traced or
broken. BROKENFNS is a list of the functions currentiy
broken. TRACEDFNS is a tist of the functions currently
traced.

BREAK

BREAK is an FEXPR, For each atomic argument, it
breaks the function named each time it is called. For each
list in the form (fnl IN fn2), it breaks only those
occurrences of FN1 ‘which appear in FN2. This feature is

very ‘useful for breaking a function that is calied from’

many places, but where one is only interested in ‘the'call
from a specific function, e.g. (RPLACA IN FOO), (PRINT IN
FIE), etc. For each list not in this form, it assumes that
the CAR is a function to be broken; the CADR is the break
concdition; (When the fuction is called, the break condition
is evaluated. [f it returns a non-NIL value, the break
occurs. Otheruise, the computation continues without a
break.) and the CODR is a list of command lines to he
per formed before an interactive break is made (see BRWHEN
and BRKCOMS of BREAKL). For example,

(BREAK F001 (FO02 (GREATERP N S) (ARGS)))
will break all calls to FOOl and all calls on FOO2 when N

is greater than 2 after first printing the arguments of
FODZQ ‘ '

(BREAK ((FOO04 IN FOOS) (MINUSP X)))

will break all calls to FO04 made from FOO5 when X is
negative.

*Examples:
(BREAK FOO)
(BREAK ((GET IN FOO) T (GO}))
(BREAK (SETQ (EQ N 1) ((PRINT (QUOTE N=1))) (2= M)))

TRACE

TRACE is an FEXPR, For each atomic argument, it
traces the function named (see form on page 1.3) each time
it is called, For each list in the form (fnl IN fn2), it
traces only those calls to FNl that occur within FN2. For
each list argument not in this form, the CAR is the
function to be traced, and the COR is a |list of variables
(or forms) the user wishes to see in the trace.

For example, (TRACE (FOO1 VY) (SETQ IN FOO3)) will
cause both FO0l and SETQ IN FOO3 to be traced. SETQ’s
argument will be printed and the value of Y uill be printed
for FOOL. .

TRACE uses the global variable #%INDENT to Kkeep its
position on the line. The printing of output by TRACE is
printed using %PRINFN (see page 1.3), TRACE can therefore
be pretty printed by:

(SETQ #PRINFN (QUOTE PRETPRIN))
(DE PRETPRIN (FORM) -
(SPRINT FORM (xPLUS 18 H%INDENT)))

Examples:
(TRACE FO0)
(TRACE xTIMES (SELECTQ IN DOIT))
(TRACE (EVAL IN FOO))
{(TRACE (TRY M N X (xPLUS N M)))

Note: The wuser can aluways call BREAK@ himself to
obtain combinations of options of BREAKL not directly
available with BREAK and TRACE (see section on BREAKS
below). These functions merely provide convenient ways of
calling BREAKB, and will serve for most uses.

M

BREAKIN
BREAKIN enables the user to insert a break, i.e., a
call to BREAK1, at a specified location in an interpreted

function. For example, if FOO calls FIE, inserting a break
in FOO before the call to FIE is similar to breaking FIE.

‘However, BREAKIN can be wused to insert breaks before or

after prog labels, particular SETQ expressions, or even the
evaluation of a variable. This is because BREAKIN operates
by calling the editor and actually inserting a call to
BREAK1 at a specified point inside of the function.

The user specifies wuhere the break is to be inserted
by a sequence of editor commands. These commands are
preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to
determine what to do once the editor has found the
specified point, i.e., put the call to BREAK1 BEFORE that
point, AFTER that point, or AROUND that point. For
example, (BEFORE COND) will insert a break before the first
occurrence of COND, (AFTER COND 2 1) will insert a break
after the predicate in the first COND clause, (AFTER BF
(SETQ X F)) after the last place X is set. Note that
(BEFORE TTY:), (AROUND TTY:) or (AFTER TTY:) permit the
user to type in commands to the editor, locate the correct

“point, and verify it for himself using the P command, if he

desires. Upon exit from the editor uith OK, the break is
inserted. (A STOP command typed to TTY: produces the same
effect as an unsuccessful edit command in the original
specification, e.g., (BEFORE CONDD). In both cases, the
editor aborts, and BREAKIN types (NOT FOUND).) ‘ ;

for BREAKIN BEFORE or AFTER, the break expression is
NIL, .since the value of the break is wusually not of
interest. For BREAKIN AROUND, the break expression will be
the indicated form. When in the break, the user can use
the EVAL command to evaluate that form, and see its value,
before allouing the computation to proceed. For example,
if the user inserted a break after a COND predicate, e.g.,
(AFTER (EQUAL X Y)), he would bhe pouerless to alter the
flow fo computation if the predicate were not true, since
the break.would not pe reached. However, by breaking
(AROUND (EQUAL X Y}), he can evaluate the break expression,
i.e., (EQUAL X Y), seel its value and evaluate something
else if he uwished.

The message typed for a BREAKIN break identifies the
location of the break as well as the function, e.g.,

((FOO (AFTER COND 2 1)) RROKENG.

BREAKIN is an FEXFR wuhich has a maxiwun of tour
arguments. The first argument is the function to he broken
in. The second argument is a list of editor commands,
preceded by BEFORE, AFTER, or AROUND, which specifies the
location ineide the function at uhich to break. [f there
is no second argument, a value of (BEFORE TTY:) is assumed.
(See earlier discussion.) The third and fourth arguments
are the break condition and the 1list of commands to be

performed before the interactive break occurs, (BRKWHEN and

BRKCOMS for BREAKL) respectivelu. 1f there is no third
argument, a value of T is assumed for BRKWHEN which causes
a break each time the BREAKIN break is executed, If the
fourth argument is missing, a value of NIL is assumed. For
example,

(BREAKIN FOO (AROUND CONDI))
inserts a hreak around the first call to COND in FOO.

It is possible to insert multiple break points, with a
single call to BREAKIN by using a list of the form ((BEFORE
svs) vv. (ARQUND ...)) as the second argument. It is also
possible to BREAK or TRACE a function wuhich has been
modified by BREAKIN, and conversely to BREAKIN a function
uhich is broken or traced. UNBREAK restores functions
which have been broken in. GRINDEF makes no attempt to
correct the modification of BREAKIN so functions should be
unbroken before they are stored on disk.

\

Examples: , o
(BREAKIN FOO (AROUND TTY:) T (?= MN) ((xPLUS X Y)))
(BREAKIN FO02 (BEFORE SETQ) (EQ X Y))

UNBREAK

UNBREAK is an FEXPR. It takes a list of functions
modified by BREAK or BREAKIN and restores them to their
original state. It’s value is the list of functions that
were "unbroken",

{UNBREAK T} will wunbreak the function most recently
broken,)

(UNBREAK) will unbreak all of the functions currently

(~

broken (i.e. all those on BROKENFNS).

1f one of the functions is not broken, UNBREAK has a
value of (fn NOT BROKEN) for that function and no changes
are made to fn.

Note: 1f a function is both traced and broken in,
either UNTRACE or UNBREAK will restore the original
function definition.

UNTRACE

UNTRACE is an FEXPR. It takes a list of functions
modified by TRACE and restores them to their original

state. It’s value is the |list of functions that uere
"untraced".

(UNTRACE T) wiil unbreak the function most recently
traced.

(UNTRACE) will untrace all of the functions currently

traced (i.e. ;ll those on TRACEDFNS).

If one of the functions is not traced, UNTRACE has a
value of (fn NOT BROKEN) for that function and no changes
are made to fn.

BREAK@ (FN WHEN COMS]

BREAKB is an EXPR, 1t sets up a break on the function
FN by redefining FN as a call to BREAK1 with BRKEXP a form
equivalent to the definition of FN, and WHEN, FN and CONMS
as BRKWHEN, BRKFN, and BRKCOMS, respectively (see BREAKLI).
BREAKB also adds FN to the front of the |ist BROKENFNS.
It’s value is FN.

1f FN is non-atomic and of the form (fni IN fn2),
BREAK® first calls a function uhich changes,the name of fnl
wherever it appears inside of fnZ to that of a neu
function, fnl-IN-fn2, which is initially defined as fnl.
Then BREAKS proceeds to break on fnl-IN-fnZ exactly as
descr ibed above, This procedure is useful for breaking on
a function that is called from many places, but where one
is only interested in the call from a specific function, ‘
e.g. (RPLACA IN FOO), (PRINT IN FIE), etc. This only works |
in interpreted functions. If fnl is not found in fnZ, |
BREAK® returns the value (fnl NOT FOUND IN fn2).

1f FN is non-atomic and not of the above form, BREAKG !
is called for each member of FN using the same values for |
WHEN and COMS specified in this call to BREAKB. This
distributivity permits the user to specify complicated ! o~
break conditions without excessive retyping, e.g., ; “

(BREAK8 (QUOTE (FOO1 ((PRINT PRINL)IN (FOO2 FOO03)) 1))
(QUOTE (EQ X T))
(QUOTE ((EVAL) (?= Y Z) OK}))

will break on FOOl, PRINT-IN-FODZ, PRINT-IN-FOO3, | -
PRIN1-IN-F002, and PRIN1-IN-FOG3. |
1f FN is non-atomic, the value of BREAK® is a list of
the individual values,
.For example, BREAK® can be used to trace the changing
of particular values by SETQ in the following manner:
% (SETQ VARLIST (QUOTE (X Y F00)))
% (BREAK® (QUOTE SETQ) (QUOTE (MEMQ (CAR XXXX) VARLIST))
X {QUOTE ({TRACE) (?=) (UNTRACE}}))
{SETQ ARGMENTS?) x {(XXXX) -

SETQ will be traced whenever CAR of its argument (SETQ is
an FSUBR) is a member of VARLIST.

ERROR PACKAGE

Introduction

When an error occurs during the evaluation of a LISP
expression, control is turned over to the Error Package.
The 1/0 is forced to the TTY (channel NIL) but uill be
restored to its previous channels if the user continues the
evaluation. The idea behind the error package is that it
may be possible to 'patch up’ the form in which the error
occurred and continue. Or, at least, that you can find the
cause of the error more easily if you can examine the state
of the world at the time of the error. Basically, what the
Error Package does is call BREAK1 with BRKEXP set to the
form in which the error occurred. This puts the user 'in a
break' around the form in which the error occurred. BREAK1
acts just like the top level of the interpreter with some
added commands (see section on BREAK1). The main
difference when you are in the Error Package is that the
variable bindings that were in effect uhen the error
occurred are still in effect. Furthermore, the expressions
that were in the process of evaluation are still pending.
While in the Error Package, variables may be examined or
changed, and functions may be defined or edited just as if
you were at the top level. In addition, there are several
ways in which you can abort or continue from the point of
error. In particular, if you can patch up the error, you
can continue by typing OK. [f you can’t patch the error, *
will get you out of the break. When you are in the error
package, the prompt character is ':' and is preceded by a
level number. Note: if wyou don't uant the error package
invoked for some reason, it can be turned off by evaluating
(XxRSET NIL). Similarly, (xRSET T) will turn the error

package back on.

Commancis

There are several atoms wuhich will cause special
actions when typed into BREAKl (the error package). These
actions are useful for examining the push doun stack {(e.g.
backtraces), changing forms and exiting from the break in
various ways. Table I (on the next page) gives a summary
of the actions. For a complete description, see the
section on ’'What You Can Do In A Break’.

Table |
Break Fuackage Command Summary

(for complete description see pp. 1.8-1.16)

Command

GO

oK
EVAL

RETURN xx
T
"

> [->] expr

Action

Evaluates BRKEXP, prints its value,
and continues with this value

Same as GO but no print”of value

Reevaluate BRKEXP and print its value.
Its value is bound to !VALUE

Evaluate xx and continue With its value
Escape one level of BREAK]
Escape to the top level

After an error, use expr for the erring atom

FROM?= form Continues by reFevaluating form at LASTPOS
. -
EX Same as FROM?= NIL _
USE x FOR y Substitutes x for y in form at LASTPOS
{destructively)
F (&) al..aN Resets LASTPOS (stack contgxt) »
EDIT Al..An Resets LASTPOS and gives the form at LASTPOS
to the LISP Editor
?= fl ... N Evaluates forms fl as of LASTPOS
ARGS Prints arguments of the broken function
BKF Backtrace Function Names
BKE Backtrace Function Calls
- BK Backtrace Expressions
Note: All of the backtrace commands can be combined with a
'V’ or followed by an infeger. The 'V' will cause the
values of variables to be printed. The integer will limit
//\‘

the trace to that number of blocks. For exanple,
BKEV, BKFY G and BKEV are all legitimate commands.

BK 3,

The LISP Editor
Contents

2 CURRENT EXPRESSION, P, &, PP, EDIT CHAIN, 8, *,
5 (), (nel, ..., em), (-nel, ..., em), N, F, R, NX, RI,
18 UNDO, BK, BF, <, <P, &, --, @ (AT- SIGN)
13 UP, B, A, :, DELETE, MBD XTR, UP, ..., n, -n,
18 8, '@, 1, NX, BK, (NK n), (BK n), INX, (NTH n),
22 PATTERN MATCH, &, %ANYx, --, ==,
24 SEARCH ALGORITHM, MAXLEVEL, UNFIND F (F pat n),
27 (F pat T), (F pat N}, (F pat), FS, F=, ORF, BF, (BF pat T),
38 LOCATION SPECIF!CATION. IF, #4, 8, LC. LCL, SECOND, THIRD,
32 (« pat), BELOW, NEX, (NTH 8), .., MARK, «, e«, <, UNFIND,
37 <P, S, (n}, (nel, ..., em), (-nel, ..., em), N,
41 B, A, :, DELETE, INSERT, REPLACE, DELETE, ##, UPFINDFLG,
46 XTR, EXTRACT, MBD, EMBED, MOVE, BI, BO, LI, LO, RI, RO,
57 THRU, 710, R, SW, P, ?, E, 1, H##, COMS, COMSQ,
B6 IF, LP, LPQ, ORR, MACROS, M, BIND, USERMACROS,
71 NIL, TTY:, OK, STOP, SAVE, REPACK, MAKEFN,
76 UNDO, TEST, ??, !'UNDO, UNBLOCK, EDITDEFAULT, EDITL,
81 EDITF, EDITE, EDITY, EDITP, EDITFNS, EDIT4E,
84 EDITFPAT, EDITFINDP

The LISP editor allous rapid, convenient modification
of list structures. Most often it is used to edit function
definitions, ({often while the function itsetf is running)
via the function EDITF, e.g., (EDITF FOO). However, the
editor can also be used to edit the value of a variable, via
EDITV, to edit special properties of an atom, via EBITP, or
to edit an arbitrary expression, via EDITE. [t is an
important feature which allous good on-line interaction in
the UCI LISP systenm.

This chapter begins with a lengthy introduction
intended for the new wuser. The reference portion begins on
page 15.

Introduction

Let us introduce some of the basic editor commands, and
give a flavor for the editor’'s language structure by guiding
the reader through a hypothetical editing session. Suppose
uwe are editing the following incorrect definition of APPEND

(LAMBDA (X)
Y
(COND ((NUL X) Z) :
(T (CONS (CAR) (APPEND COR X Y1)

We call the editor via the function EDITF:

#(EDITF APPEND)

EDIT

#
The editor responds by typing EDIT followed by #, which is
the editor’s ready character, i.e., it signifies that the
editor is ready to accept commands. (In other words, all

lines beginning with # were typed by the user, the rest by
the editor.)

At any given moment, the editor’'s attention is centered
on some substructure of the expression being edited. This
substructure is called the current expression, and it is
what .the user sees Wwhen he gives the editor the command P,
for print. Initially, the current expression is the top
level one, i.e., the entire expression being edited. Thus:- "

#pP
-~ (LAMBDA (X) Y (COND & 8))
H

Note that the editor prints the current expression,
using PRINTLEY, to a depth of 2, i.e., sublists of sublists
are printed as &. The command ? Will print the current
expression as though PRINTLEY was given a depth of 108.

#?
(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR

X Y))))))
H

and the command PP (for PrettyPrint}) will GRINDEF the
current expression.

~

—

A -positive integer is interpreted by the editor as a
command to descend into the correspondingly numhered element
of the current expression. Thus:

H2
HP
(X)
H

A negative integer has a similar effect, but counting
begins from the end of the current expression and proceeds
backward, i.e., -1 refers to the last element in the
expression, -2 the next to the last, etc. For either

positive integer or negative integer, if there is no such

element, an error occurs. ’‘Editor errors’ are not the same
as 'LISP errors’ , i.e., they never cause breaks or even go
through the error machinery but are direct calls to ERR
indicating that a command is in some way. faulty. What
happens next depends on the context in which the command was
being executed. For example, there are conditional commands
which branch on errors. In most situations, though, an
error Will cause the editor to type the faulty command
followed by a ? And wait for more input. In this case, the
editor types the faulty command followed by a ?, and then
another #. The current expression is never changed when a

command causes an error. thus:

P
(%)

A phrase of the form ’'the current expression is
changed’ or ’'the current expression becomes’ refers to a
shift in the editor’'s ATTENTION, not to a modification of
the structure being edited. :

When the user changes the current expression by
descending into it, the old current expression-is not lost.
Instead, the editor actually operates by maintaining a chain
of expressions leading to the current one. The current
expression is simply the last link in the chain. Descending
adds the indicated subexpression onto the gnd of the chain,
thereby making it be the current expression. The command 8

2.3

is used to ascend the chain; it removes the last link of the
chain, thereby making the previous link be the current
expression. Thus:

HP

X

He P

(X)

#e-1 P

(COND (& Z) (T 8))
#

Note the use of several commands on a single 1line in the
previous output. The editor operates in a |line buffered
mode. Thus no command is actually seen by the editor, or
executed until the line is terminated, either by a carriage
return, or an escape (alt-mode).

In our editing session, wWe wWill make the following
corrections to APPEND: delete Y from where it appears, add Y
to the end of the argument list, (These two operations could
be thought of as one operation, i.e., move Y from its
current position to a neuw position, and in fact there is a
MOVE command in the editor. However, for the purposes of
this introduction, we will confine ourselves to the simpler
edit commands.) change NUL to NULL, change Z to Y, add X
after CAR, and insert a right parenthesis following COR X.

First we will delete Y. By now we have forgotten where
we are in the function definition, but we want to be at the

"top," so we use the command *, which ascends through the:

entire chain of expressions to the top level expression,
uhich then becomes the current -expression, i.e., 1 removes

all links except the first one.
H P
. (LAMBDA (X) Y (COND & &))
#

Note that if we are already at the top, 1t has no
effect, i.e., it is a NOP., However, 8 would generate an
error, In other words, * means "go to the top," while @
means "ascend one link."

The basic structure modification commands in the editor
are

(n) .
n>l deletes the corresponding
element from the current expression.

(nel,...,em

' n.m>1 replaces the nth element in
the current expression Wwith
el,...,em. ‘

(-nel,...,em)
n,m>1 inserts el,...,em bafore the
nth element in the current
expression. '

Thus:

#P
{LAMBDA (X) Y (COND & &))
#{3)
#(2 (X Y))
HP
(LAMBDA (X Y) (COND & &))
#

All structure modification done by the editor is

destructive, i.e., the editor uses RPLACA and RPLACD to
physically change the structure it was given. Note that all
three of the above commands perform their operation with
respect to the nth element from the front of the current
expression; the sign of n is used to specify whether the
operation is replacement or insertion. Thus, there is no
way to specify deletion or replacement of the nth element
from the end of the current expression, or insertion before
the nth element ‘from the end without counting out that
element’s position from the front of the list., Similarly,
because uwe cannot specify insertion after a particular
element, we cannot attach something at the end of the
current expression using ' the above commands. Instead, we
use the command N (for NCONC). Thus we could have performed
the above changes instead by:

HP

(LAMBDA (X) Y (COND & &))
#(3)

H2 (NY)

HP

XYl

B P

#(LAMBDA (X Y) (COND & &))
#

Now we are ready to change NUL to NULL. Rather than
specify the sequence of descent commands necessary to reach
NULL, and then replace it with NULL, 1i.e., 32 1 (1 NULL),
we will use F, the find command, to find NULL:

HP

(LAMBDA (X Y) (COND & &})
#F NUL :

HP

(NUL X)

#(1 NULL)

#o P

((NULL X) 2}

#

Note that F is special in that it corresponds to TWO
inputs. In other words, F says to.the editor, "treat your
next command as an expression to be searched for." The
search is carried out in printout order in the current
expression, If the target expression is not found there, F

automatically ascends and searches those ~portions of the-

higher expressions that would appear aftfer’ (in a printout)
the current expression, I the search is successful, the
new current expression wWill be the structure uhere the
expression was found, (If the search is for an atom, e.g., F
NUL, the current expression will be the structure containing
the atom. [f the search is for a list, e.g., F (NUL X), the
current expression will be the list itself.) and the chain
will be the same as one- resulting from the appropriate
sequence of ascent and descent commands. 1f the search is
not successful, an error occurs, and neither the current
expression nor the chain is changed: (F is never a NOP,
i.e., if successful, the current expression after the search
Wwill never be the same as the current expression before the
search. Thus F EXPR repeated without intervening commands

that change the edit chain can be used to find successive

instancqs of EXPR.)

P

HP '
((NULL X) 2)
#F COND P

COND ?

HP

#ONULL X) 2)
4

Here the search failed to find a COND following the
current expression, although of course a COND does appear
earlier in the structure. This last example illustrates
another facet of the error recovery mechanism: to avoid
further confusion when an error occurs, all commands on the
line beyond the one which caused the error (and all commands
that may have been typed ahead while the editor was
computing) are forgotten,

We could also have used the R command (for Replace) to
change NUL to NULL. A command of the form (R el e2) will
replace all occurrances of el in the current expression by
e2. There must be at least one such occurrence or the R
command will generate an error. Let us use the R command to
change all Z's (even though there is only one) in APPEND to
Y: ~ :

B RZY
HFZ

Z ?
HPP
(LAMBDA (X Y)
(COND ((NULL X) Y)
(T (CONS (CAR) (APPEND (COR X Y))))})
#

The next task is to change (CAR) to (CAR X). MWe could
do this by (R (CAR} (CAR X)), or by:

HF CAR
(N X)
HP
(CAR X)
#

The expression we now uwant to change is the next
expression after the current expression, i.e., ue are

currently looking at (CAR X} in (CONS (CAR X) (APPEND (CDR X
Y))). MWe could get to the APPEND expression by typing 8 and
then 3 or -1, or uwe can use the command NX, which does both
operations: :

#P

(CAR X)

HNX P |
(APPEND (CDR X Y))
#

Finally, to change (APPEND (CDR X Y}) to (APPEND (CDR
X) Y), we could perform (2 (COR X} Y), or (2 (COR X)) and (N
Y), or 2 and (3}, deleting the Y, and then B8 (N Y).
However, if Y were a complex expression we Would not want to
have to retype it. Instead, we could use a command which
effectively inserts and/or removes left and right
parentheses. There are six of these BI, BO, LI, LO, RI, and
RO, for Both In, Both Out, Left In, Left Out, Right In, and
Right Out. Of course, we will aluays have the same number
of left parentheses as right parentheses, because the
parentheses are just a notational guide to structure that is
provided by our print program. (Herein lies one of the
principal advantages of a LISP oriented editor over a text
editor: wunbalanced parentheses errors. are not possible.)
Thus, left in, left out, right in, and right out actually do
not insert or remove just one parenthesis, but this is very
suggestive of what actually happens.

In this case, we wWould Ilike a right parenthesis to

appear following X in (COR X Y). Therefore, we use. the
command (Rl 2 2), wuhich means insert a right parentheses
after the second element in the second element (of the
current expression): ‘

HP -

(APPEND (COR X Y))
#(RI 2 2)

HP :
(APPEND (CDR X) Y)
#

. We have now finished our editing, and can exit from the
editor, to test APPEND, or we could test it while still
inside of the editor, by using the E command:

#E (APPEND- (QUOTE (A B)) (QUOTE (C D E)))
(ABCDE)

P

\
S——

—

NG

EVAL.

The E command causes the next input to be given to

We GRINDEF APPEND, and leave the editor.

HPP
(LAMBDA (X Y)
(COND ((NULL X) Y)
(T (CONS (CAR X) (APPEND (CDR X) ¥)))))
HOK
APPEND
%

Commands for the New User

This manual is intended primarily as a reference
‘manual, and the remainder of this chapter is organized and
presented accordingly. MWhile the commands introduced in the
previous scenario constitute a complete set, i.e., the user
could perform any and all editing operations using just
those commands, there are many situations in which knowing
the right command(s) can save the user considerable effort,
We include here as part of the introduction a list. of those
commands which are not only frequently applicable but also
easy to wuse. They are not presented in any particular
order, and are all discussed in detail in the reference.
- portion of the chapter.

UNDO

Undoes the last modification to the
structure being edited, e.g., if the
user deletes the wrong element, UNDO
will restore it. The availability
of UNDO should give the user
confidence to experiment wWith any
and all editing commands, no matter
how complex, because he can aluays
reverse the effect of the command.

BK :
Like NX, except makes the expression
immediately before the current
expression become current.

BF .

Backwards Find, Like F, except
searches backuards, i.e., in inverse
print order.

Restores the current expression to
the expression before the last "big
jump", e.g., a find command, an %,
or another <. For example, if the
user types F COND, and then F CAR, <
would take him back to the COND.
Another < would take him back to the
CAR.

<P

Like < except it restores the edit
chain to its state as of the last
print, either by P, ?, or PP. If
the edit chain has not been changed
since the last print, <P restores it

, to its state as of the printing
before that one, i.e., tuwo chains
are always saved.

Thus if the user types P followed by 3 2 1 P, <P will
take him back to the first P, i.e., would be equivalent to 8
B 8. Another <P would then take him back to the second P,
i.e., he can use <P to flip back and forth between tuo
current expressions.

&, -~
The search expression given to the F
or BF command need not be a literal
S-expression., Instead, it can be a
pattern. The symbol & can be used
anyuhere within this pattern to
match uwith any single element of a
list, and -- can be used to match
with any segment of a list. Thus,
in the incorrect definition of
APPEND used earlier, F (NUL &) could

have been used to find (NUL X), and -

F (COR --) or F (COR & &), but not F
(COR 8), to find {(COR X Y).

Note that & and -- can be nested arbitrarily deeply in
the pattern. For example, if there are many places where
the varaible X is set, F SETQ may not find the desired
expression, nor may F (SETQ X &). It may be necessary to use
F (SETQ X (LIST --)}). However, the usual technique in such a
case is to pick out a unique atom which occurs prior to the
desired expression and perform two F commands. This "homing
in" process seems to be more convenient than ultra-precise
specification of the pattern.

e (at-sign)
Any atom ending in e {at-sign) in a

pattern will match wjith the first
atom or string that contains the
same initial characters. For
example, F VERe Wwiltl find

VERYLONGATOM. @ can be nmested inside
of the pattern, e.g., F (SETQ VERe
{CONS --)).

I[f the search is successful, the
editor will print = followed by the
atom which matched with the e-atom,

€. gc',
#F (SETQ VERe &)
=VERYLONGATOM
p .
"Frequently the user will want to replace the entire

current expression or ipsert something before it. In order
to do this using a command of the form (n el,...,em} or (-n
el,...,em}), the user must be above the current expression.
In other words, he would have to perform a B followed by a
command with the appropriate number. Houwever, if he has
reached the current expression via an F command, he may not
know what that number is. In this case, the user would like
a command whose effect would be to modify the edit chain so
that the current expression became the first element in a
new, higher current expression. Then he could perform the

desired operation via (1 el,...,em} or (-1 el,...,en}. UP

is provided for this purpose.

2 .12

/_\\

upP

(B el,.-.,em)

(Ael,...,em

After UP operates, the old current
expression is the first element of
the new current expression. Note
that if the current expression
happens to be the first element in
the next higher expression, then UP
is exactly the same as 9.
Otheruise, UP modifies the edit
chain so that the new current
expression is a tail (Throughout
this chapter 'tail' means 'proper
tail’) of the next higher
expression:

HF APPEND
(APPEND (CDR X) Y)
HUP P
... (APPEND & Y))
Ko P
(CONS (CAR X) (APPEND & Y))
H#
The ... is wused by the editor to

indicate that the current expression
is a tail of the next higher
expression as opposed to being an
element (i.e., a member) of the next
higher expression. Note: if the
current expression is already a
tail, UP has no effect.

Inserts el,...,em before the current
expression, i.e., does an UP and
then a -1.

Inserts el,...,em after the current

expression, i.e., does an UP and
then either a (-2 el,...,em) or an
(N el,...,em), if the current

expression is the last one in the
next higher expression.

(: el,...,em) ,

: Replaces current expression by
el,...,em, i.e., does an UP and then
af(lel,...,em).

DELETE
Deletes current expression, i.e.,

equivalent to (:).

Earlier, we introduced the RI command in the APPEND
example. The rest of the commands in this family:, BI, RO,
LI, LO, and RO, perform similar functions and are useful in
certain situations, In addition, the commands MBD and XTR
can be used to combine the effects of several commands of
the BI-BO family. MBD is used to embed the current
expression in a larger expression. For example, if the
current expression is (PRINT bigexpression), and the user
wants to replace it by (COND (FLG (PRINT bigexpression))),
he can acomplish this by (L] 1), (-1 FLG), (LI 1), and (-1
. COND), or by a single MBD command. '

XTR is used to extract an expression frpm the current
expression. ~For example, extracting the PRINT expression
from the above COND could be accomplished by (1), (LO 1),
and (LO 1) or by a sipgle XTR command. The new wuser is
encouraged to include XTR and MBD in his repertoire as soon
~as he is familiar with the more basic commands.

2 . 14

Attention Changing Commands

Commands to the editor fall into three classes: "
commands that change the current expression [(i.e., change
the edit chain) thereby "shifting the editor's attention,"
commands that modify the structure being edited, and
miscel laneous commands, e.g., exiting from the editor,
printing, evaluating expressions.

within the context of commands that shift the editor’s
attention, we can distinguish among (1) those commands whose
operation depends only on the structure of the edit chain,
e.g., B, UP, NX: (2} those which depend on the contents of
the structure, i.e., commands that search: and (3) those
commands which simply restore the edit chain to some
previous state, e.g., <, <P. (1) and (2) can also be
thought of as local, small steps versus open ended, big
jumps. Commands of type (1) are discussed on pp.
2.15-2.21;. type (2} on pp. 2.22-2.35; and type (3) on pp.
2.36-2.37.

Local Attention-Changing Commands

uP

(1} 1f aP command would cause the
editor to type before typing
the current expression, i.e., the
current expression is g tail of the
next higher expression, UP has no
effect; otheruise

(2) UP modifies the edit chain so
that the old current expression
(i.e., the one at the time UP uas
called) is the first element in the
neuw current expression. (If the
current expression is the first
element in the next higher
expression UP simply does a 8.
Otherwise UP adds the corresponding
tail to the edit chain.

Examples: The current expression in each case is (COND
((NULL X) (RETURN Y))).

1. #1 P
COND
#UP P
(COND (& &))

2. #-1P |
((NULL X) (RETURN Y))
#P P
.v. (INULL X) (RETURN Y)))
HUP P
.o ((NULL X) (RETURN Y)))

3. HF NULL P
(NULL X)
HUP P
((NULL X) (RETURN Y})
HUP P :
«v. ((NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those
cases wWwhere the current expression appears more than once in
the next higher expression. For example, if the current

expression is (A NIL B NIL C NIL) and the user performs &

followed by UP, the current expression should then be ...
NIL C NIL.) UP can determine which tail is the correct one

because the commands that descend save the last tail on an
internal editor variable, LASTAIL. Thus after the 4 command
is executed, LASTAIL is (NIL C NIL). When UP is called, it
first determines if the current expression is a tail of the
next higher expression. If it is, UP is finished.
Otherwise, UP computes

(MEMB current-expression next-higher-expression) to obtain a
tail beginning with the current expression. (The current
expression should always be either a tail or an element of
the next higher expression. [f it is neither, for example
the user has directly (and incorrectly) manipulated the edit
chain, UP generates an error.) [f there are no other
instances of the current-expression in the next higher
expression, this tail is the correct one. Otherwise UP uses
LASTAIL to select the correct tail. (Occasionally the user
can get the edit chain into a state where LASTAIL cannot
resolve the ambiguity, for example if there uwere tuo
non-atomic structures in the same expression that were EQ,
and the user descended more than one level into one of them
and then tried to come back out using UP. In this case, UP
selects the first tail and prints LOCATION UNCERTAIN to warn
the user. Of course, we could have solved this problem
completely in our implementation by saving at each descent
both elements and tails. However, this would be a costly
solution to a situation that arises infrequently, and when
it does, has no detrimental effects. The LASTAIL solution
is cheap and resolves 33% of the ambiguities.

n (n>@)
Adds the nth element of the current
expression to the front of the edit
chain, thereby making it be the new
current expression. Sets LASTAIL
for use. by UP. Generates an error
if the current expression is not a
list that contains at least n
elements.

-n (n>8)

Adds the nth element from the end of
the current expression to the front
of the edit chain, thereby making it
be the new current expression. Sets
LASTAIL for use by UP. Generates an
error if the current expression is
not a list that contains at least n
elements. :

Sets edit chain to COR of edit
chain, thereby making the next
higher expression be the new correct:
expression. GCenerates an error if

there is no higher expression, i.e.,

COR of edit chain is NIL.

Note that B usually corresponds to going back to the next
higher left parenthesis, but not always. For example, if
the current expression is (AB CDEF G), and the user
performs

H UP P

... CODEFG
H3 UP P

... EFG)
K8 P

... CDEFOG)

If the intention is to go back to the next higher left
parenthesis, regardless of any intervening tails, the
command !8 can be used. (!8 s pronounced bang-zero.)

'8
Does repeated 8’s until it reaches a
point where the current expression
is not a tail of the next higher
expression, i.e., always goes back
to the next higher left parenthesis.

Sets . edit chain to LAST of edit
chain, thereby making the top level

expression be the current
expression. Never generates an
error.

NX
Effectively does an UP followed by a
2, (Both NX and BK operate by
performing a !8 followed by an
appropriate number, i.e. There
won't be an extra tail above the new
current expression, as there would
be if NX operated by performing an
UP followed by a 2.} thereby making
the current expression be the next
expression., Generates an error if
the current expression is the last
one in a list. (However, INX
described below will handle this
case.)

BK

Makes the current expression be the
previous expression in the next
higher expression. Generates an
error if the current expression is
the first expression in a list.

For example, if the current expression is (COND ((NULL X)
(RETURN Y)))

#F RETURN P

(RETURN Y).
#BK P
(NULL X)
(NX n) n>0
Equivalent to n. NX commands, except
if an error occurs, the edit chain
is nat changed.
(BK n) n>8

Equivalent to n BK commands, except
if an error occurs, the edit chain
is not changed.

Note: (NX -n) is equivalent to (BK n), and vice versa.

INX
Makes current expression be the next
expression at a higher level, i.e.,
goes through any number of right
parentheses to get to the next
expression,

For example:

- 4PP
(PROG (UF)
(SETQ UF L)
LP (COND ((NULL (SETQ L (COR L))) (ERR NIL))
((NULL (CDR (MEMQ# (CAR L) (CADR L))))
(GO LP)))
(EDITCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))
HF CDR P
(COR L)
HNX

NX 2
HINX P

(ERR NIL)

ANX P ,

((NULL &) (GO LP))
HINX P _
(EDITCOM (QUOTE NX)
H .

INX operates by doing B's until it reaches a stage
where the current expression is not the last expression in
the next higher expression, and then does a NX. Thus INX
always goes through at feast one unmatched right
parenthesis, and the new current expression is always on a
different level, i.e., INX and NX always produce different
results, For example using the previous current expression:

(NTH n) n>0

#F CAR P
(CAR L)
HINX P
(GO LP)
H<P P
(CAR L)
HNX P
{CADR L)
#

Equivalent to n followed by UP,
i.e., causes the list starting with
the nth element of the current
expression. ((NTH 1) is a NOP.)
Causes an error if current
expression does not have at least n
elements.

A generalized form of NTH using location specifications is

described on page 2.34.

Commands That Search

All of the editor commands that search use the same
pattern matching routine. (This routine is available to the
user directly, and is described later in this chapter in the
section on "Editor Functions.") We will therefore begin our
discussion of searching by describing the pattern match
mechanism. A pattern PAT matches with X if

PAT is EQ to X.
PAT is &.
PAT is a number and EQUAL to X.

If (CAR pat) is the atom x%ANYx, (CDR pat) is a
~list of patterns, and PAT matches X if and only
if one of the patterns on (COR pat) matches X.
5. If PAT is a literal atom or string, and {NTHCHAR

pat -1} is e, then PAT matches with any literal
atom or string which has the same initial
characters as PAT, e.g. VERe matches with
VERYLONGATOM, as well as "VERYLONGSTRING".
6. If (CAR pat) is the atom --, PAT matches X if
A. (COR pat)=NIL, i.e. PAT=(--),
e.d., (A --) matches (A) (A B C) and

S WN -

(A . B) ,
In other words, -- can match any tail of
a list.

B. (CDR pat) matches with some tail of X,
e.g. {A -- (&) will match with (A B
C D)), butnot (A BCD), or (ABC
(D) E). However, note that (A -- (&)
"--) will match iith (ABC (D) Eb. "~
In other words, -- wujll match any
: interior segment of a list.
7. If (CAR pat) is the atom ==, PAT matches X if
and oniy if (CODR pat) is EQ to X. (This pattern
is for use by programs that call the editor as a
subroutine, since any non-atomic expression in a
command type in by the user obviously cannot be
EQ to existing structure.)
8. Otherwise if X is a list, PAT matches X if (CAR
pat) matches (CAR x), and (CDR pat) matches (CDR
x) .

When searching, the pattern matching routine is called
only to match with elements in the structure, unless the
pattern begins with :::, in which case COR of the pattern is
matched against tails- in the structure. (In this case, the
tai! does not have to be a proper tail, e.g. {¢2: A --)

2. 22

Wwill match with the element (A B C) as well as with COR of
(X ABC), since (ABZC) is a tail of (ABZC).) Thus if the
current expressiion is (ABC (B C)),

HF (B --)

#P

(B C)

KO F (::: B --)
#P

...BC (BCH
#F (::: B --)

#HP

(B C)

"

Search Algorithm

Searching begins with the current expression and
proceeds in print order, Searching usually means find the
next instance of this pattern, and consequently a match is
not attempted that would Ileave the edit chain unchanged.
(However, there is a version of the find command which can
succeed and leave the current expression unchanged.) At each
step, the pattern is matched against the next element in the
expression currently being searched, unless the pattern
begins with ::: in uhich case it is matched against the
corresponding tail of the expression. (EQ pattern
tail-of-expression)=T also indicates a successful match, so
that a search for FOO will find the FOO in (FIE . FO0O).
The only exception to this occurs uhen PATTERN=NIL, e.g., F
NIL. In this case, the pattern will not match with a null
tail (since most lists end in NIL) but will match with a NIL
element.

[f the match is not successful, the search operation is.
recursive first in the CAR direction and then in the COR
direction, i.e., if the element under examination is a list,
the search descends into that. list before attempting to
match with other elements (or tails) at the same level.
(There is also a version of the find command which only
attempts matches at the top level of the current expression,
i.e., does not descend into elements, or ascend to higher
expressions.)

However, at no point is the total recursive depth of
the search {sum of number of.CARs and CORs descended into)"
al lowed to exceed the value of the variable MAXLEVEL. At
that point, the search of that element or tail is abandoned,
exactly as though the element or tail had been completely
searched without finding a match, and the search continues
with the next element or tail for which the recursive depth
is below MAXLEVEL. This feature is designed to enable the
user to search circular list structures (by setting MAXLEVEL
small), as uell as protecting him from accidentally
encountering a circular list structure in the course of
normal editing., MAXLEVEL is initially set to 3008. |If a
successful match is not found in the current expression, the
search automatically ascends to the next higher expression,
and continues searching there on the next expression after
the expression it just finished searching, If there is
none, it ascends again, etc., This process continues until
the entire edit chain has been searched, at which point the
search fails, and an error is generated. If the search

“.

fails the edit chain is not changed (nor are any CONSes
per formed.)

If the search is successful, i.e., an expression is
found that the pattern matches, the edit chain is set to the
value it would have had had the user reached that expression
via a sequence of integer commands.

If the expression that matched was a list, it will be
the final link in the edit chain, i.e., the neu current
expression. [f the expression that matched is not a list,
e.g., 1is an atom, the current expression wuill be the tail
beginning with that atom, (Except for situations where match
is with Y in (X . Y}, Y atomic and not NIL. In this case,
the current expression will be (X . Y).) i.e., that atom
will be the first element in the new current expression. In
other words, the search effectively does an UP. (Unless
UPFINDFLG=NIL (initially set to T). For discussion, see

page 2.45).

Search Commands

All of the commands below set LASTAIL for wuse by UP,
set UNFIND for use by < (p. 2.36), And do not change the
edit chain or perform any CONSes if they are unsuccessful or

aborted.

F pattern :
i.e., tuwo commands: the F informs
the editor that the next command is
to be interpreted as a pattern.
This is the most common and useful
form of the find command. If
successful, the edit chain aluays
changes, i.e., F pattern means find
the next instance of PATTERN.

[f (MEMB pattern current-expression)
is true, F does not proceed wuwith a
full recursive search.

If the value of the MEMB is NIL, F
invokes the search algorithm
described earlier., :

Thus if the current expression were (PROG NIL LP (COND
(--(GO LP1))) ... LP1 ...), FLPl would find the prog

" label, not the LP1 inside of the GO expression, even though

the latter appears first (in print order) in the current
expression. Note that 1 (making the atom PROG be the-
current expression), followed by F-LP1 would find ‘the first

LP1.

(F pattern N)
- Same as F pattern, i.e., finds the

next instance of pattern, except the
MEMB check of F pattern is not
per formed.

(F pattern T)

: Similar to F pattern, except may
succeed without changing edit chain,
and does not perform the MEMB check.

Thus if the current expression is (COND ..), F COND
will look for the next COND, but (F COND T) will 'stay
here’.

(F pattern n) n>B

Finds the nth place that pattern
matches. Equivalent to (F pattern
T) followed by (F pattern N)
repeated n-1 times, Each time
PATTERN successfully matches, n is
decremented by 1, and the search
continues, until n reaches 6. Note
that the pattern does not have to
match With n identical expressians;
it just has to match N times. Thus
if the current expression is (FOO1
FOO2 FOO3), (F FBBe 3) will find
FO03.

N If the pattern does not match
~— successfully N times, an error is
generated and the edit chain is
unchanged (even if the PATTERN

matched n-1 times).

. (F pattern) or
(F pattern NIL)
Only matches with elements at the
top level of the current expression,

i.e., the search will not descend
into the current expression, nor
Wwill it go outside of the current
expression. May succeed without

changing edit chain.

For example, if the current expression is
(PROG NIL (SETQ X (COND & &)} (COND &) ...)
F (COND --) will find the COND inside the SETQ, whereas (F
(COND --)) will find the top level COND, i.e., the second

one.

(FS patternll] ...

(F=. expression x)

(ORF patternil} ...

BF pattern

patternin])

Equivalent to F patternll] followed
by F patternl2] ... followed by F
pattern n, so that if F pattern m
fails, edit chain is left at place
pattern m-1 matched.

Equivalent to (F (== . Expression)
x), i.e., searches for a structure
EQ to expression, see p. 2.22.

patterninl)

Equivalent to (F (xANYx pattern(l]
««s patternin]) N), i.e., searches
for an expression that is matched by
either patternl(l) or vee

- pattern[n]. See p. 2.22.

Backuards Find., Searches in reverse
print order, beginning Wwith
expression immediately before the
current expression {unless the
current expression is the top level
expression, .. in Which case BF
searches the entire expression, in
reverse order.)

BF uses the same pattern match
routine as F, - and MAXLEVEL and
UPFINDFLG have the same effect, but
the searching begins at the end of
each list, and descends into each
element before attempting to match
that element. I f unsuccessful, the
search continues wWith the next
previous element, etc., until the
front of the list is reached, at
which point BF ascends and backs up,
etc.

For example, if the current expression is
{PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W --) --))
F LIST followed by BF SETQ will leave the current
expression as (SETQ Y (LIST Z)), as will F COND followed by

BF SETQ

N

N

(BF pattern T)

Search always includes current:
expression, i.e.,, starts at end of
current expression and uWorks
backuward, then ascends and backs up,
etc.

Thus in the previous example, where F COND fol lowed by
BF SETQ found (SETQ Y (LIST Z)), F COND followed by (BF SETQ.
T) would find the (SETQ W --) expression.

(BF pattern) ~ Same as BF pattern.
(BF pattern NIL)

Locétion Specification

Many of the more sophisticated commands described later
in this chapter use a more general method of specifying
position called a LOCATION SPECIFICATION. A LOCATION
SPECIFICATION is a list of edit commands that are executed
in the normal fashion with tuwo exceptions. First, all
commands not recognized by the editor are interpreted as
though they had been preceded by F. - {Normally such commands
would cause errors.) For example, the location specification
(COND 2 3) specifies the 3rd element in the first clause of
the next COND. (Note that the wuser could alyays write (F
COND 2 3) for (COND 2 3) if he were not sure whether or not
- COND was the name of an atomic command.) ’

Secondly, if an error occurs uhile evalyating one of
the commands in the location specification, and the edit
chain had been changed, i.e., was not the same as it was at
the beginning of that execution of the location
specification, the location operation wWill gontinue. In
other words, the location operation keeps going unless it
reaches a state where it detects that it is 'looping’, at
which point it gives up. Thus, if (COND 2 3) is being
located, and the first clause of the next COND contained
only two elements, the execution of the command 3 would
.cause an error. The search would then continue by looking
for the next COND. However, if a point were reached where
there were no further CONDs, then the firgt command, COND,
would cause the error: the edit chain would not have been

changed, and so the entire location operation would fail,

and cause an error.

The IF command and the ## function provide a way of
using in location specifications arbitrary predicates
applied to elements in the current expression. IF and ##
Wwill be described in detail later in the chapter, along with
examples ilustrating their use in location specifications.

Throughout this chapter, the meta-symbol $ is used to
denote a location specification. Thus 8 is a |list of
commands interpreted as described above. 8 Can also be
atomic, in which case it is interpreted as (LIST 8).

TN

(Ltc . 9
Provides a way of explicitly
invoking the location operation,
e.g. (LC COND 2 3) will perform the
search descrihed above.

(LCL . 9

Same as LC except search is confined
to current expression, i.e., the
edit chain is rebound during the
search so it looks as if the editor
were called on just the current
expression. For example, to find a
COND containing a RETURN, one might
use the location specification (COND
{LCL RETURN) <) where the < would
reverse the effects of the LCL
command, and make the final current
expression be the COND.

(SECOND . 8) .
Game as (LC . 8) Followed by
another (LC . §) Except that if
the first succeeds and second fails,
no change is made to the edit chain.

(THIRD . $)
Similar to second.

(« pattern)

Ascends the edit chain looking for a
link which matches PATTERN. in other
words, it keeps doing 8's until it
gets to a specified point. [f
PATTERN is atomic, it is matched
with the first element of each |ink,
otheruise with the entire link, (If
pattern is of the form (IF
expression), EXPRESSION is evaluated
at each link, and if its value is

~ NIL, or the evaluation causes an

For example:

#PP
(PROG NIL
. (COND

HF CADR
#(« COND)
HP

(COND (& &)
H

error, the ascent continues.)

((NULL (SETQ L (COR L)))

(COND (FLG (RETURN L))))

((NULL (CDR (MEMB. (CAR L (CADR L}))))
(GO LP}}))

(& 8&)) .

Note that this command differs from BF in that it does
not search inside of each link, it simply ascends. Thus in

the above example, F

CADR followed by BF COND uould flnd

(COND (FLG (RETURN L))}, not the higher COND.

(BELOW com x)

[f no match is found. an error is
generated and the Bdlt chain is
unchanged.

Ascends the edit chain looking for a
link specified by COM, and stops x
links below that, i.e. BELOW keeps
doing B's until it gets to a
specified point, and then backs off
N 8’s. (X is evaluated, e.g.,
(BELOW com (xPLUS X Y))) ‘

N N

(BELOW com)
' Saue as (BELOW com 1)

For exanple, (BELOW CONDG will czuse the COND clause
containing the current expression to bescowe the new current
expression, Thus if the current expression is as shown
above, F CADR followed by (BELOM COND) will make the new
expression be (INULL (CDR (FHEMB. (CAR L) CADR L] (GO LP}),
and is therefore equivalent to 0 6 6 8.

BELCY operates by evaluating X and
then executing COH, or (« com) if
COM is not a recognized edit
command, and measuring the length of
the edit chain at that point, If
that length is 1 and the length of
the current edit chain is N, then
BELO! ascends n-m-y linlts where Y is
the value of X, Generates an error
if COM causes an error, i.e., it
can't find the higher link, or if
n-i-y is negative.

The BELOW command is useful for locating a substructure
by specifying something it contains. For example, suppose
the user is editing a list of lists, and uwants to find a
sublist that contains a FOO (at any depth). He simply
executes F FOO (BELOY <).

(NEX 3¢}
: Sate ‘as (BELOM) folloued by NX:

For example, if the user is deep inside of a SELECTQ clause,
he can advance to the next clause with (NEX SELECTQ).

NEX
Same as (NEX «).

The atomic form of MEX is useful if the user wWill be
performing repeated executions of (NEX). By simply
MARKing (see p. 2.36) The chain corresponding to X, he can
use NEX to step through the sublists.

(NTH 8)
Generalized NTH command.
Effectively performs (LCL . 8),
Followed by (BELOW <), followed by
uP.

In other words, NTH locates 8, using a search restricted to
the current expression, and then backs up to the current
level, wWhere the new current expression is the tail whose
first element contains, houever deeply, the expression that
uas the terminus of the location operation. For example:

#p :
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L))
#INTH UF) |

H -

L (SETQ UNFIND UF) (RETURN L))

If the search is unsuccessful, NTH
generates an error and the edit
chain is not changed.

Note that (NTH n) is just a special case of (NTH 8), and in
fact, no special check is made for $ a number; both commands
are executed identically.

(pattern :: . 8) T

’ E.g., (COND :: RETURN). Finds a
COND- that contains a RETURN, at any

- depth. -Equivalent to (F pattern N),
(LCL . 8) followed by {« pattern).

For example, i¥ the current expression is (PROG NIL
(COND ({(NULL L) (COND (FLG (RETURN L1)})}) --), then (COND ::
RETURN) will make (COND (FLG (RETURN L))) be the current
expression, Note that it is the innermost COND that is
found, because this is the first COND encountered when
ascending from the RETURN., In other uwords, (pattern :: §)
is not equivalent to (F pattern N}, followed by (LCL . 8)
fo!l lowed by <.

Note that $ is a location specification, not just a
pattern. Thus (RETURN :: COND 2 3) can be used to find the
RETURN which contains a COND whose first clause contains (at
least) three elements. Note also that since 8 permits any
edit command, the user can write commands of the form (COND
¢t (RETURN :: COND)), which will locate the first COND that

2. 34

(-

containg a RETURN that contains a CONO.

Commands That Save and Restore the Edit Chain

Three facilities are available for saving the current
edit chain and later retrisving it. The commands are MARK,
which marks the current chain for future reference, «, (An
atomic command; do not confuse uwith the list command («
pattern).) which returns to the last mark without destroying
it, and e~, uhich returns to the last mark and also erases
it e | S ‘

MARK ,
Adds the current edit chain to the
front of the list MARKLIST.

-
Makes the new edit chain be (CAR
MARKLIST). Generates an error if
MARKLIST is NIL, i.e., no MARKS have
been performed, or all have been
erased.

“e

Similar to « but also erases the
MARK, i.e., performs (SETQ MARKLST
(COR MARKLST)).

1f the user did not prepare in advance for returning to
a particular edit chain, he may still be able to return to
that chain with a single command by using < or <P,

< . L oo " :
Makes the edit chain be the value of
UNFIND. Generates an error if
UNF IND=NIL.

UNFIND is set to the current edit chain by each command
‘that makes a "big jump", i.e., a command that usually
performs more than a single ascent or descent, namely %, «,
««, INX, all commands that involve a search, e.g., F, LC,
11, BELOW, et al and < and <P themselves. (Except that
UNFIND is not reset uhen the current edit chain is the top
level expression, since this could always be returned to via
the 1 command.)

For example, if the user types F COND, and then F CAR,
< would take him back to the COND. Another < would take him
back to the CAR, etc.

—

<P
' Restores the edit chain to its state
as of the last print operation,
i.e., P, ?, or PP, 1f the edit
chain has not changed since the fast
printing, <P restores it to its
state as of the printing before that
one, i.e., two chains are always
saved.

For example, if the user types P followed by 3 2 1 P,
<P will return to the first P, i.e., would be equivalent to
g 0 0. (Note that if the user had typed P folloued by F

"COND, he could use either < or <P to return to the P, i.e.,

the action of < and <P are independent.) another <P would
then take him back to the second P, i.e., the user could use

<P to flip back and forth between the two edit chains.

(S var . 8)
Sets var (using SETQ) to the current
expression after performing (LC .
8)., Edit chain is not changed.

Thus (S FOO) will set FOO to the current expression, (S
FOO -11) wuwill set FGO to the first element in the last
element of the current expression.

Commands That Modify Structure

The basic structure modifications commands in the

edi tor are:

(n)
n>l deletes the corresponding
element from the current expression.

(nel ... em _

: n,m>1 replaces the nth element in
the: current expression uwith el ...
em,

(-nel ... em
n,m>1 inserts el ... em before the
n element in the current expression.

(Nel ... em)
m>l attaches el ... em at the end
of the current expression.

As mentioned earlier:

All structure modificaton done by the editor is destructive,
i.e., the editor uses RPLACA and RPLACD to physically
change the structure it wds given. ’

. "However, all structure modification iq undoable, see
UNDOD p. 2.76. . o . .

All of the ahove commands generate errors if the
current expression is not a list, or in the case of the
first three commands, if the list contains fewer than n
elements. In addition, the command (1), i.e., delete the
first element, will cause an error if there is only one
element, since deleting the first element must be done by
replacing it with the second element, and then deleting the
second element. Or, to look at it another way, deleting the
first element when there is only one element would require
changing a list to an atom (i.e. to NIL) which cannot be
done. (However, the command DELETE will work even 1f there
is only one element in the current expression, since it will
ascend to a point where it can do the deletion.)

Implementation of Structure Modification Commands

Note: Since all commands that insert, replace, delete or
attach structure use the same low level editor functions,
the remarks made here are valid for all structure changing
commands.

For all replacement, insertion, and attaching at the
end of a list, unless the command was typed in directly to
the editor, copies of the correspaonding structure are used,
because of the possibility that the exact same command,
(i.e. scame list structure)l might be wused again, (Some
editor commands take as arguments a list of edit commands,
e.g. (LP F FOO (1 (CAR FOO))). In this case, the command
(1 (CAR F0O)) is not considered to have been "typed in" even
though the LP command itself may have been typed in.
Similarly, commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITY, et al,
e.g. (EDITF FOO F COND (N --)} are not considered typed
in.) Thus if the program constructs the command (1 (A B C))
via (LIST 1 FOO), and gives this command to the editor, the
(A BC) used for the replacement will NOT be EQ to FOO.
(The user can circumvent this by using the I command, which
computes the structure to be used. In the above example,
the form of the command would be (I 1 FOO), which would
replace the first element uith the value of FOO itself. See
p. 2.83)

The rest of this section is included for applications
wherein the editor is used to modify a data structure, and

poiriters into that data structure are stored ,elsewhere.: In -

these cases, the actual mechanics of structure modification
must be knoun in order to predict the effect that various
commands may have on these outside pointers. For example,
if the value of FOO is COR of the current expression, uwhat
Wwill the commands (2), (3), (2XY 2Z), (-2XYZ), etc., do
to FOO?

Deletion of the first element in the current expression
is performed by replacing it with the second element and
deleting the second element by patching around it. Oeletion
of any other element is done by patching around it, i.e.,
the previous tail is altered. Thus if FOO is EQ to the
current expression which is (A BC D), and FIE is COR of
FOO, after executing the command (1), FOO will be (B C D)
(which is EQUAL but not EQ to FIE). However, under the same
initial conditions, after executing (2) FIE will be
unchanged, i.e., FIE will still be (B C D) even though the

2.39

current expression and FOO are now (A C D). (A general
solution of the problem just isn't possible, as it would
require being able to make tuo lists EQ to each other that
were originally different. Thus if FIE is CDR of the
current expression, and FUM is CODR of the current
expression, performing(2) would have to make FIE be EQ to
FUM if all subsequent operations were to update both FIE and
FUM correctly. Think about it.)

Both replacement and insertion ‘are accomplished by
smashing both CAR and COR of the corresponding tail. Thus,
if FOO were EQ to the current expression, (A B C D), after
(1 XY 2Z), FOO would be (XY ZBC D)., Similarly, if FOO
were EQ to the current expression, (A B C D), then after (-1
XY Z), FOO would be (XY Z ABC D). ’

The N command is accomplished by smashing the last CDR
of the current expression a la NCONC. Thus, if FOO were EQ
to any tail of the current expression, after executing an N
command, the corresponding expressions would also appear at
the end of FOO.

In summary, the only situation in which an edit
operation will not change an external pointer occurs when
the external pointer is to a proper tail of the data
structure, i.e., to COR of some node in the structure, and
the operation is deletion. If all external pointers are to
elements of the structure, i.e., to CAR of some node, or if

‘only insertions, replacements, or attachments are performed,

the edit operation will aluays have the same effect on an
external pointer as it does on-the current expression. °*

The A,B,: Commands

In the (n), (n el ... em, and (-n el ... enm)
commands, the sign of the integer is used to indicate the
operation. As a result, there is no direct Wway to express
insertion after a particular element, (hence the necessity

for a separate N command)., Similarly, the user cannot
specify deletion or replacement of the NTH element from the
end of a list without first converting n to the

corresponding positive integer. Accordingly, we have:

Bel ... em
Inserts el ... em before the
current expression. Equivalent to
UP followed by (-1 el ... em).

For example, to insert FOO before the last element in
the current expression, perform -1 and then (B FOO).

(Ael ... em
Inserts el ... em after the current
expression, Equivalent to UP
followed by (-2 el ... em) or (N el
... em) or (Nel ... am) whichever
is appropriate.

(: el ... em)
’ Replaces the current expression by
el ... em. Equivalent to UP
followed by (1 el ... enm).
DELETE or (:) o .) ‘
Deietes the current expression, or
if the current expression is a tail,
deletes its first element.

DELETE first tries to delete the current expression by

performing an UP and then a (1). This uorks in most cases.
However, if after performing UP, the neu current expression
contains only one element, the command (1) will not work,

Therefore DELETE starts over and performs a BK, followed by
UP, followed by (2). For example, if the current expression
is (COND ((MEMB X Y)) (T Y)), and the user performs -1, and
then DELETE, the BK-UP-{2) method 1is used, and the neu
current expression will be ... ((MEMB X Y)))

Houwever, if the next higher expression contains only
one element, BK will not work. So in this case, DELETE
performs UP, followed by {: NIL), i.e., it REPLACES the

higher expression by NIL. For example, if the current
expression is (COND ((MEMB X Y)) (T Y}) and the user
performs F MEMB and then DELETE, the new current expression
Will be +o. NIL (TY)) and the original 'expression would
now be (COND NIL (T Y}). The rationale behind this is that
deleting (MEMB X Y) from ((MEMB X Y)) changes a list of one
element to a list of no elements, i.e., () or NIL. Note

that 2 followed by DELETE would DELETE ({MEMB X VY)) NOT

replace it by NIL.

[f the current expression is a tail, then B, A, and :
Wwill work exactly the same as though the current expression
were the first element in that tail. Thus if the current

expression uere ... (PRINT Y) (PRINT Z)), (B (PRINT X))
would insert (PRINT X) before (PRINT Y), leaving the current
expression ... (PRINT X} (PRINT Y} (PRINT Z}).

2., 42

The following forms of the A, B, and : commands
incorporate a location specification:

(INSERT el ... em BEFORE . §)
Similar to (LC. $8) followed by (B
el ... em.

HP

(PROG (W Y X) (SELECTQ ATM & NIL) (OR.& &) (PRINL &))

(INSERT LABEL BEFORE PRINI1)

HP

(PROG (W Y X) (SELECTQ ATM & NIL) (OR & &) LABEL (PRIN1 &)}
#

Current edit chain is not changed,
put UNFIND is set to the edit chain
after the B was performed, i.e., <

Wwill make the edit chain be that
chain uhere the ingsertion was
per formed.

(INSERT el ... em AFTER . §)
Simiiar to INSERT BEFORE except uses
A instead of B. .

(INSERT el ... em FOR . 8)
Similar to INSERT BEFORE except uses
: for B.

(REPLACE 8 WITH el ... em)
Here § is the segment of the command
betueen REPLACE and WITH. Same as
(INSERT el ... em FOR . 8). (BY
can be used for WITH.)

Example: (REPLACE COND -1 WITH (T (RETURN L)))

{(CHANGE 8 TO el ... em)
Same as REPLACE WITH

(DELETE . 8)
Does a (LC . 8) followed by
DELETE. Current edit chain is not
changed {Unless the current
expression is no longer a part of
"~ the expression being edited, e.g.,
if the current expression is ... C)
and the wuser performs (DELETE 1),

the tail, (C), will have been cut
of f, Similarly, if the current -
expression is (COR Y) and the user
per forms {(REPLACE WITH ({CAR X)).),
but UNFIND is set to the edit chain
after the DELETE was performed.

Exaﬁpie: (DELETE -1), (DELETE COND 3)

Note that if 8 is NIL (empty), the corresponding
operation is performed here (on the current edit chain),
e.g., (REPLACE WITH (CAR X)) is equivalent to (: (CAR X)).
For added readability, HERE is also permitted, e.g., (INSERT
(PRINT X) BEFORE HERE) will insert (PRINT X} before the
current expression (but not change the edit chain).

Note also that 8§ does not have to specify a location
WITHIN the current expression, i.e., it is perfectly legal
to ascend to [INSERT, REPLACE, or DELETE. For example
(INSERT . (RETURN} AFTER ? PROG -1) wili go to the top, find
the first PROG, and insert a (RETURN) at its end, and not
change the current edit. chain.

Finally, the A, B, and : commands, (and consequent!y
INSERT, REPLACE, and CHANGE), all make special checks in El
thru Em for expressions of the form (## . coms). In this
case, the expression used for inserting or replacing is a
copy of the current expression after executing coms, a list
of edit commands. (The execution of coms does not change
the current edit chain.) For example, (INSERT (## F COND -1,
-1) AFTER3) [not (INSERT F COND -1 (## -1) AFTER 3}, which
inserts four elements after the third element, namgly F,
COND, -1, and a copy of the last element in the current
expression] will make a copy of the last form in the last
clause of the next COND, and insert it after the third
element of the current expression.

(1/\\

Form Oriented Editing and the Role of UP

The UP that is performed before A, B, ard : commands
(and therefore in INSERT, CHANGE, REPLACE, and DELETE
commands after the location portion of the c¢peration has
been performed.), makes these operations form-oriented. For
example, if the user types F SETQ, and then DELETE, or
simply (DELETE SETQ), he will delete the entire SETO
expression, wuhereas (DELETE X) if X is a varigble, deletes
just the variable X. In both cases, the aperation is
per formed on the corresponding FORM and in both cases is
probably what the user intended. Similarly, if the user
types (INSERT (RETURN Y) BEFORE SETQ), he means before the
SETQ expression, not before the atom SETQ. (%There is some
ambiguity in (INSERT expr AFTER functionname), as the user
might mean make expr be the function’s first argument.
Similarly, the user cannot write (REPLACE SETOQ WITH SETQ)
meaning change the name of the function. The user must in
these cases write (INSERT expr AFTER functionname 1), and
(REPLACE SETQQ 1 WITH SETQ).) A consequent of this
procedure is that a pattern of the form (SETQ Y --) can be
viewed as simply an elaboration and further refinement of
the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and
(INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the same
operation (Assuming the next SETQ is of the form (SETQ
Y-)}.) and, in fact, this is cne of the motivations behind
making the current expression after F SETQ, and F (SETQ Y
--} be the same.

~ Occasionally, however, a user may have a data structure
in which no ‘special significance or meaning is attached to
the position of an atom in a list, as LISP attaches to atoms
that appear as CAR of a list, versus those appearing
elsewhere in a list. In general, the user may not even knou
whether a particular atom is at the head of a list or not.
Thus, when he writes (INSERT expression AFTER FOO), he means
after the atom FOO, whether or not it is CAR of a list. By
setting the variable UPFINDFLG to NIL (Initially, and
usually, set to T.) the user can suppress the implicit UP
that follous searches for atoms, and thus achieve the
desired effect. With UPFINDFLG = NIL then following F FOO,

for example, .the current expression Wikl be the atom FOO.
In this case, the A, B, and : operations will operate with
respect to the atom FOO. [f the user intends the operation

to refer to the list which FOO heads, he simply uses instead
the pattern (FOO --).

Extract and Embed

Extraction involves replacing the current expression with
one of its subexpressions (from any depth).

(XTR . 8)
Replaces the original current
expression With the expression that
is current after performing (LCL .
8). B

For example, if the current expression is (COND ((NULL X)
(PRINT Y))), (XTR PRINT), or (XTR 2 2) will replace the COND
by the PRINT.

[f the current expression after (LCL
.8 is a tail of a higher

_expression, its first element is
used.

For example, if the current expression is
(COND ((NULL X) Y) (T Z)), then (XTR Y) uill replace the
COND with Y.

If the extracted expression is a
list, then after XTR has finished,
the current expression will be that
list.

Thus, in the first example, the current expression after the
- XTR would be (PRINT Y).

[f the extracted expression is not a
list, the ned current expression
will be a tail whose first element
is that non-list.

Thus, in the second example, the current expraession after
the XTR would be ... Y followed by whatever folloued by

COND.

I[f the current expression initially is a tail,
extraction works exactly the same as though the current
expression were the first element in that tail., Thus is the

current expression is . (XTR PRINT) will replace the COND by
" the PRINT, leaving (PRINT Y) as the current expression.

2 . 46

The extract command can also incorporate a location

specification.

(EXTRACT 81 FROM 82)

(81 is the segment betueen EXTRACT
and FROM.) ‘
Performs (LC . 82) And then (XTR .
$1). Current edit chain 1is not
changed, but UNFIND is set to the
edit chain after the XTR was
performed.

Example: If the current expression is
(PRINT (COND ({(NULL X) Y) (T Z))) then following
{EXTRACT Y FROM COND), the current expression will be

(PRINT Y).

(EXTRACT 2 -1 FROM COND), (EXTRACT Y FROM 2),
(EXTRACT 2 -1 FROM 2) will all produce the same result.

While extracting replaces the current expression by a
subexpression, embedding replaces the current expression
with one containing it as a subexpression.

. (MBD x)

X is a |list, substitutes (a la
SuBStT, i.e., a fresh copy is used
for each substitution) the current
expression for all instances of the
atom % in x, and replaces the
current expression with the result
of that substitution.

Example: If the current expression is (PRINT Y}, (MBD (COND
((NULL X) %) ((NULL (CAR YY)} x (GO LP))) would replace
(PRINT Y) with (COND((NULL X) (PRINT Y)) ((NULL (CAR Y))
(PRINT Y) (GO LP)}).

(MBD el ... em)
Equivalent to (MBD (el ... em %x)).

Example: [If the current expression is (PRINT Y), then (HBD‘
SETQ X) will replace it with (SETQ X (PRINT Y)).

(MBD x)
X atomic, same as (MBD (x %)),

Example: 1f. the current expression is (PRINT Y}, (MBD
RETURN) will replace it with (RETURN (PRINT Y)).

All three forms of MBD ‘leave the edit chain so that the
larger expression is the new current expression.

If the current expression initially is a tail,
embedding works exactly the same as though the current
expression were the first element in that tail. Thus if the
current expression were. (PRINT Y) with (SETQ X (PRINT Y)).

The embed command can also incorporate a location
specification.

2., 48

(EMBED ¢ IN . x)

Example: (EMBED PRINT

(8 is the segment between EMBED and
IN.) Does (LC . $) and then (MBD .
x). Edit chain is not changed, but
UNFIND is set to the edit chain
after the. MBD was performed.

IN SETQ X), (EMBED 3 2 IN RETURN),

(EMBED COND 3 1 IN (OR = (NULL X))).

WITH can be used for IN, and SURROUND can be used for EMBED,
e.g., (SURROUND NUMBERP WITH (AND x (MINUSP X 1)).

2 .43

The MOVE Command

The MOVE command allouws the user to specify (1) the

expression to be moved,

(2) the place it is to be moved to,

and (3) the operation to be performed there, e.g., insert it
before, insert it after, replace, etc.

(MOVE $1 TO com . 82)

(81 is the segment between MOVE and
70.) UWhere COM is BEFORE, AFTER, or
the name of a list command, e.g., 3,
N, etc. Performs (LC . 81),
Obtains the current expression there
{or its first element, if it is a
tail), let wus call this expr; MOVE
then goes back to original edit
chain, performs (LC . $2), Peforms
(com expr), then goes back to $1 and
deletes expr, Edit chain is not
changed. UNFIND is set to edit
chain after -(com expr) uas
per formed.

For example, if the current expression is (ABDC), (

MOVE 2 TO AFTER 4)

Wwill make the new current expression be

(A CDB). Note that 4 was executed as of the original edit
chain, 'and that the second element had not yet been removed.

2 .50

As the following examples taken from actual editing
Wwill show, the MOVE command is an extremely versatile and
pouer ful feature of the editor.

#?

(PROG (L) (EDLOC (CDOR C)) (RETURN (CAR L)))
#(MOVE 3 TO : CAR)

#? '

{PROG (L) (RETURN (EDLOC (CODR C))))

H

HpP ’
... (SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))
#(MOVE 2 TON 1)

HP

«.. (SELECTQ OBJPR & & &) LP2 (COND & &))

#

#P

{OR (EQ X LASTAIL) (NOT &) (AND & & 8))
#(MOVE 4 TO AFTER (BELOW COND))

#P

(OR (EQ X LASTAIL) (NOT &))

#< P

... (& &) (AND & & &) (T & &))

4 .

#P

{ (NULL X) (COND & &))

#(-3 (GO DELETE))

#(MOVE 4 TO N (« PROG))

#P

((NULL X) (GO DELETE))

H< P

(PROG (&) {COND & & &) {(COND & & &) (COND & 8&))
(INSERT DELETE BEFORE -1)

#P

(PROG (&) (COND & & &) {(COND & & &) DELETE (COND & &))
#

Note that in the last example, the user could have
added the prog label DELETE and moved the COND in one
operation by performing (MOVE 4 TO N (« PROG) (N DELETE)).

Similarly, in the next example, in the course of specifying
82, the location where the expression was to be moved to,
the user also performs a structure modification, via (N
(T)), thus creating the structure that will receive the
expression being moved,

HP
((COR &) (SETQ CL &) (EDITSMASH CL & 8)) .
#MOVE 4 TON B (N (T)) - 1]

#HpP

((COR &) (SETQ CL &))
#< P

;T (EDI TSMASH CL & &))

If 82 is NIL, or (HERE}, the current position specifies
where the operation is to take place. In this case, UNFIND
is set to where the expression that was moved was originally
located, i.e., 81. For example:

#p
(TENEX)

#(MOVE * F APPLY TO N HERE)
#p

(TENEX (APPLY & &))

#

HP

(T (PRIN1 C-EXP))

(MOVE BF PRIN1 TO N HERE)
HpP

(T (PRIN1 C-EXP) (PRIN1 &)}
#

Finally, if 81 is NIL, the MOVE command allous the user
to specify some place the current expression is to be moved
to. In this case, the edit chain is changed, and is the
chain where the current expressnon was moved to; UNFIND is
set to where it was.

HP
(SELECTQ OBJPR (8) (PROGN & 8))

#(MOVE TO BEFORE LOGP)

HP

.+ (SELECTQ OBJPR & &) LOOP (RPLACA DFPRP &) (RPLACD DFPRP &))

#

Commands That "Move Parentheses"

The commands presented in this section permit
modification of the list structure itself, as opposed to
modi fying components thereof., Their effect can be described
as inserting or removing a single left or right parenthesis,
or pair of left and right parentheses. 0f course, there
will always be the same number of left parentheses as right
parentheses in any list structure, since the parentheses are
just a notational guide to the structure provided by PRINT,
Thus, no command can insert or remove just one parenthesis,
but this is suggestive of what actually happens. ‘

In all six commands, n and m are used to specify an
element of a list, wusually of the current expression. In
practice, n and m are usually positive or negative integers
uith the obvious interpretation. However, all six commands
use the generalized NTH command, p. 2.34, To find their
element(s), so that nth element means the first element of
the tail found by performing (NTH n). In other words, if
the current expression is (LIST (CAR X) (SETQ Y (CONS W
Z))), then (BI 2 CONS), (Bl X -1), and (BI X Z) all specify
the exact same operation.

All six commands generate an error if the element is
not found, i.e., the NTH fails, All are undoable,

(Bl n m) B
Both in, inserts a left parentheses
bgforg the nth element and after the

‘mth - element in the current
expression. Generates an error if
the mth element is not contained in
the nth tail, i.e,, the mth element
must be "to the right" of the nth
element.

Example:s [f the current expression is (AB (CDE)FG),
then (Bl 2 4) will modify it to be (A (B (CD E) F) G).

Bl n)
Same as (Bl n n).

Example: 1f the current expression is (AB (CDE) FG),
then (Bl -2) will modify it to be (AB (C D E) (F) G).

._‘/_A

(BO n)
Both out. Removes both parentheses
from the nth element. Generates an
error if nth element is not a list.

Example: 1f the current expression is (A B (CDE)F G),
then (BO D) will modify it to be (ABCDEF G).

(LI n)
Left in, inserts a left parenthesis
before the nth element {and a
matching right parenthesis at the
end of the current expression),
i.e., equivalent to (Bl n -1).

Example: If the current expression is (AB (CDE) F G),
then (LI 2) will modify it to be (A (B (CDE) F G)).

{LO n)
Left out, removes a left parenthesis
from the nth element. All elements
foltowing the nth element are
deleted. Generates an error if nth
element is not a list.

Example: 1f the current expression is (AB (CD E) F G),
then (LO 3) will modify it tobe (ABCDE).

(RI n m)
~ Right in, inserts a right
parenthesis after the mth element of
the nth element, The rest of the
nth element is brought up to the
level of the current expression.

Example: If the current expression is (A (BCDE) F G), (RI
2 2) will modify it to be (A (BC) DEF G). Another way of
thinking about RI is to read it as "move the right
parenthesis at the end of the nth element IN to after the
mth element."

2 .55

(RO n)

Right out, removes the right
parenthesis from the nth element,
moving it to the end of the current
expression. All elements following
the nth element are moved inside of

- the nth element. Generates an error
if nth element is not a list.

Example: 1f the current expression is (AB (CDE) FG), (RO
3) will modify it tobe (AB (CDEF G)). Another way of
thinking about RO is to read it as "move the right
parenthesis at the end of the nth element OUT to the end of
the current expression."”

TO and THRU

EXTRACT, EMBED, OELETE, REPLACE, and MOVE can be made
to operate on several contiguous elements, i.e., a segment
of a list, by using the TO or THRU command in their
respective location specifications.

(81 THRU $2)
Does a (LC . 81), Followed by an
“UP, and then a (BI 1 82), thereby
grouping the segment into. a single
element, and finally does a 1,
making the final current expression
be that element. '

For example, if the current expression is (A (B (C D) (E) (F
G H) 1) JK), following (C THRU G), the current expression
will be ((C D) (B} (FGH).

(81 TO 82)
Same as THRU except last element not
included, i.e., after the BI, an (RI
1 -2) is performed.

If both 81 and 82 are numbers, and $2 is greater than
$1, then $2 counts from the beginning of the current
expression, the same as 81. In other uwords, if the current
expression is (ABCDEFG), (3 THRU 4) means (C THRU D),
not (C THRU F). In this case, the corresponding Bl command
is (BI 1 82-81+1). ,

THRU and TO are not very useful commands by themselveg,
and are not intended to be used "solo", but in conjunction
with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU
and T0 have operated, they set an internal editor flag
informing the above commands that the element they are
operating on is actually a segment, and that the extra pair
of parentheses should be removed uhen the operation is
complete. Thus:

HP . ‘

(PROG NIL (SETQ A &) (RPLACA & &) (PRINT &) (RPLACD & &))
#(MOVE (3 THRU 4) TO BEFORE &) P~

(PROG NIL (PRINT &) (SETQ A &) (RPLACA & &) (RPLACD & 8))

#

Note that when specifing 82 in the MOVE, 5 was used instead

of 6. This is because the $2 is located after 81 is. The
THRU location groups items together and thus changes the
numeric location of the following items. :

HpP

(PROG NIL (PRIN1 &) (PRIN1 &) (SETQ IND &) (SETQ VAL &) (PRINT &))
#(MOVE (5 THRU 7) TO BEFORE 3)

HP

(PROG NIL (SETQ IND &) (SETQ VAL &) (PRINT &) (PRIN1 &) (PRIN1 &))
#(DELETE (SETQ THRU PRIe))

= PRINT

#P

(PROG NIL (PRIN1 &) (PRIN1 &))

#

HP
... LP (SELECTQ & & &) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y))
#(MOVE (1 TO OUT) TO N HERE)
HP
. OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & &) (SETQ Y &))
#
HPP o
(PROG (TEMP1 TEMP2) o
(COND ((NOT (MEMQ REMARG LISTING))
(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS))
(SETQ TEMPZ (CADR TEMP1)))
, (T (SETQ TEMP1 REMARG)))
(NCONC LISTING REMARG)
(RETURN -(CONS TEMP1 TEMPZ2)))
(EXTRACT (SETQ THRU CADR) FROM COND) PP
(PROG (TEMP1 TEMP2)
(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS))
(SETQ TEMP2 (CADR TEMP1))
(NCONS LISTING REMARG)
(RETURN (CONS TEMP1 TEMP2)))

TO and THRU can also be wused directly with XTR.
(Because XTR involves a location specification wuhile A,B,:,
and MBD do not.) Thus in the previous example, if the
current expression had been the COND, e.g., the user had
first performed F COND , he could have used (XTR (SETQ THRU
CADR)) to perform the extraction.

O

(81 TO), (81 THRU)
Both same as (81 THRU -1), i.e.,
from 31 thru the end of the list.

HP

(VAL (RPLACA DFPRP &) (RPLACD & &) (RPLACA VARS &) (RETURN &))
#(MOVE (2 TO) TO N (« PROG))

#(N (GO VAR))

HP

(VAL (GO VAR))

H

HP

(T (COND &) (EDITSMASH CL & &) (COND &))

#(-2 (GO REPLACE))

#(MOVE (COND TO) TO N PROG (N REPLACE))

#HP :

(T (GO REPLACE))

< P

(PROG (&) (COND & & &) (COND & & &) DELETE (COND & &) REPLACE
(COND &) (EDITSMASH CL & &) (COND &))

4)

HPP
(LAMBDA (CLAUSALA X)
(PROG (A D)
(SETQ A CLAUSALA)
LP (COND -({NULL A) (RETURN NIL)))
(SERCH X A) ‘
(RUMARK (CAR A))
(NOTICECL (CAR A))
(SETQ A (CDR A))
(GO LP)))
(EXTRACT (SERCH THRU NOTe) FROM PROG) P
= NOTICECL
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
(EMBED (SERCH TO) IN (MAP [FUNCTION (LAMBDA (A) x] CLAUSALA]
HPP
(LAMBDA (CLAUSALA X)
(MAP (FUNCTION
(LAMBDA (A)
(SERCH X A)
(RUMARK (CAR A))
(NOTICECL (CAR A))))
CLAUSALA))

(R x y)
Replaces all instances of x by y in
the current expression, e.g., (R
CAADR CADAR). Generates an error if
there is not at least one instance.

R operates by performing a DSUBST. The current
expression .is the third argument to ODSUBST, i.e., the
expression being substituted into, and y is the first
argument to DSUBST, i.e., the expression being substituted.
R computes the second argument to OSUBST, the expression to
be substituted for, by performing (F x T). - The second
argument is then the current expression at that point, or if
that current expression is a list and x is atomic, then the
first element of that current expression. Thus x can be the
S-expression (or atom) to be substituted for, or can be a
pattern which specifies that S-expression (or atom).

For example, if the current expression is (LIST FUNNYATOM1
FUNNYATOMZ (CAR FUNNYATOML)), then (R FUNe FUNNYATOM3) will
substitute FUNNYATOM3 for FUNNYATOML throughout the current
expression. Note that FUNNYATOM2, even though it would have
matched with the pattern FUNe, is NOT replaced.

Simitarty, if (LIST(CAR X) (CAR Y)) is the first
expression matched by (LIST --), then (R (LIST --) (LIST
(CAR Y) (CAR Z))) is equivalent to (R (LIST (CARX} (CARY))
(LIST (CAR Y) (CAR 2Z))), i.e., both will replace all
instances of (LIST (CAR X) (CAR Y})) by (LIST (CAR Y) (CAR
Z}). Note that other forms beginning with LIST will not be

replaced, even though they would have matched. with (LisT -

--). To change all expressions of the form *LIST --) %o
(LIST (CAR Y) (CAR Z)), the user should perform (LP (REPLACE
(LIST --) WITH (LIST (CAR Y) (CAR].

UNFIND is set to the edit chain following the find command

so that < will make the current expression be the place
where the first substitution occurred.

2 .60

N

(S n m
Suitches the nth and mth elements of

the current expression.

For example, if the current expression is (LIST (CONS (CAR

" X) (CAR Y)) (CONS (COR Y)))}, (SW 2 3) will modify it to be

(LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR Y))). The
relative order of n and m is not important, ie, (SW 3 2)
and (SW 2 3) are equivalent.

SW uses the generalized NTH command
to find the nth and mth elements, a
la the BI-BO commands.

Thus in the previous example, (SW CAR COR) would produce the
same result.

Commands That Print

P
Prints current expression as though
PRINTLEY were given a depth of 2.

(P m)
Prints mth element of current
expression as though PRINTLEV were
given a depth of 2.

(P 9)
Same as P

(P mn)
Prints mth element of current
expression as though PRINTLEY were
given a depth of N.

(P 8 n)
Prints current expression as though
PRINTLEVEL were given a depth of N.

?

Same as (P B 109)

Both (P m) and (P m n) use the general NTH command to
obtain the corresponding element, so that m does not have to-
be a number, e.g. (P COND 3) will work,

All printing functions print to the teletype,
regardless of the primary output file. No printing function
ever changes the edit chain. All record the current edit
chain for use by <P, p. 2.37.

Commands That Evaluate

E .
Only when typed in, (i.e., (INSERT D
BEFORE E} will treat E as a pattern)
causes the editor to call the LISP
interpreter giving it the next input
as argument.
Example:
HE (BREAK FIE FUM)
(FIE FUM)
#HE (FOO0)
(FIE BROKEN)
1:
(E x)
Evatuates X, i.e., performs (EVAL
x}), and prints the regsult on the
teletype.
ExT

Same as (E x) but does not print,

~The (E x) and (E x T) commands are mainly intended for
use by MACROS and subroutine calls to the editor; the user
would probably type in a form for evaluation using the more
convenient format of the (atomic) E command.

(I cxl ... xn) o
’ Same as (c yl ... yn) where
yi=(EVAL xi).

Example: (I 3 (GETD (QUOTE FOO0)) will replace the 3rd
element of the current expression uith the definition of
FOO. (The 1 command sets an internal flag to indicate to
the structure modification commands not to copy
expression(s) when inserting, replacing, or attaching.) (I N
FOO (CAR FIE)}) will attach the value of FOO and CAR of the
value of FIE to the end of the current expression. (I F=
FOO T) will search for an expression EQ to the value of FOO.

lf ¢ is not an atom, it is evaluated
as well,

Example: (I (COND ((NULL FLG) (QUOTE -1)) (T 1)) FOO}, if
FLG is NIL, inserts the value of FOO before the first
element of the current expression, otherwise replaces the

first element by the value of FOO.

(## comll] com(2) ... cominl)
is an FSUBR (not a command)., Its
value is what the current expression
would be after executing the edit

commands com{l] ... comin] starting

from the present edit chain.
Generates an error if any of comil]
thru comlnl cause errors. The
current edit chain is never changed.
(Recall that A,B,:,INSERT, REPLACE,
and CHANGE make special checks for
#4 forms in the expressions used for
inserting or replacing, and use a
copy of HH# form instead (see p.
2.44), thus, (INSERT (## 3 2) AFTER
I} is equivalent to (I INSERT (COPY
(## 3 2)) (QUOTE AFTER) 1).)

Example: (1 R (QUOTE X) (## (CONS ..2))) replaces all X’s in
the current expression by the first CONS containing a Z.

The 1 command is not very convenient for computing an
entire edit command for execution, since it computes the
command name and its arguments separately. Also, the]
command cannot be used to compute an atomic command. The
following two commands provide more general ways of
computing commands.

(COMS »x1 ... xn) . '
., Each xi is evaluated and its value
executed as a command,

For exampte, (COMS (COND (X (LIST 1 X}))) will replace the
first element of the current expression with the value of X

if non-NIL, otheruise do nothing. (NIL as a command is a

NOP, see p. 2.71.)

(CoOMsQ comll)l ... cominl)
Executes com[l] ... comln],

COoMSQ is mainly useful in conjunction with the COMS command.
For example, suppose the user wishes to compute an entife
list of commands for evaluation, as opposed to computing
each command one at a time as does the COMS command. He
would then write (COMS (CONS (QUOTE COMSO) x))} where x

computed the list of commands, e.g.,

2 . b4

(COMS (CONS (QUOTE COMSQ) (GET FOO (QUOTE COMMANDS)))).

Commands That Test

(IF x) _
Generates an error unless the value
“of (EVAL x)} is true, i.e., if (EVAL
x) causes an error or (EVAL x)=NIL,
IF will cause an error.

For some editor commands, the occurrence of an error
has a well defined meaning, i.e., they use errors to branch
on as COND uses NIL and non-NIL. For example, an error
condition in a focation specification may simply mean "not
this one, try the next." Thus the location specification

(xPLUS (E (OR (NUMBERP (## 3)) (ERR NIL)) T))
specifies the first *PLUS whose second argument is a number.

The IF command, by equating NIL to error, provides a more

natural way of accomplishing the same result., Thus, an
equivalent location specification is (%xPLUS (IF (NUMBERP (##
3)))).

The IF command can also be used to select between two
alternate lists of commands for execution.

(IF x comsl coms2)
If (EVAL x) is true, execute comsl;
if (EVAL x) causes an error.or is
equal to NIL, execute coms2.

For example, the command (IF (NULL A) NIL' (P)) will print

the current expression provided A=NIL.

(IF x comsl) ‘ .
If (EVAL x)} is true, execute comsl;
otheruise generate an error.

(LP . coms)
. Repeatedly executes coms; a list of
commands, until an error occurs.

For example, (LP F PRINT (N T)} will attach a T at the
end of every PRINT expression. {LP F PRINT (IF (## 3) NIL
((N T)))) will attach a T at the end of each print
expression which does not already have a second argument.
(i.e. The form (## 3) will cause an error if the edit
command 3 causes an error, thereby selecting ((N T}) as the

list of commands to be executed. The IF could also be
uritten as (IF (CODR (##)) NIL ((N T))).)

llhen an error occurs, LP prints n
OCCURRENCES, where n is the number
of times COMS was successfully
executed. The edit chain is left as
of the last complete successful
execution of COMS.

(LPQ . Coms)
Same as LP but does not print n
OCCURRENCES.

In order to prevent non-terminating loops, both LP and
LPQ terminate when the number of iterations reaches MAXLOOP,
initially set to 308.

(ORR coms{l] ... Comslinl)
ORR begins by executing coms{l], a
list of commands, If no error
occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its
original value, and continues by
executing coms(2)], etc. 1f none of

the command lists execute Without
errors, i.e., the ORR "drops off the
end", ORR generates an error,

Otherwise, the edit chain is left as
of the completion of the first
command list which executes without
error. (NIL as a command list is
perfectly legal, and will always
execute successfully., Thus, making *
the last 'argument’ to ORR be NIL
will insure that the ORR never
causes an error. Any other atom is
treated as (atom), i.e., the example
given below could be uritten as (ORR
NX INX NIL).) '

For example, (ORR (NX) (INX) NIL) will perform a NX, if
possible, otheruwise a INX, if possible, otherwise do
nothing. Similarly, DELETE could be written as (ORR (UP
(1)) (BK UP (2)) (UP (: NIL))).

Macros

Many of the more sophisticated branching commands in
the editor, such as ORR, IF, etc., are most often used in
conjunction with edit macros. The macro feature permits the
user to define new commands and thereby expand the editor’'s
repertoire, (However, built .in commands always take
precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.) Macros are defined by using the
M command.

(Mc. coms)
For-c an atom, M defines ¢ as an
atomic command. {(If a macro is
redefined, its new definition
replaces its old.) Executing c¢ is
then the same as executing the list
of commands COMS.

For example, (M BP BK UP P) will define BP as an atomic
command which does three things, a BK, an UP, and a P. Note
that macros can use commands defined by macros as wuell as
built in commands in their definitions. For example,
suppose Z is defined by (M Z -1 (IF (NULL (##)) NIL (P))),
i.e. Z does a -1, and then if the current expression is not
NIL, aP. Now we can define ZZ by (M ZZ -1 2), and ZZZ by
MZZ2Z -1 -1 Z) or (M 22Z -1 72).

Macros can also define list commands, i.e., commands
that take arguments.

M (c) (argll]l ... argln]) . coms)
C an atom. M definesc as a list
command. Executing (c el ... en)
is then performed by substituting el

for arglll, ... en for argln]
throughout COMS, and then executing
Coms.

For example, we could define a more general BP by (M
{BP) (N} (BK N) UP P). Thus, (BP 3) would perform (BK 3},
followed by an UP, followed by a P.

A list command can be defined via a macro so as to take
a fixed or indefinite number of ’"arguments’. The form given
above specified a macro with a fixed number of arguments, as
indicated by its argument list. If the "argument list’ is
atomic, the command takes an indefinite number of arguments.

2. 68

When an error occurs, LP prints n
OCCURRENCES, where n is the number
of times COMS was successfully
executed. The edit chain is left as
of the last complete successful
execution of COMS.

(LPQ . Cons)
Same as LP but does not print n
OCCURRENCES.

In order to prevent non-terminating loops, both LP and
LPQ terminate when the number of iterations reaches MAXLOOP,
initially set to 38.

(ORR comsl[l] ... ComslIn})
ORR begins by executing coms{l], a
list of commands. I[f no error
occurs, ORR is finished. Otheruise,
ORR restores the edit chain to its
original value, and continues by
executing coms[2], etc. If none of
the command lists execute without
. errors, i.e., the ORR "drops off the
(end", ORR generates an error.
T Otherwise, the edit chain is left as
' of the completion of the first
command list which executes without
error. (NIL as a command list is
perfectly legal, and will aluays
execute successfully. Thus, making ”
the last 'argument’ to ORR be NIL

Wwill insure that the ORR never
causes an error. Any other atom is
treated as (atom), i.e., the example
given belouw could be uritten as {ORR
NX INX NIL).) '

For example, (ORR (NX) (INX) NIL) will perform a NX, if
possible, otheruise a INX, if possible, otherwise do
nothing. Similarly, DELETE could be written as (ORR (UP
(1)) (BK UP (2)) (UP (: NIL))).

Macros

Many of the more sophisticated branching commands in
the editor, such as ORR, IF, etc., are most often used in
conjunction With edit macros. The macro feature permits the
user to define new commands and thereby expand the editor’s
repertoire. (However, built .in commands always take
precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.} Macros are defined by using the
M command. .

(Mc. coms)
For - c an atom, M defines ¢ as an
atomic command. (If a macro is
redefined, its new definition
replaces its old.) Executing c is
then the same as executing the list
of commands COMS.

For example, (M BP BK UP P) wiil define BP as an atomic
command which does three things, -a BK, an UP, and a P. Note
that macros can use commands defined by macros as uwell as
built in commands in their definitions. For example,
suppose Z is defined by (M Z -1 (IF (NULL (##)) NIL (P))),
i.e. Z does a -1, and then if the current expression is not
NIL, a P. Now ue can define ZZ by (M ZZ -1 Z), and ZZZ by
(M 222 -1 -1 Z) or (M 22Z -1 Z2).

Macros can also define list commands, i.e., commands
that take arguments.

(M (c) (argll] ... arglnl) . coms)
C an atom. M definesc as a list
command. Executing (c el ... en)
is then performed by substituting el
for arglll, ... en for argln]
throughout COMS, and then executing
coms.

For example, we could define a more general BP by (M
{(BP) (N) (BK N) UP P}. Thus, (BP 3} would perform (BK 3),
followed by an UP, folliowed by a P.

A list command can be defined via a macro so as to take
a fixed or indefinite number of 'arguments’. The form given
above specified a macro with a fixed number of arguments, as
indicated by its argument list. If the "argument list’ is
atomic, the command takes an indefinite number of arguments.

S
.

(M (c) args . coms)
Name, args both atoms, defines c as
a list command., executing (c el ...
en) is performed by substituting (el
«v. en), i.8.,, COR of the command,
for args throughout coms, and then
executing coms.

For example, the command SECOND, p. 2.31, can be
defined as a macro by (M (2ND) X (ORR ({LC . X) (LC .
X, Note that for all editor commands, ’'built in’
commands as well as commands defined by macros, atomic
definitions and list definitions are completely independent.
In other words, the existence of an atomic definition for c
in no way affects the treatment of c when it appears as CAR

of a |list command, and the existence of a list definition
for ¢ in no way affects the treatment of ¢ when it appears
as an atom. in particular, c can be used as the name of

either an atomic command, or a list command, or both. In
the latter case, two entirely different definitions can be
used.

Note also that once c¢ is defined as an atomic command
via a macro definition, it will not be searched for uhen
used in a location specification, unless c is preceded by an
F. Thus (INSERT -- BEFORE BP) uwould not search for BP, but
instead perform a BK, an UP, and aP, and thgn do the
insertion. The corresponding also holds true for |ist
commands.

"“Occasionally, the user will wuant to employ the S
command in & macro to save some temporary result. For
example, the SW command could be defined as

(M (SWY (N M) (NTH N} (S FOO 1) MARK @ (NTH M) (S FIE 1) (I
1 FOO) «« (I 1 FIE))

(A more elegant definition would be (M (SW) (N M) (NTH N)
MARK 8 (NTH M) (S FIE 1) (I 1 (## « 1)) «« (I 1 FIE)), but
this would still use one free variable.)

Since SW sets FDO and FIE, using SW may have
undesirable side effects, especially when the editor was
called from deep in a computation. Thus we must always be
careful to make up unique names for dummy variables used in
edit macros, which is bothersome. Furthermore, it would be
impossible to define a command that called itself
recursively while setting free variables, The BIND command

2. 863

soives both problems.

{BIND . coms)

Binds three dummy variables #1, #2,
#3, (initialized to NIL), and then
executes the edit commands COMS.
Note that these bindings are only in
effect while the commands are being
executed, and that BIND can be used
recursivelyy; it will rebind #1, #2,
and H#3 each time it is invoked.
(BIND is implemented by (PROG (#1 #2
#3) (EDITCOMS (CDR COM))) where COM
corresponds to the BIND command, and
EDITCOMS is an internal editor
function uwhich executes a l|ist of
commands.)

thus we could now urite SW safely as

(M (SW) (N M) (BIND (NTH N) (S #1 1) MARK 8 (NTH M) (S #2 1)
(1 14#1) «« (11 #2))).

User macros are stored on a list USERMACROS,
(USERMACROS is initially NIL.) thus if the user wants to
save his macros, he should save the value of USERMACROS.
(The user probably should also save the value of EDITCOMSL).

W

Miscel laneous Commands

NIL
Unless preceded by F or BF, is
aluways a NOP.

TTY:
Calls the editor recursively. The
user can then type in commands, and
have them executed. The TTY:
command is completed when the user

exits from the lower editor. (See
0K and STOP belou.)

The TTY: command is extremely useful. It enables the
user to set up a complex operation, and perform interactive
attention-changing commands part way through it, For
example the command (MOVE 3 TO AFTER COND 3 P TTY:) allous
the user to interact, in effect, within the MOVE command.
Thus he can verify for hinself that the correct location has

been found, or complete the specification "by hand". In
effect, TTY: says "I'Il tell you what you should do when you
get there."

The TTY: command operates by printing TTY: and then
calling the editor, The initial edit chain in the lower
editor is the one that existed in the higher editor at the
time the TTY: command was entered. Until the user exits
from the lower editor, any attention changing commands he
executes only affect the lower editor's edit chain., (Of
course, -if the wuser performs any structure modification
commands while under a TTY: command, these uwill modify the
structure in both editors, since it is the same structure.)
When the TTY: command finishes, the lower editor’s edit
chain becomes the edit chain of the higher editor,

oK
Exits from the editor.

STOP
Exits from the editor with an error.

Mainly for wuse in conjunction with
TTY: commands that the user wants to
abort.

Since all of the commands in the editor are ERRSET
protected, the user must exit from the editor via a command.
STOP provides a way of distinguishing betueen a successful
and unsuccessful (from the user’s standpoint) editing
- session. For example, if the user is executing (MOVE 3 TO
AFTER COND TTY:), and he exits from the lower editor with an
0K, the MOVE command will then complete its operation. If
the user uwants to abort the MOVE command, he must make the

TTY: command generate an error. He does this by exiting
from the lower editor with a STOP command. In this case,
the higher editor’s edit chain will not be changed by the
TTY: command. .

SAVE

Exits from the editor and saves the
"state of the edit’ on the property
list of the function/variable being
edited under the property EDIT-SAVE.
[f the editor is called again on the
same structure, the editing is
effectively "continued," i.e., the
edit chain, mark list, value of
UNFIND and UNDOLST are restored.

- For example:

HP

(NULL X)

HF COND P

(COND (& &) (T &))
HSAVE

FOO

* (EDITF FOO)

EDIT

HP

(COND (& &) (T &))
< P

(NULL X)

#

(~

SAVE is necessary only if the wuser is editing many
different expressions; an exit from the editor via OK always
saves the state of the edit of that call to the editor. (On
the property list of the atom EDIT, under the property name
LASTVALUE. OK also remprops EDIT-SAVE from the property
list of the function/variable being edited.) Whenever the
editor is entered, it checks to see if it is editing the
same expression as the last one edited. In this case, it
restores the mark list, the undolst, and sets UNFIND to be
the edit chain as of the previous exit from the editor. For

example:

*(EDITF FOO)

EDIT

Hp

(LAMBDA (X) (PROG & & LP & & & 8))

.

HP

(COND & &)
HOK

FOO

#

. Any number of inputs except for
. calls to the editor.

x (EDITF FOO)

EDIT

HP

(LAMBDA (X} (PROG & & LP &'& & &))

#< P

(COND & &)

#

The user can always continue editing, including undoing
changes from a previous editing session, if

(1) No other expressions have been edited since
that session; (since saving takes place at exit
time, intervening calls that were exited via STOP
will not affect the editor’s memory of this last
session.) or

{2) It was ended with a SAVE command.

REPACK
Permits the 'editing’ of an atom or
string.

For example:

HP

«o. "THIS IS A LOGN STRING")

HREPACK

EDIT

14P

(/" THIS/7 IS/ A/ LOGN/ STRING/")
1#(SW G N) -

140K

"THIS IS A LONG STRING"

#

REPACK operates by calling the editor recursively on
UNPACK of the current- expression, or if it is a list, on
UNPACK of its first element. [f the lower editor is exited
successfully, i.e. via OK as opposed to STOP, the list of
atoms is made into a single atom or string, which replaces
the atom or string being 'repacked.’ The new atom or string
is always printed. '

(REPACK $)
Does (LC . 8) followed by REPACK,
e.g. (REPACK THISe).

(MAKEFN form args n m)

current expression
occurance of an element

form) replaced by the corresponding
element of args. The nth through
mth elements are replaced by form.

For example:

HP
... (SETQ A NIL) (SETQ B T) (CONS C D))
#(MAKEFN (SETUP C D) (W X) 1 3} P
... (SETUP C D))
#E (GRINDEF SETUP)
(DEFPROP SETUP
(LAMBDA (W X) (SETQ A NIL) (SETQ B T) (CONS W X))
EXPR)
#

(MAKEFN form args n)

Same as (MAKEFN form args n n).

Makes (CAR form) an EXPR with the
nth through mth elements

UNDO

Each command that causes structure modification
automatically adds an entry to the front of UNDOLST
containing the information required to restore all pointers
that were changed by the command.

UNDO
Undoes the last, i.e., most recent,
structure modification command that
has not yet been undone, (Since UNDO
and . 'UNDO causes structure
modification, they also add an entry
to UNDOLST. However, UNBO and !UNDO
entries are skipped by UNDO, e.g.,
if the user performs an INSERT, and
then an MBD, the first UNDO will
undo the MBD, and the second will
undo the INSERT. However, the user
can also specify precisely wuhich
command he wants undone. In this
case, he can undo an UNDO command,
e.g., by typing UNDO UNDO, or undo a
IUNDO command, or undo a command
other than that most recently
performed.) and prints the name of
_that command, e.g., MBD UNDONE. The
edit chain is then exactly what it
was before the 'undone' command had
been performed. If there are no
commands, to undo, UNDOQ types NOTHING
SAVED. ‘

1UNDO
Undoes all modifications performed
dyring this editing session, i.e.,
«this call to the editor, As each
command is undone, its name is

printed a la UNDO. - If there is
nothing to be wundone, !UNDO prints
NOTHING SAVED.

Whenever the user continues an editing session as
described on pages 2.72-2.73, the wundo information of the
previous session(s) is protected by inserting a special
biip, called an undo-block on the front of UNDOLST. This
undo-block will terminate the operation of a !UNDO, thereby
confining its effect to the current session, and will

\\/ \J

similarly prevent an UNDO command from operating on commands
executed in the previous session.

Thus, if the user enters the editor continuing a
session, and immediately executes an UNDO or 'UNDO, UNDO and
'UNDO will type BLOCKED, instead of NOTHING SAVED.
Similarty, if the user executes several commands and then
undoes them all, either via several UNDO commands or a !UNDO
command, another UNDO or !UNBO witl also type BLOCKED.

UNBLOCK
Removes an undo-block. [f executed
at a non-blocked state, i.e., if
UNDO or 'UNDO could operate, tupes
NOT BLOCKED.

TEST

Adds an undo-block at the front of
UNDOLST.

Note that TEST together with IUNDO provide a
'tentative’ mode for editing, i.e., the user can perform a
number of changes, and then undo all of them with a single
'UNDO command.

??
Prints the entries on UNDOLST. The
entries are listed in the reverse
order of their execution, i.e., the
most recent entry first, For
example: :

#P ‘

(CONS (T &) (& &))
#(1 COND) (SW 2 3) P
(COND (& &) (T 8))
H??

SW (1 --)

#

Editdefault

Whenever a command is not recognized, i.e., is not
'built in’ or defined as a macro, the editor calls an
internal function, EDITDEFAULT to determine what action to
take. [f a location specification is being executed, an
internal flag informs EDITDEFAULT to treat the command as
though it had been preceded by an F.

If the command is atomic and typed in directly, the
procedure followed is as given below.

1)

1f the command is one of the |ist commands, i.e.,

a member of EDITCOMSL, and there is additional input on
the same teletype Iline, treat the entire line as a
single list command. (Uses READLINE. Thus the line
can be terminated by carriage return, right parenthesis
or square bracket, or a list.) Thus, the user may omit
parentheses for any list command typed in at the top
level (which is not also an atomic command, e.g., NX,
BK). For example:

HP

(COND (& &) (T &))

#(XTR 3 2)

#MOVE TO AFTER LP

.
[f the command is on - the list EDITCOMSL but no -
additional input is on the teletype line, an error is
generated, e.g.,

#HP

(COND (& &) (T &))

#MOVE

MOVE ?

#

2)

[f the fast character in the command is P, and the
first n-1 characters comprise the command ««, «, UP,
NX, BK, INX, UNDO, or REDO, assume that the user
intended two commands, e.g.,

TN

HP

(COND (& &) (T &))
H2 NXP

(T (CONS X Y))

3)
Otheruise, generate an error.

—~

Editor Functions

(EDITL L coms atm marklst mess)

EDITL is the editor. Its first
argument is the edit chain, and its
value is an edit chain, namely the
value of L at the time EDITL is
exited. (L is a special variable,
and so can be examined or set by

edit commands. For example, %1 is

equivalent to (E (SETQ L(LAST L))
T,

Coms is an optional list of
commands. For interactive editing,

“coms is NIL. In this case, EDITL

types EDIT and then waits for input
from the teletype. (If mess is not
NIL EDITL types it instead of EDIT.
For example, the TTY: command is
essentially (SETQ L (EDITL L NIL NIL
NIL (QUOTE TTY:))).) Exit occurs
only via an 0K, STOP, or SAVE
command.

If coms is NOT NIL, ne message is
typed, and each member of coms is
treated as a command and executed.
[f an error occurs in the execution
of one of. the .commands, no error

" message is printéd ., :the rest of the
commands are ignored, and EDITL

exits with an error, i.e., the
effect is the same as though a STOP
command had been executed. If all

~ commands execute successfully, EDITL

returns the current value of L.
Marklst is the list of marks.

On calls from EDITF, Atm is the name
of the function being edited; on
calls from EDITV, the name of the
variable, and calls from EDITP, the
atom of which some property of its
property list is being edited. The
property list of atm is used by the
SAVE command for saving the state of

VAR

the edit. Thus SAVE will not save
anything if atm=NIL i.e., when
editing arbitrary expressions via
EDITE or EDITL directly.

(EDITF x)
FSUBR function for editing a
function. (CAR %) is the name of
the function, . (COR %) an optional
list of commands. For the rest of
the discussion, fn is (CAR %)}, and
coms is (CDR). '

If x is NIL, fn is set to the value
of LASTWORD, coms is set to NIL, and
the value of LASTWUORD is printed.

The value of EBITF is fn.

(1) In the most common case, fn is an non-compiled
function, and EDITF simply performs

(EDITE (CADR (GETL fn (QUOTE (FEXPR EXPR MACRO)))) coms fn)
and sets LASTWORD to fn.

(2) [f fn is not an editable function, but has a value,
EDITF assumes the user meant to cail EDITY, prints =EBITY,
calls EDITY and returns.

Otheruise, EDITF generates an fn NOT EDITABLE error.

(EDITE expr coms atm)’ e SR
Edits an expression. [Its value is
the last element of (EDITL (LIST
expr) coms atm NIL NIL). Generates
an error if expr is not a list.

(EDITY editvx) :
FSUBR function, similar to EDITF,
for editing values. (CAR editvx)
specifies the value, (COR editvx) is
an optional list of commands.

I1f editvx is NIL, it is set to the
value of (NCONS LASTWORD) and the
value of LASTWORD is printed.

I[f (CAR editvx) is a list, it is evaluated and its
value given to EDITE, e.g. (EDITY (CDR (ASSOC (QUOTE F0O)
DICTIONARY)))). In this case, the value of EDITY is T.

However, in most cases, (CAR editvx) 1is a variable,
e.g. (EDITY FOO); and EDITV calls EDITE on the value of the
variable,

[f the value of (CAR editvx) is atomic then EDITV
prints a NOT EDITABLE error message.

When (if) EDITE returns, EDITY sets the variable to the
‘value returned, and sets LASTWORD to the name of the
variable.)

The value of EDITV is the name of the variable whose
value was edited.

(EBITP x)

FSUBR function, similar to EDITF for
editing property lists. 'Like EDITF,
LASTWORD is used if x is NIL. EDITP
calls EDITE on the property list of
(CAR x). When (if) EDITE returns,
EDITP RPLACD's (CAR x) with the
value returned, and sets LASTWUORD to
(CAR x).

The value of EDITP ié the atom whose
property list was edited,

N
/

N

{
Vs

\/'\"//

\./C_/

(EDITENS x)

FSUBR function, used to perform the
same editing operations on several
functions. (CAR %) is evaluated to
obtain a list of functions. (CDR x)
is a list of edit commands. EDITFNS
maps down the |list of functions,
prints the name of each function,
and calls the editor (via EDITF) on
that function.

For example, (EDITFNS FOOFNS (R FIE FUM)) will change
every FIE to FUM in each of the functions on FOOFNS.

. The call to the editor is ERRSET
protected, so that if the editing of
one function causes an error,
EDITFNS will proceed to the next
function.

Thus in the above example, if one of the functions did
not contain a FIE, the R command would cause an error, but
editing would continue with the next function.

The value of EDITFNS is NIL

(EDIT4E pat y)
Is the pattern match routine. Its
~value is T if pat matches y. See
pp. 2.22-2.23 , For definition of
"match’. e B

Note: before each search operation in the editor
begins, the entire pattern is scanned for atoms or strings
that end in at-signs. These are replaced by patterns of the
form

(CONS (QUOTE /e) (EXPLODEC atom)).
Thus from the standpoint of EDIT4E, pattern type 5, atoms or
strings ending in at-signs, is really "If carlpat] is the
atom @ (at-sign), PAT uill match with any literal atom or
string whose initial character codes (up to the @) are the
same as those in cdrlpat].”

[f the user wuishes to call EDIT4E directiy, he must
therefore convert any patterns wuhich contain atoms or
strings ending in at-signs to the form recgnized by EDIT4E.
This can be done via the function EDITFPAT,

(EDITFPAT pat flg)
Makes a <copy of pat with all
patterns of type 5 converted to the
form expected by EDIT4E. Flg should
be passed as NIL (flg=T is for
internal use by the editor).

(EDITFINDP x pat flg) v :
Allows a program to use the edit
find command as a pure predicate
from outside the editor. X is an
expression, pat a pattern. The
value of EDITFINDP is T if the
command F pat would succeed, NIL
otherwise. EDITFINDP calls EDITFPAT
to convert pat to the form expected
by EDIT4E, wunless flg=T. Thus, if
the program is applying EDITFINDP to
several different expressions using
the same pattern, it will be more
efficient to call EBITFPAT once, and
then call EDITFINDP with the
converted pattern and f|g=T.

(EDITRACEFN com) ,
Is available to help the user debug
complex edit macros, or subroutine
calls to the editor. EDITRACEFN is
to be defined by the user. Whenever
the value of EDITRACEFN is non-NIL,

the editor «calls ~the function:

EDITRACEFN before executing each
command (at any level), giving it
that command as its argument.

For example, defineing EDITRACEFN as :
(LAMBDA (C) (PRINT C) (PRINT (CAR L))
will print each command and the corresponding current

expression. (LAMBDA (C) (BREAK1 T T NIL NIL NIL)) will

cause a break before executing each command.

EDITRACEFN is initially equal to
NIL, and undefined.

2 . 84

)

™)

(~

EXTENDED INTERPRETATION OF LISP FORMS

Extended Lambda Expressions

When solving problems in LISP, it is very often
convenient to have a function which executes more. than one
form but does not need the variable and label features of
PROG. We have added this capability to UCI LISP by
extending LAMBDA expressions to handle more than one form.

(LAMBDA "ARGUMENT-LIST" "FORM1" "FORMZ2" . . . "FORMn")

When such a LAMBDA expression is applied to a list
of arguments each FORM is evaluated in sequence and
the value of the LAMBDA expression is FORMn (after
the arguments are bound to the LAMBDA variables).

Examples:

((LAMBDA (X) (CAR X) (CDR X)) (QUOTE (A))) = NIL
((LAMBDA(X Y) X Y (CONS X Y)) NIL T) = (NIL . T)

This means that functions defined by OF or DE
evaluate all of forms in their definition, instead
of just the first one as in Stanford’s version. The
value of the function is the value of the last form.

WARNING: This is not a PROG; GO and RETURN do not have the
expected result.

The Functions PROG1 and PROGN

(PROG1 X1 X2 ... Xn) ,n<b

PROG1 evaluates all expressions X1 X2 ...
returns X1 as its value.

(PROGN X1 X2 ... Xn)

PROGN evaluates all expressions X1 X2 ...
returns Xn as its value.

Xn and

Xn and

()

Conditional Evaluation of Forms

(SELECTQ X "Y1" "Y2" ... "Yn" 2)

This very wuseful function is used to select a
sequence of instructions based on the value of its
first argument X. Each of the Yi is a list of the
form (Si E[1,i] E[2,i] ... Elk,i]) uhere Si is the
"selection key".

If Si is an atom the value of X is tested to see if
it is EQ to Si (not evaluated). If so, the
exprassions EI[l,i]l ... EIlk,i] are evaluated in
sequence, and the value of SELECTQ is the value of
the last expression evaluated, i.e. Elk,i).

I[f Si is a list, and if any element (not evaluated)
of Si is EQO to the value of X, then EI1,il
Elk, i) are evaluated in turn as above.

If Yi is not selected in one of the two ways
described then Y[i+l] is tested, etc. until all the
Y's have been tested. If none is selected, the
value of SELECTQ is the value of Z. Z must be
present.

An exanple of the form of a SELECTQ is:

(SELECTQ (CAR W)

o {Q (PRINT FOO) (FIE W))
((AE T 00U (VOUEL W))
{COND (W (QUOTE STOP))))

which has tuo cases, 0 and (A E I 0 U) and a default
condition which is a COND,

SELECTQ compiles open, and is ‘therefore very fast;
however, it will not work if the value of X is a
list, a large integer, or floating point number,
since it uses EQO.

Changes to the Handling of Errors

(ERRSET E "F")

ERRSET has been changed slightly., If F=NIL the
error message is suppressed and the error wuWill not
cause a break to the Break Package. If F islnot
given then ERRSET assumes that FaT. If F=8 (i.e.
zero) then the error message Will be printed on the
current output device, otheruise it will be printed
on the teletype.

(ERR E)
There is now a special case of ERR, If the value of
E is ERRORX, then ERR will return to the most recent
ERRSET which has F=ERRORX. This allous two levels
of user errors. If a Control-G is typed in by the
user it generates a (ERR (QUOTE ERRORX)). This
means that the user can now protect himself against
this type of input error,

(ERROR E)

ERROR generates a real LISP error. E is evaluated
and printed (unless error messages are suppressed)
and then a break occurs just as for any other LISP
error, :

N
/

Miscel lania

(APPLY# FN ARGS)

APPLY# is similar to APPLY except that FN may be a
function of any type including MACRO. Note that
when either APPLY or APPLY# are given an EXPR as
their first argument, the second argument s
evaluated by APPLY# or APPLY, but the elements of
the resulting !ist are directly bound to the lambda
variables of the first argument, and are not
evaluated again even though it is an EXPR.

Examples: .

(APPLY#
(APPLYH

(QUOTE PLUS) (QUOTE (3 2 2))) =7
(QUOTE CONS) (LIST (QUOTE A) (QUOTE B))) = (A . B)

(NILL "X1" "X2" ... "Xn") = NIL

This function allows the user to stick S-Expressions
in the middle of a function definition (e.g. as a
PROG element) without having them evaluated or
otheruise noticed, NILL is also useful for giving a
dummy definition to a function which has not yet
been defined.

EXTENSIONS TO THE STANDARD INPUT/OUTPUT FUNCTIONS

Project-Programmer Numbers for Disk [/0

In all . 1/0 functions (including INPUT and OUTPUT), the use
of a tuwo element list (not a dotted pair) in place of a
device uill cause the function to assume DSK: and use the
list as the project-programmer number.

Saving Function Definitions, etc. on Disk Files

(DSKOUT “FILE" “EXPRSLIST")

DSKOUT is an FEXPR and is used to create an entire
output file on disk file OSK: "FILE". 1t sets the
linelength to LPTLENGTH, and evaluates all of the
expressions in "EXPRSLIST". If an expression on
"EXPRSLIST" is atomic, then that atom is given to '
GRINL instead of being evaluated directly. ...

For example, if FNLIST is a list of your functions, they can
be saved on a disk file, FUNCS.LSP by:
(DSKOUT -(FUNCS.LSP) FNLIST (PRINT (QUOTE END-OF-FILE)))

Reading Files Back In

(DSKIN "LI1ST OF FILE-NAMES")

READ-EVAL-PRINTs the contents of the given files.
This is the function to use to read files created by

DSKouT.

Examples
(DSKIN (FUNCS.LSP) DTAB: (DATA.LSP))
Reads FUNCS.LSP from DSK: and DATA.LSP from DTAB:.

{DSKIN (667 2) (DSKLOG.LSP))
Reads DSKLOG.LSP from the disk area of [667,2].

Printing Circular or Deeply Nested Lists

(PRINTLEV EXPRESSION DEPTH)

Spacing

(TAB N)

PRINTLEY is a printing routine similar to PRINT.
PRINTLEY, houever, oniy prints to a depth of DEPTH.
In addition, PRINTLEV recognizes |ists wuhich are
circular doun the CDR and closes these wWith ’...]’
instead of ')’. The combination of these tuo
features allows PRINTLEV to print any circular list
Without an infinite loop.

The value of PRINTLEV is the value of EXPRESSION.
This means that PRINTLEVY should not be used at the
top level if EXPRESSION is a cijrcular list
structure, since the LISP executive would then
attempt to print the circular structure which is
returned as the value.

Control

TAB tabs to position N on the output line doing a
TERPRI if the current position is already past N.
Note should be taken that TAB outputs spaces only
when necessary and outputs tab characfers otherwise.

"Pretty Printing" Function Definitions and S-Expressions

(GRINDEF "F1" "F2" "F3" ... "FN")

GRINDEF is used to print the definitions of
functions and the values of variables in a format
suitable for reading back in to LISP, in what is
known as DEFPROP format. GRINDEF uses SPRINT (see
below) to print these s-expressions in a highly
readable format, in which the levels of list
structure (or parentheses levels) are indicated by
indentation. GRINDEF prints all the properties of
the identifiers F1, F2, ..., Fn uhich appear on the
list GRINPROPS. If Fi is non-atemic, it Will be
SPRINTed. . ‘

GRINPROPS

The variable GRINPROPS contains the properties which
will be printed by GRINDEF. This variable can be
set by the user to print special properties uwhich he
has placed on atoms. The initial value of GRINPROPS
is (EXPR FEXPR MACRO VALUE SPECIAL).

(GRINL "F1" "F2* ... "FN")

GRINL causes all of the atoms, "F1" "F2" ... "Fn",

“'and all of the atoms . on the lists which are the
values of the atoms F1 F2 ... Fn to be GRINDEFed.
GRINL correctly prints out read macros and is ‘the
only function which does. GRINDEF does not save the
activation character for the read macros. MWarning:
Each Fi must be an atom.

{SPRINT EXPR IND}

SPRINT is the function which does the '"pretty
printing" of GRINDEF. EXPR is printed in a human
readable form, wuwith the levels of list structure
shoun by indentation along the line. This is useful
for printing large complicated structures or
function definitions. The initial indentation of
the top level list is IND-1 spaces. In normal use,
IND should be given as 1.

7

Reading

Whole Lines

(LINEREAD)

Example:

LINEREAD reads a |line, returning it ag a list. If °
some expression takes more than one line or a line
terminates in a comma, space or tab, then LINEREAD
continues reading until an expression ends at the
end of a line. This is the function used by the
EDITOR and BREAK Package supervisors to read in
commands, and may be useful for other
supervisor-type functions.

% (LINEREAD)
*A B (CD

*E) F G

(AB (CDE)FG)

* (LINEREAD)
%A B (C D E),

*F G

(AB (CDE)FQG)

Teletype and Prompt Character Control Functions

(CLRBFI)

CLRBFI clears the Teletype input buffer.

(TTYECHO)

(PROMPT

TTYECHG complements the Te'letgpe echo suitch., -The ' ..
value of TTYECHO is T if the echo is .being turped . .
on, and NIL if it is being turned off. .. .~

N)

~ Examplex

The LISP READ routines type out a "prompt character"
for the user when they expect to read from the
teletype. This character is normally a "*"., PROMPT
resets this prompt character. N is the ASCII rep-
resentation of the new prompt character. =

The ASCII representation of the old prompt character. .~
is. returned as the value of PROMPT. (PROMPT NIL)
returns the current prompt character ulthout
changing it. ' : .

% (PROMPT 53)

62
+

(INITPROMPT N)

Whenever LISP is forced back to the top level (e.g.
by an error or Control-G), the prompt character is
reset. INITPROMPT is similar to PROMPT except that
it sets the top level prompt character. (INITPROMPT
NIL) returns the ASCIl value of the top level prompt
character without changing it.

=

(READP)

READP returns T if a character can bo input and NIL
otherulse. READP doss not input a character.

(UNTYI)

UNTYI unreads a character (such as a character input
by a TYl or a READCH) and returns the ASCII code for

that character.

%(DE PEEKC ((URTYT (VDI

% (PROG () (CLRBFI) (PEEKC) (RETURN (TYI))
A '
101

4.5.1

READ MACROS - Extending the LISP READ RUUTINE

Read Macros allow the user to specify a function to be
exscuted each time a selected character is read during input
of his data or programs. This function is generally used to
produce one or more elements of the input Iist which are
built up in some way from later characters of the input
string. There are tuo types of Read Macros; Normal Read
Macros whose result is used as an element of the Iinput list
in the position where the macro character occurred, and
Splice Macros whose resuit (must be a list which) is spliced
sequentially into the input list.

WARNING: Read macro characters wWill not be recognized if
they occur inside of an atom name unless the character is
firet defined to be equivalent to a break or separator
character (s.g. space or comma) using MODCHR.

Functions for Defining Read Macros
(ORM "CHARACTER" "FUNCTION")

CHARACTER is defined as a Normal Read Macro with
"FUNCTION" being a function name or a LAMBDA
expression of no arguments which will be svaluated
each time CHARACTER is datected as a macro during
“input, FUNCTION is put on the property list of

CHARACTER under the property READMACRO. The Yalue :

of DRM is CHARACTER.
Examples: . (DRM % (LAMBDA () (NCONS . (READ)))
- (DRM = (LAMBDA () (REVERSE (READ)))
(DSM "CHARACTER" "FUNCTION")

DSM is exactly like DRM except that CHARACTER is
defined as a Splice Macro.

Example: (DSM ¢ (LAMBDA () (CONS NIL (READ))) -

Using Road Macros

The use of Road Macros io boot doocribed uith oxamploo.
The Read iMacros dofined above will be uscd for tho ouamplos.

Exampls 1

I1f tha expression (ABC = (DEF) GH) is read in the
apparent input Wwill be (ABC (FE D) G H).

Example 2

[f (FOD1 FOO2 xFOO3 FOO4) is read the apparcnt input is
(FG01 FOO2 (FCO3) FOO04).

In cach caoe the assoclatoed function wao evaluated and
the result uas roturncd as the next slement of the Input
list. '

(‘ Exanple 3

Reading (AT1 : (AT2 AT3) AT4) will result in
(AT1 NIL AT2 AT3 AT4).
Example 4 ‘ . CoL
1f the input is (AA AB :AC) the result is (AA AB NIL . AC).
It can be seen that the effect of a Splice Macro 1Is to

place the result of the function evaluation into tho input
stroam minus tho outermost set of parentheseo.

Modifying the READ Control Téble

Since the LISP READ routines are table driven, it is
possible to redefine the meaning of a character by changing
its table entry. In each of the following functions CH is
the ASCII representation of the character being modified.

(MOOCHR CH N)

(SETCHR

The. value of MODOCHR is the old table entry for CH.
If N is non-NIL it must be a number which represents
a valid table entry. The entry for CH is changed to
N. If N is NIL, no change is made, e.g. to make "."
a fletter (so it wWill behave like the letter "A")
execute (MODCHR 56 (MODCHR 181 NIL)). _

CHN)
SETCHR is similar to MODCHR except that it only

modifies the portion of the entry associated with
read macros.

The meaning of eadh of the fields in the table entry can be
determined from the descriptive dtagram of the LISP READ

program

in the appendix.

NEW FUNCTIONS ON S-EXPRESSIONS

S-Expression Building Functions

(TCONC PTR X)

TCONC is wuseful for building a ligt by adding
elements one at a time at the end. This could be
done with NCONC. However, unlike NCONC, TCONC does
not have to search to the end of the list each time
it is called. It does this by keeping a pointer to
the end of the |list being assembled, and updating
this pointer after each call. The savings can be
considerable for long lists. The cost is the extra
word required for storing both the |list being
assembled, and the end of the list. PTR is that
word: (CAR PTR) is the list being asgembled, (CDR
PTR) is (LAST (CAR PTR)). The value of TCONC is
PTR, with tho appropriate modifications to its CAR
and COR. Note that TCONC is a destructive
operation, using RPLACA and RPLACD. .

- Examples

= (MAPC (FUNCTION (LAMBDA (X) (SETQ FOO (TCONC FOO 5)1))
(QUOTE (5 4 3 2 1)))
«F00 . ~

{64321 1)

TCONC can be inltialized in tuwo ways., I1f PTR is
NIL, TCONC will make up a ptr. In this case, the
program must set some variable to the value of the
first call to TCONC. After that it is unnecessary
to reset since TCONC physically changes PTR thust

x(SETQ FOD (TCONC NIL 1))

(1) 1

%{MAPC (FUNCTION (LAMBDA (X) (TCONC FGO X)))
(QUOTE (4 3 2 1)))

%«F00

(14321 1)

If PTR is initially (NIL), the value of TCONC is the
same as for PTR=NIL, but TCONC changes PTR, e.g.

» (SETQ FOO (NCONS NIL))

(NIL)

x(MAPC (FUNCTION (LAMBDA (X) (TCONC FOO X)))
(QUOTE (5 4 3 2 1)))

xF00

(6543211

The latter method allows the program to initialize,
and then call TCONC without having to perform SETQ
on its value. g

(LCONC PTR X)
Where TCONC is used to add elements at the end of a

list, LCONC is used for building a |ist by adding
lists at the end. For example:

x(SETQ FOO (NCONS NIL))
(NIL)

~ x(LCONC FOO (LIST 1 2))

(a1 2) 2)

x(LCONC FOO (LIST 3 4 5))
((1 2345)5)

» (LCONC FOO NIL)
((123485)5)

Note that LCONC uses the same pointer conventions as

TCONC for eliminating searching to the end of the

_list, sp that the same pointer can be glven to TCDNC
+and LCONC interchahgeably. : .

x(TCONC FOO NIL)

((1 2 3 45 NIL) NIL)
x(LCONC FOO (LIST 3 4 5))
((1 23 45NIL 345)5)

14

S-Expreuvsion Tranoforming Functiono

(NTH X N)
The value of NTH is the tail of X beginning with the
Nth element, e.g. if N=2, the value is (COR X), if

N=3, (CODR X), etc. If N=1, the value is X, if N=8,
for consistency, the value is (CONS NIL X).

(REMOVE X L)
Removes all top level occurrences of X from the list

L, giving a COPY of L uith all top level slements
EQUAL to X removed. ' _

(COPY X)
The value of COPY is a copy of X. COPY is
equivalent to: (SUBST 8 8 X).

(LSUBST X Y 2)
Like SUBST éxcept X is substituted as a saegment.
Note that if X is NIL, LSUBST returns a copy of Z

with all Y's deleted. For example:

(LSUBST (QUDTE (A B)) (QUOTE Y) (QUOTE (X Y 2))) = (X A'B 2)

S-Expression Modi fying Functions

All

these functions physically modify their arguments

by changing appropriate CAR's and CDR’s,

(DREMOVE X L)

Similar to REMOVE, but uses EQ instead of EQUAL, and
actually modifies the list L when removing X, and
thus does not use any additional storage. HMore
efficient than REMOVE.

NOTE: If X = (L ... L) (i.e. a list of any length
all of whose top level elements are EQ to L) then
the value returned by (DREMOVE X L) is NIL, but even
after the destructive changes to X there is still
one CONS cell left in the modified list which cannot
be deleted. Thus if X is a variable and it is
possible that the result of (DREMOVE X L) might be
NIL the user must set the value of the variable
given to DREMOVE. to the value returned by the
function.

(DREVERSE L)

The value of (DREVERSE L) is EQUAL to (REVERSE L),
but DREVERSE destroys the original list L and thus

“does not-use-any additional storage. More efficient

(DSUBST

than REVERSE. =~
XY 2

Similar to SUBST, but uses EQ and does not copy Z,
but changes the list structure Z itself. DSUBST
substitutes with a copy of X. More efficient than
suBsT.

\/\

Mapping Functions with Several Arguments

All of tho map functions have been axtended to allou
called functions which need more than one argument. The
function FN to be called is still the first argument.
Arguments 2 thru N (N < 7) are used as arguments 1 thru N-1
for FN. [f the arguments to the map functions are of
unequal length, the map function terminates whan the
shortest list becomes NIL. The functions bshave the same as
the previous definitions of the functions when used with tuo

arguments.,

Example: This uWill set the values of A, B andC to 1, 2 and
3, respectively.

«« (MAPC (FUNCTION SET) (QUOTE (A B C)) (QUOTE (1 2 3)))
NIL "

Mapping Functions Which Use NCONC

The functions MAPCON and MAPCAN produce lists’bg NCONC
to splice together the values returned by repeated
applications of their functional argument,

MAPCON and MAPCAN are especially useful in the case
where the function returns NIL. Since NIL does not affect a
list if NCONC'ed to it, the output from that function does
not appear in the result returned from MAPCON or MAPCAN.
For example, a function to remove all of the vowels from a
word can be easily written as:

(READLIST (MAPCAN (FUNCTION YOWELTEST) (EXPLODE WORD)))

where VOWELTEST is a procedurs which takes one argument,
LET, and returns NIL if LET is a vouel, and (LIST LET)
otheruise.

(MAPCON FN ARG)

MAPCON calls the function FN to the Ilist ARG. It .

then takes the CDR of ARG and applies FN to it., It o -
continues this until ARG is NIL. The value is each S
of the lists returned by FN NCONC’ed together.

For a single list MAPCON is equivalent tos
(DE MAPCON (FN ARG)
(COND ((NULL ARG) NIL)
~ . (T (NCONC.(FEN ARG) ‘ ; :
(MAPCON FN (COR ARG))))))

Example

% (MAPCON (FUNCTION COPY) (QUOTE (1 2 3 4)))
(12364623434 4)

(MAPCAN FN ARG)

(MAPCONC FN ARG)

MAPCAN is similar to MAPCON except it calls FN with
the CAR of ARG instsad of the whole list.

S-Exproosion Searching and Substitution Functions

(SUBLIS ALST EXPR)

ALST iS a Iiﬁ‘t OF f)’dii"s ((Ul . Vl) (UZ . VZ) o0 6
Un . Vn)) with each Ui atenic. Tho valus of
SUBLIS is thu rooult of substituting sach VY for the
corrogponding U in EXPR,

Example:

«(SUBLIS (QUOTE ((A ., X) {C . ¥))) (QUOTE (A B C Dj))
XBYD

Nsw otructuro is created only i nooded, e.g. if
there ara no substitutions, valuo io EQ to EXNPR.
(SUBPAIR OLD NEl EXPR}

Similar to SUBLIS except that eleiments of NEW are
substituted for corresponding atoms of OLD in EXPR.

Examples

% (SUBPAIR (QUOTE (A C)) (QUOTE (X Y)) (QUOTE (A B C m))
XBvyopD

Note: SUBLIS snd SUBPAIR do not substituto copiss of the

appropriate ouprogsion, bul subotitute the lidentical
structuroc,

(ASSOCH X Y)
Similar to ASSOC, but use§ EQUAL instoad of EQ.

(LDIFF X Y)

Y must be a tail of X, i.e. EQ to the result of
applying some number of CDRs to X. LOIFF gives a
list of all elements in X but not inY, i.e., the
list difference of X and Y. Thus (LDIFF X (MEMB FQO
X)) gives all elements in X up to the first FOO.

Note that the value of LDIFF is always neuw list
" structure unless Y«NIL, in uhich case {LDIFF X NIL)
is X itself.

If Y is not a tail of X, LOIFF generates an error.
LDIFF terminates on a NULL check.

e

N <_,f

Efficiently Working with Atoms as Character Strings
(FLATSIZEC L) = (LENGTH (EXPLODEC L))

(NTHCHAR X N) = (CAR (NTH (EXPLODEC L) N)) if N>@
= (CAR (NTH (REVERSE (EXPLODEC L)) N)) if N<8
= NIL if (ABS N) = 8 or > (FLATSIZEC L)

Note: The above functions do not really perform the
operations listed. They actually use far more efficient
methods that require no CONSes, but the effects are as
given.

(CHRVAL X)

CHRVAL returns the ASCII representation of the first '
character of the print name of X.

NEW PREDICATES

Data Type Predicates

(CONSP X)

The value of CONSP is T iff X is not an atom.
CONSP is equivalent to:

(LAMBDA(X) (NOT (ATOM X)))
Exampies: (CONSP T) = NIL
(CONSP 1.23) = NIL
(CONSP (QUOTE (X Y Z2))) =T
(CONSP (COR (QUDTE (X)))) = NIL
(STRINGP X)

The value of STRINGP is T iff X is a string.

(PATOM X)

The value of PATOM is T iff X is an atom or X is a
pointer outside of free storage.

. . .
(LITATOM X)

The value of LITATOM is T iff X is.a literal atom,
i.e., an atom but not a number.

Alphabetic Ordering Predicate

(LEXORDER X Y)

The value of LEXORDER is T iff X is lexically less
than or equal to Y. Note: Both arguments must be
atoms and numeric arguments are all lexically less
than symbolic atoms,

Examples: (LEXORDER (QUOTE ABC) (QUOTE CD)) a
(LEXORDER (QUOTE B) (QUOTE A)) =
(LEXORDER 123333 (QUOTE A)) =
(LEXORDER (QUOTE B) (QUOTE B)) =

Predicates that Return Useful Non-NIL Valuss

(MEMBER# X Y)

MEMBER# is the same as MEMBER except that it returns
~the tail of Y starting at the position wWwhere X is
found.

Examples:
(MEMBER# (QUOTE (C D)) (QUOTE ((A B)(C D)E)))

= ((C D) E)
(MEMBER# (QUOTE C) (QUOTE C))) = NIL

(MEMB X Y)
(MEMO# X Y)

MEMQ# is the same as MEMQ except that it returns the
tail of Y starting at the position where X is found.

Examp | es:
(MEMO# (QUOTE (C D)) (QUOTE ((A B)(C D)E))) = NIL
(MEMB (QUOTE A) (QUOTE (Q A B))) - (A B)
(TAILP X V) ’

" The value of TAILP is X iff X is a list and a tai
of Y, i.e., X is EQ to some number of CORs & @ of Y.

(AND# X1 X2 ... Xn) = Xn if all Xi are non-NIL
= NIL otherwise

(OR# X1 X2 ... Xn) - = The first non-NIL a&gumenf
= NIL if all Xi are NIL

As with AND and OR these functions only evaluate as many of
their arguments as necessary to determine the ansuer (e.g.
AND# stops evaluation after the first NIL argument). '

Other Predicates

(NEQ X Y)

The value of NEQ 1s T iff X is not EQ to V.
NEQ is equivalent to:

Examples:

(LAMBDA (X Y) (NOT (EQ X Y)))

(NEQ T T) = NIL

(NEQ T NIL) = T

(NEQ (QUOTE A) (QUOTE B)) = T
(NEQ 1 1.8) aT

(NEQ 1 1) = NIL

(NEQ 1.8 1.8) =T

NEW NUMERIC FUNCTIONS

Minimum and Maximum

(«MIN X Y) = Minimum of X and Y
(MIN X1 X2 ... Xn) = Minimum of X1, X2, ... , Xn
RMAX X V) = Maxinum of X and Y

(MAX X1 X2 ... Xn) Maximum of X1, X2, ... , Xn

P

N

FORTRAN Functions In LISP

It is now possible to use the FORTRAN Math Functions in
LISP. This allous the user to perform computations that
previously wuere difficult to do in LISP. All functions
return FLONUMs for values but may have either a FLONUM or a
FIXNUM for an argument. '

To load the Arithmetic Package execute the following at
the top level of LISP:

% (INC(INPUT SYS: (ARITH.LSP)))
<SEQUENCE OF OUTPUT>

% (LOAD)SYS: ARI THS

<LOABER TYPES BACK>

2 (ARITH)

The above will load the Arithmetic Package into

expanded core. To load the package into BINARY PROGRAM
SPACE type (LOAD T) instead of (LOAD).

Available Functions

Function Name . . Meaning
SIN Sine with argument in radians
SIND Sine uith argument in dogrees
.C0s - = - Cosine With argument in radians
COoso Cosine with argument in dogrees
TAN Tangent
ASIN Arc Sine
ACOS Arc Cosine
ATAN Arc Tangent
SINH Hyperbolic Sine
COSH Hyperbolic Cosine
TANH Hyperbolic Tangent
LOG Log base e
EXP Take e to a pouer
SQART Square Root
FLOAT Convert to a FLONUM
RANDOM Generates a random number

betueen 8.8 and 1.0

FUNCTIONS FOR THE SYSTEM BUILDER

- Loading Complted Code into the High Segment

The UCI LISP System has a sharable - high segment. This
high segment contains the interpreter, EDITOR, BREAK
package, and all of the utifity functions. 1f the user
wants to create his ouwn system he must be able to load
compiled code into the high segment., To allow the loading
of code into the high segment, the user must both oun the
file and have urite priveleges; to be urite priveleged, the
user must either be creating the system from UCILSP.REL (see
the section on creating the system) or follow the procedure
indicated in the function SETSYS. The following three
functions are for the purpose of loading code into the high
~segment and will only work if the user is write priveleged.

- (HGHCOR X)

If X«NIL the "read-only" flag is turned on (it is
initially on) and HGHCOR returns T. Otherwise X is
the amount of space needed for compiled code. The
space is then allocated (expanding «core if
necessary), the "read-only" flag is turned off and
HGHCOR returns T,

(HGHORG X)

I1f X=NIL the address of the first unused location is
returned as the value of HGHORG. Otheruise the
address of the first unused location is set to X and
the old value of the high seg. origin is returned,

(HGHEND)

The value of HGHEND is the address of the last
unused location in the high seg.

(SETSYS DEVICE FILE)

SETSYS enables tho user to create his oun sharable
systenm, DEVICE is either a project-programmer
number or a device name followed by a colon (i.e.
DSK:). FILE is the name of the system the wuser is
creating. In order to create the system, the user
must Control-C out and do an SSA FILE, then run the
system. After this procedure, the user has urite
priveleges and may load code into the sharable high
segment. (Note that the user need not use this to
save a low segment only)l. This procedure is not
necessary for generating the system.

The Compiler and LAP

Special variables

In order to print variable bindings in the backtraces,
we have put a pointer to thje atom header in the CAR of the
SPECIAL cell of all bound atoms not used free . in compiled
code. Unfortunately, for compiled code code to fun, the CAR
of the SPECIAL cell of free variables must be NIL, This,
when loading LAP code, special variables must be saved if
they are to be printed properly in a backtrace. The
necessary information is stored on LAPLST which contains the
name and the special cell of each special variable in the
system. Since this means a two word overhead for each
special variable, there is a flag which controls the adding
of items to LAPLST. Special variables are added to LAPLST
iff the variable SPECIAL is non-NIL. The initial value of
SPECIAL is T. -

Removing Excess Entry Points - NOCALL Feature

1f, during compilation, a function has & non-NIL NOCALL
property, all calls to that function are compiled as direct
PUSHJ's: to the entry point of that function with no
reference to the atom itself. After loading, all functions
used in this manner will be left as a list on the variable
REMOB. This means that many functions which are not major
entry points .can often times be REMOBed to save storage.
The user may use (NOCALL FOO1 F002 ... FOOn) to make
several NOCALL declarations. Like SPECIAL and DECLARE, when

NOCALL is used outside of the compiler, it acts the same an

NILL.

T~
;

" (FREE X)

Miscel laneous Useful Functions

~ (UNBOUND)

UNBOUND returns the un-interned atom UNBOUND which
the system places in the COR of an atom’s SPECIAL
(VALUE) cell to indicate that the atom currentiy has
no assigned value even though. it has a SPECIAL
(VALUE) cell on its property list.

(SYSCLR)

Re-initializes LISP to read the user’'s INIT.LSP file
when it returns to the top level, e.g. by a
Control-G or a START, or a REENTER.

ek ARN I NGsrsesiesiones

The following tuwo functions can catastrophically
destroy the garbage collector by creating a circle in the
free list if they are used to return to the free list any
words which are still in use. Do not use these functions
unless you are certain what you are doing. (They are only
useful in rare cases where a small amount of working storage
is needed by a routine which is called quite often.) .

FREE returns the word X to the free storage list .and
returns NIL.

(FREELIST X)
FREELIST returns all of the words on the top level

of the list X to the free storage list and returns
NIL. FREELIST terminates on a NULL check.

Initial Sustem Generation

1) To Generate UCILSP.REL

.R MACRO
«UCILSP.REL/P/P/P/P/P/P/P/P/P/P<UCILSP.MAC

(Needs to be done only when UCILSP.MAC is changed.)

2) To Generate the LISP System (LISP.SHR and LISP.LOW)
R LOADER |
*UCILSP.RELS

.CORE 15

.START

BIN. PROG. SP. = 106
(INC (INPUT DSK: LAP))
<RANDOM MESSAGES>

1C :
.SSA LISP

<The preceeding loads the following files:
UCILSP.REL, LAP, SYS1.LAP, SYS2.LSP, ERRORX.LSP, ERRORX.LAP,
BREAK.LAP, EDIT.LAP>

(Needs to be done whenever any of the above files are changed.)

3) To'Generate’LISP. SV, the LiSP LOADER SYMBOL' TABLE

.RU LOS2A (Yersion 52 of the DEC Loader.

This file is included with the LISP System)
#*UCILSP.REL/J, SYMMAK. RELS
.START

(Must be done uhenever Step 1 is perforned.)

4) To Generate COMPLR.SAV, The LISP COMPILER

5)

.AS DSK SYS

.R LISP 36

FULL WORD SP. = 2000

BIN. PROG. SP. = 15000

*(INC (INPUT DSK: (COMPLR.LAP)})
<RANDOM MESSAGES>

% (NOUUO NIL)

#*(CINIT)

*C

+SA COMPLR. SAY

.DEL COMPLR.HGH

(Must be done whenever Step 3 is performed.)

To Generate LISP.LOD, the LISP LOADER

R LOADER
*LOADER. REL 8
.START

(Needs to be done only when LOADER.MAC is changed.)

THE LISP EVALUATION CONTEXT STACK

The Contents of the Contoxt Stack

Whenever a form ie given to EVAL, it is pushed onto
the top of the Special Pushdoun List in the form of an
Eval-Blip. Thio infornation is used for backtraces. An
Eval-Blip entry hao NIL in the left half (oo SPOLFT) and
the form boing evaluatod in tho right half (see SPOLRT).

Algo, wvaricblo bindings are saved on the Special
Pushdoun Liet. The loft side of the ontry contains a
pointer to the special cell and the right cide contains
tho vaolue which was savod,

Tho onlg other itotis on tho Spociaf Pughdoun List
are uged by the LISP interproter, and aluayc have a
non-NIL atom in tho loft half. : T

In the user's programs, stack pointers are always
repregsented as INUMs. This allows the program to easily
modify them with the standard arithmetic functions so
that & program can step either up (toward the most recent
Eval-Blip) or doun (toward the top level of the
interprotor) of the stack at will. . '

.. All of the functions in this chapter take INUM’s for
the pointer arguments.” The actudl poiriter. “to the stack
elemgnt requires an offcet from the boglnnjng of the

stack, For tho user to obtain a trusc LISP pointer he
must call the function STKPTR (with an INUM argument
also). (l.o. if tho user wishes to do an RPLACA or
RPLACD on an eloment of the stack, ho musct got a pointar
via STKPTR.)

o

Examining tha Context Stack

(SPOLPT)

The value of SPDLPT is a stack pointer to the
current top of the stack. (Raturns an INUM).

(SPDLFT P)

The value of SPDLFT is the left side of the stack
item pointod to by the stack pointer P.

. (SPOLRT P)

The value of SPOLRT ig the right side of the
stack item pointed to by the stack pointer P.

(STKPTR)

The value of STKPTR is a trus LISP pointer to a
stack item.

(NEXTEV P)

.. 1f .the stack pointer P is a pointer to an

Eval«Blip, the value of NEXTEY is P, Otherwise,

NEXTEV searchas down the stack, starting from P,
and returns a otack pointer to tho first
Eval-Blip it finds., If NEXTEV can not find an
Eval-Blip it returns NIL.

(PREVEY P)
PREVEV is similar to NEXTEV except that it moves
up the stack instead of doun it,

(STKCOUNT NAME P PEND)
The value of STKCOUNT is the number of Evai-Blips

Wwith a STKNAME of NAME occurring betusen stack
pogitions P-1 and PEND, where PEND'< P. .

3.2

et

(STKNAME P)

"1f position P isc not an Eval-Blip, the value of
STKNAME is NIL. If position P is an Eval-Blip
and the form is atomic, then the val.e of STKNAME
is that atom. If the form is non-atomic, STKNAME
returns the CAR for the form, i.e. the name of
the function.

(STKNTH N P)

The value of STKNTH is a stack pointer to the Nth
Eval-Blip starting at position P, I¢# N is
positive, STKNTH moves up the stack, and if N is
negative, STKNTH moves doun the stack.

(STKSRCH NAME P FLAG)

The value of STKSRCH is a stack polnter to the
first Eval-Blip with a STKNAME of NAME, The
direction of the search is controlled by FLAG.
If FLAG=NIL, STKSRCH moves doun the stack,
Otherwise STKSRCH moves up the stack. STKSRCH
never roturns P for its value, i.0. it steps once
before checking for NAME.

. (FNDBRKPT P)

The value of FNDBRKPT is a stack pointer to the
beginning of the Eval-Block that P is in. The
beginning of a Eval-Block is defined as an
Eval-Blip uhich does not contain the next higher
Eval-Blip within it. This function is used by
the backtrace functions. '

()

/,

Controlling Evaluation Context

(QUTYAL P V)

DUTVAL adjusts P to an Eval-Blip and returns from
that position with V.

(SPREDO P V)

SPREDO adjusts P to an Eval-Blip and re-evaluates -
from that point.

(SPREVAL P V)

SPREVAL evaluates its argument v in its local
context to get a form, and then it returns to the
context specified by P and evaluates the form in
that context, returning from that context with
the value. This is very similar to SPREDD except
that the EVAL-blip on the stack is changed.

Note: OUTVAL, SPREDO and SPREVAL all use NEXTEV to adjust
P to .an Eval-Blip. :

(EVALY A P)

-*The' value of EVALY. is the value of ‘the atom A
evaluated as of position P. If A is not an atom
then It must be the special cell of an atom. By
using the special cell instead of the atom,
special variables can be handlaed properly. EVALY
is similar to EVAL with two arguments, but is
more efficient.

(RETFROM FN VAL)

RETFROM returns YAL from the most recent call to.
the function FN wuwith the value VAL. For RETFROM
to work, there must be an Eval-Blip for FN. The
only way to be sure to get an Eval-Blip in
compiled code is to call the function with no
arguments inside of an ERRSET, e.g. (ERRSET
(FUNC)). ’ o

Storage Allocation

When the LISP system is run with a core
specification given (i.e., ".R LISP n", n>22), LISP types
"ALLOC? (Y OR N)". If you type "N" or space {(for no)
then the system uses the current allocations. If you
type "Y" (for yes) then the system allous you to specify
for each area either an octal number followed by a space
designating the number of words to added to that area, or
a space designating an increase of zero wWords.

Example: (user input is underlined)

ALLOC? (Y OR N) Y
FULL WORD SP. = 208
BIN. PROG. SP. = 2800
REG. POL. =

SPEC. POL. = 1008

Any remaining storage is divided betueen the spaces as
fol louss

1/16 for full word space,

1/64 for each push doun list,
the remainder-to free storage and bit tables.

Reallocation of Storage

" I'f you exhaust one “of the storage’ areas it is

possible to increase the size of that area by using the
reallocation rocedure. First, expand core With the time
sharing system command CORE and then reenter LISP with
the REE command. For example, if the original core size
was 22K, you could increase it by 4K as follous:

%1C
.CORE 26
.REE

When you reenter LISP, the same allocation procedure is
followed as described above. .

18 .1

8

Initial Allocations

The following are the initial allocations for the
various storage areas when LISP is initially run.

FREE STORAGE
FULL WORD SP.

BIN. PROG. SP. .

REG. POL.
SPEC. POL.

= 2208
788
100

1888

1000

g 4 g

18 . 2

L

INDEX

A (edit command) -----=————cmmm 2.13, 41
ACOS — e o 7. 2
ANDH —m— e o 6. 3
APPLYH — = e e e e e 3.5
ARGS (break command) ----------mcecmmmcmmaaean 1.10
ASIN == e 7. 2
ASSOCH —=~- == e e 5. 7
ATAN m oo o e e e e 7. 2

B (edit command) -------ceemmm o 2.13, 31
BELOW {edit command) ------meommmmm e 2.32, 33
BF (edit command) ---=—~—--c-mmmr e 2.10, 28
BI (edit command) —----cemmomm e 2.54
BIND (edit command) --~--=-——ce—mmmmcmcemmee 2.70

BK (break command) -----==-mcmmmmmm e 1.15

BK (edit command) -----ecsmmmmmmmcm e 2.18, 19
BKE (break command) —----==--=s—emm e 1.15
BKF (break command) ---=----—cmmmmm e 1.15

BO (edit command) ------ccmommomm e 2.55
BREAK == oo e e e e o 1. 1, 18
BREAKIN === e e e e e e e e 1. 1, 28
BREAKMACROS -----==-—m oo oo e 1.17
BREAKB —=~—cm o e e e e e e 1.23
BREAK] —- - mm oo e e e e 1. 6
BRKEXP == e mm e e e e e e e e 1. 7
BROKENFNS === == e mm e e e o 1.18
CHANGE (edit command) -==-eem-meommcommcmeee o 2.43
CHRVAL —-= e mm o e e e 5.9
CLRBF] == m e e e 4, 5
COMS (edit command) =====—--——cacmmcmmecaee 2.64
COMSQ (edit command) =—-=-—-—-——-e—cmmmcmcmaaeo 2.64
CONSP == mmm e e e e e e e e e e e 6. 1
COPY —mmmmm e e e e - 5. 3
COS == mmm oo e 7. 2
COSD ~--ommmmmm e e o 7. 2
COSH ———mmm e e e e 7. 2
DOT mmmem e e e e e e e 1. 5
DELETE (edit command)} -=------emommommmaeeeeo 2.14, 41, 43
DREMOVE ~-----cmm e mmm e 5. 4
DREVERSE —=---=-—mmmmmm e 5. 4
DRM — e e m e e e 4, 6
DSKIN = e e m e e e e e e 4, 1
DSKOUT —o e e e m e e e e e 4, 1
DSM e e e e 4, 6

INDEX . 1

DSUBST —-—mm e e e e 5. 4
E (edit command) -—--mmmommmc ol 2. 9, 63
EDIT (break command) ~--------oommmommmmeee 1.13
] 2.83
EDITCOMSL == e mmm e e e e 2.78
EDITDEFAULT —---mmmm i m e e e 2.78
EDITE —--emmmmm e o 2.81
EDITF —mmmmm e e 2.81
EDITFINOP —--cemo e e e o 2.84
EDITFNS —=cmmmmmm e e e e o 2.83
EDITFPAT —mcmm e e e 2.84
o B 2.88
EDITP w—m e e e 2.82
EDITRACEFN ‘= o e e e e e 2.84
EDITY mmm e e e o 2.82
EMBED (edit command) --=-----cec—mmmmcmcmaaeo 2.49
ERR —= e 3. 4
ERROR === e e o e e el 3. &4
ERRSET --m-mmmmm oo e 3. 4
EVAL (break command) ------=-mecmmmmmmm e 1. 8
EVALY — oo mm e o 3. 4
EX (break command) —---==ocoemme o e 1. 14
EXP ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 70 2
EXTRACT (edit command) -----=-cccmmmmmmmaam -- 2,47
F (break command) —----=-ommmmmm o 1.11
F (edit command) -----emmoom e 2. 6, 26, 27
FLATSIZEC ----mommmmmm e e 5.9
FLOAT —mmmm e e 7. 2
FNDBRKPT == e em e o e e e e e o 9. 3
FREE —----mm oo e e e 8. 3
FREELIST —ommmmmmmm e 8. 3
FROM?= (break command) ----=-==-=-c—c-ommemmao 1. 9,
FS (edit command) ===--ecmmm e 2.28
F= (edit command) —--c-commommm e 2.28
GO (break command) -——-==--—mmmmm oo 1. 8
GRINDEF —ee e e e 4. 3
GRINL — e e e e 4, 3
GRINPROPS === m e mm e e e e e 4. 3
HERE (in editor) ——---commmmmmmc e 2.44, S2
HOHCOR === s e e e e e e e o 8. 1
HGHEND === e e e e o m e e e e e 8.1
HOHORG - == m e m o e e e o e e e e 8. 1
I (edit command)} —-----omommm e 2.63
IF (edit command) -——----mcmmmmmmm e 2.66
INITPROMPT == e e e e e e 4, 5
INSERT (edit command) ------- e 2.43
LAMBDA —m e e e e m m e e e e 3.1
CLAP e o 8. 2

INDEX . 2

(”\

LAPLST memm e e e e e e e el 8. 2
LASTUORD ---=-mmmmm e e e e s e 2.81, 82
LASTPOS -o-— - mmmmm e e e e e e 1.11-
LC (edit command) -=-—--cecommmm e 2.31
LCL (edit command) ----—-—c-ommmem e 2.31
LCONC === m e mm e m e e e e e e 5.2
LOIFF —emm e e e e e e o 5. 8
LEXORDER === o m oo o e e e 6. 2
LI (edit command) —=--—cmommmmm oo 2.55
LINEREAD ——=--mmmmm e mmm o e e b, 4
LITATOM == mmmmmmm e e e B. 1
LO (edit command} ---~----=weu-o e 2.55
LOG —mmmm e e e e e 7. 2
LP (edit command) -----—-meommommm e 2.66
LPQ (edit command) —--==—=—-mmmmmmm 2.67
LSUBST —omm e o e e e 5. 3
M (edit command) --—-—-~-cmecmcmmmmm e 2.68, 69
MAKEFN (edit command) -=------ccmmmomcommmaanan 2.75
MAPCAN == m e o e e e e e e e e o 5. 6
MAPCON —- e oo oo mm e e e 5. 6
MAPCONC === e oo e e o e e e 5. 6
MARK (edit command) -—--tmm-mmommmm oo 2.36
MAK = mm e e e e e e 7.1
MAXLEVEL == - == mmmm oo o e e e 2.24
MBD (edit command) —----=-=-—mmo—mmmmmmmmeeeo 2.14, 48
MEMB —---—mm e oo oo 6. 3
MEMBER# —----~ oo e e e 6. 3
MEMOH ------mmmmmmm e e R e LT 6. 3
MIN —mm e e e 7. 1
MODCHR === e m e e e m e e e e e e 4, 8
MOVE: (edit command) -=---=--—mommmm oo 2.59
N (edit command) —------mecmommmm e 2. 5, 38
NEQ —---mmmmmm oo e s 6. 4
NEX (edit command) -----=-—m—commmmmmmmm e 2.33
NEXTEY —-—mmm e mm e e e 9. 2
NIL (edit command) —-=-=———memmmmm e 2.71
NILL —m e e e e e 3.5
NOCALL ~---mmmmmm e e 8. 2
NTH ==-cmmmme - e e 5.3
NTH (edit command) =-=—===c-mommemmmmmmm e 2.21, 33
NTHCHAR - == - mmmm e —————— 5.8
NX (edit command) -—------ocmommcm e 2. 8, 33
0K (break command) —----=--cmmemmmmme e 1. 8
OK (edit command) -=---cecmommcmmcm e 2.71
ORF (edit command) -—--—-----e—mommmmmcmoe e 2.28
ORR (edit command) -—--====--mmm e 2.67
ORH# - e e 6. 3
OUTVAL == —mmm e e e e 3. 4
INDEX . 3

P (edit command) ------cmemmmmmom o 2. 2
PATOM == e e e e e e e e 6. 1
PP (edit command) -——---cemommmm e 2. 2
PREVEV = o e e e oo oo e e e e e e 9. 2
PRINTLEV === -omemmmmm e e e 4, 2
PROGN === === mm o e e e e e e e 3. 2
PROGI = - e oo mm e e e 3. 2
PROMPT e e e e e e e e e e e 4. 5
R (edit command) =---=-=s-mmmmm o 2. 7
RANDOM == e e mm e e e e e e e 7. 2
READP == - o e o e e e e 4, 5,
REE ——- e e e e e 1. 5
REPACK (edit command) -—==w-ceeoccemc e 2.74
REMOVE ~ e e mm e e e e e 5. 3
RETFROM === -~ m oo e m oo e e 9. 4
RETURN (break command) --------c-mommcmmcamenee 1. 9
Rl (edit command) ——~--ecommm o 2.55
RO (edit command) —=--=e--ommm e 2.56
S (edit command) ----m-ccmemom e 2.37
SAVE (edit command) ----==--mcomcommmcecee o 2.72
SECOND (edit command) -—-=-----—-mmmmmmmmmmmeeee 2,31
SELECTO -=--=--ccomm oo 3. 3
SETCHR === mm o e e e e e e 4, 8
SIN m o e 7. 2
SIND ==mmmm o o e 7. 2
SINH —m e e e 7. 2
SPECIAL ~=-mmmmmmm e e e 8. 2
SPOLFT —emmm e e m e e e e 9. 2
SPOLPT =-mmmm e e o e e e e 9. 2
SPDLRT = mmm e mm e e e e 9. 2
SPREDD === === mm e e e 9. 4
SPREVAL —=c-mmemmmmm e e e 3. 4
SPRINT memmm e e e e e e 4, 3
SORT e e e e e 7. 2
STKCOUNT mmmmm e s s e e e 9. 2
STKNAME === m e e e e 9. 3
STKNTH ————— e o e e oo e e 9. 3
STKPTR — e e e e e e e e e o 9. 2
STKSRCH —=-m e e e 9. 3
STOP (edit command) —-----c-mmommmmmm e 2.72
STRINGP —--- e e e e 6. 1
SUBLIS ——=-mmm e e e e e 5.7
SUBPAIR —==mmm o e e e 5.7
SURROUND (edit command) ------=-o-mmommmmaeee 2,49
SW (edit command) ----==---mmmmmm e 2.61
SYSCLR === mmmm e e e e e 8. 3
TAB = e mm e e e e e 4, 2
TAILP —=— e mmmmm e e 6. 3

INDEX . 4

2]
N

- N
x

TAN s e e e e 7.2
TANH — oo e e e 7.2
TCONC == mm s e e e e e 5.1
TEST (edit command) =—---==---cmmmm e 2.77
THIRD (edit command) -=--=----memmmmm o 2.31
THRU (edit command) ----=--=--cmcom oo 2,57
TO (edit command) —-----ccomcmtm e 2,57
TRACE o mmmm e e el 1. 1,
TRACEDFNS == -- o e e oo e e e 1.18
TTYECHD = oo o mmm e e e e e e e e e e 4, 5
TTY: (edit command) =----e-mmmmmm e 2.71
UNBLOCK (edit command) —----=-c--mmmmmmmmmaeo 2.77
UNBOUND —=—= = m = o e o 8. 3
UNBREAK - == e e m o e e e e 1.21
UNDO (edit command) =--====——emommmmmmmmmme e 2.18,
UNDOLST === mm oo s e e e 2.76,
UNFIND =omom o m oo e e e e 2.26,
UNTRACE —=--=m-me oo e e 1.22
UNTY] oo o e e e e e e 4, 5.
UP (edit command) —=-—=e-eeomm e 2,13,
UPFINDFLG == s oo oo e 2.45
USE (break command) -----=--=-c-commeomammmee e 1.18
USERMACROS —==-==mmm s mm e e e e e e 2.70
XTR (edit command) ---=--=-cmmmcmmmm e 2.14,
0 (edit command) -=c~-=meemmee e 2. 4,
*ANY% (in edit pattern) -—----ececmccmeceaeeoo 2,22
K(MAX m e e e 7. 1
MMIN = mm o o 7. 1
Bl o mmmm e e e 2.64
#4 (edit command) -—---=-ceeoememmome oo 2,44
@ (at-sign, in edit pattern) ~—-s-e--ieimaano 2.12,
* (break command) <=------c-mememao-—- B --- 1,18
t (edit command) ===----eem—mm e 2. 4,
' (break command) ---===--cmmmcecm e caenen 1.18
& (break command) ==-=--eomme e 1.11
& (in edit pattern) --=cec-memcmmcmcm e 2.11,
? (edit command) ~---cememmmem e 2. 2,
?? (edit command) --—----=--m-mmmmmem e 2.77
?= (break ‘command) —---=e--mmemo e 1.13
« (in break package) ---=---=c-emmsmmmemmee 1.12
e« (edit command) ===--=emmom e eememee e 2.36
~« (edit command) -=--e-emmcmem e 2.36
¢ (edit command) ==---ecemmmmcm et aeee 2.14,
13 (edit command) =—--eeemmmome e 2,34
t2: (in edit pattern) —-ee-eeecmmcm e 2.22
== (in edit pattern) ——-—-eemmmcc e 2,22
—- (in edit pattern) -—----ceeecmmm e 2.11,
< (edit command) ------emcmommme e 2.18,
INDEX . 5

76
36

16, 50

46
18

22
18

22
62

41

22
36

<P (edit command) —==—=-- o 2.11, 37

(« pattern) (edit command) -----c-meommmcaa— 2.32
> (break command) —--=---commmmmccmmec o 1. 8
-> (break command) -=----e-emmmem e 1. 9
BLOOKDPTH =o o s e e e e e e e 1. 8
RPRINFN = m oo e e 1. 8
INX (edit command) ~--=--cmmommm e 2.28
'UNDO (edit command) ------=-mooommmmmomcmmeee 2.76
'8 (edit command) -—--------ommmmmmmm e 2.18
IVALUE — = e e e e e e e 1. 8

INDEX . 6

	Table of Contents

	Introduction

	Credits and Acknowledgements

	1
Debugging Facilities
	2 The LISP Editor

	3 Extended Interpretation of LISP Forms

	4 Extensions to the Standard Input/Output Functions

	5 New Functions on S-Expressions

	6 New Predicates

	7 New Numeric Functions

	8 Functions for the System Builder

	9 The LISP Evaluation Context Stack

	10 Storage Allocation

	Index

