
CS 206 CLASS NOTES

UCI LISP MANUAL
(An Extended Stanford LI SP 1.6 System)

by

Robert J. Bobrow
Richard R. Burton

Daryle Lewis

A reprint of UC Irvine Information and Computer Science
Technical Report No. 21, October 1972

..
\
\

Table of Contents

I ntroduct i on

Debugging Fac; lities
Introduction
Temporari Iy Interrupting a Computation
BREAKI - The Function that Supervises all
Breaks

What You Can 00 In a Break
Break Commands

Leaving a break with a value
(OK.GO,EVAL,FROM?)

Correction of UNBOUND ATOM and
UNDEFINED FUNCTION errors (>, USE)

Aborting to Higher Breaks or the Top
Level (1', 1'1')

Examining and Modifying the ConteKt of
a Break

Searching for a Context on the Stack
Editing a Form on the Context Stack
Evaluating a Form in a Higher ConteKt
Backtrace Commands
Printing the Functions, Forms and Variable
Bindings on the Context Stack

Breakmacros
User D~fined Break Commands

How to Use the Break Package
Setting a Break to Investigate a Function
Tracing the Execution of Functions
Setting a Break INSIDE a Function
Removing Breaks and Traces
Using BREAK0 Directly to Obtain
Special Effects from the
Break Package

Error Package - Getting Automatic Breaks
When Errors Occur

Summary of Break Commands

e. 0

1. 1
1. 1
1. 5

1. 6
1. 8
1. 8

1. 8

1. 9

1.10

1.11
1.11
1.12
1.12

1.15

. 1.,17
1.18
1.18
1.19
1.19
1.21

1.23

1.24
1.25

The LISP Editor
I ntroduct ion
Commands for the New User
Attention Changing Commands

Local Attention Changing Commands
Commands That Search

Search Algorithm
Search Commands
Location Specification

Commands That Save and Restore the
Ed it Cha in

Commands That Modify Str~cture
Implementation of Structure

Modification Commands
The A, B, : Commands
Form Oriented Editing and

the Role of UP
Extract and Embed
The MOVE Command
Commands That IIMove Parentheses"
TO and THRU

Commands That Print
Commands That Evaluate
Commands That Test
Macros
Miscellaneous Commands
Edi tdefaul t
Editor Functions

Extended Interpretation of LISP Forms
Evaluation of Sequences of Forms

Extended LAMBDA Expressions
The Functions PROGI and PROGN

Conditional Evaluation of Forms - SELECTQ
Changes to the Handling of Errors
Miscel lania - APPLY#, NILL

2. 1
2. 2
2.10
2.15
2.16
2.22
2.24
2.26
2.30

2.36
2.38

2.39
2.41

2.45
2.46
2.50
2.54
2.57
2.62
2.63
2.66
2.68
2.71
2.78
2.80

3. 1

3. 1
3. 2
3. 3
3. 4
3. 5

Extensions to the Standard Input/Output Functions 4. 1
Project-Programmer Numbers for Disk 110 4. 1
Saving Function Definitions, etc. on Disk Fi les 4. 1
Reading Fi les Back In 4. 1
Printing Circular or Deeply Nested Lists 4. 2
·Spacing Control - TAB 4. 2
"Pretty Printing" Function Definitions and
S-Expressions 4. 3

Reading Whole Lines 4. 4
Teletype and Prompt Character Control Functions 4. 5
Read Macros - Extending the LISP READ Routine 4. 6

Functions for Defining Read Macros 4. 6
Using Read Macros 4. 7

Modifying the READ Control Table 4. 8

Ne~ Functions on S-Expressions 5. 1
S-Expression Bui Iding Functions 5. 1
S-Expression Transforming Functions 5. 3
S-Expression Modifying Functions 5. 4
Mapping Functions with Several Arguments 5. 5
Mapping Functions which use NCONC 5. 6
S-Expression Searching and Substitution Functions 5. 7
Efficiently Working ~ith Atoms as Character Strings 5. 9

Ne~ Predicates
Data Type Predicates

. Alphabetic Ordering'Predicate
Predicates That Return Useful Non-NIL Values
Other Predicates

Ne~ Numeric Functions
Minimum and Maximum
FORTRAN Functions in LISP

6. 1
6. 1
s. 2·
6. 3
6. 4

7. 1
7. 1
7. 2

Functions for the System Bui Ider
Loading Compi led Code into the High Segment
The Campi ler and LAP

Special Variables
Removing Excess Entry Points

Miscellaneous Useful Functions
Initial System Generation

The LISP Evaluation Context Stack
The Contents of the Context Stack
Examining the Context Stack
Control I ing Evaluation Context

Storage AI location

Index

8. 1
8. 1
8. 2
8. 2
8. 2
8. 3
8. 4

9. 1
9. 1
9. 2
9. 4

10. 1

INDEX. 1

........... _ ..

INTRODUCTION

UCI LISP is a compatible extension of the Stanford LISP
1.S programming system for the DEC PDP-lao The extensions
make UCI LISP a po~erful and convenient interactive
programming environment for research and teaching in
artificial intelligence and adva.nced list processing
appl ications. All Stanford LISP programs, (except those
using the BIGNUM package) can be run directly in UCI LISP.
In addi tion, the e)('tended features of UCI LtSP make it much
easier to transfer interpreted LISP programs from BBN LISP
and MIT AI LISP (~e have already converted several large
programs, including a version of the Woods' Augmented
Transition Net~ork Parser from BBN LISP, and a version of
Micro-Planner from MIT AI LISP.)

This manual describes the extensions to the Stanford
LISP 1.6 system, and should thus be read in conjunction ~ith
the latest Stanford ~ISP 1.6 manual, currently SAILON 28.6
(Stanford Artificial Intel I igence Laboratory Operating Note
28.S), As can be seen from the relative sizes of the two
documents UCI LISP represents a substantial extension to
Stanford LISP, and from our o~n experience presents a major
improvement in the habitabi lity of the system for both naive
and experienced users. (A majority of the ex~ensions were
suggested by the features of BBN LISP, probably the best
interactive LISP system In a~istehce, but unfortunately
ava; lable only on TENEX, a paged virtual memory system for
the POP-Ie, produced by Bolt, Beranek and Newman Inc.)

The major extensions to Stanford LISP can be briefly
described as fol lo~s:

1) Improvements in storage uti I ization:
a) UCI LISP is reentrant and compi led code may be

placed in the sharable high segment
b) the allocator al lo~s real location of al I

spaces (including Binary Program Space) at any
time

2) Po~erful interactive debugging faci I ities,
including:
a) Sophisticated conditional breakpoint and

function tracing faci lities

a . 1

b) A powerful I ist structure 'editor for editing
function definitions and data

c) Faci lities for examining, correcting and
continuing to run in the context of a program
which has been interrupted by an error or by a
user initiated temporary interrupt

3) Extensions to the I/O faci lities avai lable in the
basic system, including:
a) Convenient I/O to disk fi les, including use of

project/programmer designations and ways to
save and restore functions and data

b) Read Macros (patterned after MIT AI LISP) for
extending the LISP READ routine

c) A routine for printing circular or deeply
nested expressions

d) Routines to modify the control table of the
LISP READ routine

e) Several useful functions for carriage
positioning, teletype echo and prompt
character control, reading input a I ine at a
time, etc.

4) Functions for examining and modifying the special
pushdown stack which holds the context of ongoing
compu tat i on·s

5) Error protection faci lities:
a) NIL, T and other atoms cannot be easi Iy

damaged by RPLACA, RPLACD, SETQ.and SET
b) The system wi I I no lon~er go into ah infinite

loop when searching for the function
definition of the CAR of a form

6} Extended basic functions including:
a) New predicates for data types, and predicates

which return useful values
b} New I ist construction and modification

functions
c) Multiple sequential form evaluation in LAMBDA

expressions
d) An efficient n-way switch
e) Avai labi lity of the FORTRAN mathematical

functions
f) Mapping functions with several arguments, and

ones which bui Id new I ists using NCONC to join
segments

a . 2

As mentioned, we have made UCI LISP a reentrant system
which may be usod by several users simultaneously. Thus,
whi Ie the new features of UCI. LISP require a larger system
than the original Stanford LISP, this impact is minimized in
any environment with more than one LISP user. In addition,
since the ba9ic LISP system contains many features
previou91y available only in the various extension fi les

. (such as SMILE, ALVINE, TRACE, etc.) or which had to be
written by the user, it is possible to write and debug
meaningful jobs in the basic system, without getting extra
core. The UCI LISP system has a sharable high segment of
14K and a user specific low segment of BK. Thus, if there
are two users the virtual core load is 30K, whi Ie getting
the same capabi lities in Stanford LISP would require a load
of 32K for the two users, and of course the improvement is
even more noticeable with more users sharing UCI LISP {about
BK Is saved for each additional user}.

The abi lity to put compiled code in the sharable
segment and to real locate Binary Program Space makes it
possible to bui Id systems in which much of the systems code
is compi led LISP expressions. All of the advantages of
higher level coding are obtained, and the LISP campi ler
(borrowed from Stanford with some smal I modifications)
produces better results than most assembly language coders.
Such partially compiled systems can now be used without
closing off the possibility of the user extending Binary
Program Space to store his own campi led code. In general,
it is now possible to campi Ie a syetem incrementally •• The
user can save' the low segment 'wh~ch contains the 'partial Iy
complied system, then test out new matarial in interpreted
form before extondingthe Binary Program Space in the
segment to load the new compiled material.

The debugging faci lities form the bulk of the
extensions to Stanford LISP, and are identical with the
equivalent faci I ities available in BBN LISP in the summer of
1971. eSSN LISP has been extenped in the intervening
period.) They make it possible for the user tq track down
bugs in complicated recursive programs by making it easier
for him to investigate the context in which the bug occurred
(e.g. to see at ~hat point erroneous data was passed as an
argument, or at what point the flow of control w~rit awry,
etc.) The user does not have to plan in advance or set
breakpo i nts to get access to the context of the error~' .The
system holds the context of any error automat~cally,

o . 3

allowing the user to perform uhatever illvestitlations lip.
wishes, and make any corrections which may I)e useful. This
also makes it possible to patch up a small error, I ike an
unbound atom or simple undefined function, n the middle of
a large computation and to continue the computation without
having to start from scratch. Simi larly, ':he user can try
out ideas for correcting the error, without leaving the
context of the error, and go on only when he has pinned down
the error and its possible solution. If the information
avai lable at the time the LISP system discovers the error is
insufficient to pin down the cause of the error, the user
can have the system repeat the computation, with a special
trace feature that prints out whatever the user wishes to
know at various points in the computation. (The user can
specify both what data is to be printed and under what
conditions he wishes it printed.) The user can also force
the system to establ ish a breakpoint anywhere in his
computation, so he can investigate the context before the
error has covered its tracks.

The UCI LISP editor {borrowed with some modifications
from the BBN LISP system} is actually a language for
incremental modi fication of I ist structures. It can be used
by a user at a terminal to modify function definitions (even
during the middle of a break whi Ie the function is sti I I on
the context stack) or to change compl icated data structures.
It can also be used as a subroutine by other functions,
making it convenient for one function to modify another
function. This is. actually done by the BREAK.package, to
im~lement the function BREAKIN which inserts a bre~kpoint at
any arbitrary point in a user function.

The editor can move around in a structure by smal I
local motions, or by searching for a portion of the
structure which matches some given pattern. It can insert
new items, delete old ones, interchange items, change
structure, . embed old items in new structure or extract them
from old structure, etc. In order to be able to edit a
function which is sti I I on the context stack and to have ai I
of the portions on the context stack be changed at once, ~he

modifications performed by the editor are physical changes
of the existing structure. Although al I the modifications
are "destructive ll

, using RPLACA and RPLACD to make changes
in the given structure, al I of the modifications can be
selectively reversed by means of the UNDO feature. Thus the
user can make modifications without worrying about
completely destroying his function definitions by accident.

o . 4

"t .. ,·

The editor is a very large, complicated function, and its
documentation indicates that fact. However, the first part
of the editor documentation gives a convenient rundown on
how to uee the editor as a novice, and with that the
beginning user can get quite a bit done. By skimming the
remainder of the editor chapter the user can get some idea
of the manu extra useful features available, and can slowly
extond hia capabi I itios with the editor. It has been a
common observation that in tha process of writing and
debugging a large system, or even a omall program, the
average user spends ~ost of his time in editing his
functions. By becoming fami liar with all the features of
the list structure editor the user can cut his editing time
cone 1 derab I y, and make I arge or subt I e changes eas i I y.. The
user should also bear in mind that the editor is available
as a function which can be used by other functions. This
can make many jobs substantially easier~

NOTE: ALVINE is no longer available in the standard
version of UCI LISP because we believe that the new editor
and liD faci lities are substantially better than those
provided by ALVINE. (There is an assembly switch which
makes it possiblo to run ALVINE in UCI LISP if necessary.)

Some of the extended I/O facil ities of UCI LISP were
available in SMILE, etc., but putting them in the shared
system saves core. The Read Macro facility is a great
convenience, and makes using Micro-Plannor much simpler. The
user-mod if I ad READ contra I tab lei 0 more ge'nera I than that
avai labia in the Stanford SCAN packago (which ia atill

. useful and available). and the new SPRINT is faster than the
origi~al. The other functions are quite convenient, and
~ill make many tasks simpler.

The special pushdown list has been extended to provide
the equivalent of the BBN LISP context stack. This is the
backbone of the ERROR and BREAK packages. since it enables
running programs to examine their context, and to change it
if necessary. The stack functions, particularly RETFROM and
OUTVAL make it possible to experiment ~ith various control
regimes, ~here subordinate functions can abort and return
from higher level functions on the basis of local
information. Indiscriminate fooling around wlth the stack'
is likely to produce peculiar and unwanted results, but the
stack functions can be extremely helpful at times.

o . 5

The error protection faci lities are an attempt to catch
some of the common errors of novices (and experienced users
too) ~hich can clabber the system. There are few things
more confusing than ~hat happens to the system when the
value of NIL is no longer NIL, or if the value of T becomes
NIL. In Stanford LISP this could easi Iy happen if SETO or
SET received a I ist as a first argument. This can no longer
happen in UCI LISP. Simi larly, Stanford LISP occasionally
~ent into infinite loops because a form had a CAR ~hich ~as
NIL or had no function definition and evaluated to NIL.
This has been corrected.

The extended basic functions are ones which were of
great use in writing the editor, BREAK package, etc., and in
bringing up translated versions of BBN LISP and MIT AI LISP
programs. The multiple form LAMBDA expression and the n-way
s~itch SELECTO should make many programming jobs much more
convenient, as should the avai labi lity of mapping functions
with several arguments. The user will almost certainly
profit from skimming through the chapters on these extended
features, just to know what is avai lable.

e . 6

Credito and Acknowledgements

The design and overal I direction of the implementation
of this system are the responsibility of Robert Bobrow, who
also made the first modifications to Stanford LISP,
including the original error package, accessible context
staek and storage real locator. In large part the existence
of the final system and its extensive documentation is due
to the Herculean efforts of Daryle Lewis, who did the bulk
of the modifications to the assembly language code
(including making Stanford LISP reentrant) and corrected the
compi ler and LAP systems. He singlehandedly transferred the
entire BBN LISP editor and its documentation to our system,
and in general performed vital and arduous design,
programming and documentation tasks too numerous to mention.
Richard Burton did yooman's labor by transferring (and
extending) the BBN LISP ERROR and BREAK packages, and
providing their documentation. Whitfield Diffie of Stanford
has helped us out of several sticky problems with the LISP
system and its compi ler. The original implementation of the
editor and several liD functions is due to Rodger Knaus, as
weI I as many helpful suggestions. Fin~lly, but of vital
importance, is Alan Bel I, whose great knowledge of the
PDP-Ie operating system helped us through many rough times,
and who has done much of the transferring of BBN LISP and
MIT AI L1SP programs.

We are triply indebted to ihe d~signers, impleme~ters
and documenters of BBN LISP, ~articu/ar/~ Daniel Bobrow and
Warren Teite/man. Most of the debugging and interactive
fae iii ties as we n as the genera I des i gn ph i losophy of UCI
LISP were inspired by the BBN LISP system. Secondly, we
were able to use much of their code directly, since it was
written in LISP, making it possible to obtain a large,
wei I-written and debugged system in a fraction of the time
and effort it would have taken to write it from scratch.
Finally. we have made extensive use of the BBN LISP TENEX
REFERENCE MANUAL as a source of raw material for our
documentation. In particular, much of the material in the
chapters on the BREAK and ERROR packages and the editor is a
revised version of the material in the BBN LISP MANUAL. We
take ful I responsibi I ity for the errors and deficiencies
produced by such an arrangement, while greatfully
acknowledging BBN's aid in providing much of the basic
documentation. We are also in debt to several people .at BBN

e . 7

'for their aid in obtaining and explaining this material,
particularly Jim Good~in, Alice Hartley and the director of
the Artificial Intelligence Group, Jaime Carbone I I.

This manual is the work of many people as wei I as the
I isted authors - in particular Warren Teitelman, formerly of

BBN and no~ at Xerox Palo Alto Research Center, who produced
the original BBN LISP documentation and the lions share of
the orrgin~I code. We are also in debt to Marion Kaufman
and Phyl I is Siegel who did dai Iy battle ~ith the pOP-Ie to
produce the RUNOFF fi les from which this documentation is
produced.

Last, but most assuredly not least in the roster of
those who have made this system possible are Lynette Bobrow,
Kathy Burton ,and Connie Le~is who lived through the many
discussions, al I night programming sessions and
battle-fatigue of the year during which this system was
implemented.

ENJOY, ENJOY!

o . 8

DEBUGGING FACILITIES

Introduction

Debugging a collection of LISP functions involves
isolating problems within particular functions and/or
determining l~hen and where incorrect data are being
generated and transmitted. In the UCI LISP system, there
are five faci lities which aid the user in monitoring his
program. One of these is the Error Package which takes
control whenever an error occurs in a program and which
al lows the user to examine the state of the world (see
section on 'ERROR PACKAGE'). Another fac; lity al lows the
user to temporari Iy interrupt his computation and examine
its progress. The other three faci I ities (BREAK, TRACE and
BREAKIN) al low the user to (temporari Iy) modify selected
function definitions .so that he can follow the flow of
control in his programs. All of these facilities use the
same system function, BREAKl, as the user interface.

BREAK, BREAKIN and TRACE together are cal led the Break
Package. BREAK and TRACE can be used on compi led and system
functions as wei I as EXPR's, FEXPR's and MACRO's. BREAKIN
can be used only with interpreted functions.

BREAK modifies the definition of a function FN, so that
if a break cond j t jon (def j ned by the user) i s.sat is j f jed,
the process is halted temporarily on a call to FN. The user
can then interrogate the state of the machine, perform any
computations, and continue or return from the cal I.

TRACE modifies a, definition of a function FN so that
l.Jhenever FN fs called, its arguments (or some other values
specified by the user) are printed. When the value of FN is
computed it is printed also.

BREAKIN al lows the user to insert a breakpoint inside
an expression defining a functio~. When ·the breakpoint is
reached and if a break condition {defined by the user} is
satisfied, a temporary halt occurs and the user can again
investigate t~e state of the computation.

. The two examples on pages 1.3 and 1.4 illustrate these
facilities. In the first example, the user traces the
function FACTORIAL. TRACE redefines FACTORIAL so that it
cal Is BREAKl in such a way that it prints some information,
in this case the arguments and value of FACTORIAL, and then

1 . 1

goes on (..Ii th the computat ion. When an error occur's on the
fifth recursion, BREAKl reverts to interactive mode, and a
fu I I break occur s. The s i tua t ion is then the s.:,rne as though
the user had or i gina I I y per formed (BREAK FACTORI AL) ins tead
of (TRACE FACTORIAL), ald the user can evaluate various LISP
forms and direct the course of the computation. In this
case, the user examines the variable N, instructs BREAK! to
change L to 1 and continue. The> command, fol lowing an
UNBOUND ATOM or UNDEFINED FUNCTION erroT' , tel Is BREAKl to
use the next expression instead of the atom which caused the
error. The> command does a destructive replacement of, in
this case, 1 for L, and saves an edit step by correcting the
typo iri the function definition. The rest of the tracing
proceeds without incident. The function UNTRACE restores
FACTORIAL to its original definition.

In the second example, the user has written Ackermann's
function. He then us~s BREAK to place a cal I to BREAKl
around the body of the function. He indicates that ACK is
to be broken when M equals N and that before the break
occurs, the al~gumel1ts to ACK are to be printed. Whi Ie
calculating (ACK 2 I), ACK is cal led twice when M = N.
During the first of these breaks, the user prints out a
backtrace of the function names and variable bindings. He
continues the computation with a GO which causes the value
of (ACK 1 1), 3, to be printed before the break is released.
The second break is released with an OK which does not print
the result of {ACK Ill. The function UNBREAK with an
argument T restores the latest broken or traced function to
its original definition.

For further information on how to use BREA~, TRACE and
BREAKIN, see the section on The Break Package.

1 • 2

\-

*(DE FACTORIAL (N)
{COND «ZEROP N) L)

(T (T I MES N (FACTORI AL (SUBl N)))

FACTORIAL
*(TRACE FACTORIAL)

(FACTORIAL)
*(FACTORIAL 4)
ENTER FACTORIAL:

N c 4
ENTER FACTORIAL:

N = 3
ENTER FACTORIAL:

N = 2
ENTER FACTORIAL:
! N = 1
! ENTER FACTORIAL:

N = 0
L
UNBOUND VARIABLE - EVAL

(L BROKEN)
l:N

o
1:> 1

FACTORIAL = 1
! FACTORIAL a 1

! FACTORIAL = 2
FACTORIAL = 6

FACTORIAL = 30
30

(UN TRACE FACTORIAL)

(FACTORIAL)
*(FACTORIAL 4)

30

1 . 3

',--

*(OE ACK (M N)
(CONO «ZEROP M) (ADD! N»

{(ZEROP N) {ACK {SUBl M} 1)}
(T (ACK (SUBl M) (ACK M (SUBl N»»»

ACK * (BREAK (ACK (EQ N M) (ARGS)))

(ACK)
*CACK 2 1)

M = 1
N = 1

(ACK BROKEN)
l:BKFV

M = 1
N = 1

ACK
M = 2
N = e

ACK
M = 2
N = 1

ACK

l:GO

3

M = 1
N = 1

(ACK BROKEN)
1:0K

5
* (UNBREAK T)

CACK)

1 . 4

\..:::.:.

r-"

~~-

Interrupting a computation-REE and DDT

A useful feature for debugging is a way to temporari Iy
suspend compu ta t i on. I f the user ~.'; shes to know hO!-1 h j s
computation is proceeding (i.e. is he in an infinite loop
or is system response poor). Then type Control-C twice
(wh i ch ,-Ii I I cause a re turn to the mon i tor) fo I lowed by
either REE or DDT. After typing REE the user must respond
l.Jith one of the fo/lol4ing control characters; Control-H,
Control-B, Control-G, Control-E or Control-Z. Typing DOT is
equivalent to typing REE fol lowed by Control-H.

1. Control-H: This 1,.'; II cause the computation to continue,
but a break wi I I occur the next time a function is cal led
(except for a compi led function cal led by a compi led
tunc t ion) • A message 0 f the form (-- BROKEN) is typed and
the user is in BREAKl (see the next section). He can
examine the state of the world and continue or stop his
computation using any of the BREAK! commands. WARNING It is
possible to get into an infinite loop that does not include
cal Is to functions other than compi led functions 'cal led by
compi led functions. These "Ii II continue to run. £In such
cases, type Control-C twice, fol lowed by REE, fol lowed by
one of the other control characters).

2. Control-B: This wi I I cause the system to back up to the
last expression to be evaluated and cause a break (putting
the user in BREAK! with al I the power bf BREAK! at the
user's command. This does not include cal Is to compi led
f unc t ions by 0 ther' comp i I eel tunc t i On!;i.

3. Control-G: This causes an (ERR ERRORX) which returns to
the I as t (ERRSET ERRORXJ. Th is enab I es the user to
Control-C out of the Break package or the Editor, reenter
and return to the appropriate command level. (i.e. if the
user were several levels deep in the Editor for example,
Control-G wi I I return him to the correct command level of
the Edi tor).

1 . 5

I

4. Control-E: This does an (ERR NIL), which return NIL to
the last ERnSET. (See section on changes to ERR and
ERRSET) .

5. Control-Z: This returns the user to the top-level of
LISP, (i.e. either the REAO-EVAL-PRINT loop or the current
I NI TFN)'

1 . 5 • 1

I

''---. .'

\.'-....

BREAK!

The hear t 0 f the debugg i ng package is a fur'c t i on ca I led
BREAK!. BREAK and TRACE redefine your functions in terms of
BREAK!. When an error occurs control is passed to BREAKl.
The DDT break feature is also implemented using BREAK!.

Whenever LISP types a message of the form (-- BROKEN)
fo I lowed by' n: ' the user is then 'ta I king to' rBREAK!, and
he is' ina break.' BREAKl a II OI·JS the user to interrogate
the state of the world and affect the course of the
computation. It uses the prompt character ':' to indicate
it is ready to accept input (s) for eva I uat ion, in the same
way as the top level of LISP uses '*'. The n before the ':'
is the level number which indicates how many levels of
BREAKl are currently open. The user may type in an
expression for evaluation and the value wi I I be printed out,
fol lowed by another ':'. Or the user can type in one of the
commands described below which are specifically recognized
by BREAK! (for summary of commands see Table 1, page 1.25).

Since BREAKl puts al I of the power of LISP at the
user's command, he can do anything he ,can do' at the top
level of LISP. For example, he can define new functions or
edit existing ones, set breaks, or trace fUnctions. The
user may evaluate an expression, see that the value was
incorrect, cal I the editor, change a function, and evaluate
the expression again, al I without leaving the break.

I tis i mpol' tan t to emphas i ze t ha t once a I)reak occur s.
the lJser ·is in complete control of the flow of the
computation, andthecompLJtation will not proceed without
specific instruction from him. Only if the user gives one
of the commands that exits from the break (GO, OK, RETURN,
FROM?=, EX) wi II the computation continue. If the user
wants to abort the computation, this also can be done (using
t or 1'1').

Note that BREAKl is just another LISP function, not a
special system feature I ike the interpreter or the garbage
col lector. It has arguments and returns a v~lue, the same
as any other function. A cal I to BREAKl has the form

(BREAK! BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE)

The arguments to
which is evaluated

BREAKl are: BRKWHEN is a LISP function
to determine if a break wi II occur. If

1 . 6

~.

,,-.

BRKWHEN returns NIL, BRKEXP is evaluated and returned 3S the
value of the BREAKl. Otherwise a break occurs. BRKFN is
the name of the function being broken and is used to print
an identifying message. BRKCOMS is a list of command lines
(as returned by READLINE) which are executed as if they had
been typed in from the teletype. The command lines on
BRKCOMS a~e executed before commands are accepted from the
teletype, so that if one of the commands on BRKCOMS causes a
return, a break occurs without the need for teletype
interaction. BRKTYPE identifies the type of the break. It
is used primari Iy by the error package and in al I cases the
user can use NIL for this argument.

The value returned by BREAK!
the break.' The user can specify
using the RETURN command described
hOl.Jever, the va I ue of the break is
GO or OK command, and is the result
expression,' BRKEXP.

is cal led 'the value of
this value explicitly by
below. In most cases,
given impl icitly. via a
of evaluating 'the break

BRKEXP is, in general. an expression
equivalent to the computation that would have
taken place had no break occurred. In other

. words, one can think of BREAKl as a fancy EVAL,
which permits interaction before and after
evaluation. The break expression then corresponds
to the argument to EVAL. For BREAK and TRACE,
BRKEXP is a form equivalent to that of the
function being traced or broken. For errors,
BRKEXP is the form which caused the error, For
DOT breaks, BRKEXP is the next form to be
evaluated.

1 . 7

WHA~ YOU CAN DO IN A BREAK

Breai<. Commands

Once in a break, in addition to evaluating expressions,
the user can ask BREAKl to perform certain useful actions by
g i vi ng ita tom i c items as "break commands". The fa" Ol.j i n9
commands can be typed in by the user or may be p~t on the
list BRKCOMS. TABLE I (page 1. 25) is a sunlmary of these
commands.

AI I printing in BREAKl is done by cal I in9 (%PRINFN
expr). %PRINFN is an atom (not a function) ~hich should
evaluate to the name of a printing function of one argument.
%PRINFN is initialized to use PRINTLEV because it can print
circular lists, which quite often result from errors.
PRINTLEV only prints lists to a depth of 6. This depth
parameter may be changed by setting the value of %LOOKDPTH.
PRINTLEV is necessari Iy slow and if you are not printing
c i rcu I ar structures, traces can be speeded UP great I y by
changing the value of %PRINFN to PRIN1.

GO

OK

EVAL

Releases the break and al lows the computation
to proceed. BREAK 1 evaluates BRKEXP, its first
argument, prints the value, and returns it as the
value of the break. BRKEXP is the expression set up
by the function that cal led BREAKI. For BREAK or
TRACE, BRKEXP is equivalent to the body of the
definition of the broken function. For the error
package, BRKEXP is the e~pression in which the error
occurred. For DDT breaks, it is the next form to be
evaluated.

Same as GO except that the value of BRKEXP is
not prlinted.

Caus~s 8RK~XP to be evaluated. The break is
maintained and .the value of the evaluation is
printed and bound on the variable !VALUE. Typing GO
or OK ~,i I I not cause reevaluation of BRKEXP
fol lowing EYAL but another EYAL ~i I I. EVAL is a
useful command when the user is not sure whether or
not the break wi II produce the correct value and

1 . 8

wishes to be able to do something about it if it is
wrong.

RETURN form
The form is evaluated and its value is returned

as the value of the break. For example, one might
use the EVAL command and fol low this with
RETURN (REVERSE !VALUE).

FROM? form
This permits the user to release the break and

return to a previous context with form to be
evaluated. For detai Is see context commands.

> [or ->] expr
For use either with

UNDEFINED FUNCTION error.
containing the error with
expr) e. g. ,

FOOl
UNDEFINED FUNCTION
(FOOl BROKEN)
1:> FOO

UNBOUND ATOM error or
Replaces the expression

expr (not the value of

changes FOOl to FOO and continues the computation.
Expr need not be atomic, e.g.,

FOO
UNBOUND A TOt1
(FOO BROKEN)
1:> {QUOTE FOO}

For UNDEFINED FUNCTION breaks, the user can specify
a function and its first argument, e.g.,

MEt1BERX
UNDEFINED FUNCTION
(MEMBERX BROKEN)
1:> MEMBER X

Note that in the some cases the form coritaining the
offending atom wi I I not be on the stack {notably,
after cal Is to APPLY} and in these cases the
function definition wi I I not be changed. In most
cases, however. > wi I I correct the function
de fin i t i on.

1 • 9

USE x FOR y

t

tt

ARGS

Causes al I occurrences of y in the form on the
stack at LASTPOS (for Error breaks, unless a F
command has been used, th j s form is the one j n L-/h i ch
the error occurred.) to be replaced (RPLACA'ed) by
x. Note: This is a destructive change to the
s-express j on 'j nvo I ved and I·' i I I, for examp Ie,
permanently change the definition of a function and
make a edit step unnecessary.

Cal Is ERR and aborts the break. This is a
useful way to unwind to a higher level break. AI I
other errors, including those encountered L-/hi Ie
executing the GO, OK, EVAL, and RETURN commands,
maintain the break.

This returns control directly to the top level
of LISP.

Prints the names and the current values of the
arguments of BRKFN. In most cases, these are the
arguments of the broken function.

1 • U3

Context Commands

All information pertaining to the evaluation of forms
in LISP is kept on the special push down stack. Whenever a
form is evaluated, that form is placed on the special push
down stack. Whenever a variable is bound, the old binding
is saved on the special push down stack. The context (the
bindings of free variables) of a f4ncl.ion is determined by
its position in the stack. When a break occurs, it is often
useful to explore the contexts of other functions on the
stack. BREAK! al lows this by means of a context pointer,
LASTPOS, which is a pointer into the special push down
stack. BREAK! contains commands to move the context pointer
and to evaluate atoms or e~pressions as of its position in
the stack. For the purposes of this document, When moving
through the stack, "backward" is considered to be toward the
top level or, equivalently, towards the older function cal Is
on the stack.

F [or &1 argl arg2 .•. argN
Resets the variable LASTPOS, l.Jhich establ ishes

a context for the commands ?=, USE, EX and FROM?:,
and the backtrace commands described below. LASTPOS
is the posi tion of a function call' .on the special
push down list. It is initialized to the function
just before the cal I to BREAK!.

F takes the rest of the teletype I ine as its
list of arguinents. F first resets LASTPOS to the
function cal I just before the cal I to BREAK!, and
then for each atomic argument, F searches backward
for a cal I to that atom. The fol towing atoms are
treated specially:

F
When used as the first argument

caused LASTPOS not to be reset to
above BREAK! but continues searching
from the previous position of LASTPOS.

Numbers
If negative, move LASTPOS back

(i.e. towards the top level) that
number of calls, if positive, forward.

! . 1!

'--"

(
,~.

""-.---'

Search forl·lard instead of
backward for the next atom

Example:

I f the special push-clmm stack looks like

BREAKl (13)

FDD (12)

SETa (11)

CDNO (1B)

PROG (9)

FIE (8)
CONO (7)
FIE (6)
CONO (5)
FIE (4)
CDNO (3)

PROG (2)

FUM (1)

then
F FIE CONO wi II set LASTPOS to to (7)
F & CONO l.Ji II then set LASTPOS to (5)
F FUM ... FIE wi II stop at (4)
F & 2 l.Ji II then move LASTPOS to (6)
F l.Ji II reset LASTPOS to (12)

If F cannot successfully complete a search,
for argN or if argN is a number and F cannot move
the number of funct ions asked, largN?" is typed.
In either case, LASTPOS is restored to its value
before the F command was entered. Note: It is
possible to move past BRKEXP (i.e. into the break
package functions) when searching or moving
forwards.

When F fin j shes, i t types the name 0 f the
function at LASTPOS.

F can be used on BRKCOMS. In which case, the
remainder of the I ist is treated as the I ist of
arguments. (i.e. (F FDD FIE FOO)

1 . 12

EOl T argl arg2 ... argr~
EDI T use~ its arguments to reset LASTPOS in

t he same manner as the F command. The for mat
LASTPOS is then given to the LISP Editor. This
commands can often times save the user from the
trouble of cal ling EDITF and the finding the
e~pression that he needs to edit.

7= argl arg2 ... argN
This is a multi-purpose command. Its most

common use is to interrogate the value{s} of the
arguments of the broken function, (ARGS is also
useful for this purpose.) e.g. if FDD has three
arguments (X Y Z), then typing?= to a break of
FOD, wil I produce:

n:?a
X =- value of X
Y = value of Y
Z = value of Z

?= takes the rest of the teletype I ine as its
arguments. If the argument I ist to 7= is NIL, as
in the above case, it pr i nts a II of the arguments
of the function at LASTPOS. If the user types

7= X (CAR Y)

he wi II see the value of X, and the value of (CAR
V),' The difference b~tWeen using ?c and typing X~
and (CAR Y) directly into BREAK1' is that 7=
evaluates its inputs as of LASTPOS. This provides
a way of examining variables pr forms as of a
particular point on the stack. For example,

F (FDD FDD)
7= X

wi I I allow the user to e~amine the value of X in an
earl ier cal I to FOD.

7= also recognizes numbers as referring to the
correspondingly numbered argument. Thus

:F FIE
:7= 2

1 . 13

~Ii II pr i nt the name and va I ue of the second
argument of FIE (providing FIE is not compi led).

?= can' also be used on BRKCOMS, in which case
the remainder of the I ist on BRKCOMS is treated as
the I ist of arguments. For example, if BRKCOMS is
{ (EVAL) (?= X (CAR Y)) GO)) , BRKEXP wi I I be
evaluated, the values of X and (CAR Y) printed, and
then the fUnction exited with its value being

. printed.

FROM?= [form]

EX

FROM?= exits from the break by undoing the
special push down stack back to LASTPOS. If FORM
is NIL or missing, re-evaluation continues with the
form on the push down stack at LASTPOS. If FORM is
not NIL~ the function callan the push down stack
at LASTPOS is replaced by FORM and evaluation
continues with FORM. FORM is evaluated in the
context of LASTPOS. There is no way of recovering
the break because the push down stack has been
undone. FROM?= al lows the user to, among other
things. return a particular value as the value of
any function cal I on the stack. To return 1 as the
value of the previous cal I to FOD:

:F FOO
:FROM?= 1

Since form is evaluated after it
stack, a value of NIL can be
<QUOTE NI L)'

is p I aced oil the,
returned by using

EX exits from the break and re-evaluates the
form'at LASTPOS. EX is equivalent to FROM?= NIL.

1 • 14

8acktrace Commands

The IJacktrace commands print information about
function calls on the special push down list. The
information is printed in the reverse order that the cal Is
were made. AI I backtraces start at LASTPOS.

8KF

8KE

BK

BKF gives a back trace of the names of
functions that are sti I I pending.

BKE gives a backtrace of the expressions which
called functions sti II pending (i.e. It prints the
function calls themselves instead of only the names
as in HKF) •

BK gives a ful I back trace of al I expressions
sti II pending.

AI I of the backtrace commands may be suffixed by a 'V'
and/or fol lowed by an integer. If the integer is included,
it specifies how ~any blocks are to be printed. The
I imi ting point of a'block is a function call. This form is
useful when working on a Data Point. Using the integer
feature in conjunction with the F command, which moves
LASTPOS, the user can displa'd any contiguous part of the
backtrace. If a 'V' is included, variable bindings are
printed along ~Jith the expressions in the backtrace.

Example:

BKFV

SKV 5

~IOLJ I d pr i n t the names and var i ab I e
bindings of the functions cal led before
LASTPOS.

would print everything (expressions and
variables) for 5 blocks before LASTPOS.

1 . 15

, The output of the l)ack trace commands deserves some
explanation. Right circular I ists are only printed up to
the point where they start repeating and are closed with
' •••]' instead of a right parenthesis. Lists are only
printed to a depth of 2. /#/ Is a nptation which
represents lithe previous expression", For example, {SETQ
FIE (FOO)) would appear in a BK backtrace as

(FOO)
(SETQ FIE /IJI)

1 . 18

''-...-

Breakmacros

Whenever an atomic cOnJmand is encounter-ed bid BREAKl
that it does not recognize. either via BRKCOMS or the
teletype, it searches (using ASSOC) the list BREAK MACROS to
see if the atom has been defined as a break macro. The
form of BREAKMACROS definitions is (••• (atom ttldl ine1
tty I i ne2 •.• tty lineN) }. ATOM is the command name.
ARGS is the argument(s} for the macro. The arguments of a
breakmacro are assigned values from the remainder of the
command line in wh i ch the macro is ca I I edt I f ARGS is
atomic, it is assigned the remainder of the command I ine as
its value. If ARGS is a list, the elements of the rest of
the command I ine are assigned to the variables, in order.
If there are more variables in ARGS then items in the rest
of the command I ine, a value of NIL is fi I led in. Extra
items on the command line are ignored. The TTYLINEs are
the body of the breakmacro definition and are I ists of
break commands or forms to be evaluated. If the atom is
defined as a macro. (i.e. is found on BREAKMACROS) BREAK!
assigns values to the variables in ARGS, substitutes these
values for·al I occurrences of the variables in TTYLINEs and
appends the TTYLINEs to the front of BRKCOMS. When BREAK1
is ready to accept another command, if BRKCOMS is non-NIL
it takes the first element of BRKCOMS and processes it
exactly as if it had been a line input from the teletype.
This means that a macro name can be defined to expand to
any arbitrary collection of expressions that the user could
type in. If the command is not contained in BREAKMACROS,
it is treated as a function or variable'as before.

Example: a command PARGS to print the arguments of .the
function at LASTPOS could be defined by evaluating:

(NCONC BREAKMACROS (QUOTE «PARGS NIL (?=»»)

A command FP which finds a place on the SPO stack and
prints the form there can be defined by:

(NCONC BREAKMACROS {QUOTE (FP X (F
LASTPOS}}»»

1 . 17

X) «PRI NT (SPOLRT

BREAK PACKAGE

How To Set A Break

The follol.Jing functions are useful for setting and
unsetting breaks and traces.

Both BREAK and TRACE use a function BREAKS to do the
actual modification of function definitions. When BREAKS
breaks a SUBR or an FSUBR, it prints a'message of the form
(--- ARGUMENT LIST?). The user should respond with a
I ist of arguments for the function being broken. (FSUBR's
take only one argument and BREAK0 checks for this.) The
arguments on this list are actually bound during the cal Is
to the broken function and care should be taken to insure
t hat . they dono t con f I i c t I.J i t h f r e e var i ab I e s . For
LSUBR's. the atom N? Is used as the argument. It is
possible to GRINOEF and edit functions that are traced or
broken. BROKENFNS isa list of the functions currently
broken. TRACEOFNS is a I ist of the functions currently
traced.

BREAK

BREAK is an FEXPR. For each atomic argument,it
breaks the function named each time it is called. For each
list i.n the :form Un! IN fn2), it breaks on I y those
occurrences of FNI l.Jhich appear in FN2 •. This feature is
very'.' use fu I for break i ng a func t i on that is ca I I ed from.'
many places, but where one is only interested in .the·cal I
from a specific function, e.g. (RPLACA IN FOO) , (PRINT IN
FIE), etc. For each list not in this form, it assumes that
the CAR is a function to be broken; the CAOR is the break
condition; {When the fuction is called, the break condition
is evaluated. If it returns a non-NIL value, the break
occurs. OthenJise, the computation continues without a
break.} and the COOR is a I ist of command lines to be
performed before an interactive break is made {see BRWHEN
and BRKCOMS of BREAKl}. For example,

(BREAK FOOl (F002 (GREATER? N 5) (ARGS»)

wi I I break al I cal Is to FOOl and al I cal Is on F002 when N
is greater than 2 after first printing the atgu~ents of
F002.

1 . 18

·i
··i
!

(BREAK «F004 IN FOOS) (MI NUSP X))}

wi I I break al I cal Is to F004 made from FOOS when X is
negat i vel

"'Examp I es:
(BREAK FOO)
(BREAK «GET IN FOO) T (GO}))
(BREAK (SETQ (EQ N 1)(CPR I NT (aUOTE N=1)}) (?= M)))

TRACE

TRACE is an FEXPR. For each atomic argument, it
traces the function named (see form on page 1.3) each time
it is called. For each list in the form (fn1 IN fn2), it
traces only those cal Is to FNI that occur within FN2. For
each I ist argument not in this form, the CAR is the
function to be traced, and the CDR is a list of variables
(or forms) the user wishes to see in the trace.

For examp Ie, (TRACE (FOOl Y) (SETa IN F003») wi I I
cause both FOOl and SETO IN F003 to be traced. SETQ's
argument wi I I be printed and the value of Y wi I I be printed
for FOOl.

TRACE uses the global variable #%INDENT to keep its
position on the I ine. The printing of output by TRACE is
printed using %PRINFN (see,page I.S), TRACE can therefore
be p~etty printed by:

(SETa %PRINFN (aUOTE PRETPRIN)
(OE PRETPRIN (FORM)

(SPRINT FORM (*PLUS 10 #%INOENT))

Examp I es:
(TRACE FOO)
(TRACE *TIMES (SELECTa IN DOlT})
{TRACE (EVAL IN FOO)
{TRACE (TRY M N X (*PLUS N M})}

Note: The user can always cal I BREAKS himself to
obtain combinations of options of BREAKl not directly
avai lable with BREAK and TRACE (see section on BREAK0
beIOl,J). These functions merely pr~ovide convenient l.Jays of
cal ling BREAK0, and wi I I serve for most uses.

1 . 19

BREAKIN

BREAKIN enables the useI' to insert a break, i.e., a
call to BREAKl, at a specified location in an interpr'etecJ
function. For example, if FDD calls FIE, inserting a break
in FOO before the cal I to FIE is simi lar to breaking FIE.

'However, BREAKIN can be used to insert breaks before or
after prog labels, particular SETO expressions, or even the
evaluation of a variable. This is because BREAKIN operates
by cal I ing the editor and actually inserting a cal I to
BREAK! at a specified point inside of the function.

The user specifies ~here the break is to be inserted
by a sequeMce of editor commands. These commands are
preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to
determine what to do once the editor has found the
spec if i ed po in t. i. e., put the ca I I to BREAKl BEFORE that
point, AFTER that point, or AROUND that point. For
example, (BEFORE eOND) 1-1i II insert a break before the first
occurrence of CONo, (AFTER CDNo 2 1) wi I I insert a break
after the predicate in the first eONo clause, (AFTER BF
(SETQ X F) after the last place X is set. Note that
(BEFORE TTY:), (AROUND TTY:) or (AFTER TTY:) permit the
user to type in' commands to the ed i tor, locate the correc t

. point, and verify it for himself using the P command, if he
desires. Upon exit from the editor with OK, the break is
inserted. (A STOP command typed to TTY: produces the same
effect as an unsuccessful edit command in the original
speci f i cat.i on, e. g. I (BEFORE CONDO). I n both cases, the
edit6r atiort~, and BREAKIN types (NOT FOUNO).)'

for BREAKIN BEFORE or AFTER, the break expression is
NIL, ,since the value of the IJI~eak is usually not of
interest. For BREAKIN AROUND, the break expression wi I I be
the indicated form. When in the break, the user can use
the EVAL command to evaluate that form, and see its value,
before al lowing the computation to proceed. For example,
if the user inserted a' break after a eDND predicate, e.g.,
(AFTER (EQUAL X Y», he. would be powerless to alter the
flow fo computation ift~e predicate were not true, since
the break,would not ~e reached. However, by breaking
(AROUND (EQUAL X Y»~ he can evaluate the break expression,
i.e., (EQUAL X V), see l its value a'nd evaluate something
else if he wished.

The message typed for a BREAKIN break identifies the
location of the break as wei I as the function, e.g.,

.1 • 213

{{FOO (AF TER COND :? 1)) r~hm~U~).

BF:EAKIN is an FTXI'R Ilhiclll'.:l':, a maxi'IIurl1 of tour'
arguments. The fir'st ::-lr'~IUII1.=nt is tliP. function to he i:lr'oken
in. Theseconcl(w~lull1t?nt is .J list of edit:::wcommands.
preceded I)y BEFORE. AFTER. 01' AROLH~D, I.Jhich specifies the
location inside the function at I,Jhich to break. If ther'e
is 110 second ar'~lument, a va I ue of (BEFORE TTY:) is assumed.
(See earl i~r discussion.) The third and fourth arguments
are the break condition and the I ist of commands to be
performed before the interactive break occurs, (BRKWHEN and'
BRKCOMS for BREAKl) respectively. If there is no third
argument, a value of Tis assumed for BRKWHEN which c~uses
a break each time the BREAKIN break is executed. If the
fourth argument is missing, a value of NIL is assumed. For
example,

(BREAKIN FOO (AROUND COND)}

inserts a break around the first cal I to COND in FOO.

It is possible to insert multiple break points, with a
single call to BREAKIN I)~ LJsing a list of the form «(BEFORE
•••) •.• (AROUND •.. }) as the second argument. It is a I so
possible to BREAK or TRACE a function which has been
modified by BREAKIN, and conversely to BREAKIN a function
which is broken or traced. UNBREAK re~tores functions
which have been broken in. GRINOEF makes no attempt to
correct the modificati~n of BREAKIN so functions should be
unbroken before they are stored on disk.

Examp I E>S:

(BREAKIN FDD (AROLJND TTY:) T (?= M J~) ({*PLUS X Y»)
{BREAKIN F002 (BEFORE SETD)' (EO X YJ)

UNBREAK

UNBREAK is an FEXPR. It takes a list of functions
modified by BREAK or BREAKIN ~nd restores them to their
original state. It's value is the, list of functions that
were II unbroken".

(UNBREAK T) wi I I unbreak the function most recently
broken.

(UNBREAK) wi I I unbreak al I of the functions currently

1 . 21

\

(
"--- ''--'

broken (i.e. all those on BROKENFNS),

I f one of the functions is not broken, UNBREAK has Cl

va lue 0 f (fn NOT BROKEN) for tht:"tt f LJnc t i on and no changes
are made to fn.

Note: If a function is both
either UN TRACE or UNBREAK wi I I
function definition.

UN TRACE

traced and broken in,
restore the original

UNTRACE is an FEXPR. It takes a list of functions
modified by TRACE and restores them to their original
state. It's value is the list of functions that '.Jere
"untraced" .

(UNTRACE TJ wi I I unbreak the function most recently
traced.

(UNTRACE) wi I I untrace al I of the functions currently
traced (i.e. ~I 1 those on TRACEDFNS).

If one of the functions is not traced, UN TRACE has a
value of (fn NOT BROKEN) for that function and no changes
are made to fn.

1 . 22

BREAK0 [FN WHEN COMS]

BREAKS is an EXPR. It sets up a break on the function
FN by redefining FN as a cal I to BREAKl with BRKEXP a form
equivalent to the definition of FN, and WHEN, FN and cor1S
as BRKWHEN, BRKFN, and BRKCOMS, respectively (see BREAKl).
BREAKB also adds FN to the front of the list BROKENFNS.
It's value is FN.

If FN is non-atomic and of the form (fn:~ IN fn2),
BREAKB first cal~s a function which changes/the ~ame of fnl
wherever it appears inside of fn2 to that of a new
function, fnl-IN-fn2, which is initially defined as fn1.
Then BREAK0 proceeds to, break on fnl-IN-fn2 exactly as
desc~ibed above. This procedure is useful for breaking on
a function that is cal led from many places. but where one
is only interested in the cal I from a specific function.
e.g. (RPLACA IN FOO) , (PRINT IN FIE), etc. This only works
in interpreted functions. If fn1 is not found in fn2,
BREAKS returns the value {fn1 NOT FOUND IN fn2}.

If FN is non-atomic and not of the above form, BREAK0
is cal led for each member of FN using the same values for
WHEN and COMS specified in this cal I to BREAK0. This
distributivity permits the user to specify complicated
break conditions without excessive retyping, e.g.,

{BREAK0 (QUOTE {FOOl ({PRINT PRINl)IN (F002 F003)))}
(QUOTE (EQ X 1))
(QUOTE ({EVAL) (?= Y Z) OK}}}

wi I I break on FOOl, PRINT-IN-F002, PRINT-IN-F003,
PRINI-IN-Foo2, and PRINI-IN-F003.

If FN is non-atomic, the value of BREAK0 is a list of
the individual values.

,For example, BREAK0 can be used to trace the changing
of particular values by SETO in the fol lowing manner:

*(5ETQ VARLIST (QUOTE (X Y FOO»)
*(BREAKB (QUOTE SETQ) (QUOTE (MEMQ (CARXXXX) VARLIST»
* {QUOTE {(TRACE) (?=) (UNTRACEl) })
{SETQ ARGMENTS?)*(XXXXJ

SETQ wi I I be traced whenever CAR of its argument (SETO is
an F5UBR) is a member' of VARL I 5T.

1 . 23

ERROR PACKAGE

Introduction

When an error occurs during the evaluation of a LISP
expression, control is turned over to the Error Package.
The 1/0 is forced to the TTY (channel NIL) but wi I I be
restored to its previous channels if the user continues the
evaluation. The idea behind the error package is that it
may be possible to 'patch up' the form in which the error
occurred and continue. Or, at least, that you can find the
cause of the error more easily if you can examine the state
of the world at the time of the error. Basically, what the
Error Package does is cal I BREAK! with BRKEXP set to the
form in which the error occurred. This puts the user' in a
break' around the form in which the error occurred. BREAK!
acts just I ike the top level of the interpreter with some
added commands (see section on BREAKl). The main
difference when you are in the Error Package is that the
variable bindings that were in effect when the error
occurred ar-e sti II in effect. Furthermore, the expressions
that were in the process of evaluation are stll I pending.
Whi Ie in the Error Package, variables may be examined or
changed, and functions may be defined or edited just as i·f
you were at the top level. In addition, there are several
ways in which you can abort or continue from the point of
error. I n par t i cu I ar, if you can pa tch up the error, you
can cont inue by typing OK. I f you can't patch the error, t
wi I I get you out of the break. When you are in the error
package, the prompt character is ':' and is preceded by a
I eve I number. No te: if you clan' t ~,an t the error package
invoked for some reason, it can be turned off by evaluating
(*RSET NIL). Similarly, (*RSET T) will turn the error
package back on.

Commands

There are several atoms which wi I I cause special
act i ons ~Jhen typed into BREAK! (the error package) • These
actions are useful for examining the push down stack (e.g.
backtraces) , changing forms and exiting from the break in
v~rious ways. Table I (on the next page) gives a summary
of the actions. For a complete description, see the
section on 'What You Can Do In A Break'.

1 • 24

,,---,.
1':-11) I e I

Br'eak P~f,---:kltge COl11mand SUI1lIllCtI''d

(for- comp I ete desc!' i pt i on see pp. 1.8-1.18)

Command

GO

OK

EVAL

RETURN

l'

1'1'

> [->]

FROM?=

EX

xx

expr

form

USE x FOR y

F [&J a1 •• aN

EDIT A1 •• An

?= f! • ~. fN

ARGS

BKF

BKE

,'BK

Ac t ion

Evaluates BRKEXP, prints its value,
and continues with this value

Same aG GO but no print of val~e

Reevaluate BRKEXP and print its value.
Its value is bound to !VALUE

Evaluate ~x and continue with its value

Escape one level of BREAK!

Escape to the top level

Aft era n e I' r 0 r, use e)(p r for the err i n gat 0 OJ

Continues by re-evaluating form at LASTPOS

Same as FROM?= NIL

Substitut~s x for y in form at L~STPOS
(destructively)

Resets LASTPOS (stack context)

Resets LASTPOS and gives the form at LASTPOS
to the LISP Editor

Evaluates forms fl as of LASTPOS

Prints argul11ents of the'broken function

Backtrace Function Names

Backtrace Function Cal Is

BaCk trace Expressions

Note: AI I of the backtr8ce commands can be combined wi th a
tV' or follol-Jecl by an integer. The 'V' will cause the
values of variables to be pri~ted. The integer wi II I imi t

1 . 25

(
",-.

',,-

the trace to that number of blocks. For exaillple~ BK 3,
BKEV, BKFV 5 and BKEV ar'e a I I leg it i 111.:1 tc commands.

1 . 26

The LISP Editor

Contents

2 CURRENT EXPRESSION, P, &, PP, EDIT CHAIN, at t,
5 (n), (n el, "', em)~ (-n e1, .•. , em), N, F, R,. NX, RI,

la UNDO, BK, BF, <, <P, &, --, e (AT-SIGN),
13 UP, 8, A, :, DELETE, MBD, XTR, UP, "" n, -n,
18 a, !a, t, NX, BK, (NX n), (BK n), !NX, (NTH n),
22 PATTERN MATCH, &, *ANY*, --, ==, ... , .
24 SEARCH ALGORITHM, MAXLEVEL, UNFIND, F, (F pat n),
27 (F pat T), (F pat N), (F pat), FS, F=, ORF, 8F, (BF pat T),
3B LOCATION SPECIFICATION, IF, ##, S, LC, LCL, SECOND, THIRD,
32 (~ pat), BELOW, NEX, (NTH $), •• , MARK, ~, ~~, <, UNFIND,
37 <P, 5, (n), (n e1, •.. , em), (-n el, "" em), N,
41 8, A, :, DELETE, INSERT, REPLACE, DELETE, ##, UPFINDFLG,
46 XTR, EXTRACT, MBD, EMBED, MOVE, BI, BO, LI, LO, RI, RO,
57 THRU, TO, R, SW, P, ?, E, I, ##, COMS, COMSa,
66 IF, LP, LPQ, ORR, MACROS, M, BIND, USERMACROS,
71 NIL, TTY:, OK, STOP, SAVE, REPACK, MAKEFN,
76 UNDO, TEST, ??, !UNDO, UNBLOCK, EDITDEFAULT, EDITL,
81 EDITF, EDITE, EDITV, EOITP, EDITFNS, EDIT4E,
84 EOIlFPAT, EDITFINDP

The LISP editor al lows rapid, convenient modification
of I ist structures. Most often it is used to edit function
definitions, (often whi Ie the function itse~f is running)
via the function EDITF, e.g., (EDITF FOO)' However, the
editor can also be used to edit the value of a variable, via
EDIlY, to edit special properties of an atom, via EDITP, or
to edit an arbitrary expression, via EDITE. It is an
important feature which al lows good on-line interaction in
the UCI LISP system.

This chapter begins with a lengthy introduction
intended for the new user. The reference portion begins on
page 15.

. "

2 • 1

: I

\

Introduction

Let us introduce some of the basic editor commands, and
give a flavor for the editor's language structure by guiding
the reader through a hypothetical editing session. Suppose
~e are editin.g the fol lowing incorrect definition of APPEND

(LAMBDA (X)
Y
(CONO «NUL X) Z)

(T (CONS (CAR) (APPEND (COR X Y»»»

We ca I I the ed i tor . vi a thefu.ncti on EOI TF:

II(EOITF APPEND)
EDIT
II

The editor responds by' typing EDIT fol lowed by 1/, which is
the edi tor's ready character, i.e., it signi f ies that the.
editor is ready to accept commands. (In other words, all
I ines beginning with II were typed by the user, the rest by
the ed i tor.)

At any given moment, the editor's attention is centere9
on some substructure of the expression being edited. This
substructure is cal led the current expression, and it is
~ha t . the user sees when . he gives the ed i tor the command p.
for print. Initially, the current expression is the top
I eve I . one, i. e., the ent ire express i on be l.ng ed 1 ted'. Thus: , ..

tiP
(LAMBDA (X) Y (COND & &»

1/

Note that the editor prints the current expression,
using PRINTLEV, to a depth of 2, i.e., sUblists of sUblists
are printed as &. The command? Wi I I print the current
expression as though PRINTLEV was given a depth of 100.

#?
I(LAMBDA (X) Y (COND ({NUL X) Z) (l (CONS (CAR) (APPEND (CDR
X y»»»
1/

and the command PP (for PrettyPrint) wi II GRINDEF the
current expression.

2 • 2

A . positive integer is interpreted by the editor as a
command to descend into the correspondingly numqered element
of the current expression. Thus:

112
liP
(X)

II

A negative integer has a simi lar effect, but counting
begins from the end of the current expression and proceeds
backl.Jard, i.e., -1 refers to the last element in the
expression, -2 the next to the last, etc. For either
'positive integer or negative integer, if there is no such
element, an error occurs. 'Editor errors' are not the same
as 'L I SP errors', i • e., they never cause breaks or even go
through the error machinery but are direct cal Is to ERR
indicating that a command is in some way. faulty. What
happens next depends on the context in which the command was
being executed. For example, there are conditional commands
which branch on errors. In most situations, though, an
error wi I I cause the editor to type the faulty command
fo" owed by a? And wa it for more input. In th is case, the
editor types the faulty command fol lowed by a ?, and then
another #. The current expression is never changed when a
command causes an error. thus:

liP
bd
#2
-2 ?
III
liP
X
II

A phrase of the form 'the current expression is
changed' or 'the current expression becomes' refers to a
shift in the editor's ATTENTION, not to a modification of
the structure being edited.

When the user changes the current expression by
descending into it, the old current expression·is not lost.
Instead, the edi tor actually operates by maintaining a chain
of expressions leading to the current one. The current
expression is simply the last link in the ct)ain. Descending
adds the indicated subexpression onto the ~nd Of the chain,
thereby mak i ng i t be the current express i on. The cO,mrnand a

2 . 3

is used'to ascend the chain; it removes the last I ink of the
chain, thereby making the previous link be the current
e~pression. Thus:

liP
X
tl0 P
(X)
110-1 P
(COND (& Z) (T &)}

1/

Note the use of several commands on a single line in the
previous output. The editor operates in a line buffered
mode. Thus no command is actually seen by the editor, or
executed unti I the I ine is terminated, either by a carriage
return, or an escape (aft-mode).

In our editing session, we wi I I make the fol lowing
corrections to APPEND: delete Y from where it appears, add Y
to the end of the argument list, (These two operations could
be thought of as one operation, i.e., move Y from its
current position' to a new position, and in fact there is a
MOVE command in the editor. However, for the purposes of
this introduction, we wi I I confine ourselves to the simpler
edit commands.) change NUL to NULL, change Z to Y, add X
after CAR, and insert a right parenthesis following COR X.

First we wi II delete Y. B~ now we have forgotten where
we are in the function definition, but we want to be at the
!I top, II ,so~e use, the command l' , which ~scends through the·
entire chain of expressions to the top level expression,
which then becomes the current 'expression, i.e., 1'removes
a I I links except the first one.

tit P
(LAMBDA (X) Y (COND & &)}

1/

Note that if we are already at the top, t has no
effect, i.e., it is a NOP. However, e would generate an
error. In other words, , means IIgo to the top,1I while 0
means II ascend one link. II

2 . 4

"

,--,l,

The basic structure modification commands in the editor
are

(n)

(n e1, ••• , em)

(-n el, ••• ,em)

Thus:

n>1 deletes the corresponding
element from the current expression.

n.m~l replaces
the current
e1, .•. ,em.

n,m>l
nth

inserts
element

expression.

#P

the nth element in
expression ~ith

el, ••• ,em before the
in the current

(LAMBDA (X) Y (COND & &))
#(3)
(2 (X Y»
I/P
(LAMBDA (X y) (COND & &»

1/

AI I structure modification done by the editor is
destructive, i.e., the editor uses RPLACA and RPLACO to
physically change the structure it was given. Note that al I
three of the above commands perfor~ their operation ~it~
~espect to the nth el~meMt from the front of the current
express i on; the sign of n is used to spec i fy ~hether the
operation is replacement or insertion. Thus, there is no
way to specify deletion or replacement of the nth element
from the end of the current expression, or insertion before
the nth element 'from the end without counting out that
element's position from the front of the list. Simi larly,
because we cannot specify insertion after a particular
element, ~e cannot attach something at the end of the
current expression using the above commands. Instead, ~e
use the command N (for NCONC). Thus we could have performed
the above changes instead by:

2 . 5

liP
(LAMBDA (X) Y (COND & &»
11(3)
#2 (N Y)
liP
(X y)
lit P
II(LAMBDA (X Y) (COND & &»
II

Now we are ready to change NUL to NULL. Rather than
specify the sequence of descent commands necessary to reach
NULL, and then rep I ace it wi th NULL, i. e., 3 2 1 (1 NULL),
we will use F,the find command, to find NULL:

liP
(LAMBDA (X Y) (COND & &»
IIF NUL
liP
{NUL Xl
II (1 NULL)
#0 P
«NULL X) Z)
II

Note that F is special in that it corresponds to TWO
inputs. In other words, F says to-the editor, "treat your
next command as an expression to be searched for." The
search is carried out in printout order in the current
expre~~ion. If the target expression is not found there, F
aJto~aticarly ascends and searches those' portions of the'
higher expressions th~t would appear af{er' (in a printout)
the current expression. If the search is successful, the
new current expression wi I I be the structure where the
expression was found, (If the search is for an atom, e.g., F
NUL, the current expression wi I I be the structure containing
the atom. I f the search is for a list, e. g., F (NUL X), the
current expression wi I I be the list itself.) and the chain
wi I I be the same as one resulting from the appropriate
sequence of ascent and descent commands. If the search is
not successful, an error occurs, and neither the current
expression nor the chain is changed: (F is never a NOP,
i . e., i f success fu I, the curren t express j on after the search
wi I I never be the same as the current expression before the
search. Thus F EXPR repeated without intervening commands
that change the edit chain can be used to find successive
instances of EXPR.)

2 • 6

/"

liP
«NULL X) Z)
IIF COND P

eOND ?
/lP
«NULL X) Z}
II

Here the search fai led to find a COND fol lowing the
current expression, although of course a COND does appear
earl ier in the structure. This last example illustrates
another facet of the error recovery mechanism: to avoid
further confusion when an error occurs, al I commands on the
I ine beyond the one which caused the error {and al I commands
that may have been typed ahead whi Ie the editor was
computing} are forgotten.

We could also have used the R command (for Replace) to
change NUL to NULL. A command of the form (R e1 e2) wi I I
replace al I occurrances of e1 in the current expression by
e2. There must be at least one such occurrence or the R
command wll I generate an error. Let us use the R command to
change ai' Z's (even though there is only one) in APPEND to
Y:

lit (R Z Y)
IIF Z

Z ?
IIPP
(LAMBDA (X Y)

(COND «NULL X) Y)
(T (CONS (CAR) (APPEND (CDR X V»~}»~)

/I

The next task is to change (CAR) to (CAR X). We could
do th is by {R (CAR) (CAR X», or by:

IIF CAR
II(N X)
liP
(CAR X)
II

The e·xpress i on we now want to change i sthe next
express ion af ter the current express ion, i • e., &.Je are

2 . 7

currently looking at (CAR X) in (CONS (CAR X) (APPEND (CDR X
V)}). We could get to the APPEND expression by typing 0 and
then 3 or -1. or ~~ can use the ·command NX, ~hich does both
operat ions:

#P
{CAR X}
#NX P
(APPEND (COR X V»~

Finally, to change (APPEND (COR X V»~ to (APPEND (COR
X) Y), we could perform (2 (COR X) V), or (2 (COR X» and (N
Y) , or 2 and (3) , de let i ng the Y, and then 0 (N Y).
However, if Y were a complex expression we would not ~ant to
have to retype it. Instead, we could use a command ~hich
effectively inserts and/or removes left and right
parentheses. There are six of these BI, BO, LI, LO, RI, and
RO, for Both In, Both Out, Left In, Left Out, Right In, and
Right Out. Of course, ~e wi I I always have the same number
of left parentheses as right parentheses, because the
parentheses are just a notational guide to structure that is
provided by our print program. (Herein lies one of the
principal advantages of a LISP oriented editor over a text
editor: unbalanced parentheses errors are not possible.)
Thus, left in, left out, right in, and right out actually do
not insert or remove just one parenthesis, but this is very
suggestive of what actually happens.

In this case, we would like a right parenthesis to.
appear fol lo~ing X in (COR X Y), Therefore, we use; the
command (RI 2 2), which means insert a right parentheses
after the second element in the second element (of the
current expression):

#P .
(APPEND (COR X V)}
#(RI 2 2)
#P
(APPEND (CDR X) Y)

We have now finished our editing, and can exit from the
editor, to test APPEND, or we could test it while still
inside of the editor, by using the E command:

#E (APPEND {QUOTE (A B)l (QUOTE (C 0 E»)
(A BCD E)

2 . 8

The E command causes thl3 nmd input to be given to
EVAL.

We GRINOEF APPEND, and leave the editor.

#pp
(LAt1BDA ()(y)

(COND {(NULL)() Y)

#01< .
APPEND

*

{T (CONS (CAR)() {APPEND (CDR X) Y)))))

2 • 9

Commands for the New User

This manual is intended primari Iy as a reference
manual, and the remainder of this chapter is organized and
presented accordingly. Whi Ie the commands introduced in the
previous scenario constitute a complete set. i.e., the user
could perform any and al I editing operations using just
those commands, there are many situations in which knowing
the right command(s) can sav~ the user considerable effort.
We include here as part of the introduction a list of those
commands which are not only frequently applicable but also
easy to use. They are not presented in any particular
order, and·are al I discussed in detai I in the reference
portion of the chapter.

UNDO

SK

SF

<

Undoes the last modification to the
structure being edited, e.g., if the
user deletes the wrong element, UNDO
wi I I restore it. The avai labi lity
of UNDO should give the user
confidence to experiment with any
and al I editing commands, no matter
how complex, because he can always
reverse the effect of the command.

Like NX, except makes the expression
i~mediately before the current
expression become curr~nt.

Backl.lards Find. Like F, e~cept
searches backwards, i.e., in inverse
print order.

Restores the current expression to
the expression before the last "big
jump", e. g., a find command, an 1',
or another <. For examp Ie, if the
user types F COND, and then F CAR, <
would take him back to the CONDo
Another < would take him back 'to the
CAR.

2 . 18

,,,,--'.' ...

.'-.-

(

<P
Like < except it restores the edit
chain' to its state as of the last
print. either by p. ?, or PP. If
the edit chain has not been changed
since the last print, <P restores it
to its state as of the printing
before that one, i.e., two chains
are always save~~

Thus if the user types P fol lowed by 3 2 1 P, <P wi I I
take him back to the first P, i.e., would be equivalent to e
o 0. Another <P would then take him back to the second P,
i. e., .he can use <P to flip back and forth' between two
current e~pressions.

&,--
The search expression given to the F
or SF command need not be a literal
S-expression. Instead, it can be a
pattern. The symbol & can be used
anywhere within this pattern to
match with any single element of a
list, and -- can be used to match
with any segment of a I ist. Thus,
in the incorrect definition of
APPEND used earlier, F (NUL &) could
have been used to find (NUL X), and
F (COR --) or F (COR & &), but not F
(COR &), to find {COR X YJ.

Note that & and -- can be nested arbitrari Iy deeply in
the pattern. For example, if there are many places where
the varaible X is set, F SETa may not find the desired
expression, nor may F (SETa x &). It may be necessary to use
F (SETa X (LIST --». However, the usual technique in such a
case is to pick out a unique atom which occurs prior to the
desired expression and perform tl-lO F commands. This "homing
in" process seems to be more convenient than ultra-precise
specification of the pattern.

2 • 11

@ (at-sign)
Any atom ending in @ (at-sign) in a
pattern wi I I match with the fi~st
atom or string that "contains the
same initial characters. For
example, F VER@ wi' I find
VERYLONGATOM. @ can be nested inside
of the pattern, e.g., F (SETQ VER@
(CONS --)).
If the search is successful, the
editor wi I I print = fol lowed by the
atom which matched with the @-atom,
e. g.,

#F (SETQ VER@ &)
=VERYLONGATOM

"Frequently the user wi II want to replace the entire
current expression or irsert something before it. In order
to do this using a command of the form (n el, •• ~,em) or (-n
el, ••. ,em), the user must be above the current expression.
In other words, he would have to perform a e fol lowed by a
command with the appropriate number. However, if he has
reached the current expression via an F command~ he may not
know what that numberi s. In this case, the user would' I ike
a command whose effect would be to modify the edit chain so
that the current expression became the fir~t element in a
new, higher current expression. Then he could p~rf~rm the
des ired operat i on v i a (1 e1, .. 0, em) or (-1 e1 p .. ,ail). " UP .
is prov"j ded fo"r th j s purpose.

2 • 12

UP

(8 e1, ••• , em)

(A e1, ••• , em)

After UP operates,. the old current
expression is the first element of
the new current expression. Note
that if the current expression
happens to be the first element in
the next higher expression, then UP
is exactly the same as B.
Otherwise, UP modifies the edit
chain so that the new current
expression is a tai I (Throughout
this chapter 'tai I' means 'proper
tai I') of the next higher
expression:

#F APPEND
(APPEND (CDR X) Y)
#UP P
• •• (APPEND & Y»
#0 P
(CONS (CAR X) (APPEND & Y»

The ... is used by the ed i tor to
indicate that the current expression
is a tai I of the next higher
expression as opposed to being an
element (i.e., a member) of the next
higher expression. Note: if the
current expression is already a
tai I, UP has no effect.

Inserts e1, ... ,em before the current
express ion, i . e. , does an UP and
then a -1.

Inserts e1, •.. ,em after the current
express ion. i . e. , does an UP and
then either a (-2 e1, ••• ,em) or an
(N e1" •• ,em), if the current
expression is the last one in the
next higher expression.

2 . 13

(: e1, ••• ,em)

DELETE

Replaces current e~pression by
el,.i.,em, i.e., does an UP and then
a (1 el, •.. , em) •

Deletes current expression, i.e.,
equivalent to (:).

Earl ier, we introduced the Rt command in the APPEND
example. The rest of the commands in this fami Iy:, BI~ RO,
LI, LO, and RO, perform similar functions and are useful in
certain situations. In addition, the commands MBD and XTR
can be used to combine the effects of several commands of
the BI-BO family. MBO is used to embed the current
expression in a larger expression. For example, if the
current expression is (PRINT bigexpression), and the user
wants to replace it by (COND (FlG (PRINT bige~pression»),
he can ac'ompl ish this by (lI 1), {-l FLG) , elI 1), and (-1
CONO) , or by a single MBO command.

XTR is used to extract an expressio~ frpm the current
expression. . For example, extracting the PRINT expression
from the above COND could be accompl ished by (1), (LO l),
and (LO 1) or by a single XTR command. The new user is
encouraged to include XJR ahd MBD in his repertoire as soon
as he is famil iar with the more basic commands.

2 • 14
\"

Attention Changing Commands

Commands to the ed i tor fal lin to three c I asses:
commands that change the current expression (i.e., change
the edit chain) thereby "shifting the editor's attention,"
commands that modify the structure being edited, and
miscellaneous commands, e.g., exiting from the editor,
printing, evaluating expressions.

within the context of commarids that shift the editor's
attention, we can distinguish among (1) those commands whose
operation depends only on the structure of the edit chain,
e.g., a, UP, NX; (2) those which depend on the contents of
the structure, i. e. , commands that search; and (3) those
commands which simply restore the edit chain to some
previous state, e.g., <, <Po (1) and (2) can also be
thought of as local, smal I steps versus open ended, big
jumps. Commands of type (1) are discussed on pp.
2.15-2.21; type (2) on pp. 2.22-2.35; and type (3) on pp.
2.36-2.37.

2 . 15

Local Attention-Changing Commands

UP
(1) I f a P command wou I d cause the
editor to type before typing
the current expression, i.e., the
current expression is ~ tai I of the
next higher expression, UP has no
effect; otherwise
(2) UP modifies the edit chain so
that the old current expression
(i.e., the one at the time UP was
called) is the first element in the
new current expression. (If the
current expression is the first
element in the next higher
expression UP simply does a B.
Otherwise UP adds the corresponding
tai I to the edit chain.

Examples: The current expression in each case is (COND
«NULL X) (RETURN Y»).

1. til P
COND
tlUP P
(COND (& &))

2. tI-1 P
«NULL X) (RETURN V»~
tlUp·p .
• •• «NULL X) (RETURN Y»))
tlUP P
• •• «NULL X) (RETURN Y))

3. tlF NULL P
(NULL X)
flUP P
«(NULL X) (RETURN Yl)
flUP P

«NULL Xl <RETURN Y»)

The execution of UP is straightforward, except in those
cases where the current expression appears more than once in
the next higher expression. For ~xample, if the current
expression is (A NIL B NIL C NIL) and the user performs 4
fol lowed by UP, the current expression should then be •••
NIL C NIL.} UP can determine which tai I is the correct one

2 • 16

(/""
I

because the commands that descend save the last tai I on an
internal editor variable, LASTAIL. Thus after the 4 command
is executed, LASTAIL is (NIL C NIL), When UP is called, it
first determines if the current expression is a tai I of the
next higher expression. If it is, UP is finished.
Otherwise, UP computes
(MEMS current-expression next-higher-expression) to obtain a
tai I beginning wi th the current expression. (The current
expression should always be either a tai I or an element of
the next higher expression. If it is neither, for example
the user has directly (and incorrectly) manipulated the edit
chain, UP generates an error.) If there are no other
instances of the current-expression in the next higher
expression, this tai I is the correct one. Otherwise UP uses
LASTAIL to select the correct tai I. (Occasionally the user
can get the edit chain into a state where LASTAIL cannot
resolve the ambiguity, for example if there were two
non-atomic structures in the same expression that were EO,
and the user descended more than one level into one of them
and then tried to comeback out using UP. In this case, UP
selects the first tai I and prints LOCATION UNCERTAIN to warn
the user. Of course, we could have solved this problem
completely in our implementation by saving at each descent
both elements and tai Is. However, this would be a costly
solution to a situation that arises infrequently, and when
it does, has no detrimental effects. The LASTAIL solution
is cheap and resolves 99% of the ambiguities.

-n (n>0)

Adds the nth element of the current
expreasion to the front of th~ edit
cha in, thereby maid ng i t be the new
current expression. Sets LASTAIL
for use· by UP. Generates an error
if the current expression is not a
list that conta i ns at I east n
elements.

Adds the nth element from the end of
the current expression to the front
of the edit chain, thereby making it
be the new current expression. Sets
LASTAIL for use by UP. Generates an
error if the current expression is
not a I ist that contains at least n
elements.

2 . 17

',,---,

e
Sets edit chain to CDR of edit
chain, thereby making the next
higher expression be the ne~ correct·
expression. Generates an error if
there is no higher express ion, i. e. ,
CDR of edit chain is NIL.

Note that e usually corresponds to going back to the next
higher left parenthesis, but not al~ays. For example, if
the current expression is (A BCD E F G), and the user
performs

II UP P
..• C 0 E F G)
#3 UP P
... E F G)
#e'p
... C 0 E F G)

If the intention is to go back to the next higher left
parenthesis, regardless of any intervening tai Is, the
command !e can be used. (!B is pronounced bang-zero.)

!e
Does repeated a's unti I it reaches a
point ~here the current ex~ression
is not a tai I of the next higher
express ion, i • e. , a I ~ays goes back
to the next higher left parenthesis.

Sets· edit chain to LAST of edit
chain, ther.eby making the top level
expression be the current
expression. Never generates an
error.

2 . 18

'-

\
'--

c_

NX

BK

Effectively does an UP tal lowed by a
2. (Both NX and BK operate by
performing a !0 fol lowed by an
appropr i a te number, i • e. There
won't be an extra tai I above the new
current expression, as there would
be if NX operated by performing an
UP fol lowed by a 2.l thereby making
the current expression be the next
expression. Generates an error if
the current expression is the last
one ina lis t • (However,! NX
described below wi II handle this
case.)

Makes the current expression be the
previous expression in the next
higher expression. Generates an
error if the current expression is
the first expression in a list.

For example, if the current expression is (COND «NULL Xl
(RETURN Y»)

flF RETURN P
(RETURN V).
fiSK P
(NULL X)

(NX n) n>0

(SK n) n>0

Equivalent to n. NX commands, except
if an error occurs, the edit chain
is not changed.

Equivalent to n SK commands, except
if an error occurs, the edit chain
is not changed.

Note: (NX -n) is equivalent to (BK n), and vice versa.

2 . 19

!NX
Makes current expression be the next
expression at a higher level, i.e.,
goes through any number of right
parentheses to get to the next
expression.

For examp Ie':

. #pp
(PROG (UF)

(SETQ UF L)
LP (COND «NULL (SETQ L (CDR L») (ERR NIL»

«NULL (CDR (MEMQ# (CAR L) (CADR L»)}
(GO LP»)

(EDITCOM (QUOTE NX»
(SETQ UNFIND UF)
(RETURN L»

#F COR P
(CDR L)

#NX

NX ?
#!NX P
(ERR NI L)
#NX P
«NULL &) (GO LP»
#!NX P
(EOITCOM (QUOTE NX)

!NX operates by doing a's unti I it reaches a stage
where the current expression is not the last expression in
the next higher expression, and then does a NX. Thus !NX
always goes through at least one unmatched right
parenthesis, and the new current expression is always on a
different level, i.e., !NX and NX always produce different
results. For example using the previous current expression:

2 • 20

/ '

(
'---

(NTH n) n>0

#F CAR P
(CAR L)
#!NX P
(GO LP)
#<p P
(CAR L)
#NX P
(CADR L)

Equivalent to n fol lowed by UP,
i.e., causes the I ist starting with
the nth element of the current
express ion. «NTH 1) is a NOP.)
Causes an error if current
expression does not have at least n
elements.

A general ized form of NTH using location specifications is
described on page 2.34.

2 . 21

Commands' That Search

AI I of the editor commands that search use the same
pattern matching routine. <This routine ;s avai lable to the
user directly, and is described later in this chapter in the
section on "Editor Functions.") We wi II therefore begin our
discussion of searching by describing the pattern match
mechanism. A pattern PAT matches with X if

1. PAT is EQ to X.
2. PAT is &.
3. PAT is a number and EQUAL to X.
4. If (CAR pat) is the atom *ANY*, (COR pat) is a

. list of pat terns, and PAT matches X if and on' y
if one of the patterns on (COR pat) matches X.

5. If PAT is a I iteral atom or string, and (NTHCHAR
pat -1) i s@, then PAT matches wi th any literal
atom or string which has the same initial
characters as PAT, e.g. VER@ matches with
VERYLONGATOM, as well as "VERYLONGSTRING".

6. I f (CAR pat) is the atom --, PAT matches X if
A. (COR pat)=NIL, i.e. PAT=(--l,

e. g., (A --) matches (A) (A B C) and
(A. B)

In other words, -- can match any tai I of
a list.

B. (COR pat) matches with some tai I of X,
e.g. {A -- (&)} wi I I match with (A B
C (0)), but not (A BCD), or (A B C
(0) E). However, note that (A -- (&)

. --) LJi II' m'atch .w··itt, (A 8 C to) EL
In other words, wi II match any
interior segment of a list.

7. I f (CAR pat) is the atom ==, PAT matches X if
and only if (COR pat) is EO to X. (This pattern
is for use by' programs that cal I the editor as a
subroutine, since any non-atomic expression in a
command type in by the user obviously cannot be
EO to existing structure.)

8. Otherwise if X is a list, PAT matches X if (CAR
pat) matches (CAR x), and (COR pat) matches (COR
x) •

When searching, the pattern matching routine is cal led
only to match with elements in the structure, unless the
pattern begins with :::, in which case COR of the pattern is
matched against tai Is· in the structure. (In this case, the
tai I does not have to be a proper tai I, e.g. (::: A --)

2 . 22

wi I I match with the element (A B C) as wei I as with CDR of
(XABC). since (ABC) isa tail of (ABC),) Thus if the
current expressi ion is (A 8 e (8 e».

#F (B --)
#P
(B C)
#0 F (::: B --)
#P
• •• B C (B C)
#F (::: B --)
#P
(B C)

2 . 23

Search Algorithm

Searching begins with the current expression and
proceeds in print order. Searching usually means find the
next instance of this pattern, and consequently a match is
not attempted that would leave the edit chain ~nchanged.
(However, there is a version of the find command which can
succeed and leave the current expression unchanged.) At each
step, the pattern is matched against the next element in the
expression currently being searched, unless the pattern
begins with ::: in which case it is matched against the
corresponding tai I of the expression. (EQ pattern
tai l-of-expresslon)=T also indicates a successful match, so
that a search for FOO wi I I find the FDO in (FIE. FOO).
The only exception to this occurs when PATTERN=NIL, e.g., F
NIL. In this case, the pattern wi II not match with a null
tai I (since most I ists end in NIL) but wi II match wi th a NIL
element.

If the match is not successful, the search operation is,
recursive first in the CAR direction and then in the CDR
direction, i.e., if the element under examination is a list,
the search descends into that, list before attempting to
match with other elements (or tai Is) at the same level.
(There is also a version of the find command which only
attempts matches at the top level of the curr.ent expression,
i.e., does not descend into elements, or astend to higher
e~press ions.)

However, at no point is the total recursive depth of
the search {sum of number of, CARsa'nd"CDR:s descended into)"'
al lowed to exceed the value of the variable MAXLEVEL. At
that point, the search of that element or tai I is abandoned,
exactly as though the element or tai' had been completely
searched without finding a match, and the search continues
with the next element or tai I for which the recursive depth
is below MAXLEVEL. This feature is designed to enable the
user to search circular list structures (by setting MAXLEVEL
small), as well as protecting him from accidentally
encountering a circular list structure in the course of
norma I ed it i ng. MAXLEVEL is in it i a II y set to 300. I f a
successful match is not found in the current expression, the
search automatically ascends to the next higher expression,
and continues searching there on the next expression after
the expression it just finished searching. If there is
none, it ascends again, etc. This process continues unti I
the entire edit chain has been searched, at which point the
search fai Is, and an error is generated. If the search

2 . 24

fai Is the edit chain is not changed (nor are any CONSes
per formed.)

I f the search is success fu I, i • e. , an E:xpress i on is
found that the pattern matches, the edit chain is set to the
value it would have had had the user reached that expression
via a sequence of integer commands.

I f the expression that matched was a list, it wi II be
the final link in the edit chain, i.e., the new current
expression. If the expression that matched is not a list,
e.g., is an atom, the current expression wi II be the tai I
beginning with that atom, (Except for situations where match
is with Y in (X. V), Y atomic and not NIL. In this case,
the current expression will be (X. Y)'} i.e., that atom
wi I I . be the fir s tel emen tin the new curren t express i on. In
other words, the search effectively does an UP. (Unless
UPFINDFLG=NIL (initially set to T). For discussion, see
page 2.4SL

·2 . 25

'--"" .

Search Commands

AI I of the commands belo~ set LASTAIL for use by UP,
set UNFIND for use by < (p. 2.36), And do not change the
edit chain or perform any CONSes if they are unsuccessful or
aborted.

F pattern
i • e. , two commands: the F informs
the editor that the next command is
to be interpreted as a pattern.
This is the most common and useful
form of the find command. If
successful, the edit chain always
changes, i.e., Fpatternmeans find
the next instance of PATTERN.

If (MEMB pattern current-expression)
is true, F does not proceed with a
ful I recursive searc~.

If the value of the MEMB is NIL, F
invokes the search algorithm
described earl ier.

Thus if the current expression were (PROG NIL LP (COND
(--(GO LPl)) LPI ••.), F LPI would find the prog
label, not the LPI inside of the GO expression, even though
the I at ter appears first (i n pr i nt order) in the current
expression. Note that 1 (making the atom PROG be the'
current express:ion),followed by F·LPl ,""ould find 'the fir-s't
LP.1.

(F pattern N)
Same as F pattern, i.e., finds the
next instance of pattern, except the
MEMB check of F pattern is not
performed.

2 • 26

I
'''-­

'~

(F pat tern T)
Simi lar to F pattern, except may
succeed without changing edit chain,
and does not perform the MEMS check.

Thus if the current expression
&-Ii II I 001< for the next COND, but
here' •

is (COND .•), F COND
(F COND T) wi I I 'stay

(F pattern n) n>0

(F pattern) 'or'
(F pat tern NI L)

Finds the nth place that pattern
matches. Equivalent to (F pattern
1) followed by {F pattern N}
repeated n-1 times. Each time
PATTERN successfully matches, n is
decremented by 1, and the search
continues, unti I n reaches 0. Note
that the pattern does not have to
match with n identical expressions;
it just has to match N times. Thus
if the current expression is {FOOl
F002 F003) , (F F08@ 3) 1-1 i I I find
F003.

If the pattern does not match
successfully N times, an error is
generated and the edit chain is
unchanged (even if the PATTERN
matched n-1 times).

,,' . ".:'

Only matches with elements at the
top level of the current expression,
i.e., the search wi I I not descend
into the current expression, nor
I-lill itgo outside of the current
expression. May succeed without
changing edit chain.

For examp I e t if the current express i on is
(PROG NIL (SETQ X (COND & &}) (COND &) •••)
F (COND --) wi I I find the COND inside the SETQ, whereas (F
(COND --» wi I I find the top level COND, i.e., the second
one~

2 . 27

-.

'~

(FS pattern [11

(F=, expression x)

pattern[nJ)
Equivalent to F pattern[ll followed
by F pat tern [2] ••• fo II owed by F
pattern n, so that if F pattern m
fai Is, edit chain is left at place
pattern m-l matched.

Equivalent to (F , (==. Expression)
x) , i • e. , searches for a structure
EO to expression, see p. 2.22.

(ORF pattern[ll ••• pattern[n])

SF pattern

Equ i va I ent to (F (*ANY* pat tern [1]
pa t tern [nJ) N}, i. e., searches

for an expression that is matched by
either pattern[lJ or

,pattern[n]. See p. 2.22.

Backwards Find. Searches in reverse
print order, beginning with
expression immediately before the
current expression (unl~ss the
current expression is the top level
expression, ~ in which case SF
searches the ent i re express ion, in
reverse order.)

BF uses the same pattern match
routine as F, ' and' MAXLEVEL and
UPFINDFLG have' the same effect, but
the searching begins at the end of
each list, and descends into each
element before attempting to match
that element. If unsuccessful, the
search continues with the next
previous element, etc., unti I the
front of the list is reached, at
which point BF ascends and backs up,
etc.

For example~ if the current expression is
(PROG NI l (SETa x (SETa Y (lI ST Z)}} (COND «SETO 14 --) --» --)
F LIST fol lowed by SF SETa will leave the current
expression as (SETa Y (LISTZ}), as wiJI F COND fol lowed by
SF SETa,

2 • 28

~'--

(BF pattern TJ
Search always includes current­
expression, i. e., starts at end of
current expression and works
backward, then ascends and backs up,
etc.

Thus in the previous example, . where F eOND fol lowed by
BF SETa found (SETa Y (LIST Z)}, F eOND fol lowed by (BF SETa.
T) would find the (SETa w --) expresslo~.

(BF pat tern) Same as SF pattern.
(BF pattern NIL)

2 . 29

Location Specification

Many of the more sophi~ticated commands described later
in this chapter use a more general method of specifying
position cal led a LOCATION SPECIFICATION. A LOCATION
SPECIFICATION is a I ist of edit commands that are executed
in the normal fashion with two exceptions. First. al I
commands not recognized by'the editor are interpreted as
though they had been preceded by F. (Normally such cOMmands
~ould cause errors.) For example, thi 16bation specification
(COND 2 3) specifies the 3rd element in the first clause of
the next CONDo (Note that the user could al~ays write (F
COND 2 3) for (COND 2 3) if he were not sure whether or not

, COND ~as the name of an atomic command.) .

Secondly, if an error occurs while eval~ating one of
the commands in the location specification, and the edit
chain had:been changed, i.e., was not the same as it was at
the beginning of that executiQn of the location
specification, the lo~ation operation wi I I oontinue. In
other words, the location operation keeps going unless it
reaches a state where it detects that it is 'looping', at
which point it gives up. Thus, if (COND 23) is being
located, and the first clause of the next CDND contained
only two elements, the execution of the command 3 would
,cause an error. The search would then continue by looking
for the next CONDo Howe~er, if a point'were reached where
there were no further CONDs, then the fir,t command, CONO,
would cause the error;' the edit chain wo~ld not have been
changed, and s6 the entire location operation would fai I,
and cause a~ error. .

The IF command
using in location
applied to elements
wi I I be described in
examples i lustrating

and the'## function'provide a way of
specifications ,arbitrary predicates

in the current expression. IF and ##
detai I later in the chapter, along with
their use in location specifications.

Throughout this chapter, the meta-symbol S is used to
denote a location specification. Thus S is a list of
commands interpreted as described above. S Can also be
atomic, in wh..i,ch case it is interpreted as (LIST S).

2 • 30

(LC. S)

(LCL. U)

(SECOND • S)

(THIRD. S)

Prov i des a way 0 f exp lie i t I y
invoking the location operation,
e. g. (LC eOND 2 3) will per form the
search described above.

Same as LC except search is confined
to current expression, i.e., the
edit chain is rebound during 'the
search so it looks as if the editor
were cal led on just the current
expression. For example, to find a
COND containing a RETURN, one might
use the location specification (COND
(LCL RETURN) <) where the < would
reverse the effects of the LCL
command, and make the final current
expression be the CONDo

Same as (LC $) Fol lowed by
another (LC U) Except that if
the fir~t succeeds and second fai Is,
no change is made to the edit chain.

Simi lar to second.

2 • 31

•

(... pat tern)

For example:

flPP
(PROG NIL

Ascends the edit chain looking for a
I ink which matches PATTERN. in other
words, it keeps do i ng 9' s unt iii t
gets to a specified point. If
PATTERN is atomic, it is matched
with the first element of each link,
otherwise with the entire I ink. (If
pattern is of the form (IF
expression), EXPRESSION is evaluated
at each link, and if its value is
NIL, or the evaluation causes an
error, the ascent continues.)

(COND «NULL (SETa L (CDR L»)
(COND (FLG (RETURN L»»

tlF CADR
tiC ... CONo)
tiP

«NULL (CDR (MEMB (CAR L (CADR L»»)
(GO LP))))

(CONo (& &) (& &)}
tI

Note that this command differs from SF in that it does
not search inside of each link, it simply ascends. Thus in
the above example, F CADR, followed by SF COND would find
(COND (FLG (RETURN L»), ~otthe higher CONo~

(BELOW com x)

If no match is found, an error is
generated and the edit chain is
unchanged.

Ascends the edit chain looking for a
I ink specified by COM, and stops x
I inks be I ow that, i • e. BELOW keeps
doing e's until it gets to a
specified point, and then backs off
N 9's. (X is· evaluated, e.g.,
(BELOW com (*PLUS X V)})

2 . 32

,/

l
'--

...... _ ..

" -

(
\.... / '------

(BELOW com)
SaMe as (BELOW COM 1)

For 8)(al{1p I e, mELO~J COiVDi !J ill C3lWO the COND c I alJse
con ta i n i ng the curTen t e:~pi"'os~Ji on to bOCCH.18 tho ne~J curren t
e')(pression. Thus if the cun"ent c)cpr"ession is as shown
above, F CAOR fol lowed bU (BELOW COND) will make the new
e){pressi on be ([NULL (CnH (Fr1t~1B (CAn L) CADR LJ (GO l.P»,
and is th8re~ore equivalent to BOB 0.

BELOU oper'ates by eva I uat i ng){ and
then e)~ecut i ng Cor'1, or' (+- com) i f
COM is not a recognized edit
command, and measuring the length of
the edi t chain at that point. If
that length is M and the length of
the current edit chain is Nt then
BELO/;.! ascends n-m··u I i nl,s l.Jhere Y is
the value of X. Generates an error
i f CO~l causes an el"ror, i • e., i t
can't find the highet' I i nl" or i f
n-m-y is negative.

The BELOW command is useful for locating a substructure
by specifying something it contains. For eHample, suppose
the user is editing a list of li~ts, and wants to find a
sUblist that contains a FDD (at anu depth). He simply
eMecutes F FOD {BELOW <}.

(NE)< ~)
S~HilO 'as {BEL-Ol·!:d folloued by,N)(;,

For e~ample, if the user is deep inside of a SELECTQ clause,
he can advance to the ne~t clause with (NEX SELECTQ).

NEX
Same as (NE)(r).

The a torn i c fOf'1lI 0 f NE}{ is use fu I i f the user wi I I be
performing repeated e~ecutions of (NEX u). By simply
MARKing (see p. 2.36) The chain cOI'I'esponding to)(, he can
use NEX to step through the sUblists.

2 • 33

'.
~.

(NTH 5)
Generalized NTH command.
Ef.fectively· performs (LCL. 8),
Followed by (BELOW <), fol lowed by
UP.

In other words, NTH locates I, using a search restricted to
the current expression, and then backs up to the current
level, where the new cur~~nt expression is the tai I who~e
first element contains, hoWever deeply, the expression that
was the terminus of th~ location operation. For example:

liP
(PROG (& &) LP (COND & &) (EDITCOM 8r) (SETa UNFIND UF) (RETURN L»
IItNTH UF)
liP (SETa UNFIND UF) (RETURN L»

If the search is unsuccessful, NTH
generates an error and the edit
chai~ is not changed.

Note that (NTH n) is just a special case of (NTH 11, and in
fact, no special check is made for S a number; both commands
are executed identically.

(pat tern ::. S)
E.g., (COND :: RETURN). Finds a
COND that contains a RETURN, at any
depth. 'Equivalent to (F, pattern N),
(LCL. $) fo I lowed by (+- pa t tern).

For example, if the current expression is (PROG NIL
(COND «NULL L) (COND (FLG (RETURN L»») --), then (COND ::
RETURN) wi I I make (COND (FLG (RETURN L») be the current
expression. Note that it is the innermost COND that is
found, because this is the first COND encountered when
ascend ing from the RETURN. In 0 ther words, (pat tern :: I)
is not equivalent to (F pattern N), fol lowed by (LCL • 5)
fa I lowed by: <.

Note that S is a location specification, not just a
pattern. Thus (RETURN :: CONO 2 3) can be used to find the
RETURN which contains a COND whose first clause contains (at
least) three elements. Note also that since S permits any
edit command, the user can~rite commands of the form (COND
:: (RETURN:: CONO», which will locate the first COND that

2 . 34

I

',--',---

contains a RETURN that contains a CONDo

2 . 35

Commands That Save and Restore the Edit Chain

Three faci lities are ava; lable for saving the current
edit chain and later retrieving it. The commands are MARK,
which marks the current chain for future reference, ~, (An
atomic command; do not confuse with the list command (~
pattern).) which returns to the last mark without destroying
it, and- , 'wh i ch returns to the I ast mark and a I so erases
it •.

MARK
Adds the current edit chain to the
front of the list MARKLIST.

Makes the new edit chain be (CAR
MARKLIST). Generates an error if
MARKLIST is NIL, i.e., no MARKS have
been performed, or all have been
erased.

Simi lar to ~ but also erases the
MARK, i.e., performs (SETa MARKLST
(COR MARKLST)}.

If the user did not prepare in advance for returning to
a partic~lar edit chain, he may sti II be able to return to
that chaln with a single command by using <,or <PI

<
Makes ~he edit chain be the value of
UNFINO. Generates an error if
UNFIND=NIL.

UNFIND is set to the current edit chain by each command
that makes a "big jump", i.e., a command that usually
performs more than a single ascent or descent, namely t, ~,
~~, !NX, al I commands that involve a search, e.g., F, Le.
::, BELOW, et al and < and <P themselv~s. (Except that
UNFIND is not reset when the current edit chain is the top
level expression. since this could always be returned to via
the t command.)

For example, if t~ecuser types F CONO, and then F CAR,
< would take him back to the CONDo Another < would take him
back to the CAR, etc.

2 . 36

<P
Restores the edit chain to its state
as of the last print operation,
i • e. , P,?, or PP. I f the ed i t
chain has not changed since the last
printing, <P restores it to its
state as of the printin~ before that
one, i . e. , two c h a, ins are a I wa y s
saved.

For examp I e, if the user types P fo II owed by 3 2 1 P,
<P l.Jill return to the first P, i.e., would be equivalent to
a a 0. (Note that if the user had typed P fol lowed by F
COND, he could use either < or <P to return to the P, i.e.,
the action of < and <P are independent.) another <P would
then take him bacl<. to the second P, i. e., the user cou I d use
<P to fl ip back and forth between the two edit chains.

(S var. ~)
Sets var (using SETQ) to the current
e~pression after performing (LC.
g). Edit chain is not changed.

Thus (S FOO) wi I I se t FOD to the current e><press ion, (5
Faa -1 I) wi I I set FOD to the first element in the last
element of the current expression.

2 • 37

Commands That Modify Structure

The basic structure modifications commands in the
editor are:

(n)

(n e1 em)

(-n e1 ••• em)

CN e1 ••• em)

As mentioned earlier:

n>1 deletes the corresponding
element from the current expression.

n,m>1 replaces the nth element in
th~ current expression ~ith e1 •••
ern.

n,m>1 inserts e1 em before the
n element in the current expression.

m>1 attaches e1 em at the end
of the current expression.

AI I structure modificaton done by the editor is destructive,
i.e., . the editor uses RPLACA and RPLACO to physically
charige the structure it ~aa given.

Ho~ever, al I structure modification is undoable, see
UNDO p'. 2. 76.

AI I of the above commands generate errors if the
current expression is not a list, or in the case of the
first three commands, if the list contains fe~er than n
elements. In addition, the command (1), i.e., delete the
first element, wi I I cause an error if there is only one
element, since deleting the first element must be done by
replacing it ~ith the second element, and then deleting the
second element. Or, to look at it another way, deleting the
first element ~hen there is only one element ~ould require
changing a I ist to an atom (i.e. to NIL) ~hich cannot be
done. (Ho~ever, the command DELETE wi II ~ork even 1 f there
is only one element in the current expression, since it ~i I I
asdend to a point where it can do the deletion.)

2 . 38

Implementation of Structure Modification Commands

Note: Since al I commands that insert, replace, delete or
attach structure use the same low level editor functions,
the remarks made here are val id for al I structure changing
comm~nds.

For all replacement, insertion, and attaching at the
end of a list, unless the command was typed in directly to
the editor, copies of the corresponding structure are used,
because of the possibi I ity that the exact same command,
{i.e. same I ist structure} might be used again. {Some
editor commands take as arguments a list of edit commands,
e. g. {LP F Faa {1 {CAR FOO}}}' In th is case, the command
C1 (CAR Faa» is no t cons i dered to have been "typed i nil even
though the' LP command itself may have been typed in.
Simi larly, commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITV, et ai,
e.g. (EDITF FOO F COND (N --» are not considered typed
in.} Thus if the program constructs the command (1 (A 8 C)}
via (LIST 1 FOO) , and gives this command to the editor, the
(A 8 C) used for the replacement wi I I NOT be EQ to FaD.
(The user can circumvent this by using the I command, which
computes the structure to be used. In the above example,
the form of the command would be (I 1 FOD) , which would
replace the first element with the value of FDD itself. See
p. 2.63}

The rest of this section is included for applications
wherein the editor is used to modify a data structure, and
poiriter~ into that dat~ structure are stored .elsewhere.· 'In
these cases, the actual mechanics of structure modification
must be known in order to predict the effect that various
commands may have on these outside pointers. For example,
if the value of FDO is COR of the current expression, what
wi II the commands (2), (3), (2 X Y Z), (-2)(Y Z}, etc., do
to FOD?

Deletion of the first element in the current expression
is performed by replacing it with the second element and
deleting the second element by patching around it. Deletion
of any other element is done by patch i ng around it, 1. e. ,
the previous tai I is altered. Thus if FOO is EQ to the
current expression which is (A 8 CO), and FIE is COR of
FOO, after executing the command {Il, FOD wil I be (8 C 0)
(which is EQUAL but not EQ to FIE). However, under the same
initial conditions, after executing (2) FIE will be
unchanged, i. e." FIE wi II st ill be (8 C 0) even though the

2 • 39

curren t express i on and Faa are now (A C 0). (A genera I
solution of the problem just isn't possible, as it would
require being able to make two lists EQ to each other that
l.Jere originally di fferent. Thus if FIE is CDR of the
current expression, and FUM is CO OR of the current
expression, performing(2l would have to make FIE be EQ to
FUM if al I subs~quent operations were to update both FIE and
FUM correctly. Think about it.)

Both replacement and insertion 'are accomplished by
smashing both CAR and COR of the corresponding tai I. Thus,
if FDD were EO to the current expression, (A BCD), after
(1 X Y Z), FOD wou I d be (X Y Z B C OJ. S i mil ar I y, if FDD
were EO to the current expression, (A B C OJ, then after (-1
X Y Z), FDD would be (X Y Z ABC Ol.

The N command is accomplished by smashing the last CDR
of the current expression a la NCONC. Thus, if Faa were EO
to any tai I of the current expression, after executing an N
command, the corresponding expressions would also appear at
the end of FDO.

In summary, the only situation in which an edit
operation wi I I not change an external pointer occurs when
the external pointer is to a proper tail of the data
structure, i. e. , to CDR of some node in the structure, and
the operation is deletion. If al I external pointers are to
elements of the structure, i.e., to CAR of some node"or if
only insertions, replacemen~s, or attachments are performed,
the edit operation wi I I always have the same effect on an
ex terna I' po inter as i t does on' the curren t express i·on~ '.

2 . 48

/-

The A,B,: Commands

In the {n}, {n e1 end. and {-n e1 em}
commands, the sign of the integer is used to indicate the
operation. As a result, there is no direct way to express
insertion after a particular element, (hence the necessity
for a separate N command). Simi larly, the user cannot
specify deletion or replacement of the NTH element from the
end of a list without first converting n to the
corresponding positive integer. Accordingly, we have:

(B e1 ••• em)
Inserts e1 em before the
current expression. Equivalent to
UP fa I lowed by {-1 e1 ••• em} •

For example, to insert FOD before the last element in
the current expression, perform -1 and then (B FOO).

(A e1 ••• em)
Inserts e1 •.• em after the current
expression. Equivalent to UP
fa I 100.Jed by (-2 e1 ••. em) or (N e1

em) or (N e1 ~m) whichever
is appropriate.

(: e1. • • em)

. DELETE or (:)

Replaces the current expression by
e1 em. Equivalent to UP
f 0 I I 0 I.J e d by (1 e 1 ••• em) •

Deletes the current expression, or
if the current expression is a tai I,
deletes its first element.

DELETE first tries to delete the current expression by
performing an UP and then a (1). this works in most cases.
However, if after performing UP, the new current expression
contains only one element, the command (1) wi I I not work.
Therefore DELETE starts over and performs a BK, fol lowed by
UP, folloL-Jed by (2). For example, if the current expression
is (CDND «MEMB X V}) (T V)}, and the user performs -1, and
then DELETE, the BK-UP-(2} method is used, and the new
curren t expre.ss i on wi I I be .•• «MEMB X Yl)}

HOl.Jever,
one element,
performs UP,

if the next higher expression contains only
BK wi I I not work. So in this case, DELETE
followed by (: NIL), i.e., it REPLACES the

2 . 41

higher expression by NIL. For example, if the current
express i on is (COND ((MEMa X Y)) (T V)) and the user
performs F MEMB and then DELETE, the new current expression
wi II be ••• NIL (T Y)} and the original 'expression would
now be (COND NIL {T V}}. The rationale behind this is that
deleting (MEMa X YJ from ({MEMB X V»~ changes a list of one
element to a list of no elements, i.e., '{} or NIL. Note
that 2 fol lowed by DELETE would DELETE· «MEMB X V»~ NOT
replace it by NIL.

I f the current expression is a tai I, then a, A, and:
wi I I work exactly the same as though the current expression
l.Jere the first element in that tail. Thus if the current
express i on were (PRINT Y) (PRINT Z»), (8 (PRINT X)}
'-Ioulel insert (PRINT X) before (PRINT V), leaving the current
expression ••• (PRINT X) (PRINT Y) (PRINT Z)}.

2 . 42

\.,_.'

The fol lo~ing forms of the A, B, and
incorporate a location specification:

commands

(INSERT e1 .•• em BEFORE. S)
Simi lar to (Le. S) follo~ed by (B
e1 em).

#P
(PROG (W Y X) (SELECTa ATM & NIL) (OR.& &) (PRIN1 &)}
#(INSERT LABEL BEFORE PRIN1)
liP
(PROG (W Y X) (SELECTQ ATM & NIL) (OR & &) LABEL (PRIN1 &)}

Current edit chain is not changed,
but UNFIND is set to the edit chain
after the B ~as performed, i.e., <
~i I I make the edit chain be that
chain where the insertion ~as
performed.

(I NSERT e1 ••. em AFTER. S)

(INSERT e1 ... em FOR

Simi lar to INSERT BEFORE except uses
A instead of B.

S)
Simi lar to INSERT BEFORE except uses
: -for B.

(REPLACE S WITH e1 ... em)
Here S is the segment of the command
bet~een REPLACE and WITH. Same as
(l NSERT e1 em FOR. S) • (BY
can be used for WITH.)

Examp I e: (REPLACE COND -1 WI TH n (RETURN L)}

(CHANGE S TO e1 em)

(DELETE. S)

Same as REPLACE WITH

Does a {LC S} fa I lowed by
DELETE. Current edit chain is not
changed (Unless the current
expression is no longer a part of
the expression being edited, e.g.,
if the current expression is ••• C)
and the user performs {DELETE I},

2 . 43

",-,.

the tail. (C), will have been cut
off. Simi lar Iy, if the current·
expression is (COR Y) and the user
performs {REPLACE WITH (CAR X».),
but UNFIND is set to the edit chain
after the DELETE was performed.

Example: (DELETE -1), (DELETE COND 3)

Note that if S is NIL (empty), the corresponding
operation is performed here (on the current edit chain),
e. g. , (REPLACE WI TH (CAR X» is equ i va I ent to (: (CAR X)}.
F or added readab iii ty, HERE is a I so perm it ted, e. g., {I NSERT
(PRINT X) BEFORE HERE) wi II insert (PRINT X) before the
current expression (but not change the edit chain).

Note also that S does not have to specify a location
WITHIN the current expression, i.e., it is perfectly legal
to ascend. to INSERT, REPLACE, or DELETE. For example
(INSERT (RETURN) AFTER t PROG -l) wi I I go to the top, find
the first PROG, and insert a (R~TURN) at its end, and not
change the current edit. chain.

F i na I I y, the A, 8, and : commands, (and consequent I y
INSERT, REPLACE, and CHANGE), al I make special checks in E1
thru Em for expressions of the form (##. COolS). In this
case, the expression used for inserting or replacing is a
copy of the current expression after executing coms,·~ list
of edit commands. (The execution of coms does not change
the current ed,it chain .•) For example, {INSERT (## F OOND -1,
-1) AFTER3} [no t (I NSERT F eOND -1 (## -1) AFTER 3) ,. wh i ch
inserts four elements after the third element, na~ly F,
CDND, -1, and a copy of the last element in the current
expression] wi I I make a copy of the last form in the last
clause of the next COND, and insert it after the third
element of the current expression.

2 . 44

(
"-

\

'----"

Form Oriented Editing and the Role of UP

The UP tha tis per f armed be for e A, B, arid: commands
(and therefore in INSERT, CHANGE, REPLACE, and DELETE
commands after the location portion of the cperation has
been performed.), makes these operations form-oriented. For
example, if the user types F SETD, and then DELETE, or
simply (DELETE SETD) , he wi I I delete the entire SETD
express i on, whereas (DELETE X) if X, is a var i qb I e, de I etes
just the variable X. In both cases, the operation is
performed on the corresponding FORM and in both cases is
probably what the user intended. Simi larly, if the user
types (I NSERT (RETURN YJ BEFORE SETD) , he means before the
SETa expression, not before the atom SETa. (*There is some
ambiguity in (INSERT expr AFTER functionname), as the user
might mean make expr be the function's first argument.
S i mil ar I y, the user cannot l.Jr i te (REPLACE SETDD WI TH SETa)
meaning change the name of the function. The user must in
these cases write (INSERT expr AFTER functionname IJ. and
(REPLACE SETQO 1 WITH SETQ).) A consequent of this
procedure is that a pattern of the form (SETD Y --) can be
viewed as simply an elaboration and further refinement of
the pattern SETa. Thus (INSERT (RETURN Y) BEFORE SETa) and
(INSERT (RETURN YJ BEFORE (SETQ Y --» perform the same
operation (Assuming the next SETQ is of the form (SETa
Y-».} and, in fact, this is one of the motivations behind
making the current expression after F SETD, and F (SETa Y
--) be the same.

Occasionally, however, a user may have a data structure
in which no 'special signi ficance or meanihg is attached' to
the position of an atom in a I ist, as LISP attaches to atoms
that appear as CAR of a I ist, versus those appearing
elsewhere in a I ist. In general, the user may not even know
whether a particular atom is at the head of a list or not.
Thus, when he writes (INSERT expression AFTER FOO) , he means
after the atom FOO, whether or not it is CAR of a list. By
setting the variable UPFINDFLG to NIL (Initially, and
usua I I y, se t to T.) the user can suppress the imp I i cit UP
that fol lows searches for atoms, and thus achieve the
desired effect. With UPFINDFLG = NIL then fol lowing F FOO,
for examp Ie, 'I the current express ion wiLl ge the atom FOO.
In this case, the A, B, and: operations will operate with
respect to the atom FOD. If the user intends the operation
to refer to the list which FDD heads, he simply uses instead
the pattern (FOO --).

2 . 45

',---"

',,-,

Extract and Embed

Extraction involves replacing the current e~pression with
one of its subexpressions (from any depth).

(XTR. $)
Replaces the original current
expression with the expression that
is current'after perfdrming (LCL.
S) •

For, example, if the current 8)(pression is (COND «NULL)0
(PRINT Y»), (XTR PRINT), or OnR 2 2) wi II replace the COND
by the PRINT.

If the current expression after (LCL
{» i sat a i I 0 f a higher

e~<pression, its first element is
u,sed.

For examp let i f the current expr'ess i on is
(COND {(NULL X) Y) (T Z», then (XTR Y) w III rep I ace the

CO NO wi th Y.

If the extracted expression is a
list, then after XTR has fin i shed,
the current e~preaaion wi I I be that
I i at.

Thus, in the first example, the current e)(pression after the
. ~TR wou I d be' (PRI NT V). ,

If the e~tracted e~pression is not a
list, the new current expression
wi I I be a tai I whose first element
is that non-I ist.

Thus, in the second e~(ah1ple, the current lmprassion after
the XTR would be ••. Y fol lo~ed by whatever fol lowed by
CONDo

I f the current express i on in i t i a I I y is a ta ii,
extraction works exactly the same as though the current
expression were the first element in that tai I. Thus is the
current expression is . (XTR PRINT) wi I I replace the ,COND by
the PRINT, leavi,ng (PRINT Y) as the current 'expression.

2 . 46

The extract command can also incorporate a location
spec i fica t ion.

(EXTRACT 81 FROM U2)
(UI is the segment between EXTRACT
and FROM.)
Per.fo~ms (LC •
Sl) :4._ Current
changed, but
edit chain
performed.

Example: If the current expression is

UZ} And then (XTR •
edit chain is not

UNFINO is set to the
after the XTR ~as

(PRINT (COND «NULL X). Y) (TZ))) then following
(EXTRACT Y FROM CONO) , the current expression wi I 1 be
{PRI NT Y1.
(EXTRACT 2 -1 FROM CONO), (EXTRACT Y FROM 2),
(EXTRACT 2 -1 FROM 2) wi I I all produce the same result.

2 . 47

'''--..-

Whi Ie extracting replaces the current expression by a
subexpression, embedding replaces the current expression
with one containing i~as a subexpression.

" (MBO x)
X is a I ist, substitutes (a la
SUBST, i. e., a fresh copy is used
for each substitut"ion) the current
~xpression for all instances of the
atom * in x, and replaces the
current expression with the result
of that substitution.

Example: I f the current expression is (PRINT Y). (MBO (CONO
«NULL X) *) «NULL (CAR V)) * (GO LP)}) wou\d replace
(PRINT Y) with (CONO«NULL X) (PRINT V)) «NULL (CAR V»~
(PR I NT Y) (GO LP»)'

(MSO e1 ••• em)
Equivalent to {MBD (el •.• em *».

Example: If the current expression is (PRINT V), then (MBD
SETa X) wil I replace it with (SETa x (PRINT V)}.

(MBO x)
X atomic, same as (MBO (x *».

Example: .If. the curr.ent expression is (PRINT V), (MSD
RETURN) wi I I replace it with (RETURN (PRINT V»~.

AI I three forms of MBD . leave the edit chain' so th~t the
larger expression is the ne~ current expression.

If the curr~nt expression initially is a tai I,
embedding works exactly the same as though the current
expression were the first element in that tai I. Thus if the
current express i on were, (PRI NT Y) with (SETa)((PRI NT Y».

The embed command can also incorporate a location
specification.

2 . 48

(EMBED U IN. x)
{S is the segment between EMBED and
IN.} Does (LC. g) and then (MBD •
x), Edit chain is not changed, but
UNFINo is set to the edit chain
after theMBD was performed.

Examp I e: (EMBED PRINT IN SETa X), (EMBED 3 2 IN RETURN),
(EMBED COND 3 1 IN {OR * (NULL X)}}.

WITH can be used for IN, and SURROUND can be used for EMBED,
e.g., {SURROUND NUMBERP WITH (AND * (MINUSP X}».

2 . 49

,~,

The MOVE Command

The MOVE command al lows the user to specify (1) the
expression to be moved, (2) the place it is to be moved to,
and (3) the operat i on to be per formed there, e. g., i neer tit
before, insert it after, replace, etc.

(MOVE 11 TO com • 12)
(Sl is the segm~~t between MOVE and
TO.) Where COM is BEFORE, AFTER, or
the name of a list command, e. g., :,
N, etc. Performs (LC Sl),
Obtains the current expression there
(or its first element, if it is a
tail), let us call thisexpr; MOVE
then goes back to original edit
chain, performs (LC. 12), Peforms
(com expr), then goes,back to SI ~nd
deletes expr. Edit chain is not
changed. UNFIND is set to edit
chain after ·(com expr) was
performed.

For example, if the current expression is (A B 0 C), (
MOVE 2 TO AFTER 4) wi II make the new current expression be
(A C 0 ~). Note that 4 was'executed as of the original edit
chain, land that the second element had not yet been removed.

~ _ ._ t I

2 • 50

(
o

As the fol lowing examples taken from actual editing
wi I I show, the MOVE command is an extremely versati I~ and
powerful feature of the editor.

#?
(PROG (l) (EDlOC (CDDR C) {RETURN (CAR l»)
#(MOVE 3 TO : CAR)
#?
(PROG (l) (RETURN (EDlOC (CDDR C}l»

#P
(SElECTQ OBJPR & &) (RETURN &) lP2 (COND & &)}

#(MOVE 2 TO N 1)
liP

(SELECTO OBJPR & & &) LP2 (COND & &)}

#P
(OR (EQ X lASTAIl) (NOT &) {AND & & &}}

#(MOVE 4 TO AFTER (BELOW COND})
#P
{OR (EO X LASTAIL) (NOT &l)
#< P

(& &) (AND &. & &) n & &»

#P
({NUll X) (COND & &)}

#(-3 (GO DELETE»
#(MOVE 4 TO N (~ PROG»
#P
«NULL X) (GO DELETE»
#< P
(PROG (&) (COND & & &) (COND & & &) (COND & &»
II(INSERT DELETE BEFORE -1)
liP
(PROG (&) (COND & & &) (COND & & &) DELETE (COND & &})

II

Note that in the last example, the user could have
added the prog label DELETE and moved the COND in one
operation by performing (MOVE 4 TO N (~PROG) (N DELETE».

2 . 51

','

"-'
Simi lar Iy, in the next example, in the course of speci fying
12, the location where the expression was to be moved to,
the user also performs a structure modification, via (N
(T»., thus creat ing the structure that wi I r receive the
expression being moved.

#P
«CDR &) (SETa CL &) (EDI TSMASH CL & '&)) ..
#(MOVE 4 TO N 0 (N (T» - 1]
#P
(' (CDR &) (SETa CL &»
#< P
(T (EDITSMASH CL & &»

If 12 is NIL, or (HERE), the current position specifies
where the operation is to take place. In this case, UNFIND
is set to where the expre~sion that was moved was originally
located, i. e., 11. For examp I e:

#P
(TENEX)
#(MOVE t F APPLY TO N HERE)
#P
(TENEX (APPLY & &)}

#P
(T (PRIN! C-EXP»
#(MOVE SF PRIN1 TO N HERE)
#P
(T (PRIN1 C-EXPJ (PRIN1 &»

Finaj Iy, if $1 is NIL, the MOVE command al lows the user
to specify some place the current expression is to be moved
to. In this case, the edit chain is changed, and is the
chain where the current expression was moved to; UNFIND is
set to where it was.

#P
(SELECTa OBJPR (&) (PROGN & &»

2 . 52 '.
'-..

I

,~ ..

#(MOVE TO BEFORE LOOP)
#P
.•• (SELECTQ OBJPR & &) LOOP (RPLACA DFPRP &) (RPLACD DFPRP &»

2 . 53

/

Commands That "Move Parentheses"

The commands presented in this section permit
modiflcation of the I ist structure itself, as opposed to
modifying components thereof. Their effect can be described
as inserting ,orremovi'ng a single left or right parenthesis,
or pair of left and right parentheses. Of course, there
wi I I always be the same number of left parentheses as, right
parentheses in any list structure, since the parentheses are
just a notational guide to the structure provided by PRINT.
Thus, no command can insert or remove just one parenthesis,
but this is suggestive of what actually happens.'

In al I six commands, nand m are used to specify an
element of a I ist, usually of the current expression. In
practice, nand m are usually positive or negative integers
with the obvious interpretation. However, al I six commands
use the generalized NTH command, p. 2.34, To find their
element(s), so that nth element means the first element of
the tai I found by performing (NTH n). In other words, if
the current expression is (LIST (CAR X) CSETa V CCONS W
Z»), then CSI 2 CONS), CSI X -1), and CSI X Z) all specify
the exact same operation.

AI I six commands generate an error if the element is
not found, i. e., the NTH fa i Is.' A I I are undoab I e.

(SI n m)
Bqth in, inserts a left parentheses
b,for~ the nth element and after the

. mth . element ·i n the current
~xpression. Generates an error if
the mth element is not contained in
the nth ta ii, 1. e., the mth element
must be "to the right" of the nth
element,

Example: If the current expression is (A B (C 0 EJ F G),
then CSI 2 4) wi I I modify it to be (A (B CC 0 E) F) G).

(81 n)
Same as CSI n n),

Example: If the current expression is CA S (C 0 E) F G),
then CSI -2) wi II modify it to be (A S (C 0 E) (F) G).

2 . 54

(

(80 n)
Both out. Removes both parentheses
from the nth element. Generates an
error if nth element is not a list.

Examp Ie: I f the curren t express ion is (A B (C 0 E) F G),
then (80 0) wi I I modify it to be (A BCD E F G).

(L I n)
left in, inserts a left parenthesis
before the nth element (and a
matching right parenthesis at the
end of the current expression),
i.e., equivalent to (Bl n -1).

Example: If the current expression is (A B (C 0 E) F G),
then (lI 2) wi I I modify it to be {A {B (C 0 E) F G».

(La n)
left out, removes a left parenthesis
from the nth element. AI I elements
fol lowing the nth element are
deleted. Generates an error if nth
element is not a list.

Example: If the current expression is (A B (C 0 E) F G),
then (lO 3) wi I I modify it to be (A BCD E).

(AI n m)
Aight in, inserts a rigrt
parenthesi~ after th~ mth element of
the nth element. The rest of the
nth element is brought up to the
level of the current expression.

Examp I e: I f the current express i on is (A (8 C 0 E) F G), (AI
2 2) wi I I modify it to be {A (B C) 0 E F G). Another way of
thinking about RI is to read it as "move the right
parenthesis at the end of the nth element IN to after the
mth element. 1I

2 . 55

(RD n)
Right out, removes the right
parenthesis from the nth element,
moving it to the end nf the current
expression. AI I elements fol lowing
the nth element are moved insiqe of

. the nth element. Generates an error
if nth elemeMt is not a list.

E><amp I e: I f the current e><press i on is (A B (C 0 E) F GJ, (RD
3) wi I I modify it to be (A B (C 0 E F G)}. Another way of
thinking about RD is to read it as "move the right
parenthesis at the end of the nth element OUT to the end of
the c~rrent expression."

2 • 56

/- -"

TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made
to opera te on severa I can t i guous e I emen t s, i . e., a segmen t
of a I ist, by using the TO or THRU command in their
respective location specifications.

un THRU $2)
Does a (LC " SI), Fol lowed by an

'UP, and then a 1BI 1 82), thereby
grouping the segment into a single
e I emen t, and f ina I I y does a 1,
making the final current expression
be that element. '

For example, if the current expression is (A (8 (C 0) (E) (F
G H) I) JK), following (CTHRUG), the current expression
wi I I be «C D) {El (F G H)}'

($1 TO 32)
Same as THRU except last element not
included, i.e., after the BI, an (RI
1 -2) is per formed.

o
THRU and TO are not very useful commands by themselves,

and are not intended to be used "SOIO", but in conjunction
with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU
and TO have operated, they set an i nterna I ed i tor flag
informing the above commands that the element they are
operating on is actually a segment, and that the extra pair
of parentheses should be removed when the operation is
complete. Thus:

#P
{PROG NIL (SETQ A &) (RPLACA & &) (PRINT &) (RPLACD & &»
#(MOVE (3 THRU 4) TO BEFORE 5} P
(PROG NIL (PR I NT &) (SETa A &) (RPLACA & &) (RPLACD & &})

Note that when specifing S2 in the MOVE, 5 was used instead

2 . 57

of 6. This is because the 12 is located after 11 is. The
THRU location groups items together and thus changes the
numeric location of the fol lowing items.

liP
(PROG NIL (PRINI &) (PRINI &) (SETa IND &) (SETa VAL &) (PRINT &»
#(MOVE (5 THRU 7) TO BEFORE 3)
#P
{PROG NIL (SETa IND &) (SETa VAL &) (PRINT &) (PRIN! &) (PRIN! &»
#{OELETE (SETa THRU PRI@»
= PRINT
liP
{PROG NIL (PRIN! &) (PRIN! &»

#P
LP (SELECTa & & &) (SETa Y &) OUT (SETa FLG &) (RETURN V»~

#(MOVE (1 TO OUT) TO N HERE)
#P
••• OUT (SETa FLG &) (RETURN Y) LP (SELECTa & & &) (SETa Y &»

#PP
(PROG (TEMP! TEMP2)

{CONO ({NOT (MEMQ REMARG LISTING»
(SETa TEMP! (ASSOC REMARG NAMEOREMARKS»
{SETa TEMP2 (CADR TEMPI»)

, (T (SETa TEMP! REMARG}»
{NCONC LISTING REMARGl
(RETURN' (CONS TEMP! TEMP2»)

#(EXTRACT (SETa THRU CADR) FROM CONO) PP
{PROG (TEMP! TEMP2)

{SETD TEMP! (ASSOC REMARG NAMEDREMARKS)}
(SETD TEMP2 (CADR TEMP!»
(NCONS LISTING REMARG)
(RETURN (CONS TEMP! TEMP2»)

TO and THRU can also be used directly with XTR.
(Because XTR involves a location specification whi Ie A,B,:,
and MBO do not.) Thus in the prey i o'us examp I e, if the
current expression had been the COND, e.g., the user had
first performed F CONO, he could have used (XTR (SETa THRU
CAOR» to perform the extraction.

2 . 58

UH TO), UH THRUl

#p

Both same as UH THRU -1). i. e. ,
from $1 thru the end of the list.

(VAL (RPLACA DFPRP &) (RPLACD & &) (RPLACA VARS &) (RETURN &)}
#(MOVE (2 TO) TO N (~ PROG)}
(N (GO VAR»
#p
(VAL (GO VAR»

#P
{T (COND &l {EDI TSMASH CL & &} (CDND &})
#(-2 (GO REPLACE»
#(MOVE (COND TO) TO N PROG (N REPLACE»
#P
{T (GO REPLACE»
#< P
{PROG (&) (COND & & &) (COND & & &) DELETE (CDND & &) REPLACE
(COND &l (EDITSMASH CL & &1 (COND &)}

#pp
(LAMBDA{CLAUSALA X)

(PROG (A 0)
(SEta A CLAUSALA)

LP (COND . «NULL A) <RETURN NIL» 1
(SERCH X A)
(RUMARK (CAR Al)
(NOTICECL (CAR A»
(SETa A (CDR A»
(GO LP»)

#(EXTRACT (SERCH THRU NOT@) FROM PROG) P
= NOTICECL
(LAMBDA (CLAUSALA Xl (SERCH X A) (RUMARK &) {NOTICECL &}}
#(EMBED (SERCH TO) IN (MAP [FUNCTION (LAMBDA (A) *J CLAUSALAJ
#PP
{LAMBOA{CLAUSALA Xl

{MAP (FUNCTION
(LAMBDA (A)

(SERCH X A)
£RUMARK (CAR Al)
{NOTICECL (CAR All»

CLAUSALA)}

2 . 59

(R x y)

Replaces al I instances of x by y in
the curren t express ion, e. g. , (R
CAADR CADAR). Generates an error if
there is not at least one instance.

R operates by performing a DSUBST. The current
expression. is the' third argument to DSUBST, i.e., the
expression being substituted into, and y is the first
argument to DSUBST, i.e., the expression being substituted.
R computes the second argument to OSUBST, the expression to
be subst i tuted for, by per'forming (F x T). . The second
argument is then the current expression at that point, or if
that current· expression is a list and x is atomic, then the
first element of that current expression. Thus x can be the
S-expression (or atom) to be substituted for, or can be a
pattern which specifies that S-expression (or atom).

For example, if the current expression is (LIST FUNNYATOMl
FUNNYATOM2 (CAR FUNNYATOMl», then (R FUN@ FUNNYATOM3) wi I I
substitute FUNNYATOM3 for FUNNYATOMl throughout the current
expression. Note that FUNNYATOM2, even though it would have
matched with the pattern FUN@, is NOT replaced.

Similarly, if (LIST(CAR X) (CAR Y» is the first
expression matched by (LIST --), then (R (LIST --) (LIST
(CAR Y) (CAR Z}» is equivalent to (R (LIST (CARX) (CARY»
(LIST (CAR Y) (CAR Z»)), i.e., both .will replace all
instances of (LIST (CAR Xl (CAR Y)) by (LIST (CAR Y) (CAR
Z». Note that other forms beginning with LIST wil·1 not be
replaced, even though they would have matched· with (LiST
--). To change all expressions of the form -(LIST --) \0
(LIST (CAR Y) (CAR Z», the user should perform (LP (REPLACE
(LIST --) WITH (LIST (CAR Y) (CARl.

UNFIND is set to the edit chain fol lowing the find command
so that < wi I I make the current expression be the place
where the first substitution occurred.

2 . 60

(SW n nll
Switches the nth and mth elements of
the current expression.

For example, if the current expression is {LIST {CONS (CAR
X) (CARY» {CONS (CORY»), (SW23) will modify it to be
{L I ST {CONS (CDR X) (CDR Y» {CONS (CAR X) (CAR Y»). The
rei at i ve or der 0 f nand m i s no t i I11por tan t , ie, CSt.! 3 2)
and (SW 2 3) are equivalent.

SW uses the generalized NTH command
to find the nth and mth elements, a
la the 91-90 commands.

Thus in the previous example, (SW CAR COR) would produce the
same resu It.

2 . 61

Commands That Print

p

(P In)

(P 0)

(P m n)

(P 0 n)

?

Prints current expression as though
PRINTLEV ~ere given a depth of 2.

Prints mth element of current
expression as though PRINTLEV were
given a depth of 2.

Same as P

Prints mth element of current
expression as though PRINTLEV were
gi~en a depth of N.

Prints current expr~ssion as though
PRINTLEVEL ~ere given a depth of N.

Same as (P 0 100)

Both (P m) and (P m n) use the general NTH command to
obtain the corresponding element, so that m does not have to
be a number, e.g. (P eOND 3) ~i I I work.

A I I pr i n-t i ng f unc t i on s pr i n t tot lie tel e type,
regardle~s of the primary output fi Ie. No printing function
ever changes the edit chain. AI I record the current edit
chain for use by <P, p. 2.37.

2 • 62 \

·G

~ ..
(

~, ~.,

Commands That Evaluate

E

Example:

Dn! y I-Ihen typed in, {i. e., (I NSERT 0
BEFORE E) wi I I treat E as a pattern}
causes the edi tor to ca II the LISP
interpreter giving it the next input
as argument.

#E {BREAK FIE FUM}
(FIE FUM) .
#E {FOO}
(FIE BROKEN)
1:

(E x)

(E >< T)

Evaluates X, i.e .. performs {EVAL
xl, and prints the r~sult on the
teletype.

Same as (E x) but does not print .

. The (E x) and (E x T) commands are mainly intended for
use by MACROS and subroutine cal Is to the editor; the user
would probably type in a form for evaluation using the more
convenient format of the (atomic) E command.

(I c ><1 xn)
S~me as (c yl
yi={EVAL xi).

yn) wtiere

Example: {I 3 {GETD (QUOTE FOO) wi I I replace the 3rd
element of the current expression with the definition of
FOD. (The I command sets an internal flag to Indicate to
the structure modification commands not to copy
e><presslon(s) when inserting, replacing, or attaching.} (I N
FDD (CAR FIE» wi I I attach the value of FOO and CAR of the
value of FIE to the end of the current expression. (I F=
FDD T) wi I I search for an expression EO to the value of FOO.

If cis not an atom, it is eva I uated
as we II.

Examp I e: (I (COND ({NULL FLG) (QUOTE -1)} {T 1}} FOO} , if
FLG is NI L, i nser ts the va I ue of FOO before the first
etement of the current expression, otherwise replaces the

2 . 63

first element by the value of Faa.

(## com [1] com [2] ••• com [n])
is an FSUBR (not a command). Its
value is what the current expression
would be after executing the edit
commands corn [1] ••• ~om [n] star t i ng
from the present edit chain.
Generates an error if any of com[l]
thru com [n] cause error s. The
current edit chain is never changed.
(Recal I that A,B,:,INSERT, REPLACE,
and CHANGE make special checks for
forms in the expressions used for
inserting or replacing, and use a
copy of ## form instead (see p.
2.44), thus, (INSERT (## 3 2) AFTER
1) is equivalent to (I INSERT (COpy
(## 3 2 » (aUOTE AFTER) 1).)

Exal11p I e: (J R (aUOTE X) (## (CONS .. Z»} rep I aces a II X's in
the current expression by the first CONS containing a Z.

The I command is not very convenient for computing an
entire edit command for execution, since it computes the
command name and its arguments separate I y. A I so, the I
command cannot be used to compute an atomic command. The
fol lo~ing two commands provide more general way~of
com~ut.ing commands.

(CaMS xl ••• xn)
Each xi is evaluated and its varue
executed as a command.

For example, (CaMS (COND (X (LIST 1 X)}}} wi I I replace the
first element of the current expression with the value of X
if non-NIL, otherwise do nothing. (NIL as a command is a
Nap, see p. 2.71.)

(COMSa com [1] .;. com [n])
Executes com [1] com[n].

COMsa is mainly useful in conjunction with the CaMS command.
For example, suppose the user wishes to compute an entire
I ist of commands for evaluation, as opposed to computi~g
each command one at a time as does the COMS command. He
~ould then write (CaMS (CONS (QUOTE COMSO) x» ~here x
computed the list of commands, e.g.,

2 . 64

(COMS (CONS (QUOTE COMSQ) (GET Faa (QUOTE COMMANDS)))),

2 , 65

Commands That Test

(IF x)

Generates an error unle38 the value
of (EVAL x) is true, i. e., if (EVAL
x) causes an error or (~VAL x}=NIL,
IF ~i I I cause an error.

For some editor commands, the occurrence of an error
has.a we II clef i ned mean i ng, i .. e., they use errors to branch
on as COND uses NIL and non-NIL. For example, an error
condition in a location spe,cification may si.mply mean "not
this one, try the next. II Thus the location specification

(*PLUS (E (OR (NUMBERP (## 3» (ERR NIL» TJ}
specifies the first *PLUS ~hose second argument is a number.
The IF command, by equqting NIL to error, provides a more
natural ~ay of accomptishing the same result. Thus, an
equivalent location specification is {*PLUS {IF {NUMBERP {##
3»}}'

The IF commahd can also be used to select bet~een t~o
alternate fists of commands for execution.

(IF x comsl coms2)
If (EVAL x) is true, execute comsl;
if {EVAL x} causes an error. or is
equal to NIL, execute coms2.

For examp Ie, the command (IF (NULL A) NIL: (P» ~ ill pr in.t
the curren~ expression provided A=NIL.

(JF x comsl)

(LP. corns)

I f (EVAL x) is true, execute comsl;
otherwise generate an error.

, Repeated I y executes coms, a list of
commands, unti I an error occurs.

For example, (LP F PRINT (N T» wi I I attach a T at the
end of every PRINT exprBssion. (LP F PRINT (IF (## 3) NIL
«N T»» wi II attach a T at the end of each print
expression which does not already have a second argument.
(i. e. The form (lUi 3) wi II cause an error if the edi t
command 3 causes an error, thereby selecting «N T}) as the
I ist of commands to be executed. The IF could also be
wr i tten as {IF (CODR (##)) NIL ((N n)).}

2 . 66

(LPQ. Cams)

When an error occurs, LP prints n
OCCURRENCES, where n is the number
of times COMS was successfully
e ,< e cut e d • The e d i t c h a i n i s I 8 f t as
of the last complete successful
execution of COMS.

Same as LP but does not print n
OCCURRENCES.

In oreler to prevent non-terminating loops, both LP and
LPQ terminate when the number of iterations reaches MAXLOOP,
initially set to 30.

(ORR coms [l] ••. Coins [n])
ORR begins by executing coms[l], a
lis t of commands. I f no error~
occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its
original value, and continues by
execut i ng cams [2] , etc. I f none of
the command I ists execute without
errors, i.e., the ORR "drops off the
end", ORR generates an error.
Otherwise, the edit chain is left as
of the completion of the first
command I ist which executes without
error. (NIL as a command I ist is
perfectly legal, and wi I I always
e)(e cut e sue c e 5 s f u I I y . T h u S 1 m a I<. i n g"
the last 'argull1ent' to ORR be NI~
will insure that the ORR never
causes an error. Any other atom is
treated as (atom), i.e., t~e example
given below could be written as (ORR
NX ! NX NI L) •)

For example, (ORR (NX) (!NX) NIL} L-li II perform a NX, if
possible, otherwise a !NX, if possible, otherwise do
nothing. Simi larly, DELETE could be written as (ORR {UP
(l}) (BK UP {2)} (UP (: NIL}».

2 • 67

\
''--",

\~'

Macros

Many of the more sophisticated branching commands in
the editor. such as ORR, IF, etc., are most often used in
conjunction with edit macros. The macro feature permits the
user to define new commands and thereby expand the editor's
repertoire. (However, bui It ,in commands always take
precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.) Macros are defined by using the
M command.

(M c. confs)
For c an atom, M defines c as an
a tom i c command. (I f a macro i s
redefined, its new definition
replaces its old.) Executing c is
then the same as executing the list
of commands COMS.

For example, (M BP BK UP P) wi I I define BP as an atomic
command which does three things, a BK, an UP, and a P. Note
that macros can use commands defined by macros as wei I as
bui It in commands in their definitions. For example,
suppose Z is defined by (M Z -1 (IF (NULL (##» NIL (P»),
i.e. Z does a -1, and the~ if the current expression is not
NIL, a P. Now we can define ZZ by (M ZZ -1 Z), and ZZZ by
(M ZZZ -1 -1 Z) or (M ZZZ ~1 ZZ).

Macros can a Iso def i ne list commands, i • e., commands
that, take, argu,ments.

(M (e) (arg[1) ..• 'arg[n). coms)
C an atom. M defines c as a list
command. Executing (c e1 ••• en)
is then performed by substituting e1
for arg[l], en for arg[n]
throughout COMS, and then executing
COMS.

For example, we could define a more general BP by (M
(BP) (N) (BK N) UP P). Thus, (BP 3) wou I d per form (BK 3),
fol lowed by an UP, fol lowed by a P.

A I ist command can be defined via a macro so as to take
a fixed or indefinite number of 'arguments'. The form given
above specified a macro with a fixed number of arguments, as
indicated by its argument I ist. If the 'argument I ist' is
atomic, the command takes an indefinite number of arguments.

2 . 68

'-. ~ .

I
\

''--- ',---

(
'''--- '--

(LPQ. Cams)

When an error occurs, LP prints n
OCCURRENCES, where n is the number
of times COMS was successfully
executed. The edit chain is left as
of the last complete successful
execution of COMS.

Same as LP but, does not print n
OCCURRENCES.

In oreler to prevent non-terminating loops, both LP and
LPQ terminate when the number of iterations reaches MAXLOOP,
initially set to 38.

(ORR cams [1] ••• Coins [n])
ORR begins by executing coms[}], a
list of commands. I f no error
occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its
original value, and continues by
executing cams [2] , etc. If none of
the command lists execute without
errors, i.e., the ORR "drops off the
end", ORR generates an error.
Otherwise, the edit chain is left as
of the completion of the first
command list which executes without
error. (NIL as a command list is,
perfectly legal, and 'wi I I always
execute successfu II y. Thus, mak i ng .'
the I as t 'a r £} u hi e nt' to ORR beN I l:
l.Ji II insure that the ORR never
causes an error. Any other atom is
treated as (atom), i.e., t~e example
given below could be written as (ORR
NX !NX NIL}.)

For example, (ORR (NX) (!NX) NIL) I-lill performaNX, if
possible, otherwise a !NX, if possible, otherwise do
nothing. Simi larly, DELETE could be written as (ORR (UP
(1» (BK UP (2» (UP (: NIL»),

2 • 67

\
''--"',

\~.

Macros

Many of the more sophisticated branching commands in
the edi tor. such as ORR, IF, etc., are most often used in
conjunction with edit macros. The macro feature permits the
user to define new commands and thereby expand the editor's
reper to ire. (HoloJever, bu i It. i n commands a I ways take
precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.) Macros are defined by using the
M command.

(M c. com's)
For c an atom, M defines c as an
atom i c command. (1 f a macro is
redefined, its new definition
replaces its old.) Executing c is
then the same as executing the list
of commands COMS.

For example, (M BP BK UP P) wi I I define BP as an atomic
command which does three things, a BK, an UP, and a P. Note
that macros can use commands defined by macros as wei I as
bui It in commands in their definitions. For example,
suppose Z is defined by (M Z -1 (IF (NULL (##» NIL (P»),
i.e. Z does a -1, and the~ if the current expression is not
NIL. a P. Now we can define ZZ by (M ZZ -1 Z), and ZZZ by
(M ZZZ -1 -1 Z) or (M ZZZ ~1 ZZ).

Macros can a Iso def i ne list commands, i • e., commands
that. take, argu,ments.

(M (e) (arg [1] •••. arg [n]). corns)
C an atom. M defines c as a list
command. Execut i ng (c e1 ••• en)
is then performed by substituting e1
for arg[1], en for arg[n]
throughout COMS, and then executing
COMS.

For example, we could define a more general BP by (M
(SP) (N) (BK N) UP P). Thus, (BP 3) wou I d per form (BK 3),
fol lowed by an UP, followed by a P.

A I ist command can be defined via a macro so as to take
a fixed or indefinite number of 'arguments'. The form given
above specified a macro with a fixed number of arguments, as
indicated by its argument list. If the 'argument list' is
atomic, the command takes an indefinite number of arguments.

2 . 68

, \.
"'-'--'

(M (c) args. coms)
Name, args both atoms, defines c as
a lis t com In and. e){ e cut i n 9 (eel ..'.
en) is performed by substituting (el

en), i. 8., CDR of the command,
for args throughout coms, and then
e~ecuting coms.

For example. the command SECOND, p. 2.31, can be
def i ned as a macro by {M (2ND) X (ORR ({LC X) (LC •
Xl»)). Note that for all editor commands, 'built in'
commands as wei I as commands defined by macros, atomic
definitions and I ist definitions are completely independent.
In other words, the existence of an atomic definition for c
in no way affects the treatment of c when it appears as CAR
of a I ist command, and the existence of a list definition
for c in no way affects the treatment of c when it appears
as an atom. in particular, c can be used as the name of
either an atom i c command, or a list command, or both. in
the latter case, two entirely different definitions can be
used.

Note also that once c is defined as an atomic command
via a macro definition. it will not be searched for when
used in a location specification, unless c is preceded by an
F. Thus (INSERT -- BEFORE BP) would not search for BP, but
instead perform a BK, an UP, and a P, and thQn do the
insertion. The corresponding also holds true 'for list
commands •

. '. Occas i o/;a I I Y', the user wi I I wan t to
command in a macro to save some temporary
example, the SW command could be defined as

employ
resu It.

the· s. '
Fl9r

(M (SW) (N M) (NTH N) (5 FOO 1) MARK a (NTH M) (5 FIE 1) (I
1 FOO) H- (I 1 FIE»

{A more elegant defini tio" l~ould be {M (SW) (N M) (NTH N)
MARK e (NTH M) (S FIE 1) (11 (## 4- 1) H- {I 1 FIE}}, but
this would sti I I use one free variable.)

Since SW sets FOO and FIE, using SW may have
undesirable side effects, especially when the editor was
cal led from deep in a computation. Thus we must always be
careful to make up unique names for dummy variables used in
edit macros, which is bothersome. Furthermore, it would be
impossible to define a command that cal led itself
recursively whi Ie setting free variables. The BIND command

2 . 69

solves both. problems.

(BIND. corns)
Binds three dummy variables #1, #2,
113, (i nit i a I i zed to NI~), and then
executes the edit commands COMS.
Note that these bindings are only in
effect whi Ie the commands are being
executed, and that BIND can be used
recursively; it wi II rebind #1,#2,
and #3 each time it is invoked.
(BIND is implemented by (PROG (#1 #2

113) (EOITCOMS (CDR COM») where COM
corresponds to the BIND command, and
EDITCOMS is an internal editor
function which executes a list of
commands.)

thus we could now write SW safely as

(M (SW) (N M) {BI NO (NTH N) (S #1 1) MARK e (NTH M) (S #2 1)
(I 1 # 1) +-+- (I 1 #2»).

User macros are stored on a list USERMACROS.
(USERMACROS is initially NIL.) thus if the user wants to
save his macros, he should save the value of USERMACROS.
(The, user probably should also save the value of EDITCOMSL).

2 . 73

. ,I

'-......

Miscellaneous Commands

NIL

TTY:

Unless preceded by F or 8F, is
always a NOP.

Ca I I s the ed i tor recurs i ve I y. The
user can then type in commands, and
have them executed. The TTY:
command is completed when the user
exits from the lower editor. (See
OK and STOP below.)

The TTY: command is extremely useful. It enables the
user to set up a complex operation, and perform interactive
attention-changing commands part way through it. For
example the command {MOVE 3 TO AFTER COND 3 P TTY:} al lows
the user to interact, in effect, within the MOVE command.
Thus he can verify for himself that the correct location has
been found, or complete the specification IIby hand". In
effect, TTY: says 111'1 I tel I you what you should do when you
ge t there. II

The TTY: command operates by printing TTY: and then
ca I ling the ed i tor. The in it i a I ed it cha in in the lower
editor is the one that existed in the higher editor at the
time the TTY: command was entered. Unti I the user exits
from the lower editor, any attention changing commands he
executes only affect the lower editor's edit chain. (Of
course, ·if the user perfor·ms any structure modification
commands whi Ie under a TTY: command, these wi I I modify the
structure in both editors, since it is the same structure.)
When the TTY: command finishes, the lower editor's edit
chain becomes the edit chain of the higher editor.

OK
Exits from the editor.

2 • 71

STOP
Exits from the editor with an error.
Mainly for use in conjunction with
TTY: commands that the user wants to
abor t.

Since al I of the commands in the editor are ERRSET
protected, the user must exit from the editor via a command.
STOP provides a way of distinguishing b~tween a successful
and unsuccessful (from the user's standpoint) editing

. sess i on. For examp I e, if the user is execut i ng (MOVE 3 TO
AFTER COND TTY:), and he exits from the lower editor with an
OK, the MOVE command will then comp I ete its operat i on. If
the user wants to abort the MOVE command, he must make the
TTY: command generate an error. He does this by exiting
from the lower'editor with a STOP command. In this case,
the higher editor's edit chain will not be changed by the
TTY: command.

SAVE

For example:

#P
(NULL X)
tlF COND P
(COND (& &) (T &»
tlSAVE
FOO

*(EDITF FOO)
EDIT
tiP
(COND (& &) (T &»
#< P
(NULL X)

Exits from the editor and saves the
'state of the edit' on the property
I ist of the function/variable being
edited under the property EDIT-SAVE.
If the editor is called again on the
same structure, the editing is
effectively "continued," i.e., the
edit chain, mark list, value of
UNFINO and UNOOLST are restored.

2 . 72

SAVE is necessary only if the user is editing many
different expressions; an exit from the editor via OK always
saves the state of the edit of that cal I to the editor. (On
the property I ist of the atom EDIT, under the property name
LASTVALUE. OK also remprops EDIT-SAVE from the property
I ist of the function/variable being edited.) Whenever the
edi tor is entered, it checks to see if it is edi t ing the
same expression as the last one edited. In this case, it
restores the mark I ist, the undolst, and sets UNFIND to be
the edit chain as of the previous exit from the editor. For
example:

*(EDITF FOO)
EDIT
liP
(LAMBDA (X) (PROG & & LP & & & &»

liP
(COND & &)

IIDK
FDD
II

Any number of inputs except for
cal Is to the editor.

*(EDITF FDO)
EDIT
liP
(LAMBDA (X) (PROG & & LP &"& & &)}
#< P
(COND & &)

The user can always continue editing, including undoing
changes from a previous editing session, if

(l) No other expressions have been edited since
that session; {since saving takes place at exit
time, intervening calls that were e)<ited via STOP
wi II not affect the edi tor's memory of thi s last
session.} or

(2) It was ended with a SAVE command.

2 • 73

REPACK

For example:

liP

Permits the 'editing' of an atom or
string.

• ,. " TH I SIS A LOGN STR I NG")
IIREPACK
EDIT
l#P
(/" T HIS / I S / A / LOG N / S T R I N G /")
l#(SW G N)
1#OK
"THIS IS A LONG STRING"
II

REPACK operates by cal ling the editor recursively on
UNPACK of the current· expression, or if it is a I ist, on
UNPACK of its first element. If the lower editor is exited
successfully, i.e. via OK as opposed to STOP, the list of
atoms is made into a single atom or string, which replaces
the atom or string being 'repacked.' The new atom or string
is always printed.

(REPACK S)
Does (LC. S) fol lowed by REPACK,
e. g. (REPACK THI S@) •

2 . 74

/--,

l'-·

(MAKEFN form args n m)

#P

Makes {CAR form} an EXPR with the
nth through mth elements of the
current expression with each
occurance of an element of (CDR
form) replaced by the corresponding
e I emen t 0 f args. The nth through
mth elements are replaced by form.
For example:

(SETQ A NI L) (SETQ B T) (CONS C 0»
#(MAKEFN (SETUP C D) (W X) 1 3) P
• •• (SETUP C O})
#E (GRINDEF SETUP)
(OEFPROP SETUP

(LAMBDA (W X) (SETQ A NIL) (SETQ B n (CONS W X»
EXPR)

(MAKEFN form args n)
Same as (MAKEFN form args n n).

2 . 75

',----"

UNDO

Each command that causes
automatically adds an entry to
containing the information required
that were changed by the command.

structure modification
the front of UNDOLST
to restore al I pointers

UNDO

!UNDO

Undoes the last, i.e., most recent,
structure modification command that
has not yet been undone, (Since UNDO
and. !UNDO causes structure
modification, they also add an entry
to UNDOLST. However, ·UNDO and !UNDO
entries are skipped by UNDO, e.g.,
if the user performs an INSERT, and
then an MBD, the first UNDO wi I I
undo the MBD, and the second wi I I
undo the INSERT. However, the user
can also specify precisely which
command he wan t s undone. In t his
case, he can undo an UNDO command,
e.g., by typing UNDO UNDO, or undo a
!UNDO command, or undo a command
other than that most recently ~
performed.) and prints the name of

. that command, e.g., MBO UNDONE. The
'edit chain is then exactly what it·
was before the 'undone' command had
been performed. I f there are no
comm~nds~to undo, UNDO types NOTHING
SAVED.

Undoes all modifications performed
dvring this editing session, i.e.,

,this cal I to the editor. As each
co~man~ is undone, its name is

·printe~ a la UNDO. . If there is
nothing to be undone, !UNDO prints
NOTHING SAVED.

Whenever the user continues an ~diting session as
described on pages 2.72-2.73, the undo information of the
previous session(s) is protected by inserting· a special
blip, cal led an undo-block on the front of UNDOLST. This
undo-block wi I I terminate the operation of a !UNDO, thereby
confining its effect to the current session,· and wi I I

2 • 76

' ,/

simi larly prevent an UNDO command from operating on commands
executed in the previous session.

Thus, if the user enters the editor continuing a
session, and immediately e~ecutes an UNDO or !UNDO, UNDO and
!UNDO wi I I type BLOCKED, instead of NOTHING SAVED.
S i mil ar I y, if the user executes severa I commands and then
undoes them al I, either via several UNDO comm~nds or a !UNDO
command, another UNDO or !UNDO wi I I also type BLOCKED.

UNBLOCK

TEST

Removes an undo-block. If executed
at a non-blocked state, i.e., if
UNDO or !UNDO could operate, types
NOT BLOCKED.

Adds an undo-block at the front of
UNDOLST.

Note that TEST together with !UNDO provide a
'tentative' mode for editing, i.e., the user can perform a
number of changes, and then undo al I of them with a single
! UNDO command.,

??

#P
(CONS (T &) (& &))
#(1 CONO) (SW 2 3) P
(COND (& &) n &}}

#??
SW (1 --)

Prints the entries on UNOOLST. The
entries are I isted in the reverse
order of their execution, i.e., the
most recent entry first. For
example:

2 . 77

,
',--,

Ed i tdefau It

Whenever a command is not recogn i zed, i . e., is not
, bu i I tin' or de fined as a macro, the ed i tor ca I I s an
i nterna I funct ion, EoI ToEFAUL T to de term i ne wha t ac t i on to
take. If a location specification is being executed, an
internal flag informs EDITDEFAULT to treat the command as
though it had been preceded by an F.

If the command is atomic and typed in directly, the
procedure fol lowed is as given below •

. 1)

#P

I f the command is one of the list commands, i. e. ,
a member of EDITCOMSL, and there is additional input on
the same teletype line, treat the entire line as a
single I ist command. (Uses READLINE. Thus the line
can be terminated by carriage return, right parenthesis
or square bracket, or a list.) Thus, the user may omit
parentheses for any list command typed in at the top
level (which is not also an atomic command, e.g., NX,
BK). For example:

{COND (& &) {T &}}

I/{XTR 3 2)
IIMOVE TO AFTER LP
II

liP

I f the command is· on·· the lis t EO I TCOMSL bu t . no'
additional input is on the teletype line, an error is
generated, e.g.,

(CoND (& &) (T &))
IIMOVE

MOVE ?
1/

2)
If the last character in the command is P, and the

first n-l characters comprise the command ~~, ~,UP,
NX, BK, !NX, UNDO, or REDO, assume that the user
intended two commands, e.g.,

2 . 78 c

liP
(COND (& &) (T &})

#2 NXP
(T (CONS X Y»

3)
Otherwise, generate an error.

2 • 79

Editor Functions

(EOITL L corns atm marklst mess)
EDITL is the editor. Its first
argument is the edit chain, and its
value is an edit chain, namely the
value of L at the time EOITL is
exited. (L is a special variable,
and so can be examineq or set by
edit commands. For e~ample, t is
equivalent to (E (SETa L(LAST L»
n /)

Corns is an op tiona I lis t of
commands. For interactive editing,
co~s is NIL. In this case, EDITL
types EDIT and then waits for input
from the teletype. (If mess is not
NIL EOITL types it instead of EDIT.
For example, the TTY: command is
essentially {SETQ L (EDITL L NIL NIL
NIL (QUOTE TTY:»).) Exit occurs
only via an OK, STOP, or SAVE
command.

If coms is NOT NIL, no message is
typed, and each member of coms is
treated as a command and executed.
If an error occurs in the execution
of one of. the . commands, no error
messa~e i~ p~int~d ~:th~ rest of the
commands are ignored, and EOITL
exi ts wi th an error, i. e., the
effect is the same as though a STOP
command had been executed. I f a II
commands execute successfully, EOITL
returns the current value of L.

Marklst is the list of marks.

On cal Is from EDITF, Atm is the name
of the function being edited; on
cal Is from EOITV, the name of the
variable, and cal Is from EOITP, the
atom of which some property of its
property list is being edited. The
property list of atm is used by the
SAVE command for saving the state of

2 . 80

'

(EDI TF x)

the edit. Thus SAVE wi I I not save
anything if atrn=NIl i.e., when
editing arbitrary e~pressions via
EDITE or EDITl directly.

FSUBR function for editing a
function. (CAR >d is the name of
the function, . (CDR)d an optional
I ist of commands. For the rest of
the discuss ion, fn is (CAR x), and
corns is (COR >d.

If x is NIL, fn is set to the value
of lASTWORD, corns is set to NIL. and
the value of lASTWORD is printed~

The value of EDITF is fn.

(1) I n the mas t common case, fn is an non-camp i led
function, and EDITF simply performs
(EDITE (CADR (GETL fn (QUOTE (FEXPR EXPR MACRO»» corns fn)
and sets LASTWORD to fn.

(2) If fn is not an editable function, but has a value,
EDITF assumes the user meant to call EDITV,. prints =EDITV,
cal Is EDITV and returns.

Otherwise, EDITF generates an fn NOT EDITABLE error.

(ED I TE e><pr corns a tm)' .
Edits an expression. Its value is
the last element of {EDITL (LIST
expr) corns atm NIL NIL). Generates
an ~rror if e~pr is not a list.

2 • 81

(EOITVeditvx)
FSUBR function, simi lar to'EOITF,
for editing values. (CAR editvx)
specifies the value, (CDR editvx) is
an opt i ana I list of commands.

If editvx is NIL, it is set to the
value of (NCONS LASTWOROJ and the
value of LASTWORO is printed.

If (CAR editvx) is a list, it is evaluated and its
value given to EOITE, e.g. (EOITV (COR (ASSOC (QUOTE FOO)
DICTIONARY»». In this case, the value of EoITV is T.

However, in most cases, (CAR editvx) is a variable,
e.g. (EDITV FOO); and EoITV cal Is EoITE on the valu~ of the
variable.

If the value of (CAR editvx) is atomic then EDITV
prints a NOT EDITABLE error message.

When (if) ~DITE returns, EDITV sets the variable to the
value returned, and sets LASTWORD to the name of the
variable.

The value of EOITV is the name of the variable whose
value ~as edited.

(EOITP x)
FSUBR function, simi lar to EDITF for
editi'ng' property 'I ists. 'Like EO'ITF,
LASTWORD is used if x is NIL. EDITP
cal Is EDITE on the property I ist of
(CAR x). When (if) EolTE returns,
EDITP RPLACD's (CAR x) with the
value returned, and sets LASTWORO to
(CAR x).

The value of EDITP is the atom whose
property list was edited.

2 . 82

(Eol TFNS x)
FSUBR function, used to perform the
same editing operations on several
functions. (CAR x) is evaluated to
obtain a list of functions. (COR x)
is a I ist of edit commands. EolTFNS
maps down the list of functions,
prints the name of each function,
and cal Is the editor (via EDITF) on
that function.

For example, (EDITFNS FOOFNS (R FIE FUM) wi I I change
every FIE to FUM in each of the functions on FOOFNS.

The cal I to the editor is ERRSET
protected, so that if the editing of
one function causes an error,
EDITFNS wi I I proceed to the next
function.

Thus in the above example, if one of the functions did
not contain a FIE, the R command would cause an error, but
editing would continue with the next function.

(EoI T4E pat y)

The value of EoITFNS is NIL

Is the pattern match routine. Its
value is T if pat matches y. See
pp. 2.22-2.23 p F~r .. definition ot
'match' •

Note: before each search operation in the editor
begins, the entire pattern is scanned for atoms or strings
that end in at-signs. These are replaced by patterns of the
form

(CONS (QUOTE Il~) (EXPLOOEC atom»).
Thus from the standpoint of EoIT4E, pattern type 5, atoms or
strings ending in at-signs, is really "If car [patl is the
atom @ (at-sign), PAT wi II match with any I iteral atom or
string whose initial character codes (up to the @) are the
same as those in cdr[patJ."

If the user wishes to cal I EoIT4E directly, he must
therefore convert any patterns which contain atoms or
strings ending in at-signs to the form recgnized by EDIT4E.
This can be done via the function EoITFPAT.

2 • 83

(EOITFPAT pat fig)

(EOITFINOP x pat fig)

(EOITRACEFN com)

Makes a copy of pat ~ith al I
patterns of type 5 converted to the
form expected by EDIT4E. Fig should
be passed as NIL (flg=T is for
internal use by the editor).

AI lo~s a program to use the edit
find command as a pure predicate
from outside the editor. X is an
expression, pat a pattiern. The
value of EDITFINDP is T if the
command F pat would succeed, NIL
otherwise. EDITFINDP calls EDITFPAT
to convert pat to the form expected
by EDI T4E, un less f I g= 1. Thus, if
the program is applying EOITFINDP to
several different expressions using
the same pat tern, i t ~ i I I' be more
efficient to cal I EDITFPAT once, and
then call EDITFINOP with the
converted pattern and flg-T.

Is avai lable to help the user debug
complex edit macros, or subroutine
cal Is to the editor. EDITRACEFN is
to be defined by the user. Whenever
the value of EDITRACEFN is non-NIL,
the e'd i tor' ca II s . the func t"i on'
EDITRACEFN before executing each
command (at any level), giving it
that command as its argument.

For example, defineing EDITRACEFN as
(LAMBDA (Cl (PRINT C) (PRINT (CAR L)))

wi I I print each command and the corresponding current
expression. (LAMBDA (e) (BREAK! T T NIL NIL NIL» wi I I
cause a break before executing each command.

EDITRACEFN is initially equal to
NIL, and undefined.

2 . 84

EXTENDED INTERPRETATION OF LISP FORMS

Extended Lambda Expressions

Whe~ solving problems in LISP, it ,is very often
conven1e~t to have a' function ~hidh execute~ mbre. than cin~
form but doe~ not need the vari~ble and label features of
PROG. We have added this capabi I ity to UCI LISP by
extending LAMBDA expressions to handle more than one form.

(LAMBDA "ARGUMENT -LIST" "FORM!" "FORM2" •.• "FORMn")

When such a LAMBDA expression is applied to a list
of arguments each FORM is evaluated in sequence and
the value of the LAMBDA expression is FORMn (after
the arguments are bound to the LAMBDA variables).

Examp I es:

((LAMBDA (X) (CAR)O (COR X» (QUOTE (A») a NIL
«LAMBDA (X Y) X Y (CONS)(Y» NIL n (NIL • T)

This means that functions defined by OF orlOE
evaluate all of forms in their definition, instead
of just the first one as in Stanford's version. The
value of the function is the value of the last form.

WARNING: This is not a PROG; GO and RETURN do not have the
e)(pected result.

3 • 1

~ (.

The Functions PROG! and PROGN

(PROGl Xl X2 ••• Xn) ,n<8

PROGl evaluates al I expressions Xl X2 ••• Xn and
returns Xl as its value.

(PROGN Xl X2 ••• Xn).

PROGN evaluates all expressions Xl X2 ••• Xn and
returns Xn as its value.

3 • 2

~----.
I

"

(
r--.

',---

'" (
"-'--- -.. -

Conditional Evaluation of Forms

(SELECTa X "Yi" "Y2" ••• "Yn" Z)

This very useful function is used to select a
sequence of instructions based on the value of its
first argument X. Each of the Yi is a I ist of the
form (S'i E [1, i 1 E [2. i] ... E [I" i]) where S i i 9 the
"se I eet i on key".

If S i is an atom the va I ue of Xis tested to see if
it is EO to S i (not eva I uatedL I f so, the
expressions E[l, il E[k, il are evaluated in
sequence, and the value of SELECTa is the value of
the last expression evaluated, i.e. E[k, il.

If Si is a list, and if any element (not evaluated)
of Si is EO to the value of X, then EU, i]
E[k, il are evaluated in turn as above.

If Yi is not selected in one of the t'-lO '-lays
described then Y [i +1] is tested, etc. unti I all the
Y's have been tested. If none is selected m the
value of SELECTO is the value of Z. Z must be
present.

An example of the form of a SELECTa is:

(SELECTa (CAR W)
".' (0 (PRINT FOO) (FIE W))

«A E IOU) (VOWEL W)
{COND (W (QUOTE STOP»»

'-Ihich has t~o cases, Q and (A E IOU) and a default
condition ~hich is a CONDo

,SELECrQ'compi les open, and is 'therefore very fast;
hO'-l~ver, it '-Ii I I not '-lark if the value of X is a
list, a large integer, or floating point number,
since it uses EQ.

3 . 3

Changes to the Handling of Errors

(ERRSET E "F")

(ERR E)

ERRSET has been changed slightly. If F.NIL the
error message is suppressed and the error wi I I not
cause a break to the Break Package. If F is1not
given then ERRSET assumes that F.T. If F.9 (i.e.
zero) then the error message wil I be printed on the
current output device, otherwise it wi I I be printed
on the teletype.

There is no~ a special case of ERR. If the value of
E is ERROR X , then ERR ~i II return to the most recent
ERRSET ~hich has F=ERRORX. This al lo~s two levels
of user errors. If a Control-G is typed in by the
user it generates a {ERR (QUOTE ERRORX». This
means that the user can no~ protect himself against
this type of input error.

(ERROR E)

ERROR generates a real LISP error. E is evaluated
and printed (unless error messages I are suppressed)
and then a break occurs just as for, any other LISP

, .
error.

3 . 4

,-----'-_._--

',,----, '.-

M i sce II an i a

(APPLY# FN ARGS)

APPLY# is simi lar to APPLY except that FN may be a
function of any type including MACRO. Note that
when either APPLY or APPLY# are given an EXPR as
their first argument, the second argument is
evaluated by APPLY# or APPLY, but the elements of
the resulting list are directly bound to the lambda
variables of the first argument, and are not
evaluated again even though it is an EXPR.

Examp I es:
(APPLY# (QUOTE PLUS) (QUOTE (3 2 2») = 7
(APPL Y# (QUOTE CONS) (L I ST (QUOTE A) (QUOTE B))) a (A • B)

(NILL ")(1" "X2" ••• "Xn") = NIL

This function al lows the user to stick S-Expressions
in the middle of a function definition (e,g. as a
PROG element) without having them evaluated or
otherwise noticed. NILL is also useful for giving a
dummy definition to a function which has not yet
been de fined.

3 . 5

EXTENSIONS TO THE STANDARD INPUT/OUTPUT FUNCTIONS

Project-Programmer Numbers for Disk I/O

In al I .1/0 functions (including INPUT and OUTPUT), the use
of a tJ.JO element I ist (not a dotted pair) in place of a
device ~il I cause the function to assume DSK: and use'the
list as the project-programmer number.

Saving Function Definitions, etc. on Disk Fi les

(OSKOUT "FILE" "EXPRSLIST")

OSKOUT is an FEXPR and is used to create an entire
output fi Ie on disk fi Ie DSK: "FILE". It sets the
I inelength to LPTLENGTH, and evaluates al I of the
expressions in "EXPRSLIST". If an expression on
"EXPRSLIST" is atomic, then that atom is given to
GRINL instead of being evaluated directly~

For example, if FNLIST is a list of your functions, they can
be saved'on a disk file, FUNCS.LSP by:
(OSKOUT : (FUNCS,-LSP) JNI,..IST _(PRINT (QUOTE END-OF-FILE»)

Reading Fi les Back In

(OSKIN "LIST OF FILE-NAMES")

Example:

REAO-EVAL-PRINTs the contents of the given files.
This is the function to use to read fi les created by
OSKOUT.

(OSKIN (FUNCS.LSP) DTAB: (DATA.LSP»
Reads FUNCS.LSP from DSK: and DATA.LSP from DTAB:.

(OSKIN (667 2) (DSKLOG.LSP»)
Reads OSKLOG.LSP from the disk area of [667,2].

4 • 1

'-.,.

J
"

(
'--

Printing. Circular or De~ply Nested Lists

(PRINTLEV EXPRESSION DEPTH)

PRINTLEV is a printing routine similar to PRINT.
PRINTLEV, however t only prints to a depth of DEPTH.
In addition, PRINTLEV recognizes lists which are
circufar down the CDR and closes these with ' •• ,J'
instead of ')'. The combination of these two
features al lows PRINTLEV to print any circular list
without an infinite loop.

The value of PRINTLEV is the value of EXPRESSION,
This means that PRINTLEV should not be used at the
top level if EXPRESSION is a circular list
structure, since the LISP executive would then
attempt to print the circular structure which is
returned as the value.

Spacing Control

(TAB N)

TAB tabs to position N on the output I ine doing a
TERPRI if the current position is already past N.
Note should be taken that TAB outputs spaces only
when necessary and outputs tab characfers oth~rwise.

4 . 2

1,-.. ..1

"Pretty Printing" Function Definitions and S-Expressions

(GRINOEF "F!" "F2" "F311 ••• "FN")

GRINDEF is used to print the definitions of
functions and the "values of variables in a format
suitable for reading back in to LISP, in what is
known as DEFPROP format. GRINDEF uses SPRINT {see
below} to print these s-expressions in a highly
readable format, in which the levels of list
structure (or parentheses levels) are indicated by
indentation. GRINDEF prints all the properties of
the identifiers FI, F2, ••• , Fn which appear on the
I i 8 t GR I NPROPS. IfF i is non-a tom i c, i t wi I I be
SPRI NTed.

GRINPROPS

The variable GRINPROPS contains the properties which
wi I I be printed by GRINOEF. This variable can be
set by the user to print special properties which he
has placed on atoms. The initial value of GRINPROPS
is (EXPR FEXPR MACRO VALUE SPECIAL).

(GRINL "FI" "F2t' ••• "FN")

GBINL causes all of the atoms, "F1" "F2" ••• "Fn",
'~nd~ al I of the:: ~tom~. on the lists whi6h ar~ the
values of the atoms Fl F2 ••• Fn to be GRINDEFed.
GRINL correctly prints out read macros and is 'the
only function which does. GRINOEF does not save the
activation character for the read macros. Warning:
Each Fi must be an atom.

(SPRINT EXPR INO)

SPRINT is the function which does the "pretty
printing" of GRINOEF. EXPR is printed in a human
readable form, with the levels of list structure
shown by indentation along the line. This is useful
for printing large complicated structures or
function definitions. The initial indentation of
the top level I ist is INO-l spaces. In normal use,
INO should be given as 1.

4 • 3

(

,r---

\.

Reading Whole Lines

(LINEREAD)

LINEREAD reads a line, returning itasa list. If
some expression takes more than one line or a I ins
terminates in a comma, space or tab, then LJNEREAD
continues reading unti I an e~pression ends' at the
end of a line. This is the function used by the
EDITOR and BREAK Package supervisors to read in
commands, and may be useful for other
supervisor-type functions.

Example:

*(LINEREAD)
*A B (C 0
*E) F G

{A B (C 0 E) F G)

*(LINEREAD)
*A B (C 0 E) t

*F G

(A B (C D E) F G)

4 . 4

Teletype and Prompt Character Control Functions

(CLRBFI)

CLRBFI clears the Teletype input buffer.

(TTYECHO)

TTYECHO complements the Teletype ech~ switcH. ·The : .
value of TTYECHO is T if the echo is, ,,'b,e'ing ;turned"
on. and NIL if it is being turned off." " ',~'-

(PROMPT N)_

The LISP READ routines type out a IIprompt character II
for t he user when they expect to read from the
teletype. This character is normally a 11*11. PROMPT
resets this prompt character. N is the ASCII rep­
resentation of the new prompt character.

The ASCII representation of the old prompt character,
is returned as the v~lue of PROMPT. (PROMPT NIL)
returns the current prompt character ~lthout
changing it.

*(PROMPT 53)
52
+

(J NI TPROMPT N)
-_ --.-. -----------_._-_ ..

Whenever LISP is forced back to the top level (e.g.
by an error or Control-G), the prompt character is
reset. INITPROMPT is simi lar to PROMPT except that
it sets the top level prompt character. (lNITPROMPT
NIL) returns the ASCII value of the top level prompt
cha racter without cha ngi ng it.

4 • 5

(READP)

(UNTYI)

READP returns T If a charactor can bo input and NIL
otheruloe. READP does not Input a charactor.

U NTYI unreads a character (such as a cha racter input
by a TYI or a READCH) and returns the ASCII code for
that character.

"':~ mt,; PEE~t" 'd:"'(tfrcdvt ';C1VI n')
* (PROG () (CLRBFI) (PEEKC) (RETURN (TYn)

101

4 • 5 • 1

~I

\

"-----'

,READ MACROS - E~tending the LISP READ ROUTINE

Read Macros al low the user to specify a function to be
e)(ecuted each time a selected character is read during input
of his data or programs. This function is generally used to
produce one or more elements of the input list which are
but I t up in some way from later characters of, the 'input
string. There are two types of Read Macros. Normal Read
Macros whose result is used as an element of the input list
in the position where the macro character occurred. and
Splice Ma~ros whose result (must be a liet which) 18 spliced
sequentially into the input list.

WARNING: Read macro characters will not be recognized if
they occur inside of an atom name unless the character Is
first defined to be equivalent to a break or separator
character (e.g. space or comma) using MOOCHR.

Functions for Oefining Read Macros

(DRM "CHARACTER" "FUNCTION")

CHARACTER is defined as a Normal Read Macro with
"FUNCTION" being a function name or a LAMBDA
e)(pression of no argumehts ~hich will be evaluated
~ach time CHARACTER is detect~d as ~ .• a~ro during
'input. FUNCYION is put bn the' p~operty I iet pf
CHARACTER under the property READMACRO. The value
of DRM Is CHARACTER. .

E)(amp I eSI (DRM * (LAMBDA () (NCONS,(READ»)
(DAM. (LAMBDA () (REVERSE (READ))

(DSM "CHARACTER" "FUNCTION")

E)(ample:

DSM is exactly like DRM except that CHARACTER is
defined as a Splice Macro.

COSM I . (LAMBDA () (CONS NIL (READ»)

4 . G

I

"-

Uolng Road Macroa

The uac of Road t1acroo 10 boot doocr i bod ~11 th oaarnp I 00.
Tho Read Macroo deflnod abovo will be uood for tho o~amploo.

Example 1

If tho expression (A 8 C Q (0 E F) G H) 10 road in the
apparent input ~ill bo (A 8 C (F E 0) G H).

Example.2

If (FOOl F002 *F003 F004) io read the app~ront inp~t is
(FOOl F002 (F003) F004).

In oach cooo the asaociatod function wao evaluated end
the result uaa roturnod as the noxt slomant of the Input
I i at.

Example 3

Reading (ATl : (AT2 AT3) AT4) will result in
(ATI NIL AT2 AT3 AT4).

E)(a~ple 4

If tho input is (AA AS zAC) the r09ult 10 (AA ABNIL • AC).

It can be seen that the effect of a Splice Macro Is to
place the result of tbe function evaluation Intci tho input
stream minuB tho out~rmost eat of parenthoaoo.

4 . 7

Modifying the READ Control Table

Since 'the LISP READ routines are table driven. it Is
possible to redefine the meaning of a character by changing
its table entry. In each of the following functions CH Ie
the ASCII' representation of the character being modified.

(MODCHR CH N)

The. value of MODCHR is the old table entry for CH, "
If N Is non-NIL it' must be a number IoIhich represents
a valid table entry. The entry for CH is changed to
N. If N is NIL, no change is made. e.g. to make "."
a fetter (so'it will behave like the letter "A")
execute (MOnCHR 56 (MODCHR 191 NIL}).

(SETCHR CH N)

SETCHR Is similar to MODCHA e~tept that It only
modifies the portion of the entrY,assciclated with
read macros.

The meaning of each of the fields in the table entry can be
determined from the descriptive diagram of the LISP READ
program in the appendix.

, 4 • 8

\

\~

NEW FUNCTIONS ON S-EXPRESSIONS

S-E~pre9910n Sui Iding Functions

(TeONC PTR X)

. E)(amp I al

lCONC is useful for bui Iding a Ilot by adding
elements one at a time at the end. Thie could be
done with NCONC. However, unlike NCONt, TeONC does
not have to search to the and of the Ijat each time
it is cal led. It does this by keeping a pointer to
the end of the list being assembled, and updating
this pointer after each cal I. The savings can be
considerable for long lists. The cost is the' e~tra
word required for storing both the list being
assembled, and the end of the list. PTR iathat
word: (CAR PTR) is the I i at be i ng aepsmb I ed, (CDR
PTR) is (LAST (CAR PTR»). The value of TeONe is
PTR. ~ith tho appropriate modificationo to its eAR
and CDR. Note that TeONC io a deatructive
operation, using RPLACA and RPLACO •

::dMAPC (F'UNCTJON (LAMBDA O() (S~Ta FOD rrCONC rOO)()))
CQUOTE (5 4 321)))

*FOO .
. «6 4 3 '2 t) 1)

TeONe can bo initialized in two ways. If PTR is
NIL, TCONC wi I I make up a ptr. In this caee, the
program must set some variable to the valuo of the
first cal I to TeONe. After that it is unnocessary
to reset since TeONe physically changeD PTR thusc

*(SETQ FaD (TeONe NIL 1l)
«(1) 1)
*(MAPC (FUNCTION (LAMBDA (X) (leONe FOO X»)

(QUOTE (432 1»}
*FoO
«(1 4 3 2 1) 1)

If PTR is initially (NIL), the value of TeONe is the
same as for PTR=NIL, but TCONe changes PTA, e.g"

5 • 1

*(SETa FOO (NCONS NIL»
(NIL)
*(MAPC (FUNCTION (LAMBDA (X) (TCONC Faa X»)

(QUOTE (5 4 3 2 1»)
*FOO
«5 4 3 2 1) 1)

The latter method allows the program to initialize,
and then call TCONC without having to, perform SETa
on its value.

(LCONC PTR Xl

Where TeONC is used to add elements at the end of a
list, LeONC is used for building a list by adding
lists at the end. For example:

*(SETO Faa (NCONS NIL»
(NIL)
*(LCONC Faa (LIST 1 2»
(U 2) 2)
*(LCONC FOD (LIST 345»
((1 2 3 4 5) S)
*(LCONC FOD NIL)
((I '2 3 4 5) 5)

Note that LCONe uses the same pointer conventions as
TCONC for eliminating searching td the end of the'
list, 80 that.the same pointer can be giv.en to leONC

. and LCONe' i riterchangeab I y. : . .' '.
*(TCONC FOD NIL)
{(I 2 3 4 S NIL) NIL)
*(LCONC Faa (LIST 3 4 5»
({I 2 34 5 NIL 345) 5)

5 • 2

\
"­

\._/

S-E~proooion Tronoforming Functiono

(NTH)(N)

The value of NTH is the tai I of X beginning ~ith the
Nth element, e.g. if Na2, the value is (COAX), if
N=3, (CDDR Xl f etc. If N=l, the va I us is)(, if Nae,
for consistency, the value is (CONS NIL X).

(REMOVE X L)

(COpy X)

Removes al I top level occurrences of X from the liot
L, giving a COpy of L ~ith all top level elements
EQUAL to X removed.

The value of COpy is a copy of X. COpy is
equivalent to: (SUBST e 0 X).

(LSUBST X Y Z)

Like SUBST e~cept X is substituted 8S a segment.
Note that if X is NIL, LSUBST returns a copy of Z
~ith al I V's deleted. For example:

(LSUBST (aUOTE (A B) i (QUOTE V). (QUOTE (X Y Z») ~ O(A' B Zl

5 • 3

S-Expre8sion Modifying Functions

AI I these functions physically modify their arguments
by changing appropriate CAR's and CDR's.

(OREMOVE X L)

Simi lar to REMOVE, but uses EQ instead of EQUAL. and
actuaLly modi fies the list L when removing X, and
thus does not use any additional storage. More
efficient than REMOVE. . .

NOTE: If X • (L ••• L) (i.e. a liet of any length
al I of ~h0ge top level elements are EQ to LJ then
the value returned by (OREMOVE X L) is NIL, but even
after the destructive changes to X there is sti I I
one CONS cell left in the modified list which cannot
be deleted. Thus if X is a variable and it is
possible· that the result of COREMOVE X L) mightbe
NIL the user must set the value of the variable
given to DREMOVE. to the value returned by the
function.

(OREVERSE L)

The value of (OREVERSE L) is EOUAL to (REVERSE L),
but OREVERSE destroys the o~iginal list L and thus

. aoes no·t·use·.any $ddition'al storage. More effier-ant
than REVERSE. .

(OSUBST X Y Z)

S~mi lar to SUBST, but uses EO and does not copy Z,
but changes the list structure Z' itself. OSUBST
substitutes ~Ith a copy of X. More efficient than
SUBST.

5 . 4 ',,--.

('
'--"~ ' -~-'

Mapping Functions ~ith Several Arguments

AI I of tho map functions have been extended to al low
cal led functions which need more than one argument. The
function FN to be called is stil I the first argument.
Arguments 2 thru N (N < 7) are used as argu~ents 1 thru N-l
for FN. If the arguments to the map functions are of
unequal length, the map function terminates' when the
shortest list becomes NIL. The functions behave tha same as
the previous definitions of the functions when used with two
arguments,

Example: This ~i I I set the values of A. Band C to 1, 2 and
3, respectively.

* (MAPC (FUNCTION SET) (QUOTE (A B e» (QUOTE (1 2 3»)

NIL

to I •

5 . 5

Mapping Functions ~hich Use NCONC

The functions MAPCON and MAPCAN produce lists by NCONC
to splice together the values returned by repeated
applications of their functional argument.

MAPCON and MAPCAN are especially useful in the case
~here the function returns NIL. Since NIL does not affect a
liet if NCONC'ed to it, the output from that function does
not appear in the result returned from MAPCON or MAPCAN.
For e~ample, a function to remove all of the vowels from a
word can be easily written as:

(REAOLIST (MAPCAN (FUNCTION VO~ELTEST) (EXPLODE WORD»))

where VOWEL TEST is a procedure which takes one argument,
LET, and returns NIL if LET is a vowel, ~nd (LIST LET)
otherwise. .

(MAPCON FN ARG)

MAPCON calls the function FN to the list ARG. It,
then takes the COR of ARG and applies FN to it. It
continues this until ARG ie NIL. The value is each
of the lists returned by FN NCONC'ed together.

For a single list MAPCON Ie equivalent tal
(DE MAPCON (FN ARG)

(CONO «NULL ARG) NIL)
. (1' (NCONC (FN ARG) , .

(MAPCON FN (CDR ARG»»»

E~ample

* (MAPCON (FUNCTION COpy) (QUOTE (1 234»)

(1 2 3 4 2 3 4 3 4 4)

(MAPCAN FN ARG)
(MAPCONC FN ARG)

MAPCAN is similar to MAPCON except it calls FN with
the CAR of ARG 'nst~ad of the whole list.

5 • 6

S-E~prooGion Soarching and Substitution Functiono

(SU8L I S f\LST EHPfU

I~LS" hJ a I jut of ps i I"' 0 ((Ul. '11) (U2. V2) •• ~
(Un. Vn» t.Jith 8ach Ui atoLlic. Tho value of
SU8~IS io thG rOQult of oubstituting ~cch V for the
COil'8oponti i ng U in E}{PR.

::dSUBL I S (QUOTE «A • }O (C • VJ) (QUOTE (A B C OJ)
()(8 V 0)

NSI-J otruchwo is cr'oa"b:~d onlv ifnooded, 8.g. if
thero are no Gubotitutiono. valuo 10 EQ to E}(PR.

(SUBPA I R OLD NEt,J E)(PR)

E~(afi1p I as

Simi lar to SUBLIS 8Hcept th8t elCillentG . of NEW are
substituted for corresponding atoMo of OLD in EXPR.

::dSUBPAIR (QUOTE (A e» {(JUDTE O(V)} .(QUOTE (A B C 0»)
O(B Y 0)

'Noto: SUBLIS· end SUBPAIR do not 8ub9ti tU{O c"opleo of' the
appropr i (.lie cn:prooo i on, but oubot i tute tho 1 dont i ea I
otructuro.

(t~SSOC(J }(y)

Simi 16r to ASSOC, but useo EQUAL inatoad of Ea.

5 . 7

(LDIFF X Y)

V must be a tai I of X, i. e. EQ to the reBul t of
applying some number of CORe to X. LOIFF gives a
list 'of all elements in X but not in V, i.e., the
list difference of X and V. Thus (LOIFF X (MEMB FOD
Xl) gives al I elements in X up to the first FDD.

Note that the value of LOIFF is al~ays ne~ list
structure unless V.NIL, in ~hich case (LOIFF X NIL)
is X i tS8 If.

]f V is not a tail of X, LOIFF generates an error.
LDIFF terminates on a NULL check.

5 .8

\

Efficiently Working ~ith Atoms as Character Strings

(FLATSIZEC L) Q (LENGTH (EXPLODEC L»

(NTHCHAR X N) a (CAR (NTH (EXPLODEC L) N» if N>0
a (CAR (NTH (REVERSE CEXPLODEC L» N» if N<9
a NIL if (ABS N) a e or > (FLATSIZEC L)

Note: The above functions do not really perform the
operations listed. They actually use far more efficient
methods that require no CONSes, but the effecto are as
given.

(CHRVAL X)

CHRVAL returns the ASCII representation of the first
character of the print name of X •.

5 . 9

NEW PREDICATES

Data Type Predicates

(CONSP X)

The value of CONSP is T iff X is not an atom.
CONSP is equivalent to:

E><amp I 8S:

(STRINGP X)

(LAMBDA (X) (NOT (ATOM X»)

(CONSP T) • NIL
(CONSP 1.23) • NIL
{CONSP (QUOTE (X Y Z») .'T
(CONSP (COR (QUOTE (X»» • NIL

The value of STRINGP is T iff X is a string.

(PATOM X)

The value of PATOM is T iff X is an atom or X is a
pointer outside of free storage.

•
(LI TATOH Xf

The value of ~IT~TOM is T iff X is ,a literal atom,
i • e., an atom but not a number. .

6 • 1

Alphabetic Ordering Predicate

(LE)(OROER X Y)

The value of LEXORDER io T iff X is lexically less
than or equal to Y. Note: Both arguments must be
atoms and numeric arguments arc al I le~ically less
than symbol ic atoms.

E)(amp I 9S: (LEXORDER (QUOTE ABC) (QUOTE CD»
(LEXORDER (QUOTE B) (QUOTE Al)
(LEXOROER 123999 (QUOTE A»
{LEXORDER (aUOTE B) (QUOTE B)l

6 • 2

a T
r:I NIL
CI T
13 T

.'

Predicates that Return Useful Non-NIL Values

(MEMBER# X Y)

MEMBER# is the eame as MEMBER except th~t it returns
the tai I of Y starting at the position ~here X is
found.

E)(amp lee:

(MEMBER# (QUOTE (C 0» <QUOTE «A B) (C OlE»~)
• «C 0) E)

(MEMBER# (QUOTE C) (QUOTE C») • NIL

(MEMB X Y)
(MEMQ# X Y)

MEMQ# is the same as MEMQ except that it returns the
tai I pf Y starting at the position where X is found.

E)(amp 18S1

(MEMaN (QUOTE (C 0» (QUOTE «A B) (C OlE»~) • NIL
(MEMB (QUOTE A) (QUOTE (Q A B») • (A B)

(TAILP X Y)
.' .

T~e valoe ~f TAILP i~ X)ff X is a list and· a tail
of Y, I.e., X is EQ to some number of CORe & 8 of Y~

(ANO# Xl X2 ••• Xn) • Xn if all Xi are non-NIL
• NIL otherwise

(OR# Xl X2 ••• Xn) • The first non-NIL argument
• NIL if all Xi are ~lL

As with AND and OR these functions only evaluate as many of
their arguments ae neceseary to determine the answer (e.g.
ANON stops eva~uation after the first Nil argument).

S • 3

I

',,--"---

Other PredicatoD

(NEa)(V)

The value of NEQ 1s T iff X is not EO to V.
NEQ is equivalent to:

(LAMBDA ()(V) (NOT (EQ)(V»)

Examples: (NEQ T T) a NIL
(NEQ T NI L) D T
(NEQ (QUOTE A) (QUOTE B» 1:1 T
(NEQ 1 1.9) 1:1 T
(NEQ 1 1) g NIL
(NEQ 1.0 1.0) a T

6 . 4

',,---,

Minimum and Ma~lmum

(*'1IN X V)

(MIN Xl X2 ••• Xn)

(*'1AX X Y)

(MAX Xl X2 .•• Xn)

NEW NUMERIC FUNCTIONS

• Minimum of X and V

a Minimum of Xl~' X2" ... , Xn

'a Maximum of X and Y

• Maximum of Xl, X2, ••• , Xn

I

"'-----

"

7 • l'

FORTRAN Functlono In LISP

It io now possible to use the FORTRAN Math Functions in
LISP. This allowo the uoer to perform co~putationa that
previously ~Gre difficult to· do in LISP. All functions
return FLONUMa for valueo but may have eithor a FLONUM or a
FIXNUM for an argument. .

To load the Arithmetic Package execute tho following at
the top level of LISP:

* (I NC (I NPUT SYS: (ARI TH. LSP)))
<SEQUENCE OF OUTPUT>
*(LOAD)SYS:ARITHU
<LOADER TYPES BACK>
::dARI TH)

The above wil I load the Arithmetic Package into
e~panded coro. To load the package into BINARY PROGRAM
SPACE type (LOAD T) instead of (LOAD).

Available Functions

F'unct i on Ncama

SIN
SINO

,COS' .'
COSO
TAN
ASIN
ACOS
ATAN
SINH
COSH
TANH
LOG
EXP
SQRT
FLOAT
RANDOM

Meaning

Sine ~ith argument in radians
Sine with argumont in dogrees
Cosine ,with argument in'radians
Cosine with argument in dogrees
Tangent
Arc Sine
Arc Cosine
Arc Tangent
Hyperbolic Sine
Hyperbol ic Cosine
Hyperbol ie Tangent
Log base e
Take e to a power
Square Root
Convert to a FLONUM
Generates a random number
bet~een e.a and 1.0

7 • 2

',,---- '

FUNCTIONS FOR THE SYSTEM BUILDER

Loading Compi led Code into the High Segment

The UCI LISP System has a sharable high segment. This
high segment contains the interpreter, EDITOR, BREAK
package, and a II of the ut iii ty funct ions. I f the user
~ants to create his own system he must be able to load
compi led code into the high segment. To allow the loading
of code into the high segment, the user must both own the
fi Ie and have write priveleges; to be write priveleged, the
user must either be creating the system from UCILSP.REL (see
the section on creating the system) or follow the procedure
indicated in the furiction SETSYS. The following three
functions are for the purpose of loading code into the high
segment and wit I only work if the user is wri~e priveleged.

(HGHCOR X)

If X-NIL the "read-only" flag is turned on (it is
initially on) and HGHCOR returns T. Other~ise X is
the amount of space needed for campi led code. The
space is then allocated (expanding core if
necessary) , the "read-on I y", flag is turned of f and
HGHCOR returns T.

(HGHORG X)

(HGHENO)

If X-NIL the address of the first unused location is
returned as the value of HGHORG. Otherwise the
address of the first unused location is set to X and
the old value of the high seg. origin Is returned.

The value of HGHENO is' the address of the last
unused location in the high seg.

8 • 1

(
"

(SETSVS DEVICE FILE)

SETSYS enables tho user to create hio own sharable
system. DEVICE Is either a project-programmer
number or a device name fol lowed by a colon (i.e.
OSK:). FILE is the name of the system the user is
creating. In order to create the system, the user
must Control-C out and do an SSA FILE, then run the
system. After this procedure, the user has wri~e
priveleges and may load code into the sharable high
segment. (Note that t~e user need not use this to
save a low segment only). This procedure is not
necessary for generating the system.

8 . 1 • 1

The Compilor and LAP

Special variables

In order to print variable bindings in the backtraces,
we have put a pointer to thje atom header in the CAR of the
SPECIAL cell of all bound atoms not used free. in compiled
code. Unfortunately, for compiled code code to fun, the CAR
of the SPECIAL cell of free variables must be NIL. This,
when loading LAP code, . special variables must be saved if
they are to be printed properly in a backtrace •. The
necessary information is stored on LAPLST which contains the
name and the special cell of each special variable in the
system. Since this means a two word overhead for each
special variable, there is a flag which controls the adding
of items to lAPLST. Spocial variables are added to lAPLST
iff the variable SPECIAL 10 non-NIL. The initial value of
SPECIAL is T.

Removing Excoss Entry Points - NOCALL Feature

If, during compilation, a function has a non-NIL NOCALL
property, al I cal Ie to that function are compiled as direct
PUSHJ's' to the entry point qf that function with no
reference to the atom itself. After loading, all functions
used in this manner wil I be left aa a list on the variable
REMOB. This means that many functions which are not major
entry PQiryts . can often times be REMOBed to save storage.
The user may use (NOCALL FOOl F002 ••• FODn) to make
several NOCALL declarations. Like SPECIAL and DECLARE, when
NOCALL is used outoide of the compiler, it acta the same an
NILL.

8 . 2

Miscel lanoous Useful Functions

(UNBOUND)

(SYSCLR)

UNBOUND returns the un-interned atom UNBOUND ~hich
the system places in the COR of an atom's SPECIAL
(VALUE) cel I to indicate that the atom currently has
no assigned value even though. it has a SPECIAL
(VALUE) cel Ion ita property list.

Re-initializes LISP to read the user'o INIT.LSP fi Ie
~hen it returns to the top level. e.g. by a
Control-G or a START. or a REENTER.

The fol lo~ing t~o functions can catastrophically
destroy the garbage col lector by creating a circle in the
free list if they are used to return to the free list any
~ords ~hich are sti I I in use. 00 not use these functions
unless you ara certain what you are doing. (They are only
useful In rare cases ~hera a small amount of ~orklng storage
is needed by a routine ~hich is cal led quite often.)·

FREE returns the ~ord X to the free otorage liatand
returns NIL.

(FREELIST X)

FREELIST returns al I of the ~ords on the top level
of the list X to the free storage list and returns
NIL. FREELIST terminates on a NULL check.

8 • 3

, .
,-"

Initial System Generation

1) To Generate UCILSP.REL

.R MACRO
*UCILSP.REL/P/P/P/P/P/P/P/P/P/P~UCILSP.MAC

(Needs to be done only ~hen UCILSP.MAC io changed.)

2) To Generate the LISP System (LISP.SHR and LISP.LOW)

R LOADER
*UCI LSP. REL3
.CORE 15
.START
BIN. PROG. SP. a lee
(INC (INPUT DSK: LAP»
<RANDOM MESSAGES>
tC
.SSA LISP

<The preceeding loads the following fi les:
UCILSP.REL, LAP, SYSl.LAP, SYS2.LSP, ERRORX.LSP, ERRORX.LAP,
BREAK. LAP, EDIT.LAP>

(Needs to be done ~hDnever any of the above fi lea are changed.)

3>' To' G~nerate:·LISP.SYr1,:, .tlie Lisp LO~ER SYMBOL:lABLE

.RU L052A (Vereion 52 of the DEC Loader.
This file is included with tho LISP System)

*UCILSP.REL/J,SYMMAK.RELS
• START

(Must be done whenever Step 1 10 performod.)

8 . 4

\...... '

'----'

4) To Generate COMPLR.SAV, The LISP COMPILER

.AS DSK SYS

.R LISP 36
FULL WORD SP. a 29ge
BIN. PROG. SP. m 15990
* (I NC (I NPUT OSK: (CbMPLR. LAP)))

<RANDOM MESSAGES>
*(NOUUO NIL)
*(CINITJ
tc
.SA COMPLR.SAV
.DEL COMPLR.HGH

(Must be done ~henever Step 3 is per formed.)

5) To Generate LISP.LOD, the LISP LOADER

.R LOADER
*LOADER.RELS
• START

((Needs to be done only ~hen LOADER. MAC is changed.)
',-

\....

..

8 • 5

" .

THE LISP EVALUAT I ON CONTE)(T STACK

The Contento of the Contoxt Stack

Whenever a form ie given to EVAL, it is pushed onto
the top of the Special Pushdown List in the form of an
Eval-Blip. Thio information io used for backtracea. An
Eval-Blip entry haD NIL in the lefi half (000, SPOLFT) and
the form baing evoluatod in tho right half (soe SPOLRT).

Alao, variablo bindings are saved on tho Special
Pushdown List. Tho loft aide of tho ontry contains a
pointGr to the ~pocial coil and the right side contains
tho value which was savod.

Tho only other ito~o on tho Spacial PushdownLiot
areuaed by tho LISP intorproter, and al~ayo have a
non-NIL atom in tho loft half.

In tho user'e programs, stack pointers are always
represented ao INUMa. This allows the program to easily
modify them with the standard arithmetic funct,ions ~o
that a program can step either up (toward the moat recent
Eva 1-8 lip) or down (toward the top leve I of the
interpreter) of the stack at will.

'.. A.l1 .of, the, fUf.1c\.i ono i,(l \h is. chapter take INUM's for
the pCJinter argur.JGnt-a. :'.-, The ac'tu',i'I pOintor,. ",to' the ,staclt
elemant roqOlre~ an offoet from tho begj'nn)ng of th~ ,
stack. For tho user to obtain a tru~ LISP pointer he
must cal I the function STKPTR (with an INUM argument'
also). (1.0. If tho user wiaheo to do on RPLACA or
RPLACO on an e I amant of the stael" he muot gat a po 1 ntor
v 1 a STI(PTR.) ,

9 • 1

I
\

('

E~amlnlng tho ConteNt Stack

(SPDLPT)

The value of SPDLPT is a stack pointer to the
current top of the stack. (Returns an INUM).

(SPOLFT P)

The value of SPDLFT is the left side of the stack
item pointed to by the stack pointor P •

. (SPOLRT P)

(STKPTR)

The value of SPOLRT io the right aida of the
stac~, item pointed to by the stack pointer·P.

The value of STKPTR ie a true LISP pointer to a
atacl, item.

(NE)(TEV P)

. If. tba ota~k' po i I"lt~r Pis a po i ntar to an
'. 'Eval· .. Sl ip,'· ~hc va hie' of' NEXTEV io p", O·therwl-ae, .

NEXTEV searcheo down the stack, otartingfrom P,
and returns ~ otack pointer to tho first
Eval-Blip it flnda. If NEXTEV can not find an
Eval-Blip it returns NIL.

(PREVEV P)

PREVEV is simi Jar to NEXTEV except that it moves
up the stack instead of down it"

(STKCOUNT NAME P PEND)

The value of STKCOUNT is the number of Eval-Blips
with a STKNAME of NAME occurring between stack
pooitions P-l and PEND, where PEND < P.

9 • 2

(STKNAME P)

. If position P io not an Eval-Blip, the value of
STKNAME io Nil. If posltlon'P 10 an Eval-Blip
and the form 10 atomic. then the valJe of STKNAME
is that atom. If the form Is non-atomic, STKNAME
returno the CAR for the form, i.G. tho name of
the function.

(STKNTH N P)

The value,of STKNTH Is a atack pointer to the Nth
Eval-Blip starting at position P. If N is
positive, STKNTH moves up the stack, and if N is
negative, STKNTH moves down the stack.

(STKSRCH NAME P FLAG)

The value of STKSRCH is a atack pointer to the
first Eval-BIJp with' a STKNAME of NAME. The
direction of the search is control led by FLAG.
If FLAGaNIL, STKSRCH moves down the stack.
Otherwise STKSRCH movea up the atack. STKSRC~
never roturno P for ito value, i.o. it stepa once
before checking for NAME •

.. (FNDBRKPT p.)
" ,

The value of FNOBRKPT ie a stack pointer to the
beginning of the Eval-Block that P ie in. The
beginning of a Eval-Block io defined as ~n
Eval-Blip which does not contain the nex~ higher
Eval-Blip within it. This function io used by
the back trace functions.

s . 3

(
,- .'

Control ling Evaluation Conto~t

(OUTVAL P V)

OUTVAL adjusts P to an Eval-Bllp and returns from
that position ~ith V.

(SPREDO P V)

SPREDO adjusts P to an Eval-Blip and re-evaluateo
from that point.

(SPREVAL P V)

SPREVAL avaluatao its argument v in ita local
context to get a form, and then it returns to the
context specified by P and evaluates.the form in
that context, returning from that conte~t ~ith
the value. This is very simi lar toSPREOO except
that the EVAL-blip o~ tho stack is changed.

Note. OUTVAL, SPREDO and SPREVAL all use NEXTEV to adjust
P to ·an Eval-Blip.

(EVALV A P)

. ··Tho· value of EVALV. is the valuo of . 'the a.tom A
evaluat~d as of position P. If A io not an atom
then It muot be the special cell of an atom. By
using the special eel I instead of the atom,
special variables can be handled properly. EVALV
is simi lar to EVAL with two argumento, but is
more e f f i c i en t.

(RETFAOM FN VAL)

RETFROM returns VAL from the most recent cal I to
the function FN with the value VAL. For RETFROM .
to work, there must be an Eval-Blip for FN. The
only way to be aure to get an Eval'~Blip in
compi red code is to call the function with no
arguments inside of an ERASET. e.g. . (ERRSET
(FUNC» •

9 . 4

Storage AI location

When the LISP system is run with a core
specification given (i.e., ".R LISP n", n>22) , LISP types
n ALLOC? (Y OR N)". I f you type "N" or space (for no)
then the system uses the current allocations. If you
type "Y" (for yes) then the system allows you to s~ecify
for each area either an octal number followed by a space
designating the number of words to added io that area, or
a space designating an increase of zero words.

E~ample: (user input is underlined)

ALLOC? (Y OR N) Y
FULL WORD SP. a 200
BIN. PROG. SP. = 2000
REG. POL. D

SPEC. POL. a 1008

Any remaining storage is divided between the spaces as
fo II 014S:

l/lS for ful I word space,
1/64 for each push down list,
the remainder,to fre~ storage and bit t~bl.es.

Real location of Storage
~

. l't- you exhaust one: of . the storage' a'reas it is
pOG~ible to increase th~ size of that area by, using the
real location rocedure. First, expand core with the time
sharing system command CORE and then reenter LISP ~ith
the REE command. For example, if the original core size
was 22K, you could increase it by 4K as follows:

*1'C
.CORE 26
.REE

When you reenter LISP, the same al location procedure is
fol lowed as described above.

10 • 1

Initial AI locations

The fol lowing are the initial al locations for the
various storage areas when LISP is initially run.

FREE STORAGE
FULL WORD SP.
BIN. PROG. SP.
REG. POL.
SPEC. POL.

= 22ee
a 7ee
::a lee
= laea
:I laae

10 • 2

INDEX

A (edit command) --------------------~--------- 2.1l, 41
ACOS -- 7. 2
AND# -- 6. 3
APPLY# -- 3. 5
ARGS (break command) ---------------~~--------- 1.10
ASIN -- 7. 2
ASSOC# -- 5. 7
ATAN -- 7. 2
B (edit command) ------------------------------ 2.13, 31
BELOW (edit command) -------------------------- 2.32, 33
BF (edit command) ----------------------------- 2.10, 28
BI (~dit command) ----------------------------- 2.54
BIND (edit command) --------------------------- 2.70
BK (break command) ---------------------------- 1.15
BK (edit command) ----------------------------- 2.10, 19
BKE (break command) --------------------------- 1.15
BKF (break command) --------------------------- 1.15
BO (edit command) ----------------------------- 2.55
BREAK --- 1. 1, 18
BREAKIN --------------------------------------- 1. 1, 20
BREAKMACROS ----------------------------------- 1.17
BREAK0 --------------------~------------------- 1.23
BREAK 1 -- 1. 6
BRKEXP -- 1. 7
BROKENFNS ------------------------------------- 1.18
CHANGE (edit command) ------------------------- 2.43
CHRVAL -- 5. 9
CLRBFI -- 4. 5
COMS (edit command) --------------------------- 2.64
COMSa (edit command) -------------------------- 2.64
CONSP --- 6. 1
COpy -- 5. 3
COS --- 7. 2
COSO -- 7. 2
COSH -- 7. 2
DOT --- 1. 5
DELETE (edit command) ------------------------- 2.14, 41, 43
DREMOVE --------------------------------------~ 5. 4
ORE VERSE ----------------------------~--------- 5. 4
oRM --- 4. 6
DSKIN --- 4. 1
oSKOUT -- 4. 1
DSM --- 4. 6

INDEX. 1

DSUBST -- 5. 4
E (edit command) ------~----------------------- 2. 9, 63
EDIT (break command) -------------------------- 1.13
EDIT4E -- 2.83
EDITCOMSL ------------------------------------- 2.78
EDITDEFAULT ----------------------------------- 2.78
EDITE --- 2.81
EDITF --- 2.81
EDITFINOP ------------------------------------- 2.84
ED I TFNS ----:-------..;.---------------0',.::0----------- 2.83
EDITFPAT -------------------------------------- 2.84
EDITL --- 2.80
EDITP --- 2.82
EDITRACEFN ~----------------------------------- 2.84
EDITV --- 2.82
EMBED (edit command) -------------------------- 2.49
ERR --- 3. 4
ERROR --- 3. 4
ERRSET -- 3. 4
EVAL (break command) -------------------------- 1. 8
EVALV --- 9. 4
EX (break command)-----~----------------------- 1. 14
EXP --- 7. 2
EXTRACT (edit command) ----------------------~- 2.47
F (break command) ----------------------------- 1.11
F (edit command) ------------------------------ 2. 6, 26, 27
FLATSIZEC ------------------------------------- 5. 9
FLOAT --- 7. 2
FNDBRKPT -------------------------------------- 9. 3
FREE -- 8. 3
FREELIST -----------~-------------------------- 8. 3
FROM?~ (break command) ----~--------~---------- 1. 9, 14 ,
FS (edit command) ----------------------------- 2.28
F= (edit command) ----------------------------- 2.28
GO (break command) ---------------------------- 1. 8
GRINDEF --------------------------------------- 4. 3
GRINL --- 4. 3
GRINPROPS ------------------------------------- 4. 3
HERE (in editor) ------------------------------ 2.44, 52
HGHCOR -- 8. 1
HGHEND -~-------------------------------------- 8. 1
HGHORG -- 8. 1
I (edit command) ------------------------------ 2.63
IF (edit command) ----------------------------- 2.66
INITPROMPT ------------------------------------ 4. 5
INSERT (edit command) -------~----------------- 2.43
LAMBDA --------------------------------------~- 3. 1

° LAP --- 8. 2

INDEX • 2

' '

(
I

~

LAPLST -- 8. 2'
LASTWORD -------------------------------------- 2.81, 82
LASTPOS --------------------------------------- 1.11'
LC (edit command) ----------------------------- 2.31
LCL (edit command) ---------------------------- 2.31
LCONC -~--------------------------------------- 5. 2
LDIFF --- 5. 8
LEXORDER -------------------------------------- 6. 2
LI (edit command) ----------------------------- 2.55
LINEREAD -------------------------~-~~--------- 4. 4
LITATOM --------------------------------------- 6. 1
LO (edit command) --------------~-------------- 2.55
LOG --- 7. 2
LP (edit command) ---------------~------------- 2.68
LPQ (edit command) ---------------------------- 2.87
LSUBST -- 5. 3
M (edit command) ------------------------------ 2.68, 69
MAKEFN (edit command) ------------------------- 2.75
MAPCAN --~---------~--------------------------- 5. 8
MAPCON -- 5. 8
MAPCONC --------------------------------------- 5. 8
MARK (edit command) ----~---------------------- 2.38
MAX --- 7. 1
MAXLEVEL -------------------------------------- 2.24
MBD (edit command) ---------------------------- ~.14, 48
MEMB -- 6. 3
MEMBER# --------------------------------------- 6. 3
MEMQ# ------------~---------------'------------- 6. 3
MIN --- 7. 1
MODCHR -~---7---------------------------------- 4. 8
MOVE, (edit command) -------------------~~-~-~-- 2.53
N (edit comma~d) ----~--------~--------~~------ 2. 5, 38
NEQ --- 6. 4
NEX (edit command) ---------------------------- 2.33
NEXTEV -- 9. 2
NIL (edit command) ---------------------------- 2.71
NILL -- 3. 5
NO CALL -- 8. 2
NTH --- 5. 3
NTH {edit command} ---~------------------------ 2.21,33
NTHCHAR ---------------------------------~----- 5. 9
NX (edit command) ----------------------------- 2. 8, 33
OK (break command) ---------------------------- 1. 8
OK (edit command) ----------------------------- 2.71
ORF (ed~t command) ---------------------------- 2.28
ORR (edit command) ---------------------------- 2.67
OR# --- 6. 3
OUTVAL -- 9. 4

INDEX . 3

P (edit command) ------------------------------ 2. 2, 62
PATOM --- 6. 1
PP (edit command) ----------------------------- 2. 2
PREVEV -------------~-------------------------- 9. 2
PRINTLEV -------------------------------------- 4. 2
PROGN --- 3. 2
PROGl --- 3. 2
PROMPT -- 4. 5
R (edit command) -------~---------------------- 2. 7, 60
RANDOM -- 7. 2
REAOP --- 4. 5. 1
REE ----------~-----------------------~-------- 1. 5
REPACK (edit command) ~------------------------ 2.74
REMOVE -- 5. 3
RETFROM --------------------------------------- 9. 4
RETURN (break command) ------------------------ 1. 9
RI (edit command) ----------------------------- 2.55
RD (edit command) ----------------------------- 2.56
S (edit command) ------------------------------ 2.37
SAVE (edit command) --------------------------- 2.72
SECOND (edit command) --~---------------------- 2.31
SELECTO --------------------------------------- 3. 3
SETCHR -- 4. 8
SIN -----~------------------------------------- 7. 2
SIND -- 7. 2
SINH -- 7. 2
SPECIAL --------------------------------------- 8. 2
SPDLFT -- 9. 2
SPDLPT -- 9. 2
SPOLRT -- 9. 2
SPREDO --~---~--------------------------------- 9. 4
SPREVAL --------------------------------------- 9~ 4
SPRINT ------------------------------~--------- 4. 3
SOAT -~-- 7. 2
STKCOUNT -------------------------------------- 9. 2
STKNAME --------------------------------------- 9. 3
STKNTH --------~------------------------------- 9. 3
STKPTR -- 9. 2
STKSRCH --------------------------------------- 9. 3
STOP (edit command) --------------------------- 2.72
STAINGP --------------~---~--------------~----- 6. 1
SUBLIS -- 5. 7
SUBPAIR -----------------.--------------------- 5. 7
SURROUND (edit command) ---------------------~- 2.49
SW (edit command) ----------------------------- 2.61
SYSCLR -----------------------------------~---- 8. 3
TAB --- 4. 2
TAILP --- 6. 3

INDEX. 4

TAN --- 7. 2
TANH -----~------------------------------------ 7. 2
TCONC --- S. 1
TEST (edit command) --------------------------- 2.77
THIRD (edit command) -------------------------- 2.31
THRU (edit command) --------------------------- 2.57
TO (edit command) ----------------------------- 2.57

. TRACE --- 1. 1, 19
TRACEDFNS ------------------------------------- 1.18
TTYECHO --------------------------------------- 4. 5
TTY: (edit command) --------------------------- 2.71
UNBLOCK (edit command) ------------------------ 2.77
UNBOUND --------------------------------------- 8. 3
UNBREAK ----------------------------.---------- 1.21
UNDO (edit command) --------------------------- 2.10, 76
UNDOLST --------------------------------------- 2.76, 77
UNFIND -- 2.26, 36
UNTRACE --------------------------------------- 1.22
UNTYI --- 4. 5. 1
UP (edit command) ----------------------------- 2.13, 16, 50
UPFINDFLG ------------------------------------- 2.45
USE (break command) ------------7-------------- 1.10
USERMACROS ------------------------------------ 2.79
XTR (edit command) ---------------------------- 2.14, 46
e (edit command) -----------------.------------ 2.4, 18
ANY (in edit pattern) ----------------------- 2.22
*MAX -- 7. 1
~IN ------------------------~----------------- 7. 1
-- 2.64
(edit command) ----------------------------- 2.44
en. (at-si·gn, in ed; t pattern>., .. -.: ... --7'·7~- ------- 2.12, 22
t (break command) ~-~-----------------~----~--- 1.19
t (edit command) ------------------------------ 2. 4, 18
tt (break command) ---------------------------- 1.10
& (break command) ----------------------------- 1.11
& (in edit pattern) --------------------------- 2.11, 22
? (edit command) ------------------------------ 2. 2, 62
?? (edit command) ----------------------------- 2.77
1_ (break 'command) ---------------------------- 1.13
~ (in bre~k package) -------------------------- 1.12
~ (edit command) ------------------------------ 2.36
~~ (edit command) ----------------------------- 2.36
: (edit command) ------------------------------ 2.14, 41
:: (edit command) ----------------------------- 2.34
: :: (i'n ed i t pa t tern) ------------------------- 2.22
_. (in edit pattern) -------------------------- 2.22
-- (in edit pattern) -------------------------- 2.11, 22
< (edit command) ------------------------------ 2.19, 36

INDEX. 5

"--"
<P (edit command) ----------------------------- 2.11,37
(~pattern) (edit command) -------------------- 2.32
> (break command) ----------------------------- 1. 9
-> (break command) ---------------------------- 1. 9
%LOOKDPTH ------------------------------------- 1. 8
%PRINFN --------------------------------------- 1. 8
!NX (edit command) ---------------------------- 2.20
!UNDO (edit command) -------------------------- 2.76
!0 (edit command) ----------------------------- 2.18
!VALUE -- 1. 8

INDEX . 6

	Table of Contents

	Introduction

	Credits and Acknowledgements

	1
Debugging Facilities
	2 The LISP Editor

	3 Extended Interpretation of LISP Forms

	4 Extensions to the Standard Input/Output Functions

	5 New Functions on S-Expressions

	6 New Predicates

	7 New Numeric Functions

	8 Functions for the System Builder

	9 The LISP Evaluation Context Stack

	10 Storage Allocation

	Index

