
o

o

o

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
Memo No. 21

LISP 2 SPECIFICATIONS PROPOSAL

by R. W. Mitchell

August 19, 1964

Abstract: Specifications for a LISP 2 system are proposed.
The source language is basically ALGOL 60 ex~
tended to include list processing, input/output
and language extension facilities. The system
would be implemented with a source language
translator and optimizer, the output of which
could be processed by either an interpreter
or a compiler. The implementation is specified
for a single address computer with particular
reference to an IBM 7090 where necessary.

Expected efficiency of the system for list
processing is significantly greater than the
LISP 1.5 interpreter and also somewhat better
than the LISP 1.5 compiler. For .execution of
numeric algorithms the system should be comparable
to many current "algebraic" compilers.

Some familiarity with LISP 1.5, ALGOL and the
IBM 7090 is assumed.

The research reported here was supported in paFt by the Advanced
Research Project Agency of the Office of the Secretary of Defense
(SD-183)

o

o

o

---------------------.-- ._------

LISP 2 SPECIFICATIONS PROPOSAL

by R. W. Mitchell

INTRODUCTION:
An algorithmic language and an implementation is specified. The

language provides for numeric and list processing algorithms and includes
facilities for user extension of the language. The basic language is
very similar to ALGOL 60 with extensions for the facilities and data
types which were not available. For this reason, the basic language
is presented in reference to the revised ALGOL 60 report. 1 Some famili
arity with LISP 1.5 and the IBM 7090 is also assumed.

The facilities for extending the language allow for definition of
new data types, new operators and new syntactic constructions, all in
terms of the basic language and previously defined extensions. The
resulting compiled code for extended language items may be expressed
in terms of symbolic machine code when desired, or it will be the result
of source language manipulations.

The system would basically be implemented as four processors.
These are a source language translator, a source language optimizer,
an interpreter and a compiler. The source language translator would
translate the source language st~tements to s-expressions. These would
be similar to the s-expression input of LISP 1.5. Most syntax analysis
would be in the translator.

The source language optimizer woudl convert the s-expressions into
an optimized, packed form of s-expressions, hereafter called p-expressions.
The p-expressions would occupy approximately one-third the space of
s-expressions and could be interpreted in approximately one-fifth the
time of the LISP 1.5 interpreter. There would be associative and
commutative law, for loop, an~ common sub-expression optimization and
the effects of declarations for formal parameters, local variables and
data types would be propagated 'into the expressions and statements.

The interpreter and compiler would accept p-expressions as input
and execute or translate the code to machine language, respectively.
The compiler would perform optimization which is dependent on the
particular machine language.

The control and communication stack is significant in obtaining
efficient ~xecution and the informat~on on the stack (e.g. parameters,
'local variables and return instructions) would, be directly usable.
The same stack format is used for both interpreted and compiled code,
but the format is oriented toward optimal execution of compiled code.

"

o

o

o

The implementation is specified for a single address computer,
with particular reference to the IBM 7090 where necessary, and the
specifications should be applicable for most such computers. The
only major changes should be with regard to the compiler optimization.

Throughout the implementation, the design philosophy has been
toward optimum speeds for the simpler and more frequently used features
of the language. Added· time cost for the use of more complicated or
infrequently used features would, to a large extent, be paid only
when such features were actually used.

LANGUAGE: . \ .

BASIC LANGUAGE:

The basic language is similar to ALGOL 60. Features of ALGOL 60
which cause significant difficulty have been altered for efficiency
or deleted if the feature was not that important to the programmer.

Data Types

The new data types are atom and s-expr. An atom datum may have an
associated value of any other type, general property lists, and are the
basic units for constructing data or type s-expr. An s-expr datum is
an s-expression as defined in LISP 1.5, i.e., a binary tree structure.

An atom in an s-expression may be a constant, variable or procedure
of any type. If the type is other than atom, an atom type datum is con
structed with the appropriate associated value. The null atom nil is
an added basic symbol.

The basic symbol Boolean is replaced by the basic symbol logical.

Operators and Functions

The operators which have been added for the above data types are 1,
E, ., r 1 , a and n. (These are car, cdr, cons, list, atom, and null
of LISP 1. 5) . -

The following standard functions are defined:

(to be specified later)

Statements

The for statement has been extended in two respects. A <for clause>
may be

2

"
I •

o

o

o

for <s-expr variable> E <list datum> do

(e.g. for j E m do, where j is a variable to type

s-exprand m is some expression yielding a list value).

Execution of a for statement with such a for clause will cause assign
ment of each su~ssive element of the li~to the variable "and
execution of the statement following do for each assignment. The
statement is concluded when the variable is given the value nil.

The basic symbol and is added and one may express concurrent for
loop controls with statements such as

for i:= 1 step 2 until nand j:= f(x) do 8
1

;

for j E rand k E m, n and i:= 1 step 1 do 82 ;

The for control variables are assigned and tested from left to right and
the for statement is concluded when any variable is assigned a value
which concludes its < for list>.

To allow full flexibility of the conditional if statement, two
forms are allowed.

1) if p then 8
1

else 8
2

;

2) if p do 8;

.Also another statement is defined which one might call a conditional
statement. This is

while < logical expression> do 8;

This statement will cause 8 to be executed if the logical expression
is true and control cycyles to re-analysis of the entire while
statement. If the logical expression is false then control passes to
the next statement without executing 8.

The return statement

return;

or

return «expression»;

causes exit from this procedure to the calling procedure. The second
form is used when returning from a function and the value of the
expression is the returned value of the function.

3

"

o

o

o

Procedures

In procedure declarations the specifications for mode of parameter
transmission may be value or name, and value specification is assumed
if neither is present. The name specification is not the ALGOL 60
"call by 'name", but rather a ~ll by address'~. Thus' a name, parameter
may be assigned a new value, in the procedure and that value assignment
is effected in the calling procedure, but there is not the effective
literal substitution and its complications. '

Complete specifications are required in procedure declarations if
the it~m is othe~ than a simple variable of the same type as the
procedure,

Single statement procedure declarations are permitted. The
parameter specifications a,re included in the formal parameter list and
global and local variables are analogously declared in a second list.
These are followed by the assignment symbol (:=) and the defining
expre s s ion', For example:

< < integer procedure step (real u): = ,if 0 = u" u = 1 then 1 else 0;

LANGUAGE EXTENSION FACILITIES

These facilities are included to allow programmer specification of
new data types, operators and syntactic constructions. The specifications
are normally in terms of the basic language and previously defined ex
tensions, but alternatively supplemental routines for the language
processors may be included. These facilities should permit convenient
tailoring of the language to a particular applications area and in
general permit the programmer some degree of freedom in mapping the
programming language to th.e problem.

Data TyPes

New data types(mjY be defined by Cartesian product (®) and
dir~ct union (~). 2 For example: ,

define ~ 'complex' = real ~ real;

define ~ 'number' = real ~ integer;

(The apostrophe (,) delineates the effective basic symbols which are
defined by these statements and all uses of the identifier as a type
must be so delineated.)

Since operators must be defined for new data types, some function~
are necessa~y for accessing the constituents of such data and forming
such data from other data. The following ~re defined.

4

"

o

o

o

For 'X:' A69B

'Y' C ® D

and x E X, a E A,

1 E (x) a

r E (x) b

E 'X'(a,b) = x

E'Y'(C) y

E'Y'(d) = y

-----_ ... _---.--_._---

etc.

E(Y) = C or do whichever is the case

-----_._----------- ------ ----

E,EC(y)

E,ED(Y)

if E(Y)

if E(Y)

c then true else false --- ---- --- ----
d then true else false ---- ---- --- ----

Operators

Operations on new data types may be defined as procedures or current
operators of the language may be defined for application to elements
of the new data types. For example: '

'complex' procedure compplus(a,b)

E'complex'(! E (a) +1 E (b), r E (a) + r E (b))

define ~perator + (a,b) =

E 'complex' (1 E (a) + 1 E (b), £ E (a) + r E (b))

define 'complex'operator + (a, real b) ,--> --
,E 'complex' ~1 E (a) '+ b, E E (a))

Syntactic Constructions

New syntactic constructions must be defined with created (") basic
symbol as a prefix. The defined constructions are primarily a
notational convenience and the programmer must not create ambiguous
syntax as a result of their use. As an example let us define the
LISP 1.5 COND in terms of
if then -- else -- expressions.

define expression 'cond'((Pl,e l)(P2,e2) ... (Pn,en) .en+l)

if PI then el else

if P2 then e2 else

if p then e
-- n-- n

5

else e
n+l;

.'

o

o

o

-----------------.------ -------

The programmer could then write

x:= 'cond'((ql'al)(~,a2)(q3'a3) a4)

and the processing would result in

x:= if ql then al else if ~ then a2 , else

if q3 then a
3

else a4 ;

as the effective statement.

Currently expression and statement are the definable constructions.

P-EXPRESSIONS

The p-expressions are packed s-expressions and thus have the same
logical structure but a different storage convention. A p-ex~ression
is a contiguous sequence of six bit bytes. There are sixty~four basic
bytes and these are then followed by up to two bytes to form a single
part of an s-expression. The determination of the basic bytes was the
result of a crude application of information and coding theory.

The chart on the following page defines sixty-three of the basic
bytes. The other three are open for later definition. The term
"general expression" means the fo~lowing item is any valid p-expression
and the result of its evaluation is the desired input for this operation.
All 3X bytes are followed by general expressions.

The 2X, 4x and 70 bytes a~e followed by one byte, n, per necessary
element. If the byte, n, is less than 40 then the nth parameter is
referenced. If the byte, n, is equal to or greater than 40 then the
(n-40)th local variable is referenced.

The 00 byte is the) of s-expressions and the 76 and 77 bytes are
the (, but a count is included which, when added to the current byte
pointer, will set the pointer to the byte following the corresponding).

The ~and £ composition bytes, 23 and 33, are followed bone
byte which gives the composition. This byte is interpreted as follows:

00

01

02

03

04

05

76

77
6

11

lr

rl

rr

111

llr

rrrrl

rrrrr

.'

o

o

0

----- _. -----_._-----_._--- .-------------.-~-

The temporary variable byte, 16, is used for optimizer generated
local variables for which the compiler should use high speed registers
whenever possible.

[MPLEMENTATION

CENTRAL STORAGE STACK

The central storage stack provides a mechanism for parameter
communication, local variable storage, procedure linkages and control
information. The stack is a contiguous block of memory of variable
length. An index register always points to the first availab~e cell
upon entry to a procedure and a counter is maintained of the current
number of stack cells used in the procedure for local storage.

The general format of the stack is:

index
pointer

.,
)
)
) parameters for current procedure
)
)
)

pointers to relevant symbolic names and control information
return instructions from current procedure to calling procedure

, vl

v
t m

1

t r
gl

gk
pI

1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

,)
)
)

local variables for current procedure

temporary storage as needed by current procedure

Storage of previous values of global variables which
current procedure is rebinding for next procedure
(a procedure to b~ called by current procedure)

parameters for next procedure

7

o o o .,

BASIC INTIRPRETER BYTES

.0 .1 .2 ·3 .4 .5 .6 ·7

end if if for .- return goto goto
Ol - f--

(general) expression statement statement relative
(one bYte) (general ex-

pression)

parameter parameter local vari- local global vari-: gloQal temporary
1 (value) (reference) able array able(2 bytes ,array (2 . variable

i for name) bytes'per
name

£ r £ and r a u = =
2: - - - -

(value) (sexpr) composition
I~ parameter 01 local variab ~e ,>

£ r. ; £. and r ex> a u = = - - - -
3 composition (value) (sexpr)

general E xpressionc
./

-

4 t. - i x. t .- x /
1 1 r r r

-'
.. - .. -' ~ -.

parameters c r local varia ples-
" ->

5 subscript Ifunctional s-expr E step until while. sexpr ---
parameter subelement

(must' be
translated)

constant l

6 2 bytes for :0 1 true false nil set restore
"value") global global
procedure procedure ' '

co~vert 1~£~Iment R~~ae~~re *y'bIDg~gt subelement w7
call 1 rail 2 byte1: ln e!er 2 bn.es for

7 b~e'for ~. or._ name- oca para- b~e,for fgr le,gth (en n
IT ~~ -:p 9-~,~ Rarametersl meter or n me egln .. begin) 5:e e1· are re genera valiabie 0-ta . para- expr SSlons va ye ~ ...
me er~ or rea va ue
varLa les ',;

- ,

.0

o

o

o

)
)

pI)
2

pointers to relevant symbolic names and control information.
return instructions from next procedure to current procedure.

empty

At the time that control is passed to the next procedure, the index
pointer will be set to a.

Each of the two locations marked "pointers to relevant symbolic
names and control information" contains two pointers - one to the name
of the calling (current) procedure and one to the name of the current
(next) procedure. With the symbolic names is information giving the
type, number, names, etc. of parameters and local variables.

With this format, simple variables which are value parameters and
local variables may be referenced by appropriate positive and negative
displacements from the index pointer. The addresses of name and array
parameters and entries to procedural parameters are available on the
stack and call by value arrays are stored as a local array by the,
procedure initialization.

SOURCE LANGUAGE TRANSLATOR

The source language translator will convert the source language
to s-expressions. The syntactic heirarchy will be represented by the
s-expression heirarchy with all syntactic constructions in prefix form.
All character scanning and syntax recognition routines will be in this
processor.

OPTIMIZER

The optimizer will perform source language optimization. Necessary
features of the processor will be:

a)

b)

The propagation of all type declarations into the program body
so that operation symbols (e.g. +, /) whose operands can be
of several types will be converted to the required type oper
ation for each case.

The conversion of all parameter and local variable references
to relative references (e.g. the ith parameter, the jth
local variable).

9

I •

I

I

o

o

o

-------_. ---------.-----------

c) The preparation of a property list for each procedure glvlng
the symbolic names of parameters, local and global variables,
all type information, etc.

d) The conversion of operations on data of programmer defined
types to operations on basic types (if the programmer has
not supplied routines for the operation).

e) The conversion of programmer defined syntactic constructions
to basic constructions (if the programmer has not supplied
routines) .

Optimizer features that are optional are such asctions as:

a) for loop optimization;

b) single .calculation of common expressions.

INTERPRETER

Processing of p-expressions for direct answers will be performed
by the interpreter. The interpreter will be a transfer tree with all
nodes using a common byte accessing routine and the~ terminal nodes
will perform actual desired operations. The interpreter processing
could be expressed in source language but machine language should be
used, since efficient sequential byte processing and transfer trees
are quite machine dependent. A short internal stack will be necessary
for most of the basic byte forms but all general procedure calls will
use the central stack as will recursive calls of the interpreter.

The byte accessing routine will keep a pointer to the current
byte and allow calls requesting skipping any number of bytes or
accessing up to six bytes. (Normally, only one or two bytes will be
desired by any request). The initial node of the transfer tree will
access one byte and transfer to the proper basic byte processor which
will then access the following bytes and transfer to the next node or
perform a specified operation, whichever is the case.

COMPILER

Translation of p-expressions to optimal machine language for
immediate or later execution will be performed by the compiler. The
compiler could be expressed in source language with reasonable
efficiency. (Special 1 and r routines for p-expressions would use
the byte accessing routine).- Data of type set would be particularly
useful for coding the compiler since most aspects of the first level

rcompiler processing are very similar to a transfer tree. However,
I since the main work of the compiler is determing optimum machine code
generation for a given case, it is not recommended that the compiler
be written in machine language.

10

,,"
" ,

o

o

o

---.--.. - ------

In generating the optimal code the compiler must consider use of
high speed registers for temporary variables; the calculation of a result
into a particular type of register, depending upon its use; and the order
ing of commutative operations.

LANGUAGE EXTENSIONS

The language extensions should be implemented in two manners. The
system will contain straigh:t-forward routines in the Optimizer for
converting to the equivalent base language for any defined operation
or construction. Secondly, the programmer may specify routines to be
executed when the compiler or interpreter encounters such items.

ADDITIONAL FEATURES FOR CONSIDERATION

DATA TYPES

Two additional data types have been suggested and should be considered.
These are string and set. The for statement should be extended for both.

The string data would be like ALGOL 60 strings, but string values
could be assigned to variables and the following basic functions would
be defined:

first Cn, s)
last (n, s)
length(s)
concat(sl,s2)

first n basic symbols in string s
last n basic symbols in string s
number of basic symbols in string s
concatenate the strings sl and s2 in that order

The set data would be similar to arrays but sets would not be
ordered. Basic set operation would be defined. The set data could be
implemented as tables with e.ntries ordered by "numeriC" value, then
binary search, merge, merge equal entries, etc. would provide efficient
processing for basic operations,. Whenever a table, is established the
odd cells could be set with an "empty" marker, thus allowing for
efficient growth of the table.

SEPARATE PROCEDURE HEADS

Since the compilation of' an efficient procedure call is very
dependent on the procedure specifications, the preparation of separate
procedure heads containing the parameter, local variable and global
variable specifications would allow more efficient processing and is
almost essential for reasonable separate compilation of procedures with
free variables or whic~ reference routines with free variables.

SUBSTITUTION PARAMETERS

The ALGOL 60 "call by name" results in effective source language
substitution of actual parameters for formal parameters. This has not
been included because:of the variable name binding and storage reclaimer

11

o

o

o

problems and since functional parameters provide most of the facility
(as well as additional facilities). These problems could be overcome,
but the gain has not yet been justified.

12

