The
Connection Machine
System

*Lisp Reference Manual

Version 5.0
September 1988

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, July 1986
Revised, October 1987
Revised, September 1988

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-1, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, C*, and CM Fortran are trademarks of Thinking Machines Corporation.
VaX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun and Sun-4 are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1988 by Thinking Machines Corporation. All rights reserved.
Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1214

(617) 876-1111

Contents

Preface . . .« o i it ittt a e e ettt v
CuStomEr SUPPOIT « v v vttt it ittt ttimannoeneesonssannnaennnnnnns X
Chapter 1 Introductior 00ttt 1
Chapter 2 Overviewof *Lisp 3
2.1 *Lisp Terminology . ..ovvvvininnnn ittt it iieanaan 4

22 *LiSpCONCEPIS « vttt ittt ittt it e 5

0 G 7 1« 6

222 PredefinedPvarsccoiiiiiiiiiiiiiiiiiii e 7

223 Selectioniiiiiiii i e e 7

224 *Defun......coiiiiii i i e i 9

2.2.5 Communicationc.oveiunieiunnernnrennneenneenssan 9

2.3 Configuration ConsStantsccoiiirriiierinienvennnneennens 10
Chapter 3 The Pvar Data Structure 11
3.1 Creating NewPvars O 11

3.2 Allocating Local PVarS .. .vviiuiiin i iiiiie it neiinnaensansanns 12

3.3 Settingthe Valuesof Pvarsooiiiiiiiiiiii i, 13

3.4 Reading and Writing Fields in Specific Processors 14

3.5 Declaring Pvar TYPES ..o v vttt ittt ittt iiniie it iennnns 15

3.5.1 Syntaxof Declarationscoooiiiiiiiinnnn.nn. 15

3.5.2 ExampleDeclarationsccoviiiiiiininnn, 16

Chapter 4 Processor Selection 19
5.2 Logical Operations ...ttt 26
Chapter 5 Computationson Pvars 23
5.1 Predicate OPerationsuuiuuiununiiinnnanennaeaaeeannann 23

5.1.1 PredefinedPvars..........ccoiiiiiiiiniiiiii i, 25

iii

Contents

5.2 Logical Operationsovvuiiiin it ittt ienien s 26
5.3 Logical Operations on Integersin Pvarsoiiintn. 26
5.4 Numerical Operationsc..oiiiiiiiiiiiiiiiiiinnn 27
5.5 Miscellaneous OPerationsvuvvin i invrnennersenennsnesnsens 30
5.6 User-Defined Operationscciviiiiiriiiinieernneenneensens 32
5.7 DebuggingToolscooiiiin i i e e 33
Chapter 6 Communication ittt erennnnnn 37
6.1 Communication between Processorsc.vviveeenrnnienannn 37
6.2 Block Data Transfer between the Front End
and the Connection Machine Systemoooiiiiiiin, 43
6.3 Scan FUNCHONSttt it ie et et ie e eaanenennn 45
6.4 Global Operationsceuiiiiiiiiiniiiiiiniiniineennenn 49
6.5 Processor AdAressingcoieniii it i i 50
Chapter 7 Using the Connection Machine 53
7.1 Using the Connection Machine Hardware 53
7.1.1 [Initialization Lists for *cold-boot and *warm-boot 55
7.1.2 Configuration Variableso 56
7.1.3 The*LispSimulatorov i, 56
7.2 Interfacing Paris Code to *LiSpcoveriiiii it iinen 57
7.3 *Lisp Memory Management: Stack and Heap Storage 58
Chapter 9 Avoiding Potential Difficulties 59
9.1 Pvar Values in Non-Selected Processors, 59
9.2 The Extent Of Pvarsciiiuiiiniini it it 59
9.3 Using Mapcar on Functions that Returnpvars 60
0.4 *warm-boot e 60
9.5 *eold-boot 61
9.6 prefl!!, pref-grid!! and pref-grid-relative!! 61
9.7 Multiple Values ...t 61
9.8 Grid and Cube Addressest 62
Appendix A. *Lisp Symbols 65

iv

Preface

Objectives of This Manual

The *Lisp Reference Manual describes the essential constructs of the *Lisp language and ex-
plains the concepts used in programming the Connection Machine in *Lisp.

Intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Cormmon
Lisp: The Language, and a general understanding of the Connection Machine system. The Con-
nection Machine Front—End Subsystems provides the necessary background information on the
Connection Machine system.

Revision Information

This manual is a revision of the *Lisp Reference Manual,Version 4.0, published October 1987.
This revision corrects information presented in that version and updates descriptions to ac-
count for the implementation of *Lisp Version 5.0. It does nor fully describe *Lisp Version
5.0; the Supplement to the *Lisp Reference Manual provides information on language features
new with Version 5.0.

Overview of Manual
Chapter 1. Introduction

Chapter 2. Overview of *Lisp
This chapter provides an overview of the Connection Machine computer and of *Lisp,
including:

e Adescription of the language’s basic concepts, such as parallel variables and
the selection of particular processors

e The parts of a typical *Lisp program

o Code examples that illustrate using parallel variables and processor selection,
defining parallel functions, and performing interprocessor communication

*Lisp Reference Manual

Chapter 3. The Pvar Data Structure
Pointers to Connection Machine memory are stored in Lisp objects called parallel vari-
ables, or pvars (pronounced pee-vars). This chapter describes the operations (functions,
macros) that create, destroy, assign the contents of, and declare the types of pvars.

Chapter 4. Processor Selection
This chapter describes the operations that select the set of processors to perform a
given operation. This set can change from one line of code to another, as determined
by the programmer.

Chapter 5. Computations on Pvars
This chapter describes the operations for combining and comparing paraliel variables
numerically and logically, the operations for defining new functions that return paral-
lel variables or perform parallel computations, and the functions that assist debugging.

Chapter 6. Communication
This chapter discusses the mechanisms for moving data between Connection Machine
processors in parallel; block data transfer between the front end and the Connection
Machine; scanning functions, in which each processor receives a result based on the
values in preceding processors; global operations, which combine data from all Con-
nection Machine processors; and processor address generation and translation.

Chapter 7. Using the Connection Machine
This chapter describes the operations for configuring the Connection Machine system;
the configuration constants, which contain information about the Connection Ma-
chine’s current configuration; and the *Lisp simulator, which allows *Lisp programs to
be run and tested on the front-end computer alone. How to call Lisp/Paris (the Con-
nection Machine’s assembly language) from within *Lisp programs and *Lisp memory
management is also explained.

Chapter 8. Avoiding Potential Difficulties
This chapter points out some potential difficulties and common user errors.

Notation Conventions

The notation conventions in this manual strive to be compatible with those used in Common
Lisp: The Language.

Symbol names in running text appear in a bold typeface. For example: *cold-boot. Code ex-
amples are printed in a typewriter style typeface:

(cons a b)

vi

e

R

Preface

Names that stand for pieces of code (metavariables) appear in italics. In function or macro de-
scriptions, the names of the arguments appear in italics.

Argument names can restrict the type of an argument; argument names that end in the suffix
pvar must be parallel variables. For example, the name integer-pvar restricts the argument to a
parallel variable whose fields in the currently selected set of processors must all contain inte-

gers.

Braces followed by a star (as in {symbol}*) are used asin Common Lisp: The Language to indicate
the symbol may appear zero or more times.

Related Documents

*Lisp Release Notes, Version 5.0
The current release notes provide a succinct overview of the changes made to to *Lisp
since the release of Version 4.3. These are essential reading.

Supplement to the *Lisp Reference Manual , Version 5.0
This manual updates the *Lisp Reference Manual, adding descriptions of all features
new with the release of *Lisp Version 5.0.

*Lisp Compiler Guide, Version 5.0
This manual describes the current implementation of the *Lisp compiler.

Connection Machine Front-End Subsystems

The manuals in this volume should be read before the *Lisp Reference Manual. 1t ex-
plains the configuration of the Connection Machine system, and how to access the
Connection Machine from a front-end computer.

Connection Machine Parallel Instruction Set
The *Lisp Reference Manual explains how to call Paris from *Lisp. Users who wish to
do so should refer also to the Paris manual.

Comumnon Lisp: The Language by Guy L. Steele Jr. Burlington, Mass.: Digital Press,
1984.
This book defines the de facto industry standard Common Lisp.

vii

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the probiem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

Internet

Electronic Mail: customer-support@think.com
Usenet

Electronic Mail: harvard!think!customer-support
Telephone: (617) 876-1111

For Symbolics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc-

curs, simply press CTRL-M to create a report. In the mail window that appears, the To : field
should be addressed as follows:

To: bug-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.

mailto:customer-support@think.com
mailto:bug-connection-machine@think.com

Chapter 1

Introduction

*Lisp (pronounced star lisp) is a data parallel language designed to program the Con-
nection Machine.

A Connection Machine (CM) data parallel computer consists of a large number of
simple processors. Each has some associated local memory and is integrated into a
highly connected communications network. A CM configuration can have up to 65,536
processors, each with 4K bits (in model CM-1) or 64K bits of memory (in model CM-2).
Typical applications use data types that have components spanning many Connection
Machine processors. *Lisp provides the means for creating and manipulating these
parallel types.

*Lisp is an extension of Common Lisp. *Lisp adds a new data structure and extensions
of many Common Lisp functions that execute in many Connection Machine proces-
sors in parallel. :

*Lisp has several important features:

e Many *Lisp language features map directly onto Connection Machine instruc-
tions; therefore, users quickly develop an intuition for predicting program per-
formance.

e *Lisp includes an interface that permits direct calls to Paris from within a
*Lisp program.

e A *Lisp compiler is provided (described in the *Lisp Compiler Guide).

e A *Lisp simulator is provided for preliminary program testing and debugging.
Executing entirely on a serial front end, it simulates the Connection Machine
operations.

Chapter 2

Overview of *Lisp

This chapter introduces the main concepts and terminology of *Lisp. It then provides
a brief overview, with code examples, of *Lisp operations. All operations appearing in
this chapter are described more fully in subsequent chapters.

The primary concepts of the *Lisp language follow:

*Lisp programs execute on a front-end computer, typically a Symbolics Lisp
machine or a Digital Equipment Corporation VAX. As a side effect of running
the *Lisp program, the front-end computer generates Paris instructions for the
Connection Machine processors to execute. Every so often, the front-end com-
puter transfers data or results of computations to or from the Connection Ma-
chine.

*Lisp programs refer to and manage memory in the Connection Machine
processors through Lisp objects called pvars (pronounced pee-vars, for parallel
variables). These objects contain information about memory locations in the
Connection Machine processors and the possible types of values stored at
those locations. A pvar looks like a large vector of Common Lisp values, with
each value stored in a different Connection Machine processor. These values
may be integers, floating-point numbers, booleans, or any other Lisp object
(for example: 0, 102, -5, 10.333, t, nil, hi-there). As with Common Lisp, the
*Lisp programmer need not be concerned with type coercion, since it is done
automatically.

*Lisp programs control the set of Connection Machine processors that are
executing instructions. This set may range from all processors in the machine
to none of the processors. y

Given these concepts, a *Lisp program typically consists of these parts:

Permanent Connection Machine storage declarations.

Code for creating static data structures in Connection Machine memory. This
often involves substantial transfers of data from the front-end computer to the
Connection Machine.

4 *Lisp Reference Manual

e Main body of *Lisp program, which typically contains:
e Temporary Connection Machine storage allocation
o Selection of Connection Machine processors for expression evaluation
e Parallel expression evaluation with the result stored in a destination

e Massive communication of data within the Connection Machine sys-
tem

e Transfer of results back to the front-end computer.

2.1 *Lisp Terminology

The following terms are used with specific meanings in *Lisp:

Processors The conceptual entities that operate on data in parallel are called
processors. Often these correspond to the physical processors, but
sometimes a single physical processor simulates the action of sev-
eral conceptual processors. In this case, the simulated processors
are referred to as virtual processors. This simulation is transparent
to the programmer. In the Connection Machine Parallel Instruction
Set: Paris Reference Manual is a chapter on concepts, which de-
scribes in detail the implications and mechanisms of virtual proc-
€sSOrs.

Cube Address Each processor has a unique cube address. Cube addresses range
between zero and the number of processors less 1. On a 65,536
processor Connection Machine, the range is 0 to 65,535, although it
may be much larger if virtual processors are being used.

Grid Address A processor can also be identified by one or more numbers re-
ferred to as the processor’s grid address. The number of coordi-
nates in a grid address is determined by the number of dimensions
the Connection Machine system is simulating. For example, one
might refer to a processor with a grid address of (3,4,1) in a three-
dimensional machine. A two-dimensional machine representing a
two-dimensional grid would require two grid address coordinates.

Note that the numbering scheme for grid addresses in a one-
dimensional machine is not necessarily the same as that for cube
addresses.

Pvar A Lisp object that represents a collection of values stored one per
processor in the Connection Machine. A pvar also holds the infor-
mation needed by the front end to manage the collection of values.

Pvar Component A single instance among the collection of values represented
by a pvar. A pvar component may be any Lisp value; the set of
components represented by a pvar need not be all of the same data

type.

Field The memory occupied by all the components of a pvar. A fieldisa
string of contiguous bits in the same memory location in each proc-
essor. The components of a pvar all occupy the same amount of
memory (even if they are of different types), and they are all stored
at the same memory address in the respective processors.

Pvar Contents The set of values (components) represented by a pvar. These
values are stored in the field in the Connection Machine that is de-
scribed by the pvar.

Currently Selected Set Most *Lisp operations are only carried out in a subset
of the Connection Machine processors. This subset is called the
currently selected set and is specified by using *Lisp special forms,
such as *all, *when, *cond, and *if.

! The names of functions and macros that return pvars as their val-
ues end with !!. This suffix, pronounced bang-bang, is meant to
look like two parallel lines. We recommend that user-defined func-
tions follow this convention (although nothing enforces it), because
it helps ensure that pvars are produced only in contexts where they
can be used. It is an error to produce pvars in contexts where they
cannot be used (see chapter 8).

There are a few *Lisp macros whose names donotend in !!, such as
*when, *all and *let, that, nonetheless, may optionally return a
pvar.

. All *Lisp functions that perform parallel computation and do not
end in !! begin with * (pronounced star); hence, the name *Lisp.

Parallel Equivalent of This phrase is used to describe a *Lisp function with refer-
ence to a Common Lisp function. For example, “mod!! is the paral-
lel equivalent of the Common Lisp mod.” This means that mod!!
performs the same calculation as mod, only mod!! performs the
operation in parallel using each component of an argument pvar.

2.2 *Lisp Concepts

This section contains sample code that illustrates some common *Lisp expressions.
All the functions used are described fully in later sections of this manual.

6 *Lisp Reference Manual

2.2.1 Pvars

The following code creates five sample pvars:

(*defvar a)

(*defvar b (!t 5) "This is a documentation string.")
(*defvar ¢ (!! -2.67))

(*defvar d t!!)

(*defvar e (1+!! (self-address!!)))

The last four pvars have been initialized with specific values: b is a Lisp symbol that
contains a pvar containing the integer 5 in each processor; ¢ contains the floating-point
number -2.67 in each processor; d contains the Lisp symbol t in each processor; and e
contains an integer that is the cube address of the next higher processor.

The function pref can be used to read out some of the above values. The arguments to
pref are a pvar and 2 cube address. This is analogous to the Common Lisp aref; the
pvar is equivalent to an array and the cube address to the array index.

For example,

(pref c 0)
returns the Lisp value -2.67, which is the component of pvar c in processor 0.
Similarly,

(pref d 365)

returns the Lisp value t, the component of pvar d in processor 365.

*Lisp uses the macro *setf (akin to the Common Lisp macro setf) to turn accessor
expressions into modifier expressions. For example, there is no function that is the
opposite of pref. To write into a single processor of a pvar, one would write something
like:

(*setf (pref b 0) 15)

The form (pref b 0) now returns 15 because 15 is now contained in pvar b in processor
0.

The following examples demonstrate arithmetic operations on the example pvars.

(*set a (+!! b ¢))

Chapter 2. Overview of Lisp 7

The above sets the contents of pvar a to the sum of the contents of pvar b and pvar c.
Notice that because ¢ contains floating-point values, the integers contained in b are
properly coerced to a floating-point value, and the result is a floating-point value as
well.

Expressions can be nested:
(*set a (-!! b (*!! a (!! 2))))

This sets a to the difference of b and 2 times a. This simple expression causes thou-
sands of operations to go on simultaneously.

2.2.2 Predefined Pvars

Two pvars are predefined in *Lisp. The pvar t!! contains the Lisp symbol t in each
processor; the symbol t!! is equivalent to (!! t). Similarly, the pvar nil!! contains the
Lisp symbol nil in each processor.

2.2.3 Selection

When the Connection Machine is initialized, every processor will be in a state to exe-
cute all *Lisp instructions in parallel. However, it may be necessary to execute instruc-
tions in some subset of the Connection Machine processors.

One way of temporarily selecting a subset is to wrap the *when macro around a body
of forms. For example, to select the set of all processors whose cube addresses (con-
tained in the pvar returned by the function self-address!!) end in 1, one might use the
following:

;; Create a pvar that is True in all odd processors
(*defvar odd-address-p
(=!'!' ('Y 1) (mod!! (self-address!!) (!! 2))))

:; Now select all processors with odd cube addresses
(*when odd-address-p ...)

In another case, it may be desirable to perform an operation in the processors in which
the cube address is even and the pvar a contains zero. Two natural ways to do this are
to (1) use the logic functions to select the correct set:

(*when (and!! (not!! odd-address-p)
(=!'t a (' 0)))
(*set a (+!! a b))))

8 *Lisp Reference Manual

“or équivalently, (2) nest *when expressions:

(*when (not!! odd-address-p)
(*when (=!! a (!'! 0)))
(*set a (+!! a b))))

It might also be advantageous to perform an operation with a temporary variable allo-
cated. For example, if a programmer wants to perform an operation.in all processors
whose addresses are divisible by four, he or she might use:

(*let ((g (mod!! (self-address!!) (!! 4))))
(*when (=!! g (!'! 0))
(*set a (+!! a b))))

This code first creates a temporary variable g and loads it up with the two lowest order
bits of the (self-address!!). In all processors in which this is 0, the *set operation is
performed.

To perform different operations in processors whose addresses have a remainder of 0,
1, 2, or 3 after dividing by 4, the following might be used:

(*let ((g (mod!! (self-address!!) (!! 4))))
(*cond

((=1!!

(=t

((="!

(=1

('t 0)) (*set a (+!!
(1! 1)) (*set a (-!!
('t 2)) (*set a (*!!
('! 3)) (*set a (/!!

b))
b)))
b)))
b)))))

g g Oq OQ
» PP P

There are also *Lisp expressions analogous to the Lisp if:

(*if (<!'!' z x)
(*set y (!! 5))
(*set y (!'! 6)))

and

(*set y
(if!! (<'! z x)
(' 5)
(! 6)))

Note that cond!! and if!! return a pvar that must be stored into some destination,
whereas *cond and *if are executed only for side effect.

Chapter 2. Overview of Lisp 9

2.2.4 *Defun

To define functions that can take pvars as arguments or return them as values, use
*defun instead of defun. For example, to define a function that takes two pvar argu-
ments and returns their sum, difference, product, or quotient (depending on whether
the processor’s address has remainder 0, 1, 2, or 3 when divided by 4 in all processors
in the currently selected set), use the following:

(*defun four-function!! (pvar-a pvar-b)
(*let ((address-bits (mod!! (self-address!!) (!! 4)))
answer)
{(*cond
((=!' address-bits (!' 0))
(*set answer (+!! pvar-a pvar-b)))
((=!! address-bits (!! 1))
(*set answer (-!! pvar-a pvar-b)))
((=!! address-bits (!! 2))
(*set answer (*!! pvar-a pvar-b)))
((=!! address-bits (!! 3))
(*set answer (/!! pvar-a pvar-b)))) !
answer))

This may now be used like any other !! function, as in:
(*set a (four-function!! (+!! a (!! 4)) (-!! a b)))
To pass a *Lisp function as an argument, use *funcall. For example, the following:
(defun *compose (*f *g x)
(*funcall *f (*funcall *g x)))
(*set a (*compose “sqrt!! “1+!'! (!! 8)))

acts like:

(*set a (sgrt!! (1+!'! (!'! 8))))

2.2.5 Communication

This section demonstrates how to cause the processors to communicate with one an-
other.

One connectivity pattern that can be specified upon initialization is a two-dimensional
grid in which each processor has a neighbor on the north, east, west, and south (or

10 *Lisp Reference Manual

NEWS for short). It is possible to sum the value contained in a in the four neighbors of
each processor, and store the result back in a as follows:

(*set a (+!! (news!! a 0 1) ;north
(news!! a 1 0) ;east
(news!! a -1 0) ;west
(news!! a 0 -1))) ; south

Note: The macro news!! is defined in the Supplement to the *Lisp Reference Manual. It
is new with *Lisp Version 5.0.

The following causes the first 100 processors in the Connection Machine to write the
contents of field b into the field a of those processors whose addresses are 7 larger:

(*when (<!!(self-address!!) (!! 100)) ;select first 100 processors
(*setf (pref!! a (+!! (self-address!!) (!! 7))) b))

Note that pref!! is the parallel version of pref; all selected processors perform in paral-
lel a pref from the processor of their choice.

Finally, to find the single maximum value of a in all even processors, one possibility is
as follows:

(*when (=!! (!!' 0) (mod!! (self-address!!) (!! 2)))
(*max a))

2.3 Configuration Constants

*Lisp makes it convenient to simulate in software a configuration of processors that is
different from their physical configuration. It is important to write software that can
take advantage of this flexibility. In addition, it is desirable to write software that runs
on machines with differing amounts of physical hardware.

The configuration variables defined in chapter 7 specify the parameters of the ma-
chine as perceived by the user’s program. If a program uses only these constants and
functions, it will run in any configuration.

The size of a simulated configuration of processors is specified through the *cold-boot
macro (see chapter 7), which resets the Connection Machine to a known state.

Chapter 3
The Pvar Data Structure

The basic abstraction in *Lisp is the pvar. A pvar is a Lisp object that references a field
of memory in the Connection Machine system. It contains everything necessary to de-
scribe the field. In *Lisp, the contents of pvars may be any valid Lisp object. As in
Common Lisp, coercion between data types and allocation of memory is handled auto-
matically.

3.1 Creating New Pvars

To create a permanent, named pvar, use *defvar (analogous to the Lisp defvar). To
create a permanent, unnamed pvar, use allocate!!.

*defvar symbol &optional initial-value-pvar documentation-string [Macro]

This creates a new pvar that is permanently allocated. Symbol contains the allocated
pvar. The optional argument initial-value-pvar may be any pvar or pvar expression.
*defvar creates a new pvar, initializes it to the contents of initial-value-pvar, and sets
the symbol to that new pvar using setq. If no initial-value-pvar argument is given, the
symbol contains a pvar whose values are uninitialized. Note that *cold-boot resets the
values of all pvars allocated by *defvar. This form returns symbol.

Some example uses of *defvar are:

(*defvar a)

(*defvar b (!! 5))

(*defvar ¢ (+!! b (!! 6)))
(*defvar d t!!)

(*defvar e (self-address!!))
(*defvar f c)

11

12 *Lisp Reference Manual

*deallocate-*defvars &rest pvar-names [Function]

This function permanently deletes the pvars specified in pvar-names. If pvar-names is
nil or :prompt, the user is prompted for each pvar ever declared with *defvar. If pvar-
names is :all, then all pvars declared with *defvar are deleted after the user is
prompted for confirmation. If pvar-names is :all-noconfirm, then all pvars declared
with *defvar are deleted. Before using :all, users should be certain that no library func-
tions they call depend on any pvars created with *defvar. (The two predefined pvars,
t!! and nil!!, are never deleted.)

Here are some sample uses:

(*deallocate-*defvars “foo) ;delete foo pvar
(*deallocate-*defvars “foo “bar) ;delete foo and bar pvars
(*deallocate-*defvars) ' ;prompt user for pvars to delete
(*deallocate-*defvars :prompt) ;prompt user for pvars to delete
(*deallocate-*defvars :all) ;delete all pvars declared with

; *defvar
allocate!! &optional pvar-initial-value name type [Function]

This creates a permanent pvar named name and of type type. It is like *defvar, except
that the created pvar is simply returned. It is up to the user to store it some place. If no
pvar-initial-value is specified, then the returned pvar will have values that are unde-
fined; otherwise, pvar-initial-value is used to initialize the newly allocated pvar.

Examples:

(setq a (allocate!! (!! 5)))
(setq b (allocate!! (!! 5) “new-pvar “boolean-pvar))

*deallocate pvar [Function)]

This deallocates the given pvar if it was permanently allocated (i.e., it was defined us-
ing allocate!!). It is an error to use a pvar after it has been deallocated. The order in
which pvars are deallocated does not matter. This function returns nil.

pvarp object [Function]

This returns t if the argument is a pvar and nil if it is not.

3.2 Allocating Local Pvars

*Lisp maintains a stack of temporary pvars for its own purposes. When a !! function
returns a pvar, it has been allocated on this stack. *Lisp’s ability to arbitrarily nest !

Chapter 3. The Pvar Data Structure 13

expressions stems from its maintenance of this stack. While this automatic allocation
takes care of many situations, there are times when it is desirable to explicitly allocate a
temporary variable. The *Lisp macros for performing this operation are *let and *let*.

let ({(symbol &optional pvar—expression)}) &rest body [Macro]

The first expression following the *let should be a list of lists, each specifying one tem-
porary pvar. The elements of each sublist should consist of a Lisp symbol whose value
will be the temporary pvar, followed by an optional pvar or pvar expression that will be
copied into the new one.

These pvars survive only for the extent of the form. It is an error to try to refer to these
pvars outside the body of the *let. In other words, the symbols have lexical scope (as in
Common Lisp), whereas the pvars themselves have dynamic extent that terminates
when the *let form is exited. ”

*let returns the value of the last form of the body, regardless of whether that value is a
pvar. Itis legitimate to return a temporarily bound pvar. *letis not able to return multi-
ple values.

let ({(symbol &optional pvar—expression)}*) &rest body [Macro]

This macro behaves in the same manner as *let except that, as in Common Lisp, the
defining expressions are evaluated in sequence, so that previous bindings affect the
evaluation of future initialization forms.

Some example expressions are:

(*let* (a

(b (! 8))

(c (*!'t b (!! 528)))

(d (1! -2.715))

(e (self-address!!)))
(some-pvar-function a b ¢ d e) ;This may modify a,b,c,d,or e
(+!'t abcde)) ;This returns a pvar

;; take the global maximum of bits 16-31 of the self pointer
(*let ((a (load-byte!! (self-address!!) (!! 16) (!! 16))))
(*max a)) ;This does not return a pvar

3.3 Setting the Values of Pvars

The *set macro allows the contents of one pvar to be set to the contents of another. The
destination field is set in those processors that are currently selected. A *set expres-

14 *Lisp Reference Manual

sion returns nil. *set takes multiple pairs, which are set sequentially. *set is sometimes
used in conjunction with *all to set the contents of one pvar to the contents of another
in all processors, not just the selected ones.

set {destination-pvar-1 source-pvar-1} [Macro]

This macro sets the contents of destination—-pvar-1 to the contents of source-pvar-1 in
all processors of the currently selected set. Note that both the arguments are evaluated.

Some examples of the use of *set are:

(*set a (+!!' b ¢))
(*all (*set a (!! -1) bac (!!' -3)))

(*when (>!! d (!! 4)) (*set a b))

3.4 Reading and Writing Fields
in Specific Processors

This section describes functions for getting data into and out of the Connection Ma-
chine processors. They are independent of the currently selected set and return, as
Lisp values, the read or written Lisp value. :

pref pvar address [Macro]

This macro returns, as a Lisp value, the component of the field specified by pvar in the
processor whose cube address is address. *setf may be used with pref to write a value
into a single processor of a pvar.

(pref foo 17) ‘
returns the contents of pvar foo from processor 17. !
(*setf (pref foo 17) (* 19 89))

sets the contents of pvar foo for processor 17 to 1691.

pref-grid pvar &rest addresses [Macro]

Note: The function pref-grid is obsolete with Version 5.0. See section 8.7 of the Supple-
ment to the *Lisp Reference Manual for information on new, alternative constructs.

Chapter 3. The Pvar Data Structure 15

This function returns, as a Lisp value, the component of the field specified by pvar in
the processor whose grid address is given by addresses. There must be as many address
values as there are dimensions in the processors’ current configuration (as specified
previously with *cold-boot). *setf may be used with pref-grid to write a value into a
single processor of a pvar.

(pref-grid bar 4 7)

The above returns the component of pvar bar from processor (4,7) (on a two-dimen-
sionally configured machine).

(*setf (pref-grid bar 4 7 8) (* 19 89))

The above sets the component of pvar bar for processor (4,7,8) (on a three-dimension-
ally configured machine) to 1691.

3.5 Declaring Pvar Types

*Lisp does not require that the programmer declare the type of a pvar’s contents, nor
does it require that all of a given pvar’s values be of the same type. A pvar can have an
integer in one processor and a floating-point number in the next. This flexibility comes
at the cost of decreased efficiency.

Type declarations are a method to reduce runtime overhead for *Lisp code running
either interpreted or compiled. Using pvars of defined types results in faster inter-
preted code and allows the *Lisp compiler to translate *Lisp code into Lisp/Paris.

For more information on pvar types, see chapter 8 of the Supplement to the *Lisp Refer-
ence Manual. For more information on how the *Lisp Compiler uses pvar types see
the *Lisp Compiler Guide. '

3.5.1 Syntax of Declarations

The pvar types supported by *Lisp are signed and unsigned integers, floating-point
numbers of varying precision, complex numbers containing floating point data of vary-
ing precision, characters, string—chars, and booleans. Pvar type declarations presently
are processed only by *proclaim, *let, *let*, *defun, *locally and the. These declara-
tions have the same syntax as declarations in Common Lisp. The type of a pvar is
specified in the following manner:

(pvar pvar-type-specifier)

16 *Lisp Reference Manual

Where pvar-type-specifier is either a symbol or a list.

(pvar boolean)
(pvar character)
(pvar string-char)

These forms are used in declarations of pvars containing boolean, character, and
string-char elements, respectively.

(pvar (unsigned-byte length))

Either of these forms declares a pvar to contain a positive integer of length bits. For
example, if length is 8, the pvar may contain integers between 0 and 255. The minimum
allowed length is 1 bit.

(pvar (signed-byte length))

Either of these forms declares a pvar to contain a signed integer of length bits. For
example, if length is 8, the pvar may contain integers between -128 and 127. The mini-
mum allowed length is 2 bits.

(pvar short-float)
(pvar single-float)
(pvar double-float)
(pvar long-float)

These types describe floating-point numbers of different significand and exponent
sizes. The short-float, single-float, double-float, and long-float types are standard
IEEE formats.

(pvar (defined-float significand-length exponent-length))
(float-pvar significand-length exponent-length)

It is possible to create a floating-point number with an arbitrary number of significand
and exponent bits through the use of defined-float or float-pvar. See Connection Ma-
chine Parallel Instruction Set for a discussion on minimum and maximum floating-
point number sizes and performance considerations.

For complete information of types and type specifiers, see chapter 8 of the Supplement
to the *Lisp Reference Manual.

3.5.2 Example Declarations

The following examples illustrate the use of the Common Lisp type and declare state-
ments with the above pvar type specifiers:

Chapter 3. The Pvar Data Structure 17

(*proclaim “ (type (pvar boolean) finished-p))
(*defvar finished-p nil!!)

(*let* ((templ (load-byte!! foo (!! O) (!! 9)))
(temp2 (sqgrt!! templ)))
(declare (type (pvar (unsigned-byte 9)) templ)
(type (pvar single-float) temp2))
;; templ may contain values between 0 and 511.
iy temp2 may contain single-floats.

)

(setq xx (allocate!! (!! 1.23) “xx “(pvar double-float)))

*Lisp allows certain elements of declarations to be computed at run time as opposed
to compile time. All the length arguments to the type declarations may be either con-
stants or run-time expressions such as global configuration variables. Following is a
typical example using a global configuration variable:

(*let ((temp (self-address!!)))
(declare
(type (pvar (unsigned-byte *current-send-address-length¥*))

temp))

Chapter 4

Processor Selection

When the Connection Machine is initialized, every processor is in a state to execute all
*Lisp instructions in parallel. However, it may be necessary to execute instructions in
some subset of processors. In fact, most operations are executed in a subset of Connec-
tion Machine processors, which is known as the currently selected set.

Some of the macros in *Lisp that change the currently selected set are *all, *when,
*cond, and *if. These macros select processors based on the result of a pvar expres-
sion. Any processor in which the pvar expression evaluates to nil is eliminated from the
selected set. Although these macros may modify the currently selected set, they all
obey the discipline of restoring the currently selected set to its previous state upon
completion. Also, they may be nested as deeply as desired.

It is sometimes useful for user functions to have a *all surrounding their bodies to en-
sure that they are starting out with the complete machine selected. Using the functions
described in this section, the selected set is whittled down to select only the processors
that should perform a given operation. The body of these forms is always executed,
even if there are no selected processors.

Note: In the current implementation, of the forms below that return values, none are
configured to allow the return of multiple values. It is an error to attempt to return
multiple values from any of these forms.

*all &body body [Macro]

This form selects all processors. Its body is executed with the currently selected set
equal to the entire machine. The value of the final expression in the body is returned
whether it is a Lisp value or a pvar.

*when pvar &body body [Macro]

This form subselects from the currently selected set. Thus every processor that is un-
selected when *when is called remains unselected in the body of the *when. It selects

19

20 *Lisp Reference Manual

processors in which pvar is non-nil. Even if there are no selected processors, ALL
forms in the body are evaluated. The value of the final expression in the body is re-
turned whether it is a Lisp value or a pvar.

*if pvar then-form &optional else-form [Macro]

This form is analogous to the Lisp if. then-form is performed in all processors of the
currently selected set in which pvar is not nil. The optional else-form is evaluated in all
other processors of the currently selected set in which the pvar is nil. Even if there are
no selected processors, both then-form and else-form are evaluated. Unlike Lisp’s if,
this function returns no values and is executed only for its side effects.

cond {(pvar {form})}* [Macro]

This form is analogous to the Lisp cond. Unlike the Lisp cond, *cond evaluates all
clauses; however, the currently selected set is determined by the pvar expressions. The
nth consequent is evaluated with a selected set made up of initially selected processors
that didn't pass the first n-/ tests, but did pass the nth one. t!! selects all remaining
processors in the initial selected set. Even if there are no selected processors, all con-
sequent forms are evaluated. Unlike Lisp’s cond, this function returns no values and
is executed only for its side effects (see cond!! in chapter 5).

with-css-saved &body body [Macro]

This form is used whenever control flow would abnormally pass out of a *Lisp form
that restricts the currently selected set (as when using throw, return-from, or go to
leave the body of a *when). with-css-saved uses an unwind-protect to trap these events
and force thecurrently selected set back to its state at the time the with-css-saved form
was begun. with-css-saved returns what is returned by the evaluation of the last form
of its body.

do-for-selected-processors (symbol) &body body [Macro]

This form evaluates body as many times as there are active processors, each time with
symbol bound to the cube address of a different active processor. As with the Common
Lisp dotimes, the return function may be used to exit the do-for-selected-processors
form immediately. Normally, do-for-selected-processors returns nil.

Some examples of the use of these macros are:

(*all (*set a b))

Chapter 4. Processor Selection

(*when (=!! a b) (*set e (+!! c d)))

(*cond ((=!! a (!! 1)) (*set e (+!! b c)))
((not!! (=!! c d)) (*set £ (*!! b ¢)))
(t!'! (*set £ (!'! 9))))

(*if (=!!' ¢ d) (*set e f) (*set g h))

(*when a (*set b (-!! b))

(*defun f (x y)
"Returns y divided by x for y greater than 0.
Returns nil if any x is 0. The return value is
undefined a processors where y<0"
(block foo
(with-css-saved
(*when >!!' 'y (!'!' 0))
(if (*or (=!! (!! 0) x))
(return-from foo nil)
/'ty X))
)

Chapter 5

Computations on Pvars

This chapter introduces a variety of functions that work within each processor and
that return a pvar containing all the processors’ results. Recall that in *Lisp, it is con-
ventional for functions that return a pvar to have the suffix !! on their names.

5.1 Predicate Operations

The *Lisp predicate functions are used in the same way as Common Lisp predicates,
for instance, in conditional expressions. They return a pvar that contains a tin all proc-
essors of the currently selected set in which the predicate holds, and a nil in those in
which it does not.

oddp!! integer-pvar [Function]

The pvar returned by this predicate contains t for each processor where the value of
the argument integer-pvar is odd, and nil in all others. It is an error if any component of
integer-pvar is not an integer.

evenp!! integer-pvar [Function]

The pvar returned by this predicate contains t for each processor where the value of
the argument infeger-pvaris even, and nil in all others. It is an error if any component of
integer-pvar is not an integer.

plusp!! number-pvar [Function]

The pvar returned by this predicate contains t for each processor where the value of
the argument number-pvar is greater than zero, and nil in all others.

23

24 *Lisp Reference Manual

minusp!! number-pvar [Function]

The pvar returned by this predicate contains t for each processor where the value of
the argument number-pvar is less than zero, and nii in all others. Note: (minusp!! (!!
-0.0)) is always false.

eql!! pvarl pvar2 [Function]

This is the parallel equivalent of the Common Lisp function eql.

eq!! pvarl pvar2 [Function)

This is the parallel equivalent of the Common Lisp function eq.

integerp!! pvar [Function]

This is the parallel equivalent of the Common Lisp function integerp.

floatp!! pvar [Function]

This is the parallel equivalent of the Common Lisp function floatp.

numberp!! pvar [Function]

This is the parallel equivalent of the Common Lisp function numberp.

zerop!! numeric-pvar [Function]

This is the parallel equivalent of the Common Lisp function zerop.

=!! numeric-pvar &rest numeric-pvars [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
numerically equal values and nil elsewhere. To see if a pvar is equal to a Lisp constant,
use an expression like:

(=!! foo ('t 5))

If only one argument pvar is given, the returned pvar is t!!.

Chapter 5. The Pvar Data Structure 25

I=!! numeric-pvar &rest numeric-pvars [Function)]

This returns a pvar that contains t in each processor where the argument pvars contain
unequal values and nil elsewhere. If only one argument is given, the returned pvar is t!!.

<!! numeric-pvar &rest numeric-pvars [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
values which are in strictly increasing order and nil elsewhere. If only one argument
pvar is given, the returned pvar is t!!.

>!! numeric-pvar &rest numeric-pvars [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
values which are in strictly decreasing order and nil elsewhere. If only one argument
pvar is given, the returned pvar is t!!.

<=!! numeric-pvar &rest numeric-pvars . [Function]

This returns a pvar that contains tin each processor where the argument pvars contain
values which are in non-decreasing order and nil elsewhere. If only one argument pvar
is given, the returned pvar is t!!.

>=!l numeric-pvar &rest numeric-pvars [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
values which are in non-increasing order and nil elsewhere. If only one argument pvar
is given, the returned pvar is t!!.

5.1.1 Predefined Pvars

t!! [Constant]

This is a pvar whose contents in each processor is the Lisp symbol t.

nil!! [Constant]
This is a pvar whose contents in each processor is the Lisp symbol nil.

Itis an error to use t!! or nil!! as the destination for *set, *pset or any other form which
modifies its argument.

26 *Lisp Reference Manual

5.2 Logical Operations

*Lisp provides several logical operators. Some of these operators (and!! and or!!) are
special because they temporarily subselect the currently selected set as they evaluate
their arguments. The rest of the operators are normal !! functions.

As in Common Lisp, a value is true if it is anything other than nil.

not!! pvar [Function]

This returns t for all processors in which pvar is nil, and nil otherwise.

and!! &rest pvars [Macro]

This evaluates the pvars from left to right in all selected processors. As soon as one of
the pvars evaluates to nil in a processor, that processor is removed from the currently
selected set for the remainder of the and!!. and!! returns the value of the last pvar for all
selected processors in which all the pvars are true; it returns nil otherwise. If no pvars
are given, then t!! is returned.

or!! &rest pvars [Macro]

This evaluates the pvars from left to right in all selected processors. As soon as one of
the pvars evaluates to non-nil in a processor, that processor is removed from the cur-
rently selected set for the remainder of the or!!. The value returned for each processor
is the first pvar that evaluated to non-nil. If none of the pvars is true, then nil is returned.
If no pvars are given, then nil!! is returned.

xor!! &rest pvars [Function)]

This performs the xor function on all the pvars. If no pvars are given, then nil!! is re-
turned. In each processor this returns t if there are an odd number of arguments that
are true and otherwise returns nit.

5.3 Logical Operations on Integers in Pvars

This section contains a variety of Boolean functions that operate bitwise on the bits of
the fields described by the argument pvars and return a pvar that holds the result.
These functions may be used only on pvars whose contents are integers.

Chapter 5. The Pvar Data Structure 27

lognot!! integer-pvar [Function]

This returns a pvar whose bits are the logical complement of the bits in integer-pvar.

logior!! &rest integer-pvars [Function]

This returns a pvar whose bits are the logical inclusive or of the bits in integer-pvars. If
there are no pvars, then (!! 0) is returned.

logxor!! &rest integer-pvars [Function)

This is the parallel equivalent of the Common Lisp function logxor. If there are no inte-
ger-pvars, then (!! 0) is returned.

logand!! &rest integer-pvars [Function]

This returns a pvar whose bits are the logical and of the bits in integer-pvars. If no inte-
ger-pvars are given, then (!! -1) is returned.

logeqv!! &rest integer-pvars [Function]

This is the parallel equivalent of the Common Lisp function logeqv. If no integer-pvars
are given, then (!! -1) is returned.

5.4 Numerical Operations

This section describes the elementary numerical functions. As with Common Lisp, the
results of these functions are always numerically correct. For example, the result of an
addition is never truncated, no matter how much memory is required to represent the
result. If not enough memory is available, an error is signaled. However, the numerical
accuracy of certain arithmetic operations on floating point data is subject to restric-
tions noted in the Version 5.0 *Lisp Release Notes. A few arithmetic operations are
also restricted when operating on integer data to a maximum number of bits for each
argument. The Release Notes also describe these limitations.

These functions each return results of the same type as the most expensive of their
arguments (e.g., if all arguments are integers, the result is generally an integer; but if
any argument is a float, the result is a float).

28 *Lisp Reference Manual

1! lisp-expression [Function]

This returns a pvar containing the result of /isp-expression in each processor.

+!! &rest numeric-pvars [Function]

This adds the contents of the argument pvars. If there are no arguments, then (!! 0) is
returned.

-!! numeric-pvar &rest numeric-pvars [Function]

This subtracts the contents of the second through last argument pvars from the con-
tents of the first. If there is only one argument, the result is its negation.

*1! &rest numeric-pvars [Function)]

This multiplies the contents of the argument pvars. If there are no arguments, then
(!* 1) is returned.

I'! numeric-pvar &rest numeric-pvars [Function]

This returns the quotient of the first pvar by the rest of the pvars. If there is only one
argument, the result is the inverse of pvar. Note: /!! always returns a pvar whose con-
tents are all floating-point or complex numbers. If there is only one argument, it is an
error if that argument has any field whose value is 0. If there is more than one argu-
ment, it is an error if any argument but the first has any field whose value is 0.

1+!! numeric-pvar [Function]

This increments the argument pvar by 1. A new pvar is returned.

1-1! numeric-pvar [Function)]

This decrements the argument pvar by 1. A new pvar is returned.

min!! numeric-pvar &rest numeric-pvars [Function)]

This returns a pvar that is the minimum of all the argument pvars.

max!! numeric-pvar &rest numeric-pvars [Function]

This returns a pvar that is the maximum of all the argument pvars.

Chapter 5. The Pvar Data Structure

mod!! numeric-pvar integer-pvar [Function]

This is the parallel equivalent of the Common Lisp function mod. It is an error if infe-
ger-pvar contains zero in any processor.

ash!! integer-pvar count-pvar [Function]

This is the parallel equivalent of the Common Lisp function ash.

truncate!! numeric-pvar &optional divisor-numeric-pvar [Function]

This is the parallel equivalent of the Common Lisp function truncate, except that only
one value (the first) is computed and returned.

round!! numeric-pvar &optional divisor-numeric-pvar [Function]

This is the parallel equivalent of the Common Lisp function round, except that only
one value (the first) is computed and returned.

ceiling!! numeric-pvar &optional divisor-numeric-pvar [Function]

This is the parallel equivalent of the Common Lisp function ceiling, except that only
one value (the first) is computed and returned.

floor!! numeric-pvar &optional divisor-numeric-pvar [Function]

This is the parallel equivalent of the Common Lisp function floor, except that only one
value (the first) is computed and returned.

sqrt!! non-negative-or-complex—pvar [Function)

This returns the non-negative square root of its argument, if the argument is not com-
plex. If the argument is complex, the principal square root is returned. Unlike Com-
mon Lisp,, it is an error to provide a negative, non-complex value to sqrt!!.

isqrt!! non-negative-integer-pvar [Function]

This is the parallel equivalent of the Common Lisp function isqrt.

random!! limit-pvar [Function]

This returns a pvar whose contents is a random value between 0 inclusive and limit-
pvar exclusive for each processor.

30 *Lisp Reference Manual

signum!! number-pvar [Function]

This function returns a pvar containing -1, 0, or 1 according to whether the number is
negative, zero, or positive. For a floating-point number, the result is a floating-point
number of the same format.

sin!! radians [Function]
cos!! radians [Function]
tan!! radians [Function]

The function sin!! returns the sine of the argument, cos!! returns the cosine, and tan!!
returns the tangent.

log!! number &optional base [Function]

This function returns the logarithm of the argument number in the base base. If base is
absent, the natural logarithm is returned.

float!! number-pvar &optional other-pvar [Function]

This function converts any number to a floating-point number. In processors in which
number-pvar already contains floating-point numbers, those numbers are returned;
otherwise, single-float numbers are produced. When the optional argument other-pvar
is given, which must contain floating-point numbers, number-pvar is converted to the
same format as other-pvar.

rot!! integer-pvar n-pvar word-size-pvar [Function]

This function returns integer-pvar rotated left n-pvar bits, or rotated right |n-pvar| bits
if n-pvar is negative. The rotation considers integer-pvar as a number of length word-
size-pvar bits, This function is especially fast when n-pvar and word-size-pvar are both
constant pvars.

Note: Many more numeric functions have been added to *Lisp with Version 5.0. See
chapters 1 and 7 of the Supplement to the *Lisp Reference Manual.

5.5 Miscellaneous Operations

load-byte!! from-pvar position-pvar size-pvar [Function)]

This function returns a pvar whose contents are positive integers. It consists of bits
extracted from from-pvar starting at bit position position-pvar, where 0 represents the

Chapter 5. The Pvar Data Structure » 31

least significant bit. In any processor in which zero bits are extracted, the resulting
field contains zero. This operation is especially fast when both position-pvar and size-
pvar are constants, as in (!! /lisp-value). from-pvar must be a pvar containing integers,
while position-pvar and size-pvar must be pvars containing non-negative integers. Out-
of-range bits are treated as zero for positive integers (for example, (load-byte!! (!! 1)
(! 2) (1! 3)) returns a pvar that contains zero in each processor), and one for negative
integers (for example, (load-byte!! (!! -1) (!! 2) (!! 3)) returns a pvar that contains 7in
each processor).

deposit-byte!! into-pvar position-pvar size-pvar byte-pvar [Function)

This returns a pvar whose contents are a copy of info-pvar with the low order size-pvar
bits of byte-pvar inserted into the bits starting at location position-pvar.

When the info-pvar is positive (negative), zeros (ones) are appended as high order bits
of byte-pvar as needed. The returned value may have more bits than into-pvar if the
inserted field extends beyond the most significant bit of into-pvar. For example,
(deposit-byte!! (I! 3) (! 1) (!! 2) (!! 2)) returns (!! 5). This function is especially fast
when both position-pvar and size-pvar are constants, as in (!! lisp-value). Into-pvar and
byte-pvar must contain integers, while position-pvar and size-pvar must be pvars con-
taining non-negative integers only.

if!! pvar then-pvar &optional else-pvar [Macro]

This returns a pvar that contains the contents of the then-pvar in all processors in
which pvar is non-nil, and the contents of else-pvar in all processors in which pvar is nil.
The else-pvar argument defaults to nil!!. For the execution of the then-pvar expression,
the currently selected set is set to all processors that passed the predicate, whereas for
the execution of the else-pvar the currently selected set is set to all the selected proces-
sors that failed the predicate. (See also *if, which is executed only for side effect.)

This is equivalent to:

(*let ((result)
(temp-pred pvar))
(*when temp-pred
(*set result then-pvar))
(*when (not!! temp-pred)
(*set result else-pvar))
result
)

An example that demonstrates the usefulness of if!! is the following function to take the
absolute value:

(*defun abs!! (pvar)
(if!'t (>!'! pvar (!! 0)) pvar (-!! pvar)))

cond!! {(pvar {form}*)}* [Macro]

If there are no clauses, cond!! returns nil!!. Otherwise, cond!! is roughly equivalent to
the following pseudo-code:

(if!! pvar-1
(progn all-the-forms-for-clausel)
(cond!! (rest clauses))

However, if there are no forms for a given clause, the pvar itself is used as the value of
the clause, analogous to the Common Lisp cond. (See also *cond, which is executed
only for side effect).

enumerate!! [Function]

This returns a pvar that contains a unique number in each selected processor from 0
up to one less than the number of selected processors. The numbers are ordered, 0
being put in the processor with the smallest cube address, 1 being put in the processor
with the next smallest cube address, etc. If all processors in the Connection Machine
are selected, this is equivalent to the function seif-address!!.

rank!! numeric-pvar predicate [Function]

Rank!! returns a pvar containing the values 0 through 1 less than the active number of
processors, such that for all values vI and v2, and for all active processors p! and p2, if
vl < v2, then the value of numeric-pvar in processor pl satisfies the serial analog of
predicate with respect to the value of numeric-pvar in processor p2. (Currently, predi-
cate must be the symbol <=!!, and its serial analog is the predicate <=.) If there are no
active processors, rank!! returns numeric-pvar.

5.6 User-Defined Operations

Pvar arguments are passed by reference, not by value. Thus the contents of pvars
passed as arguments can be changed using *set. It is generally considered poor form
for a function to modify one of its arguments; instead, most *Lisp functions return a
new pvar whose contents may be a modified copy of one of the arguments.

Chapter 5. The Pvar Data Structure 33

*defun name arg-list &body body ‘ [Macro]

This is analogous to the Common Lisp defun and can be used in place of it in defining
user functions that might take as an argument a pvar or that might return a pvar as a
result. Using *defun is only required if a function is to take pvar arguments and possi-
bly return a non-pvar result. *defun returns, as a symbol, the name of the function
being defined. Like the Common Lisp defun, the body may contain declarations and a
documentation string. In particular type declarations for pvar arguments may be pro-
vided within the body of a *defun.

If, in a given file, a function foo defined by *defun is called before it is defined textually
in the file, or is called but is not defined in the current file, then the user must declare
that foo is actually a function defined by *defun and is not a regular function defined
by defun. One makes such a declaration with the *Lisp macro *proclaim. For example:

(*proclaim 7 (*defun foo))

Failure to make such declarations results in incorrectly compiled code.

*funcall function &rest arguments [Macro]

This is used just like Common Lisp’s funcall, but with functions defined using *defun.
One may not use funcall with a function defined using *defun.

*apply function arg &optional more-args [Macro]

This is used just like Common Lisp’s apply, but with functions defined using *defun.

5.7 Debugging Tools

pretty-print-pvar pvar [Macro]
&key (:mode *ppp-default-mode*)
(:format *ppp-~default-format*)
(:per-line *ppp-default-per-line*)
(:start *ppp-default-start*)
(:end *ppp-default-end*)

This prints out the contents of a pvar in all processors. If :per-line is nil, no newlines
are ever printed between values; otherwise, :per-line values are printed out and then a
newline is output. The keyword :mode can have the value :cube or :grid; in the latter

34 *Lisp Reference Manual

case the pvar is printed out using grid addressing rather than cube addressing. If :start
and/or :end are given, these restrict the range of processors over which values are
printed out. The keyword :format has as its value a string which controls the printing
format for each value; its value is used directly by the Common Lisp format function.

If pretty-print-pvar accesses a processor that has no defined value for pvar, then the
symbol ERROR is printed out.

PPP [Macro)
This macro is identical to pretty-print-pvar.

Note: Version 5.0 updates the *Lisp debugging tools. ppp has been augmented and
several related operations have been added. (See chapter 7 of the Supplement to the
*Lisp Reference Manual.)

ppp-default-mode [Variable]

This variable provides the default value for the keyword argument :mode. Its initial
value is the keyword :cube. Its other legal value is :grid.

ppp-default-format [Variable)

This variable provides the default value for the keyword argument :format. Its initial
value is the string “-s ”.

ppp-default-per-line [Variable)

This variable provides the default value for the keyword argument :per-line. Its initial
value is nil.

ppp-default-start [Variable)

This variable provides the default value for the keyword argument :start. Its initial
value Is zero.

ppp-default-end [Vuriable)

This variable provides the default value for the keyword argument :end. Its initial
value is *number-of-processors-limit*, and it is reset to this value whenever a *cold-
boot is executed.

Chapter 5. The Pvar Data Structure

list-of-active-processors [Function)

This simply returns a list of cube addresses of all the currently selected processors. The
order of this list is not specified. Since this function is so useful, an alias, loap, is also
defined. This could be written as:

(defun list-of-active-processors ()
(let ((return-list nil))
(do-for-selected-processors (processor)
(push processor return-list))
return-list))

pretty-print-pvar-in-currently-selected-set pvar
&key format start end [Function)

This function prints out the the cube address and value of pvar for all processors in the
currently selected set. Since this function is so useful, an alias, ppp-css, is also defined.
format defaults to “-s”. This function returns no values.

Chapter 6

Communication

CAUTION

The documentation in this chapter is largely obsolete.
In each case, the nature of changes made with Version
5.0 are noted and references to auxiliary documenta-
tion are provided.

6.1 Communication between Processors

This section describes the mechanisms for moving data between the Connection Ma-
chine processors in parallel. The high-speed Connection Machine router network pro-
vides global memory references from many processors in parallel. The functions that
perform communication are pref!!, the parallel version of pref, and *pset.

pref!! pvar-expression cube-address-pvar [Macro]
&optional collision-mode

Note: The syntax and semantics of pref!! have been changed. The optional arguments
have been changed into keyword arguments and a new :collision-mode value has been
introduced. See chapter 6 of the Supplement to the *Lisp Reference Manual for more
information.

pref!! returns a pvar that contains the value of pvar-expression from the processors
addressed by cube-address-pvar. This function evaluates pvar-expression differently

37

18 *Lisp Reference Manual

from other *Lisp operators; instead of evaluating the pvar-expression in the currently
selected set, it is evaluated in the context of the processors from which the data is
being retrieved. Unlike pvar-expression, cube-address-pvar is evaluated normally (i.e.,
in the processors of the currently selected set).

If the value of pvar-expression in a single processor is being accessed by more than one
other processor, the Connection Machine system arranges for all those other proces-
sors to get the same value.

The pref!! macro takes an additional optional argument, collision-mode, that deter-
mines how cases are handled for efficiency where more than one processor is reading
from a single processor. The values allowed are :collisions-allowed, :no-collisions,
and :many-collisions. This argument allows *Lisp to optimize calls to pref!! in the
cases where each address is unique, as in :no-collisions, or when many addresses are
identical, as in :many-collisions.

:collisions-allowzd
Each processor may access any other processor and multiple reads are al-
lowed. The time required to complete this operation is proportional to the
maximum number of processors reading from a single processor.

:no-collisions
This tells *Lisp that no two processors will ever be caused to read from the
same processor. It allows the Connection Machine to execute the read signifi-
cantly faster than the :collisions-allowed case does. However, if two proces-
sors do attempt to read from the same processor, the behavior is unpredict-
able. Use with caution!

:many-collisions
This is useful when there are many processors reading from a single processor.
*Lisp uses a different algorithm to resolve the collisions. The result is that the
pref!! almost takes constant time regardless of the routing pattern. That time is
approximately the same as a pref!! using :collisions-allowed where thirty proc-
essors are reading from a single processor, although this may vary for different
virtual processor ratios.

pref-grid!! pvar-expression &rest grid-address-pvars [Macro]
&optional collision-mode
&key :border-pvar border-pvar

Note: This operation is obsolete.

Chapter 6. Communication 39

The function pref-grid!! performs the same operation as pref!!; it simply allows grid
addressing instead of cube addressing. It returns a pvar that contains the value of
pvar-expression from the processors addressed by grid-address-pvars. This function
evaluates pvar-expression differently from other *Lisp operators; instead of evaluating
pvar-expression in the currently selected set, it is evaluated in the context of the proces-
sors from which the data is being retrieved.

There must be as many grid-address-pvars as there are Connection Machine dimen-
sions. Unlike pvar-expression, the grid-address-pvars are evaluated like normal expres-
sions (i.e., in the processors of the currently selected set).

The optional argument collision-mode is used in the same way for pref-grid!! as for
prefl!.

It is an error to read from a nonexistent processor. However, if the keyword :border-
pvar is provided, and if the grid-address-pvars in a given processor p access a nonexist-
ent processor, then the value of border-pvar in processor p is returned instead. During
the evaluation of border-pvar, the currently selected set is set to only those processors
reading off the edge of the Connection Machine grid. In order to better understand
this behavior, consider the following two pieces of code:

(pref-grid!! source x-address y-address :border-pvar foo)

(if!! (off-grid-border-p!! x-address y-address)
foo
(pref-grid!! source x-address y-address))

These are equivalent except the pref-grid!! ensures that x-address and y-address are
evaluated exactly once each.

Again, if the value of pvar-expression in a single processor is being accessed by more
than one other processor, the Connection Machine system arranges for all those other
processors to get the same value.

pref-grid-relative!! pvar-expression &rest relative-address-pvars [Macro]
&key :border-pvar border-pvar

Note: This operation is obsolete. It is replaced by the new operations news!! and
news-border!!. See chapter 6 of the Supplement to the *Lisp Reference Manual for
more information.

40 *Lisp Reference Manual

This function behaves like pref-grid!!, except that relative addressing is used instead of
absolute addressing, and there is no optional collision mode argument. An example of
the use of this function is given later in this chapter.

This function is especially fast when the relative-address-pvars are all constants (as in

(! x)).

As with the serial function pref, *setf may be applied to pref!!, pref-grid!!, and pref-
grid-relative!! to write into memory instead of reading from it. In this case, pvar-ex-
pression is referred to as dest-pvar and must be a valid destination pvar.

When using s*etf in this manner, dest-pvar is modified only in those processors that
were accessed. Processors that were not written into retain the previous contents of
dest-pvar. An error is signaled if a nonexistent processor is addressed. This occurs
when an address is out of the bounds specified by the current Connection Machine
configuration.

Although the Connection Machine hardware is capable of accessing the same memory
for several readers without problems, the user must instruct it how to handle collisions
when several processors are simultaneously writing to the same location. Should a
processor be written into by several other processors in a single memory reference,
pref!! and its relatives (in combination with *setf) signal an error. The function *pset
allows multiple writes to combine in various ways without producing errors.

*pset combiner value-pvar dest-pvar cube-address-pvar [Macro]
&optional notify-pvar collision-mode

Note: The syntax of this macro has changed. The optional arguments are now keyword
arguments and new keyword arguments have been added. See chapter 6 of the Supple-
ment to the *Lisp Reference Manual for more information.

For all selected processors, value-pvar is written into dest-pvar of the processor ad-
dressed by cube-address-pvar. When more than one value is written into the same ad-
dress, the combiner determines how the values are combined. combiner may be one of
the following:

:default — If the same address is written twice, an error is signaled. This is the
same as using setf with pref!!.

:overwrite — Only one write per address is successful. All other writes are dis-
carded.

:or — If two or more values are written into a single processor, the final value is the
logical or of those values.

Chapter 6. Communication

:and — If two or more values are written into a single processor, the final value is
the logical and of those values.

:logior — If two or more values are written into a single processor, the final value is
the bitwise or of those values. value-pvar must contain integers only.

:logand — If two or more values are written into a single processor, the final value
is the bitwise and of those values. value-pvar must contain integers only.

:add — If two or more values are written into a single processor, the final value is
the numerical sum of those values.

:max — If two or more values are written into a single processor, the final value is
the numerical maximum of those values.

:min — If two or more values are written into a single processor, the final value is
the numerical minimum of those values.

:no-collisions — This tells *Lisp that no two processors will ever be caused to read
from the same processor. It allows the Connection Machine to execute the
write somewhat faster than the other combiners. However, if two processors
do attempt to write to the same processor, the behavior is unpredictable and
the code is in error. Use with caution!

The :logior and :logand combiners are especially fast. The :or and :and are faster when
the pvar being sent contains only t’s and nil’s.

The optional argument nofify-pvar must be a pvar. Its value when *pset has finished
executing is t in all processors into which a value is written, even if the value written
happens to be the same as the pvar’s current value, and is not affected in other proces-
sors.

The collision-mode argument is obsolete and no longer useful as of Version 5.0.

*pset-grid combiner value-pvar dest-pvar [Macro])
&rest grid-address-pvars
&optional notify-pvar collision-mode

Note: This macro is obsolete.

This is analogous to *pset, except that the grid addressing is used.

42 *Lisp Reference Manual

*pset-grid-relative combiner value-pvar dest-pvar
&rest relative-grid-address-pvars : [Macro]

Note: This macro is obsolete.

This is analogous to *pset-grid, except that relative grid addressing is used and there
are no optional notify-pvar and collision-mode arguments. This function is especially
fast when the relative-address-pvars are all constants (as in (!! x)).

The following are some sample uses of pref!!:
(*set a (pref!! b (!! 100)))

This reads the contents of b from processor 100 and stores it in pvar a. Only those
components of a which are in processors in the currently selected set are modified.

These two forms are equivalent:

(*all (setf (pref!! b (self-address!!)) a))

(*all (*set b a))

This example writes pvar a into pvar b of all processors. Processors can read from
themselves just as easily as they can read from other processors.

These two forms are equivalent:

(*all
(*when (>!! (self-address!!) (!! 0))
(*set a (pref!! (self-address!!)
(1-!! (self-address!!))))))

(*all
(*when (>!! (self-address!!) (!! 0))
(*set a (1-!'! (self-address!!)))))

In the above examples, the form (*when (>!! (self-address!!) (!! 0)) prevents proces-
sor 0 from reading processor -1.

This function:
(*defun sum-a-pvar (pvar)

(pref
(*let (the-sum-goes-here)

Chapter 6. Communication 43

(*all (*pset :add pvar the-sum-goes-here) (!! 47)))
the-sum-goes-here)
47)

returns the sum of a pvar over all the Connection Machine processors. (Processor 47
was chosen to contain the sum for demonstration purposes only.)

The following is an example of pref-grid-relative!!:

(*all
(*set color
(/1!
(+!!
(pref-grid-relative!! color (!! -1) (!! 0)
:border-pvar (!! 1))
(pref-grid-relative!! color (!! O0) (!! -1)
:border-pvar (!! 1))
(pref-grid-relative!! color (!! 0) (!!' 1)
:border-pvar (!! 1))
(pref-grid-relative!! color (!! 1) (!! 0)
:border-pvar (!! 1))
color)
('t 5))))

This example causes the value of the color pvar in each processor to be averaged with
the four processors to its north, east, west and south.

6.2 Block Data Transfer between the
Front End and the Connection Machine System

Transferring data between the front-end computer and the Connection Machine may
be done much more efficiently when either the source or destination of the transfer is
an array. Instead of repetitively calling pref, or *setf on pref, portions of the array can
be moved in block mode using the functions described below.

44 *Lisp Reference Manual

pvar-to-array source-pvar &optional dest-array [*Defun]
&key (:array-offset 0)
(:cube-address-start 0)
(:cube-address-end *number-of-processors-limit*)

This function moves data from source-pvar into dest-array in cube-address order. If
provided, dest-array must be one-dimensional. If a dest-array is not provided, an array
is created of size :cube-address-end minus :cube-address-start. The data from
source-pvar in processors :cube-address-start through 1 - :cube-address-end are writ-
ten into the dest-array elements starting with element :array-offset. The result returned
by pvar-to-array is dest-array.

array-to-pvar source-array &optional dest-pvar [*Defun]
&key (:array-offset 0)
(:cube-address-start 0)
(:cube-address-end *number-of-processors-limit*)

This function moves data from source-array to dest-pvar. The source-array must be one-
dimensional. The other arguments behave the same way as in pvar-into-array. If a dest-
pvar is not provided, array-to-pvar creates a destination pvar, in which case the call to
the function must be within a function that accepts pvar expressions, such as *set. Ifa
destination pvar is created, its value in processors to which array-to-pvar did not write
is undefined. The value returned by this function is dest-pvar.

pvar-to-array-grid source-pvar &optional dest-array [*Defun]
&key (carray-offset
(make-list *number-of-dimensions*
tinitial-element 0))
(:grid-start
(make-list *number-of-dimensions*
:initial-element 0))
(:grid-end *current-cm-configuration*)

This function moves data from source-pvar into dest-array in grid address order. If pro-
vided, dest-array must have the same number of dimensions as the current Connection
Machine configuration. If dest-array is not specified, an array is created with dimen-
sions :grid-end minus :grid-start, where the subtraction is done component-wise to
produce a list suitable for make-array. The data from source-pvar in the sub-grid de-
fined by :grid-start and : grid-end as the upper and lower corners, respectively, are writ-
ten into a similar sub-grid of dest-array starting with element :array-offset as the upper
corner. The arguments :array-offset, :grid-start, and :grid-end must be lists of length
number-of-dimensions. The value returned by pvars-into-array-grid is dest-array.

Chapter 6. Communication

array-to-pvar-grid source-array &optional dest-pvar [*Defun)]
&key (:array-offset
{make-list *number-of-dimensions*
tinitial-element 0))
(:grid-start
(make-list *number-of-dimensions*
iinitial-element Q))
(:grid-end *current-cm-configuration*))

This function moves data from source-array to dest-pvar in grid address order. The
number of dimensions source-array has must be equal to *number-of-dimensions*.
The other arguments to this function behave the same way as in pvar-to-array-grid. If
dest-pvar is nil, array-to-pvar-grid creates a destination pvar, in which case the call to
the function must be within a function that accepts pvar expressions, such as *set. Ifa
destination pvar is created, its value in processors to which array-to-pvar-grid did not
write is undefined. The value returned is dest-pvar.

6.3 Scan Functions

scan!! pvar function &key (:direction :forward) [Function]
:segment-pvar segment-pvar
(:include-self t)

Note: In Version 5.0, scan!! has been given a :dimension keyword argument, rendering
the function scan-grid!! obsolete. The function scan!! can now be used to scan across
any axis of an n-dimensional grid. (Cf. the functions spread!! and reduce-and-
spread!!, defined in chapter 6 of the Supplement to the *Lisp Reference Manual.)

For each selected processor, the value returned to that processor is the result of reduc-
ing the pvar values in all the processors preceding it. Its own pvar value is by default
included in the reduction as well. “Reducing” in this context refers to the Common
Lisp function reduce, which accepts two arguments, function and sequence. The re-
duce function applies function, which must be a binary associative function, to all the
elements of the sequence. For example, if + were the function all the elements in se-
quence would be summed. In the case of a scan!! function, the sequence becomes the
pvar values contained in the ordered set of selected processors.

The scan!! argument function is one of the following associative binary *Lisp func-
tions: +!!, and!!, or!!, logand!!, logior!!, logxor!!, max!!, and min!!. In addition, the
copy!! function is supported as a scanning function even though there is no such *Lisp
function. In the following illustration, * is any of these binary functions:

46 *Lisp Reference Manual

(self-address!!) processpr—selected? value of pvar result of scan

0 no . a

1 yes b b

2 yes c b*c

3 no d

4 yes e (b*c) *e

5 no £

6 yves g ((b*c)*e)*g
7 no h

If * were the function +!!, this would be a summation over the set of selected proces-
sors, ordered by cube address:

(self-address!!) = 0123 4 5 6 7
(scan!! (self-address!!) “+!!)) => 01 3 6 10 15 21 28

Normally, the value returned for the last selected processor is the result of applying the
function to all the preceding selected processors and the last one. One may, however,
break up the processors into segrments. A segment consists of a sequence of processors
in ascending cube-address order. A new segment of processors begins at each proces-
sor in which segment-pvar is non-nil. Even if all segment-pvar components are nil, how-
ever, there is always at least one segment beginning with the selected processor having
the lowest cube address. The first processor in a segment always receives the value of
pvar instead of the reduction of all the preceding processors. For example:

(self-address!!) => 0 1 2 3 4 5 6 17...
segment -pvar => nil nil nil t t nil nil t
(scan!! (self-address!!) “+!!

:segment -pvar segment-pvar)

\l}
o
[
w
w

4 9 15 7...

In this example there are four segments. The first is 0, 1, 2; second is 3: third is 4, 5, 6;
and fourth is 7... .

The amount of time required to execute a segmented scan is essentially fixed. That is,
execution time does not vary significantly with the number or length of the segments or
with the number of selected processors.

Unlike the other functions that can be used as arguments, copy!! exists only as a scan-
ning function. It is used only in conjunction with segment-pvar. It causes the value of
pvarin the first processor of a segment to be copied into all the other processors of that
segment. For example:

Chapter 6. Communication 47

(self-address!!) => 0 1 2 3 4 5 6 7...
segment -pvar =] nil nil nil t t nil nil ¢
(scan!! (self-address!!) “copy!!
:segment -pvar segment-pvar) => 0 0 0 3 4 4 4 T...

The direction of the scanning is normally from lowest to highest cube-address. If the
:direction argument is :backward, then the scan is from highest to lowest cube-ad-
dress. When scanning backward, segments are sequences of processors in descending
cube-address order. In this example, the segments consist of, first, ...7, 6, 5; next, 4; and
last, 3,2, 1, 0.

(self-address!!) = 0 1 2 3 4 5 6 17T...
segment -pvar => nil nil nil t t nil nil t
(scan!! (self-address!!) “+!!
:segment -pvar segment-pvar
:direction :backward) => 6 6 5 3 418 13 17...

Normally, each processor receives the result of applying function to all the processors
before it up to and including itself. The :include-self keyword controls whether the
value of a processor is included. When :include-self is nil, there are two effects:

(1) The value of each processor is the result of applying function to all proces-
sors before it, excluding itself.

(2) The value of processors in which segment-pvar is non-nil is the result of ap-
plying function to all the processors of the previous segment.

Following are two examples:

(self-address!!) = 0 1 2 3 4 5 6 7...
segment -pvar => nil nil nil t t nil nil ¢

(scan!! (self-address!!) “+!!

:segment -pvar segment-pvar

:include-self t) = 0 1 3 3 4 9 15 17...
(scan!! (self-address!!) “+!!

: segment -pvar segment-pvar

rinclude-self nil) = * 0 1 3 3 4 9 15...

In this first example, the case where :include-self is t is identical to the first scan!!
example. The processor of cube-address 3 receives its own address added to no others,
being the first processor in a new segment. In the second case, where :include-self is
nil, the value of processor 0 is undefined since there are no processors preceding it.
Processor 3 receives a value that is the sum of the previous segment’s processor ad-

48 *Lisp Reference Manual

dresses, 0 + 1 + 2. Likewise, processor 7 receives a value that is the sum of the previ-
ous segment’s processor addresses, 4 + 5 + 6.

The second example illustrates the double effect achieved when :include-self is nil,
using the max!! function:

pvar =1 10 5 20 3 4 5 6
segment-pvar => nil nil nil t t nil nil t
(scan!! pvar “max!!

:segment -pvar segment-pvar

include-self t) =>1 10 10 20 3 4 5 6
(scan!! pvar “max!!

:segment -pvar segment-pvarr

rinclude-self nil) => * 1 10 10 203 4 5

Scanning can be accomplished using grid addressing as well as cube addressing.

scan-grid!! pvar function &key (:dimension :x) [Function)
(:direction :forward)
isegment-pvar segment-pvar
(:include-self t)

Note: This function is obsolete. Its functionality is now included in that of scan!!.

The function scan-grid!! is similar to scan!! except that processors are scanned in grid
order instead of cube order. The keyword argument :dimension controls whether the
scanning is done across rows or columns. The value may be one of the symbols :x
(rows)or :y (columns), or it may be a nonnegative integer less than *number-of-dimen-
sions*. A :dimension value of 0 corresponds to rows and a value of 1 corresponds to
columns.

scan-grid!! always performs a segmented scan, with each row or column beginning a
new segment. If a :segment-pvar argument is supplied, then rows or columns are sub-
segmented according to the component values of segment-pvar. That is, a new subseg-
ment begins at each non-nil value of segment-pvar.

As with scan!!, the amount of time it takes scan-grid!! to execute a segmented scan is
essentially fixed. That is, execution time does not vary significantly with the number or
length of the segments or with the number of selected processors.

Chapter 6. Communication

6.4 Global Operations

The following functions reduce the contents of a pvar in all selected processors into a
single Lisp value, which is then returned:

*logior integer-pvar [*Defun]

This returns a Lisp value that is the bitwise logical inclusive or of the contents of inte-
ger-pvar in all selected processors. This returns the Lisp value 0 if there are no selected
PIOCesSOrs.

*logand integer-pvar [*Defun]

This returns a Lisp value that is the bitwise logical and of the contents of integer-pvarin
all selected processors. This returns the Lisp value -1 if there are no selected proces-
SOTS.

*min numeric-pvar [*Defun]

This returns a Lisp value that is the minimum of the contents of numeric-pvar in all
selected processors. This returns the Lisp value nil if there are no selected processors.

*max numeric-pvar [*Defun]

This returns a Lisp value that is the maximum of the contents of numeric-pvar in all
selected processors. This returns the Lisp value nil if there are no selected processors.

*or pvar [*Defun]

This returns a Lisp value of t if the contents of pvar is non-nil in any selected processor;
otherwise, it returns nil. If there are no selected processors, this function returns nil.
For example, to determine if there are any processors currently selected, use (* or t!!),
which returns t only if there are selected processors.

*and pvar [*Defun]

This returns a Lisp value of t if the contents of pvar is non-nil in every selected proces-
sor; otherwise, it returns nil. If there are no selected processors, this function returns t.

50 *Lisp Reference Manual

*sum numeric-pvar [*Defun)]

This returns a Lisp value that is the sum of numeric-pvar in every selected processor.
This returns the Lisp value 0 if there are no selected processors.

6.5 Processor Addressing

This section contains functions that handle address generation and translation. When
a dimension number is required, remember that it is always zero-based; in other
words, the first dimension is dimension 0, the second dimension is dimension 1, and so
on.

Note: New functions have been added that do inter-vp-set address generation and
translation. See chapter 6 of the Supplement to the *Lisp Reference Manual, where the
functions defined here are also redefined.

self-address!! [Function)

This function returns a pvar that contains the cube address of each selected processor.

self-address-grid!! dimension-pvar [Function]

This function returns a pvar that contains the grid address, in the specified dimension,
of each selected processor. Each processor may specify a different dimension through
dimension-pvar.

grid-from-cube-address cube-address dimension [Function]

This function takes a cube-address and returns the grid address for the specified di-
mension. This function executes entirely in the front-end computer.

cube-from-grid-address address-pvar &rest address-pvars [Function)]

This function translates a grid address consisting of (possibly) several uddress-pvars
into a cube address. This function executes entirely in the front-end computer.

Chapter 6. Communication 51

grid-from-cube-address!! cube-address-pvar dimension-pvar [Function]

This function takes a cube-address-pvar and returns a pvar containing the grid address
for the specified dimension-pvar for each selected processor.

cube-from-grid-address!! address-pvar &rest address-pvars [Function)

This function translates a grid address consisting of (possibly) several address-pvars
into a cube address for each selected processor.

off-grid-border-p!! &rest grid-address-pvars [Function)

This function returns a boolean pvar that is true if the grid-address-pvars specify an
address that is invalid given the current dimensions, and false otherwise. It is an error
for any component of grid-address-pvar to be a non-integer.

off-grid-border-relative-p!! &rest relative-grid-address-pvars [Function]

This function is identical to off-grid-border-p!! except that the relative-grid-address-
pvars specify relative addresses.

Chapter 7

Using the Connection Machine

The *Lisp language resides in a package named *LISP. To use the language, the user
must either be in that package:

(in-package “*LISP)
or else make that package available to the package the user is in:
(use-package “*LISP)

On Symbolics Lisp machines, the user should put the following package attribute in
the attribute list of any file that contains functions to be put in the *LISP package:

Package: (*LISP COMMON-LISP-GLOBAL)

For instructions on how to load the *Lisp language into your Lisp machine, please
refer to the Connection Machine Front-End Subsystems.

7.1 Using the Connection Machine Hardware

This section describes the two *Lisp functions (*cold-boot and *warm-boot) that allow
the user to use the hardware.

Note: The macro *cold-boot has been enhanced to work with n-dimensional NEWS,
*Lisp interpreter safety, and geometry objects. These changes and the new features to
which they are related are all documented in the Supplement to the *Lisp Reference
Manual.

*cold-boot &key :initial-dimensions initial-dimensions [Macro]

This function initializes *Lisp and must be called immediately after loading in the
*Lisp software. It resets the internal state of the *Lisp system and of the Connection

53

54 *Lisp Reference Manual

Machine hardware. All *defvar pvars are reallocated and their initial values are
recomputed.

In addition, the user may specify the initial-dimensions of the Connection Machine
processor configuration. This keyword argument is a list of dimension sizes. The di-
mensions must be powers of 2. If no initial-dimensions are specified, then they default
to the same values as in the previous call to *cold-boot. If there was no previous call,
the default is a two-dimensional grid.

*cold-boot is typically called by the initialization function of the user’s software. Un-
der normal circumstances, this need only be called at the start of a session.

Users may explicitly specify what hardware configuration to use by calling the Lisp/
Paris function em:attach before calling *cold-boot. This function is described in the
Connection Machine Front-End Subsystems. *cold-boot calls em:attach if the hard-
ware is not already attached.

Some examples follow:

;3 This configures 64 x 128 processors, since that is the hardware
;; configuration for an 8k machine.
(*cold-boot) ;8k physical processors

;; This configures 2 x 1 virtual processors per physical processor
;5 on a machine with 8k physical processors

(*cold-boot :initial-dimensions (128 128)) ;16k virtual processors

;7 This configures 1 virtual processor per physical processor

;; because 128 x 128 is the

;. physical size of a 16k machine.

(cm:attach :16k)

(*cold-boot :initial-dimensions “ (128 128)) ;16k physical processors

*warm-boot [Macro]

This function must be called whenever a *Lisp program is abnormally terminated for
any reason. The function resets certain internal *Lisp and Connection Machine hard-
ware states.

It is wise to call this function at the beginning of major entry points in the user’s soft-
ware, since previously run and aborted code may have left the Connection Machine
hardware in an inconsistent state.

Chapter 7. Using the Connection Machine

7.1.1 [Initialization Lists for *cold-boot and *warm-boot

Users can define a set of forms to be executed automatically before and after each
execution of *cold-boot and *warm-boot. These user-defined initialization lists are
stored in one or more of these variables:

*before-*cold-boot-initializations* | [Variable]
*after-*cold-boot-initializations* [Variable]
*before-*warm-boot-initializations* [Variable]
*after-*warm-boot-initializations * [Variable]

New forms are added using the function add-initialization, and removed using delete-
initialization.

add-initialization name-of-form form variable [Function)

The argument name-of-form is a character string that names the form being added.
The argument forrn may be any executable Lisp form. Adding two forms with the same
name is permissible only if the forms are the same according to the function equal;
otherwise an error is signaled. The variable should be one of the initialization-list vari-
ables above, or it may be a list of such variables, in which case the form is added to each
initialization list named. The form and variable arguments must be quoted so that they
are not evaluated during the call to add-initialization. For example:

(add-initialization (string “items)
“(initialization-items)
“*gfter-*warm-boot-initializations*)

delete-initialization name-of-form variable [Function]

This function deletes the form named by name-of-form from the initialization list (or
lists) specified by variable. The arguments are specified in the same manner as the first
and third arguments for add-initialization. For example:

(delete—-initialization (string “items)
‘*after—-*warm-boot-initializations¥*)

56 *Lisp Reference Manual

7.1.2 Configuration Variables

*Lisp provides a number of variables whose values are set by *cold-boot and *with-
vp-set (new with Version 5.0). A program using these configuration variables will run
in any configuration. The user must not modify the values of any of these configura-
tion variables.

Note: Several new configuration variables have been defined with Version 5.0. See
chapter 5 of the Supplement to the *Lisp Reference Munual.

number-of-processors-limit [Variable]

This variable specifies the effective number of processors a user program sees. For a
machine with 65,536 physical processors, each simulating 16 processors, this variable
contains 1,048,576.

log-number-of-processors-limit [Variable]

This variable provides the logarithm, base 2, of the number of processors available.

number-of-dimensions [Variable]

This variable is defined when *cold-boot is run. Its value is the number of dimensions
given. The default value is 2. The current interpreter supports only two dimensions.

current-cm-configuration [Variable]

This variable is a list containing each dimension’s size in the current configuration.

dimension-size dimension [Function]

This function returns one more than the maximum allowable grid address for the
specified dimension. Note that dimension is zero-based:; for example, in a two-
dimensional machine, the first dimension is dimension zero and the second is dimen-
sion one.

7.1.3 The *Lisp Simulator

The *Lisp simulator, which runs on the serial front end, strives to be an exact simula-
tion of the *Lisp interpreter running on the Connection Machine. The functions *cold-

Chapter 7. Using the Connection Machine

boot and *warm-boot work in the same manner as for the interpreter. The simulator is
more lenient than the interpreter with respect to dimensioning the machine: the simu-
lator allows arbitrary extent in each dimension, while the interpreter currently sup-
ports only extents that are powers of two. Warnings are issued if one tries to configure
the simulator in a way that the interpreter cannot handle.

Since the simulator and interpreter implementations of *Lisp are very different, it is
unfortunately necessary to recompile code when switching from one system to the
other. It is not possible to load the simulator once the interpreter version of *Lisp has
been loaded, and vice versa.

The symbols *lisp-hardware and *lisp-simulator are appended to the Common Lisp
features list when running on the interpreter and on the simulator, respectively.
These symbols can be used to perform read-time conditionalization of code.

7.2 Interfacing Paris Code to *Lisp

It is sometimes necessary to explicitly call Paris instructions from within *Lisp pro-
grams.

Paris instructions require pvars’ memory addresses and lengths as their arguments.
While a pvar is commonly—and appropriately—regarded as a “parallel variable,” that
is, a program variable that has a value in each CM processor, a pvar actually exists in
the front end as a Lisp object that points to and describes a field in each CM proces-
sor’s memory. These fields in the CM contain the values that comprise the parallel
variable. The front-end Lisp object also contains pvars’ addresses and lengths, infor-
mation that may be needed as arguments to Lisp/Paris functions. The following func-
tions return this information.

(pvar-location pvar)
(pvar-length pvar)

These functions return the location (address) and length of a pvar.
(pvar—-type pvar)

This function returns the type of a pvar. The type of a pvar may be one of :general,
:field, :signed. :float, :boolean, :complex, :character, :string-char, :array, or :struc-
ture. These correspond to pvar types t (for general), unsigned-byte, signed-byte, de-
fined-float, boolean, complex, character, string-char, array, and types defined by
*defstruct, respectively.

58 *Lisp Reference Manual

(pvar-mantissa-length pvar)
(pvar-exponent-length pvar)

If pvar is of type defined-float or complex, then these functions return the mantissa
and exponent lengths.

Following is an example of *Lisp code with embedded Paris instructions:

(*let ((cube-—address (self-address!!))
dest
(source (!! 100)))
(declare (type (pvar (unsigned-byte cm:*cube-address-length*))
cube-address)
(type (pvar (signed-byte 10) dest source)))
(cm:send (pvar-location dest) (pvar-location cube-address)
(pvar-location source) (pvar-length source)))

7.3 *Lisp Memory Management:
Stack and Heap Storage

The memory of each Connection Machine processor is broken up into a stack, a heap,
and a gap, along with a small number of reserved bits. The space occupied by these
blocks is identical in a/l Connection Machine processors and is described by several
variables in the front-end computer.

The stack begins near the low end of Connection Machine memory. It grows as neces-
sary into the gap, but may not extend past the beginning of the heap.

The stack is used for fast allocation of pvars returned as results of Lisp and *Lisp
functions (such as +!!), and for storage of all pvars created by *let. As with a standard
stack, memory is allocated and deallocated on a first in, last out basis. i

The heap is used to store all other pvars that may not be allocated and deallocated in
the strict order required by a stack. This includes all pvars created by *defvar and
allocate!!.

Chapter 8

Avoiding Potential Difficulties

This chapter describes potential difficulties in using *Lisp and ways the user can avoid
them.

8.1 Pvar Values in Non-Selected Processors

It is an error to depend on the value of a pvar in a processor that was not in the cur-
rently selected set at the time the pvar was created. For instance, the following is incor-
rect:

(*when (<!! (self-address!!) (!! 10))
(*let ((foo (self-address!!)))
(print (pref foo 20))
})

The *Lisp language definition does not define the value printed in the above exzimple
because the pvar foo was only given values in the active processors, 0 through 9.

8.2 The Extent of Pvars

Unlike Common Lisp, pvars defined using *let or *let* have dynamic extent; that is, it
is an error to reference the value of a pvar once the body of its defining *let or *let* has
been exited. For example:

(*defun will-not-work (pvar constant)

(funcall
(*let ((xXyzzy (!! constant)))
#7 (lambda (x) (*sum (+!! (!! X) Xxyzzy)))

59

60 *Lisp Reference Manual

)
(pref pvar 0)

))

Since the body of the *let defining xyzzy has been exited at the time the lambda-defined
function is actually called, the *Lisp language definition makes no guarantee that the
pvar xyzzy still contains constant anywhere.

Note that *let and *let* allow one to return a pvar created by the *let as the value of the
*let and use that returned value. It is only attempting to access a value created by *let
within a lexical closure that is doomed to failure.

8.3 Using Mapcar on Functions that Return pvars

Consider the following code:

(let ((pvar-list nil))
(setq pvar-list (mapcar #°!! “(1 2 3)))
(*set predefined-pvar-1
(+!'! (first pvar-list) (second pvar-list)))
(*set predefined-pvar-2
(+!'! (first pvar-list) (second pvar-list)))

pvar-list Is a list of pvars that have been allocated on the *Lisp stack. The *Lisp lan-
guage definition makes no guarantees as to how long these pvars will remain inviolate,
since they are on the stack. There is absolutely no guarantee that predefined-pvar-1
and predefined-pvar-2 will contain the same values.

8.4 *warm-boot

Whenever a *Lisp program has an error and the user aborts back to top level, the
*warm-boot function must be called before attempting to run any *Lisp code again.
This is because both the currently selected set and certain internal *Lisp variables are
left in an inconsistent state. *warm-boot clears all Connection Machine error condi-
tions (hardware and microcode) without modifying the contents of the Connection
Machine memory. Very bizarre behavior results when this dictate is not followed.

*warm-boot is intended to be used as a top-level form. Under no circumstances should
it be used inside of a *defun form, either lexically or in such a manner that it might be
executed while a *defun function is being evaluated.

Chapter 8. Avoiding Potential Difficulties 61

8.5 *cold-boot

*cold-boot calls ecm:coldboot to initialize Connection Machine state and also initial-
izes the *Lisp run-time systems. This function must be called when first entering the
*Lisp environment (hardware or simulator) if the user intends to evaluate any code. In
addition, we strongly recommend that *cold-boot be called between runs of applica-
tion programs. Finally, *cold-boot should be called if *warm-boot has failed to clear
an error state.

*cold-boot is intended to be used as a top-level form. Under no circumstances should
it be used inside of a *defun form, either lexically or in such a manner that it might be
executed while a *defun function is being evaluated.

8.6 pref!l, pref-grid!! and pref-grid-relative!!

These *Lisp functions (which are actually macros) are defined to evaluate their source
argument(s) in the context of the set of addresses defined by evaluating their address
pvai(s). Therefore, writing a function foo that calls one of these functions with a source
argument s passed into foo may not work because s will have already been evaluated by
the Lisp evaluator before the body of foo is evaluated.

The solution is to define such functions as macros. For example:

(*defun foo (condition source-pvar address-pvar)
(if condition
(pref!! source-pvar address-pvar)
[GREN¢))
))

The above may not work as intended and should be rendered as

(defmacro foo (condition source-pvar address-pvar)
*(if ,condition
(pref!! ,source-pvar ,address-pvar)
(' 0
))

If source-pvar is always a symbol and not a pvar expression, then this modification is
not necessary.

8.7 Multiple Values

The current implementation does not support the return of multiple values from any
*Lisp form. It is error to attempt such an operation.

62 7 *Lisp Reference Manual

8.8 Grid and Cube Addresses

Programmers should not write code that depends on a particular mapping between
grid and cube addresses, as this may change in future Connection Machine implemen-
tations. Instead, use the address-translation functions provided.

63

Appendix A

*Lisp Symbols

This appendix lists all *Lisp symbols and pvar types described in this manual.

Constants

nilll, 7, 25
t!, 7, 25

Operators

1, 28

+11, 28

=11, 28

*1, 28

*apply, 33
*cold-boot, 10
*defun, 9, 33, 34
*funcall, 33
*prefl!, 10

*set, 7, 8

*when, 7

M, 28

/=11, 25

=1, 24

>, 25

>=11, 25

1+, 28

1-11, 28
add-initialization, 55
*all, 19
allocate!!, 11, 12
*and, 49

and!!, 26
array-to-pvar, 44
array-to-pvar-grid, 45

65

ash!!, 29

ceiling!!, 29

*cold-boot, 53, 61

*cond, 20

cond!!, 32

cos!!, 30
cube-from-grid-address, 50
cube-from-grid-address!!, 51
*deallocate, 12
*deallocate-*defvars, 12
declare, 16

*defun, 15
delete—-initialization, 55
deposit-byte!!, 31
do-for-selected—processors, 20

. enumerate!!, 32

eql!, 24
eql!t, 24
evenp!!, 23
float!!, 30
floatp!!, 24
floor!!, 29

grid-from-cube-address, 50
grid—from-cube-address!!, 51
*if, 20

if!!, 31

integerp!!, 24

isqrt!!, 29

*let, 13, 15

let, 13, 15
list-of-active—processors, 35
load-byte!!, 30

log!!, 30

66 *Lisp Reference Manual

*logand, 49 *set, 14
logand!!, 27 signum!!, 30
logeqv!!, 27 sin!!, 30
*logior, 49 sqrt!!, 29
logior!!, 27 *sum, 50
lognot!!, 27 the, 15
logxor!!, 27 truncate!!, 29
*max, 49 type, 16
max!!, 28 *warm-boot, 54, 60
*min, 49 *when, 19
min!!, 28 with-css-saved, 20
minusp!!, 24 xor!!, 26
mod!}, 29 zerop!!, 24
not!!, 26

numberp!!, 24 Pvar Types
odd!!, 23

off-grid-border-p!!, 51 double-float, 16
off-grid-border-relative-p!!, 51 long-float, 16
*or, 49 unsigned-byte, 16
orl!l, 26 pref, 6

plusp!!, 23 short-float, 16
pref, 14 signed-byte, 16
prefll, 37, 61 single-float. 16

pref-grid, 14
pref-grid!!, 38, 61
pref-grid-relative!!, 39, 61 Variables
pretty—print-pvar-in—currently

selected-set, 35
*proclaim, 15

*after—*cold-boot—initializations*, 55
*after-*warm-boot-initializations*,
55

£ 3

‘pzet' 4(')d al *before-*cold-boot-initializations*,
pset—grid, 55

*pset—grld—relatiive, 42 *before-*warm-boot~initializations*,
pvar-to-array, 55

pvar-to-array-grid, 44 *current-cm-configuration*, 56
pvarp, 12 dimension-size, 56

random!!, 29 *log-number—of-processors-limit*,
rank!!, 32 56

rot!t, 30 *number-of-dimensions*, 56
round!!, 29 *number-of-processors—limit*, 56
scanfl, 45 *ppp-default-end*, 34
scan—grid!!, 48 *ppp-default—format*, 34
self-address, 7 *ppp-default-mode*, 34
self-address!!, 50 *ppp-default-per-line*, 34

self-address—grid!!, 50 *ppp-default-start*, 34

Index

67

Index

References are to page numbers. Separate listings of *Lisp symbols and pvar types are provided

in appendix A.

Cc

communication, interprocessor, 9
cube address, 4, 62
currently selected set, 5, 19

D

debugging tools, 33
declare statement, 16
defining *Lisp functions, 9
*defvar, 11

double-float pvar, 16

F

field, 5
front-end computer, data transfer, 43

G
grid address, 4, 62

interprocessor, 37—51

L

logical operations, 26 —27
long-float pvar, 16

M

memory management, 58

multiple values, 61

N

news!!, 10

P

Paris, called from *Lisp, 57
predicate operations, 23
processor selection, 7
processors, 4

non-selected, 59
pvar, 4, 6, 11—17
pvar type declaration, 15—17
pvars, extent, 59

S

selection, of processors, 19—21
*set, 7

*setf, 6, 14

short-float pvar, 16
signed-byte pvar, 16
simulator, 56

single-float pvar, 16

T
type statement, 16

V]

unsigned-byte pvar, 16
user—defined operations, 32

69

