
)

)

-- THE TLC-LISP DOCUMENTATION (c) The Lisp Company 1980.

Table of Contents
Introduction . 3

Part I General Discussion of LISP............. 6 ---

Part II

Ihtroduction to LISP 6
Data Structures 18
Evaluation ... 23
Property Lists 33
LISP as a Systems Language 35
How LISP V7orks 40
Bibliography 46
Concept Index 48

General Discussion of TLC-LISP
Introduction to TLC-LISP
Simple Examples of TLC-LISP••••••••••••••••••

.•. 50
•• 56
..57

Parser Examples -· 63

Part III The TLC-LISP Manual 70
~onventions 70

Function Defining Functions ~.~ 74
Functions to Perform Evaluation 79
Function Manipulating Functions 82
Control Structure Operators 84
Recognizers and Predicates 90
Selector Functions 95
Selector Functions for Dotted Pairs 95
Selector Functions for Lists 97
Selector Functions for Strings 99
Constructors 100
Constructors for Dotted Pairs 100
Constructors for Lists 101
Constructors for Strings 102
List and Dotted Pair Modifiers 103
String Modifiers 10 5
Functions to Modify the Environment 106

1

Table Of Contents

Functions to Manipulate Property Lists 108
Functions for Atoms and Strings 110
Arithmetic Functions 112
Logical Functions 115
General Error Functions 116
Input and Output 117
Input .. . 120
Output 125
File Specification 127
Disk Utility Functions ·••·····•·•••••·············l27
Autoloading Functions and Values 129
Random Utility Functions •·••·••·•·••·······•·•··•·l29
The TLC-LISP Evaluator in TLC-LISP ••••••••••••••••130
Extended Examples of TLC-LISP •••••••••••••••••••••132
Function Index ····•••·••··••••••••••···•••••••••••l36

2

l

)

)

Introduction
This manual is organized to satisfy the needs of a wide class
of readers, ranging from the novice who wants to know that
LISP is an acronym for LISt Processing, to the experienced
LISP user who wants to know quickly how this LISP differs
from other LISPs.

The table of contents gives a reasonably accurate picture of
what each section covers. Since this LISP dialect --as all
other LISP dialects--presents its own idiosyncrasies, it is
imperative that ALL prospective users read Part II Section A,
An Introduction to TLC-LISP.

Though this manual does have a collection of examples and
catalog of the LISP library, this manual is not organized as
a cook book that can produce LISP programmerslike chocolate
chip cookies. It is unfortunate that no suitable LISP primer
exists yet; we do plan to provide a self-contained
instructional primer for TLC-LISP in the near future,
however. In ·the meantime we will emphasizes style and
elegance in this manual, leaving your skill with the language
to come from your exposure to existing LISP texts and the
result of practice with the LISP tools.

The bibliography references several sources of LISP
information. As yet, there is no totally satisfactory text
which intoduces the novice to LISP. Two of the references,

• Artificial Intelligence Programming, and The Little LISPer,
deal with programming aspects of LISP; Anatomy of LISP
involves abstract programming concepts and LISP
implementation techniques; the August issue of BYTE magazine
discusses several interesting LISP applications: the other
bibliographic references qeal with more philosophical or
technical issues related to LISP in particular and
programming in general.

Though an active LISP user might find the manual sufficient
to explore the system, a LISP novice could spend an
inordinate amount of time discovering how LISP can be used
effectively. Due to time constraints, the TLC-LISP manual
does not contain comprehensive, well-documented LISP
applications. Fortunately the recent book "AI Programming"
by Charniak, Riesbeck, and McDermott contains several

3

~~--- ----- - --- - -

1ntroauct1on

substantial applications and will help both the novice and
the expert in developing their understanding of LISP.

Furthermore, one of the most important lessons to learn in
LISP programming is that of "style". The power and
flexibility of LISP can lead to programming excesses; it is
easy to write incomprehensible LISP code. Again it is
fortunate that the issue of style • has high priority in "AI
Programming".

Though the LISP dialect represented by TLC-LISP is not the
same as that discussed in "AI Programming", it is a simple
matter to convert from the AIP dialect to TLC-LISP. The
appendix of this manual discusses a few of the
inconsistencies, thereby mininizing some of the transitional
difficulties. The appendix also contains annotated TLC-LISP
code that implements many of the techniques discussed in AI
Programming as well as general examples of TLC-LISP.

First, an historical note. Both TLC-LISP and the dialect of
the AIP book have the same ancestor: the original MacLISP
for the DEC PDP-6 developed at MIT. When Stanford received a
PDP-6 that LISP was converted to run under the DEC monitor;
several modifications and embellishments were performed and
this LISP became LISP 1. 6, also known as Stanford LISP.
Stanford LISP was exported to the Irvine campus of the
University of California becoming UCI LISP; at Irvine it was
further modified and enhanced, receiving the editing and
debugging packages of a different LISP strain called BBN
LISP: BBN LISP soon became known as InterLISP. From UCI LISP
we get the LISP variant that appears in "Artificial
Intelligence Programming". These transformations span about
ten years.

Meanwhile, the MIT people rewrote MacLISP; the LISP-based
tasks at MIT were becoming quite large and the issues of
e'ff icient execution were pressing. The new implementation,
known as BIBOP, consolidated about five years experience with
the old MacLISP. In this same time span, an MIT group was
designing a LISP-like language, called Muddle; it was to be
the implementation vehicle for an AI language called Planner.
As it turned out, Muddle became an elegant language in its
own right. It has been released and documented as MDL; it
contains a consolidation of many ideas that extend the LISP
design. Both MDL and the BIBOP version of MacLISP influenced
the The LISP Company LISP that you have purchased from us.
Another major factor in this LISP is the MIT LISP machine
experience. That machine and its LISP dialect is again a
consolidation: this time including architectural
considerations in the equation.

So, though the ancestor of these two LISPs is the same, the
paths since that date have been quite different. This

4

)

()

., •• --- ~,--~--"' _.,_.,,,,.,. •• ,,.~ ri

"'

)

)

()

version of TLC-LISP represents another point of
consolidation, bringing a truly powerful LISP into the micro
computer domain.

This Z-80 TLC-LISP is a preview of things to come. We have
consolidated some of the twenty-years experience with
LISPl.5, and later with MDL, CONNIVER, MACLISP, and the MIT
LISP machine, to present a capable, expandable and clean
dialect which will allow non-trivial LISP experimentation
within the confines of the current processor, while preparing
for the more hospitable and lively environment of the new
processors. In that 1 igh t, we have deferred some of LISP' s
more exotic features to future implementations.

So, dear reader, understand the.past, enjoy the present, and
anticipate the future!

The LISP Company {T. {L • C))

Copyright {c) 1980 The LISP Company

ALL RIGHTS RESERVED

Copies of this manual may be obtained from:

5

(T.(L.C))
Box 487
Redwood Estates, CA 95044

------------------------------~----

A General Introduction to LISP

LISP is the second oldest higher level programming language,

predated only by Fortran. The initial implementation effort

began in 1958 under the direction of John McCarthy, currently

the director of Stanford University's Artificial Intelligence

Laboratory. At that time McCarthy had just become co-founder

(with Marvin Minsky) of the MIT Artificial Intelligence

Project. One of McCarthy's concerns was a need for a precise

notation for expressing problems of Artificial Intelligence.

These problems differed from the traditional computational

concerns in that they emphasized structural

interrelationships, rather than simple numeric quantities.

Of course, any non-numeric problem can be reduced to an

"equivalent" numeric one; however much of the naturalness of

problem statement and its solution can be lost in the

transformation. McCarthy recognized that the representation

and manipulation of objects must be handled at a more

abstract ~nd primary level. An example will help to put this

discussion in perspective.

6

)

Introduction

An early test-bed for these ideas involved the design of

algorithms for the manipulation of algebraic expressions; for

example, algebraic simplification might rewrite 2*(x+6*y)+x

as 3*(x+4*y). {For a detailed discussion of Algebraic

Manipulations systems see "LISP-based Symbolic Math Systems"

by D. R. Stoutemyer in the August 1979 issue of BYTE). The

design of such algorithms involves the solution of two

problems: a representation for algebraic expressions, and

specification of the algorithms which manipulate that

representation.

1. The Representation Problem: How to encode algebraic

expressions in a manner that maintains the properties which

are important to such symbolic manipulation algorithms? We

) could assign numbers to each component of the expression and

then encode the expression as a vector of those numbers

(recall th3t this is 1958 and Fortran is the only high level

language). Assuming that appropriate conventions distinguish

between the numbers that are coefficients and the numbers

)

that are representing components like * I +, (, and) , we

would discover that our algorithm spends most of its time

trying to recover the compqnents of the express ions: 11 in

2*(x+6y)+x, what is the second operand of * , please?" In

this problem we need a representation that makes the

interrelationships more apparent. Here LISP introduced

Symbolic Express ions. Symbolic Expressions are a very

general, abstract notation which have fascinating theoretical

7

Part I: LISP
Introduction

properties comparable to those of the natural numbers, and

yet have a natural and efficient representation on

traditional computers. This elegant blend of cultures --the

practical and the theoretical--is one of the unique features

of LISP.

We will discuss Symbolic Expressions and their

representations in more detail later; for now, we will

confine our attention to their application. For our problem

we choose to represent algebraic expressions as a special

kind of Symbolic Expression called a "list". A list contains

zero or more elements. The empty list is represented by a

pair of balanced parentheses --thus (); a non-empty list may

contain other lists as elements, as well as containing atomic

(non-list) elements. These atomic elements are called atoms.

For the purposes of this example, an atom is either a number,

as in most other programming languages, or may be a non

numeric object called a literal atom. Some LISPs, including

TLC-LISP, call 1 i teral atoms symbols. Literal atoms are

commonly called "identifiers" in most other languages --that

is, strings of letters and digits (and perhaps special

characters) such that the first character in the i6entifier

is a letter. Reflect for a moment that in other languages,

identifiers are present in the syntax of the language but are

not present as data objects. The following are literal atoms

of LISP:

8

_)

)

)

.1:1art 1.: Ll.~.1:'

Introduction

ROCKET TLC TIMES A

So far we have said that () represents the empty list and

that lists may have atoms and lists as elements, but have not

described how one represents objects as elements of a list.

Given elements el, e2, e3, we can create several lists; one

of which is (el, e2, e3), another is (e2, el, e3). So one

creates lists by separating the elements with commas, and

surrounding the conglomeration with the appropriate

parentheses. As the examples illustrate, the order of the

elements is important; these are not sets, but sequences of

elements. The notation can be simplified by omitting the

commas, writing (el e2 e3) for example.

) As indicated. earlier, these LISP data structures are

interesting abstract objects; however, our main concern now

is their effective exploitation in the solution of complex

problems. In particular, how can we use these data objects

to represent the algebraic expressions? For example we could

represent the expression 6y as a list (TIMES 6 Y) where we

write TIMES and Y as the representation of* and y,

respectively. Notice that. the first element of the list

represents the operation and the remainder of the list

represents the operands. Continuing, the expression x+6y

would be represented as (PLUS X (TIMES 6 Y)). Note that the

notation still makes clear which components are operations

and which are operands. Finally, 2* (x+6y) +x is written as

9

Part I: LISP
Introduction

(PLUS (TIMES 2 (PLUS X (TIMES 6 Y)) X).

The notation is simplicity itself: the first element of each

list always represents an operation; the elements in the

remainder of the list are either lists themselves, in which

case they represent complex subexpressions; or they are

numbers or identifiers, in which case they represent either

numbers or variables of the original expressions. Given this

representation, we proceed to our algorithm.

2. Design The Algorithm: how to write the algorithm which

encodes the process which we wish to capture. The concept of

algorithm transcends any notion of a specific programming

language; that is, we should conceive our algorithm in an

atmosphere which is as free as possible from syntactic

considerations. At this level our thoughts should not be

constrained by the stylistic anachronisms of a particular

language. As our problem domains become more complex, this

freedom becomes even more critical.

A further identification of tasks in the solution formation

is useful. An algorithm can be viewed as consisting of tuo

separate components: the .!_0.9.ic whic.h embodies the

interrelationships between the elements in the problem, and

the control component. which specifies how the elements are

used. Put another way, the logic component encodes the

knowledge, while the control component contains the

10

)

)

Introduction

techniques for applying that knowledge.

Since much of our knowledge is captured in appropriately

abstract data structures, the major business of a programming

language is to supply a complete set of tools for data

structure maintenance, along with a complementary set of

control constructs. The control constructs tend to

complement the data structures since the flow of control is

often based on the structure of the data. The LISP control

constructs which we need for our algebraic simplification

problem are: the conditional expression and recursion.

The LISP conditional expression is similar to the "if-then-

else" construct of other languages. The application of a

) conditional expression is appropriate when we encounter a

)

data object which can be one of several forms. For example,

a term in a polynomial may be a variable, a constant, or a

product of variables and constants. Our algorithm will

contain a conditional expression which tests for the

occurrence of these variants, and performs actions

accordingly.

The form of such a conditional expression is:

(COND (variant-1? expression-1)
(variant-2? expression-2)

(variant-n? expression-n))

where expression-i will be evaluated just in the case that

11

------- --------------- ~~- --- - ------

Part I: LISP
Introduction

variant-i? is true and no variant-j? is true for j less

than i.

An application of recursion is appropriate when the solution

to the original problem can be expressed in terms of a

similar solution to subproblems. For example "the simplified

form of an expression, e + O, is the simplified form of the

expression e". Here, the process involves the application of

algebraic rules in the context of the informal notion of

"simplification".

The algorithm will involve the manipulation of lists which

represent algebraic expressions. For example, the

simplification rule that expresses the property that x+O or

O+x is x, for any x can be described informally as: " if

either summand ii zero then the sum is equal to the other

summand".

In LISP we could test for the occurrence of a sum by (IS-SUM

TERM) and write the above simplification rule as:

(COND ((ZEROP (FIRST-ARG TERM)) (SECOND-ARG TERM))
({ZEROP {SECOND-ARG TERM)) (FIRST-ARG TERM))
(T TERM)}

where FIRST-ARG AND SECOND-ARG are LISP functions defined to

select the first and second arguments from the representation

of the sum. Of course, before we can run such a program

fragment we must construct definitions for all these sub

functions and we must give definitions of the data structures

12

)

)

)

Introduction

in terms of the LISP list structure. LISP does not supply

any built-in data definition facilities, neither does LISP

impose a "type structure" a la Pascal, with the corresponding

declarative accoutrements. LISP leaves such discipline to

the intellect of the user. Such a course places a certain

burden on the conscientiousness of the LISP programmer. One

should view LISP as an assembly language on which users may

impose their own idiosyncratic systems. Therefore only

minimal constraints are to be found within LISP.

Operations like IS-SUM and FIRST-ARG, called recognizers and

selectors respectively, are a part of the specification

{logic) of the data type "algebraic expression". In general,

a data type specification contains at least three types of

) operations: the recognizers are used to test for the

occurrence of an element of the type; the selectors are used

to select components of an appropriate type, and a

constructor is used to make a new element of the desired

type. Data type specifications in LISP are handled through

these constructors, selectors, and recognizers. Thus in

LISP, data items have an associated type, while variables are

type-free, meaning a variabl,e may have values of any type,

associated with it in a totally dynamic way. This means, for

example, that a variable rqay have an integer value associated

with it at one moment, and later in the same program that

variable might be used to name a list value or even a

function value.
)

13

Par1:. I: LISP

Introduction

The macro facility in LISP hel~s to support these programming

techniques while maintaining efficiency. The data type

manipulating functions may be defined as macros which can

either be destructively replaced at run time by the

representation dependent code, or if a compiler is available,

can be expanded into code equivalent to that produced if the

representation was used directly.

Regardless, we should strive to write the algorithm in an

"abstract" way which expresses the "process" rather than

encodes the representation, and relegate the details of

representation to well-defined interface specifications. As

we have just seen, LISP contains excellent mechanisms for
•

supporting this style of programming. It is amusing to

reflect on how much and how 1 it tle we have learned about

programming in the last two decades.

One of the most distinctive features of LISP is its

representation of programs as data items. For example, if we

had values 3 and 2 associated with X and Y, respectively, we

could evaluate the list (PLUS X (TIMES 6 Y)) receiving the

value 15. This duality of program and data is more than an

historical anomaly; it is more than an expediency based on

the lack of available character sets to support an Algol-like

syn tax for LISP. It is an important ingredient in any

application which expects to manipulate existing programs or

14

)

)

)

Introduction

construct new programs. Such a!?plications include editors,

debuggers, program transformation systems, as well as

symbolic mathematics systems and Artificial Intelligence

applications (a system that learns must be expected to change

its behavior or programs).

When a text editor manipulates a piece of source program it

is acting on program elements as text items. Of course, most

text editors view programs as simple strings of characters

without structure or content; this view is an archaic remnant

of the keypunch days; and of course, the program could be

transformed from its internal representation into a form

which the editor could manipulate and then retranslate.

However, unless "programs" are a data type of the language in

) which the editor is expressed, the transformation program

')

cannot be expressed in that language. That "missing data

type" unnecessarily increases the machine-dependent component

of the implementation. For pure economy of expression it is

beneficial to include a full complement of program

manipulation operations. Given this facility, it becomes

easy to write a program editor in the language itself.

A debugger, again by definition, must be able to manipulate

programs. Once an error is discovered, the debugger must be

able to modify the program and possibly continue from some

modified state. Again, with· programs represented as data,

expressing debuggers in the language is straightforward.

15

Part I: LISP
Introduction

The term "program transformation" system spans a spectrum

from compilers to source-to-source program i~proving systems.

In its general form, a compiler expects a program as input

and produces a program for another machine as output. Again,

if the language supports programs as data objects, this

compiler can be expressed in the language. Most other

languages obscure the problem by describing the compiler as a

program which takes a string as input, converts the string to

an internal non-executable form, and produces another string

as output.

computing.

This is a very localized view of the world of

A healthier approach views compilation as the

last phase of the program construction process where the

compiler is to transform a correct program into one which

will execute more rapidly. Earlier phases of the programming

process are responsible for the construction, debugging, and

modification of the program. The unifying perspective of a

program as a data structure cleanses the intellectual palate;

all phases of an intelligent programming environment come

into appropriate proportion.

In summary, LISP is best thought of as a "high level machine

for programmers"; it contains a library of ooerations,

including the components like symbol tables, scanners,

parsers, and unparsers, with a processing unit to evaluate

the combinations of these ingredients. Yet it imposes little

structure on the programming process, believing that

16

)

)

introduction

discipline is best left to the intelligence of the

programmer. LISP 1s a tool, no better or worse than its

user. One goal of this documentation is to develop and

reinforce an appreciation for self-discipline as well as

reveal the elegance and beauty of LISP.

17

Part I: LISP
Data Structures

Data Structures

This section gives a more thorough and detailed treatment of

LISP data. As we have seen, LISP data comes in at least two

flavors: atomic objects and composite objects. Atomic

objects are further divisible into numeric and non-numeric

objects. The non-numeric objects --called literal atoms-~are

a versatile naming structure for LISP data. They are used as

constants of the programming language (T and NIL), as

primitive data objects (TIMES, PLUS, and the variable names

in the previously discussed algebraic examples), as

representations for all the programming language constructs,

and, as we will see momentarily, literal atoms can also be

used to capture or attract large collections of data using a

literal atom as a name in a dictionary.

Many LISP implementations (including ~LC-LISP) include

character and string data types. This allows the

manipulation of• atom-like character sequences and, with

conversion programs, allows the dynamic generation of new

literal atoms just as numeric operators can introduce new

numbers into the programming environment. This dynamic

creation of data objects is a hallmark of LISP that is

particularly apparent in non-atomic objects.

One characteristic of LISP is its ability to take two

18

'

)

()

)

Data Structures

existing objects and build a new structure from them. Since

this construction operation can be repeatedly applied, we can

define quite complex structured objects.

construction operation is called CONS.

Traditionally, the

It is sometimes helpful to visualize the CONS operation as

constructing a binarv tree (recall that CONS is a binary

operator), such that the first operand of CONS is the left

branch of the tree and the right branch of the tree is • the

second operand of CONS. Given two branches, we graft them

together (note that the structure need not necessarily be a

tree; since operations like (CONS X X) are allowed we may

introduce shared structures.)

) The most general form of these binary trees are called

Symbolic Express ions, S-express ions or S-exprs for short.

Typically one manipulates these s-expressions in a notation

called dot notation --a notation which represents a tree with

left and right branches br-1 and br-r respectively, as (br-1

)

. br-r).

Here are a few examples of trees and· their dot

representation:

/\
, (A • B)

19

/2
. f }, ~
~ ,, "

(A. (B. C))

--- ------------ -------------- -----------~

Part I: LISP
Data Structures

For all intents and purposes a special form of S-expr called

list notation suffices. We saw list notation in the

algebraic simplification example. Recall a list was either

empty --denoted by ()--or was of the form (el, ... en) where

each ei was either an atom or a list itself.

We may represent list notation as an s-expression by the

following rules:

1. Map() onto the atom NIL

2. Map (el, ... , en) onto

(el . (e2. (... (en. NIL) ...)));

or in terms of a tree representation we have:

•

/JrL

20

Uc:l l..d .:>l:.I:"UC 1:.ur:-es

Besides being able to construct new objects, we must also be

able to examine the components of such constructed objects.

Operations which allow such examinaion are called selectors:

they select components. At the s-express ion level we have

two selectors: one to select the left branch of a tree,

called CAR, and one to select the right branch, called CDR.

Since non-atomic S-exprs only have two branches, CAR and CDR

suffice. An historical note: the names CAR and CDR are

derived from the machine representation of the fi-rst

implementation of LISP. This was done on an IBM704: that

machine --a micro in terms of the capabilities of today's

hardware--had its 36-bit ·word divided into several subfields.

Two of those field were the "address field (15 bits) and the

"decrement" field (also 15 bits): those fields were used to

) encode the CAR-branch and the CDR-branch, respectively.

At the 1 is t-notation level we have another collection of

selectors and constructors. The basic selectors are called

FIRST and REST, and select (respectively) the first element

of a list and all of a list but the first element. The basic

constructor is called CONCAT. In almost every implementation

of LISP, FIRST, REST, and CONCAT are id·entical in

implementation to CAR, CDR, and COUS: however it is good

style to program at the S-expr level using operations based

on CAR, CDR, and CONS, and program at the list level using

FIRST, REST, and CONCAT. Do not mix them. This dichotomy is

our first example of abstract programming. That is, we

) 21

Part. I: LISP
Data Structures

should strive to program using operations, without

consideration for how these operations are implemented in

terms of lower-level constructs. The connection between

operations and their implementations is made by simple

"interface" specifications.

this programming style:

There are several benefits to

first, programs tend to become

small, modular units; this improves readability and

maintenance. Second, separation of conception from

implementation gives one the freedom to vary the

implementation without as much danger of destroying the

correctness of the program; all one need do is modify the

interface specifications when the lower-level representation

is changed. The algorithms above this specification

"firewall" need not be changed.

LISP also includes data types that carry implementation

information. For example, input and output functions must

interface to the underlying file system. Therefore we have a

data type which encapsulates file control information. Also,

every LISP implementation must have a collection of primitive

functions to manipulate data and control the flow of the

algorithm (CAR, CONS, COND, etc.}, and usually a library of

useful definitions (APPEND, COPY, etc.}. These definitions

are typed objects of the class of executable "micro code"

called SUBRS or FSUBRS.

are included in TLC-LISP.

Both "file" and "code" data types

22

)

)

)

i:;vaJ.uat1.on

Evaluation

With the previous sections as background, we can present an

abstract description of the LISP evaluation process.

The family of LISP expressions consists of the following:

Class of expression Examples

constant 1 T '(1 2 3) CAR "xyz"

These are constant of the class: number, truth-value, list,
function, and string respectively (in an implementation,
"constants" like T and CAR may not really be "constants" -
they may actually be implemented as variables, and therefore
subject to redefinition by the user. Of course such user
actions are discouraged when attempted on very primitive LISP
operations but, in keeping with the open nature of LISP, such
actions are seldom explicitly prohibited.)

variable X FACT

These are variables which might be found naming simple
variables and functions respectively (recall that variables
are type-free!)

combination (CONS 'A (FIRST L))

This combination represents the application of the function
constant CONS to two arguments: a constant, and another
combination.

conditional
expression

(IF X
(CONS XL)
NIL)

This conditional express ion returns the value of .~mbination
{CONS XL) if the value of Xis non-NIL; otherwise NIL is the
value of the expression.

Elegant simplicity!! As a result of LISP's simple syntax,

23

Part I: LISP
Evaluation

the evaluation process is equally uncluttered. An even more

pleasing property results from LISP' s incl us ion of program

elements as data items: we can write the evaluation process

in LISP itself. We won't carry out this last step here; it

is an exercise which every LISP programmer should perform.

Here we will only sketch the process and highlight the non

trivial spots.

1. The evaluation of constants: Any constant simply
evaluates to Ttself°:- A certain amount of care needs to
be taken: though string literals, and numbers are
recognizable as constants from their appearance, we also
need to be able to differentiate between constant s
express ions and S-express ions which are representing
elements of the LISP language.

For example: it is clear that the expression (CONS 1 1)
should evaluate to (1 . 1); however, what does (CONS A
A) represent? We must be able to distinguish between the
atom A acting as a variable and the atom A acting as a
constant. LISP's solution is to prefix constant s
expressions with a single-quote. Thus (CONS 'A 'A) gives
the value (A . A), and (CONS A A) means make a dotted
pair both of whose branches are the value currently
attached to the atom A. Note that this difficulty -
differentiating language constructs from language data
structures--is only a problem in a language like LISP
that allows language constructs to be data structures!

To tell the complete truth, the single-quoting
convention is only an external abbreviation. Internally,
LISP will translate '<sexpr> into (QUOTE <sexpr>), making
(CONS 'A 'A) into (CONS (QUOTE A) (QUOTE A)) which is a
true LISP data structure.

Note that besides simple constants like S-expressions,
numbers, and strings, LISP also has "functional
constants" like CAR and COND. The term "constant" simply
means predefined; all these predefined functions may be
re-defined, though of course flagrant refedini tion of
LISP primitives will lead to obscure programs at best,
and system destruction at worst. On the other hand,
tasteful redefinition can be useful. For example,

(LET ((PRINT NEW-PRINT)) ... (PRINT ...) ...)))

24 -

)

)

Evaluation

2.

will use NEW-PRINT instead of the sys tern-defined PRINT
with in the body of the LET-express ion. Th is could be
helpful in redirecting output for other purposes. ~his
refedinition of system-level functions is a special
instance of "d?11amic scoping" .--LISP's strategy for
evaluation 6 f variables.

The evaluation of a variable: Recall that LISP variables
are "type-free"meaning that a variable is free to take
on any type of value --number, string, list, or even a
function. It is the value which carries the type
information; and it is the context in which a value is
used which determines whether or not a "type restriction"
is satisfied. For example, an error is signalled if one
attempts to apply a string as a function. All this means
that the evaluation process for variables is reasonably
straightforward: using the variable name, extract ·its
value from within the implementation.

Of course things are not quite all that simple. The
conceptual issue raised by LISP is when to find the
values; a few sections from now we will discuss the
"how" of the programming techniques used in implementing
LISP's variable binding, but here we restrict ourselves
to conceptual questions. The issue is one of scoping
rules. Scoping rules come into play when one adds
function definitions to our system; in particular, the
question involves free variables: variables which are
not formal parameters of the definition.

Algol-like languages (including Pascal and ADA) use a
static scoping rule, meaning locate values of free
variables at the time a function definition is installed
in the system. This rule relates well to those languages
with a penchant for compilation, since a compiler nust be
able to generate code from static text.

LISP defaults to a rule called dynamic scoping which says
locate the values of free variables at the time their
values are requested; that is, at the time the function
is applied. This rule fits in well with LISP's
interactive style of program development, since in LISP
programming one frequently begins executing program
fragments before all components are defined. This
programming style is called "middle-out" as compared to
"top-down" or "bottom-up".

3. Combinations: A combination, also called a function
application, is evaluated in a call-by-value fashion.
That is, the function position is evaluated, assuring
that a functional object is available there; then each of
the actual parameters is evaluated in a left-to-right
order before the function is applied. Note that this

) 25

Part. 1: Llt>P

Evaluation

description of evaluation is recursive: the evaluation
of a combination involves evaluation of all of the
components of the combination. Typically, that process
will terminate with values to continue the computation.
If the called function is a primitive, then these values
are passed to that function.

For example, consider: (CDR (CAR '((A. B} . C)}) or its
unabbreviated form (CDR (CAR (QUOTE ((A. B) . C}))).

The evaluator would come upon the form (CDR ...) first.
Evaluation of CDR yields a functional object; however the
operand of CDR requires further evaluation. It itself is
a combination: (CAR ...). The evaluation of CAR yields
a functional object. How consider the evaluation of the
argument to CAR; this time we encounter QUOTE. QUOTE is
handled specially (see 4, below); QUOTE always returns is
argument unevaluated; this time it is the constant ((A.
B) . C). We apply CAR, getting {A. B). This value is
finally passed to the outer CDR, resulting in B.

This example is typical of what happens in calling
primitive functions. If the called function is a user-
defined function, then added care must be taken.

A user-defined function has the following internal
structure:

(LAMBDA {<param-1> <param-n>) <body>)

where (<param-1> . . . <param-n>) are called formal
parameters and the <body> is a sequence of LISP
expressions. The complete unit is called a lambda
expression. "LAMBDA" is a reserved word indicating that
the material which follows it represents a procedure.

Once the values of the actual parameters are computed,
the current values of the formal parameters of the called
function are saved, and the evaluated parameters are then
associated with the formal parameters; this process is
called lambda binding. After the lambda binding is
completed, the evaluation of <body> is performed. Upon
completion of that evaluation the values of the formal
parameters are restored to the values which were current
when the function was entered. For example assume the
variable X has value 5 and consider:

((LAMBDA (X Y} (CONCAT X Y}) 1 A 1 (l 2))

(ADDl X)

To evaluate the first line we save the values of X and Y;
bind X to the atom A and Y to the list (1 2); note that

26

)

1)

')

Evaluation

besides getting a new value, X also gets a new type. We
evaluate the CONCAT expression, returning (A 1 2), and we
restore X and Y. The evaluating of the ADDl expression
yields 6.

4. Soec ial Forms: Special forms have the appearance of
combinations: e.g., lists with a function-like object in
the function-position. However, special forms are not
combinations in the sense of 3. Combinations evaluate
their arguments; whereas special forms pass their
arguments as unevaluated data structures, and it is up to
the special form to process the arguments. For example,
in TLC-LISP if FOO is defined as a special form, then the
call (FOO (CONS 2 (ADDl 4))) would result in passing the
list (CONS 2 (ADDl 4)) --not the value (2. 4)--to FOO
for processing. If evaluation is desired, then the LISP
evaluator must be called explicitly. See the manual for
examples of special form definitions.

There is a popular misconception that special forms are
"call-by-name" functions; they are not the same.
Primitive special forms of TLC-LISP include the COND,
QUOTE, and IF constructs. IF and COND evaluate only a
selected subset of their "arguments", while the purpose
of QUOTE is to stop evaluation altogether.

Again, the description of IF and COND, given in the body
of the TLC-LISP manual, will transform into simple LISP
algorithms to be added to the evaluation routine.

The above four cases represent the basic evaluation algorithm

of a LISP implementation. It is most strongly recommended

that the reader specify such an algorithm. The subtle point

to contemplate in such an endeavor is LISP' s treatment of

functional objects. The interplay between such objects and

the scoping rules is most interesting and worthy of a serious

reader's time.

These LISP evaluators give the semantics, or meaning, of the

programming language constructs. Put another way, the four

steps compose the central processor of a simple LISP machine.

27

'

,

.l:'a:t:-1:. l.: Ll..::>.I:'

Evaluation

There are two missing ingredients in the machine: first, the

machine instructions; these include the data and testing

instructions --CAR, CDR, CONS, ATOM, and EQ--as well as the

control instructions --QUOTE and COND. All others LISP

operations can be defined in terms of these operations. The

second missing component of the machine is the "microcode" to

run the CPU: that is the business of the section "How LISP

works".

Around this kernel called "pure LISP" is built a powerful,

pragmatic programming tool. The next few sections, and the

remainder of this section discuss some of those features.

The LISP we have discussed so far differs substantially from

the traditional view of programming: there are no assignment

statements or iterative constructs. More generally there is

no concept of "state" or "side-effect". Every "non-toy"

LISP, including TLC-LISP, has included a healthy portion of

traditional programming techniques. We wi 11 leave the

details of these artifacts to the manual and will restrict

our attention to some of the difficulties which they cause in

language design and implementation.

First, the concept of "state": the most common manifestation

of "state" in programming languages involves the assignment

statement. That construct views the world of variables as a

collection of slots, each of which can contain a value. We

28

)

.r:;va.1uation

move through the computation, extracting values from the

slots, modifying them, and placing them back in slots. This

is a very "undisciplined" view of variables as compared with

the "structured" access of variables present in pure LISP.

The binding mechanism of LISP matches variable accesses to

the control flow of function entry and exit; in contrast,

assignments are often allowed to occur in a totally arbitrary

way. This has detrimental effects at the theoretical end of

the spectrum, in language implementation considerations (see

"How LISP Works"), and even impacts on "sociological" issues

of programming style.

The most well-known attribute of an assignment statement is

its ability to cause a side-effect, meaning that it will

) affect the state of the computation outside of the current

environment. For example, if a side-effect occurs, one
i

cannot guarantee that two executions of the same piece of

code will give the same result since the state has been

modified. "Impure" LISP has both assignment statements to

modify the state, and operations to modify data structures.

These are related, but not identical ideas. For example, in

a language like FORTRAN we can allocate an array such that

the same array is referenced by two different variables, IX

and IY, then changing a value through IX effectively changes

a value in IY. This is a problem of sharing values called

aliasing. Sharing of values is not problematic provided one

cannot modify values. The alternative to modifying values is

) 29

Part I: LISP
Evaluation

to copy them; this is what pure LISP does. The CONS

operation makes a new cell and copies the arguments into the

CAR and CDR-parts (for more details see "HOW LISP ·works"}.

Modification operations introduce large impurities into LISP;

situations similar to the FORTRAN example can occur, except

in the LISP world, it is nowhere near as apparent when

structure is being shared and as a result, modification

operations must be used with great care. These operations

are described in their own section of the TLC-LISP manual.

We will close this section on a milder note, discussing some

added styles of evaluation. Besides the two basic styles of

application (call-by-value combinations, and special forms),

many LISP's include a macro facility. Since we consider LISP

an assembly-level language, it is only fitting that it have a

macro capability similar to that enjoyed by many other

assemblers- A traditional assembler utilizes macros as an

abbreviational device such that the macro is "expanded" at

the time the text is assembled. LISP doesn't really

assemble, but intepretively executes the internal form of the

list structure; therefore LISP macro expansion occurs at run

time. When a macro call is recognized, the instructions in

the body of the macro are carried out; these instructions

transform the call into another piece of LISP code, and then

the evaluator executes this new code. LISP macros are a

very powerful programr:ting technique to pass programming

details off to the machine. For example, though in LISP we

30

)

)

r.va.tua-c.1.on

have the CONS operation to construct new S-expressions, we

most usually wish to deal with lists. Recall that a list can

be construe ted by a seque nee of CON Se s. We would 1 ike an

operation called LIST that would take an arbitrary number of

arguments and perform like the nested CONSes.

(CONS 1 (CONS 2 (CONS 3 NIL)))= (LIST 1 2 3)

In the next chapter we will show how to define LIST as a

macro. The essential idea involves LISP's program/data

duality: the data-structure representation of the actual

function call is passed to the function as its parameter. In

the above example, the call (LIST 1 2 3) would pass the list

(LIST 1 2 3) to the LIST macro. The list structure will be

) decomposed, reconstituted into (CONS 1 (LIST 2 3)) and

returned for further evaluation. The evaluator can process

(CONS 1 .. ,) but will call the LIST macro again for (LIST 2

3), resulting in (CONS 2 (LIST 3)). Finally (LIST 3) will

decompose in to (CONS 3 NIL), and the process wi 11 terminate

after evaluating

)

(CONS 1 (CONS 2 (CONS 3 NIL)).

Notice that the macro expansion process involves substantial

use of the program/data duality and it is all carried out

without user intervention.

31

------------ ------~--~~"

Part I: LISP
Evaluation

A slightly related idea is called read macros. The read

macro is applied at the input phase of LISP programming. A

procedure can be associated with a character; when this

character is recognized in the input stream, the procedure is

activated. That procedure may perform arbitrary LISP

computations, including further reading of the input. The

result of the read macro is passed to the input stream as if

it were the original input. For example the single-quote, ',

is a read macro. For more details on both kinds of macros,

see the TLC Manual. For examples of their application, see

the file EXAMPLE.AIP; this file contains several annotated

examples from the Artificial Intelligence Programming book.

32

)

)

)

)

Property-lists

Property-lists

As with the previous sections, this section is present to

illustrate another programming concept which is unique to the

LISP programmer's view of the world: the use of property

lists.

A property list --also called a "p-list"--is a data structure

consisting of a collection of pairs: one element of the pair

is called a property name; the other element is called a

property value. Typically one accesses the property list

using a property name, and extracts a property value or

changes that value. In this regard, a property list is

similar to a more traditional record structure. However LISP

p-lists have two additional and important attributes. First,

they are dynamic; they may grow and shrink at run-tine. This

makes them an extremely flexible storage mechanism; since

their storage need not be declared ahead of time. Second,

this flexibility combines beautifully with LISP' s program

data duality, giving rise to a technique called data driven

programming.

Recall our example of algebraic simplification. There we

organized the program as a large conditional expression, each

branch testing for a type of term --variable, constant, or

product. A similar organization was used in our description

33

-~- ---~-----

Part I: LISP
Property-lists

of the evaluation process. That organization can be

characterized as a monolithic algorithm that tests and

decomposes its input, taking actions accordingly. We can

organize these problems in an orthogonal manner, viewing the

fragments of the algorithm which pertain to specific data

types, as in fact, properties of the data type itself. Thus,

for example, the class of LISP variables possesses an

algorithm for evaluation of any element of that class. Using

LISP property lists, we can implement this idea by placing an

"evaluation" property name on the property list of the class

"variable", and associated with that name, a LISP function to

carry out that evaluation. In general, the evaluation is

performed by extracting the algorithm from the class which

contains the current instance, and then applying that

algorithm to that instance. This process of distributing the

algorithm using the idea of objects being instances of

classes, is called data driven programming; it is a r.1ost

powerful programming technique.

34

)

)

)

LISP as a Systems Language

LISP as a Svstems Language

The traditional vehicle for systems implementation has been

assembly language. Given our perspective of LISP as an

assembly language (including macros), it is natural to

investigate the viability of LISP as a systems development

tool. The compulsion becomes stronger when we consider that

artificial intelligence programming tends to be among the

most complex of tasks and LISP is that field's· primary

programming language.

What does LISP provide for a systems designer?

) There is a built-in collection of primitive data structures

along with appropriate functions to_ manipulate those items

and build complex objects from components. In a modern LISP,

these data objects include: numbers, strings, identifiers,

and arrays; arrays and arbitrary precision numbers are not

included in this version of TLC-LISP. These primitive

notions are augmented by operations for constructing new data

objects; one may construct new strings and arrays at run

time, combine existing structures into new objects using

CONS, and construct record-like structures using the

property-list operations.

)
The details of creation and management of LISP objects is the

35

Part I: LISP
LISP as a Systems Language

province of the language and not the concern of the program

designer. The creation of objects is totally dynamic; one

does not have to declare space allocations for strings,

records, or arrays before beginning to program. Storage

management is handled by the system using a "garbage

collector" and is totally transparent to the user.

LISP is interactive. There is an evaluator which "{ill

execute expres~ions and produce the result without complex

conventions and declarations. This calculator-like behavior

allows one to design, program, and debug in an incremental

fashion. Small subcomponents can be designed and tested,

then set aside, later to be composed with other small pieces

to make a larger component. One does not write large

monolithic LISP programs very often.

LISP is a debugging language. A major problem in designing a

complex system is the debugging and modification of ideas.

One does not begin such a project with a precisely sepcified

algorithm; one begins with ideas, and uses the machine to

test those ideas. Therefore, a major mode of operation is

"modification and testing". Modification in LI-SP is easy;

the whole of LISP' s environment is open to change; we will

say more about this below under "extensibility". Testing in

LISP is also simplified. LISP is a machine language, and as

.such, the debugging devices present and receive their

information in LISP; one debugs LISP programs in LISP. There

36

)

)

l

L.L.::,.I:' as a ;:::,ys ~em::; uctlly uctye

are builtin functions to handle errors, suspending the

computation and allowing the user to examine or modify the

suspended state. These functions, of course, can be replaced

by the user, and much more complex monitoring programs can be

built --all in LISP.

LISP is a tool box. There are bu il tin II tools 11 --parsers,

, scanners, output formatters, and table maintenance programs-

which relieve the designer of many lower level

implementation details.

LISP is extensible. The

modification; few decisions

implementation is open to

in the implementation are

irreversible. One can change the LISP 1 ibrary, the

) evaluator, the parser, and the scanner to the extent of even

defining a new language.

)

This last point, extensibility, is worth expanding upon.

Every function name in the LISP environment has a piece of

program associated with it. That association can be broken,

either temporarily using a lambda binding, or permanently

using an assignment. This will allow us to redefine the LISP

library. Extensibility requir.es more: we must be able to

define new control structures. This means we must be able to

modify the evaluation process. This can be done in LISP in

at least two ways.

evaluator; this

We can install a new version of the LISP

is simple because the evaluator is

37

Part I: LISP
LISP as a Systems Language

expressible in LISP. An alternative is to introduce new

control operations by adding a new special form and carrying

out the evaluation ourselves.

These techniques allow modification of the semantics of the

language; what about syntax? Suppose we wish to define an

Algol-like language --a language with substantially different

syntax. Here we need do more than just replace the parser;

we need to modify LISP's conception of what is a well-formed

expression. Most LISP input systems (including TLC-LISP) are

implemented in a table-driven fashion. By this we mean that

all of the information about what is a legal construct is

stored in a table, rather than being "hard-wired" into an

algorithm. To change the the language one changes the table.

For example, in TLC-LISP each character has an associated

attribute, describing how it can participate in the input:

it's a dig5.t, it's a letter, it's a delimiter, it's a comment

character, etc. That table is user-modifiable. To design a

new input syntax one changes that table and supplies a new

routine to collect the input tokens. The new routine will

build a LISP-representation of the input; that representation

can be executed by LISP' s evaluator and the results can be

displayed. For more details about syntax extension, see the

"Examples" section in Part II.

used to format output.

Similar techniques can be

A production-quality version of LISP is a fluid collection of

38

)

)

)

)

L~~~ as a bystems Language

tools which can be used to build as varied a collection of

applications as any other language. Therefore arguments that

LISP is "special purpose" do not hold. Arguments that LISP

need be inefficient are also fallacious; it has been

demonstrated that one may construct a LISP compiler which is

as efficient as a FORTRAN compiler when dealing in the

numerical domain. Clearly FORTRAN cannot begin to compete

with LISP in the non-numerical domain.

The power of LISP is truly astounding. There is not one

single feature which is the source of this power; it is a

blend of several aspects. In combination, these ingredients

give a most powerful, but controllable programming language.

39

- - - -- ----------------

Pa rt I: LISP
How LISP Works

How LISP Works

This section is not a description of the implementation of

any particular LISP; rather, it is an overview of several

techniques which occur in LISP implementations. Since much

of this information is both useful and somewhat difficult to

ob ta in in a co hes iv e form , i t is inc 1 u de a he re . I ts

assimilation will improve one's understanding both of LISP

and the interrelationships between the practical techniques

of systems and language design.

A LISP machine is best thought of as a calculator: one

prepares an input expression, presents it for evaluation, and

receives an answer. That input may have a side effect --for

example, the definition of a function--, but one always

receives a~ answer. This "top level" of LISP is called the

read-eval-print loop, because READ, EVAL, and PRINT are the

names of the functions which accept input, evaluate

expressions, and prepare output respectively. In the

following three paragraphs we will discuss some of the more

interesting features of these algorithms.

READ: The LISP reader (also called a parser) has the overall

responsibility to transform the external linear list

notation into the internal tree-structured

representation; of course the TLC-LISP reader has more to

40

)

)

How LISP Works

do --numbers must be internalized to a form compatible

with the arithmetic unit of the machine; strings are

stored in a more efficient non-list from--but we restrict

attention to the primeval reader. Functionally, there

are two components to the reader; the most primitive

piece is the LISP scanner called SCAN. This routine will

recognize the characters special to LISP: for example,

space, (, and) . SCAN also is responsible for building

the internal form of an atom. LISP atoms play a role

similar to that of words in a natural language

dictionary; in fact since property lists are most usually

associated with atoms, the analogy is exact. The

property name is a "part of speech"; the property value

is the corresponding meaning. A dictionary entry

contains all the information about that particular entry,

including pointers to other words in the dictionary. The

organization of the dictionary is such that we need only

look in one place for the meaning of a particular word;

without such assurance a dictionary would be useless. To

insure similar organizational benefits in LISP, we

require that RATOM make every reference to a particular

atom point to the same dictionary entry.

example, that the list (A B (A) (A B))

following structure:

41

This means, for

would have the

•

Part I: LISP
How LISP Works

EVAL: The previous section on evaluation discusses the "what"

of evaluation; this note describes some of the "how."

A major implementation decision involves the intricacies

of variable binding and access. There are two common

strategies: deep binding and shallow binding; they

correspond closely to the distinctions between standard

programming and data-driven programming. In a deep

binding implementation the search algorithm is given a

variable name and a table of names and values; it will

search for a match in the name column and return the

corresponding value as the value of the variable (see the

discussion of ASSOC in the TLC-LISP manual). With

shallow binding, we position the value of the variable on

the property 1 is t of the a tom which represents the

variable. In this case the search routine need only

examine the property list. The "value property" is

always found in the value cell of the variable; no search

is required.

As with most things, there is "no free lunch". The

s impl ici ty of the shallow-bound search is offset by

corresponding complexity in the maintenance of the

bindings. As one might suppose, the maintenance problem

in deep binding is simpler. Recall our discussion of

LAMBDA and the binding properties (called "shadowing")

42

)

l

)

)

)

How LISP Works

which made old values of the formal parameters invisible.

The straightforward implementation of deep binding can

accomplish this behavior by structuring the table as a

list, and encoding the binding rule to add pairs to the

front of the list. The implementation of shallow binding

involves a destructive store into the appropriate value

cell after saving the old value. T}?.e corresponding

"unbinding" operations are of comparable complexity. For

a complete discussion of LISP implementations see Anatomy

of LISP.

Regardless of the binding strategy used, a major concern

in the evaluator in~olves what to do with the value that

finally gets extracted. The problem is particularly

involved in the case of a combination (or function

application). First, the function position is examined:

if that object represents a call-by-value function, then

the arguments (if any) are evaluated in left-to-right

order; if the function object is a special form, then no

argument evaluation is involved. The next phase involves

the parameter passing operation: in most LISP

implementations (incluoing this version of TLC-LISP),

this involves simple stack, or push-down list,

operations. However, the most general LISP must be

prepared to do more. LISP' s unrestrained use of

functions as data objects can force a tree-like, rather

than stack-like, behavior on the parameter passing

43

Part I: LISP
How LISP Works

implementation. 'I'his difficulty is called the "funarg

problem", or "functional argument problem". This issue

is beyond the scope of either this discussion or this

implementation; again, see Anatomy of LISP for details.

A final note related to binding should be discussed here:

regardless of the scoping rules or binding strategy, the

implementation is such that when we leave a scope the

appropriately saved bindings are restored. That is,

these bindings follow function entry/exit protocols. In

distinction to this are the bindings which we encounter

with assignment statements. These later bindings --

called "destructive bindings"--cut through program

structure as surely as to beleaguered "goto" cuts through

control regimes. An assignment-like binding, called

SETQ, exists in LISP. Both assignments and gotos are

useful programming constructs, but should be used in

moderation. Contemporary programming has two legs: the

applicative limb, containing recursive programming and

the related non-destructive binding; the imperative limb,

containing iteration and destructive binding. To program

effectively we need both legs.

PRINT: PRINT is the least complex of this trio, converting an

internal form to a readable external form. Some of the

more interesting print routines do "pretty-printing".

That is, the format the output using conventions based on

the structural nesting of the expressions.

44

)

)

)

)

How LISP Works

Memory Management: The final topic of this section is the

LISP memory management system. LISP views data as a very

dynamic and volatile commodity. Objects are created and

destroyed freely and constantly in a LISP program. The

major mechanism for creation is the CONS function which

creates a new node in a list structure. The memory

management system maintains a data structure called a

free-space list; requests from CONS extract pristine

nodes from this list. When that list is exhausted, a

storage reclaimer or garbage collector, is called to

recover nodes which have been discarded. These

recyclable nodes are discovered by scrutinizing the

current state of the computation, marking all the data

items which are still being used. This process is called

the mark phase; it follows the topology of the LISP list

structure. The next phase, the sweeo phase, follows the

topology of memory, visiting every node --both marked,

and unmarked. It collects the unmarked nodes into a new

free list, being assured that any unmarked node was

inaccessible and therefore "garbage". Armed with this

new supply of nodes, the manager can now fill the CONS

request. For more complete discussions· of garbage

collection see Anatomv of LISP or Knuth's volume.

45

Part I: LISP
Bibliography

Bibliography

Allen, J. Anatomy of LISP, McGraw-Hill Book Co., New
York, 1978.

Allen, J. Don't Overlook LISP, Guest Editorial, BYTE, March
1979, p.6 ff.

Aiello, L. et. al., Adding Classes to LISP, Institute di
Elaborazione Della Informazio~ B76-13, Pisa,
1976.

BYTE Magazine, Special Issue on LISP, August 1979.

Charniak, E., Riesbeck, c., & McDermott, D., Artificial
Intelligence Programming, Lawrence Erlbaum
Associates, Publishers, Hillsdale, New Jersey,
1979.

Friedman, O., The Little LISPer, SRA Publishers, Menlo Park,
CA., 197 4.

Kowlaski, R., Algorithm=Logic+Control, Communications of the
ACM, Vol 22, No 7, pp424-436.

46

)

. l

)

)

Bibiliography

Knuth, D., The Art of Computer Programming, Vol. 1, Addison
Wesley, 1968.

Pirsig, R., Zen and the Art of Motorcycle Maintenance, Bantam
Books, flew York, 1974.

Sandewall, E., Programming in an Interactive Environment:
The LISP Experience, Computing Surveys, Vol 10,
No.l, March 1978, pp33-71.

Steele, G, and Sussman G., The Art of the Interpreter, or,
the Modularity_ Complex, -:"1r~AI Memo No. 4 5 3,
Cambrf"dge, May "1.978.

Teitelman, W., A Display-Oriented Programmer's Assistant,
Xerox Palo Alto Research Center, CSL-77-3, 1977.

Winograd, T., Beyond Programming Languages, Communications of
the ACM, Vol 22, No 7, pp391-401.

47

Part 1: LJ.:::H'
Concept Index

I N D E X

A
abstract programminEJ, 21
aliasing, 29
atom, 8

C
CAR, 21, 25
CDR, 21
CONS, 19, 21
constructor, 13

D
data driven programming, 33
deep binding, 42
dot notation, 19
dynamic scoping, 25

E
extensibility, 37

F
FIRST, 21
formal parameters, 26
free variables, 25
funarg problem, 44

G
• garbage collector, 45

I
identifiers, 8

L
lambda binding! 26
lambda expression, 26
list, 8
list notation, 20
literal atom, 8

M
macro, 30

p
parser, 40
property list, 33

Q
quoting convention, 24

R
read macros, 32

)

I-1

)

)

)

Concept Index

recognizer, 13
recursion, 11
REST, 21

s
scanner, 41
scoping rules, 25
selector, 13, 21
shallow binding, 42
side-effect, 29
static scoping, 25
symbol, 8
Symbolic Expression, 7, 19

T
table-driven, 38
the conditional expression, 11
type-free, 13, 25

V
value cell, 42

I-2

)

Introduction to TLC-LISP

This version of TLC-LISP represents the initial strand in a

sequence of powerful LISP dialects for the next generation of

microcomputers. We have avoided those features of preceeding

LISP's which represent historical anachronisms. The future

LISP machine will be a personal computing environment with no

encumbering operating system; thus that environment must be

) prepared to service the general computing requirements of the

user. To that end we have included a full complement of

arithmetic features as well as including the character and

string data types and associated operations. We have allowed

string-typed variables as sources and sinks for LISP input

and output, respectively. For example readers and printers

can use the terminal, the file system, or lists-of-strings as

their targets.

)

With some reservation, we have retained the "dotted-pair" as

the basic structured data type of LISP. The major practical

benefit of dotted pairs is one of slight storage efficiency.

Newer techniques for representing LISP lists have all but

50

Part II: TLC-LISP
Introduction

erased that advantage. The benefits of smoother notation,

coupled with the easing of storage requirements, combine to

suggest lists as the basic data type for LISP. However, it

may be precipitous to fly in the face of history; dotted

pairs remain, but with a ~ strong admonition: if you

program with lists, use the list primitives, not the S

expression primitives. Furthermore, when programming higher-

level constructs invent names for the structure-manipulating

operations that reflect the semantics of the programming

task. Don't write stuff like (CONS (CADDAR X) (CDDADR Y));

its hard to read, hard to maintain, and downright anti-

social. For further elaboration of this view see "An

Overview of LISP" in the August 1979 BYTE, or see the books,

Anatomy of~ or Artificial Intelligence Programming. The

abstract approach to LISP programming, which we are

advocating, is gracefully supported by LISP macros; the

subject of the next paragraph.

A powerful LISP programming construct was invented after the

implementation of LISP 1. 5; this is the LISP macro. This

represents an excellent exploitation of the program-data

duality of LISP. A similar, but not identical, feature

called read macros was invented still later. Both of these

features are included in TLC-LISP. See the appropriate

sections of the manual for detailed discussion.

TLC-LISP also acknowledges the progress made in the last

51

)

Part II: TLC-LISP
Introduction

twenty years of language design by including more structured

) forms of iteration than those supplied by LISP 1. 5. We have

included an extended version of the MACLISP DO-expression;

SELF, an elegant form of the LABEL construct derived from

VLISP; and the MacLISP CATCH-THROW pair that embodies a

powerful technique for non-structured exits. We have also

included a version of the ancient LISP SELECT-expression,

more recently re-invented as the "case-statement" in Algol-

like languages. These explicit control constructs, coupied

with LISP's implicit control (call-by-value and recursion)

give the programmer a powerful set of tools for structuring

solutions to complex problems.

To enhance read ability of TLC-LISP programs, an embedded

) comment convention has been included. A comment begins with

a semi-colon (;) and is terminated by either a carriage

return or a second semi-colon. The second convention allows

)

comments to be embedded within arbitrary list structure. For

example:

(IF <predicate> ;then; <term>
;else; <term>)

has ";then;" and ";else;" as comments which highlight the

semantics of the IF-expressi_on.

We have also included some of the more succinct notations for

controlling parameter passing, derived from MDL, Conniver,

and the MIT LISP Machine. Most programming languages require

52

Part II: TLC-LISP
Introduction

that there be a one-to-one correspondence between the actual

parameters and the formal parameters before binding those

parameters and evaluating the function body. Several LISP

dialects have relaxed that restriction, however usually at

the sacrifice of some very helpful parameter-checking

information: if too many arguments are supplied, their

values are discarded; if too few are supplied, the missing

parameters are gratuitously bound to NIL.

A further relaxation of parameter passing is also desirable:

the ability to supply an arbitrary (therefore variable)

number of arguments. For example we would rather write (PLUS

X Y (ADDl Z)) than (PLUS X (PLUS Y (ADDl Z))). Many

instances of this variadic call can be accomplished by macro

expansion, however the problem begs for a general solution.

Finally, a common application of the "PROG-feature" is the

declaration and immediate initialization of "FROG-variables".

We can accomplish all of these desirable features with

variations on a small set of conventions.

The traditional list of formal parameters in a LAMBDA

definition will be called required oarameters; a one-to-one

correspondence between actual parameters and required

parameters must be fulfilled or an error is signalled. We

extend the LAMBDA syntax using three reserved words:

53

)

)

Part II: TLC-LISP
Introduction

&OPTIONAL &REST &AUX

with the most general formal parameter list being:

{<required> &OPTIONAL <optionals> &REST <rest> &AUX <auxs>)

where any or all of these groups may be absent.

<required> is a sequence of zero or more atom names:

<optionals> and <auxs > are non-empty sequences of either

atoms or lists whose first elements are atoms. In this

second case, the remainder of the list is to be interpreted

as a value to be assigned to the variable represented in the

first element. For example (X (PLUS Y N)) would mean "assign

) the sum of Y and N to x." Finally, <rest> must be a single

atom.

)

The algorithm for parameter matching in this extended form is

as follows:

1.

2.

3.

First, the required parameters must be matched. If these
requirements cannot be satisfied, an error is signalled.

If actual parameters still remain and <optionals> were
catered for, then we continue binding actuals to the
optionals. If we exhaust the actual parameters in this
process then any remaining optionals are bound to their
default value or to UNBOUND if no default value was
supplied.

If after step 2, actual parameters still remain and a
&REST parameter was declared, then the list of the
remaining parameters is bound to the <rest> variable. If

54

Part II: TLC-LISP
Introduction

no REST parameter was supplied then an error will be
signalled.

4. Finally, the auxiliary parameters declared by &AUX are
processed. If initial values were specified, they· are
used; otherwise the parameter is initialized to UUBOUND.

All of these various binding styles are governed by the

LAMBDA binding discipline; that is, the old bindings of these

variables are saved on entry to the function. After the body

of the definition is evaluated the old bindings of these

LAMBDA variables are restored.

The combinations of these various options gives the

programmer a clear, concise, and powerful mechanism to

control the passing of parameters. See the next section for

a selection of examples.

Finally, in preparation for later introduction of functions

as first-class objects (or as "mobile data" as discussed by

V. Pratt in the August BYTE) we have consolidated the

treatment of "simple value" and "function value"; there is at

most one "value 0 associated with an atom at any one time.

We have not attempted to implement a "full-funarg" Z-80 LISP.

Our treatment is reasonably standard: a shallow-bound stack

oriented, but robust LISP.

55

}

)

)

)

Part II: TLC-LISP
Examples of TLC-LISP

Introduction

The information in this section can be skimmed by the

knowledgeable LISP afficionados to familarize themselves with

TLC-LISP. Novices can use these examples in conjunction with

the detailed TLC-LISP manual, the machine, and the

description of the TLC-LISP interpreter (Part II, Section d),

to develop a through understanding of LISP. Like learning to

drive, the best way to learn a programming language is to do

it; experiment.

A Convention or Two

We will distinguish between user input and LISP output by

underlining input text.

LISP is a calculator; the default listen loop will invoke the

evaluator as soon as a well-formed expression is supplied (of

course th is behavior may be changed by the user --see

TOPLEV). If the expression is a combination, then the

activation is initiated when the parentheses balance. If the

express ion is atomic, then we must supply explicitly an

appropriate terminator. The terminator will be designated by

the construction LterJ.

We will also use > as the input prompt character; again

redefinition of TOPLEV can change this.

56

-- --------------- ----~ ---

-l

Part II: TLC-LISP
Examples of TLC-LISP

~ Simple Example

To begin, type LISP <carriage return> to CPM. TLC-LISP will
respond: --

(T. (L. C)) Interpreter, version n.mm ---
Copyright (c} 1980, The LISP Company

>
where the > means that LISP is waiting for input. The
following interchange will discover the values of the atoms
T, NIL, and CONS.

>Titer} ;recall that we underline user input
T
>NIL £ter}
NIL
>CONS fter]:
2DF7 ;this represents the primitive
> functional object, CONS.

Now assume we wish to evaluate the expression (CONS NIL T),
assign the value of the sum of 5 and 6 to x, and then perform
(CONS X NIL), assigning that value to Y:

NIL T)
T)-

;note:

x (ADD 5 6))

no f ter} is needed >(CONS
(NIL .
> (SETQ
11 - ;the value of the

;let's check it
assignment is 11

>X
lT
>(SETQ Y (CONS X NIL))
(11)
>(car Y1
11
>(CDR Y)
Nn- -

;note this is (11. NIL)
;note "case" is ignored

Let's move to some more complex examples: we will illustrate
several styles of function definition using the factorial
function. This is usually written "n!" and is defined as
follows

n! =

>(DE FACTl

FACT!
>(FACTl
6

3)

1 if n=0
n*(n-1)! for n greater than 1
(N) (COND ((ZEROP N) 1)
- J.! (MOL.~ (FACTl (SUBl N))))))

>(DE FACT2 (N} (SELECTQ N

To !l
(OTHERWISE (MUL ~

57 (FACT 2 (SUB 1 N))))))

' }

)

Part II: TLC-LISP
Examples of TLC-LISP

FACT2
>{FACT2 3)
6
>{DE FACT3
FACT3
>(DE FACT3*

FACT3*
>{FACT3 ll_
6
>(DE FACT4

FACT4
>{FACT4 ll
6

(N) (FACT3* ~ fil

iI:!_ ~ {IF {ZEROP ~
--M

(FACT3* {SUBl N) (MUL NM)))))

(N) { DO { { M 1 (MUL N M))
- (ff N (SUBl _N_))_

{((ZEROP ~ M)) ll

>(SETQ FACTS (LAMBDA {N} (IF (ZEROP ~ ~ {MUL N (SELF
(SUBl N}})}})
{LAMBDA (N) (IF (ZEROP N) l (MUL N (SELF (SUBl N)))))
>(FACTS 3)
6 -

Definition FACTl corresponds closely with the mathematical

description of "nl". We first test if N is zero; if so, we

) exit with value 1. Otherwise we perform the multiplication

using the value of N and the result of computing FACTl with

the value of N-1.

)

One might consider FACT2 somewhat closer to the mathematical

ideal since it is a simple "case"-expression, comparing the

value of N against O or OTHERWISE, where OTHERWISE is

guaranteed to match. Both FACTl and ·FACT2 are

straightforward recursive computations, based on the

complexity of the argument, N.

Definition FACT3 is a bit more involved, relying of an

"auxiliary" function FACT3* to carry the burden of the

58

Part II: TLC-LISP
E~amples of TLC-LISP

computation. FACT3 is used only to initialize the variables

which FACT3* needs. FACT3* operates by counting the first

argument down to zero as it builds up the factorial value in

its second argument. Though FACT3* is recursive, calling

itself if N is non-zero, it has a somewhat different behavior

than that of FACTl or FACT2. In particular, when FACT3* has

counted N down to zero, it is all ready to return the desired

value, M. However when either FACTl or FACT2 have counted

their argument down, there is still a nest of (MUL N (MUL

(SUBl N) ••. 1) to be computed be fore the value of the

factorial is available. Somehow FACT3 is more "iterative"

than "recursive"; this idea can be made precise if necessary.

For our purposes, however, we simply note the difference is

recursive style; for some problems the FACT3-style is more

natural; for some the FACT1-FACT2-style is most applicable.

Also note that we may use our ex.tended parameter description

syntax to simplify the FACT3-FACT3* example:

> (DE FACT3 ! J.!!. &OPTIONAL J.!! ill

(IF (ZEROP !!J.

M

(FACT3! (SUBl fil (MUL N M)))))

FACT3!

FACT3! will supply a value of 1 for M when FACT3! is called

initially.

59

)

Part II: TLC-LISP
Examples of TLC-LISP

Definition FACT4 exploits the iterative DO-expression. The

first list argument in the DO is a description of how to

maintain the local variables N and M. The notation means

"initialize M to 1 and on every iteration of the loop set M

to the product of the current value of M and the current

value of N." Similarly for N, we initialize a new variable n

to the value associated with the original N and, on eve~y

iteration of the loop, decrement N's value.

There are several important facts to note about these DO-

variables: first, these names M and N are introduced as

lambda-bindings, receiving the values 1 and the external

value of N. Second, in the iterate phase Mand N are used as

) traditional variables for assignments; one simply replaces

the old values with those computed by the iterator

)

expressions. Third, these iterator assignments must be done

simultaneously. If, for example we reversed the order,

performing N's computation before M's, we would not get the

appropriate factorial computation. Rather than insisting

that an order be imposed, it is more natural to define the DO

such that parallel assignments are the rule. Similarly the

DO is defined so that the initializations are also done in

parallel; it makes no difference in FACT4, but may in

general.

To continue our discussion of FACT4, we pass to the next list

60

-------------- --- - -------- --------~- ----~-----

Part II: TLC-LISP
Examples of TLC-LISP

in the DO; this list contains the "exit clauses". In this

case there is only one: "if N is zero, exit the DO with the

value of M." In the general case there can be several exit

tests and several computations to perform if a test is

satisfied. If none of the tests are satisfied, the "body" of

the DO is executed. In this case the body is empty, so we

pass immediately to iterate M and N. In its general

formulation, the DO is a most expressive programming

construct.

So far all these examples could be formulated quite easily in

most other modern programming languages. In FACTS we begin

to see some of the power of LISP. In this example, we

construct a functional object using the LAMBDA operator and

assign that object to the variable FACTS (if you don't like

the name "LAMBDA", think "PROC"). The ability itself, to

construct functional objects, is novel; to pass them around

as values in the language is most unique (in fact nost LISP

systems do not treat functional values with the regularity

that TLC-LISP possesses). Given that FACTS has a functional

value, we can apply it in the context of a combination like

(FACTS 3).

In the body of the functional object assigned to FACTS we

find the name "SELF". "SELF" is a way to refer to the

functional object which contains the SELF-reference. This

allows us to construct an anonymous recursive functional

61

)

)

Part II: TLC-LISP
Examples of TLC-LISP

object. Assigning it to FACTS only gives it a name (note it

) would not equivalent to write:

)

)

>(SETQ FACTS (LAMBDA (N) (IF (ZEROP ~
1
(MUL N

(FACTS (SUBl N))))))

for if we subsequently performed (SETQ FACT6 FACTS) we would

not have successfully transferred the functional object to

FACT6. Initially FACT6 would work, but after an assignment

like (SETQ FACTS NIL) FACT6 would fail. SELF solves this

problem, separating the transitory naming from the object

itself.

Regardless of this extra power, the examples come from the

traditional numeric domain. It would be most instructive to

see the data structuring facilities in action.

section will discuss such examples.

62

The next

Part II: TLC-LISP
Examples of TLC-LISP

Parsers

When learning a new language, it is always useful to examine

a reasonably large program written in that language. This is

particularly useful when learning a language whose power and

scope is as broad as that of LISP.

One complaint about LISP is its syntax; while other languages

expend a great deal of effort on complex notation, LISP uses

simple variations on the single theme --(<operator> <operand-

1> ... <operand-n>). The simplified notation has several

benefits, as we have seen. A benefit that we wish to exploit

in this section is the simplicity of the parser; the parser

is the algorithm to translate the external list notation into

the internal tree representation. In a moment we will write

a LISP ·parser in about a half-dozen lines of LISP.

Through a series of simple tansforma tions, we will use the

power of LISP and its notational simplicity to write a parser

that will camouflage the LISP syntax under an Algol-like

notational blanket. The final parser will be use·r-modifiable

and table-driven; it will exploit LISP's property lists to

maintain the tables. Those tables will contain both data and

parsing programs, exploiting the program/data duality to give

us a flexible, compact and understandable parser. It is

ironic:· to quiet the complaints of the non-LISP community

63

)

)

Part II: TLC-LISP
Examples of TLC-LISP

who believe LISP's syntax and the above-mentioned programming

) features are obscure and difficult, we depend on those very

attributes to develop a flexible and highly readable parser

for those people. It would be a non-trivial exercise to

encode this parsing scheme in another language without

scarificing flexibility or clarity.

By the time we have constructed the last Algol-like parser

you may feel that the power of the undecorated LISP • is

sufficiently seductive that the notational "convenience"

which we constucted will go unused.

The example of this section requires some concentration; the

problem is non-trivial and LISP may be new to you. However,

_) the major difficulty is unlearning old programming habits and

restriction, and learning how to use the power of LISP to

describe complex problems which could not be succinctly

described and designed with other tools. Let us begin.

)

We discuss a sequence of parsers, leading from a simple

algorithm that mirrors LISP' s 1 ist-structure reader, to a

generalized parser that is capable of supporting an Algol

like pre-processor for LISP. All these algorithms will use

TLC-LISP's basic scanner named SCAN. SCAN processes an input

stream, looking for basic objects --symbols, numbers, and

strings--and delimiters; it will construct the basic objects,

returning their representations as values, and will return a

64

Part II: TLC-LISP
Examples of TLC-LISP

character representation of the delimiter; in TLC-LISP, a

character constant is represented as \<char>. The scanner is

also able to recognize comment strings and strip them out of

the input. All of SCAN's knowledge about what is a symbol,

number, string, delimiter, or comment, is stored in a user

modifiable table; see TYPECH for a description of the tabular

information. Initially, we will use the default LISP

settings; later parsers will modify that table, allowing .us

to describe a totally new syntax.

Our first parser is a simple version of TLC-LISP's READ; it

only recognizes list-notation, not dotted pairs.

(DE READER (&AUX OBJ) (SELECTQ (SETQ OBJ (SCAN))
(\((READ-REST))
(OW OBJ)))

(DE READ-REST{&AUX OBJ) (SELECTQ (SETQ OBJ (SCAN))
(\((CONS (READ-REST)

(READ-REST)))
(\) tHL)
(OW (CONS OBJ

{READ-REST))))

The actual parser in TLC-LISP is more complex. It performs

error checking, allows backspacing and correction, and in

fact is a non-recursive implementation based on an algorithm

described in Anatomy of LISP; however, the conceptual essence

of a LISP parser is cogently and concisely described in

READER and READ-REST.

Clearly, this READER will understand nothing but LISP; our

search for generality must begin by removing this unilateral

65

l

)

)

Part II: TLC-LISP
Examples of TLC-LISP

view. The key is to note that READ-REST term-inates when it

) sees a \); that is, READ-REST is a special instance of an

algorithm we might cal 1 READ-UNTIL, which reads the input

stream until is sees a designated character; in the case of

READ-RES?, the designated character is a right parenthesis.

That is:

)

)

(DE READ;...REST () (READ-UNTIL \)))

Our intention here is to move all of the language-specific

information out of the parsing technique, and install that

knowledge in tables which a general parser can refer to. We

have seen something like this already: read macros are

table-driven procedures which are invoked when a special

character is seen in the input stream; this is the second

notion we need for effective generalization.

Th~ general scheme that we are about to elaborate --Top Down

Operator P~ecedence--is due to Vaughan Pratt (see the Parser

Bibliography at the end of this section). The essential

problem in parsing is to rediscover the structure of the text

being input to the system (of course, one might ask "It seems

backward to rediscover structure; the programmer knew the

structure to begin with, yet she must present the linear text
•'

string to the machine, only to force the machine to uncover

what was already known"). To discover structure in a string

of input means to determine the entities of the language, and

to determine the interrelationships between them. A scanner

finds the entities; the parser detemines the

66

Part II: TLC-LISP
Examples of TLC-LISP

interrelationships. We were all probably introduced to the

formal notion of parsing through the same problem: "how do

you group (or parse) x+y*z?" The solution was to associate

the "y" with the "z", effectively giving x+(y*z) instead of

(x+y)*z. We say that the operator* "takes precedence over",

or "binds more tightly than" +. This idea of "operator

precedence" was formalized by R. Floyd (see the

Bibliography). The Pratt parsers use an extended precedence

relation, which associates "left and right binding powers"

with operators. For example, given operators 01 and 02, and

a segment of text:

... 01 ... 02

if the right binding power of 01 is greater than the left

binding power of 02, then the (parsed) text between 01 and 02

is associated with 01.

In the implementation, adapted from one written by Martin

Griss, the left-and right-binding power of an operator is

stored as a dotted pair of numbers on the property list of

the operator under an indicator named INFIX. For example:

(PUTPROP 1 + 'INFIX 1 (10 . 10))

(PUTPROP 1 - 'INFIX 1 (10. 10))

(PUTPROP '* 'INFIX '(12. 12))

(PUTPROP '= 'INFIX 1 (5. 5))

(PUTPROP 1 ? 'INFIX '(-2. -2))

where= will be used for an assignment operator, and? will

67

)

. }

)

)

,

)

Part II: TLC-LISP
Examples of TLC-LISP

be used to indicate the end of an expression.

The parser is a given binding power and an initial token, and

parses from left-to-right until it finds an operator with

left binding power greater than the given binding power.

When it comes upon an operator with a lower left binding

power it applies the parse algorithm recursively. For

example, the phase:

z = x+y*z? would parse as(= z (+ x (* y z))) with the

appropriate delimiter tables set for =, +, and *; these

tables are discussed in the Input-Output section of the

manual. Given this internalized form of the input, we can

further translate it into a list which can be evaluated by

LISP. The definition of PARSE follows:

(DE PARSE (RBP· EXP &AUX (EX2 (GETPROP OBJ 'PREFIX)))
(IF EX2

where:

(SE'I'Q EXP (LIST EXP (PARSE EX2 (SCANIT))))
(SCAN IT))

(DO ((EX2 (GETPROP OBJ 'INFIX) (GETPROP OBJ 'INFIX)))
(((OR (NULL EX2) (GE RBP (CAR EX2))) EXP))
(SETQ EXP (LIST OBJ EX2 (PARSE (CDR EX2) (SCANIT))))))

(DE SCANIT () (SETQ OBJ (SCAN)))

This is all- there is to the parser! The parse behavior is

controlled by the information stored on the property list of

the opera tors. Operators have INFIX or PREFIX properties;

all other atoms are operands.

The next embellishment would be to allow an operator to

control the parse locally.

68

For that, we could store a

Part II: TLC-LISP
Examples of TLC-LISP

program on the property

arbitrary computations,

input stream.

list. This program could contain

including code to parse more of the

Parser Bibliography

Floyd, R., Syntactic Analysis and Opera tor Precedenee,

Journal of the ACM, Vol. 10, pp316-333, 1963.

Pratt, V., Top Down Operator Precedence, Proceedings of the

ACM Symposium on Principles of Programming, pp. 41-51,

1973.

Pratt, v., CGOL -An Alternative External Representation for

LISP Users, MIT AI Lab, Working Paper No. 89, 1976.

69

)

.I:' a r 'C. J. J. J. : T LA.- - L J.::, .I:' 1v1a Il U a ..1.

TLC-LISP Manual

The TLC-LISP Manual

This section is a complete catalog of the built-in functions

and constants in TLC-LISP. Each function and constant is

listed in the index at the end of this manual; all functions

) include a short description and an example of their

application.

)

Conventions

In the next sections we use the following conventions:
1. <object> represents an element of the class <object>

2. {<object>} represents zero or more instances (not
necessarily identical) of elements in <object>.

3. Frequently we will wish to specify that an <object> be a
member of a specific class of svntactic LISP objects:

<atom> is expected to be atomic.
Examples: A Al23 AGA-MEM-NON but not lDERFUL.

<number> is expected to be numeric.

<fix> is expected to be an integer.
Integer values are 14-bit quantities, whose input and

70

Part III: TLC-LISP Manual
TLC-LISP Manual

output characteristics are determined by the values
of INPUT-BASE and OUTPUT-BASE, respectively. These
BAS Es may take on values, two through ten, and
six teen. Undecorated numbers aire always taken as
decimal; if a number is preceded by "'it" then it taken
as "base INPUT-BASE"; if it is preceded by "#[<fix>]
then <fix> is used as the base. OUTPUT-BASE is used
when printing values; if that base is 10, then the
undecorated form is printed\ otherwise the pref ix
#[<n>] is used where <n> is the value of OUTPUT-BASE.
12 (base: 10)
#44 (base: current value of INPUT-BASE)
#[4]23 (base: 4)

<flt> is expected to be a floating point number.
For example, 1.23 and 2.718E-4 but not 1 or "1" or·A.

<string> is expected to be a string.
For example, "abcABC" and "123ASD" but not A or \A.

<char> is expected to be a character object.
For example, \A and \1 but not A or "A".

<sexpr> is any well-formed LISPS-expression, atomic or
composite.

For example, T, (A . B), and (A B C D) but not (A .) .
<list> is expected to be a list object, empty or non

empty, but not atomic.
For example, (ABC D) but not (A. B) or A.

TLC-LISP encodes in tables, the information
constitutes an atom, number, or string.
advanced applications it may be convenient
these tables. See the section in TLC-LISP's
output.

about what
For some

to change
input and

4. It is also convenient to specify that an <object> be a
member of a semantic LISP class.

<var> is expected to be an element which can be used as
a variable. Therefore numbers are disallowed as
well as the LISP reserved words: T, NIL; and the
very basic primitives of LISP: CAR, CDR, CONS, EQ,
ATOM, COND, and LAMBDA. Thus the other LISP
"library" functions are available as variable name
with the caveat that re-definition of library
entries must be done with great care; the results
are not guaranteed.

<fn> is expected to be an object which can be

71

)

)

)

Part III: TLC-LISP Manual
TLC--LISP Manual

interpreted as a LISP function; for example, <fn>
may be a variable which is bound to a function
object, or <fn> may be an anonymous LAMBDA
expression.

<pred> is a LISP form that is expected to be used as a
predicate; that is, its evaluation yields a LISP
truth-value, NIL or hon-NIL.

<form> is a LISP expression that is expected to be
evaluated. That is, it meets LISP's syntax
requirements for being an executable element. For
example, (AB) is a <form> since it represents the
application of a function named A to the actual
parameter B; however (A. B) does not represent any
application. Note <form> makes no claims about the
evaluation; it could produce a value, cause an
error message, or even fail to terminate.

These lists of LISP objects are not meant to be exhaustive,
only indicative.

S. => is to be read "evaluates to"; this notation is used in
conjunction with many of the examples in the following
sections.

6. Finally some general notes. The typical pattern for a
definitional description is:

(<name> {<arguments>}) <type>

where <name> is the name of the built-in function being
discussed. <arguments> are the components expected in
an application of <name>, and <type> describes the
"calling style 11 of <name>. The most common instances
of <type> are SUBR --a built-in call-by-value function,
and FSUBR --a special form. A few built-in functions
are of type LSUBR, meaning they are call-by-value, but
will take an arbitrary number of arguments.
With these calling style considerations, {<argurnen ts>I
will be interpreted in. two basically different ways:

a. As the types of the values passed to <name>; with
a specific number required for SUBRs and a
variable number allowed for LSUBRs.

b. In the case of FSUBRs, as a pattern to be matched
against the textual form of the argument.

For example given:
(FOO <atom> <number> <sexpr>) SUBR

72

Part III: TLC-LISP Manual
TLC-LISP Manual

a call (FOO (CAR X) (ADDl 22) 'A) would fit the
constraints provided that (CAR X) evaluated to an
atomic value since the value of (ADDl 22) is a number
and the value of (QUOTE .Z\) is a symbolic expression;
the body of FOO would receive three values.

Whereas: (BAR <atom> <number> <sexpr>) FSUBR
could be called like (BAR X 22 'A). The body of BAR
would see a single argument (X 22 (QUOTE A)) and would
decompose it accordingly. note: Xis an atom; 22 is a
number, and the 1 is t (QUOTE AT is a symbolic
expression.

For a more detailed discussion of the LISP calling styles see
the section on LISP evaluation.

73

)

)

)

Part III: TLC-LISP Manual
Function Defining Functions

Function Defining Functions

There are three fundamental types of functions in TLC-LISP:
call-by-value functions, special forms, and macros. In the
Evaluation section we discussed the basic strategies involved
in call-by-value definitions and special .forms. Here we
introduce techniques for adding new functions to the LISP
1 ibrary; cal 1-by-val ue functions introduced this way are
called EXPRs; similarly, new special forms are called FEXPRs.
The following built-in functions are used to add new
definitions to the LISP library.

<var> <parameters> {<form>J) FSUBR
Makes a call-by-value function out of the parameters
and the forms; it then installs that definition.as
the value of the <var>. The value of DE is <var>.
When <var> is invoked, <parameters> are bound to the
appropriate actual parameters; then the <form>s are
evaluated sequentially, from left to right.

The makeup of <parameters> is sufficiently involved
to demand its own discussion; see the section,
Introduction to TLC-LISP.

However, for a simple example:
(DE FACT (X) (IF (ZEROP X)

1
(MUL X (FACT (SUBl X)))))

is a definition of the venerable factorial function.

For a more complex example, consider:

then
(DE WHIZ (X &OPTIONAL (Y (CONS 5 X))) Y)

(WHIZ 2 7) => 7, and (WHIZ "ab") => (5. "abfl)

<var> (<param> {&AUX ~<oarams>Jl) !<form>}) FSUBR
Similar to DE, butor call-unevaluated functions (also
called special forms or FEXPRs). Note the single
<param>. When the special form <var> is applied, the
list of unevaluated parameters is bound • to <param>.
For example:

If we make the following definitions:
(DF FEXAMPLE (X) (CAR X))

then
and

(DF FEXAM (X) X)

(FEXAMPLE 1 2 4) => 1
(FEXAM 1 2 3) => (1 2 3)

74

------- ---- ---

Part III: TLC-LISP Manual
Function Defining Functions

whereas (DE EXAM (X) X) results in:

(EXAM (ADDl 2)) => 3,
but (FEXAM (ADDl 2)) => ((ADDl 2)}

we could have defined QUOTE as

(DF QUOTE (L} (CARL))

Note too the possibility for AUX-parameters. Though a DF may
have at most one required parameter, and no OPTIONALS or REST
parameters, it may specify a set of local variables to be
allocated at entry to the special form. For further
information see the discussion in PART II, section a.

The usual LISP definition is a "DE'', with special forms
invoked only if the user wishes to control the parameter
evaluation in a special way. Such evaluation will involve
explicit calls on the evaluator using EVAL to execute pieces
of the text. Such "DF"'s are used illustratively throughout
this manual. Look at them; however, if the distinction
between call-by-value functions. and special forms is still
confusing, see the section titled "Evaluation".

The final member of the function-defining trio is used to
introduce macro definitions. LISP macros exploit the
program-data duality of LISP even more than special forms do.

A LISP macro definition has the appearance of a definition
with only one parameter. Thus:

(DM <var> (<param> f&AUX {<params>1}) {<form>}) FSUBR
Associate the macro definition, represented in
(<par am> {&AUX [<params> JJ) £<form> l), with the name
<var>. As with DF, DM may also specify auxiliary
parameters.

A macro may be called with an arbitrary number of arguments
since, when a macro is invoked, it is the text of the whole
call that is bound to that single pararneter.:-Tc:>r example, if
we define a macro TEST, (DM TEST (L) ...),

the call (TEST (CAR X) 4 'NOW) will bind the list·

(TEST (CAR X) 4 (QUOTE NOW)) to the variable L.

The body of the macro definition is free to manipulate that
text with all the power of LISP. So far the effect is
similar to that of a special form. However, the value
computed within the macro is expected to be a new expression;
since, as we leave the macro call, that~pression is
evaluated by the interpreter and the resulting value is the

75

)

)

)

Part III: TLC-LISP Manual
Function Defining Functions

final value of the macro call. Before we give an example, we
summarize the transformations: the original call (program)
is passed to the macro (data) where it is manipulated (data}
and finally reevaluated (program). Here is a simple example:

Let NCONS be a macro defined as:
(DM NCONS (L} (LIST 'CONS (CADR L} NIL)}

Consider a call (NCONS 6):

The list (NCONS 6) gets bound to L; the evaluation of the
body gives a list (CONS 6 NIL). Finally that list get
evaluated and (NCONS 6) returns (6) as value.

Many of the traditional uses of special forms can be handled
by macros. For example some LISP implementations which don't
have LSUBRs define LIST as a macro:

(DM LIST (L) (COND ((NULL (CDR L)) NIL)
(T (CONS 'CONS

(CONS (CADR L)
(CONS (CONS (CARL)

(CDDR L))
NIL))))})

The alternative is to define LIST as a special form and
require that the implementation of LIST handle all of the

) parameter evaluation.

)

Macros are able to express a complex behavior in terms of
simple transformations which can be carried out on the
program text. In the LIST example, we have a "funqtion"
which appears to the programmer as one which will take an
arbitray number of arguments. Yet when LIST is called the
evaluator expands the macro to a nest of CONSes. Thus macros
can be used to obscure many implementation details; they are
an exceptionally powerful technique for "information hiding".
Learn to use them. For further examples of macros see the
"Evaluation" section, and the discussion of RPLACB.

The functions DE, DF, and DM are used typically at the "top
level" of LISP to make permanent definitions; they destroy
the current contents of the value cell. Note, however, that
if these functions are used in a context where the atom name
has been lambda-bound then the old lambda binding will
reappear when we exit that context.

There are also two operations, LAMBDA and FLAMBDA, that are
used to make more temporary function definitions.

76

Part III: TLC-LISP Manual
Function Defining Functions

(LAMBDA <parameters> f<form>3) FSUBR
makes a functional object whose formal parametrs are
<parameters> and whose body is the sequence §<form>t.

This functional object, called a lambda expression, can be
used anywhere a call-by-value function is expected. This
means that functions need not be associated with a name
before they can be used; such lambda expressions and
therefore are often called anonymous lambdas. For example:

((LAMBDA (X Y) (ADD X Y)) 3 5) will evaluate to 8.

We bind X to 3 and Y to 5, and then evaluate (ADD X Y).

These functional objects can be passed around freely in LISP,
even to the point of using them as argument to functions and
returning them as values of functions. Currently, TLC-LISP
supports only a subset of the full power of functional
objects; future implementations will rectify that situation.

One application of lambda express ions appears within the
implementation of DE. DE has two purposes: to define a
functional object, and to associate that object with a name.
Since we expect the name association to be rather permanent
we use a destructive binder named SET --a form of the
assignment statement. Then we can define DE as:

{DM DE (M) (LIST 'SET (CADR M)
(CONS 'LAMBDA (CDDR M))))

(FLAMBDA {<var> {&AUX l<params>::!J} i<form>}) FSUBR
is similar to LAMBDA, but constructs an anonymous
special form.

(MLAMBDA (<var> {&AUX .£<params>13) {<form>}) FSUBR
is used to construct a macro definition. MLAMBDA may
not be used anonymously since part of the macro call
is the name of the macro.

Finally, a "syntactically sugared" form of the LAMBDA
expression is provided in the LET-expression:

(LE'l' (f(<var> <form-1>)$) _.f<form-2>°!) FSUBR
abbreviates:

((LAMBDA ((<var>l) [<form-2>3') C<form-1>})

the "LET-style" is attractive since it places the
<var>s in closer proximity to their binding forms,
<form-l>s, thereby increasing readability. For
example our previous LAMBDA-example could be

77 }

)

)

)

¥arc 111: ~LL-L1~¥ ~anua1
Function Defining Functions

expressed as:

(LET ((X 3) (Y 5)) (ADD X Y))

78

Part III: TLC-LISP Manual
Functions to Perform Evaluation

Functions to Perform Evaluation

The actual interpretation process supplies (and imposes} a
default evaluation for the constituents of LISP expressions.
The "top-level" of LISP is a "calculator mode" in which an
expression is read, then evaluated; the result is printed and
the top level waits for the next input. This top-level loop
is called the "READ-EVAL-PRIUT" loop. This gratutious
evaluation often suffices, but sometimes it is convenient to
impose other evaluation regimes.

One also needs to be able to exploit the program-data duality
of LISP. This is accomplished with EVAL, which explicitly
calls the evaluator, al lowing the dynamic evaluation . of
expr.essions which have been constructed by the data
manipulating operations of the language.

(EVAL <form>) SUBR
This is the call on the LISP evaluator. The argument
is a data structure that is expected to conform to
the syn tactic rules for LISP programs. The value
computed by EVAL is the value of <form>. Note that
EVAL is a SUBR, and therefore the argument to EVAL
will be evaluated before EVAL is called.

(EVAL 3) => 3

Assume that X has value A, and A has value 4;

then: (EVAL 'X) => A since the actual parameter passed
to EVAL is the atom X.

and: (EVAL X) => 4 since the actual parameter passed to
EVAL is the atom A.

(EVAL '(CAR '(A. B))) => A

(EVAL '(FIRST 1 (1 2 3))) => 1

(EVAL (LIST 'CAR
(LIST 'CONS X 'X)}) => 4 since the value

passed to EVAL is (CAR (CONS AX)).

(EVLIS ((<form>j)) SUBR
Forms a list of the evaluated <form>'s. Its
effective definition is:

79

)

)

)

Part III: TLC-LISP Manual
Functions to Perform Evaluation

(DE EVLIS (L)
(IF (NULL L)

; then; ()
;else; (CONCAT (EVAL (FIRST L))

(EVLIS (REST L)))))
Note: we have used our comment conventions to
emphasize the structure of the IF control primitiv~.

As an example of EVLIS we have:
(EVLIS (LIST 3

'(ADDl 2)
'(FIRST (LIST' (ADDl 2) 3))))

=> (3 3 (ADDl 2))

since EVLIS will be passed the list
(3 (ADDl 2) (FIRST (LIST (QUOTE (ADDl 2)) 3))).

Or using the bindings of X and A given above with EVAL,

(EVLIS (LIST X 'X A))=> (4 A 4).

(PROGl i<form>l) FSUBR
Performs left-to-right evaluation of the· <exp>'s,
returning the value of the first <form>.

For example:
(PROGl (CONS 1 3) 4) = > (1 . 3)

(PROGl) => NIL

(PROG& £<form>3) FSUBR
Similar to PROGl, but returns the value of the LAST
Form.

For example:
(PROGN (CONS 1 3) 4) => 4

(PROGN 1 2 (ADDl 1) (CAR '(A. B))) => A

(QUOTE <sexpr>) FSUBR
QUOTE 1s the LISP primitive to stop evaluation. It
is most commonly abbreviated by the read-macro '.
The effective definition is:

(DF QUOTE (L) (CAR L))

80

Part III: TLC-LISP Manual
Functions to Perform Evaluation

(TOPLEV) SUBR

TOPLEV is the name of the function that controls the
user interface. It is initially defined to be
approximately:
(DE TOPLEV (&AUX INP OUT)

(DO(}
(NIL)
(PRINT">" CONSOLE 2) ;-- PRINT a prompt,
(SETQ INP (READ CONSOLE)) ;-- READ an expression,
(SETQ OUT (EVAL INP)) ;-- EVALuate that form,
(PRINT OUT CONSOLE 0) ;-- PRINT the value, and

)) ;-- loop b~ck

NOTE: the body is expressible without the &AUX variables as:

(PRINT ">"CONSOLE 2)
(PRINT (EVAL (READ CONSOLE)) 0)

For a discussion of the parameters to READ and PRINT,
see the section on Input and Output. Of course, the
user may supply a different TOPLEV --simply redefine
TOPLEV. A certain amount of caution should be
exercise, however; bugs in a new TOPLEV might destroy
the system.

81

)

)

)

Part III: TLC-LISP Manual
Function Manipulating Functions

Function Manipulatinq Functions

The functions in this section operate with one or more
parameters being a functional object. Note: such parameters
are expected to be functional objects, not objects which
evalute to a functional object.

(APPLY <fn> <list>) SUBR
Apply the function <fn> to the list of evaluated
arguments represented in <list>.
For example:

(APPLY ADD
(LIST (ADDl 5) (MUL 4 5))) => 26

Since APPLY is a call-by-value function, its
parameters are evaluated; therefore it gets passed
the (primitive) functional object for ADD and the
list (5 20).

(APPLY CONS (LIST 'A 'B)) => (A. B)
since APPLY gets the functional object associated with CONS
and the list (AB).

(APPLY (LAMBDA (X Y) (LIST X 11 is 11 Y))
1 (LISP NEAT))

=> (LISP "is" NEAT)

Using the bindings: X has value 4,

(APPLY CAR (LIST (CONS X 'X))) => 4

APPLY, like EVAL, seldom need be explicitly applied.
In fact, though APPLY can be used with SUB Rs and
EXPRs, APPLY may not be used with a special form or
macro in the <fn> position.

(MAP <fn> <list>) SUBR
--Apply the function <fn> successively to <list> and

its tails. The value returned is ().

(DE MAP (FN L)
(IF (NULL L)

()
(FN L)
(MAP FU (REST L)))))

(Note the implicit application of FN to L)

For example (MAP PRINT I (A (BC) D)) gives:
(A (B C) D)
((B C) D)

82

Part III: TLC-LISP Manual
Function Manipulating Functions

(D)
NIL

where the final NIL is the value returned.

(MAPLIST <fn> (!<form>})) SUBR
Apply the function <fn> succesively to (£<form>}) and
its tails. MAPLIST returns the list of these
results. Its definition can be given as:

(DE MAPLIST (FN L)
(IF (NULL L)

()
(CONCAT (FN L)

(MAPLIST FN (REST L)))))

and, for example, we could define EVLIS as:

(DE EVLIS (L)
(MAPLIST (LAMBDA (X) (EVAL (FIRST X)))

L))

(CLOSURE <fn> ({<var>]) l SUBR
This is a simplified version of LISP's FUNARG. The
list of <var>s and current values are associated with
the functional object <fn> in such a way that they
will be established as the current bindings whenever
the CLOSURE-object is applied as a function.

(LET ((Y 2))
(LET ((F (CLOSURE (LAMBDA (X) (CONS X Y))

' (Y)))
(X 4)
(Y I A))

(APPLY F (LIST Y)))) => (A. 2)

whereas (LET ((F (LAMBDA (X) (CONS X Y)))
(X 4)
(Y 'A))

(APPLY F (LIST Y))) => (A. A)

83

)

)

)

Part III: TLC-LISP Manual
Control Structure Functions

Control Structure Functions

Call-by-value, recursion, and the parameter evaluation
mechanism impose a order in which LISP computations are
carried out. A programming language also needs a mechanism
to control which computations are to be executed. This is
done in LISP with the conditional expression.

Control structures are based on the existence of predicates:
LISP functions whose values are interpreted as the truth
values "true" and "false". In LISP we take NIL as the
representation of falsity, and any non-NIL value is taken as
truth. See the section Recognizers and Predicates for
further discussion.

TLC-LISP includes two forms of the conditional expression:

(IF <pred> <forml> f<form2>}) FSUBR
The expression <pred> is evaluated first; if it
returns a value other than NIL then <pred> is
considered true and the value of the IF-expression is
the value of <forml>; otherwise the sequence
[<form2>l s is evaluated and the value of the IF is
the value of the last <form2>.

(IF (CAR X)
1
2)

gives value 1 if (CAR X) is non-NIL, and gives 2 otherwise.

Th~nk of the IF as reading "if <pred> then <forrnl>
else {<form2>3. Note that there is exactly one
<forml>, but there can be a sequence of actions
specified as <form2>s.

The most general conditional form in LISP is the "COND 11 :

(COND (<predl> f<forml>J) ~ {<predn> f<formn>3)) FSUBR
The object (<predi> f <formi>J) is. called a clause.
The evaluation of a corm-expression follows: The
predicate, <predl>, of the first clause is evaluated;
if it yields a non-NIL value then the elements of
[<forml~ are evaluated and the value of the COND is
the value of the last element in {<forml>l. If NIL
was returned by the <predl>, then the £<forml>.3-s are
not evaluated, but the process continues by looking
at the next clause and repeating the above process.

If none of the <predi>s give non-NIL, then the value
of the COND is NIL; however, it is good programming

84

Part III: TLC-LISP Manual
Control Structure Functions

practice to make the last predicate, <predn> be the
constant predicate T. In this case the <formn>'s are
able to handle all exception cases. The use of Tin
this context is therefore read as "otherwise".

A useful degenerate case occurs when a clause is a
single expression, (<pred>); that is, the collection
,&form>3 is empty. In this case, if <pred> evaluates
to a non-NIL quantity then the value of the
conditional expression is just that value. Used with
the NIL/non-NIL truth-values of LISP, this
abbreviation can be computationally convenient. If
the value of <pred> is either expensive to compute or
causes a side-effect, then a conditional like:

(COND {<pred> <pred>) ...
) is inappropriate

since <pred> will be evaluated twice.

Constructs like:

(COND ((SETQ XX <pred>) XX)
• • •

) are cretinous.
This usage involves both a marginal LISP coding
trick, and requires the use of a variable XX which
must be specified globally to the COND. The effect
is better described by:

(COND (<pred>) . . .
) .

Here is an example of COND usage:

(COND ((BAR X Y) (WHIZ U X))
((BAZ X) (ZAM X) (MAZ U 2) (TLC 2 B))
((FROB X))
(T (WALDO U)))

TLC-LISP also supplies forms of the Boolean operations AND
and OR which can "sho·rt circuit" their evaluation.

(OR :(<form>l) FSUBR
Evaluate the sequence of <form>s from left-to-right,
terminating that process if one returns a non-NIL
value; return that value as the value of the OR
expression. If no <form> gives a non-NIL value, then
the value of the OR is NIL.
For example:

85

)

)

)

)

Part III: TLC-LISP Manual
Control Structure Functions

(OR (ATOM 1 (A B)) (CONS l 2) (CAR 1)) => (1 . 2)
Note that the value of (CONS 1 2) is an acceptable
representation for 11 true 11 ; further note that the
expression (CAR 1) --which would yield an error-
never gets evaluated. A binary form, (OR X Y), could
be considered an abbreviation for:

(COND (X) (T -Y))

(AND £<form>}) FSUBR
- Evaluate the <form>s from left-to-right, stopping the

evaluation and returning NIL as soon as one of the
<form>s gives a NIL value. If no <form> gives NIL,
return the value of the last <form> as the value ·of
the AND-expression.
For example, (AND (CONS 1 2} NIL (CAR 1)) => NIL

and (AND (CONS 1 2} T 4 (ADDl 2)) => 3

again, (AND X Y) abbreviates a conditional expression:

(COND (X Y) (T NIL))

Finally, for completeness, we include the NOT function.

(NOT <form>) SUBR
Returns NIL if <form> is non-NIL, and T otherwise.

Though LISP is known for its penchant for recursion, every
LISP has included control structures for describing
computations in an iterative fashion. Indeed, even the first
LISP, LISP 1 of 1960, had a construct which was identical to
the later invented ALGOL "case-statement"; LISP called it
SELECT. TLC-LISP includes a form of this construct:

(SELECTQ <form> {(<sexpr> {<formi>J)}) FSUBR
The value of <form> is compared succesively against
each <sexpr>; the <sexpr>s are not evaluated. The
type of match is determined bythe structure of
<sexpr>. If <sexpr> is an atom other than T, the
match uses the predicate EQ; if <sexpr> is a list
then the match uses MEMQ; if the <sexpr> is one of
the atoms T, OTHERWISE, or OW then the match succeeds
automatically.

If a comparison is successful the match process halts
and the corresponding f<formi>1s are evaluated. The
value of the SELECTQ is the last <formi>. If no
comparison is successful, then the value of the
SELECTQ is NIL.

86

Part III: TLC-LISP Manual
Control Structure Functions

(SELF

For example:)

(SELECTQ (SENSE X) (LOOK ...)

is equivalent to:

{LET {(TEMP (SENSE X)))

((SMELL TOUCH HEAR) ...)
(OW (LOSE X)))

(COND ((EQ TEMP 'LOOK) ...)
((MEMQ TEMP '(SMELL TOUCH HEAR)) ...)
{ T (LOSE X))))

where we have to assign the value of (SENSE X) to a
temporary variable to keep from computing (SENSE X)
more than once .

. (<form>]) . LSUBR
SELF evaluates {<form>} in the context of the last
(dynamically) surrounding lambda expression. This is
a generalization of the LISP label-operator, allowing
recursive definitions without explicit naming. For
example:

(LAMBDA (N) (IF (ZEROP N)
1
{MOL N

(SELF (SUBl N)))))
expresses the factorial function.

(CATCH <atom> £<form>}) FSUBR

(THROW <atom> .(<form>}) FSUBR
This pair of functions operates together to sup9ly a
non - s tr u c t. u red type of fun ct ion ex i t. These
functions are a slight generalization of the MACLISP
CATCH and THROW operators, which in turn is a
generalization of the LISP 1. 5 ERROR-ERRSET pair.

When a CATCH expression is entered, the <atom> is
noted and the body, {.<form>1, is evaluated as a
sequence of expressions. If, during that· evaluation,
a n e x p r e s s i on (T HR OW < a tom > .f < f or mi > "¼) i s
encountered, then the f<formi>l are evaluated and the
value of the last <formi> is returned as the value of
the CATCH expression. If no such form is
encountered, the value of the CATCH expression is the
value of the last <form> in the body of the CATCH.
For example:

(CATCH EXIT (MAP (LAMBDA (X) (AND (NUMBERP (FIRST X))
(THROW EXIT 'YES)))

87

)

)

- --.. ._. .&..&...Ao• ...,..._._ ---~ l lUIIUQ..I,.

Control Structure Functions

' (A B 2 C)) 'uo)
=> YES

If a THROW expression is encountered which does not
have a dynamically surrounding CATCH expression with
a matching <atom>, then an error is signalled.

The CATCH-THROW pair is particularly useful for
effecting an immediate return from a sub-computation
without requiring an explicit exits up through all
the intervening levels of computation. Such a
strategy would require all functions involved to
include explicit tes.ts for exit conditions and
corresponding function-exit clauses.

TLC-LISP also offers iterative sequencing mechanisms • which
blend the traditional LISP style with many of the modern
ideas of structured expression of programming concepts. Of·
particular note is the DO-expression.

(DO (l(<var> <init> <iter>)l)
-- (£(<exitp> f<exitval>J)3) • •

•• £<form1) FSUBR

We will discuss the most general form of DO first,
and follow that with an analysis of several useful
degenerate subcases. There are four basic parts to
the semantics of the DO expresion:

1. Th·e initialize phase. When the DO is entered,
the <init> forms are evaluated and lambda-bound in
parallel to their corresponding <var>s. This
r.1eans: - a) that the <var>s act as local variables
within the scope of the DO, and b) that all of the
initializations are performed in the environment
surounding the DO.

2. _ The exit tests. Next, we test the <exitp>s in a
fashion analogous to ·the semantics of a conditional
expression. If we find a true exit-condition, we
evaluate the associated <exitval>s and exit the DO,
unbinding any local DO-variables. The value of the
DO is the value of the last <exitval>.· If none of
the exit-condition°i:; is true we move to phase· 3,
entering the body phase. •

3. The body phase. The body of the DO, consisting
of the <form>s, is evaluated next.

4. The iterate phase. Following the body phase, we
evaluate the <iter> formsi again, this is done in
parallel. Only now, we assign these values to
their corresponding <var> rather than lambda-bind

88

Part III: TLC-LISP Manual
Control Structure Functions

them. After all the iterators are evaluated, we
loop to phase 2 and check the end conditions.

This constitutes the basic loop of the DO. Here are
some useful special cases:

a {DO () ...): If there are no var-init-iter
triples, we have no local variables. The execution
of the DO involves only the body and the exit
tests.

b (DO { {varl) (var2 init) ...) ...) : If a var has
neither an initial value nor an iterator, then it
is initialized to. UNBOUND. If a variable is
followed by only one form, that form is taken to·be
an initialization value; that value is lambda-bound
to the variable, but the variable is ignored in the
iterate phase (of course the value can be modified
within the DO by a SETQ).

c (DO . . . (NIL) ...) : In this case the predicate
will never be true; the DO will loop without end
(unless it contains a THROW form.)

d (DO . . . () ...) :
executed only once.

In this case the body is

e (DO): If no body is present then we pass
directly to the iterate phase.

Below are several other control structures expressed
as equivalent DO formulations:

(LET ({var init) r) body) is { DO (: . (Var in it) :) () body)

(WHILE pred body) is (DO() (((NOT pred))) body)

we could define a membership predicate as:

(DE MEMBER (XL)
(DO ((L L (REST L)))

(((NULL L) NIL)
((EQUAL (FIRST L) X)· T))

)))
where the body segment is empty.

89

)

l

)

)

Part III: TLC-LISP Manual
RECOGNIZERS AND PREDICATES

Recognizers and Predicates

As we mentioned in the Control section, all LISP functions
can be used as predicates; the truth-values in TLC-LISP (and
most other LISP implementations) map 'true' and 'false' to
non-NIL and NIL, respectively. This is more than 'just a
programming trick', but is a very useful programming
technique. For example, we often need to compute an
expression like 'find the first element which satisfies a
condition, if one exists'. Instead of using a predicate to
test for existence, followed by a selection function to
extract the value if one exits, we use a 'pseudo predicate'
which will return NIL (false) if none is found, but will
return some representation of the element (testable .as
'true') if one is found. In fact, since the search usually
involve the traversal of a list, it is good practice to
return the list-segment whose first element satisfies the
test; then, if that element fails to satisfy other criteria,
we can continue the search with the remainder of the list. A
good example of this programming style is ASSOC.

(ASSOC <atom> (<sexpri>)))) SUBR
AS~OC searc es the list (G<atomi>. <sexpri>}) for a
match of <atom>. If one is found, the remainder of
the list C{(<atomi>. <sexpri>)l) beginning with the
match is returned. If no match is found, NIL is the
value of the ASSOC. (see the note after MEMQ).

(DE ASSOC (XL)

For example:

(COND ((NULL L) NIL)
((EQ X (CAR {FIRST L))) L)
{T {ASSOC X (REST L)))))

(ASSOC 'TLC '((FOO. LOSE) {TLC. WIN) (NERD. LOSE)))

=>((TLC. WIN) (NERD. LOSE))

(MEMQ <atoml> (£<atom2>l)) SUBR
MEMQ is another 'pseudo predicate', returning either
NIL if the first argument, <atoml>, is not found in
the list ({<atom2> 1). MEMQ returns the remainder of
the list beginning at the match if a match is found
(see the note at the end of MEMQ' discussion).
MEMQ's definition follows:

(DE MEMQ (AL)
(IF {OR {NULL L) (EQ {FIRST L) A))

L
(MEMQ A (REST L))))

90

Part III: TLC-LISP Manual
RECOGNIZERS AND PREDICATES

For an example consider:
(MEMQ 'A 1 (1 2 3 ABC))=> (ABC)

Though ASSOC and MEMQ are defined in terms of <atom>s, they
may be applied with <expr>s in those positions. Note that
both functions use EQ. Since EQ is defined to test only for
identity of objects, EQ wil 1 respond with T for (EQ X X)
regardless of the type of X. Care must be exercised since
(EQ '(A) '(A)) will give NIL; if you don't understand this,
dont't use <expr>s in the <atom> positions.

A recognizer is a special predicate which tests the 'type' of
its argument. Though LISP variables are type-free, meaning
that a variable can contain any legal LISP value, each LISP
object has a distinguishable type. The LISP recognizers are
predicates which the programmer can use to determine the type
of a value.

(ATOM <sexpr>) SUBR

(LISTP

ATOM returns T if <sexpr> is not a composite object;
it return NIL otherwise. Literal atoms, strings, and
numbers are atomic quantities, for example.

(ATOM 3) => T

(ATOM "AB") => T

(ATOM (ATOM '(3 . "ABC")))=> T

(ATOM 'CONS) => T

(ATOM CONS)=> T (The value of CONS is a SUBR)

<sexPr>) SUBR
This recognizer returns T if its
composite object. Composite objects
dotted pairs.

(LISTP 4) => NIL

(LISTP (CONS 1 'A)) =>T

(LISTP (LIST 1 'A))=> T

(LISTP NIL) => NIL

argument is a
are lists and

(even though NIL represents the empty list)

91

)

)

)-

)

Part III: TLC-LISP Manual
RECOGNIZERS AND PREDICATES

(SYMBOLP <sexor>) SUBR

(NUMBERP <sexpr>) SUBR

(FIXP <sexor>) SUBR,

(FLOATP <sexpr>) SUBR,

(CHARP <sexpr>) SUBR,

and
(STRINGP <sexpr>) SUBR

These recognizers check for an occurrence of a
1 i teral atom, number, a fixed point number, a
floating point number, a character, or a string,
respectively.

(SYMBOLP 4) => NIL
(SYMBOLP "BAC") => NIL
(SYMBOLP 'A)=> T

(NUMBERP 4) => T
(NUMBERP 'A)=> NIL

(FIXP 3) => T
(FIXP 1.2) => NIL

(CHARP \A)=> T
(CHARP II A II) => NIL
(CHARP 'A)=> NIL

(STRINGP \A)=> NIL
(STRINGP "ABC") =>T
(STRINGP 'ABC) => NIL

(PROCP <sexpr>) SUBR
This recognizer returns the type of <sexpr> if
<sexpr> is a functional object. Valid values are
SUBR, LSUBR, FSUBR, EXPR, FEXPR, CLOSURE and MACRO.
If <sexpr> is not a functional object, NIL is
returned.

(PROCP PROCP) => SUBR

(PROCP COND) => FSUBR

(PROCP FOO)=> NIL

(BOUNDP <atom>) SUBR

(or an error)

returns T if <atom> has a value other than UNBOUND.

92

Part III: TLC-LISP Manual
RECOGNIZERS AND PREDICATES

(BOUNDP 'CONS)=> T

(NULL <sex:er>) SUBR
NULL returns T just in the case that <sexpr> is the
empty list.

(NULL I (A)) => NIL
(NULL (REST I (A))) => T
(NULL (NULL '(A))) => T
(NULL 3) => NIL

(EMPTY <sexpr>) SUBR
EMPTY returns T just in the case that <sexpr> is 1;:he
empty string.

{EMPTY "ABC") => NIL

(EMPTY I (TRASH • CAN)) => NIL

(EMPTY '"') => T

(TYPE <sexpr>) SUBR
This is a general type-extraction function, returning
an atom that describes the type of the argument
<sexpr>.

(TYPE 'TYPE) => ATOM

(TYPE TYPE)=> SUBR

(TYPE (CONS 1 2)) => LIST

(TYPE (LAMBDA (X) 1)) => EXPR

(TYPE '(LAMBDA (X) 1)) => LIST

Besides the recognizers, TLC-LISP also includes some general
predicates which implement forms of the equality relation. '

(EQ

,,

<sexprl> <sexpr2>) SUBR
EQ tests <sexprl> and <sexpr2> to see if they are the
same storage location. Since atoms are stored
uniquely in LISP, EQ satisfies the 'eq' predicate as
expected in LISP. EQ will also return T if <sexprl>
and <sexpr2> are the identical object. For example:

(EQ 'A 'A) => T

93

)

\

)

)

Part III: TLC-LISP Manual
RECOGNIZERS AND PREDICATES

(EQ 'A 'B) => NIL

(EQ "AB II II AB II) => NIL

(EQ I (A B) I (A B)) => NIL

but (SETQ L I (A B))
followed by: (EQ LL) => T

(EQUAL <sexprl> <sexpr2>) SUBR
Th is is the general equality predicate in LISP.
returning T just in the case that <sexprl> and
<sexpr2> are the same tree-structure.

The definition of EQUAL can be sketched as:
(DE EQUAL (X Y)

For example:

(OR (EQ X Y)
(AND (EQUAL (CAR X) (CARY))

(EQUAL (CDR X) (CDR Y)))))

(EQUAL 'A 'A)=> T

(EQUAL '(AB) '(AB))=> T

(EQUAL "ABC" "ABC") => T

94

Part III: TLC-LISP Manual
Selection Functions

Selection Functions

Given a composite data structure, we need tools for
manipulating the components of that structure. This section
deals with operations to select components; the next section
discusses how to construct new structures, and two sections
ahead we address the issue of modifying existing structures.

As the name suggests, selector functions select components.
It is good style to preface a selection operation with an
appropriate type test, assuring that the object meets the
requirements of the selector. Some such tests are built into
TLC-LISP --for example CAR and CDR of atoms is disallowed-
however, consistent with LISP's open nature, it is generally
the programmer's responsibility to control the tool. •

Selector Functions for Dotted Pairs

<sexpr>) SUBR
This function selects the first component of the
dotted pair represented in <sexpr>.
For example:

also

(CAR '(A. B)) => A

(CAR '(AB))=> A, since the

representation of (AB) is (A. (B. NIL)).

It is better style to use the list selector FIRST
when manipulating lists.

(CDR <sexpr>) SUBR
This function selects the second component of the
dotted pair represented in <sexpr>.

(CDR ' (A . (B . C))) = > (B . C)

(C ... R <sexpr>) SUBR
These. (twelve) functions give the usual CAR-CDR
chains of LISP selection operations.

(CADR I ((l . 2) . (3 • 4))) => 3

(COAR ' ((1 • 2) . (3 . 4))) => 2

(CDDR ' ((1 • 2) . (3 • 4))) => 4

(CAAR ' ((1 • 2) . (3 . 4))) => 1

95

)

..)

\

)

)

I

Part III: TLC-LISP Manual
Selection Functions

96

Part III: TLC-LISP Manual
Selection Functions

Selector Functions for Lists

To help reinforce the conceptual distinction between dotted
pairs and lists, we have included selector functions which
are supposed to be applied only to lists. Of course, LISP
will not enforce the distinction between dotted pairs and
lists; that restraint must come from within. Such restraint
must be cultivated early else, as programming tasks become more audacious, the programmer will become mired in a sea of
CARs and CDRs.

(FIRST <list>) SUBR
<list> is a non-empty list and FIRST selects its
first component

(FIRST '(ABC D)) => A

(REST <list> &OPTIONAL (<fix> 1)) SUBR
<list> is a non-empty list; <fix> is a non-negative
integer. REST returns the 'tail' of <list> beginning
at the <fix>-th element.

(REST I (A B C D) =>

(REST I (A B C D) 2)

(REST I (A)) => NIL

(NTH <list> <n>) SUBR
NTH '"i:e"Eurns
less than
returned;
signalled.

n-th element of
n elements

if n is less

(DE NTH (L N)

(B C D)

=> (C D)

, <list> ; ; if there are
in the list, NIL is

than one, an error is

(IF (LEN 1)
(FIRST L)
(NTH (REST L) (SUB 1 N))))

(NTH '(ANT IF REE Z E) 4) => I

(LENGTH <list>) SUBR
This returns the length of the list <list>.

For example:

(LENGTH '(l 2 3 4)) => 4

(LENGTH NIL)=> 0

LENGTH could be defined as:

97

)

\

)
-ii

)

)

Part III: TLC-LISP Manual
Selection Functions

(DE LENGTH (L) (LENGTHl L 0))
where:

(DE LENGTH! (L N) (IF (NULL L)
N
(LENGTHl (REST L) (ADDl N))))

or:

{DE LENGTH (L) (DO ((N O (ADDl N))
(L L (REST L))
(((NULL L) N))))

98

Part III: TLC-LISP Manual
Selection Functions

Selector Functions for Strings

Though strings can be thought of --indeed implemented as-
lists of characters, there are some inherent distinctions
between the data types, string and list. These distinctions
are reinforced in the actions of the string selector
function.

(SUBSTRING <string> &OPTIONAL <fixl> <fix2>) SUBR
This function makes a new string EQ to the substring
of <string> beginning with the <f ixl>-th character
and containing <f ix2>-th succeeding characters. If
<fixl> and <fix2> are missing, <string> is copied; if
<fix2> is missing it defaults to the length of
<string>.

(SUBSTRING "ABCDEF" 4) => "DEF"

(SUBSTRING "ABCDEFG" 4 3) => "DEF"

(SUBSTRING "l" 0) => "" the empty string.

{GETCHAR <string> <fix>)
This selects the <fix>-th character from <string>.

(GETCHAR "ABC" 2) => \B

(STRSIZE <string>) SUBR
This- function returns the number of characters in
<string>.

(STRSIZE "ABCD") => 4

(STRSIZE (SUBSTRING "ABCDEF" 4)) => 3

(STRSIZE "") => 0

99

)

)

Part III: TLC-LISP Manual
Constructor Functions

Constructors

Besides being able to test the type of an object and select
components of a composite structure, we must be able to
construct new objects of specified types. The general name
for such a function is a constructor.

Constructors for Dotted Pairs

(CONS <sexprl> <sexpr2>) SUBR
This constructor makes a new dotted pair whose CAR
branch is <sexprl> and whose CDR-branch is <sexpr2>.

(CONS 'A 'B) => (A. B)

(CONS "A" 1 (A . B)) => ("A" A • B)
where the printer has formatted the output in semi-list form.

(CONS (ATOM 'A) (ATOM '(A}))=> (T) i.e., (T. NIL)

(SUBST <sexprl> <sexpr2> <sexpr3>) SUBR
This function substitutes <sexprl> for every
occurrence of <sexpr2> in (a copy of) <sexpr3>.

(DE SUBST (X Y Z) (IF (ATOM Z}
(IF (EQ Y Z} X Z)
(CONS (SUBST X Y (CAR Z))

(SUBST X Y (CDR Z))))}

(SUBST 1 C 'A 1 ((1. A) (AB) C)} => ((1. C) (CB) C)

(COPY <expr>) SUBR

or:

note:

This function makes a copy of its argument: thus:

(DE COPY (X) (IF (ATOM X)
X
(CONS (COPY (CAR X))

(COPY (CDR X)))))

(DE COPY (X) (SUBST ·o OX))

(EQ X (COPY X)) => T if Xis atomic, otherwise=> NIL

but, (EQUAL X (COPY X)) => T, always.

100

Part III: TLC-LISP Manual
Constructor Functions

Constructors for Lists

(CONCAT <sexprl> <list>) SUBR
This constructor expects a list in its second
argument position; it makes a new list object with
<sexpl> as its FIRST element, and has <list> as its
REST-component. In terms of the traditional
implementation of LISP, CONCA'I' and CONS are
equivalent.

(CONCAT 'A '(SD F)) =>(AS D F)

(CONCAT 'A NIL)=> (A)

(LIST §<sexpr>t) LSUBR
This constructor makes a list out of the values of
its arguments. This function can be expressed as a
macro over CONS.

(LIST (CONS 1 2) (CAR '(A. B)) (REST '(AB)))

=> ((1 • 2) A (B))

(APPEND <listl> <list2>) SUBR
This function makes a new list whose initial segment
consists of the elements of <listl> and whose final
segment is the list <list2>. APPEND will copy the
elements of <listl>; thus (APPEND <list> NIL) has the
effect of copying <list>.

(DE APPEND (Ll L2) (IF (NULL Ll)
L2
(CONCAT (FIRST Ll)

(APPEND (REST Ll)
L2)))

(APPEND 1 (1 2 3) (REST '(ABC)))=> (1 2 3 BC)

(REVERSE <list) SUBR
REVERSE makes a new list whose elements are the
elements of <list> in reverse order:

(DE REVERSE (L) (REVl L NIL)

(DE REVl (Ll L2) (IF (NULL Ll)
L2
(REVl (REST Ll)

(CONCAT (FIRST Ll)
L2))))

)

101)

)

Part III: TLC-LISP Manual
Constructor Functions

(REVERSE '(ABC DE))=> (ED CB A)

Constructors for Strings

(STRING [<string> or <char>3) LSUBR
STRING takes an arbitrary number of strings and
characters as arguments and builds a new string.

(STRING "ABC" \D \E) => "ABCDE"

(STRING "AB" (SUBSTRING "ABCDEF" 4)) => "ABDEF"

102

Part III: TLC-LISP Manual
Functions to Modify Structure

List and Dotted Pair Modifiers

The LISP functions of the preceding section perform their
computations by constructing new objects. The functions of
this section allow the programmer to modify existing objects.
These operations are powerful and therefore must be used with
great care. For example these operations can create circular
list-structure, which can cause difficulty for a simple list
printer. A more subtle difficulty can arise in the "aliasing
problem"1 for details see the section titled "Evaluation."

(RPLACA <sexprl> <sexpr2>) SUBR
RPLACA, from 'RePLace the CAr of', expects <sexprl>
to be a dotted-pair or a non-empty list: it replaces
the CAR part of <sexprl> with <sexpr2>. The value
returned is the modified <sexprl>.

For example,

or consider,

now
but note also
anticipated.

(RPLACA I (A B) 'C) =>

(SETQ X I (A B)) => (AB)
(SETQ Y X) => (AB)
(RPLACA X 'C) => (CB)

X => (CB} as expected,
y => (CB} which may not

(RPLACD <sexprl> <sexpr2>} SUBR

(CB)

have been

This operation replaces the CDR-part of <sexprl> with
<sexpr2>. As with RPLACA, RPLACD expects <sexprl> to
be a dotted pair or non-empty list.

(RPLACD 1 (A . B) 'C) => (A . C)

(RPLACD '(ABC) 1)
=> (A. 1)

(since {A B C) is represented as (A . (B . (C . NIL))))

{RPLACB <sexprl> <sexpr2>) SUBR
Replaces the CAR-part of <sexprl> with the CAR-part
of <sexpr2>, and the CDR-part of <sexprl> is replaced
with the CDR-part of <sexpr2>. <sexprl> and <sexpr2>
must both be non-atomic.

(DE RPLACB (X Y) (RPLACA X (CARY))
(RPLACD X (CDR Y))))

103

)

• ,, __ •• ·•· "'~. ---- .,, --- - --- • ' y --- :::,

- ---- ---------------------------

)

Part III: TLC-LISP Manual
Functions to Modify Structure

This function is useful in defining 'self-destructive' macros
or 'displacing' macros. For example, if we wanted to define
(IS-DOG X) to be equivalent to

(EQ (CAR X) 'DOG), we could write:

(DM IS-DOG (X) (RPLACB X (LIST 'EQ
(LIST 'CAR

(CADR X))
' (QUOTE DOG))))

or we could define a destructive macro NEQ to mean NOT-EQ by:

(DM NEQ (L) (RPLACB L (LIST 'NOT
(LIST 'EQ

(CADR L)
(CADDR L)))))

Note: you should not use the functions in this section
until you understand how these macros work!

{NCONC <listl> List2>) SUBR
This function has an effect similar to that of
APPEND, except NCONC does not copy its first
argument; rather, it replaces the NIL which
terminates the list <listl> with <list2>. The value
returned by NCONC is the value of the modified list.

(DE NCONC (Ll L2) (IF (NULL Ll)
L2
(LET (L Ll)

(IF (NULL (REST L))
(PROGN (RPLACD L L2) Ll)
(SELF (REST L))))))

(NCONC '(ABC) 1 (D E F)) => (ABC DEF)

or (SETQ X '(ABC))=> '(ABC)
(SETQ ·y '(D E F)) => '(D E F)
(NCONC X Y) =>(ABC DEF)

and Y => (DEF), but beware,
X=>'(ABCDEF) !!

Notice that NCONC can be used to make circular list
structure: (NCONC X X). Such structures must be
printed, traversed and copied with great care.

(FREVERSE <list>) SUBR
This is a 'fast' version of REVERSE, using no CONSes.

104

Part III: TLC-LISP Manual
Functions to Modify Structure

(DE FREVERSE (Ll &OPTIONAL (L2 ())
(IF (NULL Ll)

L2
(FREVERSE (REST Ll)

(RPLACD Ll L2))))

again, application of FREVERSE must be done carefully; for example:

(SETQ X '(ABC))
(SETQ Y (REST X))

=> (ABC)
=> (BC)

now (FREVERSE Y) => (CB)
and Y => (CB),
but X => (A) !

String Modifiers

(REPLACE <string!> <string2>) SUBR
<string2> replaces an equivalent number of character
positions in <stringl>.

105

)

Part III: TLC-LISP Manual
Functions to Modify the Environment

Functions to Modifv the Environment

Except for the function-defining functions DE, DF, and DM,
the bindings of variables to values has been a 'non
destructive' kind in the sense that when we leave the context
of a LAMBDA (or LET or DO) expression the previous bindings
of local variables are restored. The next functions involve
'destructive' assignment to variables; they are LISP's
formulation of the assignment statement, only as with all
LISP forms, they return a value; therefore they are
expressions rather than "statements".

(SETQ {<var> <form>]) FSUBR
Each <var> 1s bound to the value of its corresponding
<form>; the evaluation proceeds sequentially, rather
than in parallel as in the DO-expression. The binary
form of this construct is analogous to the
traditional 'assignment statement' of most
programming languages. However, since every LISP
construct is an expression, the value of the SETQ is
the value of the last <exp>.

(SETQ X 4 Y 'A)=> A
X => 4
Y => A as expected.

~ Now evaluate: (SETQ X 6 Y (CONS X Y)) => (6 . A), not (4 . A)
_)

)

and X => 6
Y => (6 • A)

(SET <forml> <form2>) SUBR
This 1s a generalized assignment expression; here,
both <forml> and <form2> are evaluated. <forml> is
expected to evaluate to a <var>; that atom is
assigned the value of <form2>. For example (SET
(QUOTE X) <exp>) is the same as (SETQ X <exp>).

(SETQX'(AB))=> (AB)
X => (A B)

Now (SET (FIRST X) (CONS X 1)) =>((AB) . 1)
A => ((A B) . l)
X => (A B)

Most common usages of the assignment operators
involve SETQ, not SET.

106

Part III: TLC-LISP Manual
Functions to Modify the Environment

(UNBIND <var>) SUBR

Now

This function sets <var> to the distinguished atom
UNBOUND.

<var>) FSUBR
This function is used for destructive traversal of
the list bound to <var>. Each call on POP returns
the first element of the list while setting the list
to REST of the list. For example:

(SETQ X '(1 2 3 4))

(POP X) => 1
X => (2 3 4)

and another: (POP X) => 2 •
with X => (3 4)

(PUSH

now:

and:

<var> <form>) FSUBR
This function is used in conjunction with POP: PUSH
places the value of <form> on the front of the list
bound to <var>.

(SETQ SIMON '(GEORGE BERNARD))

,;::) (GEORGE BERNARD)

SIMON => (GEORGE BERNARD)

(PUSH SIMON 'SHAW) => (SHAW GEORGE BERNARD)

SIMON => (SHAW GEORGE BERNARD)

107

----- -----"--·-----------------

)
t

)

Part III: TLC-LISP Manual
Functions to Manipulate Property Lists

Functions to Manipulate Property Lists

LISP property lists are a powerful tool for constructing data
bases. A property list consists of a set of attribute-value
(or indicator-property) pairs. In TLC-LISP a property list
is only associated with a literal atom. Therefore one can
think of an atom as a 'dictionary entry' and the attribute
value pairs play the role of the various 'parts of speech'
and associated meanings. For a more complete discussion of
the role of property lists in LISP programming see the
section titled "Property Lists".

(PUTPROP <atom> <ind> <expr>} SUBR
<atom> is a literal atom, <ind> is an atom, and <exp>
is placed on the property list of <atom> under ~he
attribute <ind>. Any previous value associated with
<ind> is destroyed. The value returned is the value
of <expr>.

(PUTPROP 'WALDO 'AGE 47} => 47

(GETPROP <atom> <ind>) SUBR
<atom> is a literal atom; <ind> is an atom. The
property list of <atom> is searched for the indicator
<ind>; if found, the corresponding value entry is
returned. If no match is found NIL is returned.
Care must be exercised to distinguish between a
'false' indication and the return of a value NIL.

Continuing the previous example:

(GETPROP 'WALDO 'AGE) => 47

now (PUTPROP 'WALDO 'CHILDREN NIL) => NIL

and (GETPROP 'WALDO 'MARRIED) => NIL
(GETPROP 'WALDO 'CHILDREN) => NIL

(REMPROP <atom> <ind>) SUBR
This function removes the latest attribute-value pair
associated with <ind>; if none existed, NIL is
returned. The value of REMPROP is the removed value.

(REMPROP 'WALDO 'AGE)=> 47
and now (GETPROP 'WALDO 'AGE) => NIL

(ADDPROP <atom> <ind> <expr>) SUBR
Similar to PUTPROP, except a previous value

108

Part III: ~LC-LISP Manual
Functions to Manipulate Property Lists

associated with <ind> is saved.

Consider the following sequence of evaluations:

(PUTPROP 'WALDO 'CHILDREN I (LOUIE SAM)) => (LOUIE SAM)
(ADDPROP 'WALDO 'CHILDREN 1 (NERD)) => (NERD)

Now (GETPROP 'WALDO 'CHILDREN) => (NERD)
(REMPROP 'WALDO 'CHILDREN) => (NERD)
(GETPROP 'WALDO 'CHILDREN) => (LOUIE SAM)

(PLIST <atom>) SUBR
PLIST returns a representation of 1:,he property-l~st
associated with <atom>.
(PLIST 'WALDO} => ((CHILDREN LOUIE SAM))

(PUTPROP 'WALDO 'FOO '7) => 7, and now:

(PLIST 'WALDO) => ((CHILDREN LOUIE SAM} (FOO. 7)))

109

)

)

)

Part III: TLC-LISP Manual
Functions for Atom Names and Strings

Functions for Atom Names and Strings

(CHARPOS <chr> <str>) SUBR
CHARPOS will return the position of the first
occurrence of <chr> in <str>; if <chr> does not occur
NIL is returned.
(CHARPOS \c "ABCDEF") => 3

(GENSYM) SUBR
Generates a new symbol name of the form Gnnn, where
nnn is an integer.

(GENSYM) => Gl00
(GENSYM) => Gl0l

(ASCII <arg>) SUBR
If <arg> is an integer, ASCII returns the character
whose ascii code is that number. If <arg> is a
character, then the ascii code for that character.

(ASCII \C) => 67

(ASCII 67) => \C

(INSERT <st~ing>) SUBR
Find a literal atom with print name <string> and
return· that atom as value or, if no such atom exists,
construct a new atom with that print name.

(LOOKUP <string>) SUBR
Like INSERT, except returns NIL if the desired atom
is not in the symbol table; in this case a new atom
is not constructed.

Assume (LOOKUP "ABC")=> NIL

then (INSERT "ABC") => ABC,

and now {LOOKUP "ABC")=> ABC

(PNAME <atom>) SUBR
Return a string which represents the print name of
<atom>.

(PNAME 'ABC) => "ABC"

110

Part III: TLC-LISP Manual
Functions for Atom Names and Strings

(REMOVE <atom>) SUBR
Removes <atom> from the symbol table; return <atom>
as value. REMOVE is a dangerous function. For
example,

(SETQ Y (REMOVE 'X}} => X
removes X, and now type:

(EQ 'X Y) => NIL
Th is occurs because the act of reading 'X creates a
new X which is not EQ to the old X. All input and
computation which occurred before the REMOVE will
access the old X, but all input after the RE~10VE will
access the new X; mystery can result!

(STRCOMP <stringl> <string2>) SUBR
This function allows lexicographical comparison of
the two strings, returning -1, 0, or 1 if <stringl>
is less than, equal to, or greater than <string2>,
respectively.

(STRCOMP "AB" "A") => 1

(STRCOMP "A" "B") => -1

(OBLIST) SUBR
Returns a list of the atoms currently known to LISP.

(GE'l'FN <proc>) SUBR

and

(PUTFN <proc> <sexpr>) SUBR
These functions allow us to manipulate the text of a
defined function. GETFN extracts a list
respresen ting the body of the function <proc> if
<proc> is a user-defined function. PUTFN is used to
re-install <sexpr> as a function definition of
<proc>. These functions are most useful in writing
system functions like editors and debuggers that must
modify the representation of functions.

(DE FOO (X Y) (CONS X Y)) =>, then

(GETFN FOO) => ((X Y) (CONS X Y)).

Note that (TYPE FOO) => EXPR,

but (TYPE (GETFN FOO)}=> LIST

111

•

)

)

)

Part III: TLC-LISP Manual
Arithmetic Functions

Arithmetic Functions

TLC-LISP supports both small integer and floating point
arithmetic. We use <n>, <fix>, and <flt> to stand for
numbers, fixed-po int numbers, and floating-point numbers,
respectively.

The examples in this section will assume decimal input and
output; for a complete description of numbers and their
representation, see the discussion of "Conventions" at the
beginning of this section.

(ADDl <n>) SUBR
--i::eturns <n>+l.

(ADDl 4) => 5

(ADDl -1) => 0

(SUBl <n>) SUBR
~turns N-1.

(SUBl 4) => 3

(SUBl 0) => -1

SUBR
returns the absolute value of <n>; this function
works for any type of number.

(ABS -1) => 1

(ABS 3.4) => 3.4

T+le following four arithmetic functions --ADD, SUB, MUL, and
DIV--are all LSUBRS in their most general setting; they all
use the convention that if any argument is a floating point
number, then the result will be floating point. • Variants of
these four operations which· are restricted to specific types
of numeric arguments are only available in binary form.

We use MacLISP-like conventions for the arithmetic functions:
using, ADD for addditions which may involve both fixed and
floating point numbers; + and +$ for additions which are
restricted to fixed and floating point numbers, respectively.

112

•

Part III: TLC-LISP Manual
Arithmetic Functions

{ADD (<n>])
(+ <fixl> <fix2>)
(+$ <fltl><flt2>)
-- Return the sum of the arguments.

(+ 3 4) => 7

(ADD 1.2 4 4) => 9.2

(ADD)=> 0

(SUB i<n> f)
T-=<'rixl> <fix2>)
(-$ <fltl> <flt2>)
-- With one argument, this function returns the number's

negation. With more than one argument, it returns
the first argument minus the rest of the arguments.

(SUB 4) => -4

(- 1 2) => -1

{SUB 1 2 3) => -4

(MUL £<n>l)
(W<fixl> <fix2>)
PS <flt!> <flt2>)
-- Returns the product of the arguments.

(MUL 2.0 3 4) => 24.0

(* 2 (ADDl 5)) => 12

{DIV t<n>])
TT<fixl> <fix2>)
Vs <fltl> <f1t2>>
- DIV returns its first argument divided by the rest of

its arguments. If only one argument is given, the
reciprocal is returned.

(DIV 4.0 2) => 2.0

(/ 4 2) => 2

(DIV 5.0) => 0.2

{REM <fixl> <fix2>) SUBR
Form the remainder upon division of <fixl> by <fix2>;
the sign of the result is the sign of the dividend.

113

)
1

_.,,., •• _.~ -"•••• •e·"-"''" •- M--•.,.....,
------------ --- ------------------------------------'

)

)

Part III: TLC-LISP Manual
Arithmetic Functions

(REM -5 2) => -1

Two arithmetic conversion functions are provided:

(FIX <flt>)
(FLOAT <fix>)

SUBR
SUBR

(FLOAT 4) => 4.0

(FIX (ADDl 7.4)) => 8

A collection of arithmetic predicates is also included in
TLC-LISP. These predicates return NIL if the test fails, and
return a non-NIL value otherwise.

(ZEROP <n>) • SUBR
"r'e"turns NIL if <n> is non-zero; returns <n>

otherwise.

(GE <nl> <n2>) SUBR
-- -returns NIL if <nl> is less than<n2>; returns <nl>

otherwise.

(GT <nl> <n2>)

(LE <nl> <n2>).

(LT <nl> <n2>)
--These are similar to GE.

(MINUSP <n>) SUBR
returns <n> if <n> is a negative number; returns NIL
otherwise.

114

Part III: TLC-LISP Manual
Logical Functions

Logical Functions

The functions in this section perform bit-wise logical
operations. They are restricted to integer parameters.

Note: the prefix :fl: indicates that the number following it is
base eight in these examples. For a complete discussion of
the effect of i see the discussion of "Conventions 11 at the
beginning of this section.

(LOGAND <fixl> <fix2>) SUBR
Perform the logical 'and' between <fixl> and <fix2>

For example: (LOGAND i27 #14) => i[8]4

(LOGOR <fixl> <fix2>) SUBR
Perform the inclusive or between <fixl> and <fix2>

For example: (LOGOR #27. #14) => #[8)37

(LOGXOR <fixl> <fix2>) SUBR
LOGXOR gives the exclusive or between <fixl> and
<fix2>.

For example: (LOGXOR #27 #14) => :fl:[8)33

(COMPL <fix>) SUBR
Form the complement of <fix>.
Equivalent to (LOGXOR <fix> #[8)37777).

115

)

)

Part III: TLC-LISP Manual
General Error Functions

General Error Functions

TLC-LISP supplies a collection of functions to examine the
state of the LISP machine in case of an error. These
functions may be used to create a sophisticated debugging
system.

(ARGSFRAME &OPTIONAL (<fix> 0))
This function returnsa list of the arguments passed
to the <fix>-th pending function invocation.

(FCNFRAME &OPTIONAL (<fix> 0))
This function returns the function applied in the
<fix>-th previous pending function invocation.

(RETFRAME <sexpr> &OPTIONAL (<fix> Qll_
RETFRAME returns from the <fix>-th pending
invocation, using <sexpr> as the returned value.

(TRACEFRAME &OPTIONAL (<fix> 0))
This function prints~
function invocations,
frame.

11 backtrace 11 of
beginning at

the pendent
the < f ix>-th

Finally, we supply a mechanism for signalling errors:

(ERROR t<sexpr>l) LSUBR
ERROR prints the list of arguments and returns to the
toplevel of LISP. As with TOPLEV, the system
supplied ERROR function can be replaced by the user.
Simply re-define iRROR.

Bes ides cal ling ERROR explicitly, one may also invoke the
error handler by typing <control>-G. When. this key
combination is pressed, the evaluator is interrupted and a
"HALT" error is generated.

116

Part II: TLC-LISP
Input/Output Functions

Input and Output

Though LISP was created in the era of batch-processing, LISP

is a distinctly interactive language. Its programming style

--exploratory and incremental--thrives on a calculator-like

immediacy. An expanding part of LISP's interactive nature is

its input and output. Some of the most successful LISP

implementations have been on computing systems with

sophisticated display systems. For example, one common

complaint about LISP is the beginner's difficulty with

parentheses: LISP --Lots of .!_rri ta ting Single Parentheses.

One common trick is to invoke a pretty printer to format the

output such that the substructure of expressions is apparent

from its positioning on the page (we have used pretty

printing throughout the manual.} Incremental pretty printing

of input is also most helpful. Of course, such techniques

are not restricted to display systems; hard-copy devices can

also use these ideas. However if we embed a LISP editor in a

window-oriented editor, a whole new class of techniques

becomes available. We could locate a matching parenthesis by

pointing a cursor at one parenthesis and blinking its mate;

we could edit LISP objects by manipulating atoms and lists on

the screen as en ti ties, rather than as simple character

strings. We could finally begin to look upon program

preparation as something more than the application of an

ersatz keypunch.

117

)

Part II: TLC-LISP
Input/Output Functions

In a somewhat more mundane note, the Achilles heel of every

programming language is its input and output; LISP is no

exception. In line with our goal to present a streamlined

and strengthened LISP dialect for the 1980's, we have begun

to unify the ideas of "sinks and sources" for output and

input. One principle of a well-designed system is that

anything that can be done from a terminal can be done within

a program, and conversely. For example, a simple text editor

can become quite powerful by including a macro facility which

defines complex operations in terms of sequences of program-

generated "keystrokes". The key to this behavior is the

ability to redirect the input program to arbitrary (but

compatible) sources.

To this end we allow the TLC-LISP readers and printers to

specify a "file data type" which may either be a traditional

input/output device, or may be a list of strings. The

combination of strings as sinks and sources, and the string

manipulation functions supplies the TLC-LISP programmer with

elegant power. Elegance, in that string objects need not be

represented as lists of atoms; power, since strin.g items can

be components of list manipulation.

All input and output functions have a &OPTIONAL parameter

that specifies which sink or source is to be used in the

operations. That parameter defaults to 'the last one'.

Since it is also useful to know the name of 'the last one',

118

Part II: TLC-LISP
Input/Output Functions

the a toms CURRENT-SOURCE and· CURRENT-SINK are bound to the

currently selected input source and output sink,

respectively.

An input operation must also handle the problem of "echoing"

--whether to print the input stream on an output sink. The

most common case involves interactive input, but one might

also wish to echo input from prepared files. Of course,

echoing may be desired on the console or on a disc file, or

both; and, of course, many times echoing is not wanted. For

example, the printing of passwords, or the reader's progress

through very large files is seldom desirable. These varying

demands are catered to by appropriate use of sinks and

sources. Input from files is not gratuitously echoed; if

echoing is desired, then one must specify the read-print

behavior in a small LISP program. The solution to echoing

the interactive source is given by splitting that source into

two sources --one which echoes, named CONSOLE; and one which

does not echo, named KEYBOARD. The default TOPLEV uses

CONSOLE as its source; if different behavior is desired,

TOPLEV may be redefined.

In conjunction with the input and output functions, we need

to specify 9ontrol information. A reader must be able to

examine the state of the input stream with or without

modifying it; a printer should be able to specify formatting

information. Both of these expediencies are catered for in

119

)

)

)

)

Part II: TLC-LISP
Input/Output Functions

an additional optional argument. Future releases of TLC-LISP

will exploit the generality further.

Input

The LISP reader recognizes various special characters. Later
we will describe how to modify and extend these facilities,
but now will discuss the default settings of standard TLC
LISP.

These characters include:
the QUOTE character

• the dot character
" the string character
; the comment character
, the char character
i the number-base prefix character

A detailed description follows:

The QUOTE character: ' Instead of requ1.r1ng the user to type
(QUOTE Exp), TLC-LISP supports the abbreviation 'Exp.
Thus: •

'(AB) is the same as (QUOTE (AB))
''(AB) is the same as (QUOTE (QUOTE (AB))).

The dot character: . This character is used in the
representation of dotted pairs; thus: (A. B). This
is not the same as the decimal point in decimal or
floating point representation.

The string character: " String literals are presented to
TLC-LISP as arbitrary character sequences of length
less than 256, bracketed within a pair of n. Thus
"ABCD" is a string as is "(foO". To include the
character " in a string use a double ""; thus the
string "a single"" mark" contains a single".

The

Thus:

comment character: ; Comments are
default comment character is "; ".
with";" and ends either with another
line indication.

120

encouraged. The
A comment begins
";" or an end-of-

Part II: TLC-LISP
Input/Output Functions

(DE MAGIC (N ;an integer; L ;a non-empty list;)
(COND ((ZEROP N) ;in this case M must be 4; (CHECK M))

((NULL {REST L)) ...) ; another comment
))

contains four comments.

The character character: \ This character is used to
designate a single character literal; note the string
"A" is not the same object as the character ,A just as
the listTA) is not the same object as the atom A.

The number-base character: # This character is used to
prefix a number which is to be interpreted using INPUT
BASE as its base. Thus 1[8]10 = 8

Bes ides these default special characters, TLC-LISP also
provides the the ability to define read macros. These macros
have single-character names and take effect when that single
character is recognized in the input stream; for example, the
special quote-character, ', is a built-in read macro.

The format of a read macro definition is:

<chr> <list> {<exp>J) FSUBR
<chr> is the name of the character macro; <list>
designates the local variables (initialized to NIL)
which will be used during the evaluation of the macro
body, {~exp>l. The value returned from the DMC
declaration is <chr>; the value returned (to the LISP
reader) when the macro is activated is the value of
the last <exp>. For example, we could declare the '
macro by:

(DMC \' () {LIST (QUOTE QUOTE)
(READ)))

The macro declaration is accomplished by two actions:
first, the body of the definition is treated as a DE;
second, the entry in the character table for <chr> is
modified to reflect its new position as a macro; this
is done by TYPECH. The function TYPECH is used to
examine and modify the table of character properties.

(TYPECH <chr> &OPTIONAL <n>) SUBR
If <n> is rn1.ssT'ng, TYPECH gives the current
character-table value for <chr>. If <n> is given,
TYPECH sets the character-table value for <chr> to
<n>.

121

)

)

\

)

)

Part II: TLC-LISP
Input/Output Functions

Acceptable values for <n> are the following:

0: totally ignore the character

1: the character is to function like the dot
in "dot-notation".

2: the character begins a comment; ignore all
input until a comment-end character is seen.
(For example, ;)

3: the character ends a comment. (e.g. ; and <er>)

4: the character is a separator (e.g. space and tab)

5: the character is a read-macro; its value cell
contains the definition to be applied when
this character is seen in the input stream.

6: the character is a string delimiter (e.g. ")

7: the character designates hex input (e.g. i)

8: these are normal characters

9: these are character-characters. e.g.,

10: these are left parenthesis characters

11: these are right parenthesis characters

12: these are backspace characters

Between read macros and TYPECH, the user can redefine the
syn tax accepted by the scanner at a very low level. A
version of the scanner is also available to the user.

(SCAN &OPTIONAL <source>) SUBR
SCAN will return either a basic token --string,
character, identifier, or number--or will return a
single character representation of a delimiter. One
can then use SCAN as a component of a parser; see the
Examples section for several applications· of SCAN.

<source>, if present, is control block for a list of
strings or a disk file (this control block is set up
by a call on OPEN); in either case, input is accepted
from that source. For examples, see the file
EXAMPLE.IO.

The default parser, supplied in TLC-LISP is named READ:

122

Part II: TLC-LISP
Input/Output Functions

(READ &OPTIONAL <source> <read-info>) SUBR
This function is the main LISP parsing routine. It
reads the next well-formed expression from the
current input source, and returns that expression as
value after establishing its internal form.

<source>, if present, is control block for a list of
strings _or a disk file (this control block is set up
by a call on OPEN); in either case, input is accepted
from·that source.

The quantity of input accepted by READ is defined by a
"status word" defined by <read-info>.

Currently this value is a three bit quantity defined in the
following table where the "starred" values are the defaults.

bit position
0

-1

value
1

meaning
Read the next
character from the
source.

0* Read the next object
from the source.

1 Examine the next
token in the input
without moving the
input pointer.

0* Accept the next
' input token.

This implementation does not support a <read-info> value of
2. The value of <read-info> local to the <source>, therefore
subsequent READs on a <source> will use the previous value
until it is superceeded. The value may be replaced either by
calling READ with a new <read-info> word or by using
TYPE READ.

(TYPEREAD <source> &OPTIONAL <fix>) SUBR
If the optional <fix> argument is present, then it
replaces the current <read-info> associated with the
<source>; if only one argument is given, the current
value of the <source>s <read-info> is returned. For
example, one may examine the current setting of the
<read-info> word by: (TYPEREAD CURRENT-SOURCE).

This function is useful for defining a "peek"

123

)

J

\

J

Part II: TLC-LISP
Input/Output Functions

function, for example:
(DE PEEK (&OPTIONAL (SRC CURRENT-SOURCE}

&AUX (TEM (TYPEREAD SRC))}
(PROGl (READ SRC #[2]11) ;peek a character

(TYPEREAD SRC TEM))) ; restore read-info, ar

Appropriate combinations of <source> and <read-info> cover a
multitude of input functions usually supplied in LISP
implementations. However when expecting input from the
terminal, it is frequently desirable to discover whether a
key has been struck without accepting the input or, if no key
has been struck, allow the program to continue until input
appears. The function TYS serves this purpose.

{TYS) SUBR
Checks the status of the keyboard. If a key has been
struck T is returned, otherwise NIL is returned.
Does not affect the input stream. This function is
useful in interactive programs that can be
interrupted by striking a key.

124

Part II: TLC-LISP
Input/Output Functions

Output

As with READ, the output functions are controlled by a status
word~ here it is named <orint-info>. The values for <orint
info> are given below, again with the default values st;rred.

bit position
0

value
1

meaning
don't print a space
after the output.

0* print a trailing
space.

1 1

0*

Print strings and
characters without
surrounding string
delimiters.

Print strings and
characters with
surrounding string
delimiters.

PRINT, like READ, has a primitive to mainpulate the status
word: in this case, it is called TYPEPRINT, however its
action is analogous to TYPEREAD.

As with input, TLC-LISP accomodates the traditional class of
LISP output functions as variations on a simple theme. The
kernel function is:

(PRIN0 <exp> &OPTIONAL <sink> <print-info>) SUBR

Print the value of the <exp> to the sink referenced
by <sink>.

(TERPRI &OPTIONAL <sink>) SUBR
Print a carriage return-line feed sequence on the
current output device.
An abbreviation for {PRIN0 n

n <sink> i[8]3}

(PRINT <exp> &OPTIONAL <sink> <print-info>) SUBR
This function has the effect of:

(PROGl (PRIN0 <exp> <sink>) (TERPRI <sink>))

One may also control the field width in which information is

125

- -- ------- -------- --~~=

)

)

\
j

Part II: TLC-LISP
Input/Output Functions

printed; this is accomplished by two integer-valued
variables, LEFT-MARGIN and RIGHT-MARGIN. The output is
printed from LEFT-MARGIN through RIGHT-MARGIN. The initial
settings are LEFT-MARGIN at 1 and RIGHT-MARGIN at 80.

(CHARCT &OPTIONAL <sink>) SUBR
This function returns the number of character
positions left in the current output line of <sink>.

126

Part II: TLC-LISP
Disk Input and Output

File specification

A file name in TLC-LISP is a string specified in the following format:

"d:xxxxxxxx.yyy", where:
d is the device, (A, B, C, D)
xxxxxxxx.yyy is the name and extension.

The three disk related functions in TLC-LISP are:

(OPEN <strin~> <status>) SUBR
<string> designates a file name as described above.
The <status> is either OLD or NEW. The value
returned is a file data type suitable as an argument
to READ or PRINO.

The "<string>" may also be a list, in which case it
designates a stream, described as a list of strings.
If the argument is NIL, an empty list of strings is
built; in either case the list of strings is prepared
for input and output. In case the stream is
exhausted on input, an optional character-valued
function may be applied to realize more input. The
system default function simply supplies an end-of
f ile character to the reader.

(CLOSE <file> <status>) SUBR
<file> is closed and if <status> is PURGE the file is
deleted; otherwise it is saved.

(RENAME <stringl> <string2>) SUBR
The file <string2> is renamed to <string!>.

Disk Utility Functions

Two functions are supplied that load text into TLC-LISP.

(TYPEFILE <string>) SUBR

and

(LOAD <string>) SUBR
In both cases, <string> is a file name. TYPEFILE
executes a READ-LOOP on the file; LOAD executes a
READ-EVAL-PRINT loop.

127

)

)

.)

Part II: TLC-LISP
Disk Input and Output

Sink and Source Controls

Given the ability to open several (kinds of) sinks and
sources, we also need to select these objects as input and
output targets. This is handled by the atoms CURRENT-SOURCE
and CURRENT-SINK. These atoms are initially bound the the
console FCB, but may be rebound to select alternate input and
output. The value associated with these variables should be
an object created by OPEN.

One also has access
variable FILE-LIST
file; this list 1s
CLOSE.

to the OPEN-created objects through the
which contains an entry for each open

automatically maintained by OPEN and

128

Part II: TLC-LISP
Random Utility Functions

SUBR
This function makes an explicit call on the garbage
collector.

(EXIT &OPTIONAL <string$>) SUBR
This function returns control to CPM, such that the
resulting memory image can be SAVEd on a disk file
for later restart. If String$ is present this
message will be displayed when the SAVEd file is run.
Note: String$ must be terminated with '$', for
example (EXIT "--Welcome to the LISP data base--$").

Autoloading Functions and Values

The major constraint on TLC-LISP is the size of available manory. Sophis
ticated applications can soon exhaust all of the free space. One way to
forestall this difficulty is to "virblalize" large programs that may only
be needed for short durations. Of course, one could explicitly expunge
functions, • thereby reclai:ming their space. Rather than resort to this
rather ugly solution, TLC-LISP recognizes an "auto-load" value in the VAUJE
cell of a symbol. When an attanpt is made to fetch an autoload value, the
TLC-LISP interpreter retrieves the actual value fran the appropriate disk.
The infom,ation available to the interpreter is the file name, record, and
relative byte in the record that indicates the beginning of the LISP object;
since the disk operation occurs as a rand.an access, it is reasor.ably rapid.

~ types of autoload are available: "smash" and "no-smash". A "srr.ash" ob
ject is loaded in and replaces the contents of the value cell; subsequent
references to that symbol will retrieve the value without accessing the
disk. The systen also saves the autoload infom,ation so that t.l-ie value rr.ay
be "unsrnashed" and the space reclaimed. This is done by a call

(UNSMASII syrr,bol) •

UN&"lASH is defined on the file AI;"TO .LSP.

A "no-smash" value is ethereal; every access to it will cause
a seek to the disk. Such values are useful for "one-shot"
evaluations, like initialization code.

An autoload file consists of two parts: a directory file
?.ato which contains calls to (the SUBR) AUTO, like:

(AUTO <smash indicator> <name> <file name> <rec> <pos>)
where the indicator is SMASH or NO-SMASH <name> is the symbol
that will have the autoload object, and the last three
arguments contain the file information as described above.
The user calls LOAD with the ? .ato files that are to be
needed in the application.
The second part of an autoload file system is, of course, the
file --<file name>--that contains the LISP text. This file
is never explicitly loaded; it is accessed through the
autoload mechanism. Since the determination of <rec> and
<pos> is non-trivial, TLC-LISP includes utilities to make a
pair of autoload-able files. These utilities are included on
the file AUTO.LSP. The major component is a function named
ALOAD, which takes a file name as argument and converts it to
an autoload-able file. A more complete description of these
function is included on the AUTO.LSP file.

129

)

----~~----------------------------

Part II: TLC-LISP
The TLC-LISP Evaluator

The EVAL-APPLY pair

The interpreter given below is meant only to be indicative of the
behavior of TLC-LISP, not to be definitive.

(DE EVAL (X) (COND ((SYMBOLP X) (COND ((GETVAL X))
(T (ERROR "unbound atom")

((LISTP X) (SELECTQ (TYPE (EVAL (FCN X)))
(SUBR (DOIT (FCN X)

(EVLIST (ARGS X))))

(FSUBR (DOIT (FCN X)
(LIST (ARGS X))))

(EXPR (APPLY (EVAL (FCN X))
(EVLIST (ARGS X))))

(FEXPR (APPLY (EVAL (FCN X))
(LIST (ARGS X))))

(MACRO (EVAL (APPLY (EVAL (FCN X))
(LIST X))))

(OW (ERROR "undefined function")))
(T X)))

-\ ;if the expression is a symbol get its value; in the symbol is
./ ; unbound we call ERROR.

;if the expression is a list, it represents a function application,
; a special form, or a macro call; act accordingly.
; Note that the function position is always evaluated, and
; must be a functional object.

;otherwise, return the object; numbers, strings, etc. fit here.

(DE APPLY (FN L &AUX VAL) (BIND (FORMALS FN) L)
(SETQ VAL (EVAL (BODY FN)))
(UNBIND •(FORMALS FN))
VAL)

;This APPLY has an easy job; it does not handle &OPTIONAL, &REST, or
; &AUX. Since this is a shallow binding interpreter, BIND
; saves the old values of the formals, moves the new values
; into the value-cells, and evaluated the body of the functional
; object in this new environment. The value is saved as the
; old values of the formals are restored.

;We can give suggestive definitions for some of the subfunctions
; too:

130

Part II: TLC-LISP
The TLC-LISP Evaluator

(DE EVLIST (L) (MAPLIST (LAMBDA (X) (EVAL (FIRST L)))
L))

;i.e. generate a list of evaluated arguments.

(DE BIND (FORMALS VALS)
(IF (NULL FORMALS)

NIL
(SAVE (FIRST FOID1ALS))
(PUTVAL (FIRST FORMALS)

(FIRST VALS))
(SELF (REST FORMALS)

(REST VALS))))

;Of course, BIND should make sure that the number of (required)
; formals is equal to the number of supplied values-.
;SAVE will store the contents of a symbol's value-cell.
;PUTVAL will smash a value into the value-cell.

(DE UNBIND (FORMALS)
(IF (NULL FORMALS)

NIL
{PUTVAL (FIRST FORMALS)

(RESTORE (FIRST FORMALS)))
(SELF (REST FORMALS))))

;RESTORE locates the symbol's saved value.
;UNBIND simply undos BIND's work.

This definition, though not complete, gives a
description of the action of EVAL and APPLY.

131

concise

)

)

)

Part II: TLC-LISP
Appendix: Some LISP example

This appendix gives some examples of LISP programming
,, extracted from the "Artificial Intelligence Programming"

book. TLC-LISP and the LISP discussed in that book differ in
both inessential and essential ways. The inessential
differences involve the LISP library: one LISP will have
some functions that the other lacks. These inessential
differences can be easily remedied by defining the missing

)

functions, by redefining existing library functions to your
1 ik ing, or by incorporating the changes into your
programming. For example, TLC-LISP uses GETPROP rather than
GET to name the function that extracts a value from a
property list; the name GETPROP fits better with the other
property-list function {ADDPROP, REMPROP, and PUTPROP) than
"GET". Similarly, in TLC-LISP these functions always have
<name> and <property> as their first two arguments.

The essential differences require more care and are outlined
below.

First, TLC-LISP does not have the "PROG"-feature. PROG tends
to be used for (1) initialization of local variables, or (2)
programming iteration. Instead, use the "&AUX"-facility for
initialization, and a form of "DO" to express iteration. If
PROG really is desired, it can be expressed as an appropriate
collection of "CATCH/THROW" expressions.

So for example,
(DE ADD (N) (DO

figure 1.1 of "AIP" can be expressed as
((N N {SUBl N)) ;initialize a local N to the actual parametE

(SUMO ; decrement that. value each time aound the:
(P~ys SUM N))) ; replace SUM by {PLUS SUM N) on each

(((EQUAL N 0) SUM)))) ; exit the DO with SUM when N=O.

Note that the comment conventions are different between the
two LISPS. Be warned that the II super-bracket", /, is not
implemented in TLC-LISP; parenthesis balancing are better
accomplished by an understanding LISP editor.

Also, TLC-LISP does not have LEXPRs. These constructs are
basically ugly; use &REST instead. FEXPRs are supported in
both LISPs, but are seldom really necessary; usually macros
supply what is desired.

By the time you have reached Chapter five of the- AIP book -
"Flow of Control"--, you should have sufficient f amilari ty
with TLC-LISP and macros that this chapter can be digested
easily.

Chapter six, "I/0 in LISP", begins with a discussion of
character strings. Since TLC-LISP supplies first-class
string objects, much of this discussion is out-dated. As
with most languages, the subject of input and output is very
implementation dependent. TLC-LISP supplies a comprehensive
input/ output package; we recommend that you understand and

132

Part II: TLC-LISP
Appendix: Some LISP example

use these facilities rather than map TLC-LISP into Chapter
six's facilities.

Chapter seven, "Editing LISP Expressions", is an interesting
example of how one can use LISP as a systems implementation
language. We encourage you to implement this chapter and
compare your TLC-LISP code with that in AIP.

Examples
The remainder of this appendix discusses some generally
useful techniques for adding structure to your LISP
programming style. These examples come from the AIP book,
and are included on your disk as "EXAMPLE.AIP".

First, are the basic read-macro facilities of section 3.3. ;
note we used $ rather than " for quasi-quote. " can be used
if desired. ~

(dmc \l. (&aux (char(readch)))
(cond ((eq char\@) (list '*splice-unquote* (read)))

((eq char \$) (quasi-quote (read)))
(t (list 'error char))))

;NOTE the super-bracket hack,], does not exist. From the console,
; (T . (L . C)) LISP will react when parentheses "count-out. From a file
; one can simply build a right-parentheses "fence":))))))).
; a good display editor will handle the parenthesis-balancing problem,)
; and [-] are reserved f°or the array extension of. (T . (L . C)) LISP.

(dmc \@ () (list '*unquote* (read)))

(de readch (&OPTIONAL (src current-source)
&AUX (tern (typeread src)))

(progl (read src 1) (type read src tern)))
;NOTE we define readch as an instance of read

(de quasi-quote (skel)
(cond ((null skel) nil)

((atom skel) (list 'quote skel))
((eq (car skel) '*unquote*) (cadr skel))
((and (listp (car skel))(eq (caar skel) •~splice-unquote*))

(list 'append (cadar skel)(quasi-quote (cdr skel))))
(t {combine-skels (quasi-quote (car skel))

(quasi-quote (cdr skel))
skel))))

(de combine-skels {1ft rgt skel)
(cond ((and (isconst lft)(isconst rgt))(list

((null rgt)(list 'list lft))
((and (listp rgt)(eq (car rgt) 'list))

133

'quote skel))

J

)

Part II: TLC-LISP
Appendix: Some LISP example

(cons 'list (cons 1ft (cdr rgt))))
(t (list 'cons 1ft rgt))))

(de isconst (x) (or (null x) (eq x t)(numberp x)
(and (listp x) (eq (car x) 'quote))))

;-------------------------
; Here's the record package of section 4.3

(dm record-type (1) (let ((*type* (cadr 1))
(slots (caddr 1)))

(list 'de *type* (slot-funs-extract slots nil)
(struc-cons-form slots))))

;NOTE the let syntax is slightly different

(de slot-funs-extract (slots path)
(cond ((null slots) nil)

((atom slots) (eval ·l~(dm @(insert (string (pname slots)
~=

(list slots)}

(1)
(list

(pname *type*)))

' @(insert (apply string
i $ (\c ? @pa th \r)) :

(cadr 1)))}

(t (nconc (slot-funs-extract (car slots)(cons \a path})
• (slot-funs-extract (cdr slots)(cons \d path))))))

;NOTE: several differences occur in slot-funs-extract. (T. (L. C)) LISP
; has better string facilities, so this function is simpler, and takes
; fewer cons-es.
; Note also the use of apply. This occurs because string takes an arbitrary
; number of arguments.

{de struc-cons-form (struc}
(cond ((null struc} nil)

((atom struc) struc)
{t (list

'cons
(struc-cons-form· (car struc))
{struc-cons-form (cdr struc))})}))

; an example

(record-type goalnode (char state . plans))

(setq xx {goalnode 'macbeth '(eq macbeth king) '((murder){treason))))

(char:goalnode xx}

134

Part II: TLC-LISP
Appendix: Some LISP example

(state:goalnode xx)

(plans:goalnode xx)

;----------------------------------
; The:= macro hack to allow gneralized assignments.

{DM := (EXPRESSION)
(LET ((LFT {CADR EXPRESSION))

(RGT (CADDR EXPRESSION)))
(COND ((ATOM LFT) ($(SETQ @LFT @RGT))

((GETPROP (CAR LFT) 'SET-PROGRAM)
(CONS (GETPROP(CAR LFT} 'SET-PROGRAM}

(APPEND (CDR LFT) (LIST RGT))))
{ T { ERROR))))) •

{PUTPROP 'CAR 'SET-PROGRAM 1 RPLACA)

(PUTPROP 'CDR 'SET-PROGRAM 'RPLACD)

{PUTPROP 'GETPROP 'SET-PROGRAM 1PUTPROP)

;NOTE the different order in the arguments to the property-list function,
; PUTPROP.

135

~--- ------ ---~~------

)

)

..,.

Part II: TLC-LISP
Function and Variable Index

, 80

+
+, 113
+$, 113

-, 113
-$, 113

I
/, 113
/$, 113

A
ABS, 112
ADD, 112
ADDl, 112
ADDPROP, 108
ALOAD, 129
AND, 86
APPEND, 101
APPLY, 82, 130
ARGSFRAME, 116:
ASCII, 110
ASSOC, 90
ATOM, 91

B
BOUNDP, 92

C
C ••• R, 9 5
call-by-value, 74
CAR, 95
CATCH, 87
CDR, 95
CHARCT, 126
CHARP, 92
CHARPOS, 110
CLOSE, 127
CLOSURE, 83
COMPL, 115
CONCAT, 101
COND, 84
CONS, 100
CONSOLE, 119
COPY, 100

INDEX

CURRENT-SINK, 119, 128
CURRENT-SOURCE, 119, 128

I-1

Part II: TLC-LISP
Function and Variable Index

D
DE, 74
DF, 74
DIV, 113
DM, 75
DMC, 121
DO, 88

E
EMPTY, 93
EQ, 93
EQUAL, 94
ERROR, 116
EVAL, 79, 130
EVLIS, 79
EXIT, 129
EXPR, 74

F
FCNFRAME, 116
FEXPR, 74
FILE-LIST, 128
FIRST, 97
FIX, 114
FIXP, 92
FLAMBDA, 77
FLOAT, 114
FLOATP, 92
FREVERSE, 104

G
GC, 129
GE, 114
GENSYM, 110
GETFN, 111
GETPROP, 108
GT, 114

I
IF, 84
INPUT-BASE, 71
INSERT, 110

K
KEYBOARD, 119

L
LAMBDA, 77
LE, 114
LEFT-MARGIN, 126
LENGTH, 97
LET, 77

,'
- --~

)

J
I-2

Part II: TLC-LISP

' Function and Variable Index _,.

LIST, 76,101
LISTP, 91
LOAD, 127
LOGAND, 115
LOGOR, 115
LOGXOR, 115

LOOKUP, 110
LT, 114

M
macro, 74
MAP, 82
MAPLIST, 83
MEMQ, 90
MINUSP, 114
MLAMBDA, 77
MUL, 113

N
NCONC, 104
NOT, 86
NTH, 97
NULL, 93

) NUMBERP, 92

0
OPEN, 127
OBLIST, 111
OR, 85
OUTPUT-BASE, 71

p
PLIST, 109
PNAME, 110
POP, 107
PRINO, 125
PRINT, 125
PROCP, 92
PROGl, 80
PROGN, 80
PUSH, 107
PUTFN, 111
PUTPROP, 108

Q
QUOTE, 80

R
READ, 123

) REM, 113
REMOVE, 111
REMPROP, 108

I-3

-Part II: TLC-LISP
Function and Variable Index

RENAME, 127
REPLACE, 105
REST, 97

. RETF-RAME, 116
REVERSE, 101
RIGHT-MARGIN, 126
RPLACB., 76, 103
RPLACD~ 103

s
SCAN, 64, 122
SELECTQ, 86
SELF, 87
SET, 106
SETQ, • 106
special ·form, 74

• STRCOMP ,·. 11],
STRING, 102
S',rRI_NGP-, 92
STRSIZE, 99
SUB, 113 . ,
SUBl, 112'
SUBST,·100
SUB~TRING, 99
SYMBOLP, 92

T
TERPRI·, 125
THROW~ 87
TOPLEV, 80
TRACEFRAME, 116
TYPE, 93 .
TYPECH,, ,6 S., 121

. · ',rYPE.F I LE_·, 12 7
· TYPE PRINT, 12 5

,-. _TYP~REAQ,. J.23
TYS; 144 • .
u
PNBIND, 107

z
ZEROP, 114

J

I-4

	Table of Contents
	Introduction
	Part I: General Discussion of LISP
	A General Introduction to LISP
	LISP Data Structures
	Evaluation
	Property-Lists
	LISP as a Systems Language
	How LISP Works
	Bibliography
	INDEX

	Part II: General Discussion of TLC-LISP
	Introduction to TLC-LISP
	Examples of TLC-LISP

	Part III: The TLC-LISP Manual
	Conventions
	Function Defining Functions
	Functions to Perform Evaluation
	Function Manipulating Functions
	Control Structure Functions
	Recognizers and Predicates
	Selection Functions
	Constructure Functions
	Functions to Modify Structure
	Functions to Modify the Environment
	Functions to Manipulate Property Lists
	Functions for Atom Names and Strings
	Arithmetic Functions
	Logical Functions
	General Error Functions
	Input/Output Functions
	Disk Input and Output
	Random Utility Functions
	The TLC-LISP Evaluator
	Appendix: Some LISP examples
	INDEX

