
.D

)

)

)

)

)

.)

)

Top Level, Inc.'
}7

When you're ready for the future ™

Top Level Common Lisp
Reference Manual

Release 1.0.1

Top Level, Inc.
196 North Pleasant St.

Amherst, Massachusetts 01002
(413) 256-6405

March 1990

c

c

c

c

c

-- -----

)

)

)

)

)

)

)

)

)

Top Level, Inc.~
7

When you're ready for the future ™

Top Level Common Lisp
Reference Manual

Release 1.0.1

Top Level, Inc.
196 North Pleasant St.

Amherst, Massachusetts 01002
(413) 256-6405

March 1990

Copyright © 1989, 1990 Top Level, Inc.

ALL RIGHTS RESERVED.

No part of this publication may be reproduced, stored in a retrieval system, or trans
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Top Level, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions at set forth
in subdivision(b)(3)(ii) of the Rights in Technical Data and Computer Software clause at
52.227-7013.

ii

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

I

:)

I

)

I

Contents

1 Introduction

2 Lisp Listener
2.1 Getting Listener Information
2.2 Editing Input

2.2.1 Character Commands
2.2.2 \Vord Commands ...
2.2.3
2.2.4
2.2.5

Line Commands ...
Lisp Code Commands
Kill Buffer Commands .

2.3 Input Buffer and History ...
2.3.1 Input Buffer Commands.
2.3.2 Input History Commands

2.4 Other Useful Commands . .
2.5 User Customization

3 The Debugger
3.1 Error Handling

3.1.1 With-Error-Handler Example
3.2 Debugging Tasks Without Windows

3.2.1 Background Debug Example

4 Pathnames
4.1 Logical N amestrings
4.2 Logical Translations
4.3 Host-Dependent Namestring Translations

4.3.1 Unix filenames
4.4 Namestring Components with Syntactic Markers

5 The Inspector
5.1 Inspector Commands.
5.2 Inspector Example ..

6 Tracing and Stepping

iii

1

3

3
4
4
4
4
5
5
5
5
6
6
7

11
16
16
17
18

19
19
20
21
22
22

23
24
25

27

6.1 The Trace Facility
6.2 Encapsulations .. .
6.3 The Stepper

6.3.1 Stepper Printing Variables ..

7 The Compiler
7.1 Compiler Optimizations
7.2 Compiling Defstructs ..
7.3 Compiler Transforms ..
7.4 Parallel Compilation and Read-Time Evaluation

8 Modules
8.1 Defmodule........

8.1.1 Defmodule File Specifications
8.2 In-Module..... ..
8.3 Module Operations
8.4 File Types
8.5 Using Parallelism for Parallel Operations ..

9 Lisp Worlds
9.1 Booting a Lisp World
9.2 User Login
9.3 Creating a Lisp World

10 Networking
10.1 Connecting to Servers
10.2 Creating network servers.

11 Memory Management
11.1 Garbage Collection .
11.2 Resources

11.2.1 Introduction to Resources
11.2.2 Defresource

12 Metering and Profiling
12.1 Meter
12.2 System Timers

13 Parallel Programming
13.1 Introduction
13.2 Programming Using Parallelism .

13.2.1 Future Objects
13.2.2 Multiple Grain Sizes

13.3 Threads
13.4 Tasks

13.4.1 Task Control Stacks
13.4.2 Task Waiting

iv

27
28
30
30

31
32

..... 35
35
36

37
39
39
41
42
45
45

47
47
49
50

51
51
51

53
53
54
54
54

57
57
59

61
61
61
61
63
63
65
66
67

c

c

c

c

c

c

c

c

c

I

C

)

J

)

)

)

)

)

)

13.4.3 Other Task Functions
13.5 Processes
13.6 Future Groups

14 Locks and Atomic Operations
14.1 Locks

14.1.1 Using Future Objects a8 Locks
14.1.2 Symbol Locks '
14.1.3 Atomic Operations Using Symbol Locks
14.1.4 General Locks

15 Foreign Function Interface
15.1 Defining A Foreign Function

15.1.1 Calling Mechanism
15.1.2 Data Types and Parameter Passing
15.1.3' Run-time Range and Type Checking .
15.1.4 Overflow Within C

15.2 Loading Foreign Functions.
15.3 A Simple Example
15.4 Foreign Structures
15.5 System Calls

15.5.1 System Call Example
15.5.2 Foreign Example Using Structures

v

----~-----

67
. 68

69

71
71
71
71
72
73

75
75
76
77
78
78
79
79
80
82
82
83

c

c

c

c

c

c

c

c

c

c

vi c

)

)

J

)

)

)

)

Chapter 1

Introduction

Top Level Common Lisp is a high-performance implementation of Common Lisp. It is
currently available for the Sequent Symmetry and Encore Multimax shared-memory multi
processors.

Much of the basic Lisp-level system is based on the public domain Carnegie-Mellon
University Common Lisp system. To achieve high performance, the compiler and lower
level support system were redesigned to fully utilize the architecture of the Intel 80386
processors used in the Symmetry and the National Semiconductor 32000 series processors
used in the M ultimax.

Top Level Common Lisp is a full implementation of the Common Lisp standard, with
the exception of support for complex numbers. This manual describes only those aspects
of the system that are specific to this implementation, and generally document:; only those
extensions and facilities that are not already defined by Common Lisp, as specified in
Common LISP: The Language by Guy L. Steele, Jr., published by Digital Press.

Top Level Common Lisp extends the Common Lisp language to include programmer
specified parallel programming constructs for shared-memory multiprocessors. It uses the
future construct as the underlying synchronization mechanism and provides three grain-sizes
of parallel operators. Chapter 13, "Parallel Programming," presents the parallel program
ming extensions.

Any function or variable documented in this manual is generally in the system package,
and is shown in this typeface. Common Lisp functions are shown in this typeface.

1

- ---------_._-----------_ .. __ ---- --- -.. -.----.

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

J

Chapter 2

Lisp Listener

The Lisp Listener provides a convenient and productive interface to the Lisp top-level loop,
or can be used whenever the system requires input. It allows you to edit your inpul: recall
previous input, and execute other useful functions through keystrokes. Editing conllllands
are similiar to those in Emacs. Functions and variables are provided that allow you to
customize the interaction and command bindings.

The listener will begin evaluating a form as soon as it has been completed, without
requiring a Return. When it begins to evaluate a fr.rm, the listener prints out a message.
The result of the evaluation is then printed, and tOll' ievel variables are bound as defined in
CLtL. If multiple values are returned, each one is printed. The listener then reprompts for
another form.

use-listener-p [variable]

If non-nil, the listener is used when typed user input is required. It defaults to t.
Using the -nolistener boot option will bring up the system without the listener, and
set this variable to nil.

Keystroke Notation

Keystrokes that are presented here as META keys are two-keystroke sequences in which
the first keystroke actually is an Escape, Le., the character META-a actually represents the
sequence Escape followed by a. In addition, the case of the character following the META
is significant. Thus META-a is a different sequence than META-A. The TI Explorer keyboard
will automatically transmit META keystrokes as two-character sequences, but keyboards vary
greatly, and others may require using the two-keystroke sequence.

2.1 Getting Listener Information

META-? Displays a short help notice.

) 3

-------.-.......... -.. -----

4 _ Lisp Listener _________________________ _

ll-show-bindings tOptional full-info self-inserts? table [junction]

Displays all the current key bindings. If full-info is non-nil, the default, it also displays
the documentation string for the function the keystroke is bound to. If self-inserts? is
non-nil, it shows those keys bound to ll-selr-insert If table is supplied, it is used
instead of the current one.

CTRL-x, / Prompts for a keystroke and displays what function it will invoke.

2.2 Editing Input

You can edit the form you are currently typing. Editing commands and command bindings
are very similiar to Emacs.

2.2.1 Character Commands

CTRL-d Deletes the character the cursor is on.

CTRL-h Deletes the character preceding the cursor.

Rub out Deletes the character preceding the cursor.

CTRL-b Moves the cursor backward one character.

CTRL-f Moves the cursor forward one character.

CTRL-t Transposes the character the cursor is on with the preceding one.

2.2.2 Word Commands

META - b Moves the cursor back one word.

META -f Moves the cursor forward one word.

META - h Kills (deletes) the word preceding the cursor.

META -d Kills (deletes) the word following the cursor.

MET A -t Transposes the two words preceding the cursor.

2.2.3 Line Commands

CTRL-a Moves the cursor to the beginning of the line it is on.

CTRL-e Moves the cursor to the end of the line it is on.

CTRL-n Moves the cursor down one line.

CTRL-p Moves the cursor up one line.

CTRL-k Kills (deletes) text from the cursor to the end of the line it is on.

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

)

._-------_._-----

__________________ 2.3 Input Buffer and History _ 5

2.2.4 Lisp Code Commands

META-F Moves forward one S-expression.

META-B Moves backward one S-expression.

META-D Kills forward one S-expression.

META-H Kills backward one S-expression.

META-A Moves to the beginning of the current List.

META-E Moves to the end of the current List.

CTRL-x, CTRL-a Displays the current function's arguments.

CTRL-x, CTRL-d Displays the current function's documentation.

META-x Enters a loop, prompting for forms to macroexpand. Entering a symbol
will return to the normal listener loop.

META-a Prompts for arguments to Apropos.

2.2.5 Kill Buffer Commands

Whenever something is deleted, it is generally pushed into the kill history. Single-character
deletes are not, but word deletions are. All listeners share the same kill history.

CTRL-space Sets the mark at the current cursor position.

CTRL-v

META-y

META-Y

Kills (deletes) the text from the mark to the current position.

Rotates the kill history forward, deletes the previously yanked text, and
replaces it with the new top element of the kill history.

Rotates the kill history backward, deletes the previously yanked text, and
replaces it with the new top element of the kill history.

2.3 Input Buffer and History

These are the commands that deal with the input buffer. Each listener maintains its own
input history.

2.3.1 Input Buffer Commands

CTRL-u Clears out the input buffer, reprompting for new input.

CTRL-l Redisplays the input buffer.

META-l Clears the screen and redisplays the input buffer.

META-< Moves to the beginning of the input.

6 _ Lisp Listener _________________________ _

META-> Moves to the end of the input.

CTRL-x, q This will insert the next character typed into the input buffer without execut
ing its command binding, if any.

The listener keeps a history of input strings, with a maximum of 100 entries. Before
evaluating an input form, it is saved in the history. It doesn't save the form in the following
two cases: 1) The input string is identical to the previous input string, or 2) its length is
shorter than the value of *ll-ignore-string-length*.

You can recall the previous input using CTRL-i. After you have recalled a previous input,
you can continue to move through the history using META-i to go backward, and META-I to
go forward. When you move in the history, the previously recalled input is replaced by the
next one.

Another way to view the history is to use CTRL-x, CTRL-h. This will display the last 10
input strings. To recall one of these input strings, use CTRL-x,h and then enter the digit
for the input string. This will recall the input string and place you there in the history.
Repeating CTRL-x, CTRL-h will move back through the input history, displaying 10 items
each time.

2.3.2 Input History Commands

CTRL-i Recalls the previous input string.

META-i Moves back in the history, replacing the recalled input.

META-I Moves forward in the history, replacing the recalled input.

CTRL-x,CTRL-h Displays previous 10 inputs.

CTRL-x,h, digit Recalls selected digit's history element.

reset-ll-history [Junction]

This function will clear out the input history.

2.4 Other Useful Commands

META-e Calls the Editor (the function ed).

META-m Calls the Unix shell. This will work only from a Lisp process connected to a login
terminal. It will hang if the process is attached to a network or Xterm window.

META-G Exits the Lisp listener, returning to the basic Lisp reader.

c

c

c

c

c

c

c

c

c

c

c

)

J

)

)

)

)

)

______________________ 2.5 User Customization _ 7

2.5 User Customization

The listener has a number of global variables that define its behavior. You can alter their
values to customize the listener to your own liking. If you want to create your own read
eval-print loop, see the function ll-reader-loop below.

ll-set-prompt prompt-string [junction]

Sets the prompt to be prompt-string. If prompt-string is a function, it will call this
function to return a string each time it prompts. This string shouldn't have any newlines
in it, or the listener will not work properly.

package-prompt [ju nction]'

Changes the prompt to be the current package name followed by a colon.

ll-print-function [variable]

Bound to a function used to print the evaluation results. Its default value is # 'pprint.

ll-eval-notice [variable]

Bound to a string that gets printed when the form is being evaluated. Its default value
is " ... ".

ll-eval-function [variable]

Called on a completed form. Its default value is #' eval.

lisp-listener [junction]

Enters into the top-level listener read-eval-print loop. This should not be called re
cursively, since the *terminal-io* stream will get two levels of editing, which doesn't
work.

8 _ Lisp Listener _________________________ _

11-read &Optional read-line prompt [function]

The functions read and readline will automatically use the listener for terminal input
when *use-listener-p* is non-nil, but you can use this function if the listener is not
being used in general. It reads a form from the terminal using the listener. All the
key bindings are in effect, and the history is available and is updated. If read-line is
non-nil, it will operate the same as the Common Lisp function read-line, returning
a string. The prompt should be a string. If not given, no prompt is used. Note that a
newline is NOT issued before the read.

lI-reader-Ioop &K.ey read-only read-line prompt eval-notice print-function [function]
eval-function empty table

The general reader loop. The function lisp-listener calls this function. Note that it is
different from the lisp-listener function in that it is exited when an error occurs, or
when META-G is entered. The parameters are as follows:

: read-only

: read-line
: prompt
:eval-notice
: print-function
:eval-function

: empty

:table

If non-nil, then the function returns exactly one form, and the
eval-function is not called. A newline is not issued before reading.
If non-nil, then a form consists of a string of one line.
The prompt used. It defaults to the current one.
Binds *l1-eval-notice* to the value during the loop.
Binds *l1-print-function* to the value during the loop.
Binds *l1-eval-function* to the value during the loop. If you
want to return a a value from the reader-loop you can do a throw
to 'II-read.
When this parameter is supplied (and is non-nil), if the buffer is
ever cleared 11-reader-Ioop returns it as the value of the call.
This parameter allows you to supply a different binding table.
Don't use this unless you know what you are doing. It should be
a 256 element array. Use the function 11-bind-key to fill it up.

The 11-bind-key function is provided to bind keystroke sequences to functions. You can
use this function to re-bind commands to different keystrokes. First find out what function
the command is currently bound to using the CTRL-x,/ command. Then use ll-bind-key
to bind the keystroke to the function symbol. In general, you can use 11-bind-key to bind
a keystroke to any arbitrary function.

11-bind-key function keypath &Optional table [function]

Binds keypath to the function. When keypath is typed, function is called with the
edit-stream as an argument. Keypath can be either a character or a list of characters,
indicating a multiple-keystroke command. Note that 11-bind-key does not verify that
function is a legal function. The table argument defaults to the current table. It should
be a 256-element array.

c

c

c

c

c

c

c

c

c

c

I

C

)

)

)

)

)

_____________________ 2.5 User Custorrllzation _ 9

ll-terminal-mode switch [Junction]

Toggles the terminal state for the listener. Turning it on with a switch argument of : on,
: off will set the terminal to a normal state. This should be used if a key's function
requires the terminal state be restored to its "normal" state.

ll-redisplay [Junction]

Redisplays the input buffer. It is bound to CTRL-l, but you may want to call it after
you execute a command that may mess up the screen.

c

c

c

c

c

c

c

c

c

c

I

C

)

)

)

)

)

)

J

)

)

Chapter 3

The Debugger

When an error occurs, the system will invoke the Debugger. The debugger closely resembles
the top-level loop of Lisp, except certain keystrokes are interpreted as debugger commands.
Unlike the top-level loop, the debugger can be entered recursively. When in the debugger,
the prompt is changed to ->. The number of dashes indicates how many levels deep in the
debugger you are.

The debugger interface takes advantage of the. capabilities of the listener. It also al
lows you to recall and edit previous input. Debugger commands are invoked using single
keystrokes.

Primitive Debugger Interface

If for some reason the Lisp Listener is not being used, the debugger interface is
different. It does not use keystroke commands, but will recognize certain symbols as
debugger commands. The keystroke commands described below also indicate their
corresponding symbol commands. The symbols are not required to be in the keyword
package. If you are using the primitive debugger interface, type :help for a list of
commands.

Whenever you have a debugger prompt, the debugger will look at the next character
typed. What happens next depends on the character .

• If the character is bound to a debugger command the command will be executed .

• Otherwise, the debugger will assume you are starting to type a form to be evaluated
and prompts for same using the listener.

If you clear out the input buffer while being prompted for an expression to evaluate or for
a command line, you will be reprompted with the debugger prompt and the debugger will
again look at the next character typed as described above. When the debugger prompts for
arguments to a command, it will use the input editor.

The default debugger command bindings are as follows:

META-A Exits all levels of the debugger and restarts the top-level loop. It actually
does a throv to the tag 'Yetop-level. Symbol command : abort.

11

12 _ The Debugger ______________________ _

CTRL-g

META-a

CTRL-b

CTRL-d

META-d

CTRL-e

CTRL-h

CTRL-I

META-I

Exits the current level of the debugger and returns to the previous error.
If only one level deep, it behaves exactly like: abort. Symbol command
: quit.

This is the same as CTRL-g.

Prints a backtrace of stack frames from the current frame down to the
bottom frame. Symbol command :backtrace.

Disassembles the function for the current call frame. It shows only the
code around the return PC. Symbol command : disassemble.

Disassembles the function for the current call frame, prompting for the
number of bytes before and after the PC. Instructions are typically 2 or
3 bytes long. This works only if the PC can be determined, which is
sometimes not possible. Symbol command : disassemble-more.

Attempts to edit the source file in which the current function is de
fined and move you to that location in the file. Symbol command
:edit-definitioa

Prints out a short list of debugger commands. Symbol command :help.

Clears the screen and prints the current call frame, displaying the function
and its arguments. Symbol command : clear-print.

Clears the screen and prints the current call frame, displaying the function
and its arguments, the frame's locals, and also disassembles the function
around the PC. Symbol command :llhere.

META-CTRL-I Clears the screen and prints the current call frame, displaying the function
and its arguments and the frame's locals. Symbol command : locals.

CTRL-n

CTRL-p

CTRL-r

META-r

Moves down a call frame and displays it. Symbol command :next.

Moves up a call frame and displays it. Symbol command :previous.

Returns from the current call frame. If the caller does not accept multiple
values, then it will prompt for a single form to evaluate. The value of
the form is returned as the value of the function call. If the caller will
accept multiple values, it will prompt for the number of values to return.
It will then prompt for that many forms to evaluate as the return values.
It will execute any unllind-protects from above before returning. Symbol
command : return.

Continues from a continuable error or returns from a call to debug or
break. Symbol command : continue.

META-CTRL-r Restarts the computation from the current call frame, reinvoking the call
with the current arguments. It will reinvoke the call supplying all optional
or keyboard arguments. See the function arg to see how to modify the
arguments before reinvoking a call. Symbol command : reinvoke.

c'

c

c

c

c

c'

c

c

c

c

c

)

)

)

)

)

)

)

__ 13

HETA-< Moves to the top call frame of the call stack, which is usually the call to
debug. Symbol command : top.

HETA-> Moves to the bottom of the call stack, which is usually the function
%initial-loop. Symbol command :bottom.

You can change the debugger command bindings using the function bind-debug
command as described below.

bind-de bug-command character value tOptional documentation [function]

Binds character to a debugger command. Value can be either a debugger command, such
as :backtrace, or a function of no arguments that will return a debugger command. If
documentation is supplied it is used when displaying the debugger command bindings.

get-de bug-command character [function]

Returns the debugger binding for character.

default-debug- bindings [function]

Binds the debugger commands to their defaults as presented above.

The debugger will evaluate forms using %eval. This will evaluate the form in the
interpreter's lexical environment that was in effect when debug was called. Evaluation of
dynamic or special variable bindings is also in the environment in which debug was called.
Thus, the debugger is not sensitive to the context of the current call frame, either for special
bindings or for lexical bindings. Lexical bindings in compiled code are represented as locals
in a call frame. They can be accessed using the function argo To evaluate a variable without
using the interpreters current lexical environment, use the function eval, e.g., (eval J a),
will return the non-lexical binding of a.

There is currently no easy way to access a lexical binding that has been closed over in
the debugger. A local with the name closure-vector-home will contain the current closure
vector used to hold closure variables. The contents of the vector can be looked at, but the
names of the variables kept in each vector slot are not maintained by the system.

When returning or reinvoking a call frame, the stack is unwound down to the current
frame, evaluating any protected forms from anyUnvind-Protects and unbinding any special
variables bound above the call frame to reinvoke or return from. NOTE: If the global state
is modified by a function and that modification was meant to be undone and is not protected
by an Unvind-Protect the lisp system can be corrupted. Be careful when returning from
or reinvoking call frames.

For some errors, it is possible to return values from the call to %error, allowing the
function calling %error to proceed. This can be used safely for unbound variables and

14 _ The Debugger ______________________ _

undefined functions, allowing you to return a value as the value of the variable and the
function's definition, respectively. Other cases are possible. A thorough understanding of
disassembled code is required to know when it is safe to do so for other kinds of errors.

arg n [junction]

Returns the nth argument or local (shown as Arg n or Local n) from the current call
frame. If n is : rest, then the tRest argument is returned. If n is : fun, then the frame's
function is returned.

This form has a setf method, so call frames can be reinvoked with different arguments.
However, it is ~urrently not possible to change the function in a call frame.

debug-print-array [variable]
debug-print-struct ure [variable]
debug-print-Ievel [variable]
debug-print-depth [variable]

The above four variables are bound when printing the arguments and locals for a call
frame. These variables do not affect the printing of values returned by evaluating a form
in the debugger.

debug [junction]

Invokes the debugger. This can be called anytime to invoke the debugger to inspect the
current call stack.

debug-hidden [variable]

Bound to a function that is called on the function name for a call frame. The call frame
is essentially hidden from the user's view if this function returns nil. It defaults to
#' identity. This feature can be used to hide calls to interpreter functions that can
clutter up the call stack.

* de b ug-fl us h-errors· [variable]

Limits how many levels of recursion the debugger can be invoked. If a number, it is the
number of calls allowed before a call to debug will just return nil. If non-nil and not
a number, then the debugger cannot be invoked and all errors will restart at the top
level.

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

)

)

)

___ 15

backtrace-on-error [variable]

If nil, no backtrace is performed when an error occurs. If a number, it is the number
of calls that are displayed in the backtrace. If bound to anything else, a full backtrace
will be performed.

debug-disassemble-distance [variable]

Specifies how many bytes of code are to surround the disassembled code from the return
address. Instructions are typically 2 to 4 bytes long. The default value is 20.

backtrace tOptional n [Junction]

Prints a backtrace of the current call stack, down to n calls or the bottom. This can be
called outside of the debugger context.

backtrace-call function tOptional n [Junction]

Calls function on each call frame's function. It will move down n calls or to the stack
bottom. It will not call the *debug-hidden* function.

*inside-de b ugger- p * [variable]

Bound to t when inside the debugger.

debug-command-Ievel [variable]

Bound to the recursion level of debug calls.

debug-prompt [variable]

Bound to a function that is called to print the prompt in the debugger. The function is
called with no arguments.

16 _ The Debugger ______________________ _

3.1 Error Handling

All errors detected will invoke the debugger by default. The three forms defined below allow
a user program to deal with errors and provide a simple, effective method for doing so.

handle-errors error-value I:Body body [macro]

First evaluates error-value. If any of the forms in body signal an error, the form imme
diately returns two values, error-value and the error string.

call-catch-errors error-value function I:Rest args [function]

Essentially the same as handle-errors. If an error occurs during the application of
function t? args, the form immediately returns two values, error-value and the error
string.

with-error-handler (lambda handler-args I:Body handler-body) I:Body body [macro]

If no error is signaled during the evaluation of body, body's values are returned. If an
error is signaled, the lambda function is invoked. If the lambda function returns, then
the error is handled normally, invoking the debugger. Forms in the body of the lambda
can call error-handler-return to immediately return values from the with-error- .
handler form. A call to error-handler-proceed will attempt to return values from
the call to %error. ONLY use error-handler-proceed for errors with a known way
to proceed.

The system will abort to top level if any errors occur while evaluating the handler
function. The symbols error-handler-return and error-handler-proceed are in the
SYSTEM package, so be sure to import them or supply the system package prefix to
avoid errors in the lambda.

3.1.1 With-Error-Handler Example

The following example using with-error-handier will return' 'local" for the value of
system-host if an unbound reference is made during the evaluation of (load-files).
For any other unbound variable error, the with-error-handlerform will exit with a value
of nil. If the error is not an unbound variable error, the handler returns nil, which will
invoke the debugger normally.

(with-error-handler
(lambda (format I:rest args)

(when (eq format *unbound-error*)
(if (eq (first args) '*system-host*)

(ERROR-HANDLER-PROCEED "local")
(ERROR-HANDLER-RETURN nil))))

(load-files))

c

c

c

c

c

c

c

c

c

c

I

C

)

:>

)

)

)

)

)

)

_____________ 3.2 Debugging Tasks Without Windows _ 17

3.2 Debugging Tasks Without Windows

When using the background-window facilities, tasks that invoke the debugger will get their
own input-output window. The debugger works just the same using these background
windows.

If you are not using background windows, a difficult problem occurs because one terminal
must be shared among all tasks. Only one task at a time can be reading from the terminal.
If a background task tries to read from the terminal while another task "owns" the terminal,
it will hang forever. Therefore, if you aren't using background windows, you should never
write code that reads from *standard-input*. However, more than one task can write to
the terminal. The output will likely be interleaved, and possibly not be readable, but at
least it won't hang.

Even if you write code that does not read from *standard-input*, any errors that occur
in the task will invoke the debugger, which requires input from the terminal. The debugger
is set up so that you can "timeshare" among tasks that have invoked the debugger. When
a background task calls debug, it will store itself on a list of tasks waiting to be debugged,
and then suspend itself. The function task-debug is used to switch terminal control over
to the debugger for these suspended tasks.

debugging-tasks [variable]

Supplies a list of all tasks that are waiting to run the debugger. If you modify this
variable, make sure it is done atomically.

debug-task tOptional task [Junction]

Switches control over to debug task. The task argument is normally not supplied, in
which case the function atomically pops off a task from the variable *debugging
tasks*. Only tasks that are in a suspended state waiting for the terminal can be called
with this function. This will wake up the task in the debugger with the terminal attached
to *debug-io*.
When you exit from the debugger in any way, such as returning values from a call frame,
reinvoking a call frame, or aborting the computation, control is returned back to the
previous task, and the suspended task continues with its computation. The function
pause-debug will re-suspend the task being debugged, returning control back to the
previous task. Calling debug-task again will switch control back to where you left off
in the debugger.

pause-debug [Junction]

Suspends a debugging session with a background task and switches back to the top-level
task. This puts the current task back on the *debugging-tasks* list.

18 _ The Debugger ______________________ _

3.2.1 Background Debug Example

On the next page is an example session when no background windows are being used. The
error message and backtrace are printed before the task is suspended. The text followed by
;; consists of comments, and is not part of the terminal interaction session.

USER: (setf val (process 'car 1» ... ;; Fork a process to do (car 1).
'<Future '<Process-10420 CAR {10420} 108003» ;; return value is a future.
, ,
" Indicates the error occured, and prints the error message
" and backtrace before suspending the process.
, ,
No Background IO. Background Task needs IO stream.
>Error: 1 was not a CONS.
DEBUG < Y.ERROR < CAR < PROCESS-TOP-LEVEL <
#<Process-10420 CAR {10420} 108003» waiting to be debugged.
Use (sys::debug-task) to debug it.
USER: val... ;; val is still a future object.
#<Future #<Process-10420 CAR {NEXT-TASK} 108003»
USER: *debugging-tasks* ;; The task is waiting to be debugged.
(#<Process-10420 CAR {NEXT-TASK} 108003»
USER: (sys::debug-task) ... ;; Switch terminal control to task.
, ,
;; Now running background task.
I I

CAR (PC 56D490) :
Arg 0 (LIST): 1

-> <control-r>
Return value from CAR: 100

Return 100
from CAR (Y or N)? y => yes.
NIL

I' We use control-r to return a value.

;; NIL is returned from the call to (task-debug), and
;; control is returned back to the previous task.
USER: val ;; val is now determined to be 100.
100

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

Chapter 4

Pathnames

One of the most widely varying properties among different computer systems is the method
used for specifying files. Common Lisp provides pathnames as a mechanism for dealing with
filenames in a more portable manner.

A pathname has six logical components: host, device, directory, name, type, and version.
By specifying these six logical components, it is possible to construct new pathnames that
can share the same components and therefore represent related files. For example, the
type component is almost always used to identify a particular format for a file. In Top
Level Common Lisp, a file with a type of ' 'lisp' J represents a lisp source file; the same
pathname with a type of ' 'zoom' , indicates a compiled version of the source file (it actually
uses the value of *compiled-file-type* and *source-file-type*). Without pathnames
a filename could not have components, but would exist only as a single entity, and therefore
a program could not specify component relationships in a portable way.

By having components, pathnames also provide a mechanism for being merged. A
default pathname can be used to supply any missing or unspecified components. With a
default pathname established, redundant specifications can be eliminated.

A pathname is generally specified through a namestring. A namestring is intended to
be an implementation-specific specification of a file name for a particular file system. To
use such a namestring, there must be a mapping between a namestring and the components
of a pathname.

4.1 Logical N amestrings

Common Lisp provides the functions namestring and parse-namestring to perform the
mapping between a namestring and a pathname. While Common Lisp indicates that a
namestring is an implementation-dependent representation, a namestring can still exist as a
logical entity that is independent from a particular host's file system. Only when attempting
to access a file is it necessary to have a host-dependent namestring. Top Level Common Lisp
attempts to simplify pathnames by providing logical namestrings with a standard syntax
for specifying pathname components. Thus, only a host-specific pathname-to-namestring
translation is needed to access a file.

19

20 _ Pathnames _________________________ _

A logical namestring also can define logical translations that translate components from
one logical pathname into another logical pathname. This provides a more portable and
robust mechanism for specifying files in programs that will be used at different sites. The
logical translations can be defined and modified as appropriate for any given site configu
rations and user needs.

A logical namestring has the following form:

host. device: directory ;filename. type. version

A directory can have subdirectories separated by periods, such as usr .local.lib.

4.2 Logical Translations

In addition to providing a straightforward translation· from a namestring to its pathname
components, logical pathnames can have translations that are associated with specific values
of a pathname's components. They can be used to provide a site- or user-specific access
path to a file. A typical usage is to put translations in your lisp-ini t file that would define
directory translations for the local host. For example, you can define a logical directory
II home II that would translate to your home directory, such as "us ers : at aff . fred" .

" (define-Iogical-host "local" "local"
'«"home" "users.staff.fred")

("gbb" "usr.local.lib.gbb")))

After this is evaluated, you can specify local files using a logical directory:
"home; login-ini t .lisp", which would translate into
"users. staff. fred; login-ini t .lisp" or
II gbb. shell; load-shell. lisp which would translate into
"usr.local.lib.gbb.shell;load-shell.lisp".

Logical pathnames are also used when specifying the pathnames for module files. This
allows you to easily change where module files are located.

define-logical-host logical-host translated-host tra"nslations tOptional [fu nction]
redefine

Defines logical-host to translate to translated-host. You can define translations that
translate to the same host. Translations should be an alist of the form (logical-directory
translated-directory), where logical-directory and translated-directory are both strings.
If redefine is non-nil, any previous translations are replaced. Otherwise the translations
are added in, possibly shadowing any previous ones with the same logical-directory.
Only translation of directory components is currently supported.

The Translation Process

Logical host pathnames are translated by finding the first matching translation. If the
translated host is different, then the translation is again applied to the new pathname.

Translations are matched with the longest directory specification first. If that fails,
then progressively shorter specifications will be tried, by dropping subdirectories from

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

____________ 4.3 Host-Dependent Namestring Translations _ 21

the end. For example, when translating a logical host pathname of the form "parser:
syntax.vords; nouns.lisp", "syntax.vords" is tried first, followed by just "syntax".
Directory translations replace the part where they match, and the translation process is
then repeated.

Consider the logical host "parser" below.

(define-logical-host "parserll IIzip"
, «"syntax" "local.syntax")

("syntax.vords" "syntax.zipvords ll)
("semantics" "local.semantics"»)

The pathname "parser: syntax ; nouns .lisp" would match with II syntax II , and be
translated to "zip:local.syntax;nouns.lisp".
The pathname "parser: syntax. vords; nouns .lisp" would match with II syntax. vords II
and be translated to "syntax.zipvords", which is then matched with "syntax", and finally
translates into "zip: local. syntax .zipvords; nouns .lisp".

If "zip" is also a logical host, then this result would also be subject to translation.

translate-pathname pathname [Junction]

Performs any logical pathname translations applicable to pathname and returns the
translated pathname.

find-logical-host hostname [Junction]

Returns non-nil if hostname is ~ logical host.

4.3 Host-Dependent Namestring Translations

Top Level Common Lisp currently supports only local files, so all pathnames ultimately
must translate with a host of "local" or with the name of the local host, and therefore
translate into UNIX namestrings for actual file access.

While Top Level Common Lisp supports parsing of only logical pathnames, it must be
able to translate from a pathname into a host-dependent namestring when accessing a file.
This is accomplished by associating a translation function for each host.

The function define-pathname-translation will establish this translation function.

define-pathname-translation hostname function [macro]

When a namestring is needed for a pathname with a host of hostname, function is called
with the pathname and should return a namestring for accessing the specified file.

22 __ PathnaInes __ _

Top Level Common Lisp currently supports only TI Explorer and Unix pathname trans
lations. The following functions are used to perform the translations:

explorer-namestring path name [Junction]

Translates path name into a namestring for the Explorer. This is actually the same as
namestring, since the Explorer will accept the pathname syntax used in Top Level
Common Lisp.

unix-namestring pathname

Translates pathname into a namestring for Unix.

4.3.1 Unix filenames

Unix pathnames can be specified using logical namestring syntax, such as
"local: /etc/passwd",

[Junction]

but the pathname parses with a name component of "/ etc/passwd" with no directory
specified. Thus, if the pathname is merged with one that has. a directory specified, the
"expected" behavior will not occur. Specifying "local: etc; passwd" would produce the
correct merging.

This is no way to specify relative directories.

4.4 Namestring Components with Syntactic Markers

A potential difficulty with using a logical namestring syntax is that a filename can have the
syntactic markers of logical pathnames as a part of its name. For example, a directory can
be "a.b". Vertical bars can be used in these situations. All characters between vertical
bars are not parsed. For example, to specify "host: I a. b I ; bar .lisp" would specify a single
directory named "a. b".

Another case common in Unix occurs when a filename has dots in its name that are not
used in the "normal" way, Le., with only a single name and type. A filename "read.me .now"
can be specified using vertical bars to prevent the" .now" from being considered a version
specification. i.e., "read. Ime .now I" would specify a type of "me .nov".

To allow vertical bars to be specified, two contiguous vertical bars are considered a
single vertical bar if they are not themselves inside a pair of vertical bars. For example,
"a II b .lisp" would parse as "a I b .lisp", but" I a II b I .lisp" parses as " I a I" followed by
"Ib I", which is "ab .lisp".

c

c

c

c

c

c

r
'-

c

c

c

c

)

)

)

)

)

)

)

)

Chapter 5

The Inspector

The inspector provides a convenient way to browse through lisp objects. It is particu
larly useful for examining networks of structures, arrays or lists. The top level function is
inspect.

inspect object &Key level length array structure [junction]

Displays object and allows inspection and modification of its components. The key
word arguments level, length, array, and structure control the printed representation
of objects during inspection. They correspond to the global variables *print-level*,
print-length,*print-array*, and *print-structure*.
Each component of the current object is displayed and assigned a number. Entering its

number will recursively inspect that object. The inspector maintains a stack of inspected
objects, so you can pop the stack to return to the previous object being inspected. The
variable * is bound to the current object being inspected. The variables ** and *** will be
bound to the two previous objects inspected as well.

Since some lists or arrays can be quite large, "typing ahead" (e.g., hitting the space
bar) will stop the display of their components. You can also set the range of objects to
display, so only a portion of the object will be displayed. Even when a range is being used,
all components of the object may still be selected.

Components of an object can be modified without regard to the semantic content of the
component, so be careful when modifying objects using this facility.

23

24 _ The Inspector _______________________ _

5.1 Inspector Commands

Below are the inspector commands. They can be invoked either through single keystrokes,
or entered as symbols. The symbols can be abbreviated.

? or HELP Prints out available commands and their documentation.
REDISPLAY or CTRL-l Clears the screen and redisplays the current object.
RANGE or CTRL-r Prompts for object indexes to select the range of an object to

HISTORY or CTRL-h
NEW or CTRL-n

BACK, POP, or CTRL-p
PPRINT
EVAL or J

SET or =

display.
Shows the top of the inspection stack.
Prompts for a form to evaluate. The result is pushed as a new
object to inspect.
Pops the inspect stack.
Pretty prints the current object.
Prompts for a form to evaluate and prints the result. The vari
able * is bound to the current object being inspected, so you can
directly manipulate the current object.
Prompts for an index and a form to evaluate. The result is stored
into the specified component of the current object.

EXIT Exits the inspector, returning the original inspect argument.
RETURN Exits the inspector, returning the current object.
CTRL-G Exits the inspector, returning nil.

An example interaction with the Inspector is presented on the next page.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

)

)

____________________ 5.2 Inspector Example _ 25

5.2 Inspector Example

USER: (inspect 'bar) ... "Call inspect on the symbol 'bar.
It is the symbol BAR.
[0] Package: '<Package USER>
[1] Value: Unbound
[2] Function: Undefined

Plist: ()

Inspect: 0 jj Select the package slot of symbol.

It is a PACKAGE.
[0] :TABLES
(NIL
.<Package-Hashtable: Size = 2003, Free = 1077, Deleted = 0>
.<Package-Hashtable: Size = 21, Free = 8, Deleted = 0»

[1] :NAME
"USER"
[2] :NICKNAMES
NIL
[3] : USE-LIST
(.<Package MODULES>
'<Package LISP»

[4] :USED-BY-LIST
NIL
[5] :INTERNAL-SYMBOLS
.<Package-Hashtable: Size = 21, Free = 9, Deleted = 0>
[6] :EXTERNAL-SYMBOLS
.<Package-Hashtable: Size = 9, Free = 9, Deleted = 0>
[7] :SHADOWING-SYMBOLS
NIL
[8] :LOCK
#:<LOCK>

Inspect: 8 ;; Select the :LOCK slot of the package.

It is the symbol #:<LOCK>.
[0] Package: NIL
[1] Value: NIL
[2] Function: Undefined

Plist: ()
, ,
;; A , prompts for form to evaluate. We access the
;; current object using * and set it to variable plock.
, ,
Inspect: Evaluate: (setf plock *)
':<LOCK>
Inspect: <control-g> "Quit from inspector, returning nil.

NIL
USER: plock
':<LOCK>
USER:

" now plock bound to the lock.

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

J

)

)

Chapter 6

Tracing and Stepping

6.1 The Trace Facility

The trace facility is a debugging tool that allows you to monitor the calling of a function.
Many options are available to have various actions performed when a traced function is
called.

trace tOptional function tKey step wherein break break-after break-all print
print-after print-all

[macro]

With no arguments, trace returns a list of traced functions. untrace turns off tracing.
Keyword arguments are as follows:

:step

: condition
:vherein

:break
:break-after
:break-all
: print

:print-after

:print-all

If form evaluates to non-nil, single-stepping is turned on when func
tion is called.
If form evaluates to non-nil, trace output is surpressed.
Argument is a list of functions. Trace output is surpressed unless it is
called from wi thin one of these functions.
If form evaluates to non-nil, break is called before function entry.
If form evaluates to non-nil, break is called after function returns.
The form is used as the value for both :break and :break-after.
Argument is a list of forms that are evaluated and printed before
function entry.
Argument is a list of forms that are evaluated and printed after func
tion returns.
The argument is used for both :print and :print-after.

untrace tRest functions [macro]

Turns off tracing for the specified function names. If none are supplied, all traced
functions are untraced.

27

------_ _ .. _----_._-_ .. __ ._---

28 _ Tracing and Stepping ____________________ _

trace-args [variable]

Bound to the arguments of a traced function while evaluating any trace forms.

*trace-val ues * [variable]

Bound to the return values of a traced function while evaluating any trace forms.

*trace-function-list * [variable]

A list of function names currently being traced.

*trace-print-level * [variable]

Bound to *print-level* while printing any trace output.

trace-print-Iength [variable]

Bound to *print-length* while printing any trace output.

* max- trace- indentation * [variable]

The maximum number of spaces that should be used to indent trace output.

6.2 Encapsulations

The trace facility is built using the encapsulation facility. Encapsulations provide a conve
nient way to put wrappers around a symbol's function. A function can have many encap
sulations, each independent from the others. Each encapsulation has an associated type,
which is generally used to maintain only one encapsulation for each type, but it is possible
to have many encapsulations of the same type.

Macros cannot be encapsulated, but their expansion functions can. If the symbol argu
ment in the following operators names a defined macro, the macro-function of the symbol
will be encapsulated. Note that a macro-function takes two arguments, the macro form,
and an environment. The argument-list in an encapsulation for a macro-function will be
a two-element list, containing these two arguments.

define-encapsulation (symbol type) tBody body [macro]

Defines an encapsulation of symbofs function of the specified type. Both symbol and type
should be non-nil symbols and are not evaluated. Body is replaced as the function def
inition of symbol. While in the body, basic-definition is bound to the encapsulated
definition of the function, and argument-list is bound to the argument-list supplied for

c

c

c

c

C·

C

c

c

c

c

c

)

)

J

)

)

)

)

______________________ 6.2 Encapsulations _ 29

the function call. By evaluating (apply basic-definition argument-list), the en
capsulated definition can be called with the original arguments. Define-encapsulation
will remove all previous encapsulations of type from symbol before installing this one, so
it is useful for specifying a relatively permanent encapsulation that might be loaded in
more than once. It also allows Body to be compiled, unlike the encapsulate function.

encapsulate symbol type body [junction]

Encapsulate is similiar to define-encapsulation, but it is a function, not a macro.
Therefore, all arguments are evaluated, including body. It is also different in that it will
not remove any previous encapsulation of type for symbol.

encapsulated-p symbol type [junction]

Returns t if symbol has an encapsulation of type type.

unencapsulate symbol type [junction]

If the definition of symbol contains an encapsulation of type, it is removed and unen
capsulate returns t. Otherwise, unencapsulate returns nil.

basic-definition symbol [function]

Returns a symbol that is fbound to the innermost definition of symbol. For a function
that is not encapsulated, this simply returns symbol

30 _ Tracing and Stepping ____________________ _

6.3 The Stepper

The step macro can be used to single-step through interpreted code.

step form [macro]

Single-steps through the evaluation of form, prompting for commands before each sub
form evaluated. The recognized commands are as follows::

N Evaluates the expression, stepping subforms.
S Evaluates the expression without stepping subforms.
Q Evaluates the expression without further stepping.
p Prints the expression about to be evaluated.
P Pretty prints the expression about to be evaluated.
B Enters a Break loop.
E Prompts for a form to evaluate.
H Prints some help on available commands.
? Prints some help on available commands.
R Prompts for a form to evaluate and return as the value of the form to be stepped

through.
A Aborts the evaluation.

6.3.1 Stepper Printing Variables

The following variables are used to control the way objects are printed during stepping.

step-print-Ievel [variable]

Bound to *print-level* while printing any step output.

step-print-Iength [variable]

Bound to *print-length* while printing any step output.

max-step-indentation [variable]

The maximum number of spaces that should be used to indent step output.

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

Chapter 7

The Compiler

Top Level Common Lisp has extended the Common Lisp function compile-file with
additional arguments.

compile-file tOptional input-pathname tKey output-file error-file lap-file
errors-to-terminal lap-file load- verbose package readtable
declarations parallel

[Junction]

input-file

output-file

error-file

lap-file

errors-to-terminal
load

verbose

package

readtable

The source file to compile. If this is not supplied, it will be
prompted for. The file type "lisp" will be defaulted into the
filename if needed.
The output file. If nil, no output is produced. If t, it de
faults to the same file as the input, but with the type "zoom".
Otherwise, it should be the name of a file.
The error message output file. If nil, no error file is created.
If t, it defaults to the same file as the input, but with the type
"err". If it is a stream, then error messages are written to the
stream. Otherwise, it should be the name of a file.
The lap output file. Lap output will display the psuedo assem
bly language form of the compiled functions. If nil, no lap
output is produced. If t, it defaults to the same file as the
input, but with the type "lap". Otherwise, it sho~d be the
name of a file.
If non-nil, error messages are printed to *standard-output*.
If non-nil, all forms compiled are effectively loaded into the
compiler environment as they are compiled.
If non-nil, the compiler prints out a message as each function
is compiled.
Compiles the file in the specified package. It defaults to
package. It does not override any in-package form in the
file.
Uses the specified readtable when reading the file.

31

32 _ The Compiler ______________________ _

parallel

declarations

If non-nil, the compiler uses multiple processes to compile the
file. This defaults to the value of *parallel-compile*.
If this argument is supplied, it should be a list of declarations,
e.g., '((special *foo*)). The file is then compiled with the
specified declarations in effect. The previous declaration state
is restored after the file is compiled.

7.1 Compiler Optimizations

The compiler translates Lisp source code into a much more efficient form for run-time
execution and run-time loading. The cost of this efficiency is generally a reduction in the
ability to debug the resulting code. This results mostly from the inability to determine
where in the source code an error occurs. This is made difficult by the transformation of
function calls. Function calls can be transformed in three ways. They can be:

• compiled into a subroutine call to an assembly language routine,
• transformed into a more efficient Lisp form, or
• replaced by an inline expansion of the function's definition.

An understanding of disassembled code can help in the first case, but the others are more
difficult.

In addition, the use of declarations can allow the compiler to eliminate run-time type
checking. Violation of these declarations may not be detected at run-time, and can result
in obscure and hard-to-find bugs, or even complete system failure.

The amount of compiler optimization is controlled by the values of a number of variables.
To provide finer control over the operation of the compiler, the Common Lisp optimize
declaration accepts many additional specifications that can be used to set various optimiza
tion parameters. Some of these variables are modified by the use of the speed, space, and
safety declarations. If a declare form with the extended specifications also includes speed,
space, or safety specifications, their effect is processed before any extended specifications.

The best strategy is to debug your program using either interpreted code or code com
piled with almost all optimizations turned off. After the code is debugged, you can then
compile it with full optimization so the code can run as fast as possible.

The following variable can be used to turn off all processing of optimize declarations:

ignore-optimizations [variable]

If non-nil, optimize declarations are ignored.

The extended optimize parameters are described on the following page. Unless other
wise specified, the effective action of the parameter is turned on when its value is non-nil.
If a parameter is not specified, its current value is not modified. Note that these parameters
specify only that it is possible to perform the optimizations.

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

all-lisp-calls

inline-lisp

inline-sequence

inline-list

inline-cons

inline-array

............. _._ __ ... _-----------------------

7.1 Compiler Optimizations _ 33

If this is non-nil, then the compiler will perform no optimizations
at all, but simply generate calls to the source-level Lisp functions.
Even functions such as car and + will be compiled as a function call.
True if (and (eq safety 3) (>= speed space».
Default is nil.
If nil, Lisp functions declared inline will not be expanded inline.
True if (> speed space).
Default is t.
Sequence functions are transformed into DO loops.
True if (> speed space).
Default is t.
List accessors are coded inline, e.g., car, cdr.
True if (and (= speed 3) (= space 0».
Default is nil.
List creation is coded inline, e.g., cons, list, list*.
True if (and (eq speed 3) (eq space 0».
Defaul t is nil.
Array references are coded inline, e.g., svref, schar.
True if (and (= speed 3) (= space 0».
Default is nil.

inline-structure Structure references are coded inline.

inline-Iogic

inline-symbol

inline-char

True if (and (= speed 3) (= space 0».
Default is nil.
Logic operations are coded inline, e.g., logior, logbitp.
True if (and (= speed 3) (= space 0».
Default is nil.
Symbol operations are coded inline, e.g., symbol-value,
symbol-function. True if (and (= speed 3) (= space 0».
Default is nil.
Character operations are coded inline, e.g., int-char, code-char.
True if (and (= speed 3) (= space 0».
Default is nil.

inline-predicate Type predicates are coded inline, e.g., symbolp, consp.
True if (and (= speed 3) (= space 0».
Default is nil.

fold-constants Constants are folded together if possible. This includes constants
declared using defconstant.
Default is t.

34 _ The Compiler _______________________ _

tail

peep

array-bounds

no-type-checks

check-keywords

let-bindings

list-rest-args

all-fixnums

all-common

never-tail-call

Self-tail recursion is converted to a branch if possible. Other tail
position calls are merged so the current call frame is reused instead
of building a new one. This can make debugging difficult, since the
call history is somewhat hidden.
True if (> speed space).
Default is t.
If nil, all peep optimization is turned off. If t, peep optimization
is done to eliminate push-pops of registers, which is fairly fast, and
results in much smaller and faster code. If : best, then many other
optimizations occur, such as multiple branch eliminations, elimina
tion of redundant move operations, etc. This produces the best pos
sible code, but is fairly time-consuming and makes debugging even
disassembled code difficult.
False if (or « space cspeed) « speed compiler-speed».
Bound to :best if (or (= speed 3) (= space 3».
Default is t.
Inline array access checks array bounds.
Default is t.
Type-checking is not performed when the type is known or must be
of a particular type. For example, if disabled, car will not check that
its argument is a list.
True if (and Ceq speed 3) Ceq safety 0».
Default is nil.
If nil, extra unknown keyword arguments are not flagged as er
rors. Essentially, this makes all keyword parameters have an implicit
tAllow-other-keys .
Default is t.
If t, typical trivial let bindings are eliminated when possible, replac
ing the binding reference with the value in which it would be bound.
If : all, then all let forms are checked for trivial let bindings. This
is fairly time-consuming. If nil, no let bindings optimizations are
performed.
Default is t.
This declares tRest arguments to be lists. They all start out that
way, but the rest argument can be modified to be something else.
Default is t.
This declares that all integer values will be fixnums.
Default is nil.
No future objects will ever be seen by the code.
Default is nil.

[variable]

This is a list of function names whose calls are never optimized into a tail call. The
system includes error, cerror, and break, since it is important to know which function
they were called from.

c

c

c

c

c

c

c

c

c

---.... --.-.. - .. --

)

)

)

)

)

)

)

)

)

7.2 Compiling Defstructs _ 35

7.2 Compiling Defstructs

In addition to the above declaration specifications, the operation of defstruct can be con
trolled using these variables.

*inline-struct ure-functions * [variable]

If this is non-nil, functions created by defstruct will be declared to be inline. This
is at the Lisp level, whereas the inline-structure declaration affects whether these
inlined functions are compiled with inline instructions. The default is t.

safe-structure-accessors [variable]

If this is non-nil, structure accesses will always be checked for full type correctness.
This checking has a substantial time and space penalty. The default is nil.

7.3 Compiler Transforms

deftransform fn-name arglist tBody body [macro]

Defines a compiler macro. When a call to fun-name is encountered by the compiler, it
will expand it as a macro using the defined transform. This allows different behavior for
interpreted and compiled code, so be very careful to maintain the same semantics. If the
transform decides not to transform the form, it should return the value ' sys : : Y.passY..
In-name can be (fun transform-name), or just fun, in which case "Fun"-transform
is used as the transform name. If body is nil, then arglist must be a transform name
that is added to the transforms for the fn-name.

36 _ The Compiler ______________________ _

7.4 Parallel Compilation and Read-Time Evaluation

When a file is being compiled in parallel, the compiler will use a three-process pipeline,
where one process reads from the file, another process compiles the forms, and another
assembles and writes the output file. This maintains the semantics defined by Common
Lisp, but an unexpected problem can arise if a file uses reader macros. Since the reader can
essentially read the entire file before any forms are processed, using reader macros will not
work if they depend on functions, macros, variables or constants defined in the same file.

You should move the code that the reader depends on to another file, and load that file
in before compiling the one that uses the code. Alternatively, you can use the #. reader
macro to have the needed code evaluated in the reader process. For example, if you want
to define a new data type that is a subrange of integers, one of the limits could be obtained
from a constant with your code looking something like this:

(eval-vhen (compile load eval)
(defconstant *x-max* 255) ;; Define the *x-max*
)

(deftype x-range () '(integer 0 #.*x-max*))

The problem is that *x-max* will not be bound in the reader process when it encounters
the #. *x-max*. To solve this problem, you can also put a #. before the defconstant form
so the reader will evaluate the defconstant:

#.(defconstant *x-max* 255) ;; Define the *x-max*
(deftype x-range () '(integer 0 #.*x-max*))

The difficulty with this fix is that the defconstant form won't be seen by the compiler,
since #. will return the result of the evaluation, not the form itself, and the constant
definition won't be placed in the output file. The solution is to define a macro that will
evaluate a form, and then return it, so the compiler process will see the form. The macro
eval-when-read is defined for this purpose.

eval-when-read form [macro]

Evaluates form for side-effect, and returns it.

Using this macro, you can get the reader to evaluate the defconstant form, and also
have it be seen by the compiler:

#.(eval-vhen-read
(defconstant *x-max* 255) ;; Define the *x-max*
)
(deftype x-range () '(integer 0 '.*x-max*))

c

c

c

c

c

c

c

c

c

c

c

-..
-'

)

)

)

)

)

)

Chapter 8

Modules

When a program consists of more than one file, tools are needed to help manipulate those
files. The Common Lisp functions require and provide make up only a rudimentary
facility, which is inadequate for most purposes. Top Level Common Lisp has extended the
notion of modules into a more powerful facility that provides a set of functions for grouping
files together, describing their relationships, and manipulating them.

The module facility also has specifications that allow loading and compiling files in
parallel. Top Level Common Lisp will use multiple processes to load and compile parallel
modules, which can substantially speed up the process of compiling and loading a program.

The macro defmodule is used to associate a name with a set of files. It is also provided
a pathname that supplies any defaults for the filenames that make up the module. The
function load-module is used to load in the files. For example, the following can be used
to define the compiler program:

(Defmodule (Compiler "syS: compiler;")
Ipass1"
Ipass2")

To load in the compiler, use (Load-Module 'Compiler). This will load in the compiled
files "8Y8: compiler; pass 1. zoom" and "8Y8: compiler; pa882. zoom." Another call
to load-module will not load any files, since the module system remembers it has already
loaded in the Compiler module. Therefore, all programs that use the Compiler program
can call load-module without having the files reloaded for each program.

During development of a module, any files that are changed must be recompiled to keep
the program updated. The function compile-module is used to recompile and load in any
files that have changed since the last time the program was loaded. When developing the
program, you typically start your development by calling compile-module to compile and
load in the newest versions of all the module files. With the latest files loaded, you can edit
the functions within the files, incrementally modifying the latest version of the program.
After saving these changes, calling compile-module will once again compile and load any
modified files.

This process usually is more complicated because of interdependencies between the files.
For example, you can have a file that contains macro definitions. The macros must be

37

-- ------------------

38 _ Modules - _______________________ _

defined before any files that use them can be compiled. Moreover, if changes are made to
this file, the files that use the macros must be recompiled to use the new macro definitions.

There are two different kinds of dependencies between files. The above example is a
compile dependency, but load dependencies also exist between files. For example, a file may
call a function to initialize the value of a variable. The file containing this function must be
loaded before the file initializing the variable can be loaded. Changes in the file containing
the function do not require the file using the function to be recompiled, only reloaded. The
full range of dependencies is quite complex, and their specification is equally complex. The
module facility in Top Level Common Lisp provides a fairly simple and straightforward way
of expressing dependencies that captures most cases and is not syntactically cumbersome.

In addition to specifying dependencies, the files of a module can also be specified by
using an existing module. Thus, you can have a set of modules that can be combined to
form larger modules for specific purposes. For example, the Compiler module given earlier
may contain an Assembler module as a sub-module.

While the module facility is generally used for compiling and loading Lisp files, it is
actually a general facility that can be used for manipulating files of any kind. For example,
a system for understanding natural language system may have a set of files that make up a
dictionary. These files can be defined and manipulated as modules as easily as Lisp files.

The macro defmodule is used to define modules. It is described on the following page.

c

c

c

c

c

c

c

c

c

c

I

C

)

)

)

)

)

)

)

)

._ ... _._ .. _-.. _---- _._---_ - .. _ .•.. _ __ ..• _ ... ----

- _____________________ 8.1 Defmodule _ 39

8.1 Defmodule

defmodule (name merge-pathname i:Key keyword-options) i:Rest filespecs [macro]

Defines the module name consisting of the associated files specified in filespecs. The
merge-pathname argument is used to supply any defaulting of pathname components for
the files in filespecs. There are many keyword-options that supply additional information
or specifications to the module. The following keywords are recognized:

: full-name

: documentation
: source-only

:source-file-type

:compiled-merge-pathname

:compiled-file-type

: loader

: compiler

A string that provides a more verbose name for the
module.
A documentation string for the module.
Specifies that the files in the module have a source-type
only and do not get compiled.
Overrides the default file type that identifies the source
files.
Overrides the pathname that is merged into the file
names to produce a compiled filename. It defaults to
the load merge-pathname that is a required argument~
Overrides the default file type that identifies compiled
files.
N ames a function that is called to load a file. It is
passed the pathname to load and a : verbose keyword
argument. It defaults to the load function.
N ames a function that is called to compile a ·file. It is
passed the source pathname to compile, an : output-f ile
keyword argument that is the compiled pathname to
produce, and a : verbose keyword argument. It de
faults to compile-file.

In addition to these keywords, defmodule also takes the file-interface-form keywords
: in-package, : shadoll, : export, :use-package, : import, and : proclaim. These are
used for the expansion of the in-module form, which is described in Section 8.2.

8.1.1 Defmodule File Specifications

The filespecs of a defmodule can take many different forms. A string (surrounded by
double quotes) specifies the name of a file. It should not include a file type, but otherwise
can be any pathname. The merge-pathname of the module is merged with this filename to
produce the required pathname.

A symbol is a reference to another module. Operations on the defined module will be
passed on to the sub-module.

If the specification is a list, it can be in one of five forms. If the first element of the list
is :using or :using-self, it specifies a dependency. If it is : serial, it specifies that the
filespecs are to be processed serially from left to right. If it is :parallel, each filespec in
the list can be both loaded and compiled in parallel. If the first element is not a keyword,
then it is equivalent to a :parallel specification, so each filespec can be both loaded and
compiled in parallel.

... --.... --------- -_ ..•....... "'--'-'--"'---

40 _ Modules ________________________ _

Top Level Common Lisp will use multiple processes to load and compile parallel modules,
which can substantially speed up compiling and loading of code.

These specifications are best understood through examples. We start with the simple
Compiler example given earlier. The following specifies the serial ordering of two files,
"passl" and "pass2". The file "passl" is loaded and compiled before "pass2":

(Defmodule (Compiler "sys: compiler;")
"passl"
"pass2")

The following example specifies that the two files, "passl" and "pass2", use definitions
in "macros", so "macros" must be compiled and loaded before "passl" and "pass2", and
also that any changes in "macros" require recompilation of the two files:

(Defmodule (Compiler "sys: compiler;")
(:Using "macros"

"passl"
"pass2")

)

The first specification after the :using can be any specification. The following example
specifies two files that are used by "passl", and furthermore, that the two files can be
processed in parallel.

(Defmodule (Compiler "sys: compiler;")
(:Using ("macros" "structs")

"passl")
)

By including the : serial keyword, the file "macros" is processed before the file
"structs" :

(Defmodule (Compiler "sys: compiler;")
(:using (: serial "macros" "structs")

"passl")
)

The following example specifies that "passl" and "pass2" can be compiled and loaded
in parallel after the file "macros" is loaded:

(Defmodule (Compiler "sys: compiler;")
(:using ("macros")

("pass 1" "pass2")
)

The next example shows the use of sub-modules. The assembler module is included in
the compiler module and can be compiled and loaded in parallel with the other compiler
files:

(Defmodule (Assembler "sys: assem;")
"assembler" ;; Contains only one file.
)

(Defmodule (Compiler "sys: compiler;")
(Assembler (:using ("macros")

("passl" "pass2" »)
)

c

c

c

c

c

c

c

c

c

I

C

)

)

)

)

)

)

______________________ 8.2 In-Module _ 41

The final example demonstrates the use of the more general capabilites of modules. The
primops module consists of assembly language routines compiled using the assemble-file
function. They can all be assembled in parallel:

(Defmodule (Primops "sys: primop;"
:SOURCE-FILE-TYPE "prim"
:COMPILER assemble-file)

("arrays" "lists" "symbols" "calls")
)

8.2 In-Module

Programs often create their own packages, exporting from the package the functions and
macros that are part of the documented interface to the program. Conversely, when us
ing a program, you will also use the program's package. The module facility allow you
to specify which file-interface forms should be part of the files that make up the mod
ule. The defmodule form accepts the keyword options: in-package, : shadov, : export,
:use-package, : import, and : proclaim. The values of these arguments are used to con:
struct a file-interface form that is returned by the macro in-module. By placing an
(In-Module 'Compiler) form in each of the module files, you insure they are compiled
and loaded with the correct package manipulation forms for the module. In addition, this
allows all of this information to be kept with the definition of the module, instead of spread
ing it throughout the files of the module. Therefore, any changes to the package structure
of the module need be done only in the defmodule form.

Here is an example:

(Defmodule (modules "sys: code;1I
:IN-PACKAGE modules
:USE-PACKAGE (IIFILE-SYSTEM" "LISPII)
:EXPORT (defmodule in-module load-module compile-module)

)
"modules")

(In-Module 'Modules) ==>

(progn
(in-package 'modules)
(use-package '("FILE-SYSTEM" "LISP"))
(export '(defmodule in-module load-module compile-module))

)

42 _ Modules ________________________ _

8.3 Module Operations

load-module name tKey print verbose reload source loader compiler version
shadows

[Junction]

Loads in the module name. The keywords control how the loading is done.

: print
: load-print
: verbose
:reload
: source
: loader
: compiler

:version

:shadoils

:parallel-load

:parallel-compile

If nil, disables printing of what is happening.
Passed on to the load function.
Passed on to the load function.
If non-nil, the module is reloaded.
If non-nil, only the source files are loaded.
If non-nil, it should be a function used to perform the loading.
If non-nil, it should be a function used to perform any compil
ing.
If non-nil, specifies the version of the module to load in. If
the argument is : released, the "released" version is loaded.
Otherwise, it should be a number. This numbered version of the
system is loaded. release-module is used to create a module
version. If this is nil, the newest version of the module files are
loaded.
If non-nil, it is a list of pathnames that are merged into all
module's filenames. Any files found using these pathnames are
loaded instead of the regular files. This allows you to have lo
cally modified copies of module files. See also shadow-module.
If nil, parallel modules will be loaded serially. It defaults to
the value of *parallel-had-mod ules*.
If nil, parallel modules will be compiled serially. It defaults to
the value of *parallel-oompile-modules*.

compile-mod ule name tKey print verbose reload source loader compiler [Junction]
shadows no-force sub-modules

Compiles any modified module files and loads in the module. The keywords are similiar
to those allowed for load-module, but no :version keyword is allowed, since compile
module always refers to the newest version of the files.

: print
: load-print
:verbose
: recompile
: reload
: source
: loader
: compiler

If nil, disables printing of what is happening.
Passed on to the load function.
Passed on to the load function.
If true, all module files are recompiled and loaded.
If non-nil, the module is reloaded.
If non-nil, only the source files are loaded.
If non-nil, it should be a function used to perform the loading.
If non-nil, it should be a function used to perform any compil
ing.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

: shadows If non-nil, it is a list of pathnames that are merged into all
module's filenames. Any files found using these pathnames are
compiled and loaded instead of the regular files. This allows you
to have local modified copies of module files. Also see shadow
module.

:no-force If non-nil, it does not use the module dependencies to force
recompiling and loading of modules. It will only recompile and
load any files that have changed since the last call to compile
mo d ule. Use this if you know changes in modified files are not
significant (e.g., only documentation strings were changed).

: sub-modules If nil, then any sub-modules within the module are not com
piled, but only loaded.

:parallel-load If nil, parallel modules will be loaded serially. It defaults to
the value of *parallel-had-modules*.

:parallel-compile If nil, parallel modules will be compiled serially. It defaults to
the value of *parallel-compile-modules*.

: error-output If nil, then all error-output from the compiler is discarded. If t,
then error-output is sent to *standard-output*. If :file, then
error-output files are created for each file compiled. These are
shown after the module has been compiled and loaded. If :both,
then the output is sent to *standard-output* and error-output
files are also created, but they will not be shown.

release- mod ule name tOpt ional version [function]

Creates a version of the name module. It takes all the module files that are currently
loaded and copies them, but changes their file type. If version is not supplied, then
it uses "reI" as the file type, which becomes the": released" version of the module.
If version is a number, it uses "RELn" as the file type, where n is the version number.
Load-module can then be called with this version number (or :released), and only
these files will be loaded.

copy-module name host tKey source [function]

Copies all files from the name module to the same place on host. By using logical hosts
with directory translations, the module files can be copied easily to a new location. If
source is nil, only compiled versions of the files will be copied.

shadow-module name pathlist tOptional sub-modules [function]

Makes pathlist shadow the filenames for the name module. When a module has a shadow
pathlist, it will first try to find module files by merging the shadow pathnames into the
filenames. Any files found using these pathnames are used instead of the regular files
for both compiling and loading. This allows you to have your own local modified copies

44 _ Modules ________________________ _

of module files. If sub-modules is non-nil, then pathlist is used to shadow all the sub
modules within name also. It defaults to nil. You can also achieve the same effect
by supplying pathlist as the : shadows argument to either load-module or compile
module. Note that you can have both. First the : shadows pathnames are tried,
followed by any module shadows, and finally, by the regular files.

describe-module name tKey compile-plan in-module sub-modules [function]

Describes the name module. If compile-plan is non-nil, it will show any actions that
would take place if compile-module were called. If in-module is non-nil, it will show
the in-module expansion for this module. If sub-modules is non-nil, it also describes
any sub-modules within name.

mod ule-files name &:Key source sub-modules [function]

Returns all the module filenames for name. It does not include any shadowed filenames.
If source is nil, it returns compiled filenames. If sub-modules is nil, it does not include
files from sub-modules.

find-module name &:Optional error-p look-up [function]

Tries to return the module definition of name. If it is currently defined, it returns
the module. If *auto-load-modules* is non-nil, it will try to load in the modules
definition file. If this is unknown, and look-up is supplied, that file is loaded and should
define the module, or an error is signaled (regardless of error-p).
If *auto-load-modules* is a list, then it should be a list of pathnames. For each
pathname, the name of the module is merged with the three file types *module-file
type*, *compiled-file-type* and *source-file-type*, in that order. If any of these
files exist and define the module, the module is returned. If all files have been tried and
no module is defined, find-module will return nilif error-p is non-nil, otherwise an
error is signalled.

mo d ule-definition-file name [function]

Returns the file where the module definition of name is located, if known. This is setf
able, so you can set the module-definition-file of name. find-module will load in this
file to define the module.

auto-Ioad-modules [variable]

If non-nil, module definitions are loaded when referenced. It can be a list of pathnames
to look up module definitions as described in find-module.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

· .. ---... _--_._ .. _--- .. __ ._----_._. __ ._ •. _--------------

______________________ 8.4 File Types _ 45

defined-mod ules [variable]

Bound to the list of all defined modules.

8.4 File Types

These variables are used as the default values of the file types.

mod ule-file-type [variable]

The file type used for looking up module definitions.

source-file-type [variable]

The default file type used for source files. It defaults to "lisp".

compiled-file-type [variable]

The default file type used for compiled files. It defaults to "zoom".

8.5 Using Parallelism for Parallel Operations

These variables control whether the module program will use parallelism when compiling
and loading modules.

parallel-compile-modules [variable]

Ifnon-nil, parallel module specifications will use process calls to perform compilations.

parallel-had-modules [variable]

If non-nil, parallel module specifications will use thread calls to perform loads. Since
it uses thread calls, some number of needles must be executing for parallel loads to
occur.

c

46 _ Modules - _____________________ _

c

c

c

c

L

c

c

c

c

c

)

)

)

)

)

)

)

Chapter 9

Lisp Worlds

Top Level Common Lisp should be booted using the Unix command "topel." The exact
method depends on how the system was installed.

9.1 Booting a Lisp World

When booting TopCL, a number of parameters can be specified.

-core corefile

-nolistener

-noinit

-boot number

-args

-gepages pages

-max address

-noge

The core file or Lisp world to boot.
Defaults to "/usr /topel/topel. core", or to the value of the
U nix environment variable LISPCORE.

Disables bringing the system up with the lisp listener. This Useful
if you are running Lisp within an Emacs buffer, from a hardcopy
device, or as a batch job.
Disables the loading of your "lisp-init" file in your home directory
before running the top-level loop.
number is set to sys: : *boot-arg* before the initializations are
run.
Allows unknown command line arguments to be supplied, which
otherwise would abort the booting. It can be used to supply
additional arguments that can be looked at by an initialization
function.
Specifies how many 4K pages of memory will be allocated before
GC is invoked. GC's will occur less often with a larger value, but
will require a corresponding larger amount of swap space.
Specifies the largest virtual address TopCL will use. This essen
tially limits the amount of swap space that Lisp will consume.
Note that the system will terminate without warning when its
address space is exhausted.
Disable GC, using all memory up to -max as Newspace memory.
This can be used to run experiments that can complete without

47

48 _ Lisp Worlds _______________________ _

-verbose
-debug
-syspages pages

-site sitefile

-net debug hostname

-netport portnumber

requiring a GC, and therefore produce more stable timings. How
ever, note that the system will crash without warning when its
address space is exhausted.
Turns on printing of certain boot parameters.
Turns on printing of certain run-time messages.
Specifies the number of 4K pages to leave for any C code memory
allocation.
Specifies the Site.Authorization file to a valid use of Lisp. Defaults
to "/usr/topcl/Site.Authorization", or to the value of the
Unix environment variable LISPSITE.
Establishes hostname as the network debugging host. The host
name must have the net debug server installed. If not specifed, the
value of the Unix environment variable LISPHOST will be used. If
this variable is not defined, then no network debugging will be set
up.
Uses portnumber as the TCP. port number to connect to the net
work debugger.

In addition, the following options are supported on the Sequent Symmetry:

- copy corefile

-no copy
-tmp directory

unix-command-line

Specifies a core file copy to use.
It defaults to /usr/topcl/tmp/topcl. core-copy or the value of
a defined LISPCORECOPY environment variable. These defaults will
be overridden by an explicit -core option to the boot command.
In this case, a core file with the same name, but with -copy ap
pended will be used as the actual core file.
If a core copy file can be accessed, this core copy will be renamed
and booted. The real core file will then be copied back into the
copy core file. This allows a boot to occur immediately without
waiting for the copy to complete.
Disables the use of a core file copy.
Specifies a directory to keep temporary files. It defaults to
/usr /topcl/tmp or a defined LISPTMP environment variable. This
directory is used for maintaining oldspace for garbage collection,
and other system files.

f/unction]

Returns a list of strings for each item on the command line. For example with a boot
command of 1. topcl -boot 10 -args fe fi fo, it returns ("topcl" II-boot" "10"
"-args" "fe" "fi" "fo")

unix-command-line [variable]

This global variable is bound to the Unix-command-line that was used to boot Lisp. It
is set before any initializations are performed.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

_______________________ 9.2 User Login _ 49

boot-arg [variable]

This global variable is bound to the value of the -boot argument, as an integer, in the
command line. It is set before any initializations are performed.

user-initializations [variable]

Each function on this list is called before %top-Ievel is called.

9.2 User Login

When Lisp is booted, it will "log" you in to the Lisp system by looking up your user-id and
obtaining your user information from" / etc/passvd". The variable *user-info* is bound
to a user structure that contains each item from the" / etc/passwd" file. The following
functions can be used to extract the information.
user- name user [junction]
user-password user [junction]
user-id user [junction]
user-group user [junction]
user-full-name user [junction]
user-directory user [junction]
user-shell user [junction]

After Lisp obtains this information, it will look for the file "lisp-init.lisp", or a compiled
version of it, in your home directory. If the file is found, Lisp will silently load this file into
the Lisp system, unless a -noini t was specified on the command line. If an error occurs
during the loading of this file, the load is aborted and the message "Error occured while
loading lisp-init: " is printed, followed by a message for the error found.

50 _ Lisp Worlds _______________________ _

9.3 Creating a Lisp World

The function save-world is provided to create a copy of the currently executing Lisp world.
This can be used to create a core image that will contain user customizations without
requiring loading in the code each time the system is booted.

save-world unix-filename &:Key gc top-level [Junction]

Copies the current state of the system into unix-filename. Unix-filename should be a
string that is passed directly to the operating system as a filename. If gc is : full (the
default), then a full-gc is performed before writing out the world. If gc is t, it will
perform a garbage collection before writing the world. If gc is nil, it will not perform a
GC unless it has to. To save the world, Newspace must be in Dynamic-O, so a gc may
be invoked regardless of the gc option.
If top-level is non-nil(the default), the current world is saved, so that when it is booted
it will perform all initializations and then invoke the top-level %initial-Ioop function.
This works by exiting the system, but saving state before the exit. Therefore, the system
will exit when using this option.
If top-level is nil, the current state of execution is saved. When the saved core file is
booted, the saved system state is resumed, and the call to save-world returns nil. Since
the booted system resumes this computation, no system initializations are performed,
such as the user login. Also be aware that any files open when the save occurs will not
be properly closed, and will incorrectly appear open when the core file is resumed.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

Chapter 10

Networking

Top Level Common Lisp provides access to network services and the creation of network
servers using TCP. All communication through the network is done using network-streams,
which are essentially byte-streams. Network-streams in Top Level Common Lisp can also
be used as ASCII character-streams, so functions such as read-char, or read-line can be
used on them. However, no attempt is made to perform character translation if the fore~gn
host sends characters that are not ASCII.

10.1 Connecting to Servers

network-connect hostname portnumber [function]

Connects to host hostname using TCP port portnumber. It returns a network-stream.

10.2 Creating network servers

network-server function portnumber [junction]

Establishes a server for TCP port portnumber. When a connection is made for this
service, function is called, with one argument being the network-stream. This function
is executed in its own process. Because of limitations in Unix, the stream object cannot
be used outside of this process. You should be careful to close the stream before returning
from function. If a server for portnumber has already been defined, network-server
will replace the function invoked for the server with function. The first time network
server is called it will create a. process to service all connection requests. This process
should never complete, but if it does, the next call to network-server will create a new
process to handle server connections.

tcp-services [variable]

A list of all services that have been defined via network-server.

51

c

52 _ Networking ----------___________ _

c

c

c

c

c

c

c

c

c·

)

)

)

)

)

)

)

Chapter 11

Memory Management

11.1 Garbage Collection

gc tOptional notify verbose [Junction]

Invokes the garbage collector, reclaiming address space occupied by inaccessible Lisp
objects. notify indicates whether a message should be printing to indicate that the
system is garbage collecting. It defaults to the value of *gc-notify*. If verbose is
non-nil, other information may be printed about the garbage collection activity. It
defaults to the value *gc-verbose*.

full-gc [Junction]

Garbage collects the entire Lisp world, reverting any static areas back to dynamic before
the collection. After the collection is completed, all remaining Lisp objects are consid
ered static, and will not be moved or collected until another full-gc. When this returns,
newspace will be dynamic-O, which is required for a save-world. Full-gc may actually
require three garbage collections to perform its job.

gc-notify [variable]

If non-nil, when GC is invoked a message will be printed. Defaults to t.

gc-verbose [variable]

If non-nil, GC will print out stages of gc activity. Defaults to nil.

gc-count [variable]

This variable is incremented every time a GC is performed.

53

54 _ Memory Management _____________________ _

11.2 Resources

This section describe the resource facility in Top Level Common Lisp. Resources give a
programmer explicit control over allocation and deallocation of Lisp object.

11.2.1 Introduction to Resources

One of the many features of Lisp is its ability to recycle address space. You can simply
allocate objects, use them, and let the garbage collector reclaim their address space when
they are no longer accessible. In addition to speeding program development, this capability
is essential for complex programs in which the usage of objects is not well defined. When
an object does have a well-defined usage and lifetime, it may be faster in some cases to
do your own explicit memory management. A resource is appropriate when the rate of
allocation-deallocation is fairly high. In such cases a resource will let you continually reuse
the same object instead of quickly creating a large amount of garbage. For example, since
format is typically used heavily, it uses a resource of string-output-streams to avoid creating
a new one that will immediately become garbage when the call returns. Typically, serial
programs deal with this by creating a single copy that is reused for each call, but this creates
non-reentrant code that cannot be used for a multiprocessor system.

Another case occurs when an object is large. Even if its rate of allocation-deallocation
is not high, creating a small number of objects will still consume a large amount of address
space. Bitmaps are an example of this type of usage. While they may not be allocated
deallocated at a high rate, their large size consumes lots of address space, which will cause
frequent garbage collections if new bitmaps are always created.

A third case occurs when the time needed to create an object is very long compared
with its initialization and use. Tasks are an example of this type. They can take a long
time to create, but may not be used for a long period of time. Thus, it is much faster to
keep them around to reuse than to create new ones every time.

The drawback to using resources is that objects on the free-list take up address space.
Following a burst of activity that creates and frees many objects, a program may move to
a new "phase" that will never use those saved objects. The address space they occupy will
never be reclaimed, but the objects are essentially garbage. The function clear-resource
can be used to clear out free objects from a resource if you know you won't be needing them
soon.

11.2.2 Defresource

The macro defresource can be used to define a named resource. The macro with-resource
will execute the macro body with an object allocated. The defresource macro also allows
you to specify your own "wrapper" macro that will be more efficient than the general with
resource form. In particular, since Top Level Common Lisp can have many processes
attempting to access a resource simultaneously, access to the resource must be protected
by locks. The wrapper macro defined by defresource is built to minimize the time spent
locking out other processes from the resource.

The functions allocate-resource and deallocate-resource can also be used to ex
plicitly allocate and deallocate data structures, but the with-resource wrapper macros

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

)

________________________ 11.2 Resources _ 55

should be used when possible. They allow an object to be "stack" allocated, whereas ex
plicit allocate-deallocate functions preclude that possibility since the dynamic extent of an
allocated object is not known.

defresource name parameters tOptional docstring iKey [macro]

Defines the resource name. Docstring is set as the resource documentation type that
is accessible by the function documentation.
Parameters should be a lambda-list that specifies the parameters for allocating and
manipulating a resource object.
The keyword arguments are as follows:

:vith-resource Defines a specialized with-resource macro that will evaluate its body
with a resource object allocated. See the documentation for the
general with-resource macro, below.

: constructor This required argument is a function (symbol) that is called with
the supplied parameters when a new object is needed. It can also
be a form that is evaluated to produce the new object. The for.m
can refer to parameters.

: initializer If this is supplied, it should be a function (symbol) that is called to
initialize the contents of the object. It is passed to the object to 'be
initialized followed by any parameters. It can also be a form that
is evaluated to produce the new object. The object is referred to
by the symbol RESOURCE-OBJECT in the current package. The form
can also refer to any parameters.

: mat cher If this is supplied, it should be a function (symbol) that is called
to determine whether a free object meets the requirements of the
supplied parameters. If it returns non-nil, the object is used. This
function is called without the resource being locked. It can be called
more than once on the same object. It can also be a form that is
evaluated to test the object. The object is referred to by the symbol
RESOURCE-OBJECT in the current package. The form can also refer
to any parameters.

: deallocator If this is supplied, it is a function or form that is called or evaluated
to clean up any pointers in the object after it has been deallocated.
It is called with one argument, which is the object to be deallocated.

with-resource (var resource-name tRest parameters) tBody body [macro]

Evaluates body with var bound to an object allocated from resource-name with the
optional parameters. It is more efficent to supply a vi th-resource argument to defre
source to define a specialized version of this macro. The specialized version will put
inline all the code to do allocation and initialization.

----... -.--.---------------------------------.... ---.--------_._-------_ .. _-

56 _ Memory Management _____________________ _

The following is an example using string-output-streams:

;; Define a resource of string-output-streams.
(DefResouree string-output-stream-resource ()

"String output streams"
: constructor

make-string-output-stream
:initializer

(progn
(setf (string-output-stream-index RESOURCE-OBJECT) 0)
RESOURCE-OBJECT) ;; Return the resource object.

:WITH-RESOURCE With-String-Output-Stream
)

;; An example use:

(Defun binary-string-of-number (n)
(With-String-Output-Stream (string-stream)

(let «*print-base* 2.»
(prine n string-stream)
(get-output-stream-string string-stream»»)

The following functions are also provided:

allocate-resource resource-name tRest parameters ffunction]

Allocates an object from the free list of resource-name with the optional parameters.

deallocate-resource resource-name object ffunction]

Returns object back to the free list for the resource resource-name.

clear-resource resource-name ffunction]

Clears all objects currently stored on the free list for the resource resource-name.

find-resource resource tOptional error-p error-value ffunction]

Returns non-nil if resource is a resource or names a defined resource. If error-p is nil,
then error-value is returned if resource is not the name of a resource.

* all- resources * [variable]

A lists of all resources that have been defined using defresource.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

Chapter 12

Metering and Profiling

Top Level Common Lisp provides a simple mechanism to help determine where your Lisp
program is spending its time, and thus where optimization activity should be focused. The
meter facility currently provides information that is statistical in nature. It samples the
stack-state "at specified intervals, recording which functions were running at each sample.
Functions that are called often or that ru~ for longer periods of time are more likely to
appear in the samples. Functions that are called less frequently or that execute relatively
quickly will appear less often. Thus, the frequency distribution of function calls provided
by the meter facility provides information on which functions are important to optimize for
improvements in execution-time performance.

The time between sampling has a critical impact on the validity and performance of the
meter information provided. The shorter the interval time, the more accurate the results
will be, but there is a corresponding increase in run time to perform the metering. However,
even with the shortest possible interval, there are many factors that affect the information
provided.

To use the meter facility most effectively, you should perform numerous meter runs.
By comparing the results from each run, a more accurate picture of run-time behavior is
possible.

The meter facility uses global data structures, and thus can be used only for recording
information in a single process. Thus, meter will not work when using multiple processes.

12.1 Meter

meter-on tKey clear depth micro seconds [function]

Begins metering of function calls. If clear is nil(the default), then new call information
will be combined with any previous metering info. If non-nil, then previous meter
information is cleared.
depth indicates the depth of the function calls that are recorded. With a larger depth,
more calls are seen, but the amount of information is less precise. A call that exists on
the stack that repeatedly calls a number of other functions will be given more weight

57

58 _ Metering and Profiling ___________________ _

than the functions it calls. Just the opposite occurs with a smaller depth. "Outer-loop"
calls are given less weight, with more weight provided to "inner-loop" calls. The default
val ue is four.
micro indicates the number of microseconds between samplings. The system will round
up to the finest grain size supported, which is typically 1-10 milliseconds in Unix. The
default is 100000.
seconds indicates the number of seconds between samplings. This value is added to the
microsecond value to produce the total sampling interval. Intervals of more than one
second are not likely to be very useful, but in very long-running programs, reducing the
sampling time reduces possible bignum allocations for data collection.

meter-off [Junction]

Stops .recording of meter info.

show-meters tOptional top-n [Junction]

Shows the current information about function call frequencies. The top-n argument will
restrict the display to the top-n most frequently called functions. It defaults to ten.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

)

_____________________ 12.2 System Timers _ 59

12.2 System Timers

The Sequent and Encore systems have a microsecond clock that can be accessed with very
low overhead to provide fine-grained, real-time timing measurements. The Common Lisp
function time reports on the time required to execute a Lisp form, and includes microsecond
time. This works well for "top level" calls, but is not sufficient for writing your own timing
code. The Common Lisp function get-internal-real-time provides this functionality,
but has a relatively large overhead. Top Level Common Lisp provides direct access to
the microsecond clock with the function unix-get-uclock, but using this interface forces
garbage to be created since timer values are 32-bit quantities (bignums) and memory must
be allocated to store them accurately.

Top Level Common Lisp provides a more efficient mechanism that reduces bignum
consing by maintaining a small number (100) of statically allocated slots to hold timer
values. This interface returns only elapsed time, so allocation of a bignum can be avoided
when the elapsed time is shorter than 8 seconds.

These timer values are global, so be careful when using timers for parallel programs.

start-timer nth [Junction]

Records a start-time in the nth system timer. There are 100 timer slots, a to 99. It
returns the clock value as a fixnum, which retains the lowest 23 bits only. In general,
the return value should not be used.

end-timer nth [Junction]

Returns the elapsed time for the nth system timer since the last call to start-timer. It
handles timer "wrap", but this works only if the total elapsed time is less than about
42 hours. A fixnum can hold a value of only about 8 million, so it will return a bignum
for an elapsed time of more than 8 seconds.
Calling end-timer does not reset the start-time. Thus repeatedly calling end-timer
will yield multiple elapsed times.

unix-get- uclock [Junction]

Returns the current unsigned 32-bit value of the uclock.

._----,,----------_._----_._-_._----

c

60 _ Metering and Profiling __________________ _

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

... __ ._ ... _._ .. -._-

Chapter 13

Parallel Programming

13.1 Introduction

Top Level Common Lisp includes constructs for parallel programming. The system sup
ports efficient use of multiprocessor computers by providing multiple grain sizes of parallel
operators. It defines a small set of primitives that provide a powerful and natural way of
expressing parallelism in Lisp programs. By using the extensibility of Lisp, higher-level or
special-purpose parallel facilities can be defined using the primitives provided in Top Level
Common Lisp.

13.2 Programming Using Parallelism

Solving a problem using parallelism requires that the problem be partitioned into smaller
units that can be executed in parallel. These units must be provided with the neccessary
resources in order to complete their work before being combined back together to produce
the final solution to the problem. Some systems can force the programmer to create all these
components, i.e., specifying the break-up of activities, which resources must be available to
each, and providing the mechanism for combining their results. This approach is taken in
languages that provide the fork-join construct. For some systems, it is performed entirely
by the compiler, as when FORTRAN do-loops are automatically partitioned for parallel
execution.

The parallel facilities offered by Top Level Common Lisp provide for programmer
specified parallelism. Thus, a programmer must specify which pieces of code can be per
formed in parallel. However, Top Level Common Lisp eliminates the need to explicitly
specify when and how the results of parallel computation are combined by using the future
construct.

13.2.1 Future Objects

The future construct provides implicit synchronization of parallel activity by using the re
sults of forked computation. When a forked computation is created it returns a future
object that represents the forked computation. Until the computation has completed, the

61

62 _ Parallel Programming ____________________ _

future object is undetermined. When the computation completes, the future object trans
forms into the value returned by the computation. The future object is now determined
and indistinguishable from this value.

If a strict operation attempts to operate on a future object, it implicitly forces the future
object to be determined, and will wait for its value before continuing. Strict operations
involve looking at the data type or value of an object, such as the function car, which
requires that its argument be a list. Non-strict operations, such as cons, only reference
their arguments, but do not require them to be any particular type.

Note that the determined value of a future object can itself be another future object.
A strict operation will continue to force future objects until a non-future object is finally
obtained.

EQ with Future Objects

The function eq is defined to be a strict operation. An undetermined future object will
be eq to itself regardless of its determined value, but in all other cases a determined value
is necessary. Therefore, to maintain consistent semantics, eq will force its arguments to be
determined.

force object [function]

Forces object to be determined and returns its value. If object is a future object, force
will either wait for its value or will compute it. If object is not a future object, it is
simply returned. force will return the direct representation of an object, so unsafe
type-specific code can be applied to the returned object.
Note that you do not need to call this function to force a future object to be determined.
Any strict operation is sufficient.

fut urep object [function]

Returns non-nil if object is a future object that is not yet determined.

delay function tRest arguments [function]

Immediately returns a future object, delaying the application of function to arguments.
Note that delay is a function, and therefore its arguments are evaluated. Function will
be applied to arguments only if a strict operation forces the future object returned to
be determined.
The delay operator allows lazy or demand-driven evaluation.
The future object returned by delay has the same properties as one returned by thread,
discussed in Section 13.3. However, it is also possible to have a delayed computation
return another future object that represents a task or process.

An example using delay is the function all-prime-numbers below. This will create
an infinite list of all prime numbers. However, it will only compute the numbers that are
actually needed.

c

c

c

c

c

(

c

c

c

c

)

)

)

)

)

)

)

______________________ 13.3 Threads _ 63

(Defun all-prime-numbers (previous)
(let «next (next-prime (1+ previous»»

(cons next (delay 'all-prime-numbers next»»

Delay can also be used to simplify problems with "forward references". You can define
the data structures that refer to results that would not be possible to compute at the time
the structure was built, but would be possible after some initialization or other processing.
This is typically dealt with in Lisp by using symbols and symbol-value to get the value
at run time. The initialization code would determine the value of the symbols. By using a
delay, you can place the code that needs to be run for the value right where the value is
needed, instead of in the initialization code. This also eliminates the symbol-value calls at
run time, so using delays is more efficient as well. This shows how future objects are useful
even for serial programs.

13.2.2 Multiple Grain Sizes

To effectively use parallelism, the associated overhead must not be prohibitive. If it takes
more than 2 seconds to perform two I-second computations in parallel, there is clearly no
advantage gained. To avoid this possibility, the 'overhead should be as small as possible
when using parallel computation. However, if a pair of computations takes a long time,
proportionately more overhead can be incurred to enable them to run them in parallel.
This overhead can be used both to improve the performance of each parallel piece and to
improve overall throughput by improving the utilization of available resources.

Top Level Common Lisp currently provides three different levels of parallel operators,
each having different characteristics and overheads. Both fine as well as large grained
parallelism can be expressed, allowing maximum utilization of possible parallelism in an
application. The following sections discuss the characteristics and overheads for each parallel
operator available in Top Level Common Lisp.

13.3 Threads

The finest grain-size of parallelism in TopCL is the thread. It is intended to be a computation
that will be performed quickly, and thus any time spent dealing with it should be as small as
possible. Threads consist only of a function and its arguments; they do not have a control
or binding stack of their own.

Threads can be either queued or opportunistic. The first argument to the function
thread indicates whether thread must immediately return a future object. When its value
is non-nil, a future object is always returned, and the computation may be placed on a
queue for execution. If its value is nil, then the system has the option of immediately
applying the function to its arguments and thereby not actually perform the computation
in parallel.

The short-lived property of threads also defines the strategy used when another com
putation forces their future objects. A threaded future object can be in one of two states.
Either a task is currently computing its value, or it has not yet received any computing
resources. In the first case, any computation which forces its value will simply "spin" until
the value is produced, which is the lowest overhead mechanism possible. This strategy is

64 _ Parallel Programming ____________________ _

used since it is assumed that no useful computation can occur between the time of reference
and the time of value delivery. In the second case the referencing computation will perform
the execution itself, changing the future object's state into the first case.

As with any function, a thread function can bind dynamic variables. However, since any
task can potentially perform the execution of a thread, references to dynamic variables that
are not bound by the thread function are undefined. In particular, there is no guarantee
that a reference to an unbound dynamic variable in a thread will access its global value.

Top Level Common Lisp has a number of "needle" tasks that will execute all threads.
When there are not any needles running, a thread operates as either a delay or a simple
function call. If a thread is queued, it operates the same as a delay, otherwise thread will
call the function immediately. The function needles will either create or remove needles.

Note there is always a "root" process running in TopeL, so the total number of processes
executing threads is the number of needles running plus at least one. Therefore, to evaluate
timings against the number of processors, the number of needles created should be one less.
For example, running a program with 7 needles will actually be using 8 processes.

It is possible to create more needles than actual physical processors in a machine. How
ever, this results in severe performance degradation since the system assumes a needle is
actually running and making progress computing any threads assigned to it.

needles tOptional n ffunction]

Adjusts the number of needles running to 'be n and returns n. If n is not supplied, it
returns the number of needles currently running. If n indicates a reduction in needles,
needles will wait until the needles being removed become idle before returning.

thread queue? function tRest arguments ffunction]

The queue? argument determines whether the call to thread must return immediately
or not. If queue? is non-nil, a future object is immediately returned that will eventually
receive the value of function applied to arguments. If queue? is nil, thread will call
the function immediately if no needle is free, and a future object will not be returned.
The computing agent that actually performs the thread computation is arbitrary and
therefore the dynamic binding context in which function executes is not defined. Refer
ences to dynamic variables that are not bound by function are not guaranteed to refer
to their global values.
The overhead to create a thread is about 4 to 12 function calls.

Waiting for Threads

While threads are a low-overhead mechanism, the time spent waiting for their values
by spinning can be wasteful. In particular, a t~k waiting for a thread is not able to apply
its computing resources towards completion of the computation it is waiting for. However,
this is only a problem if the computation being waited for can actually use the computing
resources. In these cases, a task may be a more appropriate parallel operator.

c

c

c

c

r
,""

c

c

c

c

)

)

)

)

)

)

)

_______________________ 13.4 Tasks _ 65

13.4 Tasks

The medium grain form of parallelism is the task. It has its own control-stack, binding
stack, as well as other information. Because a task is assumed to be a computation of some
duration, a call to Task will always immediately return a future object and be executed in
parallel. It is undefined exactly when the execution will actually begin, but it will eventually
be executed. This property is important in some situations where deadlock would occur if
two activities did not proceed in parallel.

A task's longer-lived property also defines the strategy used when its future object is
forced. Since it could be a fair amount of time before the value is delivered, waiting for
its value by spinning would be wasting resources. Instead, a task will cycle until the value
is delivered. A task cycles by returning control back to the task scheduler, allowing other
tasks to run. Each time it is resumed by the scheduler it will again check for a delivered
value. Once the value has been delivered it continues with its computation. This mechanism
allows tasks to be managed using a very simple scheduling algorithm, making their use more
efficient.

Because a task maintains its own binding stack, references to dynamic variables that
are not bound by the task are defined to access the global value of the variable.

Tasks provide the basic capability for more. than one flow of control. With their own
control stack and binding stack, their control flow can be suspended and switched to another
task. They can also be executed in parallel.

The task scheduler in Lisp has a number of "worker" tasks that will execute all scheduled
tasks. Similiar to the function needles, the function workers will adjust the number of
workers able to run tasks. At least one worker must be running before the function task
can be called.

workers tOptional n ffunction]

Adjusts the number of workers running to. be n and returns n. If n not supplied, it
returns the number of workers currently running. If n indicates a reduction in workers,
workers will wait until the workers become idle before returning. Workers will fail to
remove workers if there are tasks queued locally to a worker being removed, or if n is
zero and the scheduling queue is not empty.

The function task is used to create a task that will apply a function to its arguments.

task function tRest arguments ffunction]

task immediately returns a future object. The result of function applied to arguments
becomes the determined value of the future object.
The computational environment in which a task executes is defined to be the global
environment. Therefore, references to dynamic variables that are not bound by function
are references to their global values.
The overhead to create a task is about 300 function calls.

66 _ Parallel Programming ____________________ _

current-task [function]

Returns the task that is currently executing.

next-task [function]

Suspends control of the current task, and returns control to the scheduler, giving other
tasks a chance to run.

show-tasks [function]

Shows the state of all active tasks.

13.4.1 Task Control Stacks

The following variables can be used to modify how control stacks are allocated and how'
stack overflow is handled.

*con trol-stack-words * [variable]

Specifies the size, in words, of control stacks allocated by task. It must be at least 500.
Defaults to 1000.

grow-control-stack [variable]

Specifies the number of words to extend a control stack that overflows. It must be at
least 500. Defaults to 1000.

control-stack-limit [variable]

Specifies the number of words to extend a control stack before a stack overflow error is
signaled. Defaults to 3000.

stack-room [function]

Returns the number of free stack words remaining in the current stack.

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

_______________________ 13.4 Tasks _ 67

13.4.2 Task Waiting

wait-until form iOptional why [macro]

Waits until form returns non-nil and returns the non-nil value. If why is supplied it
should be a string or symbol indicating why the task is waiting. Defaults to "Wait".

task-wait why function iRest arguments [function]

Task-wait is a functional version of wait-until. It waits until function applied to
arguments returns non-nil, and returns that value.

13.4.3 Other Task Functions

This section documents other system functions that may be of interest. In general, only the
function task should be used to create tasks. These function should be used with caution,
since many do not check their arguments for validity to make them as fast as possible. They
will cause system failure if used improperly. They are documented here for experimental
purposes, and may be changed or renamed in future system releases.

create-task function iRest arguments [function]

Creates a task that will apply function to arguments when executed.

taskp task [function]

Returns non-nil if task is a task.

next-task [function]

Switches control over to the task that last switched control to the current one. This is
usually a worker task.

switch-task task [function]

Switches control over to task. When this task calls next-task or its initial function
returns, this call will return.

task-caller [function]

Returns which task switched execution to the current task. It returns which task will
be resumed if the current task calls next-task. If this returns nil, then the task is a
process, and calling next-task will simply return.

68 _ Parallel Programming ---------------------

task-function task (function]

Returns the initial function for task.

task-arglist task [function]

Returns the argument list for task's initial function.

task-state task [function]

Returns the current state of the task. Note that this state may have changed by the
time this function returns. It can be in one of the following states:

INITIALIZED The initial function is set up, but has not yet been executed.
FORKING It is getting ready to run in its own Unix process.
a fixnum It is running on the Unix process with the specified PID.
NEXT-TASK It is not currently executing.
DEALLOCATED The initial function has returned, and it is about to become COMPLETED.

Its contents are garbage and should not be examined.
COMPLETED The initial function has returned. Its contents are garbage and should

not be examined.

13.5 Processes

In the present implementation, a Process is essentially a task that is executed by its own
Unix process, and is therefore managed by the Unix operating system. By running in its
own Unix process, a process can perform callouts to C code or make system calls without
preventing other activities from running. This allows processes to deal with signals, since
they can safely perform llai t calls in order to wait for a signal. System llai t calls are used
when a process references a future object that is owned by a task. It will put itself on
the waiting list for the value, and then wait for a wake-up signal. Processes also maintain
their own allocation pointers, so they do not need to inhibit interrupts while performing
allocations.

These features come at a hefty price, however .. Creating a Unix process is a very ex
pensive operation. The overhead to create a process is about 40,000 function calls, which
is two orders of magnitude more than a task.

process function tRest arguments [function]

Process immediately returns a future object. The result of function applied to argu
ments becomes the determined value of the future object.
The computational environment in which a process executes is defined to be the global
environment. Therefore, references to dynamic variables that are not bound by function
are references to their global values.

c

c

c

c

c

r
\

c

c

c

c

c

)

)

)

)

)

)

. __ ._--_._----._ ... _----- --- ------_ ... __ ._------

_____________________ 13.6 Future Groups _ 69

fork-task task [junction]

Forks a new Unix process to execute task. Task cannot be running or managed by the
task scheduler. Use process to create a process. This function may go away in future
releases.

13.6 Future Groups

When writing parallel algorithms it is often necessary to wait for the completion of parallel
activity before moving on to the next step of the algorithm. This style of parallelism can
be implemented using future objects in a number of different ways. One common method
is to use recursion to fork off the parallelism, which then waits for the completion of the
activity as the recursion unwinds. For example, the function map-and-wait, below, will
fork a thread to call a function (which presumably has side effects) on each.item in a list,
and will not return until each thread has completed:

(Defun Map-and-wait (function list)
(If (null list) nil

(let «future (Thread t function (car list»»
(map-and-wait function (cdr list»
(force future»»

The thread call will create the parallelism for the current element of the list, saving the
pending value in the local variable. Once the end of the list is found and map-and-wait
returns, force is called on each future created as the recursion unwinds, This insures all
the computation is completed before the initial call to map-and-wait returns.

This mechanism works well when you have direct access to all future objects created.
However, there are other cases in which you need to continue computing after forking
without having to return back to the fork-point to wait for the completion. In this situation
the future objects must be stored somewhere so they can be referred to later. Future groups
provide this functionality.

with-future-group tag tBody body [macro]

Establishes a future group identified by tag, which is evaluated, and then executes body.
It will wait until all members of this group complete their computation and then return
the value returned by body. During the evaluation of body, the macro group can be
called to add members to the tag group. A group call is not restricted to the lexical
environment of body. It must only be within the dynamic scope of the with-future
group.

group tag operator tRest arguments [macro]

Adds a member to the future group identified by tag. Operator is either thread, task,
or process. Arguments are the arguments for the fork operator, which should be a
function and the arguments for this function. This will return a future object whose
determined value will be the result of the function applied to its arguments.

70 _ Parallel Programming __________________ _

c

c

c

c

c

r
\

r
'--

c

c

c

c

)

)

)

)

)

)

)

Chapter 14

Locks and Atomic Operations

14.1 Locks

The future mechanism provides all the synchronization necessary for programs that do not
have side effects. When side effects are present it is neccessary to provide locking primitives
to enable atomic and other synchronization operations. This chapter presents the locking
functions in Top Level Common Lisp and other related facilites.

14.1.1 Using Future Objects as Locks

The synchronization provided by future objects can also be used as a type of locking mech
anism for programs with side effects. For example, if a set of tasks could not continue until
some activity with side-effects is completed, this activity can be represented by a future
object that all other tasks force to be determined before continuing. The actual value of
the future object is ignored; only the synchronization properties are used.

14.1.2 Symbol Locks

Every symbol in Top Level Common Lisp has an associated lock state. It can be either
locked or unlocked. Three simple lock primitives are provided for lock states: symbol-lock,
symbol-getlock, and symbol-unlock.

symbol-lock symbol ffunction]

Returns non-nil if it acquired symboPs lock, or nil if it was already locked.

71

------- -_ .. _------_ .. _ .. " ..

72 _ Locks and Atomic Operations _________________ _

symbol-getlock symbol [Junction]

Does not return until it acquires symboPs lock. Symbol-getlock is implemented by
spinning until the lock is available, and therefore should be used only when you are sure
the lock will become available almost immediately. It is optimized to reduce contention
when repeated requests for a lock are being performed, and should be used instead of a
Lisp-level loop using symbol-lock.

symbol-unlock symbol [Junction]

Unlocks the lock associated with symbol. It returns symbol.

with-symbol-lock (symbol tRest options) tBody body [macro]

Executes body with the lock for symbol locked. The symbol argument is not evaluated.
It returns the values of body. The possible options are as follows:

: sleep seconds If the : sleep option is supplied, it must be followed by the number
of seconds to sleep between failed attempts to get the lock.

:next-task If the :next-task option is supplied, the current task will call next-
task between failed attempts to get the lock.

: eval Causes the symbol argument to be evaluated.

If : sleep or :next-task is not supplied, with-symbol-lock will use symbol-getlock
to acquire the lock.

14.1.3 Atomic Operations Using Symbol Locks

Top Level Common Lisp uses certain conventions when using symbols as locks.
The macro defun-atomic will define a function that will have only one copy executing

at anyone time. It is implemented by first acquiring the lock for the name of the function
being defined before executing the body of the function.

defun-atomic name lambda-list tBody body [macro]

Defines the function name as with defun, but guarantees that all calls to function will
be executed serially.

A number of atomic macros are defined that perform read-modify-write operations atom
ically. When the place argument is a symbol, the operations acquire the symbol's lock before
performing the operation. If the place argument is a generalized variable, these operations
lock on the symbol atomic, which is shared by all atomic operations performed on gener
alized variables. This can cause unnecessary serialization of parallel programs.

An atomic operation CANNOT execute another atomic operation that must acquire
the same lock it already owns. Therefore EMBEDDED ATOMIC OPERATIONS WILL
RESULT IN DEADLOCK.

It should also be emphasized that atomic operations do not prevent non-atomic opera
tions from reading or writing the place argument to these operations.

c

c

c

c

c

("

c

c

c

c

)

)

)

)

)

_______________________ 14.1 Locks _ 73

atomic-push value place [macro]

Pushes value onto place as an atomic operation.

atomic-pop place [macro]

Pops an object from place as an atomic operation.

atomic-inc! place tOptional delta [macro]

Increments place by delta as an atomic operation.

atomic-dec! place tOptional delta. [macro]

Decrements place by delta as an atomic operation.

define-atomic-modi!y-macro name lambda-list &Body body [macro]

Defines the read-modify-write macro name as with define-modify-macro, but guaran
tees that only one atomic operation at a time will be performed on the place argument
to the macro.

14.1.4 General Locks

Associating locks with symbols has a number of advantages.

• Symbols are interned, and thus references to a symbol are references to the same shared
object.

• Symbols can be referenced directly as constants. Using a separate lock object requires
they be referenced indirectly through a global variable or some other accessor.

• Symbols Reduce the need to allocate additional memory when using locks since symbols
are already present.

Associating locks with symbols has some disadvantages. It can force an implemention to
allocate more space for each symbol, thus wasting memory for the large number of symbols
that are never used as locks. However, symbols in Top Level Common Lisp have unused
bits that otherwise would be unused.

The more important difficulty, however, is using symbols for locks violates the abstrac
tion of a lock as a distinct object with its own behavior. Therefore Top Level Common Lisp
also provides general lock objects. They are currently implemented using symbols, but this
may change in future releases.

make-lock [function]

Returns a lock object that is initially unlocked.

--- "" -. __ ._-----------------

74 _ Locks and Atomic Operations _________________ _

lock lock [function]

Returns non-nil if it acquired the lock, or nil if it was already locked.

getlock lock [function]

Does not return until it acquires lock. This is implemented by spinning until the lock
is available, and therefore should be used only when you are sure the lock will become
available almost immediately. It is optimized to reduce contention when repeated re
quests for a lock are being performed, and should be used instead of a Lisp-level loop
using lock.

unlock lock [Junction]

Unlocks the lock. It returns lock.

lock-owner lock [Junction]

Returns the task that owns lock if it is locked, or returns nil if the lock is not currently
locked. This represents only the state of the lock at the moment this call is made, which
can change before this function returns. In particular, this function can return nil for
a locked lock.

with-lock (lock tRest options) tBody body [macro]

Executes body with the lock locked. The lock argument is evaluated. It returns the
values of body. The possible options are as follows:

: sleep seconds If the : sleep option is supplied, it must be followed by the number
of seconds to sleep between failed attempts to get the lock.

: relock If the : relock is supplied, a task may relock a lock it already owns.

:next-task
In this case the lock will not be unlocked when this form returns.
If the :next-task option is supplied, the current task will call next
task between failed attempts to get the lock.

If : sleep or :next-task is not supplied, with-~ock will use getlock to acquire the
lock.

c

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

Chapter 15

Foreign Function Interface

NOTE: The foreign interface is not completed for the Encore Multimax implementation.
System calls can still be defined and invoked, but user-defined C code cannot be loaded into
the Lisp system in Release 1.0. NOTE: You must compile all foreign function definitions and
foreign defstructs.

Top Level Common Lisp allows routines written in C to -be called from within Lisp.
Data structures can be passed by reference to these routines, allowing data sharing between
C and Lisp. Both Lisp objects and C-based data structures can be shared between the
different languages. However, C objects that are created ~ynamically using malloe cannot
be passed back to Lisp since they will not be within Lisp's address space. C routines and
data structures are referred to as "foreign" since they can be understood only through an
interface with a "translator".

When using foreign routines care must be taken to ensure that the Lisp system is not
corrupted. Without the type-checking mechanisms provided by Lisp, foreign code can read
and write to the entire Lisp address space without any safeguards. Therefore, bugs in foreign
routines can damage critical system data structures and cause the system to immediately
crash; or even worse leave "time bombs" in the system that only later will result in a system
crash. Be careful.

A foreign routine must be both loaded and defined in order to be called. The load
foreign function will read the foreign function into memory. The defun-foreign function
specifies the necessary argument and return information that must be present before the
foreign call.

15.1 Defining A Foreign Function

Defun-foreign is used to supply the information needed to perform a foreign call. It defines
a Lisp function that is called to invoke the foreign function. The value returned by the
foreign function will become the Lisp function's return value. When a foreign function has
"out" arguments (discussed in detail below), the Lisp function defined by defun-foreign
will return multiple values. Defmacro-foreign can be used to define a macro that will
side-effect the actual "out" arguments in the call form.

75

76 _ Foreign Function Interface ___________________ _

defun-foreign name-and-options [documentation] tRest arg-specs [macro]

Defun-foreign defines a Lisp function that will invoke a foreign function. The defined
Lisp function will convert the Lisp arguments into foreign data types before the call.
Upon return, the foreign return value and any "out" parameters are converted back to
Lisp objects.
When type information is required, the Lisp type must be specified. If the corresponding
foreign type is not specified, it will default to a reasonable type. Table 15.1 indicates
the foreign type defaults that correspond to specified Lisp types.
Name-and-options specifies the name of the foreign function, the return information,
and where the foreign routine is located.

Name-and-options has the following form:
function-name I
(function-name result-type) I
(function-name tKey result-type entry-name object-file)

Function-name identifies the name of the Lisp function to be defined. Result-type spec
ifies the data type of the return value. It can be either a symbol, specifying only the
Lisp result type, or a list of the form (lisp-result-type foreign-result-type).
The entry-name will default to the lowercase name of function-name with" _" prepended.
The object-file defaults to the value of *foreign-path*. Entry-name must be an entry
in the symbol table of the specified object file.
The arg-specs define each argument, its name and per-argument call-discipline and con
version information. By specifying each argument, the number of arguments is implicitly
defined.
Each arg-spec has the following form:

(argument-name tOptional type-spec mechanism)

The type-spec is either the lisp-type or (lisp-type foreign-type). Note that a type specifi
cation must be supplied if the call mechanism differs from the default specified in Table
15.1.
A rgument-name names the argument, and is used for internal purposes. Lisp-type spec
ifies the type of the Lisp actual parameter. Foreign-type specifies the type of the foreign
parameter. Mechanism specifies the call-discipline and argument conversion. It defaults
to : in for value-result parameters, and :ref for reference parameters.

defmacro-foreign name-and-options [documentation] tRest arg-specs [macro]

Defmacro-foreign is analogous to defun-foreign, with a couple of exceptions. First,
a Lisp macro is defined instead of a function. Second, all out-type parameters (both
: out and : inout) will be side-effected. Thus, all actual out-type parameters must be
forms acceptable to setf.

15.1.1 Calling Mechanism

The mechanism parameter of defun-foreign specifies the calling convention used with each
parameter.

c

c

c

c

c

r
'-

c

c

c

c

c

)

)

)

)

)

-----,---, '"'---'''

________________ 15.1 Defining A Foreign Function _ 77

Lisp Data Type Foreign Data Type Calling Convention
integer int, unsigned, double : in, : inout, : out
fimum int, unsigned : in, : inout, : out
single-float double :in, : inout , : out
short-float double : in, : inout , : out
string * char :ref
vector *int :ref
array *int :ref
foreign *int :ref

Table 15.1: Foreign Function Argument Attributes

15.1.1.1 Call By Value, Value-Result and Result

Many Lisp data types do not have identical machine formats as their corresponding C data
types. For these data types, the foreign function interface provides call by value, call by
result, and call by value-result. The corresponding mechanism specifiers are : in, : out,
and : inout respectively. Any argument that has : inout or : out as its mechanism will be
destructively modified before returning. Any : out or : inout parameter must be a form
acceptable to setf.

All : in and : inout parameters are converted from their Lisp representation to their
C representation when passed to the C function. All : out and : inout parameters are
converted from their C representation back to their Lisp representation when returning
from C. Table 15.1 enumerates the possible combinations of C and Lisp data types.

When there are: out or : inout arguments, the function returns them as multiple values;
the first value is the return value, and the rest of them are returned in reverse order, so
the last: out argument is the second value, etc. Thls happens because C takes arguments
backwards.

15.1.1.2 Call by Reference

Lisp data types that do have identical machlne formats as the corresponding C data types
are passed by reference. The mechanism argument is :ref. Call-by-reference data types
are not required to be setf'able.

Table 15.1 summarizes the allowable combinations of data type and calling convention
specifications. The first entry in the Foreign Data Type column is the default. For example,
if one specifies lisp-type to be integer, the foreign-type will default to into

15.1.2 Data Types and Parameter Passing

When passing parameters to and returning them from routines, the C compiler treats a
short the same as an int, and a float as identical to a double. The data types int and
long are equivalent. For instance, if one passes a float to a C function, the float will
be converted to a double before being inserted into the activation record. Also, a long is
identical to a C into The syntax of defun-foreign allows short to be a synonym for int,

,--------_. _.- --_.-

78 _ Foreign Function Interface ___________________ _

and float to be a synonym for double. These synonyms will not change the semantics of
the foreign call.

The lisp-type integer represents either a bignum or a fixnum. A lisp-type fixnum
represents a fixnum. The Dynix C int represents values from _231 to 231 - 1, while an
unsigned int represents integers from 0 to 232 -1. In Top Level Common Lisp, the integers
from _223 to 223 - 1 are represented as fixnWDj integers out of this range are bignums.

15.1.3 Run-time Range and Type Checking

The variable *foreign-runtime-safety* specifies run-time range and type checking. If
foreign-runtime-safety is not 0, each actual parameter will be checked for a type
match with the type specified in the defun-foreign.

Run-time range checking will verify that the Lisp type that was passed in to the C
routine is within the range of the foreign type. The conversion of bignums to a C int or a C
unsigned, and of Lisp integers to a C short, are the only cases in which this run-time range
checking is necessary. When range checking is turned off, a bignum larger than 32 bits will
have its lowest 32 bits passed to the C function.

If the lisp-type is bignum and the unix-type is double, range checking will not be per
formed. Range checking is not performed on floating point values since all floats repre
sentable in Lisp are representable in C. Range checking is not performed on any call by
Reference parameters; only an address is passed.

If *foreign-runtime-safety* is greater than 0, the called foreign function will check to
verify that the foreign function is both defined and loaded.

15.1.4 Overflow Within C

Arithmetic operations causing integer overflows are not flagged as exceptions by Unix.
The resulting value may either overflow into the sign bit, yielding a large negative value, or
overflow out of the 32-bi t word, yielding 0 as the result. For exam pIe, a C routine containing
the expression x = 1024 * 1024 * 1024 * 4; will return o.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

)

_________________ 15.2 Loading Foreign Functions _ 79

15.2 Loading Foreign Functions

The foreign loading mechanism performs the actual reading of a foreign function into the
address space of the Lisp process.

The syntax of foreign loading is as follows:

load-foreign object-file I:Key link-entries link-options reload temp-file
boot-image

[junction]

Load-foreign will load object-file into the Lisp address space if it hasn't been loaded
already. If the keyword argument reload is non-nil, it forces a reloading of the object-file
into memory, even if the file has already been loaded.
It will look up the entry points for all entries specified by the link-entries argument. If
link-entries is nil, all foreign routines defined in Lisp as located in this object file are
linked.
Note that the entire object file must be loaded, whether or not all the entries are linked.

15.3 A Simple Example

In this example, we define a C function that will multiply two double-floats together. The
following C function implements this:

double cmultiply(argl,arg2)
double argl; double arg2;

{ return(argl * arg2);}

We use the -c option to obtain an object file.

1. cc -c cfuncts.c

We must define, compile, and load the foreign function prior to a call. In the file
cmult .lisp we have:

(defun-foreign (cmultiply :RESULT-TYPE single-float
:OBJECT-FILE IcfunctS.O"
:ENTRY-NAME "_cmultiply")

"CMULTIPLY ARGl ARG2 multiply two floats; returning a float. II
(argl single-float :in)
(arg2 single-float :in))

The defun-foreign will define the function cmultiply,. It specifies the entry
_cmul tiply in the object file cfuncts. o. Table 15.1 shows that by specifying the lisp
result-type to be single-float, the unspecified foreign-result-type defaults to double. The
foreign-type of both arguments also defaults to double.

80 _ Foreign Function Interface - __________________ _

USER: (compile-:file "cmult.lisp") ..• ;; Compile Lisp file
Error output from "cmult.lisp#>",6-Nov-1989 21:24:59
Compiled on 6-Nov-1989 21:25:21 by Compiler Version 1.0.

CMULTIPLY compiled.

Finished Compilation of "cmult.lisp#>"
o Errors, 0 Warnings
Elapsed Time 0:00:10, run time 0:00:04 .

•. (pathname "cmult .zoom")
USER: (load "cmult.zoom") ;; Load Lisp file.
Loading '<File stream #.(pathname "cmult.zoom#>"»

CHULTIPLY defined.
T
USER: (load-foreign "cfile.o") ... ;; Load the C program.
Foreign Loading '<File stream #.(pathname "cmult.o#>II»

_cmultiply linked.

T
USER: (cmultiply 365.25 24.0)
8766.0

" Call the C function.

The foreign function cmul tiply is called with two Lisp single-floats. One Lisp single
float is returned.

15.4 Foreign Structures

Foreign structures facilitate interfacing to structured data of non-lisp programs. The foreign
structure allows the combination of various data types into one data structure, which is
passed by reference to the foreign function.

The macro defstruct-foreign is used to define the foreign structure. The user supplies
a name and field descriptions. This macro translates these field descriptions into a Lisp
structure.

defstruct-foreign is similar in syntax to de:fstruct, providing only the: conc-name,
: constructor, and : copier options.

defstruct-foreign name-and-options [documentation] tRest arg-specs

The name-and-options are of the following form:
(function-name tKey : conc-name : constructor : copier)
Arg-specs is a list of the form:
(field-name initial-value specifier)

[macro]

The field-name provides a name for future references to this field. If the initial-value is
nil, no initial value will be supplied. The specifier will denote both the Lisp type and
the Unix type.

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

____________________ 15.4 Foreign Structures _ 81

Name Lisp Description Unix Description
:float single-float double
: string string * char
: char char char
:long 32-bit integer long
:byte 8-bit integer char

Table 15.2: Foreign Structure Field Specifications

The specifier could be one of the following: An integer specifier followed by : signed
or : unsigned, i.e., : long : signed, : long :unsigned, :byte : signed, or :byte
: unsigned. The default sign of : long and : byte is : signed. The type : float spec
ifies a Lisp short-float, and a Unix double (the Sequent C compiler passes all float
parameters as doubles). A Lisp string is specified by : string n, where n is the length
of the string. A character is specified by : char. If no specifier is supplied, it defaults to
: long. Table 15.2 above describes the foreign structure field specifiers.

The following foreign structure illustrates the use of all the basic data types.

(Defstruct-Foreign Foo
(a 0 :long :unsigned)
(b 0 :byte : unsigned)
(c 0 : char)
(d nil :string 4)
(e nil :float))

The defstruct-foreign of Foo is translated into the following form:

(defstruct (foo

(a 0
(b 0
(c 0
(d nil
(e nil

: type
:type
:type
:type
:type

(:type (:foreign 18))
(:predicate nil))
(:unsigned-integer 0 4))
(:unsigned-integer 4 5))
(:char 5 6))
(:string 6 10))
(:float 10 18)))

For those who wish more control over field attributes (perhaps to create overlapping
fields), direct coding of the defstruct is possible.

--_0-_0 __ " .. 0_ _____ . ______ .

82 _ Foreign Function Interface ___________________ _

15.5 System Calls

Those routines documented in Section II of the Unix programmer's manual may also be
called from Lisp. These Unix system calls are part of the kernel, and thus are always linked
into the Lisp system. Thus, the load-foreign call is unnecessary for system calls. Instead,
one must associate a Unix system call number (an integer) with the foreign function name.
System call numbers are available in lusr/include/syscall.h.

define-systeM-call name-and-options index [documentation] tRest arg-specs [macro]

Define-system-call is similiar to defun-foreign, except that an index is specified
instead of loader information. All system calls return a fixnum.

15.5.1 System Call Example

The following example defines a function to invoke the system call setpriority from Lisp.
System call numbers are obtained in lusr/include/syscall.h.

, ,
;; Define call to return our process ide
, ,
(Define-system-call unix-getpid 20)
, ,
;; Define call to Change our priority.
, ,
(Define-system-call unix-set-priority 96

, ,

(which fixnum) ;; This is one of process(O) , group(1), or user(2).
(who fixnum) ;; more specific spec for the type of priority.
(priority fixnum» ;; The new priority.

" This will boost the priority of the current process, and
;; all processes forked henceforth. 0 is the default priority.
;; (You must be super-user to boost your priority).
, ,
(Defun hog-processors ()

(unix-set-priority 0 (unix-getpid) -10»

c

c

c

c

c

c

c

c

c

c

)

)

)

)

)

)

)

)

)

.------- .-----.------

_____________________ 15.5 System Calls _ 83

15.5.2 Foreign Example Using Structures

The following example illustrates the use of foreign structures. The Unix system call
gettimeofday(2) expects two structures, both containing two integers.

1*

*1

The Unix programmers manual provides the
calling information.

gettimeofday(tp,tzp)
struct timeval *tp;
struct timezone *tzp;

struct timeval {
long tv_sec;
long tv_usee;

}

struct timezone {

}

int tz_minutesvest;
int tz_dsttime;

, , ,
, , , These are the corresponding Lisp definitions.
, , ,

(Defstruct-foreign timeval
(sees 0 :long :unsigned)
(usecs 0 :long :unsigned))

(Defstruct-foreign timezone
(mvest 0 :long :unsigned)
(dst 0 :long :unsigned))

(Define-system-Call unix-gettimeofday 76
(argl timeval ref)
(arg2 timezone ref))

(Defun Seconds-Since-1970 ()
(let «timeval (make-timeval))

(timezone (make-timezone)))
;; Call UNIX to fill out the structures.
(unix-gettimeofday timeval timezone)
;; Return just the seconds from the timeval.
(timeval-secs timeval)))

._-_.",----------------

	Contents
	1 Introduction
	2 Lisp Listener
	3 The Debugger
	4 Pathnames
	5 The Inspector
	6 Tracing and Stepping
	7 The Compiler
	8 Modules
	9 Lisp Worlds
	10 Networking
	11 Memory Management
	12 Metering and Profiling
	13 Parallel Programming
	14 Locks and Atomic Operations
	15 Foreign Function Interface

