e

¢ 7

DATALOGILABORATORIET
Department of Computer Sciences
Uppsala University

June 1979

Floating point numbers and arrays in Lisp F3

by

Mats Carlsson

S aenast ve e s sT RS ST seaR il G R

DLU 79/4

[}

TABLE OF CONTENTS

1 Introduction
2 Internal representations
® 3 External representations
4 Added functions, callable from LISP
. 5 Implementation guide
o 6 Notes on the Fortran code

Appendix A: References

B

@

R

b

|

2

@

1 INTRODUCTION

In 1978, the current version of the LISP interpreter LISP F3 was
released. The LISP dialect used is a subset of Interlisp, and the
system 1s written in Fortran IV.

The system is cafefully documented in <No 78a>» and <No 78b>, and is
available {rom DLU.

This report describes an extension of the system. The extended system
supports the following new data types:

-~ arrays containing pointers,
integers and
floating point numbers;

—-~ floating point numbers
replacing big integers

3

F

ST

2 INTERNAL REPRESENTATIONS

Floating point numbers

are stored exactly as the big integers of the standard version: in
consecutive floating point words in upper PNAME.

hrrays

are stored in a way similar to that of atoms and strings. All array
data are stored in the Fortran array PNAME. Arrays are referred to by
pointers in the range (T+1, NATOM). Every array consists of three parts,
each one of which may have zero length. The details are as follows:

(z is zero or more slack bytes.)
(i,3,k,) are byte pointers into PNAME.)

X = the array pointer value
CAR(x) = LISPF3-ARRAY

CDR(x) = NIL

PNP(X) = i

PNP(x+1) = 1

PNAME:

(z J k (pointers) z (integers) z (. p. n.))
' ! ! !

i i Kk 1

The three array parts all start on a word boundary. By a word we mean
the basic storage cell for a data type. (E.g. half machine word, full
machine word, double machine word, etc.)

By this means it is possible to call a Fortran subroutine with an
actual parameter consisting of an address to an array part if the
corresponding formal parameter is a properly typed array. The advantage
of this method, instead of having pointer arrays, is that we do not have
to "unbox" and "box" nunbers before and after calls to e.g. numerical
routines., For further details see the description of subroutine ARRUTL
{on page 9).

b]
Ao

AT
D

3 EXTERNAL REPRESENTATIONS

Floating point numbers

a) Input

Atoms obeying the following syntax are treated as numbers. If they
cannot.be stored as small integers, they are treated as floating point
numbers:

number: = sm[Esn]

s vi= [el-]

n = d[n]

d = 0112131 41516171819
m =nl.[n]]t.n

The "E'" has the same meaning as in Fortran.
b) Output
Floating point numbers arc printed as compactly as possible, either

with or without the "EV,

Arrays

cannot be read-in. They are printed as
[xxx

where xxx is the array pointer value,

%

sl

4
¥

i

-6 -

% ADDED FUNCTIONS, CALLABLE FROM LISP

(ARRAY s si sf) = a
creates an array with space for s elements. Out of these s elements, si

are to be integers and sf are to be floating. The elements are initially
set to NIL, O, and 0.0, respectively.

(ARRAYSIZE a) = (s si sf)

gives Lthe sizes of the array a. S, si and sf have the same meaning as
above,

(ELT a J) = x
(ELTI a j) = i
(ELTR a J) = f

picks the element j of the pointer, integer or floating part of a.
Within each part, the elements are indexed from 1 and upwards.

(SETA a j xX) = X
(SETL a j i) = 1
(SETR a j £) =

sets the element j in the proper part of array a.

(IQUOREM j k) = (quotient . remainder)

This function performs an integer division of j by k.
(ARRAYP a) = a or NIL

ARRAYP returns a if a is an array, otherwise NIL.

(FIXP i) = 1 or NIL

FIXP returns i if 1 is a small integer, otherwise NIL.

(FLOATP f) = f or NIL

FLOATP returns f if { is a floating point number, otherwise NIL.

e

Arithnegigg

There is
all
used., 1If
performed.,

operands in

no special floating point
a computation are
any operand 1is floating,

arithmetics. Instead, as
integers, integer arithmetics
floating point arithmetics

long as

is

is

@

b

B

5 IMPLEMENTATION GUIDE

Simply follow the implementation pguide of <No 78a>. Please note,
however, that the following common variables have been added and must be
given their proper machine-dependent value in INIT1:

JBYTES No of bytes in a pointer.

IBYTESb No of bytes in an integer.

BYTES No of bytes in a floating point number.

IRESOL The precision of a floating point number (in decimal digits).
ITPOWER max(abs(p)), if floating point numbers are represented as

m*10%%p . abs(m) <10.

FUzZZ will compensate for truncation errors in certain cases.
Should be set to 5¥10%%(-IRESOL).

Caution! IBYTES and BYTES must both be multiples of JBYTES, otherwlse
GARB will fail.

B

B

§§

-9 -

6 NOTES ON THE FORTRAN CODE

To be able to make the extension of the interpreter, it was
unfortunately necessary to infroduce certain changes in many
subroutines, In this chapter we give a 1list of the more substantial
modifications.,

6.1 SUBROUTINE ARRUTL (IPTR,IACTN,IPART,IFIRST,ILEN)

is a new subroutine that performs various array handling functions.
IPTR is a pointer to the array, IPART tells which part of it (1, 2, or
3), and IACTN tells what action to be done:

IACTN = get array element IFIRST

1

2 set array element IFIRST

3 set IFIRST and ILEN to array part bounds

In cases 1 and 2, IFIRST is the array part index and ILEN is the PNAME

index to the value., In cases 3 and U4, IFIRST is the PNAME index of the
array part and ILEN is the number of elements.

Ex:

Suppose that you want to transmit the floating part of array IA to a
numerical routine. Just do:

CALL ARRUTL(IA,3,3,IFIRST,ILEN)
CALL NUMRUT (PNAME, TFIRST,ILEN,...)

6.2 SUBROUTINE PRIFLO(F)

is a new subroutine that prints the floating point number F.

6.3 SUBROUTINE PRIINT(I)

is a new subroutine that prints an integer.

6.4 INTEGER FUNCTION RATOM(X,IO0P)

has been extended so that it will recognize floating point numbers.

©

B

e

- 10 -

6,5 INTEGER FUNCTION GARB(GBCTYP)

has been extended to take care of pointers in arrays, using the
following algorithm:

In the mark phase, a list of all cncountered arrays 15 built up. The
list is headed by the variable ARRLST. Then -CDR(ARRLST) points to the
next array etc., until we get to NIL. The mark phase is finished by
four steps:

. If ARRLST=NIL then exit.

3 :=ARRLST; ARRLST:=-CDR(S); CDR(3):=-NIL.

"Start wmarking from all pointers stored in the array 5Y.
Go to 1.

-

-

o NS -

°

6.6 SUBROUTINE MARKL(IS,GBCTYP,ARRLST)

Treats arrays as in GARB.

6.7 FUNCTION MKREAL(R)

Stores a floating point number in upper PNAME and returns a Lisp pointer
to it.

0.8 FUNCTION GTREAL(T,IRETUR)

Returns the value of a floating point number referred to by the Lisp
pointer I. IRETUR will contain the closest integer number.

If T points to @ small integer, GTREAL will return 0.0 (but IRETUR
will still return the integer valua).

- 17 -

L] APPENDIX A

REFERENCES
. No 78a Mats Nordstrdm, "Lisp F3 - Implementation Guide and System
s Description™, DLU 78/3.

No 78> Mats Nordstrgm, "Lisp F3 - User's Guide", DLU 78/4,

<)

ol

