
__ __ ,

\ ~·

... ,_

DATALOGILABOR/\TOIUET DLU 79/ll
Department of Computer Sciences
Uppsalc1 University
,June ·1979

Floatfog point numbers and arrc:iys in Lisp F]

by

Mats Carls:3on

-

- 2 -

TJ\BLE OF CONTENTS ----------
1 Introduction
2 Internal representations
3 External representations
q Added functions, callc1ble from LISP
5 Implementation guide
6 Notes on the Fortran code

Appendix 1\: References

- 3 -

1 INTRODUCTION

In 1978, the current version of the
released. The LISP dia1ect used is a
system is written in Fortran IV.

LISP interpreter LISP F3 was
subset of Interlisp, and the

The sys tern is carefully documented in <No 78a> and <No 78b>, crnd is
available from DLU.

This report describes an extension of the system. ·n1e extended system
supports the following new data types:

arrays containing pointers,
integers and
fl.oating point numb~,rs;

floatinB point numbers
replacing big integers

2 INTERNAL REPRESENTATIONS

Floating point numbers

are stored exactly as the big integers of the standard version: in
consecutive floating point \✓Ords in upper PNAME.

Arrays

are stored in a way similar to that of atoms and strings, 1\11 array
data are stored in the Fortran array PNAME. Arrays are referred to by
pointers in the range (T+ 1, Nl\TOM)" Ev0.ry array consists of three parts,
each one of which m:Jy have zero length, The details are as follows:

(z is zero or more slack bytes.)
(i,j ,k,J. are byte pointers into PNAME.)

X = the array pointer value
CAR(x) = L TSPf3 .. ARR/\Y
CDR(x) - NIL
PNP(x) - j_

PNP(x+1) = l

PNAME:
(z j k (pointers) z (integers) z (f. p. n.))

i j k l

The three array parts all start on a word boundary. By a word we mean
the basic storage ce11 for a data type. (E.g. half machine word, full
rnach:Lne word, double machine word, etc.)

By this means it is possible to call a Fortran subroutine with an
actual parameter consisting of an address to an array part if the
corresponding fonnnl parameter is a properly typed array. The advantage
of this method, instead of having pointer array.'o, is that we do not have
to 11unbox 11 and "box" numbei~s before cind ;::ifter calls to e.g. numerical
routines, for furth0.r details see the description of subroutine ARRUTL
(on page 9).

.J

- 5 -

3 EXTERNAL REPRESENTATIONS

Floating point numbers

a) Input

Atoms obeying
cannot,be stored
numbers:

the following syntax are treated as numbers. If they
as small integers, they are treated as floating point

number::=
s
n
d
m

. ' -.. -

sm[Esn]
[+ !--J
cl[n]
0 ! 1 ! 2 ! 3 ! LI ! 5 ! 6 ! 7 ! 8 ! 9
n[.[n]]!.n

The "E" has the same meaning as in Fortran.

b) Output

Floating point numbers arc printed as compactly as possible, either
with or Hi thout the "E" .

Arrays

cannot be read-in. They are printed as

(xxx

where xxx is the array pointer value.

r

- 6 -

I~ ADDED FUNCTIONS, CALLABLE FROM LISP

(ARRAY s si sf) = a

creates an array with space for s elements. Out of these s elements, si
are to be integers ;:ind sf are to-be floating. 111e elements-are initially
set to NIL, 0, and 0.0,respectively.

(ARRAYSIZE a) = (s si sf)

gives lhe sizes of the ;:irray a. ~' si and sf have the same meaning as
c1bove.

CELT a j) -· x
(ELTI a j) ::: i
(ELTR a j) - f

picks the element j of the pointer, integer or floating part of a.
Within each part, tT1e elements are indexed from 1 and Up\•/8rds.

(SETA a j x) = x
(SETI a j i) ::: i
(SETR a j f) = f

sets the element j_ in the proper part of array~-

(IQUOREM j k) - (quotient . remainder)

This function pei~forrns an integer division of j_ by t•

(ARRAYP a)= a or NIL

ARRAYP returns a if a is an array, otherwise NIL.

(FIXP i) = i or NIL

FIXP returns i if i is a sm.Jll integer, othenlise NIL.

(FLOATP f) =for NIL

FLOATP returns f if f i ~ a floatinr~ point number, otherwise NIL.

- '7 --

Arithmetics

There is no special floating point ari thtn(~tics. Instead, as long as
all operands in a computation are integers, integer arithmetics is
used. If any operund is floating, floating point udthmetics is
pcrforrned.

I ,_

- 8 ·-

5 IMPLEMENTATION GUIDE

Simply fo Um-J the imp1rcmentati.on guide of <No 78a>. Please note,
hm-1ever, that the following common variables have been added and must be
given their proper machine-dependent value in INIT1:

JI3YTES No or bytes in a pointer.

!BYTES No of bytes in an integer.

BYTES No of bytes in a floating point number.

IRESOL The precision of a floating point nunber (in dec~nal digits).

IPOWER max(abs(p)) > if floating point numbers are represented as

m*10**p, abs(m)<10.

FUZZ wi 11 compensate for truncation errors in certain cases,
Should be set to 5*10**(-IRESOL).

Caution l IBYTES 31xl BYTES must. both be multiples of ,JBYTES, otherwise
GARB will fail.

- 9 -

6 NOTES ON THE FORTRAN CODE

To be able
unfortunately
subroutines. In
modifications.

to make the extension
necessary to introduce

this chaptPr we give a

of the interpreter, it was
certain changes in many

list of the more substantial

6.1 SUBROUTINE ARRUTL (IPTR,IACTN,IPART,IFIRST,ILEN)

is a new subroutine that performs various array handling functions.
IPTR is a pointer to the array, IPART tells which part of it (1, 2, or
3), and IACTN tells what action to be done:

IACTN = 1 get array element IFIRST
2 set array element IF'Il1ST
3 set IFIRST and ILEN to array part bounds

In cases 1 and 2, IFIRST is the array part index and ILEN is the PNAME
index to the value. In cases 3 and 4, IFIRST is the PNAME index of the
array part and ILEN is the number of elements.

Ex:

Suppose that you ~vant to transmit thc:o floating part of array IA to a
numerical routine, Just do:

CALL ARRUTL(IA,3,3,IFIRST,ILEN)
CALL NUMRUT(PNAME,IFIRST,ILEN, ...)

6.2 SUBROUTINE PRIFLO(F)

is a new subroutine that prints the floating point number F.

6.3 SUBROUTINE PRIINT(I)

is a new subroutine that prints an integer.

6.11 INTEGER FUNCTION RATOM(X,IOP)

has been extended so that it will recognize floating poi.nt numbe1~s.

.. 1tV

- 10 -

6,5 INTEGER FUNCTION GARB(GBCTYP)

has been extended to tnke care of pointers in arrays, using the
following ;:,lgori thtn:

Tn the m;cirk ph8.sc, i1 li:-:;t of nll encountered nrrny::i b built up. Tr1c
list is headed by the variable ARRLST. Then -CDR(ARRLST) points to the
next array etc., until we get to NIL. The mark phase is finished by
four steps:

1. If ARRLST:NIL then nxit.
2, S::ARRLST; ARRLST::-CDR(S); CDR(S):=-NIL.
3, "Start marking from all pointers stored in the array S".
LJ. Go to ·1.

6.6 SUBROUTINE MARKL(IS,GBCTYP,ARRLST)

Treats arrays as in GARB.

6.7 FUNCTION MKREAL(R)

Stores a floating point number in upper PNAME and retui·ns a Lisp pointer
to it.

6. 8 FUNCTION GTREJ\L (I, IRETUH)

Returns the
point0.r I.

vslue of c1 floating point number referred to by the Lisp
rnETUR will contain the closest integer number.

If I points to a smnll tnteger, GTREAL will return O. O (but IRETUR
will still return the integer value) .

No 78a Mats No1~dstrom,

No '78b Mats
,J

Nordstrom,

- 11 -~

APPENDIX A

REFERENCES

11Usp F3 - Implementation
D0scription", DLU 78/3.

"Lisp F3 = User's Gulde",

Guide and System

DLU 78/4.

