
DLLJ 75/9

LISP-details

INTER Ll SP I 360 - 370

by

Anders Ha raids on

UPPSALA UNIVERSITY
Datalogilaboratoriet

Department of Computer Sciences

LISP -details

JNTER-LISPJ360-370

by Anders Haraldson

ABSTRACT

This paper gives a tutorial introduction to INTERLISP/360-370,
a subset of INTERLISP, which can be implemented on IBM/360 and
similar systems. oe·scriptions of a large number of functions in
INTERLISP with numerous examples, exercises and solutions are
contained. The use of edit, break, advice, file handling and
compiler are given and both interactive and batch use of the
system is taken care of.

UPPSALA UNIVERSITET

datalogilaboratoriet

department of computer science

0 i:opyright 1975

Anders Hara1dson. Oatalogi1aboratoriet, Sturegatan 1. S-752 23 Uppsala, -Sweden

Printed i-n Sweden at Uppsala University

ISBN 91•506·0034•6

Contents

Preface

Acknowledgements

References

1. Primary datatypes in LISP 1

2. Representation of atoms and 1 ists•...•..... 4

3. Primitive functions 9

4. Conditional expression 14

5. Property-! ists ... 16

6. S-notation ... 21

7. User-defined functions and assignments••. 24

8. ,,unning LISP ... 28

9. Rucursive functions 35

10. Introduction to break and edit•.....•.......... 46

11. Some more functions 53

12. Arithmetic functions 61

13. Logical functions 67

14. Function types ... 70

15. Variable bindings 77

16. P rog•.•...•......•••........ 8 0

17. Evaluating functions 82

18. Map functions ... 86

19. 1/0 functions ... 89

20. File handling .. 97

21. Structure-changing functions 101

22. Atom and string manipulation functions 107

23. Arrays•...........•....•••.•...•.....•....•.... 110

24. Edit ...•.... 113

25. Error handling .. 119

26. Break and advise 123

27. Stack functions 133

28. Funarg .. 139

29. Campi ler and assembler 144

30. Miscellaneous•................................ 149

Solutions

Index

Appendix. How to run INTERLISP/360-370 on your computer

Preface

INTERLISP/360-370 1 is an implementation of a subset of INTERLISP (ref 1)
on the IBM/360 and similar systems. It contains the interpreter, the
set of basic functions, edit, break, advise and the compiler. Other
packages such as DWIM, the Programmer's Assistent, CLISP and QLISP can
quite easily extend the system.

This paper gives a tutorial introduction to the system. For those inte
rested only in gaining some basic ideas about LISP there is an informal
introduction by Sandewall (ref 3). No previous kno~iledge about LISP is
required to read this text, but an elementary course in computer and
programming use can make its understanding easier. There are a lot of
differences between INTERLISP and LISP 1.5 (ref 4). The reader already
having a knowledge of LISP 1.5 wil I find it advantageou to find out
the differences for himself, as it is not normally pointed out where
the differences appear. Some minor differences between INTERLISP/360-
370 and INTERLISP occur, mostly machine-dependent, such as character
sets, as-interface etc.

The paper describes both the interactive and batch use of the system.
Implementation-dependent features, such as control cards (commands)
for running the system and data sets needed for file hand! ing are in
cluded in an appendix.

There are a lot of references to the "LISP manual", by this is meant the
INTERLISP/360-370 Reference Manual (ref 2). The term LISP is also used
as an abbrevation of INTERLISP and what is said about LISP in this text
is not necessarily legal in other LISP dialects.

In each section the fact is clarified with examples, and at the end of
each section there are a number of exercises. Solutions can be found
following the section part. Many of the examples and exercises are given
to define system functions, showing how they work and familiarising the
reader with them. These functions are "-marked; for~ the function name
"put is used. It is very important to use this "-marked version of the

1 Information about INTERLISP/360-370 can be obtained from UDAC, Box
2103, S-750 02 Uppsala, Sweden, or Datalogi1aboratoriet, Sturegatan 1,
S-752 23 Uppsala, Sweden.

function if it is to be tested on the computer, as otherwise there is
a great chance to erroniously redefine system-functions. The definitions
shown in this paper on the system-functions are in most cases not iden
tical with the way they are really implemented. In many cases the de
finitions given are not the best but they are forwarded for pedagogical
reasons and in some cases the solutions are only partial, they do not
take care of all the different cases which can occur etc.

The INTERLISP system contains hundereds of system functions and I think
it meaningless to read this text with the intention of learning each
and every function by heart. Better is to read quickly through and look
at the examples than try to understand its ful I definition and later
when you have found the need for a special function go back again and
study it again. If you have an interactive system available it is simple
to check how a system function works, which sometimes is faster than to
understand its definition. Many functions are not described fully in
this paper; their full definition is found in the reference manual.

In the first section we use M-notation, where functions, variables and
conditional expressions are written in small letters (lm·Jer case), and
S-expressions in capitals. Later we mostly use the S-notation (the nota
tion used when communicating with the computer), theM-notation is only
used for describing simple forms such as

car[(A B)], car[l], memb[car[l],foo[cdr[l]]]

This paper is not in its final version, so I would appreciate comments
and suggestions about it. Although al 1 examples and solutions are checked
out by computer there wil 1 stil 1 be errors in them.

Acknowledgements

Thanks to Mats Nordstrom, Erik Sandei·Jall, Jaak Urmi, other members
of Datalogilaboratoriet, students and others for reading this manu
script and giving valuable comments and criticism.

Thanks also to Mark Payter and Lis Stafberg for typing and editorial
help.

References

1. Warren Teitel man

INTERLISP REFERENCE MANUAL

XEROX, Palo Alto Research Center,

3180 Prater Drive, Palo Alto, Calif 94304, USA, 9174

2. INTERLISP/360 and 370 REFERENCE MANUAL

Uppsala Datacentral

Box 2103, S-750 02 Uppsala, S1·1eden, 1974

3. Erik San de\va 11

LISP: Principles

Datalogi laboratoriet

Sturegatan 1, S-752 23 Uppsala, Sweden, 197?

4. John McCarthy et al

LISP 1.5 Programmer's Manual

The M. I .T. Press, Cambridge, Mass, USA, 1962

5. Clark Weissman

LISP 1.5 PRIMER

Dickenson Pub! ishing Company, Belmont, Cal if, USA, 1967

6. Donald Knuth

Fundamental Algorithms

Addison Weley, USA, 1968

7. Erik Sande\·1all

A proposed solution to the FUNARG problem

Datalogi laboratoriet, Sturegatan 1, S-752 23 Uppsala Sweden, 1970

1. Primary datatypes in LISP

1.1 This first section 1·1ill describe the syntax of atom, list, and
~. \-Jhic~ are the most orimary datatypes inlTSP. The
different properties of these datatypes wil 1 be described later.
The other datatypes will also be defined later- a table containing
all datatypes can be found in the LISP manual . 1

1.2 The characters are separated in two groups

- delimiters (space), j (end of line), % (escape),

(,) , >, <,

non-delimiters the remaining characters. The character
set can depend on the type of terminal, but normally
includes both lower and upper case.

1.3 Literal atom. 2 A sequence of non-delimiters, that cannot be
interpreted as a number.

eg ABCD NIL $A12/ 123++45' VERYVERYLONGATOM

In this text "'e \·Jill use capital letters for literal atoms.

1. 4 Number 2

Integer. An optional sign (+or -) and a sequence of decimal
digits.

eg 1234 -12 +1111

1 When refering to the LISP manual we intend reference to the
INTERLISP/360-370 Reference Manual.

2 Literal atoms and numbers are together called atoms. Throughout
the text atom is used as an abbreviation of l ite~tom, when
no misunderstanding can occur.

2

Floating-point number. An integer, followed by a decimal point,
followed by a sequence of decimal digits -called the fraction -
followed by an exponent, represented byE and an integer. The
different parts can be omitted but there must remain sufficient
parts to enable distinction frow an integer.

eg 5.210E-10 12. .123 10E2

1.5 There are possibilities of constructing atoms internally which
contain delimiters. This can be done by packing the atom as shown
in Section 22. If we 11ish to read an atom containing delimiters
11e can do so by rreceding every delimiter by the escape character %.

eg AB% (12%"%% wi 11 i nterna 11 y be represented as the atom

AB(12"%

The LISP read-routine treats the next character after the escape
character as a non-delimiting character.

1.6 List

A 1 ist can be constructed by other LISP elements, eg atoms and
other lists, enclosed by parentheses or brackets.

eg (ABC), ({THIS IS) A {{LIST) STRUCTURE)),(),(({))).

In LISP it often happens that we have a considerable number of
parentheses following each other, as in

eg (A (B (C (D (E)))))

In such cases we can use the right brackets ,>, for terminating.
the list.

(.r, {-s (C (D (E>

The general rule being that the right bracket matches either the
nearest left bracket, <, or the beginning of the 1 ist. These are
all equivalent 1 ists

(A (B (C)) (D (E)) (F (G)))

(A (B (C)) (D (E)) (F (G>

(A <B (C> <D (E> (F (G>
(A (B (C)) (D (E)) <F (G»

The 1 ist (A (B C) D) contains three 1 ist elements, the atom A, the
list (B C) and the atom D. (B C) is called a sublist of the original

3

1 ist. The 1 ist contains two atoms A and D at the top level of
the 1 ist, but four atoms at all levels.

The empty 1 ist can be represented both by () and NIL. Usually
we use NIL. NIL can be interpreted both as a 1 ist and as an
atom. Care must be shown here; observe by the different function
definitions how NIL is treated.

When the LISP print-routine prints a 1 ist it is not certain that
it wit 1 print the 1 ist in the same way as we gave in the read
routine. The ordinary print-functions print the 1 ist with paren
theses, but the pretty-print functions wil 1 also use brackets.
The empty list is allvays printed as NIL.

1. 7 String

A~ is a followed by a sequence of any character except
" and % (escape character) terminated by a

eg "THIS IS A STRING" " (((} ()"

"and% can be included in the string by preceding them •c:iLh the
escape character %.

eg "AB%"C%%" is internally the string AB"C%

Exercises

1. Classify each of these expressions if it is correct, as either
1 i tera 1 atom; integer; floating point number; 1 i st or string. We
assume that the Ll SP read-routine wil 1 read them.

a. ABC123 j. 12.+34 r. ("A" "B")

b. 123ABC k. (((((1))))) s. (((A B) c D) E)

c. 1.23E+l2 1. "AS(" t. (A B <C D> <E»

d. m. AB"NJL" u. <A 8>)

e. ((())) n. IIIII I v. <A B)>

f. 123(o. ''%''% %'11' x. (A <8 <(C>

g. %(%) P· (A . 8 . c . D) y. (A 8 C)

h. (A 8 (C D)) q. %%% z. (A. B)

i. +123

4

2. Representation of atoms and lists

2.1 Atoms and 1 ists are internally represented 'L r2c"rds and this
section wi 11 show what information is stored in these records.
For the exact internal representation such as the order of the
fields in the records, the number of bits for each field etc,
consult the LISP manual. We will use the records as a graphical
representation of list structures.

2.2 In a language 1 ike LISP, where 1 ist structure is the most impor
tant data structure, there must be pointers (references). A pointer
in INTERLISP/360-370 contains both the datatype number of the
referenced data element and the address to that element. All data
types and their associated numbers-are-to be found tabulated in
the Ll SP manu a 1.

address

2.3 A 1 iteral atom is a record cal led atom cell with four fields

- pname pointer, a pointer to an area where the atom's print
name is stored. The print-name of an atom is the sequence
of characters which defines the atom.

-value eel 1, a pointer to the atom's global value if it
exists, otherwise a pointer to the atom NOBIND. See further
Section 15.

- property-1 ist, a pointer to the atom's property-1 ist if it
exists, otherwise a pointer to NIL. See further Section 5.

- function eel 1, a pointer to the atom's function definition
if it exists, otherwise a pointer to NIL. See further
Section 14.

5

An atom is unigue, which means that for a given pname string -
the sequence of characters defining an atom - there can only be
one atom eel 1 with that pname string. When the LISP read-routine
reads an atom it first attempts to discover if there already
exists an atom cell with that pname string and if it exists, use
it, otherwise the read-routine creats a new atom cell for that
atom.

2.4 Numbers are represented in different ways. Integers are
separated into small integers and big integers with two different
representations. From the user's point-of-view there is no real
difference. The small integers are unique, they are represented
in the pointer, but al 1 other numbers are not. Further informa
tion concerning the numerical atom's representation is to be
found in the LISP manual.

2.5 A 1 ist is a chain of 1 ist cells, where a 1 ist cell is a record
of~ fields, both containing pointers. The first pointer
references a list element and the second pointer references
the rest of the list.

eg (A (B C) D)

sn-ltl ·~
, ltl :Htl2J ,

B C

The pointers to the atoms A, B, C and D are the references to
respective atom cell. It will be found convenient to write only
the atom's print-name instead of drawing its record. A list
normally ends with NIL and the slanting line in a box indicates
this pointer to NIL.

~NIL
~ ;s ;dent;cal to

A A

6

2.6 A 1 ist-structure is not unique. Even if the LISP read-routine
reads the same lists, different, but isomorphous, structures will
be created.

2.7 Dotted-pair. There is a notation in LISP called the dotted-pair
notation. With this we can see an analogy with binary trees. A
binary tree is a tree structure where every non-terminal node has
two branches. We can follow the example

A

F G

This binary tree corresponds to the following list structure.

A
.~ R 9=\. K

' ' ' ?=\
F G

In dot-notation this is written as

((A • (B • C)) • (D • (E • (F • G))))

The rule is that every node separates the tree in two parts, a
left subtree and a right subtree. The dot is used to separate the
two trees.

(A . Bl corresponds to

((A . B) . C) corresponds to

~
A B

~ ~'
A B

7

This dot-notation can be transformed to 1 ist-notation by following
thes.e rules:

-When a dot precedes NIL, the dot and NIL can be removed,
(A. NIL} is identical to (A).

-When a dot precedes a left parenthesis the dot and the
parentheses pair can be removed. (A • (B . C)) is identical
to (A B . C)

This is easier to understand after looking at the following graphical
notation

c

A B

The use of the dotted-pair concept is rare because we usually
see our structure as 1 ist-structure and not as binary trees.
One example where it is used is the association list, which is
a 1 ist of dotted-pairs.

((SWEDEN , STOCKHOLM) (USA • WASHINGTONJ (FRANCE • PARISll

SWEDEN STOCKHOLM USA WASHINGTON FRANCE PARIS

8

When a dot is used in the meaning of a dotted-pair, it can only
appear in the position before the last element. When a dot appears
elsewhere, it is interpreted as an ordinary atom.

eg (A • B .) is a I ist with four elements

2.8 For the LISP read-routine it does not matter what notation we use
when expressing a I ist. However, the LISP print-routines use the
list-notation as much as possible and use the dot only when the
second field in a cons eel I points to a non-list, egan atom.

The list (ABC) can be written as

(A B C • NIL)

(A B • (C • NIL))

(A (B • (C. NIL)))

and all will create the same structure. The LISP print-routine
will print (ABC).

(A. (B. (C. D))) will be printed as {ABC. D)

2.9 An $-expression can now be defined recursively as

a. a literal atom, number or string, eg-A, 3 or "XY"

b. a dotted-pair of $-expressions, eg ((A. 12) . B)

Exercises

1. Write the structure for

a. (A B (C (D) E)) f. (. ...)
b. (((A) B) C) g. ((A . B) (C . D) (E •

c. (A < (B C D) E F> G> h. (A , (B . (C . NIL)))

d. (A (B C)) i. (((A . B) . C) . NIL)

e. (A (C D • E) (G • NIL) . {H I>

F))

2. Which of the above expressions will be printed by the LISP print
routine but in a manner different from that read by the read
routine? How will they be printed?

9

3. Primitive functions

3.1 There are a great number of standard functions in a LISP system.
These are already defined and exist in the system when entering.
Our own functions can be introduced but this wil 1 be discussed
at more length in Section]. In the INTERLISP/_360-_3_70 there are
about 400 functions. A user of LISP does not need to know all of
these functions, but he must learn a number of them and know
where in the manual to look for the remainder. This paper will
cover the most important functions, either by giving the function
definition or by giving a reference to t~e LISP manual where an
index of all functions is to be found.

In this section we will introduce the functions car, cdr, (and
their extensions),~· egual, ~· ~· nul 1 a~me~

3.2 When describing LISP functions it is convenient to use theM
notation.1 A functional-expression looks 1 ike

fn[argl, arg2, •.. , argn]

More about theM-notation is introduced later in the text.

3.3 Let us start by introducing some of the more elementary LISP
functions. Notice that a function can behave differently accord
ing to the argument's datatype.

1 There are two notations used in LISP. The first, introduced ·here,
isM-notation (Meta-notation), which is quite similar to Algol
notation. The other, S-notation (S-expression notation), is intro
duced later.

In M-notation we distinguish very carefully between "program" and
"data". Program, (such as functions, variables, if-then-else etc),
is written in lower-case, while data, such as atoms, lists etc is
written in capitals.

The S-notation is used, when running LISP, because both programs
and data must then be expressed as S-expressions and there is no
real syntactic difference between a program and data, and this
introduces some problems.

In this paper we will use theM-notation during the introductory
sections, and in later sections it can be used to describe forms
such as

car[x] and memb[FOO,car[x]]

10

car[l] If..!. is a list, gives as value the first element of the list
(called the head of the 1 ist).

eg car[(A B C D)] =A

car [((A B) C D)] = (A B)

car[NIL] is always NIL

1 is an atom. Gives as value the atom's global value (see

Section 15).

cdr[]] If 1 is a list, gives as value the list without the first
element (called the tail of the list).

eg cdd (A B C D)] = (B C D)

cdr[(A)l = NIL

cdr[(A . B)] = B

cdr[NIL] is always NIL

If 1 is atom, gives as value the atom's property-list (see 5.4).

3.4 By combining these functions we can find, for example, the second
element on a list's fourth sublist, as in

(A (B) (C) (C (D E) F))

by car[cdr[car[cdr[cdr[cdr[(A (B) (C) (C (DE) F))]]]]]], which
is (D E)

There are already functions which perform this kind of combination
of car and cdr. -- --

caar[l]

c~r[1]

is identical to C!Jr[c!Jr[l]]

is identical to C9r[cgr[l]]

cdar[l] is identical to c~r[C§r[l]] etc

The system supports functions with up to four~ and d in it. The above
example could have been written thus -

cadadr[cddr[(A (B) (C) (C (D E) F))]]

3.5 cons[x, I] When I is a list, cons will give as value the I ist
where xis-the head and I is the tail. When I is an atom
it returns a dotted-pair-as described in 2.7~

eg cons[A, (B C) l = (A B C)

cons[(A B), (A B)] = ((A B) A B)

cons[A, B] = (A . B)

11

cons allocates a new list-cell every time it executes.

cons[A, (B C)]

3.6 Some predicates wil 1 now be introduced. A predicate is a function
giving a truth value, such as true or false. False is represented
by NIL and true is represented~an arbitrary-IISP element~ NIL.
Normally one uses the atom T which has the initial value T1•

equallx,y] Tests if~ andy are similar, in the sense that if~
andy are of the same datatype, the LISP print-routine
will print·~ andy identically. If they are similar it
returns T, otherwise it returns NIL.

eq[x,y]

eg equal [(A B), cdr[(X A B)]] T
equal[A, cadr [(X A B)]] = T
equal["ABC", "ABC",] T
equal [A, car[((A))]] = NIL

~is normally used for comparing 1 ists. There are
more specialised functions, and therefore more efficient,
for comparing different datatypes, such as

~for 1 iteral atoms (see below).

~for numbers (see Section 12).

strequal for strings (see Section 22).

Tests if~ andy are identical, in the sense that the pointer
are identical, If they are identical it gives the value T,
otherwise NIL.

eg eq[A, car[(A B)]] = T

eq[A, cadr[(A B)]] =NIL

is is normally used for comparing atoms. Remember that
atoms are unique. It follows that pointers to the same
atom are identical.

1 NIL and T are system variables and should not be used as variables
by the user.

12

atom[x]

null [x]

Tests if xis an atom (literal atom or number) and
returns T~ otherwise NIL.

eg atom[car[(A B)]] = T

atom[12.34E4] = T

atom[(A B)] =NIL

Tests if x is NIL (the empty list) and if so returns T,
otherwise-NIL.

eg null[NIL] = T

null[T] = NIL

null[()]=T

memb[x,l] Tests if x, normally an atom, is an element on the top
level on the list 1 and gives then a true value (FNIL),
otherwise it gives-the value NIL.

eg memb[X,(A X B C)]= (X B C)

memb[Q, (A (Q) B)]' = NIL

memb[Z,((X Y Z) Z)] = (Z)

memb[3,(1 2 3 4)] = (3 4)

memb[1.2, (2.1 1.2)] = NIL

The actual value returned from memb is the rest of the
list l• where~ is the first element.

Exercises

1. Combine functions for testing if the third element of
(A B (X Y) C) is an atom.

2. Combine functions for testing if the first sublist's second
element in ((A (Q Q) (A A)) (A A)) is similar to (Q Q).

3. Construct a 1 ist of the elements ADAM, (BERTIL) and ((CAESAR)).

4. What value is returned from these expressions.

a. caddr[cadar[((A (B CD E)) F G)]]

b. eq[A, cda r[((A B A))]]

c. cons[cadar[((A (B (CD))) E),(Q Q)]]

d. cons[(==), =]

e. caar[NIL]

f. null[cddddr[(A B C)]]

g. cadr[(A • (B . c))J

h. cddar[((A . (B (C . D))) • E)]

i. memb[cadar[({+? -) /)],(:+I 1- ::)]

5. Suppose I has the va I ue (A ((B C) D))
Is it true that

a. equal[!, cons[car[l], cdr[!]]]

b. memb[C , caadr[l]]

c. equal[cons[cdr[J], cdadr[l]], (((B C) D) D)]

13

14

4. Conditional expression

4.1 A conditional expression in LISP is written in M-notation as Algol's
if-then-else. Usually we have several tests and branches so it is
convenient to introduce elseif. The expression has the following form

..!...i_ p 1 the,-, e 1

elseif p2 then e2
elseif p3 then e3

p. and e. can be arbitrary LISP-expressions including other condi
tional e~pressions. The evaluating rule for this is

-evaluate pi in order until the first pk' which has the value

true (FNIL). Then evaluate ek' its value wil 1 be the value of

the whole conditional expression.

- if al 1 pi are false then en+ 1 will be evaluated and its value

wi 11 be the value of the whole conditional expression.

4.2 Suppose we want to count the number of elements in a 1 ist and return
that number if less.than 3, otherwise return the value t1ANY. The con
ditional expression for this is

if null [l] then 0

elseif null[cdr[l]] then

e 1 se if null [cddr[1]] then 2

e 1 sei f null [cdddr[l]] then 3

else MANY

If 1 is (A B) the value wi 11 be 2.

15

4.3 There is an extension of this conditional expression described by
the following example

..!.i p1 then e 1
elseif p2 then e21 e22 e23
elseif p3
elseif p4 then e4

The evaluation of pi is the same, but if p2 is true then all forms

e21 to e23 will be evaluated in order and the value of the condi

tional expression is the value of e23 , the last form. This corres

ponds to Algol's begin .•• end parenthesis, and in LISP it is called

implicit~· lf p3 is true (#NIL) this value will be returned as

the conditional expression's value. This is used instead of writing

~ p3 then p3
in which case we must evaluate p3 twice.

The general rule is that we can have arbitrary numbers of expressions
after then or that then can be omitted completely.

If there is no else statement and all pi are false then NIL wil I be
returned as val~

4.4 Later we have examples which explain these conditional expressions
in more detail so in this section we have omitted the exercises.

16

5. Property-lists

5.1 Every literal atom has an associated property-list. This section
describes how to use them and introduces the functions ~· ~.
~and remprop, which are used for manipulating property-
] is ts.

5.2 In this example we have used the property-list to store facts
about family relationships.

JOHN

/\mother ~her
KARl

ANNE

KARL, ANNE and JOHN are objects; father and mother are relations.
A fact can then be represented as an object - relation -object
triple. LISP gives now a very convenient way to store these triples
on property-lists.

We can store "KARL is FATHER of JOHN" and "Ai'JNE is MOTHER of JOHN"
and then retrieve "who is JOHN's FATHER? and "who is JOHN's
MOTHER?"

This is stored by

put[JOHN,FATHER,KARL]

and we say that the carrier JOHN has under the property FATHER
the property value (or shortly value) KARL. 1 The carrier and the
property2 must be literal atom and the property value can be of
arbitrary type.

1 These names can be confusing. In some LISP systems it is said that
~n atom under an indicator has a property.

Actually the property can be of arbitrary type, but the normal
property-] ist functions, such as~ and~ make the comparision
of the property by ~·

17

\ole can then store

put[JOHN,MOTHER,ANNE]

To retrieve we do

getp[JOHN,MOTHER] and get the value ANNE and

getp[JOHN,FATHER] gives KARL

5.3 Here are some functions used for property-lists.

put[atm,prop,val]

getp[atm,prop]

Stores on atm's property-list under the property
prop the valUe~· If there already was a value
stored under that property it wil 1 be over-written
by the new value. The value return from~ is val.

eg put[A,B,C] C. On A's property-] ist C is
stored under the property B.

Gets the value under the property prop on the atom
atm's property-list. If there is no value NIL is
returned.

eg getp[A,B]
getp[A,X]

C, if we assume the above~·
NIL

addprop[atm,prop,new] Adds~ to the value stored on ~'s property
1 ist under the property~· The value returned
is the new value.

eg addprop[X,Y,Z]

addprop[X, Y ,VI]

getp[X,Y] = (Z VI)

(Z). Under Y the 1 ist (Z)
is stored on X's
property-] i st.

(Z VI) . VI is added to the 1 is t.

remprop[atm,prop] Removes on atm's property-] ist the value under the
property prop. Also~ is removed. The value re
turned is atm.

eg remprop[X,Y] = X

getp[X,Y] =NIL

In the above functions atm, and~ must be 1 iteral atoms and val
and ne~1 can be of arbitrary types.

18

5.4 Let us continue with the family relationships introduced at the be
ginning of this section and see how we can store and retrieve data
on the property-lists.

Suppose the following holds

Karl is father of John.

Wilhelm is father of Karl.

Karl's children are John,
Mary and Jim.

John is a rna 1 e.

Karl is married to Anne

Karl has one more child Tim.

Jim is of the same sex as John.

The one Karl is married to
has the same children
as Karl and one more
chi I d Eva.

Corresponding LISP expressions

put[JOHN, FATHER, KARL]

put[KARL, FATHER, WILHELM]

put[KARL, CHILDREN,
(JOHN MARY JIM)]

put[JOHN, SEX, MALE]

put[KARL, MARRIED, ANNE]

addprop[KARL, CHILDREN, TIM]

put[JIM, SEX, getp[JOHN, SEX]]

put[getp[KARL, MARRIED],
CHILDREN,
cons[EVA, getp[KARL, CHILDREN]]

5.5 The implementation of property-lists makes it possible to retrieve
an atom's property-list simply by doing cdr of the atom. The property
] ist can contain some system properties and we are not allowed to
remove or change them in any way. Be careful about this!

5.6 The property-] ist is actually an ordinary list, where every second
element is a property and the other a value.

From the above examples we have the following structures

John's property-list

4TI-C;IJ-{~IJ-c;IZJ
FATHER KARL SEX MALE

Karl's property-I i st

~QJ-QJ-c;:GQJ-4TI
FATHER WILHELM MARRIED ANNE CHILDREN (JOHN MARY JIM TIM)

19

Jim's property-list

SEX MALE

Anne's property-! ist

CHILDREN (EVA JOHN MARY JIM TIM)

5.7 We require answers to the
following questions

Give the name of one
of Karl's children

Do we know Mary's sex?

Is Karl married to someone
who has a child named Eva?

Is Jim a male?

Is Anne married to Karl?

Who is John's father's father?

Corresponding LISP
express ions

car[getp[KARL, CHILDREN]]

getp[MARY, SEX]

memb[EVA,getp[getp[KARL,MARRIED],
CH !LOREN]]

eq[getp[JIM, SEX], MALE]

lf eq[getp[ANNE, MARRIED], KARL]
else eq[getp[KARL, MARRIED],
-- ANNE]

if getp[JOHN, FATHER-FATHER]
elseif getp[getp[JOHN, FATHER],
--- FATHER]

Notice in the last conditional expression that there is no then
and no else expression. This was described in Section 4.3. --

20

Changes to the property.] ist

Anne and Karl are not married
any longer

Viktor is father of Karl

Corresponding LISP expressions

remprop[KARL, MARRIED]

put[KARL, FATHER, VIKTOR]

5.8 The above examples illustrate how to process property-lists with
the functions introduced so far. Of course there are other ways
of processing, but as yet we have not gained sufficient knowledge.
An example is,

JOHN is no longer KARL's child.

With the function remove (see 11.6) this can be stated as

(PUT 'KARL 1 CHILDREN (REMOVE 'JOHN (GETP 'KARL 'CHILDREN)))

Exercises

1. Suppose we wish to store a directed graph, such as

r=~C) .-----J c •
D

Decide the properties we need for storing the graph on property
lists. We must be able to answer questlons such as

a. What nodes follow B?

b. What nodes precede C?

c. Does C follow A?

d. Can we go from A to D only through C?

e. Is the arc between C and D directed in both directions?

f. Is there a loop (an arc which starts and ends at the
same node) at B?

21

6. S-notation

6. I As yet nothing has been said about how to write a correct LISP
expression suitable for use in the machine. The notation used for
for this is called S-notation. This section will give the transfor
mation rules for converting M-notation to S-notation.

6.2 M-notat ion S-notation

Variables alpha ALPHA

Variables in the meaning "its value", must be converted to
corresponding atoms.

Function a I
expressions (FN ARGI ••• ARGN)

The expression is converted to a 1 ist where the first element is
the function name and the remaining elements are the arguments.

Conditional

expressions

i!, p1 then e 1 e21
elseif p2 then e22
elseifp3
e 1 se E4

(COND (PI El)

(P2 E21 E22)

(P3)

(T E4))

The conditional expression is converted to a cond-expression.·
It consists of sub! ists, where every sub! ist ~esponds to
one of the test cases in the conditional expression. The first
element of the sublist is the predicate and the rest are the
expressions to evaluate. In the else branch T indicates that

22

the following expressions wil I always be evaluated. T has always
the true va I ue.

Constants as

atoms, lists

and strings

ADAM

(L I S f')

"STRING"

'ADAM

I (L I s f')

I "STRING"

6.3 One of the main differences between LISP and the conventional
programming languages, such as FORTRAN, COBOL, PL/1 etc, are
that these languages have different representation of "programs"
and "data", but in Ll SP there is no such difference. A "prog
ram" in LISP is simply represented as a 1 ist structure.

6.4 Quote. One difficulty is apparent, however, when using the same
representation of "program" and "data". How can we separate them?
The '-sign cal led quote-sign is introduced for this reason. Let us
see some examples

M-notat ion

car[(A B C)]

eq[Q, car[(Q W)]]

cons[L, (1 S j>)]

n u 1 I [1]

memb [x, (A B C 0 E)]

cadcdr[l]]

car[(CDR L)]

S-notation

(CAR ' (A B C))

(EQ 'Q (CAR '(Q W)))

(CONS I L I (I s p))

(NULL L)

(MEMB X I (A B c D E))

(CAR (CDR L))

(CAR I (CDR L))

In M-notation, variables (with lower case letters) are easily
seoarated from constants (written in capital letters), but in S
notation the '-sign will tel I that the following expression shall
be interpreted as a constant. If a 1 ist is not '-ed {quoted) it
is taken to be a functional expression, where the first element
is the function name and the rest of the elements are arguments.
See the dlfferen~e in the last two examples above and really try
to understand how necessary the '-sign is in the last example.

6.5 Cond is a special function which does not really follow the rule
of quoting the arguments. These different function types are des
cribed in detai I in Section 14.

23

6.6 The '-sign wi 11 be translated by the LISP read-routines to QUOTE,
so that 'A becomes (QUOTE A) and '(A) becomes (QUOTE (A)).

Quote is a LISP-function, but works in such a way that it only
returns its argument and by this no further evaluation wil 1 be
performed.

The '-sign is only an abbreviation for QUOTE, so we can write it
in both •days.

eg '(A B 'C) - is similarly written - (QUOTE (A B (QUOTE C)))

The LISP print-routines wi 11 print QUOTE instead of ' .

6.7 Numbers, NIL and T do not need to be quoted. They are so defined
that they have themselves as value.

Exe rei ses

eg cons[3, cons[T, cons[A, cons[(B), cons["S", NIL]]]]]

(CONS 3 (CONS T (CONS I A (CONS I (B) (CONS I "S" NIL>

l. Translate the following expressions from M-notation to S
notation:

a. cdr[(ABC)]

b. equal[A, car[((A)}]]

c. atom[12.34E4]

d. equal[l, cons[carll], cdr[I]]]]

e. memb[C, caadr[l]]

f. put[getp[KARL, MARRIED], CHILDREN

cons[EVA, getp[KARL, CHILDREN]]]

g. if nulltl] then NIL else cdr[l]

h. if eq[getp[ANNE, MARRIED], KARL] then T
-- else eq[getp[KARL, MARRIEDJ:-ANNE]

i. if getp[JOHN, FATHER-FATHER]

elseif getp[getp[JOHN, FATHER], FATHER]

24

7. User-defined functions and assignment

7.1 User-defined functions. In LISP we can introduce our own functions.
InS-notation we can write

(DE FOO (L) (CONS (CARL) (CADDRL)))

We have now defined a function, named foo, with one argument l .
fhe function is defined to make a dotted-pair of the first and
third element on a I ist.

(FOO I (A B c D)) = (A C)

(FOO I (A B (c D))) = (A c D)

7.2 The general form for Function definition is

fn is the name of the function being defined •.

~- must be a literal atom. Do not use the atoms NIL, T and
NOBiND, they are used for other purposes. NIL and T represent the
values false resp true and all atoms are initialised to the value
NOB IND.

The number of arguments is arbitrary, (including no arguments).

fnbody. must be a LISP-expression - anything which can be evaluated
in LISP's sense. At function call the bodies wi I I be evaluated in
order, singularly, and the value of the last body will be the value
of that function call.

Functions defined in this way are called eval-spread functions.
More about the different types of functions is described in
Section 14.

7.3 Exilmples

The fo l I ovJ i n g Function de fin i t ion

(DE MARRIED (X Y) (PUT X 'MARRIED Y) (PUT Y 'MARRIED X))

1 In M-notation a convenient way to write this general form can be

fn[arg 1 , arg2 , ... , argn] == fnbody 1, fnbody2 , ... , fnbodym

25

is defined by tvlo function bodies. It vJill store that x has the value
y under the property MARRIED and that y has the value~ under the
same property. The value of this function is the value of the last
~' and its value is x.

(MARRIED 'ADAM 'EVA)

\·Jill perform the side-effects to store on ADA~1's and EVA's property-
] ists and return the value ADAM. This demonstrates that we are not
always interested in a function's value, but only in its side-effects.
If we will have the value OK we could define it as

(DE 1·1ARRIED (X Y) (PUT X 'MARRIED Y) (PUT Y 'MARRIED X) 'OK)

Define a function before which checks if an atom 2S_ precedes the a tom
y on the list .!_, and then returns the value T otherwise the value NIL.

eg (BEFORE 'C 'E I (A B c D E F G H)) = T

(BEFORE 'T 'R I (Q R T u V)) = NIL

The definition of before is
1

(DE BEFORE (X Y L) (COND ((t1Et1B Y (MEt1B X L)) T)

(T NIL)))

Note the use of the value of memb (see Section 3.6). In the first
example above, the evaluating order in before eli ll be

a. (1·1Et1B 'C ' (A B C D E F G H)) = (C D E F G H)

b. (MEMB IE I (C D E F G H)) = (E F G H)

c. (COND (' (E F G H) T) (T NIL)) will of course be evaluated toT.

7.4 Assignment. As in other programming languages we can assign values
to variables. In LISP every literal atom can be a variable.

\I hen \·le \vr i te

(SET 'L 'A)

we mean that the atom L is treated as a variable and gets as value
the atom A. If we then write

(sET L I Q)

we mean the atom L is a variable and the value of that atom, the
atom A, gets the value Q. This is very important in LISP. In some
other languages an identifier is ah1ays treated as a variable and

1 If we can accept other true Vdlues than T we could also define
before as

(~E 3EFCRE (X Y L) (11EMB Y (t'H:B X L)))

26

when we write the variable we mean either its value as in

A+ B + C + 4 is 15 if the variables A= 2, B = 4 and C 5

or the variable itself as in

A = 10

It is the position of the variable in the expression which deter
mines its interpretation.

In LISP however, a variable can have another variable as value and
we must therefore distinguish very carefully in every situation if
we mean the atom itself or its associated value. Further examples
clarify this

(SET 'L I (A B)) L is assigned the value (A B)

(SET 'A 1 0) A is assigned the value 10

(SET 'B 'X) B is assigned teh value X

(SET B 'Y) X (the value of B) is assigned the value

(SET X A) y (the value of X) is assigned the value

of A which is 10

Now the following values exist

A - 10

B - X

L - (A B)

X - y

y - 10

7.5 The first argument to set can be an arbitrary LISP-expression, which
evaluates to an atom.

eg {SET (CAR '(A B C)) 10) assigns the value 10 to A.

7.6 Normally when assignments are done the first argument in set is
quote-ed. There is a special function setg, which makes this guote
ing implicit and which is more commonly used than set.

7.7

eg (SETQ A 'VALUE) is identical to (SET 'A 'VALUE)

We will not discuss the scope of a variable in LISP in this
section as this is dealt with in Section 15. Until then we
normally use the assignment for giving a global value to an
atom.

as
use

y

27

Exercises

1. Define a function cd5r, which gives the fifth element on a list.

2. Define the following functions, which work in the family rela
tionship example in Section 5.

a. A function married[x,y] which checks if~ andy are married.
The function must look on both ~ 1 s and y 1 s property-lists.
Return the value YES if they are married and ND otherwise.

b. A function son[x,y] - meaning ~ is son of y - and which
on ~ 1 s property-! ist stores that y is father of~ and on
y 1 s property-! ist adds that~ is son of y.
Return the value DK.

c. A function fatherofq[x,y] which checks if x is father of y.
Return ~ES or ND.

3. Suppose we do the following assignments

(SETQ R I (A B C))

(SET 1 L 1 R)

(SETQ X L)

(SET L (CAR R))

(SET R I (Q R s))

(SET (CAR A) (CDR A))

Which of the following expressions are~ (~NIL)

a. (ATOM R) f. (EQ X I R)

b. (ATOM A) h. (CDDR A)

c. (ATOM X) i. (CDDR Q)

d. (EQ X L) j. (EQUAL Q (CDR A))

e. (EQ X I L) k. (EQUAL L (CADR A))

28

8. Running Ll S P

8. 1 The Ll S P in te rp rete r

A LISP system is interpretative. This means that the system reads
a LISP-expression, and then directly calls an inter2reter, which
evaluates this expression, and writes as output the value of that
evaluation. Its contrast is a comTiled system, similar to FORTRAN,
COBOL etc, where the expressions programs) wi I I be translated to

machine code by a compiler. This machine code can then later be
executed.

There is a LISP compiler which can be used for compiling LISP func
tions from the list structure format to machine code. The reason for
campi ling a LISP function is for efficiency but is not necessary
for running LISP. The compiler vii ll be described in Section 29.

8.2 The INTERLISP/360-370 can be used both as an interactive system and
as a batch system. vie assune that vie first use the interactive system
and see hovl it functions. Later vie v1i ll see what changes to make and
the differences when using it as a batch system.

First we must enter the LISP system. The exact procedure for this is
machine and implementation-dependent and 1,;e must consult a local
guide for this. When the system is entered it~ us v1ith a
character which says that it is ready for input. The prompt character
is - (~e sure that your installation has not changed it). There
are other prompt characters to be used when in other modes, such as
in break and edit mode.

The LISP system works in the following loop:

- print a prompt character

- read a LISP expression

-evaluate this expression

- print its value

A conversation can appear thus

-(CONS 'A '(B C))v

(A B C)

-(DE FOO (L) (MEMB V L>v

FOO

-(SETQ V 'LISP)~

LISP

-vv

LISP

-(FOO '(ALGOL LISP FORTRAN))v

(LISP FOR1'RI\.N)

-'Av

A

-(QUOTE A)v

A

-(EXIT)v

29

Prompt character; give input and
end the input by return and here
is the value.

Notice that all LISP expressions
have a value. In some cases this
value is of no real interest, as
in these two expressions.

The function exit returns from
LISP to the time-sharing monitor.

8.3 The LISP read-routine reads one LISP expression (atom, list etc) in
S-notation. The form of writing it is free and the expression can
be 1·1ri tten on several lines (cards). The read-routine continues to
read until it has read in a full expression, ie a full parenthesised
list. Blank is ignored and used only for separating atoms, strings
etc. However, it is important to find a good "style" to v1rite LISP,
so it can be read by other programmers. Normally LISP programmers
follow these rules:

- one blank between atoms and between an atom and a left
parenthesis

- no blank after a left parenthesis and no blank before a
right parenthesis

-one blank between a right parenthesis and an atom

30

-one blank between right and left parenthesis

-same parenthesis following each other have no blanks between.

(A B (C D) (X (Y Z)) W)

is preferable to

(A B(C D) (X(Y Z))W)

When we have long lists we try to split them up on several lines
(cards) and make the necessary indentations to describe the struc
ture of the 1 ist. A cond-expression can appear

(COND ((NULL L) (FOO L))

((MEMB 'X (CDR L)) (FIE (CONS (CARL) (CDDR L)))

(FIE (CONS (CADR L) (CDR L))))

(T (FOO (CDR L))))

8.4 The input must of course be something which can be evaluated. A
LISP expression given to the evaluator is called a form. If a
form is a

- I iteral atom, i. e. used as a variable, is evaluated to its
value. If it has no value an error occurs and the message
U.B.A (UnBound Atom) indicates this.

- nur1ber, is evaluated to itself

eg

-(SETQ VAR 'VALUE)

-VAR

VA~ US

-WAR

U.B.A

-123

123

Input

Value

The variable~ has no value.

The error message for an unbound
atom is printed together with the
variable.

31

- 1 ist, the first element is taken as a function and the re
maining elements are arguments to that function. If the first
element is not a function the system prints the error U.D.F
(UnDefined Function).

eg

-(CAR

A

-(KAR

U.D.F

KAR

-(CAR

U.D.F

A

I (A B C>

I (A B C>

(A B C>

Input

Value

This message indicates that kar
is the undefined function. ---

Note the importance of the quote sign.
The 1 is t (A B C) is now treated as a
form and the system looks for a function
A, which is not defined.

If the error occurs deep in the function (many function calls have
been made before the error is made) the system goes in a break. It
prompts us then with a : . It gives us the possibility to analyze
in detail the error and correct it and then go on with the evalua
tion. This wil 1 be described later; what we can do in such situa
tions is to write I or (RESET) and return. We return to the-
LISP system's top level.

8.5 When we have parenthesis error the message can be
confusing.

eg

-(CAR I A B C>

U.B.A

B

-(EQ (CAR X) CAR Y>

U.B.A

CAR

- (COND ((NULL L) NIL)
(CDR L>

U.B.A

CDR

We meant (CAR '(A B C>

The arguments to car are evaluated
and its second argument B has no
value and an U.B.A error message is
printed.
We meant (EQ (CAR X) (CARY))

When a function is an unbound atom
it is nearly always parenthesis error
or

provided we have not forgotten the T
in the last clause in a cond
expression. In this case CDR is the
predicate to evaluate and the error
indicates that it has no value.

32

8.6

-(CADR I ((A .) (B . 2)) (C . 3> The additional left parenthesis after
the pair (B . 2) will cause (C . 3)
to be a form for evaluation and C is
then taken as a function.

U.D.F

c

-(DE FOO (X (CAR X)) We thought the expression was correct
but the missing parenthesis after the
first X wil 1 make the system prompt
us to continue the expression. This
can be very confusing because the
system prompts for more and more
input whatever is wanted. In this case
a number of right brackets (>) can
complete the expression.

We have now arrived at the stage where we can sit dovm and practice
on the system. However, first a few more rules are necessary. W~en
introducing a new function it is not permissable to use a f~nc:1on
name already existing in the system. It is of course very ~1ff1cult
to know al 1 the names. The system wi 11 print when we redefine a func
tion

(CAR REDEFINED)

When this message comes, we must do

(MOVD I CAR I KAR)

(UNSAVEDE F I CAR)

which re-stores the ordinary function definition, and gives the new
definition the function name kar.

If we have defined a function foo we can look at it by doing

(PP:: FOO)

The function will be prettyprinted. Do this and see what happens.

When typing to the terminal it is important to know

- how to input a 1 ine to the computer

- how to delete characters from a 1 ine.

-how to make an interrupt and to come to LISP's top level
again. This is done if our function goes in an infinite loop
or if the print-routine prints a circular list and we want
to stop it. 1

-what character set we can use. Is it permissable to have small
letters and other available characters. For this consult the
local LISP guide for that terminal.

1 An attention-D causes return to the top-level; an attention-PO
stops the printing of an expression, see further 30.5.

8.7 Running LISP in batch. This can be done either by a remote job
terminal or by punching cards. We must find out which control
statements (JCL statements for IBM) we require. 1 Following them
\'le can give the LISP expressions we want to have evaluated.

eg // EXEC ULISP} control statements

(CAR 'A B C>

(SETQ A 10)

A

(EX IT)

;::

The output will then appear

LISP statements

(CAR (QUOTE (ABC)))
A

(SETQ A 10)
A

A
10

(EXIT)

33

If an error occurs the system prints a message in the interactive way.
If the error occurs deep, the system will print a backtrace. This
backtrace contains information stored on the system's stacks. We
will not discuss that information here but will return to it later
in this paper.

8.8 There is a comment facility in INTERLISP/360-370. A form started by
.. is treate~comment.

eg (:: THIS IS A COMMENT)

This expression is an ordinary form, but x is defined not to evaluate
the 1 ist, but it returns a value. This means that a comment can only
appear 1~here the value does not effect the evaluation.

eg (DE FOO (X) (:: FOO IS A FUNCTION ...) (FIE X))

(DE FOO (X) (COND ((EQ X 'A) (::THIS TESTS ...) (FIE X))

((EQ X 'B) (::THIS ...) (FUM X))

(T (::THIS ...) (GUM X))))

are all OK, but not

(DE FOO (X) (FIE X) (:: FOO IS ...))

In the Appendix is described the actual control statements needed to run.

34

Exercises

Sit down at a terminal and enter the LISP system.
Do the following:

a. Start by testing the standard functions introduced in Section 3.
Test them with different types of arguments and really understand
how they are working. Do not forget the put the '-sign in the right
position. If errors such as U.B.A and U.D.F arise it is probable
that you have forgotten a '-sign or that you have miss-spelled a
function name. Do not give up until it is working correctly. The
use of 1 is very important and it is pointless to continue in this
text if its use is not clear.

b. Make assignments. The '-sign is also here very important.
Test exercise 3 in Section 7.

c. Define your own functions. Use conditional expressions in the
definitions. Pretty-print the functions. If they are not working
redefine them again and go on testing.

d. Find a problem where you can use the property-lists. One problem
could be the family relationships introduced in Section 5. Intro
duce more properties and store facts on the property-lists. Define
functions for making retrieval from the property-] ists.

35

9. Recursive functions

9.1 For writing algorithms for symbolic datatypes such as lists etc,
it is often desirable to define the algorithm in a recursive way.
The use of recursive functions is very common in liSP and the lan
guage is designed to make recursion easy to handle. Th.is means that
in a function definition a function call to the function itself is
allowed, either direct or indirect (a function a catls b which
calls~),

Writing a recursive function is not a triviality for the beginner,
especially if he is used to languages like FORTRAN, COBOL etc, and
therefore writing programs in an iterative way, ie by using loops.
Remember now that LISP is designed to be a functional language -we
break our problem down to small functions, which call each other in
tensively - and that we for this reason cannot make programs in LISP
by thinking in FORTRAN terms. To think in LISP we must learn and
the only way to learn is to practice. This section will give many
examples of recursive functions - then try to solve the exercises
at the end of this section.

9.2 We start with the function ::memb, 1 described in Section 3.6.

(DE ::MEMB (X L) (COND ((NULL L} N 1 L)

((EQ X (CAR L)) L)

(T (::MEMB X (CDR L)))))

The function ::memb is defined first to test if 1 is the empty 1 ist.
It returns then the value NIL, which is obvious-for no element can
occur in an empty list. Then it tests if the first element on the
1 ist ~is equal to x. If it is true, we have found an~· which is

1 When definition of functions which already exist in the lNTERLISP/
360-370 system are given they are ::-marked. If a system function is
redefined in an incorrect way it can break down the system, but
of course its definition can be tested by using this ::-name.

36

an element of 1 and therefore returns a true value. Actually it is
the 1 ist 1 we return. If this was not the case we make a recursive
call to ::memb again. But now we know that the first element of 1 is
not equa~x and therefore we have the problem of testing if x
is an element-of the 1 ist 1, where the first element is removed~
Whatever value that function call will return, true (#NIL) or false
(NIL) that value will of course also be the value-returned from the
function. This is obvious for the first element of 1, does not effect
the value for we know that this element was not equal to~·

The first two steps in ::memb are our terminating criteria, which
stops the recursion.

Let us clarify this discussion by following an example.

::memb[Q,(O P Q R)]

We get the following call structure

enter ::memb.
X Q--

L = (0 P Q R)

enter the conditional expression and evaluate
the last branch

enter ::memb
X Q--

L = (P Q R)

enter the conditional expression and
evaluate the last branch

enter ::memb
X l'l
L = (Q R)

enter the conditional expression
and evaluate the second branch. The
result from this evaluation is (Q R)

return from ::memb with value (Q R)

the conditional expression gives the value (Q R)

return from ::memb with va 1 ue (Q R)

the conditional expression gives the value (Q R)

Return from ::memb with value (Q R), which is the final value.

9.3 We define a function ::remove[x,l], which returns as value a new
list, where all occurences of the atom x are removed from the
top level of the list l·

eg ::remove[A, (C A D A)] (C D)

::remove can be defined

(DE ::REMOVE (X L) (COND ((NULL L) NIL)

37

((EQ X (CAR L)) (::REMOVE X (CDR L)))

(T (CONS (CARL) (xREMOVE X (CDR L))))))

The function starts to test if we are trying to remove anything
from an empty list, which we of course cannot. This is our termina
ting criteria for ending the recursion.

The other two tests will go on in the recursion and remove x from
cdr of 1. The differences between the two tests are that we-in the
third test case put the first element- it can not be equal to x
on the 1 ist we get as value from the recursive call -this list
contains only elements not equal to~· for they are now removed.

The above example will give the following enter/return structure.
The entering and leaving of the conditional expression is not shown.

remove:
A
(C AD A)

::remove:
X A
L = (A D A)

::remove:
X= A
L = (D A)

::remove:
X A
L = (A)

::remove:
X A
L = NIL

::remove NIL

::remove = NIL

::remove = (D)

::remove = (D)

::remove = (C D)

38

The 1 isting of call/return structure of xremove, corresponds nearly
to a trace-function, which exists in the~ystem. A traced func
tion WTTTat entry write the arguments and its associated values and
at return write the computed value. For getting this trace we do

(TRACE xREMOVE xMEMB ... other functions we want to trace ...)

To remove the trace we do

(UNBREAK xREMOVE ... other functions we want to untrace ...)

9.4 Define a function xunion[x,y], which takes two 1 ists, where each 1 ist
is supposed to be a 1 ist of atoms, and which makes a union of the
two 1 i sts.

(DE xUN I ON (X Y) (COND ((NULL X) Y)

((MEMB (CAR X) Y) (::UN I ON (CDR X) Y))

(T (::UNION (CDR X) (CONS (CAR X) Y)))))

A trace of ::union[(A B C), (X BY)]

::union:
X (A B C)
Y = (X B Y)

::union:
X (B C)
Y = (A X B Y)

::union:
X (C)
Y = (A X B Y)

::union:
X NIL
Y = (C A X B Y)

::union (C A X B Y)

::un i on = (C A X B Y)

::union: (C A X B Y)

::union = (C A X B Y)

In this function we use y for building the value and when all
elements of~ were taken (~ = NIL) y was returned as value, and
this value will be returned up as the final value.

39

9.3 Define a function totremove[x, 1], which returns a va-lue, where all
occurences of~ regardless of the level, are removed from.!.·

eg totremove[X, (A X (B (X C)))] = (A (B (C)))

(DE TDTREMOVE (X L)

(COND ((ATOM L) L)

((EQ X (CARL)) (TOTREMOVE X (CDR L)))

(T (CONS (TOTREMOVE X (CARL)) (TOTREMOVE X

(CDR L))))))

In the cons we make two recursive calls and we say that we are
making recursive calls both in the car- and cdr-direction. This
is termed double recursion.

In the function we test if~ is equal (with~) to car[!], and if
so we go on as in the function ::remove. However, if they were not
equal, 1 was either an atom (we~ no strings in the 1 ists) not
equal to x or a list. In that case we make a recursive call to
totremove-with that first element as 1. The test atom [1] will find
out if 1 is an atom and return then the atom as value. This test also
takes care of the end of the list test, when 1_ is NIL, because
atom[NIL] is T. If 1 was a list, go on. The value of the first
recursive call 1~i 11-be cons-ed on the 1 ist we get as value after
the second recursive ca~

40 Let us fo 11 ow a trace of tot remove:

tot remove:
X ~ X
L ~ (A X (B (X C)))

tot remove:
X ~ X
L ~ A
totremove ~ A

tot remove:
X ~ X
L ~ (X (B (X C)))

tot remove:
X ~ X
L ~ ((B (X C)))

tot remove:
X ~ X
L ~ (B (X C))

tot remove:
X ~ X
L ~ B
tot remove B

tot remove:
X ~ X
L ~ ((X C))

tot remove:
X ~ X
L ~ (X C)

tot remove:
X ~ X
L ~ (C)

tot remove:
X ~ X
L ~ C
tot remove C

tot remove:
X ~ X
L ~NIL
totremove ~NIL

totremove ~ (C)

totremove ~ (C)

tot remove:
X ~ X
L ~ NIL
tot remove ~ NIL

tot remove ~ ((C))

totremove ~ (B (C))

tot remove:
X ~ X
L ~ NIL
totremove ~NIL

totremove ~ ((B (C)))

totremove ~ ((B (c)))

totremove ~ (A (B (C)))

41

9.6 In the function totremove, we made the test atom [1}. This works
correctly only in cases where the elements are atoms. If strings
and other datatypes can be elements the test should be done by
the function~. which is~ when its argument is not a list.
NIL is here treated as an atom, so nl istp[NIL] ; T.

eg nl istp[ATOM} ; T

nl istp[(A T 0 M)] ; NIL

nl istp["STRING"] ; T

nl istp[()] ; T

9.7 The function~ is also useful when using 1 ists ending with a
dotted-pair.

eg The function ><copy[l], which makes a copy of a list
structure, including dotted-pairs.

::copy[(A B (C . D) . E)] ; (A B (C . D) . E)

(DE ::COPY (L)

(COND ((NLI STP L) L)

(T (CONS (::cOPY (CAR L)) (::COPY (CDR L))))))

If we suspect that a 1 ist can end with a dotted-pair a good rule
is to use~ as the terminating critera, when processing 1 ists,
instead of null. This example shows what can happen if we have the
null test as-terminating criteria for a list but the 1 ist happened
to end with a dotted-pair.

eg take the function~ from Section 9.3 and evaluate

::remove[X, (A X . B)]
The trace gives,

::remove:
X A
L ; (A X • B)

::remove:
X ; A
L ; (X • B)

::remove
X A
L ; B

Here I has the value of atom B,
and we go down and make the re
curs i ve ca 11

::remove [A, cdr [B]]

What is cdr[B]? Cdr of an atom
contains the property-I ist. If B's
property list contains property/
value pairs the function~
wil I go on there. The test with
~. would stop and prevent the
function from doing unexpected
things like this.

42

Exercises

Al 1 these examples can be tested on the computer. Use trace. Many
of the functions mentioned here are functions which already exist
in the LISP system, (they are ::-marked).

1. Define a function even[l], where 1 is a list, which gives as
value T if there was an even number of elements on the I ist,
otherwise NIL

eg even[(A B C D)] = T

even [((A) (B C) (D))] =NIL

2. Define a function append2[x,y], where~ andy are 1 is ts, which
gives as value the concatenated 1 ist of~ andy.

eg append2[(A B C D), (X Y Z)] = (A B C D X y Z)

3. Define a function Hintersection[x,y], where~ andy are lists
treated as sets which gives as value the 1 ist corresponding to
the intersection of~ andy.

eg ::intersection[(A B C D E), (Q D E W A Z)] = (A D E)

The order of the elements in the value- I ist can differ, depend
ing on the algorithm used.

4. Define a function ::reverse[]], where 1 is a list, which gives as
value a 1 ist where the elements on top level are in reversed
order. Hint - use append2· from exercise 2.

eg ::reverse[(A B (Q W) C D)] = (D C (Q W) B A)

5. Define a function Hsubst[x,y,l] where x andy can be of arbitrary
type and 1 a 1 ist, which gives as value a new 1 ist in which
every occurence of yon top level is substituted by~·

eg ::subst[NEW, OLD, (A OLD (B OLD) OLD C)]

(A NEW (B OLD) NEW C)

6. Define a function totreverse[l], where 1 is a 1 ist, which gives
as value the list where all elements are reversed on al 1 levels

eg totreverse[(A (B C) D ((E) F))]= ((F (E)) D (C B) A)

J. Define a function totsubst[x,y, 1], which works as subst, but sub
stitutes on all levels.

eg totsubst[NEW,OLD, (A OLD (B OLD) OLD C)]

(A NEW (B NEW} NEW C)

43

8. Define a function ::sub! is[al, 1], where a] is a 1 ist of dotted
pairs and 1 a 1 ist. For every pair in a~the first element shall
be substituted by the second element in-the 1 ist 1. The substitu
tions shall be done on all levels.

eg ::sublis[{(A. X) (B. Y)), (C (A B (DB)) A)]

(C (X Y (D Y)) X)

9. Define a function ::pai r[x,y], where x and y are 1 ists of the same
length (they contain the same number-of elements on top level).
The value returned from~. should be a 1 ist of dotted-pairs.
The first element from~ andy builds the first dotted-pair, the
second element from~ andy the second pair etc.

eg pair[(ONE TWO THREE FOUR FIVE), (1 2 3 4 5)] =

((ONE . 1) (TWO . 2) (THREE . 3) (FOUR . 4) (FIVE 5))

10. Define a function flatten[I], where 1 is a 1 ist, which builds a
list where all parentheses- except the outer pair- are removed.
The atoms in 1 shal 1 come in the same order in the new 1 ist.

eg flatten[((A B (C)) D (E (F (G)) H))]

(A B C D E F G H)

11. Define your own sort-package by using a tree-sort algorithm. A .
function tree-sort[!], where 1 is a list of atoms should be obtained.
Introduce a global variable PRECEDENCE with a value giving the
ordering relation between the atoms.

eg PRECEDENCE := (A B C D E F G H I J)

treesort[(B A E G C I J G)] = (A B CD EGG I J)

The package should also contain a function merge, which
makes a merge of two sorted 1 ists.

merge [(A C E F F I) , (B D E G H J)]

(A B C D E E F F G H I J)

Hints- Define a function order[x,y], which is true if~ precedes
yon PRECEDENCE, otherwise NIL

order[B,H] = T, or another true value

order[H,F] =NIL

44

Define a function buildtree[l], where lis a 1 ist to treesort, which
builds a sort tree. An example illustrates the tree-sort.

(0 8 E J C A)

D D D D D

I I\ I \ I \
B B B E B E

\ \ \
c

D

I\
B E

I \ \
A C

A new element enters the tree at the root, and at every node a
comparison is made, by order, and if the new element precedes the
node element, go to the left, otherwise go to the right. When coming
to a terminal node, the new element inserts either to the left or to
the right depending on the comparison.

Define a list structure corresponding to this tree.

Define a function walktree[l], where I is the sort tree, which
walks through it by postorder traversal . 1

I I

;;/D~\ ~ \

/ I~ \\
I \

;8 (--E\ '/ \\ ,\\
I 1{\\ \\' /A/ ; C I \ J)

' ... -o-' \._...'

The algorithm used at every node can be defined recursively by

- traverse the left subtree

-visit the node

- traverse the right subtree.

1 Further information about binary trees can be found in Knuth's
Fundamental Algorithms (ref 6).

If you follow this structure of programming that treesort is
defined as

(DE TREE SORT (L) (WALKTREE (BU I LDTREE L)))

45

There is a sort function in INTERLISP and it is shortly described
in Section~

46

10. Introduction to break and edit

10.1 The INTERLISP/360-370 is designed to be used as a hard interactive
system and much effort has been put in debugging packages. When an
error occurs - ie a variable has no value (U.B.A), the system goes
in a break. This .now gives the user possibility to interact with
the system, to be able to find out where the error occured and to
correct the error, and then leave the break and continue the evalua
tion. A structure editor may be used to correct the error.

In this section some commands to break and edit are explained.
More about break and edit and error-handl ing-fn general is to
be found in Sections 24-26. At the end of this section there is
a discussion that can be useful in a batch environment.

10.2 An example illustrates the ideas

-(DE REV (L RES) (COND ((NULL L) X) (T (REV (CDR L) {CONS {KAR L) RES>

REV

-(REV '(ABC))

U.D.F

(KAR BROKEN)

: L

(A B C)

:RES

NIL

:BT

COND

REV

EVAL

LISP X

Test~ by an example.

An error has occured during evaluation.
There is an undefined function (U.D.F)
kar.

The break prompts us with : •
To break we can give either commands or
forms which will be evaluated. L is no
command and is therefore treated as a
form and is evaluated.
RES wil 1 also be evaluated.

A command which prints the function calls
done before the error occured.

: (EDITF REV)

EDIT

::p

(LAMBDA (L RES) (CmJD & &))

::3 p

(COND (& X) (T &))

"3 2 p

(REV (CDR L) (CONS & RES))

::3 2 p

(KAR L)

::(1 CAR)

::p

(CARL)

::oK

REV

:RETURN (CAR L)

KAR =A

U.B.A

(X BROKEN)

: (ED I TF REV)

REV

::(R X RES)

::oK

REV

:RETURN RES

(C B A)

47

Enter the editor and edit rev. The
editor prompts with::. -

Prints rev with print level 2

Look at the third sublist and print it.

Here is the error,~ is mis-spelled.

Change the first element on the 1 ist
to car.

The error is corrected.

Leave the editor.

In the break again.

Give the broken expression, the value
of (CARL), which was calculated to A.

An Error again, X has no value, an
unbound atom (U.B.A)

Replace all X by RES.

Leave editor

Leave the break and return the value of
RES. The evaluation continues and the
reversed 1 ist is printed.

48
-(PP REV) Back to LISP's top level again.

(REV

<LAMBDA (L RES)

(COND

(REV)

((NUL~ L)

RES)

(T (RES (CDR L)

(CONS (CAR L)

RES>)

The break gives us the possibility to search for where the error
occu~There are commands by which we can see the chain of function
calls done (BT above), the actual value of variables and we can
evaluate arbitrary forms so we areal lowed to do whatever computa
tion we wil 1 at this break point.

The editor gives us then possibi 1 ity to correct errors or any changes
in the code we want to perform.

10.3 Break commands 1

STOP or Leaves the break to either a higher break or to LISP's
top level.

BT Prints a backtrace of all functions which were called
before the error.

BTV Prints the functions, variables and values.

RETURN form Returns from the break and the value of form is given
as value to the expression which caused the break.

form If form is not interpreted as a break command it is
evaluated and the value is print~

Writes a 1 ist of available break commands.

10.4 Edit commands

To invoke the editor there are three functions, editf (for functions),
editv (for global values) and editp (for property-lists).

1 A break can be initiated by an attention-S or attention-H, see
further Section 30.

49

At every moment the editor's attention is centered to a substruc
ture of the expression being edited. It is called the current
expression, cexp. A faulty command is responded by 7 and cexp is
then not changed.

p

PP

n

(n)

•.. e
rn

Prints the cexp, 1-1ith print level

Prints the cexp on all levels

Prettyprints cexp

2

An integer, if positive set cexp to the ~th element
of the current cexp and if negative the ~th element
from the end.
If n=O, cexp will be the last cexp before.

Sets cexp to the top level expression again.

eg -(OE FOO (X) (AND X (FIE (CAR X) (CADR X))))

FOO

-(EDITF FOO)

EDIT

::p

(LAMBDA (X) (AND X&))

"3 ?

(AND X (FIE(CAR X) (CADR X))))

::P

(AND X (FIE & &))

::o p

(LAMBDA (X) (AliD X &))

::OK

FOO

n:;>l deletes the nth expression of cexp.

n<ol replaces the nth expression by e 1 to e
rn

(-n e 1 ••• ern)

(N e 1 ••• ern)

n:;>l inserts e 1 to e before the nth m

adds e 1 to em to the end of cexp.

element.

50

F expr

(R X y)

UP

eg -(EDITF FOO)

EDIT

:: (2 (Y)) P

(LAl,ffiDA (Y) (MID X &))

::3 (2) p

(AND (FIE & &)

:: (-2 Y (FUM (CAR Y))) P

(A!ID Y (FUM &) (FIE & &))

::(N CAR) 0 ?

(LAl,ffiDA (Y) (ANDY (FUM (CARY)) (FIE CAR X)

(CADR X)) CAR))

::OK

FOO

If expr is an atom it searches for expr in cexp, such
that car[cexp] = expr. It searches first on top level of
cexp and then from the beginning of cexp on all levels.
If expr is a list it searches the first occurence in
cexp regardless of levels. cexp is then equal to
searched expression

All occurences of~ are replaced by y.

Sets cexp, so that~ of new cexp is equal to old
cexp.

eg -(ED ITF FOO)

EDIT

>:F FIE P

(FIE (CAR X) (CADR X))

::{RXY)P

(FIE (CARY) (CADR Y))

::UP ?

(B I n m)

(B I n)

(BO n)

(L I n)

(LO n)

(RI n m)

(RO n)

51

••. (FIE (CARY) (CADR Y)) CAR)

::F CAR P

CAR)

:: (1 END) 0 0 P

(AND Y (FUM &) (FIE & &) END)

::OK

FOO

both in. A left parenthesis is inserted before the
nth element and a right parenthesis is inserted
after the mth element.

as (B I n n)

both out. Removes both parenthesis from the nth ele
ment.

eg If cexp is (A (B C) DE)

(BI 2 3) gives (A ((B C) D) E)

(BI 3) gives (A (B C) (D) E)

(BO 2) gives (A B C D E)

left in. Inserts a left parenthesis before the nth
element and a corresponding right parenthesis at
the end.

left out. Removes the left parenthesis from the nth
element. All elements after the nth element are
deleted.

right in. Inserts a right parenthesis after the mth
element of the nth element. The rest of the nth element
is brought up to the level of the current expression.

right out. Removes the right parenthesis from the nth
element, moving it to the end of the current expression.
All elements following the nth element are moved inside
the nth element. -

52

eg cexp is (A (B C) D E)

(L 1 3) gives (A (B C) (D E))

(LO 2) gives (A B C)

(RI 2 1) gives (A (B) C D E)

(RO 2) gives (A (B C DE))

UNDO Undo-es the last change done. It is used if for in
stance a wrong element was deleted. This gives the
user the ability to experiment with the editing com
mands. All of the commands are undoable.

I UNDO Undo-es all changes done.

OK Leaves the editor.

10.5 In batch some of these facilities can be used. At an error the break
gives-a-backtrace on which informations from the evaluation so~
are printed. We can find the forms currently being evaluated, the
functions which have been cal~and the variables and its values
to these functions.

The editor can be used in exactly the same way as interactively. We
have of course no way of undo-ing changes. A good strategy could be
to use P for seeing on wh~tructures we are working and to pretty
print the edited expression afterwards.

The editor commands can be put as arguments in editf, ~or editv,
which is recommended in batch use.

eg (EDITF REV 3 P 3 2 P 3 2 (1 CAR) OK)

10.6 File handling. When a number of functions are defined and tested
there is a simple way to save their definitions on a symbolic file,
which later can be loaded. For this a partitioned dataset is needed
and is described in the appendix. A file has a name containing 1 to
5 characters. If we want to create the file SORT consisting of the
functions quicksort, order, compare and merger, we give the global
variable SORTFNS as value a list of these functions. The variable
is a concatenation of the file name and FNS. The file is created by

(SETQ SORTFNS '(QUICKSORT ORDER COMPARE MERGER))

(MAKEFILE 'SORT 'FAST)

Makefile finds SORTFNS and creates the file. The file can later be
loaded and the functions will then get defined by executing

(LOAD 'SORT)

In section 20 file handling is described more in detail. There are
also ways to specify that we want to save global values, property
] ist information, $-expressions etc.

53

11. Some more functions

11.1 In the previous sections we have introduced a small collection of
functions necessary to understand and practice LISP. There are how
ever, more rather elementary functions which we wi II introduce here.

11.2 Selectq. This function is used when we depend on a value to execute
different pieces of LISP code. It corresponds to the case statement
in Algol 68 for example. --

(SELECTQ p

(p1 e 1)

((p21 p22 p23) e2)

(p3 e31 e32 e33)

en)

E.• a form, wil 1 be evaluated and its value is compared with £1,
~. ~ ... , which should be atoms and which are not evaluated.
For the first .E.· equal to .E.• corresponding forms e.-a7e evaluated.
If no .E.· is equ~l ton the form en is evaluated. -t

I .c. -

The first element in a sublist can either be an atom or a list of
atoms. If it is a list we can have several values which execute the
same piece of code. The remaining elements of the sub] ist are forms.

Example. Execution of different functions is dependent on the length
of a list.

(SELECTQ (LENGTH L)

(0 (EMPTYLI ST))

(1 (ONEL I ST L))

((2 3 4) (TWO-TO-FOURLIST L))

(5 (FIVELIST L))

(MORE-THAN-FIVELIST L))

Length is defined in Section 11.6

54

11.3 Progl and progn. In some situations we are only permitted to have
one form, as eg, the predicat in a branch in a co(1d-expression and
the last expression in selectq. These two functions take an arbit
rary number of forms as arguments, evaluates them all and returns
the following values

~- the value of the first form

~ - the value of the last form

This corresponds to Algol 1 s begin ... end parenthesis.

eg (SELECTQ CASE

(Cl (FOO L))

(C2 (FIE L))

(PROGN (FUM! L) (FUM2 L) (FUM3 L)))

In the case, when the value of case is not equal to Cl or C2 the
~-expression will evaluate arr-three forms and return as value
.the va 1 ue of fum3 [1].

eg ~ is useful when we have for example, two forms,
which must be evaluated in a specific order and that
we require the value from the first form. One example
of this is when we want a value from a property list
and the remove of that value.

progl[getp[x,y], remprop[x,y]]

In some LISP systems we are only allowed to have one form after then
in a cond-expression. If we want more forms we must use~· In a
system where we have not these restrictions, we say that we have
implicit~.

11.4 ~· In the family of functions for assignment there is also~·
It assumes that its two arguments shall be treated as guoted arguments.
These are equivalent expressions

(SET I A I (A B C))

(SETQ A I (A B C))

(SETQQ A (A B C)

11.5 More predicates

1 i tatom[a] Returns T if a is a literal atom, otherwise NIL.

eg 1 itatom[A] T
litatom[NIL] T
litatom[3] =NIL

1 i stp[1]

nlistp[l]

neqlx,y]

Returns 1 (=true) if 1 is a list other than NIL,
otherwise it returns NIL.

eg 1 is tp [(A)] = (A)

1 istp[A] =NIL

1 is tp [()] = NIL

Returns the opposite value as~.

eg nlistp[(A)] NIL

n 1 is tp [(A) l T

nlistp[()]=T

Returns the opposite value ass,_

eg neq [N I L, ()] = NIL

neq[(A) ,A] T

neq["A",A] T

55

member[x,l] Identical to mem9 but it uses~ instead of eq
to check if x-r5 a member in 1

eg member[A, (X A H)] (A H)

member[(A B), (A B (A B) C)]

member[123.4, (4.321 123.4)]

((A B) C)

(123 .4)

Remember that atoms and smal 1 integers are ~· and that
big integers, floating-point numbers, strings and lists
are normally not~· they are instead~-

11.6 Functions for 1 ist manipulation

x. is an arbitrary LISP-expression. List makes
a1 1 ist with x. as elements. The value of 1 ist
is the createa list.

eg list[A,NIL,3,(Xd = (ANIL3 (XY))

append[x 1 ,x2 , ... ,xn] ~i is a 1 ist. ~ creats a new 1 ist of the
1 1st element of x .. The value is the new 1 ist.

-[

eg append[{A B),(Q),(X (Y))J =(A B Q X (Y))

In actual fact~ makes copies on top level
of ~l to ~n- 1 and concatenates them to ~n·

A special case is when~ gets one argument ~l.
It is then copied on top level. To copy a 1 ist
structur" on all levels use~.

A function nconc (21 .4) works as~. but does
not copy any structures.

56

Compare and really try to understand the differences between~·
list and~.

cons[(A B),(C D)]

list[(A B),(C D)]

append[(A B),(C D)]

((A B) C D)

((A B) (C D))

(A B C D)

copy[x]

remove[x, 1]

reverse[1]

subst[new,old,l]

in te rsec t i on [x, y]

unlon[x,y]

x is a list.~ makes a copy of~· which is the
value. All levels of X are copied; X and its copy
are~ to each other. -

x an arbitrary expression, 1 a 1 ist. Remove
creates a new 1 ist, where all elements egual
to x are removed. The value is the new 1 ist.

eg remove[(X Y), (X Y (X Y) (X (X Y))]

(X Y (X (X Y)))

1 is a 1 ist. Reverse reverses the elements on
top 1 eve 1 of aTf'St.""

eg reverse [(A 8 (C D))] = ((C D) 8 A)

new and old are arbitrary expressions and 1 a
TTSt. SubSt creates a new list, where all
expressions old are changed to ne11 on the 1 ist
1. The value-ys the new 1 ist. ---

eg subst[A,8,(8 A (8 X (B X))]

subst[A, (B C), ((B C) B C)]

(A A (A X))

(A B C)

lf the list ends with a dotted-pair, cdr of
that pair is also changed if~ of t~pair
is atomic.

eg subst[A,B, (B A . B)] = (A A . A)

~andy are 1 ists. Returns a list of those
elements which are members of both~
andy

eg intersection[(A B (C) D),((C) (A) B)]
(B (C))

x and y are 1 i sts. Returns a 1 i st of those elements
which are members on either~ or y.

eg union[(A (B C) D) ,(BCD)]=

{A (B C) D B C)

1 ast[1]

length[x]

57

1 is a 1 ist. Gives as value a pointer to the last
Tistcellonl.

eg last[(A B CD)]= (D)

~a 1 ist or atom. Returns the number of elements
on a 1 ist, or 0 if~ is an atom.

eg length[(A (B C)]= 3

length[ATOM] = 0

11.7 t·1ore property-! ist functions

defl isdatm-val ,prop] atm-val is a 1 ist of two-element sub! ists.
The first element of each sub! ist is the atom,
on which property list under the property
~the second element is stored as value.
The value from defl ist is the 1 ist of atoms.

eg defl ist[((ONE ETT) (TWO TVA) (THREE TRE)),

SWEDISH]

Extension to addprop.

will v1ork as

put[ONE, SWEDISH, ETT]

put[TWO, SWEDISH, TVA]

put[THREE, SWEDISH, TRE]

addprop[atm,prop,nelv,flg] See Section 5.2. If flg is T new is
added f i rs t to the l is t -;-Qthe nv ise-i t is
added at the end.

eg addproplA,B,C] the value is (C)

addprop[A,B,D,T] the value is (D C)

addprop[A,B,E,NIL] the value is (D

addprop[A,B,F] the value is (D

11.8 Assoc and sassoc.

An association list (abbreviated a-list) is a list of pairs. It can
be used to hold, for example, variables and its values.

c
c

E)

E F)

58

eg An association 1 ist can look 1 ike

((ETT . 1) (TVA . 2) (TRE . 3) (FYRA . 4) (FEM . 5))

assoc[x,a 1]

sassoc[x,a]

x is an atom and al an association list. The
value returned is~he first pair, which first
element is~ to~· If no pair is found NIL
is returned.

eg Suppose swednumber has the above a-list
as value.

assoc[TRE,swednumber]= (TRE 3)
assoc[SEX,swednumber]= NIL

as assoc, but com~ares with~·

Exercises

1. Assume we have represented a number of cards as an associ?tion list.

2.

3.

4.

s.

In every pair, car is one of SPADE, HEART, DIAMOND or CLUB and cdr
one of 2,3,4, .--.. --, 10, JACK, QUEEN, KING and ACE.

eg ((SPADE 5) (HEART . QUEEN) (CLUB . ACE) (HEART . 5))

In a special game we get the following points

ACE of SPADES - 10 QUEEN - 3

ACE of HEARTS - 9 JACK - 3

ACE of DIAMONDS- 8 7 - 1

ACE of CLUBS 7 3 -

KING - 5 remainder - 0

Write a function point! ist [hand], where hand is a list defined
as above, which gives as value a list of the points (>0) the
hand contains,

eg pointlist[((SPADE

(HEART

5) (HEART . QUEEN) (CLUB . ACE)

5))] = (3 7)

Define prog2[x,y], which returns y_ as value.

Define :'member and :nast. ---
Define :'adderoe, by using~ and~·

Define :'defl ist, by using~·

5'3

6. There is a system function sqcdr[l], which returns as value the
first element on 1 and sets 1 to cdr[I]

Suppose l has value (A B C)

sqcdr[l] returns value A

1 has now value (B C)

Define ::sqcdr.

7. For working with association lists it can be necessary to define
some more auxiliary functions for manipulating them.

a. Define the system function ::assoc.

b. Define a function chassoc[al ,a,new] which searches the first
pair (a 1 • vi), such that a~ ai and changes that pair in
such a vJay that ~i will be replaced by~·

eg chassoc[((A . 1) (B . 2) (A

((A

3)), A, -1]

-1) (B . 2) (A. 3))

c. Define a function repassoclal ,a], which removes all pairs
(ai. vi)' if a~ai.

eg repassed ((A . 1) (B . 2) (A . 3)), A] ~ ((B . 2))

8. A concept very similar to association list is the free property
] ist. By this we mean a property-list not connected to an atom,
~only as a free 1 ist structure, but containing property/value
pairs.

There is a system function~· for retrieving a value on a free
property-] ist.

get[freeprop, prop] gives as value the element after~·
if~ is not found, NIL is returned.

eg get[(MOTHER ANNE FATHER JOHN) ,FATHER] ~JOHN

Two \•Jarnings associated with~~

- If a value happens to be the same as~ and comes before
~on the free property-list, the correct value is not
returned.

eg get[(RELATION MOTHER FATHER JOHN MOTHER ANNE),

MOTHER)] ~FATHER

- In some LISP systems~ is used instead of~ and works
on ordinary property- I ists. Be careful about this~

a . Define the function ::get.

60

b. Define a function putf[f,p,v], which works as~

eg putf[(MOTHER ANNE FATHER JOHN), FATHER, JIM]

(MOTHER ANNE FATHER JIM)

putf[(MOTHER ANNE), FATHER, JIM] = (MOTHER ANNE FATHER JIM)

61

12. Arithmetic functions

12.1 In the first section VIe defined integers and floating-point numbers;
in this section we introduce arithmetic functions. LISP is not in
tended to be a language for making advanced arithmetic calculations.
In the functions v1e are allm•1ed to use both integers and floating
point numbers. The system wil I make the necessary conversions.

12.2 The integers can be of two types. A smal 1 integer x, has its range

-2 24 <= X <:;2 24 -1

and a big integer x its range

and

They are represented in different ways but for the user there is no
real difference. The only apparent difference is that smal I integers
have a unique representation and can be tested by~·

The print-routine prints a floating-point number x only with a decimal
point if it is in the range of

othen·;ise it is printed with an exponent.

eg 123.~5

1.23~56E8

12.3 The following predicates can have arbitrary arguments.

numberplxl

eqp[x,y]

if~ is a numeric atom then T else NIL

if~ is~ toy or if~ andy are the same numeri
cal atoms then T else NIL

eg eqp[ATM,ATM] = T
eqp[3.45,0.3~5E1] = T
eqp[123~567, 1234567] = T

62

minusp[x] if xis negative then T else NIL

smallp[x] if x is a small integer then T else NIL

12.4 Integer arithmetic

The following functions wi 11 give an integer as value:

iminus[x]

idifference[x,y]

addl[x]

sub 1 [x]

itimes[x1,x2 , ,xn]

iquotient[x,t]

i remaindedx,y]

i greaterp[x,y]

i lessp[x,y]

zerop[x]

12.5 Floating-point arithmetic

x1 + x2 + x3 ... + xn. If~ is a floating

point number it is converted to an integer.
This holds for all functions below.

-x

X - y

X +

X -

x1 " xz X n

X I y

the remainder from x/y. eg 5/2

if x>y then T else NIL

if x<y then T else NIL

if X is zero then T else NIL.

The same functions as with integers are also available for floating
point numbers. They are usually spelled with an f instead of an~.
fplus instead of ~plus.

The arguments which are not floating-point numbers will be converted
and the value returned is always a floating-point numbers. The follow
ing functions exist.

~. fminus, ftimes, fquotient, and fgreaterp

63

12.6 Conversion from integer to floating-point numbers

fix[x] ~arbitrary numeric atom. Gives the integer part.

floatlxl x arbitrary numeric atom. Gives corresponding floating
point number.

fixp[x] if x is an integer then T else NIL.

floatplxl if x is a floating-point number then T else NIL.

12.7 General arithmetic

There is also a col Jection of functions which return an integer value
if all of its arguments are integers, otherwise they convert alI
integer argumer.ts to floating-point numbers and return a floating
point number. They are spelled vJithout an for an i. The following
functions exist. -

p~, minus, difference, times, quotient, remainder,

greaterp and Jessp.

12.8 Examples

plus[l, 2, 3] = 6

fplus[1, 2.5, 4] 7.5

iplus[l, 2.5, 4, 0.8] 7

plus[l, 2, 3.5] = 6.5

iquotient[43.2, 5] = 8

quotientl43.2, 5] = 8.640000

add I l3l = 4

addll7.8l = 8

f i xl3l =

floatl3l 3.0

12.9 There are also other arithmetic functions used for logical and

shifting operations on numbers.

12.10 Hexadecimal representation

A number in hexadecimal notation is written as a@ and a number.
The number consists of 0,1,2, ... , 8,9,A,B,C,D,E and F.

64

eg @3 3

@10 16

@12 18

@B 11

@1CE 462

12.11 We can change the base used by the system for writing numbers by
using the function radix.

Input Output

10 10

(RADIX 5) 20' the old base in the new base

10 20

4 4

5 10

(RADIX 8) 5

10 12

(SUB1 (RADIX)) 7, gives the current base -1

Exercises

1. Define the function ::length, see Section 10.6.

2. Define the function fak[n] which computes the facorial, n!

3. Define the function points, which takes as argument a 1 ist of
numbers, such as the 1 ist produced by point] ist in Section 10,
Exercise 1, and add the numbers together.

4. Write a function diff[expr,x], which makes symbolic differentia
tion. This is easily solved if the expressions are represented as

E •• F - (A + 3)

E2

(QUOTIENT (DIFFERENCE (TIMES E F)
(PLUS A 3)

(EXPT E 2))

Differentiation rules:

du
dx = 1, if u = x

~- 0, if u is not a function of x dx -

d
dx (u + y)

du dv =-+-dx dx

i_(u - v) du dv
dx dx dx

d du dv
d)uv) "dX+ ~

d (v~- ~) I
2

dx(u/v) v dx dx

i (un) = n·un- 1 du if n is a constant
dx dx

ddx (sin u) -~cos u - dx

d (cosu)=-~sinu dX dx

65

This process of differentiating is a recursive process. Every

· du · 1 1 1 1 d · ff express ton dx \vt cause a ca to t .

Hints - Let every differentiation rule be a function, such as
derplus, dersin etc. The function diff can then be a big selectg
expression which selects the right rule depending on the leading
function in the expression.

5. The expressions we get as value from diff in the previous
exercise must be simp! ified if they are-to be readable.
Define a function simp! ify, which does this. The function
must take care of cases such as

(PLUS X 0), which simp! ifies to X

(T 111ES X 0) , ~Vh i ch simp 1 if i es to 0

(PLUS 1 (TI11ES X 1) 3), which simp! ifies to (PLUS 4 X)

Try to evaluate as much as possible.

66

Differentiation of

(PLUS (EXPT (TIMES 3 X) 2) (TIMES 2 X)

can give the value

(PLUS (PLUS (TIMES (EXPT X 2) 0)

(T I ~\ES 3 (TIMES (TIMES 2 X) 1)))

(PLUS (TIMES X 0) (TIMES 2 1)))

which can be simp] ified to

(PLUS (TIMES 6 X) 2)

67

13. Logical functions

13.1 He have earlier introduced the Boolean values true and false. In
LISP they are represented as #NIL and NIL respectively. There are
functions for the logical connectives and, or and not.

13.2 The arguments ~i can be arbitrary LISP forms.

not[x]

'X]
n

The value is NIL, if some Xi have been
evaluated to NIL, otherwise it returns x ,
as a true value. Arguments past the fir~
argument equal to NIL are not evaluated.

eg and[A, 12, cons[X,NIL]J = (X)

andiA, cdr[(X)], put[A,B,C]] =NIL

i1ote that the 1 as t ~ is not done!

and[] = T

The value is the first x 1 , ~1hich have evalu
ated to a non-NIL value-;- othen1ise NIL.
Arguments past the first non-NIL value are
not evaluated.

eg or[NIL, cdr[(X)], car[(X)], put[A,B,C]] =X

Note that the last~ is not done!

or[cdrl[(X)], cddr[(X Y)]] =NIL

or[] =NIL

Identical to null.

eg not[(A)] =NIL

not[{)] = T

68

Exercises

1. Define even (see Section 9, Exercise 1) without using cond.

2. Suppose we want to solve a maze problem and find a suitable
way through the maze.

IN

A c

K
G

H

OUT {::::

This maze may be represented as a graph.

IN

D

A .Jc
G

B
K ---!J

H

OUT

and this further represented by the follm"ing 1 ist structure

((IN A) (A IN B C) (B A) (C A D E) (D C)

(E F K J) (F G E H) (H F I J) (G F) (I H) (J E H 0 UT)

(OUT J)))

Every subl ist has as first element a node, n, and the rest of
the elements are the nodes connected ton. This representation
is actually an association list. If we assign the list above
to MAZESTRUC

cdr[assoc[B, mazestruc]] = (A)

wil 1 give a list of nodes, which are connected to B.

Write a function maze[mazestruc, in, out], which gives as value
a 1 ist, which contains the nodes as to the way we must go from
the start IN to the exit OUT

eg maze[mazestruc, IN,OUT] (A C E F H J OUT)

The function need only be to find one path -not necessarily
the shortest. But the way is not allo"1ed to contain a node
more than once. The following answer is invalid

(IN ABA C E F H J E F H J OUT)

70

14. Fu net ion types

14.1 Among the previously defined system functions, there are some
which do not follow the rules that they must have a fixed num
ber of arguments and that they get their arbuments evaluated
before entering the function. Notably the functions quote, de,
and, cond, ~etc. For handling these there are different
kinds of function~-

First we can separate the functions into two groups: those
which have a fixed numl.er of arguments and those which have
an arbitrary number of arguments. On the other hand the functions
can also be separated into those with arguments evaluated
before entering the function and those which receive their
arguments unevaluated.

Fixed number of
arguments

Arbitrary number
of arguments

Exameles:

eval-seread

noeva 1-se read

eval-noseread

noeva 1-nose read

Gets its a rgu- Gets its argu-
ments evaluated ments unevaluated

eval-seread I noeval-seread

eval-noseread noeval-noseread

car, cons, put, union, difference

setqq

list, append, plus

quote, and, cond, selectq

A function I ike~' \'lhere only the second argument wi 11
be evaluated, has its argument unevaluated but self-evaluates
its second argument by making a cal 1 to the evaluator eval.
The function-type of~ is therefore noeval-seread.

71

14.2 The user can introduce these different types by doing

(DE FOO (X Y Z) for an eval-seread function

(DE FOO L) for an eval-noseread function

(OF FOO (X Y Z) for a noeval-seread function

(DF FOO L 0 •• 0) for a noeval-noseread function

The function de is used to define an eval function and df is used
for a noeval function. If the argumentllst is an atom the function•
is a n~d and if it is a 1 ist of atoms the function is a spread.

14.3 Examples

a. (DE FOOL (LIST (CADR L) (CARL)))

If we call

(FOO I A I B I c I D)

the arguments will al 1 be evaluated and the 1 ist of arguments,
(A B CD), wil 1 be bound to Land the function body wil 1 be
evaluated and return (B A) as value.

b. (OF FIE (X Y Z) (LIST Y Z X))

If we ca 11

(FIE ABC)

the arguments will be bound directly without any evaluation to
the variables in the argument list.

X gets value A
y gets value B

z gets value c

The evaluation of the function body will return (B C A)
value. Even if we call

(FIE 'A 1 B (CAR I (A B)))

no evaluation wi 11 occur. The value in this case is

((QUOTE B) (CAR (QUOTE (A B))) (QUOTE A))

c. (DFFUML (LIST (CADRL) (CARL)))

If ~1e ca 11

(FUM A B C D E F G)

as

the 1 ist of arguments, unevaluated, wil 1 be bound to Land the
value returned is (B A).

72

14.4 ~/hen we have a spread function we can call that function with an
arbitrary number of arguments. If they are too few the remaining
variables in the argument 1 ist are bound to NIL and if they are
too many they wil 1 in the eval case be evaluated and then dropped.
In the noeval case they are-Gnly dropped.

eg cons[A] = (A)

14.5 There is also a type cal led half-spread. The argument 1 ist ends then
with a dotted-pair.

eg (DE FOO (X Y • Z) (LIST Y Z X))

If we ca 11

(FOO I A I B I c I D IE)

the arguments wil 1 be evaluated and the following bindings wil 1
appear

X gets the value A

Y gets the value B

Z gets the value (CD E),

The value returned is then (B (C D E) A)

We can of course also define a noeval function as a half-spread.

14.6 When de or df defines a function the definition is put in the
funct~n ceTT of the atom, corresponding to the function name.

de and df puts a lambda and nlambda respectively, in the defini
tion, marking if the definitTOn"iSof eva! or noeval type.

(DE FOO (X Y) (LIST Y X))

will put the expression

(LAMBDA (X Y) (LIST Y X))

in FOO's function cell.

(DF Fl E L (LIST (CAR L) (CADDR L)))

vii 11 put

(NLAMBDA L (LIST (CAR L) (CAD DR L)))

in FIE's function eel 1.

We call then a function definition I ike this a lambda or nlambda
expression.

73

14.7 There are more functions which can be used on function definitions.

putd[fn ,expr]

getd[fn]

movd[from,to,copyflg]

Places expr in the function eel 1 of fn. This is
the most primitive way of defining a~unction.
The value is fn.

eg putd[FOO, (LAMBDA (X) (FIE X))]

Gets the function definition for .i:!2_.

eg

eg

getd[FOO] = (LAMBDA (X) (FIE X))

Moves the definition of from to to. If
copyflg = T a copy of the definition in
from is used.

movd[FOO,FIE,TJ A copy of getd[FOO] is
placed in FIE's func
tion ce 11.

movd[CAR,KAR] A synonym to car is
defined.

movdqq[from,to,copyflg] A noeval type of movd.

define[x]

savedef[fn]

unsavedef[fn,prop]

Define is the normal function in some LISP
systems to define functions. In INTERLISP/
360-370 it is more convenient to use de and
if· Define has a rather complicated defini
tion, the interested reader can check further
with the LISP manual.

eg (DEFINE ' ((FOO (LAMBDA (X Y) (LIST X Y)))

(FIE (LAMBDA L (CAR L)))

(FUM (X Y) (CONS Y X))))

In the last definition define inserts a
lambda.

Saves the definition of fn under the property
EXPR,CODE or SUBR depending on whether the
function is defined as a 1 ist expression, com
pi led or hand-coded in machine code. If fn is
a 1 ist every definition is saved.

Restores the definition of fn from prop. If
~is not given it searches for EXPR, CODE
or SUBR, in that order.

74

fntyp[fn] Fn is a function name or a function definition.
Tt returns the function type, described by the
following

I i st

EXPR

FEXPR

EXPR::

FEXPR::

campi led

CEXPR

CFEXPR

CEXPR::

CFEXPR::

machine
coded

SUBR

FSUBR

SUBR::

FSUBR::

The prefix F indicates noeval and the suffix
H indicates nospread.

eg car is a machine-coded eval-spread
function

fntyp[CAR] = SUBR

append is a campi led eval-nospread
function

fntyp[APPEND] = CEXPR::

(DF FDD L ...) wi I I define faa as a
Jist-structured noeval-nospread function

fntyp[FOO] = FEXPR::

There are some more functions working on function definitions. They
are described in detail in the manual and we will only give a short
description here.

- suberp, ccodedp and~· predicates for testing function
type as described by~·

- argtypes, gives the argument-types of a function.

- nargs. gives the number of arguments to a function.

- arglist, gives the argument-] ist of a function.

14.8 When we are redefining a function a message is written

(FOO REDEFINED)

The old definition is then saved by savedef. We can restore the old
version by

(UNSAVEDEF I FOO)

If we redefine an already redefined function the oldest version will
remain on the property-] ist.

75

14.9 If \"ie define a function as noeval, and we want to evaluate the argu-
ments on our own, we can us~function eval. This function is
LISP's evaluator which takes as input a fo~evaluates the form
and returns a value. Eval is an eval-spread function.

eg (EVAL ' (CAR ' (A B C))) = A

(SETQQ FORM (CONS NIL NIL))

(EVAL FORM) = (NIL)

The use of eva] is shown in the examples in Section 14.10, following.

14.10 The following examples illustrate the use of the different function
types.

a. Define ::setq and ::setgg from~

(OF ::SETQ (VAR VAL) (SET VAR (EVAL VAL)))

(OF ::SETQQ (VAR VAL) (SET VAR VAL))

b. Define ::1 i st

(DE ::LIST L L)

c. Define ::de. We assume de does not exist

~·
(PUTD ::DE I (NLAt1BDA (FN L)

(PUTD FN (CONS 'LAMBDA L))))

d. Define ::or.

(OF ::OR L (OR1 L))

(DE OR1 (L) (COND ((NULL L) NIL)

((EVAL (CAR L)))

(T (OR1 (CDR L)))))

e. Define ::quote.

(OF ::QUOTE (L) L)

(OF ::QUOTE L (CAR L))

Exercises

1 . Define the function ::d f.

and must therefore use

2. Define the function ::append, as described in Section 11.6.

3. Define the function/, which is used to guote a 1 ist, so that
1-1e can write(/ ABC D) which means '(ABC D).

76

4. Define the function ~and.

5. Define the function ~selectq, as described in Section 11.2.

6. You could quite easily introduce other control statements from
other programming languages to LISP such as if-then-else and
do-until. Define a function if, by which you can write state-
ments like -

(IF (LESSP N 10) THEN (SETQ N (SUB1 N)) (FOO N) ELSE (FIE N))

Define also a function do, by which you can write

(DO (SETQ N (SUB1 N)) (FOO N) UNTIL (ZEROP N))

If N is 2, foe wil 1 be called with arguments 2, 1 and 0.

77

15. Variable bindings

15.1 A variable in LISP can have two kinds of values.

-A~ value. It is stored in the atom's value cell. The
value cell is initialized to NOBIND. (See Section 2.3). The
value can be set by the function~· (~, ~), and
retrieved by giving its name.

(S ETQ P I 3. 14)

PI wil 1 give the value 3.14

The implementation is done in such a way that car of an atom
is this value eel 1.

(CAR I pI)

(CAR I Fl)

Fl

wi 11 also give the value 3.14

will give the value NOBIND

gives an error, U.B.A (UnBound Atom).

There is also another function~ (~e~e c~r) which
can be used to set a global value. See later in this section.

A~ value. When the variable occurs in an argument 1 ist
(then called lambda-variable) in a function or in a £..!:£9. variable
list, (see Section 16), at function call, the variable and its
associated value will be put on a stack. This stack is called
parameter stack. This is, of course, done to enable recursive
cal Is to be made. Fixed location for this variable is not
possible. At return from a function the variable and the value
are removed from the stack.

78

eg (DE FOO (N M) (COND ((ZEROP N) 1)

(T (TIMES M (FOO (SUB1 n) M)))))

Suppose we evaluate foo[2,5]. At the point when
zerop[n] is true the stack appear thus

top of stack

5 M

0 N

5 M

1 N

5 M

2 N

A variable on the stack can obtain a new value by using set (~, ~)

eg (DE FOO (N) (COND ((MINUSP N) (SETQ N (MINUS N)))) ...)

15.2 What happens if a variable has both a global and binding value?
When binding a value by~ (~, ~) the system searches the
stack first for the variable, and if the variable is there it
will be rebound, otherwise the variable's global value is set. The
same procedure occurs when the system shall retrieve a value.

To be sure to change only the global value the function rplaca can
be used.

rplaca[x,y] If~ is an atom, the global value of this atom is set
toy. Rplaca is described in more detail in Section 21.

eg (SETQ N 0)

(SETQ M 0)

(DE FOO (N)

(FOO 3)

(DE Fl E (M)

(FIE 1)

N

M

(COND ((ZEROP N) 'GLOBAL) (T 'BINDING)))

will return BINDING

(SETQ N 10) (SETQ M 10))

has now the value 10.

has still the value 0.

(DE FUM (N M) (RPLACA IN 5) (RPLACA I M -5) (PLUS N M))

(FUM 2 -2)

N

M

returns 0

now has the value 5

now has the value -5

79

Notice here hol'l the function~ can be used for· setting a global
value, independent of the contents of the parameter stack.

(DE GUM (N M) (SETQ M (ADD1 (CAR 'M))) (PLUS M N))

(GUM 5 10)

M

(CAR IN)

returns the value 1. m was rebound to
the global value of ~-added by one.

still has the valL•e -5

sti 11 has the value 5

Note the use here of car to retrieve a global value.

15.3 A noeval version of rplaca is~ for setting a global value.

eg (RPLACA 'VAR 'START)

(RPAQQ VAR START)

15.4 Free variables

A variable in a function definition 1·1hich is not a lambda or~
variable is called a free variable in that function.

eg (DE FOO (X Y) (FIE X))

(DEFIE(X) (FUMXY))

y is free in~·

80

16. Prog

16. I Up to this point we have not been able to use LISP in the more
conventional way of writing programs - as a sequence of state
ments and with gatos for controlling the flow between them.
This is possible to do in LISP too, but we have tried to avoid
this so far, thus enforcing the user to be aquainted primarily
with recursion. Only too often it happens that a beginner writes
LISP with the~ feature alone. The recursion is not expensive,
and programs written recursively tend to be more readable than if
written in the iterative way.

16.2 The notation for~ is

(PROG varl ist expression

expression

expression)

Varl ist is a list of variables which will be local in this proq.
The Jist contains either atoms or sublists, where a sublist is used
to initialize a variable. As default the variable initializes to
NIL. These variables wil I be bound on the parameter stack- see
Section 15.1.

eg (PROG (A B (X 10) (Y (CAR I (A B)))) ...)

A is in i t i a 1 i zed to NIL

B is in i t i a I i zed to NIL

X is initialized to 10
y is initialized to A

The evaluation of all forms is done before the binding of the
variables on the stack.

eg Suppose X has the value 10

(PROG ((X 5) (Y X)) ...)

wil 1 initialize X to 5 andY to 10, the~ variable X has
not· yet been bound on the stack.

31

Expression can be either an atom which is then interpreted as a
label or a 1 ist and is then a form which wi 11 be evaluated.

16.3 There are two special functions for .P..!:££·

return [expr] Makes a return from the .P..!:££ and the value of expr
wil 1 be the value from the~·

go [1] A noeval function. Wi 11 transfer the control in the
p rog to the 1 abe 1 ..!.· ..!. must exist in the 1 as t
entered .P..!:££• otherwise an error message wil 1 occur,
so we are not allowed to jump out from a .P..!:££ to a
label in another .P..!:££·

16.4 Example

Define the function ::length.

Exercises

(DE ::LENGTH (L)

(PROG ((N 0))

LOP

(COND ((NULL L) (RETURN N)))

(SETQ L (CDR L))

(SETQ N (ADDl N))

(GO LOP)))

1-6 Define the functions from exercises 1-6 in Section 9.

Interaction should be used where possible instead of recursion.

82

17. Evaluating functions

17.1 As seen in the previous section it is necessary to be able to cal 1
the evaluator (interpreter). This was used to evaluate arguments in
a noeval function. There are two main functions, eval and~. by
which the user can call the interpreter.

17.2 eval[form]

e[form]

The form will be evaluated. Notice that eval itself
is of eval-type, so its argument is first evaluated.

eg (EVAL '(CONS T T)) = (T . T)

(SETQQ FORM (PLUS 3 5))

(EVAL FORM) = 8

(EVAL 'FORM) = (PLUS 3 5)

Noeval-nospread version of eval.

(E (CONS T T)) = (T . T)

evala[form,al ist] Simulates a-list evaluation as in LISP 1.5.

apply[fn,args] The function fn will be applied to the arguments
in~· ~is of eval type but observe that
arguments in the argument-list~ are not evaluated.

eg (DE FOO (X Y) (CONS Y X))

(DF FIE (X Y) (LIST Y X))

(FOO '(B) 'A)= (A B)

(FIE (B) A) = (A (B))

(APPLY 'FOO I ((B) A)) (A B)

(APPLY 'FIE I ((B) A)) (A (B))

apply::[fn,arg 1, ••• , argn] is equivalent to

apply[fn,l ist[arg1, , argn]]

~g (APPLY~'FOO I (B) 'A) = (A B)

17.3 \.Jhen the form is a list, car of that list is the function 1-1hich
1·1i l l be app l i ed to the arguments.

car of form can be

-a function-name, ie ~· foo (if foo is, or \'Jill be defined
as a function)

-a lambda or nlambda expression,

((LAMBDA (X Y) (CONS Y X)) '(I S P) 'L) = (L I S P)

((NLAMBDA L (LIST (CADR L) (CAR L))) A B C D) = (B A)

- a funarg expression, described in Section 28,

- a function indicator- see the LISP manual.

In the original version of LISP 1.5 car of form could be of
arbitrary form. ! f it \vas not a functiOn name or a lambda or
nlambda expression it \'las evaluated. This will in INTERLISP
give an error, but \'Je can use .§.E£!y or~ instead.

eg Suppose we have done

(PUT I A I FN I CAR)

The form

((GETP I A I FN) I (A B C))

is not permissable, but we can instead \vrite

(APPLY:: (GETP I A I FN) I (A B C))

17.4 In the differentiation exercise (Section 12, Exercise 4) \'/e proposed
a solution where we had a main function, cliff, controlling the calls
to the various sub-functions. Each sub-function corresponded to a
differentiation rule. If we no\'1 \'/ant to extend the set of rules
this can be achieved by adding code in diff and translating the
rule to a LISP function.

Another solution to this would be to let. each rule be a lambda
expression in the same v1ay as before, and let these expressions
be stored on property-lists.

eg The rule

i._ (u-y) du _ .£y
dx = dx dx

is translated to

(LAMBDA (EXPR X)

(LIST 'DIFFERENCE
(D 1 FF (CADR EXPR) X)

(D IFF (CAD DR EXPR) X)))

84

and is stored by
(PUT I DIFFERENCE I D I FFRULE I (LAMBDA (EXPR X) ...))

This simplifies diff and can now be defined as

(DE DIFF (EXPR X)

(PROG (RULE)

(RETURN (CDND ((EQ EXPR X) 1)

((ATOM EXPR) 0)
((SETQ RULE (GETP (CAR EXPR) 'DIFFRULE))

(APPLYx RULE EXPR X))

(T EXP R)))))
~le can now extend the number of ru 1 es with ease, without
changing any code in the existing functions.

17.5 Getdflt. Another example where it can be useful to have
"functions" stored on property-lists is to handle default
routines, for calculating a property value when it is not
explicitly given.

Suppose we have the property heigh{. If the height for a person is
not given we want a default value 176 for boys or 166 for
girls) to be stored.

A general solution to this is to have a function getdflt
defined as

(LAMBDA (ATM PROP) (OR (GETP ATM PROP)

(APPLY:: (GETP PROP 1 DFL T) ATM)))

~le also define a default routine for he.!_9h.!_

(PUT 'HEIGHT 'DFLT I (LAMBDA (ATM)

(PUT ATM

'HEIGHT

(COtiD ((EQ (GETP ATM 'SEX) 'BOY) 175)
(T 166 >

If we have stored the fact that EVA is a girl

(GETDFLT 'EVA 'HEIGHT)

will first make a getp[EVA,HEIGHT], which wil 1 give NIL as value

:35

and then apply the _default routine heigh..E_ to EVA ~1hich 11ill store a
default-value, calculated to 166, and return it as value. The next
time the same expression is evaluated the height is already stored.

For every property .E. we want default routines, we had to store a
dflt property on .E.'s property-! ist and then use getdflt instead of
~· If a dflt routine is missing NIL is returned.

(APPLY:: NIL arg 1 ••• argn) wi II always return NIL

Exercises

1. Define a function calc[op,a,b], ~1here .9£. is a functional argu
ment and which specifies the arithmetic operation done by calc
on the arguments ~ and ~·

eg calc[PLUS, 10, 20] = 30

calc[(LAMBDA (X Y) (CONJ ((GREATERP X Y) X) (T Y)))),

10, 20] = 20
2. Run tLe follm·1ing examples on the computer and study the results.

3-

Can you explain them?

(APPLY 'SET I {A B))

(APPLy I SETQ I (E F))

(APPLY 'SETQQ I (I J))

Define a function first[l,fn], which gives the first element~
on the list l· satisfying fn[x].

eg first[(A B 1 C 2 3) , NUMBERP]

86

18. Map functions

18.1 The map functions are a collection of useable LISP functions which
are characterised in that they work on a list of elements and that
they on each element apply a function. This function is an argument
of the~ function. For guote-ing a functional expression there is
a function function 11hich uses the funarg feature described in the
LISP manual.

18.2 function[fn,freevars]

mapcar[mapx,mapfnl,mapfn2]

If freevars is NIL then it is identical
to quote, but it helps the compiler to
show that this is a functional argument.
When freevars is~ NIL it is a 1 ist of
variables which presumably are free in
~· A funarg expression wil 1 then be
created, but this is further discussed
in Section 28.

If mapfn2 is NIL, then mapfn1 -which
should be a function - is applied to
every element on the 1 ist mapx, and
then returns a 1 ist of those values
computed.

(MAPCAR I (l 2 3 4) (FUNCTION ADDl)) =
(2 3 4 5)

(~1APCAR 1 (CAR APPEND MAPCAR) (FUNCTION
FNTYP)) = (SUBR CEXPR:: CEXPR)

(MAPCAR I (1 15 5 25 30 10)

(FUNCTION (LAMBDA (X)

(AND (GREATERP X 12)

(LESSP X 28)))))
(NIL T NIL T NIL NIL)

If mapfn2 is provided, then instead of
using cdr for computing the next element
of mapx, mapfn2 is used.

eg (MAPCAR 1 (1 2 3 4 5 6)

(FUNCTION ADDl)

(FUNCTION CDDR)) (2 4 6)

mapc[mapx,mapfn1,mapfn2]

87

Identical to mapcar, but it returns
the value NIL and does not build a
1 ist and use cons'es.

map! ist[mapx,mapfn1 ,mapfn2] Instead of applying mapfn1 to an
element in mapx, it is applied to
successive tails of mapx.

map[mapx,mapfn1 ,mapfn2]

eg map I ist[(A B C D E), LENGTH]

(5 4 3 2 1)

length[(A BCD E)]

length[(B C DE)]

length[(C DE)], etc are computed.

Identical to maplist, but it returns
NIL instead.

map2car[mapx,mapy,mapfn1,mapfn2] Identical to mapcar, but mapfn1
is a function of two arguments and
mapfn1[car[mapx],car[mapy]] is computed
at every step.

eg map2car[(A BCD E), (X BY D E),EQ]

(NIL T NIL T)

map2c[mapx,mapy,mapfn1,mapfn2] Corresponds to mapc.

every[mapx,mapfn1,mapfn2]

some[mapx,mapfnl ,mapfn2]

If the result of applying ~to
every element of mapx is~· the
value T is returned. If the result is
NIL, every immediately returns the
va I ue NIL.

eg every[(A BCD), ATOM]= T

every[(10 20 515 25), (LAMBDA (X)

(GREATERP X 8))] =NIL

For the first result of applying mapfn1
to the elements of mapx, which is~·
some will return a true value. If all
results were false, some returns NIL.

eg some[(A NIL (X Y), Z) ,LISTP]

((X Y) Z)

the value returned is the remainder of
the list where car of that 1 ist is the
element which gave a true value.

88

every[(10 20 5 15 25)

(LAMBDA (X) (GREATERP X 8))] = NIL

Memb can be defined as

(DE ::MEMB (X L)

(SOME L (FUNCTION (LAMBDA (Y)

(EQ X Y)))))

There are more map functions in the system- if interested see the
L I SP man ua 1 •

Exercises

1. Define the functions ::map, ::mapcar, ::map2c and ::every.

2. Define a function square, which computes the square of each
element of a 1 ist

eg square[(! 2 3 4 56)]= (1 4 9 16 25 36)

3. Suppose we have stored under the property SONS a list, sons.
Define a function storefather[a], where a is an atom with the
above property. Storedef will store the value a under the
property FATHER on the property-lists of every-atom on the
list~.

eg put[JOHN, SONS, (JIM TIM PIM)]

Storefather[JOHN] will then make

put[JIM,FATHER,JOHN]

put[TIM,FATHER,JOHN]

put[PIM,FATHER,JOHN]

4. Define pair[x,y], which makes an association list of~ andy.
We assume that~ andy have the same length.

eg pair[(ABCD),(1234)]=((A 1)(B 2)

(C . 3) (D 4))

5. Define collectpairs[al,a], where al is an association list
and a an atom which returns a 1 is~with al 1 pairs, whose car
is !:.9. to .!·

eg collectpalrs[((A. 1) (B 2) (A. 3)), A]

((A • 1) (A . 3))

19.

19.1

19.2

1/0 functions

LISP has the advantage in that we can start using it- writing
complex programs -without knowing anything about 1/0. The system's
read-eval-print loop takes care of this. There are of course,
functions that enable the user to specify his own 1/0 if he wishes
to make a formated output - ie, a table - or if he wants to 1/0
another media other than the terminal - ie, a file on a disc store.
Yet another very important feature of LISP is that 1/0 is defined
for 1 ist structures. In languages 1 ike PL/L, Simula etc, we can
not simply print a list structure.

1/0 in LISP is made from, or to, a file. Normally it is the terminal
when using it interactively, or the card reader (remote job terminal)
and printer, when it is used in batch. The system knows ~1hen it is
used interactively or in batch, and these files are the initial
primary files. Tis used to indicate these files. All 1/0 functions
have as optional argument, the file. If it is omitted or NIL the
primary file is taken. All files must be opened before they can be
used, except T which is always open.

19.3 input[file] File is the new primary input file. Its value is
the old file. If file is NIL the current primary
file is returned.

output[fi 1 e]

infi le[fi le]

outfi le[fi le]

closef[fi le]

c 1 osea 11 []

Same as input, but works on output primary file.

File is opened for input, and the input primary
file sets to file. The old input primary file is
returned as value.

Same as infile, but opens an output file.

Closes file.

Closes all opened files.

90

openp[file,type] If type NIL tests if file is opened

INPUT tests if file is opened for input

OUTPUT tests if file is opened for output.

Returns file if the test succeeds, and NIL other
wise. File= NIL will return a list of all open
files.

eg To open a file only, without setting the
primary files

input[infi le[fi le]].

19.4 When the file is on disc store it must follow some rules. The file
name must be 1 to 5 characters long, and an optional generation
number can be used. We wil 1 deal in more depth with file hand] ing
in the next section.

eg Val i d f i l e name FOO

FIE#03

19.5 Input functions

read[file]

ratom[fi le]

readc [file]

Reads oneS-expression (actually atom, string or
list) from file, which is returned as value. The
same function-is used by the LISP read-routine,
so the rules concerning delimiters given in
Section 1 are also valid here.

Reads in the next atom from file. Break characters
as < > and w_i_l_l-also be interpreted
as atoms. See further 19.7.

Reads next character from fi]e.

eg Suppose the following character string is
in the input buffer

ABC 11 C11 (X) 'A%<

successive read reads

ABC, 11 C11 , (X), 'A, and < 'A wi 11 be trans
lated to (QUOTE A)

successive ratom reads

ABC , 11 , C , 11 , (, X,) , ' , A and <

successive readc reads

A,B,C, , 11 ,C, 11 , , (,X,), 1 ,A, ,% and <

91

There are some more input functions in the system, described in detai 1
in the LISP manual, we give a very brief description here.

- rstring reads a string

- ratoms reads a sequence of atoms by ~

- readp looks in the input buffer to see if there is anything
there

- readline reads a line from terminal

- peekc looks at next character in input buffer, but does not read
it.

19.6 Output functions

print[x,fi le]

prinl[x,fi le]

prin2[x,fi le]

terpri[file]

spaces [n, fi 1 e]

Prints x on the file file followed by a new line.
Value returned is x. The expression printed con
tains the escape character (%) and the string
separator ("). An expression printed by .P!:l!:!!• can
later be read properly by read.

Prints ~on the file file, without % and ".

Prints x on the file file, as .P!:l!:!! but without
making a new 1 ine. --

Makes a new line.

Prints n blanks on file.

eg (PROGN (PRINT 'ADAM) (PRINT ' "JOHN"))

outputs

ADAM

"JOHN"

(PROGN (PRIN1 'ADAM) (SPACES 1)

outputs

ADAM JOHN

(PRIN1 I "JOHN") (TERPRI))

(PROGN (PRI N2 I ADAM) (SPACES 1)

outputs

ADAM "JOHN"

(PRINZ I "JOHN") (TERPRI))

gz

eject[]

printlevel [n]>-

new page on 1 ine printer

On fileT (terminal and printer) the printing can
be controlled by the depth in the structures.
n states that n single left parenthesis wil 1 be
printed, below-that all 1 ists wil 1 be printed as
&. The value is the old setting. n=NIL gives
the current setting.

eg print level [2]

Suppose -1 -is (A (B C (D (E) F) G (H)) K)

print[l] would print (A (B C & G &) K)

linelength[n,file] Sets the length of the line on file Can be used
both for input and output fi les~e further the
L I S P man ua 1 •

prettyprint[x]

pp[x]

pp::[x]

pr i ntdef[1]

x is a 1 ist of functions or a variable whose value
is a 1 ist of functions. The definitions of the
functions wil 1 be printed in pretty format on the
primary output file.

Noeval-nospread function. Prints the list x of
functions with prettyprint on the fileT. Comments
are printed as HCOMMENTH.

As ££• but comments are printed. Short comments
are printed to the left and long comments are
printed within the function, but separated from
the code by blank 1 ines.

eg (PRETTYPRINT '(FOO FIE FUM))

or

(SETQQ PRFNS (FOO Fl E FUM))

(PRETTYPRINT 'PRFNS)

or

(PPx FOO FIE FUM)

Prettyprints an arbitrary 1 ist structure.

eg (PRINTDEF (GETP 'A 'X))

19.7 There is a standard set of break characters and separators in the
system.

A break character.wi 11 delimit atoms and the character itself is
also interpreted by~· as an atom. They are () < > and

} The print-level can also be set by attention-P, see further 30.5.

93

A separator wi 11 also delimit atoms, but they are not interpreted
by ratom, as an atom. They are (blank) and) (1 ine feed).

There are functions by which we can set and use own delimiting
characters

setsepr[lst,flg]

se tb rk [1st, f 1 g]

getsepr[]

getbrk[]

character[code]

chcon [ch rs]

The~. a 1 ist of character codes (EBCDIC codes),
sets new separator characters. When il£ is NIL
~replaces the old set of separator characters.
For other actions of this function see further the
LISP manual

Same as setsepr, but sets break characters.

eg In an algorithmic language there can be
formulas 1 ike

A=B+C/D; A=BETA+C/DELTA;

If we are to read this expression and immedia
tely get the parts of the statement we can
make

setbrk[(126 78 96 97 92 94)]

and then have a loop making ratom until
is read in. The numbers are ~nternal
character codes for

+ I and ;

gives a 1 ist of current separators.

gives a 1 ist of current break characters.

gives the character with EBCDIC code code.

eg character[78] +

cha racter[94]

Returns a 1 ist of the EBCDIC-codes for the
characters in chrs.

eg chcon[+;l = (78 94)

Only the functions ratom, uread and~ are affected by the user's
set of break and separator characters. Ratom is described in Section
19.5.

uread [file] user read. Same as read but uses the user's set of
break--a;;(f separator characters. If () < and >
are included in the break characters it wi 11 read
1 ists as read but spliting atoms containing break
or separaro;-characters.

94

prin3[1 ,file]

eg Suppose blank and comma are separator
characters and () + x are break
characters. They are set by

setsepr[(64 107)]

setbrk[(77 93 78 92)]

If the input stream is

(FOO X+Y,Z,(FIE YxZ))

uread gives the list

(FOO X+ Y Z (FIE Y x Z))

Prints 1, on file, so it can be read again by
uread. Tt uses the user's break and separator
characters to determine when to insert %-s.

19.8 Example

INTERLISP/360-370 works normally in eval mode, which means that we
write expressions which the top-loop-giVes directly to eval. There
are other top-loops in other LISP systems and the most common is the
~ mode. 1 This mode reads two expressions, the first a function,
and the second an argument list, and gives this to~-

eg CAR ((A B C D)) =A

CONS (X (A B)) = (X A B)

DE (FOO (X) (CAR X)) = FOO
This can be done by defining a function applyloop.

(DE APPLYLOOP NIL
(PROG NIL

LOP
(PRINT (APPLY (READ T) (READ T)) T)
(GO LOP)))

The above function can be used interactively, but in batch we can use

(DE APPLYLOOP NIL
{PROG NIL

(PROG (CLA CLB)
LOP
(PRI N1 I "---------------------------" T)
(TERPRI T)
(SETQ CLA (CLOCK 2))
(PRINT (APPLY (PRINT (READ T) T) (PRINT (READ T) T)) T)
(SETQ CLB (CLOCK 2))
(SPACES 23 T)
(PRIN1 (I Dl FFERENCE CLB CLA) T)
(SPACES 1 T)
(PRINT 'MS T)
(GO LOP)))

1 In some LISP 1.5 systems the top-loop works in an evalguote mode,
which nearly corresponds to the~ mode.

95

This wil 1 output

CAR

((ABC))

25 MS

CONS

The call clock[2] gives a time in ms. The difference between two such
calls gives the computing time in ms between these two calls.

There are two weaknesses in the above loop. What happens if an error
occurs? We then return to the top loop. In the LISP manual there is
a function errorset, which prevents us in such cases. See Section 25.
The other weakness is that it is no normal way to enter the top loop
again. This can be done by defining that a return wil 1 be made when
it reads a function equal to NIL, or something similar.

19.9 Actually the LISP top loop works so you can enter expressions
given either in eval mode or in~ mode. The top loop is a
function ~1 and the function itself decides if the expres
sion wil 1 be given to eval or~· Simply, if it reads an atom
followed by an expression it is taken as input for~. other
wise to eval.

- (CONS I A I (B c))

(A B C)

-CONS (A (X Y))

(A X Y)

-(CAR I (A B)) (SETQ VAL I (X Y))

A

(X Y)

-VAL

(X Y)

1 The function~ can be redefined, so make sure how your version
behaves.

Exercises

1. Write a function pascal[n], where~ is a number between 0 and
10, which constructs Pascal's triangle and writes it out as a
triangle.

pasca1[6] will print

2

3 3

4 6 4

5 10 10 5

6 15 20 15 6

A number within the triangle is the sum of the two numbers
above.

2. Define a function algolscan, which can read statements written
in Algol and which converts it to some internal list form.

eg (ALGOLSCAN)

A:=B+C;

IF X>10 THEN L:=10 ELSE BEGIN L:=5; GOTO H END;

ENDALGOL

The internal form could be a list of the different syntactic
entities. The above. example gives the 1 ist

(A := B + C IF X> 10 THEN L := 10 ELSE BEGIN

L := 5 ; GOTO H END ;)

97

20. File handling

20.1 The system provides a rather advanced file-handling feature. To
create a file in LISP's sense is to write out the symbolic nota
tion of LISP expressions by the system's print-routines. This
means that an atom is written as its character string and a list,
is written by parentheses etc. System's read-routine can then read
it in again and create the internal structures.

A file has a name (l-5 characters) and a generation number. Every
time a file is created with the same name the generation number is
updated. A file can be retrieved either by giving only the name -
which then gives the latest generated file- or by giving the name
and a generation number. This makes it possible to automatically
have back-up on the files we have. A file must be opened before it
can be used.

eg (OUTF I LE I FOO) FOO is opened and is set to be the primary
output file

(PRINT I "THIs IS WRITTEN ON FILE FOO")

(PRINT I (THIs IS ALSO WRITTEN ON FOO))

(CLOSEF I FOO) FOO is closed and FOO # 00 1 is created

(I NFI LE I FOO) FOO * 00 is opened again as input file

(READ) reads "THIS IS WRITTEN ON FILE FOO"

(READ) reads (THIS IS ALSO WRITTEN ON FOO)

(CLOSEF 'FOO) FOO is closed again
(OUTFI LE I FOO)

(PRINT "'THIS IS WRITTEN ON A NEW FILE")

(CLOSEF 'FOO) FOO is closed and FOO#Ol is created

(INPUT (INFILE 'FOO)) FOO # 01' is opened, but T is still
the primary file

(INPUT (INFILE 'FOO#OO)) Also FOO # 00 is opened

1 A file with generation number consists of file name, #and a
two-digit number

eg FOO >' 13

(READ 1 FOO#()Q)

(READ 'FOO)

(CLOSEF I FOO)

(CLOSEF I FOO #'00)

reads "THIS IS WRITTEN ON FILE FOO"

reads "THIS IS WRITTEN ON A NEW FILE"

20.2 The actual implementation with regards to the operating system
is described in the LISP manual. In an OS/360 environment we need
a partioned dataset. A LISP file wiT 1 be stored as a number in that
dataset. To delete and compress files we must use IBM's utility
programs. In the appendix to the current JCL is a description for
this.

20.3 Makefile and load

There is a function makefile which makes the use of files very
simple. This function takes a number of variables, functions,
properties etc and writes out the function definitions, variable
values, propertY values etc. in such a wav that when they are
loaded in again the functions will be defined again and the variables
and properties obtain its old values. An example illustrates its
use

(SETQQ FOOFNS (FUM GUM HUM))

(SETQQ FOOVARS (FIE GIE HIE (PROP FOOFLG A B C D)))

These two global variables 1 describe that we want to create a file
foo, which contains the functions fum, ~and hum and the variables
~.~and~ and the values under the property fooflg for the
atoms ~· £, £ and ~

(MAKEFILE 'FOO 'FAST)

All definitions and values are written on file foo.

When we later make

(LOAD I FOO)
the file will be read and all definitions and values re-stored again.
The global variables foofns and foovars were also stored, so they
can be used if we want to up-date the file.

1 The global variables are created by the file name, without generation
number, concatenated to FNS and VARS respectively.

we ~an then do

(SETQQ FOOFNS (tONS FIENEW FOOFNS))

(SETQQ FOOVARS {REMOVE 'GIE FOOVARS))

(MAKEFJLE 'FOO 'FAST)

A new generation of foe is created.

fileFNS is a 1 ist of function names.

fileVARS is a 1 ist of commands and the most common ones are

- if atomic it defines a va~iable

39

- (PROP property atom1 ... atomn). Defines values on atom1 under

property. lf property= ALL, it defines all values on a property

1 ist, but no system properties. ·If property is a 1 ist it defines

va I ues for each property on that 1 is t.

- (P sexpr~ ... sexprn) OeHnes S-expressions which will be

printed on the file. This expression wi 11 be evaluated at load

time.

- (E sexpr 1 .•• sexprn) each $-expression sexpri wi 11 be

evaluated and the value wi 11 be printed on the file.

(FNS fn 1 .•• fn 2) Defines functions. This can be useful if we

want to make some computation, eg·with the !>-command, befo.re

the functions will be defined when loaded.

eg (RPAQQ FOOFNS (FOOl F002))

(RPAQQ FOOVARS ((P (MOVDQQ FIE FUM)) (FNS FIE)))

(MAKEFILE 'FOO 'FAST)

(LOAD 'fOO) wil 1 first define fool and foo2, then
make the move and ~ast define fie.

- (VARS var 1 ... varn) H ~i is atomic it is printed so it

will be set to the global value of var 1 at the time the file

was printed. lf ~i is a list of the form (var expr) var is

written so it will be set to expr, which evaluates at load

time.

eg If we always want to initialize the variable nr to 0
and stopvar to STOP we do

(VARS (NR 0) (STOPVAR I STOP))

100

If the atom:: follows the command, the form following the
:: is evaluated and its. va 1 ue is used when executing the com
mand.

eg Suppose we have three lists of functions, fnlistl, fns2
and oldfns, and want all functions on these-TTStS to be
printed we can do

(FNS ~! (APPEND FNLI STl FNS2 OLDFNS))

There are 100re commands which are described in the LISP manual.

The second argument to makefile is an option list and FAST indicates
that the file is printed by print. Without fAST the file is printed
by prettyprlnt. To save space on disc and time use fAST.

20.4 Save. There is also a way to store a users all areas called save
on disc store by the function save. He can then start a new LTSi'
run by using this save. This means that we can save the actual
status of a LISP run and then start from that point again. In an
OS/360 environment we need 4 sequential dataset for this. In the
Appendix the current JCL for doing this is described. The function
~gives as value the number of pages saved.

Exercises

Test makefi le and load. When you understand them start using them and
you will find tNTERL1SP more easy to work with. The save is useful when
loading tjme of files starts bei!:lg tmublesome.

21. Structure-changing functions

21.1 A list cell is created every time the function cons is executed.
These eel Is are allocated from a special list a~ There is a
maximum number of list eel Is which can be allocated and for this
reason there is a qarbaae conector which automatically- or by
user's call - reclaims all the 1 ist cells not longer used and

101

makes these eel ls available again. List functions - such as ~.
list etc- use cons, when building lists. This means that the
system makes lo~f copies of structures. There is however,
functions by which we can change an already existing list structure.
This section will deal with the functions rplaca, rplacd, ~·
nconcl and ~·

eg We can have following structure

~~~ I H t V1 
A B c 

and wi 11 change it to 

t n t Ht V1 
A B c 

21.2 Functions which changes structure 

rplaca[x,y] It ~e£!2ces ~r of~ to X· If~ is an atom, this 
will set the global value of~ to X (see 15.1). If 
x is a list, the car-pointer of the first list cell 
of~ is changed t~. The value is the changed~· 



102 

eg 

rplacd[x,y] 

X is (A B) 

[.]23-{~IZJ 
A B 

y is (Q W) 

I t I H t [/] 
Q w 

rp 1 a ca [ x , y] will make the change 

B 

t I t-1'-----+---'1 1~21 
Q w 

and the value returned is ((Q W) B) 

eq[y,cadxll = T lg_ can be used to see if two 
1 ists are identical (see 
Section 3.6) 

It .!:_e~ces cdr of~ toy. If xis a list the 
cdr-pointer of the first 1 ist eel 1 is changed 
~y. We do not use rplacd on atoms, unless 
absolutely sure. We wi 11 then replace x's property
list toy. The system uses property-] ists to store 
internal information which we are not permitted 
to remove. 



i03 

eg If~ andy had the initial values as in the 
rplaca example 

rplacd[x,y] will make the change 

Q2J 
B 

Q w 

and the value returned is (A Q W) 

We can not rplaca or rplacd NIL. An error 1~ill then 
occur. 

21.3 By these two functions we can create circular 1 ists. 

eg If~ is (A B C) then 

rplacd[cddr[x], x] is 

A B C 
The print routine can not detect circular lists, so care must be 
taken that they are not printed. 

The following example shows when a circular list can be useful. 
Suppose we want a function which on succesive calls returns 

1' 2, 3' 1' 2, 3' 1' .... 

(RPAQQ CIRC (1 2 3)) 

(PROGN (RPLACD (CDDR CIRC) CIRC) 'DONE) 

(RPLACA 'CIRCPOINT CIRC) 

(DE GENNR NIL (PROG1 (CAR CIRCPOINT) (SETQ CIRCPOINT 

(CDR CIRCPOINT> 

(GENNR) 

(GENNR) 

gives value 1 

gives value 2 etc ... 

Notice how~ is used to prevent a circular 1 ist from being 
printed as value and how~ is used to get correct value. 



104 

21.4 nconc[x 1, ... ,xn] ~i are lists. Gives value as append (see 11.6), 

but instead of copying ~i, the last cdr pointer 

of each ~i is changed. The value is the conca

tenated 1 is t. 

nconc1[x,y] 

tconc[ptr,x] 

eg nconc[x,y] works as 

prog2[rplacd[last[x],y],x] 

Defined as nconc[x,l ist[y]]. This is as cons 
but puts yon the end of the 1 ist x. The-value 
i 5 x. 

This function works as nconc1, but instead of 
always searching to the~element, ~· is 

a 1 ist eel 1, where car[ptr] points to the begin
ning of the 1 ist and cdr[ptr] points to the last 
element. This function is useful when we frequently 
require to add elements to the end of a 1 ist. The 
value is~· 

eg (SETQ POINTER (CONS)) 

(TCONC POINTER 'A) gives value ((A) A) 

(TCONC POINTER 'B) gives value ((A B) B) 

(TCONC POI~HER 'C) gives value ((ABC) C) 

-/ \ 
) , I -1j~ t I J-f~l~l ; l/1 

POINTER \'-------' ~ 
A B c 

(CAR POINTER) gives then the 1 ist (A B C) 

If~ is NIL, tconc sets up the pointer cell. 

eg (SETQ POINT (TCONC NIL 'A)) 

(TCONC POINT 'B) 

(TCONC PO I NT I C) 

is identical as above. 

21.5 Some of the 1 ist manipulation functions, such as remove, reverse 
and subst appear also as destructive functions. This mean~ 
the original structure is changed. They are then cal led dremove, 
dreverse and dsubst. ---



i05 

21.6 Example. 

The property- I ist functions also use these structure-changing 
functions. Put can be defined as 

Exercises 

(DE ::PUT (ATM PROP VAL) 

(COND ((NULL (CDR ATM)) (RPLACD ATM (LIST PROP VAL)) VAL) 

((EQ (CADR ATM) PROP) (RPLACA (CDDR ATM) VAL) VAL) 

(T (::PUT (CDDR ATM) PROP VAL)))) 

1-3 Define the functions ::dremove, ::dsubst, and ::dreverse. They 
v1ork as corresponding functions \"ithout the _i, but do not use 
extra 1 i s t ce 11 s . 

4. Define the function ::addprop, described in 11. /. 

5. There is a system fu:·,ction leone, which is similar to tconc. 
By leone vie can concatenatea!Tst at the end instead of only 
an element. (Compare also nconc and nconcl) 

eg (SETQ PTR (CONS)) 

(LCONC PTR (LIST 2)) 

(LCOIJC PTR (LIST 9 8 7)) 

PTR gives the~ the value ((1 2 9 8 7) 8l 

':\:::fine ::i coGc! ptr, I] 

.:_.lethe• .::-Y~ter~ function is attach[x,y]. v-;hich -. .~alue is the saflle 
.JS :ons[.,,','/_i, but it attaches x to the frcnl :')f by changing 
i_Dy rpiacc -3nd rplacd) the conTents of v. The 'i.JTue of attach 
is 5:...9.. to L· 



106 

attachlX, 1] 

This is the new 

I ist cell 

This function can be useful if we have several pointers to the 
same list cell, which can be the beginning of a queue. If we 
now extend the queue at the beginning, we wil 1 stil 1 see that 
all pointers point to the beginning of the queue. If we were 
doing~ we must reset al 1 pointers ourself. 

Define ::attach. 

7. Let us go back to the tree sort example in Section 9, example 11. 
In the proposed solution we copy every node in the tree, which 
is passed when a new node is inserted in the tree. This method 
consumes a lot of extra 1 ist eel ls. Another solution is instead 
to merely change one of the pointers in the terminal node to 
point to the new node. By this method no extra 1 ist eel ls are 
used. Make necessary changes in the solutions in Section 9, 
so it uses this new method. 



107 

22. Atom and string manipulation functions 

22.1 Internally we can create atoms by using the function pack. Pack 
takes as argument a list of elements and concatenates the pnames 
of these elements into a new atom. 
A pname is the character which wil 1 be printed when a LISP 
expression is printed by~· 

eg The pname of ATOM is ATOM 

The pname of () is NIL 

The pname of (A (B)) is (A (B)) 

The pname of 1 .2E+ 1 is 12.000000 

The pname of "STRING" is STRING 

eg pack[ (A NEW L I SPA TOM)] 

pack[ (A B (X Y) C)] 

pack[ (1 2 3 4) l 
pack[(1 2 E + 2.) l 

ANE\.JL I SPATOI1 

The atom AB(X Y)C, 
with one blank character 

The integer 12.34 

The floating-point number 
12.0.000000 

If the atom packed can be interpreted as a numeric atom, it 
creates the numeric atom. There is no \·Jay to create a "1 i teral 
number 11 • 

22..2 An atom can be taken apart by unpack. 

eg unpack[TH I SATOM] = (T H I S A T 0 M) 

unpack[12.34] = (1 2 3 4) 

unpack["STRING"] = (S T R I N G) 

22.3 Some other useful functions 

ncha rs [ x] number of characters in the pname of x. 



nthchar[x,n] 

gensym[] 

If n pos1t1ve, it gets the nth character in the 
pname of x, and if negative-it gives the nth 
character-from the end. NIL is returned if~ is 
outside the length of x. 

eg nchars[ADB] 3 

nchars[ ( A () ) ] = 7, the pname is (A Nl L) 

nthchar[LISP,2] = I 

nthchar[LISP,-1] = P 

Generates a new atom of the form Annnn, where n 
is digits. A counter is updated at every cal 1,
so~ generates r.ew atoms at every call. 

22.4 String functions 

stringp[x] 

st requa 1 [x, y] 

mkstring[x] 

gnclxl 

glc[x] 

concat[x1, x2 , 

Is x if x is a string, otherwise NIL 

Tests if two strings x andy are similar, returns 
then~· otherwise NIL-

Makes a string of~ 

Get next character of string x. Returns the first 
character-and then removes the character. When 
there are no characters remaining NIL is returned. 

eg (RPAQQ STR "STRING") 

(GNC STR) returns S, an atom 

STR "TRI NG" 

(GNC STR) (GNC STR) 

(GNC STR) (GNC STR) 

STR 

(GNC STR) 

STR 

(GNC STR) 

IIGII 

G 

NIL 

Get last £haracter. The same as~· but instead 
takes the characters from the end. 

,x l 
n 

Copies ~i and concatenates them to one 

string 

eg concat["A", "NEW", "STRING"] = 
"ANEWSTRING" 



109 

substring[x,n,m] Gets the substring in x, from the nth character 
to the ~th character. Returns NIL Tf the substring 
is not well-defined. nand m can be negative with 
the meaning as nthchar in 22.3 

eg substring["A LISP STRING",3,6] ="LISP" 

substring["A LISP STRING",-6,-3] = "STRI" 

mkatom[x] Makes an atom of the string ~· 

rplstring[x,n,y] Replaces characters in string x, from position~ 
by the characters in string y.-

In the LISP manual there is a section which describes the internal 
representation of a string and what happens, when the string func
tions are applied to different data types. 

Exercises 

1. Define filename[file], where file is a filename, either with 
or without generation number, which returns the file name 
without generation number. 

eg filename[FOO] = FOO 

fi lename[FOO # 10] = FOO 

For training purposes use two methods. First unpack the atom 
and pack relevant parts again. Secondly, make a string of the 
file names and use string functions for finding the relevant 
part. 

2. Write a function strpos[substr,str], where substr and str are 
strings, one which searches str from the beginning after-a 
sequence of characters equalto substr. If a match is found 
the position of the first character in the sequence is returned 
othen1ise NIL. 

eg strpos["A LISP LIST", "1ST"] = 9 

strpos["A LISP LIST","LIS"] 3 

strpos["A LISP LIST","ALI"] NIL 



110 

23. Arrays 

23.1 An array in INTERLISP is a one-dimensional block of storage. An 
array can be allocated dynamically and is deallocated by the 
garbage collector. An array is referenced by an array pointer. 
The elements in an array are referenced by an index, started from 1. 

The space in an array can be separated in two sections. The first 
for storing non-pointer data (an unboxed number) and the second for 
pointer data. The normal use of arrays are for pointer data. For 
non-pointer data see the LISP manual. In the pointer section we 
can store arbitrary INTERLISP pointers, such as atoms, numbers, 
I ists, other arrays etc. 

23.2 Functions for handling arrays 

array[size,np, initval] An array of size elements is allocated. The 
first section wil I contain~ non-pointer data 

arraysize[a] 

arrayp[a] 

seta[a,n,val] 

elt[a,n] 

and the second sections wil I contain size-~ 
pointer data. If~ is 0 or NIL the array will 
only contain pointer data. The elements in the 
pointer sections are initialized to initval. The 
value is the array pointer. -------

Returns the size of the array a. 

Returns~ if~ is an array pointer, otherwise NIL. 

Gives the nth element of the array~ the value~· 

Returns the value of the nth element of the array a. 



23.3 Examples 
111 

(SETQ ARR (ARRAY 8)) An array of size 8 is allocated for only 
pointer data. The elements are initialized 

(ELT ARR 2) 

(SETA ARR 4 I FOUR) 

(SETA ARR 8 I (8 4)) 

to NIL. The variable~ points to the 
array. 

Gives NIL as value 

(CAR (ELT ARR (PLUS 6 2))) Gives 8 as value 

(SETA ARR 5 ARR) The fifth element points to the array 
itself. 

(ELT (ELT ARR 5) 4) Gives the value FOUR. 

If we want multi-dimensional arrays we must give the index function 
ourself. Suppose we want an Bx12 array we can do 

Exercises 

(DE IND (I J) (IPLUS (!TIMES (SUB1 I) 8) J)) 

(SETQ ARR2 (ARRAY (!TIMES 8 12))) 

(SETA ARR2 (IND 5 11) 'VALUE) 

(ELT ARR2 (IND 5 11)) 

1. If we want multi-dimensional arrays, we can generate its 

index function automatically. We can also generate the access 

function. We introduce two functions defarray and setarray and 



112 

they can be described by fo 11 mvi ng an examp 1 e 

(DEFARRAY MAT 3 5 7) Defines a 3x5x7 array, cal,red mat. 
The function allocates the space-for 
mat, generates an index function for 
~and generates an access function 
mat. 

(SETARRAY (MAT 2 4 6) 'VAL) Gives mat[2,4,6] the value 
val. The generated index function 
iiaS been used. 

(SET ARRAY (MAT (I PLUS 2 1) 1 7) 315) 
the value 315. 

Gives mat [3, 1, 7l 

(MAT 2 4 6) Returns the value of mat[2,4,6], which 
is~· Mat was generated by defarray. 

Define the functions defarray and setarray. In the example, mat 
is used as the variable, which value is the array pointer and 
will not be evaluated. This means that the two functions must 
be of noeval type, but the indices and the value in setarray 
shall be evaluated. 



24. Edit 

24.1 The edit was introduced in Section 10 and a number of edit 
commands were given. The edit contains much more powerful 
commands and we will describe some of them in this Section, 
mainly to give an idea as to what can be done by the edit. 
For full descriptions of the commands a study of the LISP 
manual is necessary. 

113 

24.2 We introduced earlier the current expression, cexp, which is 
the substructure in the expression we are editing to which our 
attention is centered. The edit saves the chain of cexp's so 
we have the possibility to go back to an old one (by the 0 
command). Changes done can also be undone by UNDO or for all 
changes by !UNDO. 

24.3 The F (Find) command. By this command we can search for a 
specified expression. The expression is given as a pattern. 
The simplest patterns are those where the expression is given 
explicitly, as in 

F COND or F (SETQ X 10) 

Elements in an expression can be given implicitly by & and --. 
& describes an arbitrary element and --describes a segment 
(zero or more elements following each other). The expression 

(SETQ Z (ADD1 X)) 

is matched by following patterns 

(SETQ & &) 

(SETQ --) 

(& & &} 

(SETQ & (ADD1 &) ) 

so we can write 

F (SETQ & (ADD1 &)) 



114 

The search algorithm for the F command is as follows 

a. search on top level on cexp. 

b. if not found, search cexp in print order. 

c. if not found, the search will ascend to the next higher 
expression. 

Step a. is useful in~· Suppose we have 

(PROG (L) (COND ((NULL X) (GO LAB))) ... LAB (SETQ X L) ... ) 

and want to come to the label LAB we simply do 

F LAB 

but if we do 

0 F LAB 

we go to a higher expression and find then LAB in~· because 
the label LAB is not on the top level any more. If we have the 
above example again and first do 

F X 

cexp is set to 

••• X) 

and then again 

F X 

no more X is found on cexp, so the search continues on higher 
levels and cexp is set to 

••• X L) 

There is also a command BF (Backward Find), which works as find 
but searches in reverse print order. 

24.4 In many situations we want to make changes before or after 
current expression or to replace it. In order to do this we 
must come above cexp (by using UP) and then the command 
(n e 1 .•• e). There are however, some very convenient commands 
for this. n 

NX 

BK 

(B el 
(A el 
(: el 
DELETE 

Sets cexp to next expression after current ex
pression. 

Sets cexp to expression before current expression. 

en) Inserts e1 to en before current expression. 

en) Inserts e1 to en after current expression. 

en) Replaces current expression by e1 to en. 

De.letes current expression. 



115 

24.5 LC location specification. By specifying a position in an ex
pression a more general method can be used. A location specifi
cation is a 1 ist of edit commands that are executed in a normal 
way with two exceptions 

a. commands not recognized by the editor are interpreted as 
though they were preceded by F. 

eg if cexp is 

(PROG (X) (COND ((NULL L) NIL) ((NULL A) (SETQ L B)) 

••• > 

the location specification 

(LC COND 3 L) 

specifies the position 

... L B) 

b. if a command in a list will cause an error (ie no match can 
be done by an F command) the editor starts again from the 
beginning in the command list and goes on searching. 

eg If cexp is 

(PROG (X Y) (COND <L (COND ((CDR L) (SETQ X (CADR L)) 

(SETQ Y (CARL))) 

(T (SETQ X (CAR L> 

(T (SETQ L (CONS NIL NIL)))) ... > 

the location specification 

(LC COND 2 3) 
wil 1 first fi~d the outer cond's first clause but 3 
will generate an error, because the clause only con
tains two elements. Next cond is found and the rest 
of the commands will fit and we have found 

(SETQ Y (CAR L)) 

24.6 The A, B and : command are extended also to contain a location 
specification and we can write 

(INSERT e1 , , . en BEFORE c1 ... em) 

eg (INSERT (CAR L) (GO LOP) BEFORE FOO 3 2) 

(INSERT e1 e AFTER c1 ... em) n 

(INSERT e1 e n FOR c1 ... em) 

(REPLACE c1 ... em WITH e1 ... en) 

(CHANGE c1 c TO e1 e ) 
m n 

(DELETE c1 em) 



116 

e. is an arbitrary LISP expression and c. is an editor command as 
fbr the location specification. -I 

Occasionally we want to copy an expression in one place to 
another. This can be done by the above commands if ~i is specified 
bythe ## command. 

## specifies a location, but does not change the current cexp. We 
write 

(## F COND 2 1) 

Suppose cexp is 

(PROG (X Y) (COND ((NULL L) T) .•. ) ... (RETURN 'OK> 

we can do 

(REPLACE T WITH (## -1)) 

and a copy of the last element in the~ wil 1 replace the T 
in the cond, and we get 

(PROG (X Y} (COND ((NULL L} (RETURN I OK}) ..• ) ..• (RETURN I OK> 

24.7 The MOVE command allows us to specify an expression to move, 
specify the place to move to and specify the operation to be 
performed at the new place. It looks like 

(MOVE c 1 ••• em TO com c 11 ••• c 1m) 

where care editor commands as in 24.6 and com is BEFORE, AFTER, 
: (delete} or 1 ist commands as N etc. 

We have the following expression as cexp 

(LAMBDA {X) {PROG {L) {GO LOP) LOP (COND {(NULL L) (RETURN))) 

... )) 

If we do 

(MOVE 3 3 TO AFTER -1) 

we move 

(GO LOP) 

to the end of the ~· We can then do 

(MOVE 2 1 TO : NULL 2) 

and we replace.!. in~ to the lambda-variable, and \•le get 

(LAMBDA NIL (PROG (L) LOP (CONO ((NULL X) (RETURN))) (GO LOP))) 



If several contigous elements wil 1 be moved, ie a segment, they 
can be described by THRU or TO, as in the following examples. 

If cexp is 

(A B C ( D E) F ( G H) I J K) 

we can do 

(MOVE (2 THRU 4) TO BEFORE 7) 
and we get 

(A F ( G H) B C ( D E) I J K) 

or an identical command is 

(MOVE (B TO) F) TO BEFORE '/) 

TO is as THRU except last element is not included. 

24.8 Extract and embed. Extraction involves replacing the current 

expression with one of its subexpressions from any depth and 

embedding involves replacing the current expression with a 

subexpression containing it as a subexpression. We have 

(XTR c1 em) 

(MBD e 1 en) 

Suppose cexp is 

(COND ((NULL L) NIL) (T (PRINT L))) 

and we want to replace cexp only by 

(PRINT L) 

we do 

(XTR 3 2), (XTR (PRINT L)) or (XTR PRINT) 

117 

In MDB the current expression wi 11 replace every occurence of the 
atom:: in ~i· If cexp is 

(PRINT X) 

and we want to replace it with 

(COND ((NULL L) (PRINT X) NIL) (T (PRINT X) (GO LOP))) 

we do 

(MBD (COND ((NULL L) :: NIL) (T :: (GO LOP)))) 

24.9 Commands that evaluate 

E form l 
(E form) 

(I c x 1 ••• 

form evaluates and its value will be printed. 

xn) evaluates ~i and performs then the editor command 

(C evaHx1] .•• eval[xn]) 



lHJ 

Each x. is evaluated and its value is 
-I 

executed as an editor command. 

24.10 Editor macros 

Defines~· which does £ 1 to £n• when 
called. 

defines macro with argu
ments. 

eg (M (SS) (ELEM) F ELEM 0 P) 

If cexp is 

(A ( B C) D) 

and we do 

(SS C) 

the second subl ist is found and printed. 



119 

25. Error handing 

25.1 During the development of a program different types of errors 
wil 1 occur. In an interactive environment the system can interro
gate with the user and let him decide what to do about the error. 
In INTERLISP this is done by the break facility, which was intro
duced in Section 10. In trris section we wil 1 briefly describe 
what kind of errors there are and how they are handled by the 
system. The break facility is described in more detail in Section 
26. 

25.2 We can distinguish between the following error types: 

- unbound atom and undefined function 

- illegal arguments to system functions 

- user-initiated errors 

other errors, including bugs in the INTERLISP/360-370 system. 

25.3 For unbound atom (U.S.A) and undefined function (U.D.F) the 
interpreter (the eval function) wil 1 call the function faulteval 
and give it the form which caused the error. The form is an atom 
if unbound atom, or a 1 ist if undefined function, with car of the 
1 ist as the undefined function. Faulteval prints a message U.S.A 
or U.D.F and calls break1. A decision is made here if we should 
enter the break or ~should return to the top level again. If 
the error occurred deep in the evaluation a break is made. This 
is done not to let trivial type-in errors to~e a break. 

If faulteval returns a value back to the interpreter this value is 
used exactly as though it was the value from the form. From break 
a value can be returned by the RETURN command. 

In batch, breakl will print a backtrace of forms under evaluation, 
functions entered and variables and its values. 

Break commands are described in Sections 10.3, 26.9 and 27.11. 



120 

25.4 If we call a system function with illegal arguments an error 
message is printed and breakl is cal led, and behaves as described 
in Section 25.3. ------

In the LISP manual there is a table with all error messages 
where messages of the following types can be found, 

ILLEGAL RETURN ~not in~ 

ATTEMPT TO RPLAC NIL not allowed to rplaca(i) NIL 

NON-NUMERIC ARG 

FILE NOT OPEN 

illegal argument to a numeric function 

read or print to a file not yet opened 

:s.s If a pointer references an object outside the range of the virtual 
address-space a message 

REFERENCE OUTSJDE VIRTUAL CORE 

is printed. This error can occur if we do~ or cdr of numbers 
for example. Normally this is a user err~r. 

25.6 The user can call the error routines by using the following 
function 

error[messl,messl,nobreak] 

Example 

If messl is an atom, messl and mess2 
are printed on the same-Tine, other
wise a carriage return is made after 
messl. If nobreak is T errorb is called 

·otherwise errorx-(which-caTTS breakl 
and we can~the break). ------

(DE FOO (L) (COND ((NLISTP L) (ERROR L '"IS NOT A LIST" T)) 

(T ..... ) ) ) 

If we cal I 

(FOO 'ADAM) 

the following is printed 

ADAM IS NOT A LIST 

and we are back to the toploop again. 

With the third argument to error set to NIL the break will be 
entered and we can get the possibility of correcting the i I legal 
argument 1. 



121 

25.7 In Section 19.6 we introduced a problem. We defined our own top
loop, where we read expressions and gave them to eva I. What hap
pens now if an error occurs under the evaluation? __ l_n-the solution 
given in that section we are coming back to the system's read
eval-print loop again. This problem can be solved if we use the 
errorset feature. Instead of calling eval we call the function 
errorset, which works as eval but catches a return from the error 
routines. 

errorset[u,v] performs eval[u]. If no error occured under evalua
tion the value from errorset is a list of the value 
from eval. If an error occured the value is NIL. 
The printing of error messages is controlled by v. 
They are printed if v=T, otherwise not. Notice 
that errorset first evaluates its arguments and then 
gives it to eval. 

Example. Let us look at a better solution to the example in 
Section 19.8, where we defined the function applyloop. 

errorb[] 1 

reset[] 

(DE APPLYLOOP NIL 

(PROG (VAL) 

LOP 

(SETQ VAL (ERRORSET I (APPLY (READ T) 

(READ T)) 

T) 

(COND ((NULL VAL) (::AN ERROR HAS OCCURRED) 

(GO LOP)) 

(T (PRINT (CAR VAL) T))) 

(GO LOP}}) 

Returns directly to the last errorset or if no 
errorset has been done directly to the toploop. 2 

Returns directly to the system's toploop. 

1 Is pronounced "errorbang" 

2 An attention-E generates an immediate errorb. 



122 

Exercises 

1. Many problems, especially combinatorial problems, may often be 
simply written by using non-deterministic algorithms~ The 
implementation of these algorithms is normally done by backtracking. 
In a non-deterministic algorithm we can besides the normal. statements 
use a choice statem·ent and statements to report failure and success 
of the computation. The form of the choice statement can be TTTUStrated 
by the example 

(CHOICE I (1 2 3 4 5 6 7 8) form) 

which will be interpreted as 

"assign to the variable 

and eva I uate the form" 

a value from the set (1 2 ... 8) 

The failure and s~ccess statements appear 

(FAILURE) and (SUCCESS form) 

where the failure statement works as 

"backtrack to the last choice statement and make a new assign
ment to the variable and execute the form again, if all values 
have been taken execute a failure". 

and the success statement is a normal return with form as value. 

Implement these three functions in LISP by using errorset and 
errorb. Solve then the 8-queen problem by using these non-deter
ministic primitives.· 

1 Non-deterministic algorithms, backtracking and the 8-queens 
problem can be found in, 

Robert Floyd, Non-deterministic Algorithms, JACM vol 14, nr 4, 
Oct 1967. 



123 

26. Break and advise 

26.1 In the previous section was described how the break was invoked 
when an error occurred. This section will describe how the user 
can make use of the break facility in his program development. 
This is useful when we want to stop at a specified point in the 
program and look around in the evaluation environment (stacks, 
variable bindings etc). 

26.2 When we break a function we call that function broken. We can 
break compiled and machine-coded functions. Actually what hap
pens is that the definition of the broken function is modified. 
Let us follow an example and see what happens in some ~ifferent 
situations 

-(DE FOO (X) (CONS X X)) 

FOO 

-(BREAK FOO) 

(FOO) 

The function foo is now broken and the next time it will be 
called the break-loop is entered. We have now the poss ibi 1 i.ty 
of interrogating the break by using break commands (see 10.3, 
26.9 and 27. 11) or by giving forms, which wil 1 be evaluated. 

-(FOO (CONS 'A 'B)) 

(FOO BROKEN) 

:BTV 

X (A • B) 

FOO 

EVAL 

LISPXX (FOO (CONS (QUOTE A) (QUOTE B))) 

LISPX 

:GO 

FOO ((A. B) A. B) 

((A B) A • B) 



124 

The break command BTV prints a backtrace of functions and variables 
bound on the stack, and the break is released by the command GO. 
The computation continues and the result is printed. 

The system knows about all broken functions thus makefile and 
prettyprint will work on the original function definition even 
if the function is broken. 

-(PP FOO) 

<FOO 

(LAI1BDA (X) 

(CONS X X> 

-(PRINTDEF (GETD 1 FOO)) 

<LAiiBDA (X) 

(BREAK1 (PROGN (CONS X X)) T FOO niL> 

In the function eel 1 a modified version of foo is placed, but 
when £E is used for a prettyprint the original version of foo 
is used. 

We can now unbreak foo by 

- (UNBREAK FOO) 

We can also give a condition when the break shall occur, such as 

-(BREAK (FOO (ATOM X))) 

(FO<l) 

-(FOO I (A B C)) 

((A B C) A B C) 

- (FOO I A) 

(FOO BROKEN) 

:X 

A 

: (SETQ X (LIST X)) 

(A) 

:OK 

FOO 

((A) A) 

The break will only appear when foo is called with an atom as 
argument. In the example we look-at the value of x, (x is no 
break command and is evaluated as a form) and then rebound it 
to the list of~· The break is released by OK (the value from 
the computation of foo is not printed). 



125 

Hhen defining the break a list of break commands can be given directly. 
Instead of the break-loop the elements of that 1 ist are treated as 
break commands. Trace is implemented by this feature. 

-(BREAK (FOO (ATOM X) ((PRINl "'X IN FOO IS ") (PRINT X) GO))) 

(FOO) 

-(FOO 'A) 

(FOO BROKEN) 

X IN FOO IS A 

FOO = (A . A) 

(A • A) 

If a function is cal led from many different places, but our 
interest is only to break the function when it is called from 
a specified function we do 

-(BREAK (CONS IN FOO)) 

(CONS-I N-FOO) 

Cons will be broken only when called inside foo. The call to 
cons in foo will be changed to a call to the-runction cons-in
foe, whiCFlinstead will be broken. ---

-(PRINTDEF (GETD 8 FOO)) 

<LAMBDA (X) 

(CONS-IN-FOO X X> 

-(PRINTDEF (GETD 'CONS-IN-FOO)) 

<LAMBDA (U V) 

(BREAKl (PROGN (CONS U U)) 

T CONS-IN-FOO NIL> 

The information of a break is saved on the broken functions 
property-] ist. This information can be used if we later want 
to make the same break again by simply doing 

- (REBREAK FOO) 

26.3 In a prog interest is usually in breaking a function at a 
label or at a special statement and this can be done by the 
function breakin. An example illustrates its use 

-(DE FOO (X) 

~00 

(PROG (L) 

LOP 

(COND ( (ZEROP X) (RETURN L))) 

(SETQ L (CONS XL)) 

(SETQ X (SUBl X)) 

(GO LOP> 



126 

-(BREAKIN FOO (AFTER LOP)) 

FOO 

-(FOO 3) 

( (FOO_G) BROKEN) 

: L 

!TIL 

:OK 

(FOO_G) 

(FOO_G) BROKEN) 

: L 

( 3) 

: (SETQ X 0) 

0 

:OK 

(FOO_G) 

(3) 

-(UN BREAK FOO) 

(FOO) 

Enter the break after the label 2££. 

Go on 

Leave the break 

New break at the same place as before 

Look at 

Rebound ~ 

Go on 

Leave the break 

Value from (FOO 3) 

-(BREAKIN FOO (AROUND (SUBl X)) (LESSP X 7) 

(RETURN (PLUS X -2))) 

(FOO_G) 

If the condition that x is less than 2 is satisfactory and the 
break occur just before the evaluation of sub1 the last argu
ment is a break-command list as described before and it wil I 
leave the break by the value of plus[x,-2]. This means that 
the subl[x] wil I not be evaluated and the value from the RETURN 
command is taken as the value instead. 



- (FOO 8) 

( (FOO_G) BROKEN) 

(FOO_G) = 4 

( (FOO_G) BROKEN) 

(FOO_G) = 2 

( (FOO_G) BROKEN) 

(FOO_G) = 0 

(2 4 6 7 8) 

127 

FOO G is an internal descrirtion that foe is broken inside some
where. 

26.4 Notice that the editor will work on the broken function. lf you 
want to edit your original function you must first unbreak it 
and after the editing rebreak it. 

26.5 Break functions. 

breakO[fn,when,coms] sets up the break by redefining fn 
and trace will call breakO. 

Break 

break 1[ b rkexp, when ,fn, corns] ca 11 s the break. If when eva 1 uates 
to NIL brkexp is evaluated ana-returned as 
the value of break!. If when evaluates to 
true a break ~ccur.--1-f-coms is NIL then 
the break-loop is entered, otherwise the 
break commands are taken from cams. 

trace[x1, ... ,xn] 

unbreak[x1, .. ,xn] 

a nospread nlambda function. Each ~i describes 
a function to break. x. can either oe a func
tion or a list (fn whe~ cams). 

as break but traces the functions instead. 

If x1 is NIL all broken functions are un
broken, and all information saved are thrown 
away. If ~1 is T the latest broken function 
is unbroken, otherwise each x. describes a 
function, which is unbroken.-' 

Every function x. will be broken again 
exactly as i was 1previously broken without 
having to re-s~ecify all the break informa
tion again. If~~ is NIL or T rebreak works 
as unbreak. -------



123 

fn can either be a function name or a 1 ist (fnl IN fn2). when 
is a form which determines if a break shall occur or not.----

cams is a 1 ist of break commands, or forms to be evaluated. For 
commands which are inputed as a number of expressions, ie 

?= A B 

they are written as 

( .... 7 (A B) ..... 

If we want the value from a form printed we must print it our
selves. 

((PRINTX) .... ) 

We can introduce breakmacros by extending the variable breakmacros 
by a list of the form (macro commandl ••• commandn). The atom macro 
can then be used in cams as a break command. 

26.6 Examples 

If we do 

(TRACE FOO) 

trace sets up the following command list 

(TRACE 7= NIL GO) 

where trace is a special flag indicating that the message 
11 funct i on•• 

is printed. 

?= is a break command which prints the variable and values for 
the broken function. 

The break is set up by a call to breakO as 

(BREAKO 'FOOT I (TRACE 7= NIL GO)) 

Foo is now redefined and contains a call to break] 

<FOO 

(LAMBDA (X) 

(BREAK1 (PROGN (CONS X X)) T FOO (TRACE 7= NIL GO> 

When foo is called and the printout is made the break is released 
by GO~hich evaluates the first argument to breakl, which is the 
original definition of foo; and prints its va~ 

26.7 breakin[fn,where,when,coms] fn, when and cams are as in break. Where 
specifies-the-lOcation where the break:TS in=--
serted. The location is specified as a list 
started by either BEFORE, AFTER or AROUND 
followed by editor commands specifying the 
location (see 24.5) 



1 29 

ex (BEFORE COND) 

specifies the point before the first occurence 
of cond. 

(AFTER 3 2) 

specifies a point after the second sublist in 
the function body; in 

(LAMBDA (X Y) (PROG (L N) (SETQ X L) .• ) 

it is before the setg. 

(AROUND (SETQ X Y)) 

specifies that the break occurs just before the 
evaluation of the expression mentioned. In this 
case the user can use the EVAL command for 
evaluating the expression and look at its value 
afterwards. The variable /VALUE is bound to 
the value. 

Multiple break points can be inserted. Breakin 
can only be used in interpreted functio_n_s-.----

26.8 The function virginfn[fn] get~ regardless of any amount of breaks, 
breaking etc1 the original version of your function fn. 

26.9 We have introduced additional break commands and here is a summary 
of them. 

GO 

OK 

EVAL 

RETURN form 

Releases the break and allows the computa
tion to proceed. The brkexp is evaluated and 
this value is printed. See earlier how GO is 
used by the trace and where brkexp is the 
original function definition. 

Same as GO except that the value is not printed. 

Same as GO and OK but the break is maintained 
after the break. The variable /VALUE contains 
the value from brkexp and can be examined. If 
GO or OK follows EVAL the brkexp expression 
wil 1 not re-evaluate brkexp, 

Releases the break and form is evaluated as 
brkexp. This command is normally used when the 
break occurred depending on an error and the 
value from form is taken as the value from the 
erroneous expression, which caused the break. 



130 

Wil I print the variables and its values for 
the broken function, (or to a function pointed 
to by lastpos, {see next section). For an 
extended use see the LISP manual. 

Break commands are described in 10.3, this section and in 27. 11. 
The command? gives a I ist of available break commands. 

26.10 Advising. By advising we can change the interface between functions. 
This means that we can modify a function by placing new code before 
or after the computation of the function. Examples of this use are 
break and trace, which modifies the function by putting code so it 
caTTS the break-package. By advising it is not necessary for the user 
to know how the function works, he can modify them without concern 
for. their contents and details of operations. Advising works as 
break on machine coded, compiled and interpreted functions, and 
~possible also to advise a function only when called from 
some other specified functions. 

26.11 lf we have the following definition 

(LAMBDA args body) 

the corresponding advised function is 

(LAMBDA args 

(PROG (/VALUE) 

(SETQ /VALUE (PROG N1L 

ad vi se1 

advisen 

ADVISE BEFORE 

(RETURN body))) 

advise1 

ADVISE AFTER 

ad vi sen 

(RETURN /VALUE))) 



131 

26.12 Advise functions. 

advise[fn,when,where,what] Advise the function fn, when = BEFORE 
or AFTER, where specifies where among 
the advises-this new advice is put, 
can be specified as LAST (NIL) or 
FIRST or by editor commands, what 
specifies the code to put in.--

eg (ADVISE 'FOO 'BEFORE 'LAST '(SETQ X NIL)} 

(ADVISE I (CAR IN FOO) 'AFTER NIL I (PRINT /VALUE)) 

unadvi se[x1 

read vi se[x1 

X ] 
n 

X ] 
n 

as unbreak. 

as rebreak, information is saved about 
ear~vises on x .. 

-I 

26. 13 Examp I e. Suppose vie \van t to have statistics about how many times 
particular functions are cal led under a computation. By advise 
this is simple. First we define a function stat, which sets up 
the advise. 

(DF STAT L 

(MAPC L (FUNCTION (LAMBDA (FN) 

(PROG (STATVAR) 

If we novl do 

(STAT FOO Fl E) 

(SETQ STATVAR (PACK (LIST FN '=STAT))) 

(SET STATVAR 0) 

(ADVISE FN 'BEFORE NIL 

(SUBST STATVAR 

'::VAR:: 

I (SETQ ::VAR:: (ADD1 ::VAR::)))) 

(SETQ STATFNS (CONS (CONS FN STATVAR) 

(STATFNS)) 

(RETURN> 

we create the global variables, as counters 

FOO=STAT and FIE=STAT 

and initialize them to 0. 
For foo the advise-expression is 

(SETQ FOO=STAT (ADD1 FOO=STAT)) 



132 

and we save the function and the counter on an association list 
for later use when the report of statistics is printed. 

Exercises 

1. Continue the work in the example in 26.13. Define a function 
printstat, which prints a table of functions and its frequencies. 
Define also a function unstat and restat, which removes resp 
initial iz~ the statistics:--- ------

Can we also use the functions with 

(CAR IN FOO) 

as argument? 



133 

27. Stack functions 

27.1 During the evaluation of an expression the interpreter uses stacks 
for saving information. The control-stack contains function 'returns 
so that the system knows in what order functions have been called. 
The parameter-stack contains variable names and values. Temporary 
results etc are also saved on stacks. It is more convenient to 
consider the stacks as one. This single stack wil 1 then contain 
function blocks of all functions that have been entered but as yet 
not exited. A function block consists of the function name, 
variable names and values. We will in this section describe some 
functions by which we can use to gain access to the stacks. 

27.2 Let us follow an example where foo and fie are defined as 

(DE FOO (A B) (PROG (X) (SETQ X (FIE A)) ••• ) 

(DE FIE (B) (CONS B B)) 

If v1e eva 1 uate 

(FOO I ADAM I EVE) 

the stack wil 1 contain the following information at the moment when 
the cons in fie is evaluated. 

IX (FIE A)) 

IFOO (QUOTE ADAMI (QUOTE 

BERTILll 

! 

I 

top of stack 

CONS 

ADAM I 
ADAM I 

FIE 

ADAM I B 

SETO 

I 
PROG 

NIL 1 X 

FOO 

EVE l B 

ADAM I A 

EVA L 

I 
LISP X 

I LISPX 

bottom of stack 

Function block of~.!!§.· 

For assembly-coded functions 

no variable names are stored. 

Internal calls in the interpreter, 

and they can differ depending on 

the taploop used in the system. 



27.3 The compiled functions will also put its names of variables on 
the stack although they are not used. This is done for compata
bil ity with interpreted functions. In a campi led function the 
values are picked up from known positions in the stack instead 
of doing a search. This scheme is used to Jet free variables be 
used between compiled and interpreted code. It is also very use
ful as symbolic debugging information and is used by the back
trace. 

27.4 A posttton in the stack can either be the beginning of a function 
block (actually a position in the control stack) or to a variable
value pair (a position in the parameter stack, called slot). A 
stack position is a datatype in INTERLISP and is referenced by a 
pointer in the same way as an atom, list, array etc. 

27.5 Stack functions for accessing a function block. 

stkpos[fn,n,pos] 

stknth[n,pos] 

stkname[pos] 

Returns the stack position for the nth func
tion block of~ starting at position~· If 
n is positive the stack is searched from the 
bottom and if n is negative the stack is 
searched from the top. If n is NIL, -1 is 
used. If~ is given the search starts at 
that position. 

Returns the stack position for the nth func
tion block relative to position~ If~ 
is NIL the bottom of the stack is assumed if 
n>O and the top of the stack if n<O. 

Returns the name of the function in the block 
of position~· 

To ge the top of the stack (current position) do stkpos[] . 
In stkpos and stknth the position~ can be given as a literal 
atom and is then treated as the position 

(STKPOS pos -1) 

27.6 To clarify how the search is done stud~' the two figures 

pos=NIL 

n >O 

pos=F NIL 

11 
I I 
! I 

top of stack 
I , 
I 
I 

n>o t 1-

bottom of stack 

pos 

~ n<o 



135 

27.7 Example. Suppose we have foo and~ defined as 

(DE FOO (N M) (COND ( (ZEROP N) (FIE M)) 

(T (FOO (SUB! N) (PLUS N M> 

(DE FIE (I) (ADD! (FUM (SUB!' I> 

Fum is defined, so it will print the result from a number of 
examples, where the stack functions are used. Suppose we evaluate 

(FOO 2 5) 

the stack will have the following status at the moment fum is 
called 

FUM 

FIE 

COND 

FOO 

COND 

FOO 

COND 

FOO 

EVAL 

LISPX 

EVALLOOP 

(DE FUM (N) 

(PRINT (STKPOS)). 

(PRINT (STKPOS IF I E)) 

The variables are not shown. only the 

order between the function blocks 

#2600A164, stack position 

#2600A12C, stack position 

(PRINT (STKNAME (STKPOS))) FUM 

(PRINT (STKNAME (STKPOS I FOO 3))) FOO, the 4th block from 

to fum 

to fie 

the top 

(PRINT (STKNAME (STKNTH 4))) FOO, the 8th block from the top 

(PRINT (STKNAME (STKNTH -10))) LISPX 

(PRINT (STKNAME (STKNTH 2 
(STKPOS 1 EVAL)))) COND, the 7th block from top 

(PRINT (STKNAME (STKNTH 2 1 COND))) FUM 

(PRINT (STRPOS 1 COND -1 1 FOO)))) COND, the 5th block from top 



136 

27.8 Stack functions for accessing information in a function block. 

stknargs[pos] Value is the number of arguments bound by the 
function at position~· 

stkarg[n ,pos] Value is the slot for the nth argument of the 
function at position~· 

27.9 When the stack position is a variable-value pair, as from stkarg, 
we can get the variable name by making cdr of the position and 
the value by~· By rplacd and rplaca the variable name and value 
can be changed. 

27.10 Example. We want a cunction mkass[pos], which returns an associa
tion list of the variables and values bound in the function block 
at position~- Wi-th the stack as in 27.7. 

(MKASS (STKPOS 'FOO I)) returns ( (N . 2) (M . 5)) 

(DE MKASS (POS) 

(PROG (NARGS AL TEMP) 

(SETQ NARGS (STKNARGS POS)) 

LOP 

(COND ((ZEROP NARGS) (RETURN AL))) 

(SETQ TEMP (STKARG NARGS POS)) 

(SETQ AL (CONS (CONS (CDR TEMP) (CAR TEMP)) AL)) 

(SETQ NARGS (SUBI NARGS)) 

(GO LOP))) 

27:11 When we enter a break (in interactive mode) we can see the stack 
by the commands BT, BTV, BT:: and BTV/. There is a 1 so a function 
baktrace, which can be used for printing the information on the 
stacK. 

BT prints the functions. 

BTV prints functions, variables and values. 

BTV:: prints as BTV and forms under evaluation. 

BTV/ prints everything on the stack. 

There is a possibility to work with stack -positions in break with 
the@-command. By doing 

@FOO 



137 

we set lastpos to the function block for the last call to foo. 
(the first function block for foo from the top of the stack~Some 
break commands are effected by lastpos and among them are ?=, BT, 
BTV, etc. By doing 

@3 

vie move lastpos three function blocks down the stack and by 

@-3 

we move lastpos three blocks up. 

27.12 When the interpreter looks up a value of a variable, the parameter 
stack is search from the top after the first occurrence of a slot, 
containing the variable name. Following two functions can force 
the search to start from an arbitrary position in the stack. 

stkscan[var,pos] 

stkeval [pos,form] 

Start the search at position~· returns 
a pointer to the slot, if var is stored on 
the stack, otherwise it returns var. 

Form is evaluated in such a way that all 
variables are searched as stkscan. 

Example. We want a function mapev[l], where 1 is a 1 ist of forms. 
Mapev shall evaluate every form and return a-list of the computed 
values. 

(SETQ L I (A 8 c D)) 

(MAPEV I ((CONS 1 Q (CDR L)) (CARL))) = ((Q 8 c D) A) 

Let us first see what happens if we define mapev as 

(DE MAPEV (L) 

(COND ((NULL L) NIL) 

(T (CONS (EVAL (CARL)) (MAPEV (CDR L)))))) 

If we use the above example the result will be the erroneous 

( (Q (CAR L)) (CAR L)) 

Why? When we cal led mapev, the variable lin the forms was 
expected to have its global value, but mapev has las lambda
variable and has therefore been bound on the parameter stack. 
\-/hat we wanted to do was to evaluate every form in the environ
~ before mapev was called the first time. This can be done 
if we instead define mapev as 



ns 

(DE MAPEV (L) 

(COND ((NULL L) NIL) 

(T (CONS (STKEVAL (STKNTH -1 (STKPOS I MAPEV 1)) 

(CARL)) 

(MAPEV (CDR L)))))) 

Observe that the stack position is to the function block before 
the first call to mapev- mapev is called recursively- We don't 
allow the forms to contain new calls to mapev or other stack 
functions which can change the stack. 

27.13 There are two functions by which we can clear the stack and 
return directly to a function, which has been entered but not 
yet exited. 

retfrom[pos, va 1] 

reteval [pos,eval] 

wil 1 clear the stack down to the function 
block at position~· and return from that 
function with the value val. 

works as retfrom, but ~o;i ll evaluate form 
after the return to the function block at 
~and return that value. 

Example. Suppose we have a function, which normally goes very 
deep into the recursion, finds a value and returns the same 
value in every step up to the top level. Instead of doing the 
normal returns we can use retfrom. A simple example of such 
function is to find the last element on a list. 

Exercises 

(DE LASTLONG (L) 

(COND ((NULL (CDR L)) (RETFROM (STKPOS I LASTLONG 1) (CAP, L))) 

(T (LASTLONG (CDR L))))) 

1. Write a function ppdump[pos1 ,pos2], which prints variable 
names and values from the parameter stack starting at pos1 
and down to pos2. A position can be given as a stack position 
to a function block or as a function name (same meaning as 
with stkpos). If~ is NIL start from the top, if pos2 i<; 
NIL end at bottom and if pos2 is a number .':2.• end at the nth 
function block below~· 

2. Define the function ::reset, described in 25.7. 



139 

28. Funarg 

28.1 In the previous section (27.12) we illustrated by an exampleof what 
can happen when unexpected collisions of variable names occ~rred. 
When we discussed ~-functions in Section 18 we said that a 
functional expression shall be "quoted" by function instead of 
quote. This was also to prevent variable call is ions. The problem 
is that in LISP we are allowed to create expressions which later 
will be evaluated in another environment. If these express ions 
contain free variables, we sometimes want these free variables to 
have the value they had at creation time of the expression and 
sometimes the value they had at evaluation time. By ~this 
is solved for functional expressions and in this section is des
cribed by some simple examples when the funarg feature is useful. 

28.2 Let us first examine function again 

function[fn,freevars] If freevars is NIL then it is identical 
to quote, but helps the campi l er to shm-J 
that this is a functional argument. When 
freevars is 1 NIL it is a list of variable 
presumably free in fn. If freevars is an 
atom it is evaluate~and the result is 
taken as the list of free variables. A 
funarg expression will then be created. 

eg Suppose foo is defined as 

(DE FOO (X) (CONS X (CONS Y Z))) 

in which y and~ are free variables. If we perform the 
following computations 

(SETQ Y 10) 

(SETQ Z 'A) 

(SETQ FN (FUNCTION FOO (Y Z))) 



140 

we wil 1 create a funarg-expression 

(FUNARG FOO f~~lock-poi nter) 

tfuj 
To simp] ify the notation we can write 

( FUNARG FOO [ (Y 10) (Z • A)]) 1 

The funarg-block works as a mini-stack, on which y and~ are 
bound to their current values. If we reset y and~ 

(SETQ Y 20) 

(SETQ z I B) 

and then evaluate 

(APPLy:: FN T) 

we get the value 

(T 10 • A) 

When the funaro-expression was applied its mini-stack was put 
on top of the parameter stack and when the interpreter searched 
for the values of y and~ they were now bound on the stack and 
their global values were never reached. 

28.3 Funarg is not a function itself, but is recognized by the interpreter 
in the same way as lambda or nlambda, but only in the context · 
when the funarg-expression is applied to some arguments. In other 
words, the expression 

(FUNARG fn-expr funarg-block-pointer) 

is used exactly like a function. 

28.4 Example where variable coli is ions can occur. In Section 18, 
example 1 we defined a function calc, so we could write 

(CALC (FUNCTION PLUS) 10 20) 

to get value 30, or 

1 In LISP 1.5 the funarg is usually implemented by an association 
1 is t. 



141 

(CALC (FUNCTION (LAMBDA (X Y) (COND ((GREATERP X Y) X) (T Y)))) 

10 15) 

to get the maximum value of 10 and 15. 

In the solutions calc is defined as 

(LAMBDA (FN A B) (APPLY= FN A B)) 

Let us see what happens if we define a function fao as 

([.AMBDA (NR) 

(PROG ((A 5) VAL) 

<SETQ VAL (CALC <FUNCTION (LAMBDA (X Y) (!PLUS X Y A> 

10 NR> 

) ) 

In the function expression we use the variable a as a free variable 
and we also use a as a lambda-variable in calc,-this will cause 
same troubles. In the evaluation of the apply:: in calc we will 
evaluate the function expression and look far the value of a. We 
wil 1 now find the value of the lambda-variable in calc, when we 
meant the ~-variable in foa.~prablem can be-50lved by at 
least three different solutions 

- change the name of the ~-variable~ in faa. 

- change the name of the lambda-variable a in calc. A goad 
rule is to have funny names in functions with functional 
arguments, so we could better call them calc"ap, calc::a 
and calc::b. 

- let the second argument to function be a 1 ist of the free 
variable a used in the expression, so we get 

<SETQ VAL (CALC <FUNCTION (LAMBDA (X Y) (!PLUS X Y A)) (A)> 

10 NR> 

28.5 Example by a random number generator. Suppose v1e have a function 
random[ I im], which returns a random number in the interval [1 ,1 im]. 
The free variable randnr contains a number, which random uses for 
making calculatian~a produce the next random number. Random 
can be defined as 

(DE RANDOM (LIM) 

(SETQ RANDNR (ABS (!TIMES RANDNR RANDNR))) 

(ADD! (!DIFFERENCE RANDNR (!TIMES (!QUOTIENT RANDNR LIM) LIH> 



142 

randnr is initialized to an appropriate number, ie 12345. If we now 
want to have two instances of this random number generator in dif
ferent states and run them independently we can use the funarg feature. 
To get two instances we can do 

(SETQ RAND1 (FUNCTION RANDOM (RANDNR))) 

(SETQ RAND2 (FUNCTION RANDOM (RANDNR))) 

A funarg-expression is now created for each of the instances, 
randnr is bound to its initial value and looks 1 ike 

(FUNARG RANDOM [(RANDNR . 12345))) 

To use an instance of the generator we do 

(APPLY;: RAND 1 50) or (APPLY:: RAND2 200) 

Changes of the free variable randnr in one instance will not 
effect the other instance neither the global variable randnr. 

Actually there is a random number generator, the function rand. 
It contains also a global variable, ranstate. 

1 
Exercises 

1. An artificial example of funarg found in the literature. 

(DE F (X) (COND ( (ZEROP A) X) 

(T (MINUS X)))) 

(DE G (X) (PROG (A) 

(SETQ A 2) 

(RETURN (FUNCTION F (A))))) 

(PROG (A B H) 

(SETQ A 0) 

(SETQ H (G 2)) 

(SETQ B (APPLY:: H 3)) 

(RETURN B)) 

What value will be returned from the~? 

If we change the call to function in~ to 

(FUNCTION F) 

what value will then be returned? 

2. By funarg we can implement simple processes. The random number 
generator in 28.5 can be seen as such a process. 

A process can vaguely be defined as a function, which can 

-'-These exa'"P l es are to be found in Sandewa ll (ref. 5) · 



appear in different instances, where every instance has its own 
values on some variables. The variable randnr was such a 
variable. Suppose we want to define a function~ (define 
process) in analogy with de and if, so that 

(DP RANDOMPROCESS (RANDNR) (LIM) ++++++) 

defines randomprocess to be process generator. Evaluating the 
expression 

(RANDOMPROCESS 123456) 

wil 1 return as value a process, where the variable randnr is 
initialized to 123456 and where 1 im is a parameter given each 
time the process is called and where++++++ is the form then 
to evaluate. Define the function~· 

Define then a process~. in such a way that if 

(SPIT I (ABc DE)) 

is evaluated a process is generated which on its first cal 1 
returns A, then B etc. until E and then NIL on all successive 
ca 11 s. 

Define also a process alternate, which has two processes as 
local variables and which on the first cal 1 calls the first 
process, next call the second process and then the first again etc. 

(ALTERNATE (SPIT I (A B c DE F)) 

(SPIT I ( 1 2 3 4 5 6 7))) 

v1ill generate a process, which on successive calls v1ill return 

A, 1, B, 2, C, 3, etc 



29. Compiler and assembler 

29.1 Although LISP is an interpretative language it needs a compiler 
to produce more efficient code (machine code). As a beginner in 
LISP you need not worry about the compiler until you have reached 
the stage of having a large file of wei !-tested functions and 
you want your functions in "production". Some of the uti I ity 
packages, such as break and advise can be used on compiled code, 
but you can not of course use the editor on such functions. The 
campi ler can be used to compile single functions or a whole file 
produced by makefile. The assembler can be used by the user if 
he wants to specify a sequence of machine instructions in the LISP 
code, otherwise it is used by the compiler in its last pass. 

Most of the INTERLISP system is coded in LISP, including the 
compiler. This code has then been compiled by a bootstrap process. 
First the LISP-coded-compiler was campi led by itself and then the 
compiled version of the compiler was used to compile the rest of 
the sys tern. 

29.2 The compiler will (in interactive mode) ask some questions concer
ning the compilation, and want to know the following: 

I. Want to see macro- or machine-code? Usually not of interest to 
the user. 

I I. Want to redefine the functions you are compiling? Can be of in
terest only to output the code to a file, and still working on 
the non-compiled version of the functions. 

I I I .Want to save the old function definitions on the property- I ist 
of the function name? Can be of interest if you still want to 
be able to edit the functions just being compiled. 

IV. Where to save the compiled code? Important. 

There are five global variables (~, ~. strf, saveflg and 
lcfil), which wil 1 be set depending on the answers. 



Question and proper answers are: 

I. LISTING? 

Answers: 

1,2 or YES prints code (for details see LISP manual) 

NO no code is printed. 

145 

There are other possible answers to this question and each of 
which specifies a complete compilation. 

S Same as last compilation. The global variables are not changed. 

F Compiles to a file. No redefining of functions (II) and no 
definitions are saved (Ill). 

SF Store the new definitions. Redefining of functions are done 
(II) and old function definitions are saved (Ill). 

1 I. (STORE AND REDEFINE?) 

Answers: YES or NO 

Ill. (SAVE EXPRS?) 

Answers: YES or NO 

IV. (OUTPUT FILE) 

Answer: A file name. If NIL is given no output will be done. 

In a batch environment the global variables can be set as answers to 
the questions. 

~ and lstfil used by I. They are not initialized to any 1 ist code. 

strf is set toT if YES on question I I, otherwise NIL. 

~ is set to T if YES on question I I I, otherwise NIL. 

lcfil is set to the file name given on question IV. 

29.3 The normal use of the compiler is to answer the first question by 
either ForST. 

Example. 

Functions foo and fie are defined and we want them to be compiled, 
and want to-replace-the old definitions in core by their compiled 
version respectively. 



146 

eg -(COMPILE 1 (FAK FACT)) 

LISTING? 

ST 

OUTPUT FILE: 

NIL 

; FAX COHPILING) 

(FAK REDEFINED) 

(FACT COHPILING) 

(FACT REDEFINED) 

(FAK FACT) 

In batch mode we do 

eg (SETQ LAPFLG 1 ST) 

(SETQ LCFIL NIL) 

(COMPILE I (FAK FACT)) 

29.4 A more convenient way to use the compiler is to Jet a whole file 
(a file created by makefile) be compiled at the same time. This is 
done by the two functions tcompl and recompile. 

Compiler functions 

compile[x] 

tcompl [files] 

compiles each function on the I ist x. 

files is a I ist of symbolic files, tcompl 
compiles the functions in every such file 
and creates a compiled version of the fi I e. 
The name convention for the compiled file 
is to prefix the symbolic file name by an c. 

eg (TCOHPL '(FOO Fl E)) 

creates the files CFOO and CFIE. 

recompile[pfile,cfi le,fns,prettyfns,prettyvars] 

By recompile the user can update a compiled 
file without recompiling all functions on 
the file,~ is the name of the symbolic 
file to be compiled, cfile the name of the 
campi led file from which definitions may be 
copied, ~ is a 1 ist of functions in~ 
to recompile or if fns is Tal 1 functions on 
~. which no~1 aredefined as expr 1 s (which 



147 

presumably have been edited and therefore 
changed). lf prettyfns and prettyvars (the 
variables used by makefile) are given the 
~ is not loaded and functions defined 
by these variables are taken from the core 
directly. 

tcompl and recompile will ask the standard compiler questions, except 
for the output file. 

The following examples will demonstrate some different uses of these 
functions. 

(SETQ FOOFNS 1 (FOOA FOOB FOOC)) 

(MAKEFlLE 'FOO) Symbolic file foo created. 

(TCOMPL 1 (FOO)) Compiled file cfoo created. 

eventually new session 

(LOAD 'CFOO) 

(LOAD 'FOO 'PROP) 

(EDlTF FOOB) 

edit commands 

OK 

(MAKEFlLE 'FOO) 

(RECOMPILE 'FOO 'CFOO I (FOOB)) 

Load compiled file~· 

Load symbolic file foo, but 
store function definition on 
the property-list instead of 
redefining the function. 

Edit function foob, the editor 
finds the symbolic version and 
will unsave it after editing. 

New symbolic file 12£ created. 

New compiled file cfoo created, 
where foob is recompiled and 
fooa and fooc are copied from 
~cfoo.----

Instead of giving the list of functions to redefine explicitly we 
can give T as in 

(RECOMPILE 'FOO 'CFOO T) 

and all functions that are now defined as expr's are redefined. 

If the symbolic file,~. is in core it is more efficient to give 
foofns and foovars. ~does not need to be loaded and the contents 
of the file is given by these two variables. In the above example we 
could instead do 

(RECOMPILE 'FOO 'CFOO T 'FOOFNS 'FOOVARS) 

or simply 

(RECOMPILE 'FOO) 



148 

29.5 The compiler must know to what type of function belongs. First 
it looks in the function cell to see if it is defined. If it 
was not, we must supply the information by including the func
tion name of two different 1 ists 

nlama (for nlambda ~toms) noeval-nospread functions 

nlaml (for nlambda _!_ists) noeval-spread functions 

If a function is not on these lists it is assumed to be an eva] 
function. The global variable alams is set to the functions 
assumed by the compiler to be of eval type and this 1 ist can be 
examined after the compilation. ----

29.6 The user can also effect the campi lation by introducing compiler 
~· One type of macros is open macros, where the cal 1 to a 
function is replaced by the code in the macro definition. This 
can save compute time because we save function cal Is, but the code 
wil 1 normally be larger. 

Example. Suppose foo is defined as 

(LAMBDA (L) (FIE (CONS I L))) 

and consl is defined as 

(LAMBDA (X) (CONS X X)) 

If we compile foo a call to consl wil 1 appear. An open 
macro for consl can be defined by 

(PUT 'CONS1 'MACRO I (LAMBDA (X) (CONS X X))) 

and foo is then compiled as if it was defined as 

(LAMBDA (L) (FIE ((LAMBDA (X) (CONS X X)) L))) 

Another type of compiler macro is substitution macros, where a 
form is replaced by a macro definition in which, lambda-variables 
are substituted against corresponding arguments in the form. 

Example. If we define a substitution macro for consl by 

(PUT 'CONS1 'MACRO '((X) (CONS X X})} 

foo is compiled as if it was defined as 

(LAMBDA (L) (FIE (CONS L L))) 

The third type of macros is computed macros, where the form wil 1 
be replaced by the expression we get as value when the macro de
finition is evaluated. 

More details about these different types of macros can be found in 
the LISP manual. 



30. Miscellaneous 

30.1 date[] Returns the date as a string on the form 
''dd-mm-yy hh:mm:ss" 

clock[n] When n=2 it gives the number of milli seconds of 
compute (CPU) time since this INTERLISP run was 

149 

started up. To measure the CPU time for a computation, 
do clock[2] before and after it and take the difference. 

tsop[] Gives T as value if we are in interactive mode and 
NIL in batch mode. 

30.2 reclaim[] Initiates a garbage collection. 

Normally the user does not need to worry about garbage collection. 
It is initiated automatically when the storage assigned for a 
data type has been exhausted. 

30.3 mkn[p] Makes an integer of the pointer£· 

unbox[n] Makes a pointer of the integer ~· 

eg (ADD! (MKN 1 KALLE)) 

takes the address to atom KALLE, makes a LISP integer of 
it and adds one to it. 



150 

A more useful example is the following. Suppose we want to print 
all atoms in the system. The atoms are allocated sequential and 
each atom occupies 16 bytes. The first atom is NIL. We can now 
define a function printatoms as 

(DE PRINTATOMS NIL 

(PROG (ADR ENDADR) 

(x MAKE A NUMBER OF THE ADDRESS TO THE FIRST ATOM NIL) 

(SETQ ADR (HKN NIL)) 

(:: TERMINATE THE PRINTING OF THE ATOMS WHEN THE ATOM 

PRINTATOMS IS REACHED, SO ~lAKE A NUMBER OF ITS 

ADDRESS) 

(SETQ ENDADR (HKN 'PRINTATOMS)) 

LOOP 

(x PRINT THE ATOM, CORRESPONDING TO ADR) 

(PRINT (UNBOX ADR)) 

(COND ( (EQP ADR ENDADR) (RETURN))) 

(:: GET ADDRESS (AS NUMBER) TO NEXT ATOM) 

(SETQ ADR (IPLUS ADR 16)) 

(GO LOOP))) 

30.4 Sorting. There exists a sort function sort, which sort a list of 
items. The order can be specified by giving a function to sort. 
A default function alphorder exist. A function merge can merge 
two sorted lists. 

sort[data,comparefn] Sorts the elements on data. If comparefn 
is NIL alphorder is used. 

merge[a,b,comparefn] Merges~ the sorted 1 ists a and b. Comparefn 
as sort. 

a 1 pho rde r[ a, b l Returns T if a comes before~. otherwise NIL. 



151 

30.5 Control characters 1 

At any time the user may (temporarily) interrupt the computa
tion by pressing the attention key whereupon the system will 
type?= to denote that it is ready to receive a so-called 
attention-command. If the command then entered by the user is 
for instance the letter H followed by a carriage return we 
ca 11 this sequence of interactions an "at tent i on-H". 

The following attention commands exist: 

H (interrupt ("Hold it") interrupt at next function call. 
Inter! isp goes into a break. 

B (break) computation is stopped, stack backed to last func
tion call, and a break occurs. 

E (error) an immediate errorb is generated. 

D (reset), ("Dam'n it")) control returns immediately to top 
level. 

0 (output) clear output buffer and continue. 

T (time) prints CPU time in ms spent and continues. 

Pnumber (Print) Sets printlevel to number. If number is followed 
by any non-numeric character (ie PlO.) printlevel will be 
changed permanently, otherwise only the printlevel for the 
current printout will be changed. 

carriage return without any previous command acts as a no-op. Any 
other attention command will cause INTERLISP to type ???? and continue. 

1 This part is reproduced from the INTERLISP/360-370 Reference 
Manual. 





(1) 

Solutions 

Section 1 

a. literal atom 

b. literal atom- in other LISP systems an atom must start with a 
letter, but in INTERLISP it can begin with any character. 

c. floating point number. 

d. not correct, to read the atom you must precede it with %. 

e.. 1 i s t, i t is i dent i ca 1 to ( ( N I L) ) 

f. not correct. 

g. 1 i teral atom, internally the atom (). 

h. 1 i st. 

i. integer. 

j. 1 iteral atom, the similarly-written floating-point number is 
12.E+34. 

k. 1 i st. 

1. string. 

m. not correct. 

n. not correct, see a. 

o. string, consisting of the characters ", blank and ". 

p. 1 ist, in other LISP systems a , (comma) was treated as an element
separator in a 1 ist and was then ignored, but in INTERLISP the 
is treated as an ordinary literal atom. 

q. 1 i teral atom. 

r. list, with two strings as elements. 

s. 1 is t. 

(Solutions, Section 1) 



(2) 

t. 1 i st, wi 11 be. printed as (A B (C D) (E)) 

u. not correct, the brackets match each other, so the right parenthesis 
does not match anything. 

v. not correct, the right parenthesis matches the left bracket, so 
the right bracket does not match anything. 

x. not correct, one right parenthesis is missing. 

y. 1 ist, the end of the 1 ist is a dotted-pair, more about this follows 
in the next section. 

z. list, ithasoneelementA.B 

(Solutions, Section 1) 



Section 2 

( ((A) B) C) lb. 

D 

(3) 

(Solutions, . Sect ion 2) 



(4) 

1 d. (A (B . C)) 

~~ 
A QYc 

B 

1e. (A (C D • E) (G . Nl L) • (H I> 

1 f. ( .... ) 

1g. ((A. B) (C . ) (E. F)) 

I J I -+--1 __________ ,I J I I 

4GB ~D 
A C 

1 h. (A . ( B • ( C • N I L) ) ) 

(Solutions, Section 2) 



(5) 

Jt. (((A. B) • C) • NIL) 

c 

cro--· 
A 

2. The following expressions will be printed in a different way than 
they were read: 

lc. (A{(BCD)EF)G) 

le. (A (CD • E) (G) H I) 

lh. (A B C) 

I i. ( ((A • B) • C)) 

(Solutions, Section 2) 



(6) 

Section 3 

1. atom[caddr[(A B (X Y) C)]] the third element is the list (X Y) and 
the value is NIL. 

2. equaHcadar[((A (Q Q) (A A))], (Q Q)J the value is T. 

3. cons[ADAM, cons[(BERTIL), cons[((CAESAR)), NIL]]] the 1 ist 
constructed is (ADAM (BERTIL) ((CAESAR))) 

4. a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

i. 

D 

NIL 

(B Q Q) 

( (= =). =), it wi 11 be a dotted-pair at the end of the 1 ist. 

NIL, for car[NIL] is always NIL, also cdr[NIL] is NIL. 

T, see e. 

B 

(C D). 

(7 ::) 

5. a. yes, i t i s true 

b. yes, it is true 

c. no, it is not true 

cons[cdr[l], cdadr[l]] is ((((B C) D)) D) 

(Solutions, Section 3) 



(7) 

Section 5 

1. We give every node n two properties, PRED and SUCC. Corresponding 
value is a 1 ist of nodes, which are predecessors resp successors 
to the node n. 

The graph can then be stored with 

put[A,SUCC, (B C)] 

put[B,SUCC, (B D)] 

put[B,PRED,(A B)] 

put[C ,SUCC, (D)] 

put[C, PRED, (A D)] 

put[D,SUCC, (c)] 

put[D, PRED, (B C)] 

The questions can be answered by 

a. getp[B,SUCC] 

b. getp[C,PRED] 

c. memb[C,getp[A,SUCC]] 

d. lf memb[C,getp[A,SUCC]] then 

lf memb[C,getp[D,PRED]] then T else NIL 

else NIL 

or alternatively 

lf memb[C,getp[A,SUCC]] then memb[C,getp[D,PRED]] 

The first function wi 11 return Tor NIL, but the other 
alternative wil 1 return a true value or NIL. Section 3.6 
describes the value returned by memb. 

e. lf memb[D,getp[C,SUCC]] then memb[C,getp[D,SUCC]] 

f. lf memb[B,getp[B,SUCC]] then memb[B,getp[B,PRED]] 

(Solutions, Section 5) 



(8) 

Section 6 

la. (CDR'(ABC)) 

b. (EQUAL I A (CAR I ((A)))) 

c. (ATOM 12.34E4) 

d. (EQUAL L (CONS (CARL) (CDRL))) 

e. (MEMB 'C (CAADR L)) 

f. (PUT (GETP 'KARL 'MARRIED) 

'CHILDREN 

(CONS 'EVA (GETP 'KARL 'CHILDREN> 

g. (COND ((NULL L) NIL) 

(T (CDR L))) 

h. (COND ((EQ (GETP 'ANNE 'MARRIED) I KARL) T) 

(T (EQ (GETP I KARL I MARRIED) 'ANNE> 

i. (COND ( (GETP 'JOHN I FATHER-FATHER)) 

( (GETP (GETP I JOHN I FATHER) I FATHER))) 

Remember that the '-sign is identical to the guote function, so 
'A is identical to (QUOTE A). 

(Solutions, Section 6) 



Section 7 

1. (DE CD5R (L) (CADDR (CDDR L))) 

If 1 has less than 5 elements cd5r will return NIL as value, 

cdr[NlL] = car[NlL] = NIL 

2a. (DE MARRIEDQ (X Y) 

(COND ((EQ X (GETP Y 'MARRIED)) 'YES) 

((EQ Y (GETP X 'MARRIED)) 'YES) 

(T 'NO))) 

b. (DE SON (X Y) (PUT X 1 FATHER Y) 
(ADDPROP Y 'SON X) 
'OK) 

A new property~ is introduced. 

c. (DE FATHEROF (X Y) 

(COND ((EQ X (GETP Y 'FATHER)) 'YES) 

( (MEMB y (GETP X I SON)) I YES) 

(T 'NO))) 

3. When the assignments are done the following values exist, 

R has va 1 ue A 

L has value R 

X has value R 

A has value (Q R S) 

Q has value (R S) 

R obtained a new value in the assignment 

(SET L (CAR R)) 

A got its value in (SET R '(Q R S)) 

Q got its value in the last assignment. 

The following expressions are true. 

a,c,d,f,g, i ,j 

Remember that an expression is true if its value! NIL. 

(Solutions, Section 7) 

(9) 



(1 0) 

Section 9 

1. (DE EVEN (L) (COND ((NULL L) T) 

((NULL (CDR L)) NIL) 

(T (EVEN (CDDR L))))) 

2. (DE APPEND2 (X Y) (COND ((NULL X) Y) 

(T (APPEND2 (CDR X) (CONS (CAR X) Y))))) 

There is a system function~~ which does the same as append2, 
but which actually is more general. It takes an arbitrary number 
of lists and concatenates them. 

eg append[ (A B C), (Q W E), (X)] = (A B C Q W E X) 

3. (DE ::INTERSECTION (X Y) 

(COND ((NULL X) NIL) 

((MEMB (CAR X) Y) (CONS (CAR X) (::INTERSECTION (CDR X) Y))) 

(T (::INTERSECTION (CDR X) Y)))) 

4. (DE ::REVERSE (L) 

(COND ((NULL L) NIL) 

(T (APPEND2 (::REVERSE (CDR L)) (CONS (CAR L) NIL))))) 

An alternative solution is 

(DE ::REVERSE (L R) 

(COND ((NULL L) R) 

(T (::REVERSE (CDR L) (CONS (CAR L) R))))) 

We have here introduced an extra argument to ::reverse. The reversed 
1 ist wil 1 be built on that 1 ist. R must be initialized to NIL. To 
use ::reverse we write 

(::REVERSE I (A B C) NIL) 

but this is identical to 

(::REVERSE I (A B C)) 

Arguments not given at call will be initialized to NIL automati
cally. See further in Section 14. 

5. (DE ::SUBST (X Y L) 

(COND ((NULL L) Nl L) 

((EQUAL Y (CAR L)) (CONS X (::SUBST X Y (CDR L)))) 

(T (CONS (CAR L) (::SUBST X Y (CDR L)))))) 

(Solutions, Section 9) 



(11) 

Suppose 1 can contain dotted-pairs. The solution is not sufficient 
then. Th; following solution will take care of this. 

(DE xSUBST (X Y L) 

(COND ( (EQ L Y) X) 

((NLISTP L) L) 

((EQUAL Y (CAR L)) (CONS X (::SUBST X Y (CDR L)))) 

(T (CONS (CAR L) (::SUBST X Y (CDR L)))))) 

xsubst[NEW, OLD, (A OLD B • OLD) (A NEW B • NEW)] 

6. (DE TOTREVERSE (L) 

( COND ( (NL I STP L) L) 

(T (APPEND2 (TOTREVERSE (CDR L)) (CONS (TOTREVERSE (CAR L) 

NIL)))))) 

7. (DE TOTSUBST (X Y L) 

(COND ((NLISTP L) NIL) 

((EQUAL (CARL) Y) 

(CONS X (TOTSUBST X Y (CDR L)))) 

(T (CONS (TOTSUBST X Y (CARL)) 

(TOTSUBST X Y (CDR L> 

8. (DE ::SUBLIS (AL L) 

(COND ((NULL AL) L) 

(T (::SUBL IS (CDR AL) (TOTSUBST (CDAR AL) (CAAR Al) L))))) 

An alternative solution is 

(DE ::SUBL IS (AL L) 

(COND ( (NLI STP L) (COND ( (SETQ TEMP (::ASSOC L AL)) (CDR TEMP)) 

(T L) )) 

(T (CONS (xSUBLIS AL (CARL)) 

(xSUBLIS AL (CDR L)))))) 

with xassoc defined as 

(DE ::AS SOC (X AL) (COND ((NULL AL) NIL) 

( (EQ X (CAAR AL)) (CAR AL)) 

(T (::AS SOC X (CDR AL))))) 

(Solutions, Section 9) 



( 12) 

xassoc searches an association 1 ist for the first pair, whose car 
is equal to~· and returns that pair. 

eg ::assoc[Q, ((A . B) (Q • QQ) (Q . 'vi))] (Q . QQ) 

TEMP is introduced for temporary hold of the value returned from 
::assoc. If the value was true we return.::.:!.!:. of that pair. 

The two solutions have different strategies. The first takes one 
pair each time and scans through the 1 ist and substitutes. The 
1 ist wil 1 be scanned as many times as there are pairs. 

The second solution takes one element at a time and scans through 
the pairs for checking if that element shal 1 be substituted and 
if it substitutes. The 1 ist of pairs wi 11 be scanned as many times 
as there are elements on 1. So we can choose strategy depending on 
the length of the 1 ists. 

9. (DE PAIR (X Y) 

(COND ((NULL X) NIL) 

(T (CONS (CONS (CAR X) (CAR Y)) 

(PAIR (CDR X) (CDR Y)))))) 

'vie test only if x is empty, y must then be empty depending on the 
assumption. 

10. (DE FLATTEN (L) 

(COND ( (NL I STP L) L) 

((ATOM (CARL)) (CONS (CARL) (FLATTEN (CDR L)))) 

(T (APPEND2 (FLATTEN (CARL)) (FLATTEN (CDR L)))))) 

append2 is defined in Exercise 2. 

An alternative is 

(DE FLATTEN (X Y) 

( COND ((NULL X) Y) 

( (NL I STP X) (CONS X Y)) 

(T (FLATTEN (CAR X) (FLATTEN (CDR X) Y))))) 

This definition is harder to understand. Run it on a computer and 
trace it. The "flattened" list will be built up in y backwards. Of 
the above function INTERLISP already contains intersection,~· 
subst, subl is and assoc. 

11. Start with order. 

(DE ORDER (X Y) (r~EMB Y (MEMB X PRECEDENCE))) 

The binary tree can be constructed of nodes where every node is a 
list of three elements 

(data-element pointer-to-left-subtree pointer-to-right-subtree) 

(Solutions, Section 9) 



The tree in the example should then be represented as 

(D (B (A NIL NIL) (C NIL NIL)) 

(E NIL (J NIL NIL))) 

For convenience and readability we introduce some smal 1 help 
functions. 

(DE DATA (NODE) (CAR NODE)) 

(DE LEFT (NODE) (CADR NODE)) 

(DE RIGHT (NODE) (CADDR NODE)) 

(DE MAKENODE (DATA LEFTTREE RIGHTTREE) 

(CONS DATA (CONS LEFTTREE (CONS RIGHTTREE NIL)))) 

The next function to define is buildtree 

(DE BUI LDTREE ( L TREE) 

(COND ((NULL L) TREE) 

(T (BU I LDTREE (CDR TREE) 

(INSERTNODE (MAKENODE (CARL) NIL NIL) 

TREE))))) 

tree is here the argument, \vhich initialized to NIL and \vhich 
~sed for the generated tree. 

lnsertnode takes a node and puts it in the tree. 

(DE I NSERTNODE (NODE TREE) 

(COND ((NULL TREE) NODE) 

((ORDER (DATA NODE) (DATA TREE)) 

(MAKENODE (DATA TREE) 

( INSERTNODE NODE (LEFT TREE)) 

(RIGHT TREE))) 

(T (MAKENODE (DATA TREE) 

(LEFT TREE) 

(INSERTNODE NODE (RIGHT TREE)) 

)))) 

With the new node we wil 1 follow its path through the tree, 
actually \•Je make ne\'1 nodes for the nodes we are passing. When 
we have come to a terminal node the new node wil 1 be inserted 
there. 

(Solutions, Section 9) 

( 13) 



( 14) 

These functions will now create the tree and walktree willl 
traverse it and make a 1 ist of the data elements in the nodes. 
We wi 11 traverse the tree in postorder traversal. This means 
that we are going to the left subtree first, then collect the 
node and at last to the right subtree. 

(DE WALKTREE (TREE) 

(COND ((NULL TREE) NIL) 

(T (APPEND2 (WALKTREE (LEFT TREE)) 

(CONS (DATA TREE) (WALKTREE (RIGHT TREE))) 

)))) 

(DE TREESORT (L) (WALKTREE (BUILDTREE L))) 

These functions clearly illustrate the recursive approach of 
describing algorithms. In a non-recursive language these functions 
would be much longer and more difficult to read. This way of 
splitting the functions is very common in LISP. 

Instead of introducing the small help functions, by defining them 
as function call to its equivalent system function, we can use 
a function movd, which moves a function definition to another 
function name:-The functions wil 1 be absolutely identical and it 
costs no more to have done it. We have inexpensively introduced 
a synonym. 

movd[CAR,GETDATA] 

movd[CADR,GETLEFT] 

movd[CADDR,GETRIGHT] 

movd[LIST,MAKENODE] this is a function list, for making 
conses like these. See next section. 

Observe that it is only these functions which really know the 
structure of a node. So, if we want to change a node to 

ie (data-element left subtree . right subtree) 

which is more compact, takes only two 1 ist eel ls against three 
list eel ls with the other representation. We need only to 
redefine getright and makenode. 

The functions described here are rather list cell consuming. There 
are other functions, which we could have used for saving list cells. 
See further in Section 21. 

(Solutions, Section 9) 



The function merge can be defined as 

(DE MERGE (X Y) 

(COND ((NULL X) Y) 

((NULL Y) X) 

( 15) 

((ORDER (CAR X) (CAR Y)) (CONS (CAR X) (MERGE (CDR X) Y))) 

(T (CONS (CARY) (MERGE X (CDR Y)))))) 

(Solutions, Section 9) 



( 16) 

Section 11 

1. (DE PO I NTLI ST (HAND) 

(SELECTQ (CDAR HAND) 

(NIL NIL) 

(ACE (CONS (SELECTQ (CAAR HAND) 

(SPADE 10) 

(HEART 9) 

(DIAMOND 8) 

7) 
(POINTLIST (CDR HAND)))) 

(KING (CONS 5 (POINTLIST (CDR HAND)))) 

((QUEEN JACK) (CONS 3 (POINTLIST (CDR HAND)))) 

((7 3) (CONS 1 (POINTLIST (CDR HAND)))) 

(POINTLIST (CDR HAND)))) 

2. (DE PROG2 (X Y) Y) 

3. (DE ::MEMBER (X L) (COND ((NULL L) NIL) 

((EQUAL X (CAR L)) L) 

(T (::HEHBER X (CDR L))))) 

(DE ::LAST (L) (COND ((NULL L) NIL) 

((NULL (CDR L)) L) 

(T (::LAST (CDR L))))) 

4. (DE ::ADDPROP (ATM PROP NEW FLG TEMPVAL) 

(SETQ TEMPVAL (GETP ATM PROP)) 

(PUT ATM PROP (SELECTQ FLG 

(T (CONS NEW TEMPVAL)) 

(REVERSE (CONS NEW (REVERSE TEMPVAL))))) 

There are more efficient ways of adding an element to the end of 
a 1 ist than making reverse twice. The function nconcl makes this, 
see further Sect i on-2-1-.-

(Solutions, Section 11) 



(17) 

The variable tempval is introduced for holding a temporary value. 
Its appearance in the variable list makes the variable to a local 
variable to this function. This is more comprehensibly discussed 
in Section 15. 

5. (DE ::DEFLIST (ATM-VAL PROP) 

(COND ((NULL ATM-VAL) NIL) 

(T (PUT (CAAR ATM-VAL) PROP (CADAR ATM-VAL)) 

(CONS (CAAR ATM-VAL) (DEFL I ST (CDR ATI1-VAL) PROP))))) 

a. (DE ::GET (FREEPROP PROP) (CADR (MEMB PROP FREEPROP))) 

b. (DE PUTF (FREEPROP PROP VAL) 

(COND ((NULL FREEPROP) (LIST PROP VAL)) 

( (EQ (CAR FREEPROP) PROP) (CONS PROP (CONS VAL FREEPROP))) 

(T (CONS (CAR FREEPROP) 

(CONS (CADR FREEPROP) 

(PUTF (CDDR FREEPROP) PROP VAL)))))) 

6. (DE ::SQCDR (L) (PROG1 (CAR L) (SETQ L (CDR L)))) 

7. a. (DE ::ASSOC (A AL) 

(COND ((NULL AL) NIL) 

( (EQ A (CAAR AL)) (CAR AL)) 

(T (::ASSOC A (CDR AL))))) 

b. (DE CHASSOC (AL A NEW) 

(COND ((NULL AL) NIL) 

( (EQ A (CAAR AL)) (CONS (CONS A NEW) (CDR AL))) 

(T (CONS (CAR AL) (CHASSOC (CDR AL) A NEvi))))) 

c. (DE REPASSOC (AL A) 

(CmiD ((NULL AL) NIL) 

( (EQ A (CAAR AL)) (REPASSOC (CDR AL) A)) 

(T (CONS (CAR AL) (REPASSOC (CDR AL) A))))) 

(Solutions, Section 11) 



(18) 

Section 12 

1. (DE ::LENGTH (L) (COND ((NULL L) 0) 

(T (ADD1 (::LENGTH (CDR L)))))) 

2. (DE FAK (N) (COND ( (I ZEROP N) 1) 

(T (!TIMES N (FAK (SUB1 N)))))) 

3. (DE POINTS (L) (COND ((NULL L) 0) 

(T (IPLUS (CARL) (POINTS (eDR L)))))) 

4. (DE DIFF (EXPR X) 

( COND ( (EQ EXPR X) 1) 

((ATOM EXPR) 0) 

(T (SELECTQ (CAR EXPR) 

(PLUS (DERPLUS EXPR X)) 

(DIFFERENCE (DERDIFF EXPR X)) 

(TIMES (DERTIMES EXPR X)) 

(QUOTIENT (DERQUOTIENT EXPR X)) 

(MINUS (DERMINUS EXPR X)) 

(EXPT (DEREXPT EXPR X)) 

(SIN (DERS IN EXPR X)) 

(COS (DERCOS EXPR X)) 

EXPR)))) 

(DE DERPLUS (EXPR X) (CONS 'PLUS (MAPPLUS (CDR EXPR) X))) 

(DE MAPPLUS (L X) (COND ((NULL L) NIL) 

(T (CONS (D IFF (CAR L) X) (MAPPLUS (CDR L) 

x))) 
))) 

(DE DERDIFF (EXPR X) (LIST 'DIFFERENCE 

(DE DERTIMES (EXPR X) 

(LIST 'PLUS 

(DIFF (CADR EXPR) X) 

(DIFF (CADDR EXPR) X))) 

(LIST 'TIMES (CADR EXPR) (DIFF (CADDR EXPR) X) 

(LIST 'TIMES (CADDR EXPR) (DIFF (CADR EXPR) X))) 

(Solutions, Section 12) 



(DE DERQUOTIENT (EXPR X) 

(LIST I QUOTIENT 

(LIST 'DIFFERENCE 

(LIST 'TIMES (CADDR EXPR) (DIFF (CADR EXPR) X)) 

(LIST 'TIMES (CADR EXPR) (DIFF (CADDR EXPR) X))) 

(LIST 'EXPT (CADR EXPR) 2))) 

(DE DERMINUS (EXPR X) (LIST 'MINUS (DIFF (CADR EXPR X)))) 

(DE DEREXPT (EXPR X) 

(LIST 'TIMES 

(CAD DR EXPR) 

(LIST 'TIMES 

(DIFF (CADR EXPR) X) 

(LIST 'EXPT (CADR EXPR) (SUB1 (CADDR EXPR)))))) 

(DE DERSIN (EXPR X) 

(LIST 'TIMES 

(LIST 'COS (CADR EXPR)) 

(D IFF (CADR EXPR X))) 

(DE DERCOS (EXPR X) 

(LIST 'MINUS 

(LIST 'TIMES 

(LIST '$IN (CADR EXPR)) 

(DIFF (CADR EXPR) X)))) 

(19) 

4. There is no answer to this exercise! The best way to write simpl i
fication function is to make use of the computer, test them and 
find the different simplification rules. There is h011ever, a solu
tion described in Weissman's LISP 1.5 Primer (ref 5). 

(Solutions, Section 12) 



(20) 

Section 13 

1. (DE EVEN (L) (OR (NOT L) (AND (CDR L) (EVEN (CDDR L))))) 

2. (DE MAZE (L IN OUT WAY) 

(MAZ L (CDR (ASSOC IN L)) OUT (CONS IN WAY))) 

(DE MAZ (L INS OUT WAY) 

(COND ((NULL INS) NIL) 

( (EQ (CAR INS) OUT) (REVERSE (CONS OUT WAY))) 

( (MEMB (CAR INS) WAY) (MAZ L (CDR INS) OUT WAY)) 

(T (OR (MAZE L (CAR INS) OUT WAY) 

(MAZ L (CDR INS) OUT WAY))))) 

~is an extra argument used for building the way we are trying 

to find. 

(Solutions, Section 13) 



(21) 

Section 14 

Warning - If you intend to test these functions on the computer, use 
the H-name of the function. A system function defined incorrectly can 
clobber the system! 

1. (PUTD 'DF I (NLAMBDA (FN • L) (PUTD FN (CONS 'NLAMBDA L> 

2. (DE ::APPEND L (CDND ((NULL L) NIL) 

((NULL (CDR L)) (APPEND2 (CAR L) NIL)) 

(T (APPENDN L)))) 

(DE APPENDN (L) (COND ((NULL (CDR L)) (CAR L)) 

(T APPEND2 (CAR L) (APPENDN (CDR L)))))) 

(DE APPEND2 (X Y) (COND ((NULL X) Y) 

(T (CONS (CAR X) (APPEND2 (CDR X) Y)))))) 

The system function ::append copies the top level of the n-1 
first 1 ists and concatenates this to the last 1 ist. But if 
Happend only has one list as argument that 1 ist is copied on 
top level. 

3. ( DF I L L) 

4. (DF ::AND L (COND ((NULL L) T) 

(T (AND1 L)))) 

(DE AND1 (L) (COND ((NULL (CDR L)) (EVAL (CAR L))) 

((EVAL (CARL)) (AND1 (CDR L))) 

(T NIL))) 

5. (DF ::SELECTQ (A • L) (::SELECTQ1 A L)) 

(DE ::SELECTQ1 (A L) (COND ((NULL CDR L)) (EVAL (CAR L))) 

((OR (AND (ATOM (CAAR L)) (EQ A 

(CAAR L))) 

(AND (LISTP (CAARL)) (MEMBA 

(CAAR L)))) 

(EVPROGN (CDAR L))) 

(T (::SELECTQ1 A (CDR L))))) 

(DE EVPROGN (L) (COND ((CDR L) (EVAL (CAR L)) (EVPROGN (CDR L))) 

(T (EVAL (CARL))))) 

Evprogn takes a list of forms and evaluates them, returns the 
value of the last form. 

(Solutions, Section 14) 



(22) 

6. (DF IF L (COND ( (EVAL (CAR L)) (EVAL-To-ELSE (CDDR L))) 

(T (EVPROGN (CDR (MEMB I ELSE (CDDR L)))))) 

(DE EVAL-TG-ELSE (L) 

(COND ((OR (NULL (CDR L)) (EQ (CADR L) 'ELSE)) (EVAL (CARL))) 

(T (EVAL (CAR L)) (EVAL-TG-ELSE (CDR L))))) 

The function works also without a then- or an else branch. 

(DF DO L (DOA (FORMS-TG-UNTI L L) (CAR (LAST L)))) 

(DE FORMS-TG-UNTIL (L) 

(COND ((EQ (CARL) 'UNTIL) NIL) 

(T (CONS (CARL) (FORMS-TG-UNTIL (CDR L)))))) 

(DE DOA (FORMS TEST) 

(EVL IS FORMS) (AND (NOT (EVAL TEST)) (DOA FORMS TEST))) 

(DE EVLIS (L) (COND ((NULL L) NIL) 

(T (EVAL (CAR L)) (EVLIS (CDR L))))) 

evprogn is defined in Exercise 5. 

(Solution, Section 14) 



Section 16 

1. (DE EVEN (L) (PROG NIL 

LOP 

(COND ((NULL L) (RETURN T)) 

((NULL (CDR L)) (RETURN NIL))) 

(SETQ L (CDDR L)) 

(GO LOP))) 

2, (DE APPEND2 (X Y) (PROG NIL 

(SETQ X (REVERSE X)) 

LOP 

(COND ((NULL X) (RETURN Y.))) 

(SETQ Y (CONS (CAR X) Y))) 

(SETQ X (CDR X)) 

(GO LOP))) 

3. (DE ::INTERSECTION (X Y) (PROG (VAL) 

LOP 

(COND ((NULL X) (RETURN VAL) 

(23) 

((MEMB (CAR X)) Y) (SETQ VAL (CONS (CAP. X) VAL)))) 

(SETQ X (CDR X)) 

(GO LOP))) 

4. (DE ::REVERSE (L) (PROG (VAL) 

TOP 

(COND ((NULL L) (RETURN VAL))) 

(SETQ VAL (CONS (CARL) VAL)) 

(SETQ L (CDR L)) 

(GO TOP))) 

5. (DE ::SUBST (X Y L) (PROG (P) 

LOP 

(COND ((NULL L) (RETURN (REVERSE P))) 

( (EQ (CAR L) Y) (SETQ P (CONS X P))) 

(T (SETQ P (CONS (CARL) P)))) 

(SETQ L (CDR L)) 

(GO LOP))) 

(Solutions, Section 16) 



(24) 

6. (DE TOTREVERSE (L) (PROG (X) 

TOP 

(COND ((NULL L) (RETURN X)) 

((LISTP (CARL)) (SETQ X (CONS (TOTREVERSE (CARL)) X))) 

(T (SETQ X (CONS (CAR L) X)))) 

(SETQ L (CDR L)) 

(GO TOP))) 

Notice that we must make a recursive call in one direction -
in this case the car-direction. We can of course write without any 
recursive call butwe must then organize some kind of stack. 

(So 1 uti on s , Section 1 6) 



(25) 

Section 17 

1. (DE CALC (OP A B) (APPLY:: OP A B)) 

2. (APPLY 'SET '(AB)) 

The arguments A and B, evaluated will be given to~· which 
will give A the value B. 

(APPLY I SETQ I (E F)) 

The arguments E and F will be given to~' but~ wil 1 
itself evaluate by eval the atom F. F has no value and the 
message U.B.A F wil~ printed. 

(APPLy I SETQQ I (I J)) 

The arguments I and J \'li 11 be given to~· which wi 11 give 
I the value J. 

~and~ behave exactly in the same manner \vhen given to 
~· Although~ is an eval-function and~ a noeval
function no arguments in the argument I ist wil I be evaluated. 

3. (DE Fl RST (L FN) 

(COND ((NULL L) NIL) 

((APPLY:: FN (CARL)) (CARL)) 

(T (FIRST (CDR L) FN)))) 

(Solutions, Section 17) 



(26) 

Section 18 

1. (DE ::MAP (MAPX MAPFNl MAPFN2) (PROG NIL 

(COND ((NULL MAPFN2) (SETQ MAPFN2 'CDR))) 

LOP 

(COND ((NULL MAPX) (RETURN NIL))) 

(APPLY:: MAPFNl MAPX) 

(SETQ MAPX (APPLY:: MAPFNZ MAPX)) 

(GO LOP))) 

(DE ::MAPCAR (MAPX MAPFNl MAPFN2) 

(COND ((NULL MAPX) NIL) 

(T CONS (APPLY:: MAPFNl (CAR MAPX)) 

(::MAP CAR (COND (MAPFN2 (APPLY:: MAPFN2 MAPX)) 

(T (CDR MAPX))) 

MAPFNl 

MAPFN2))))) 

(DE ::MAP2C (MAPX MAPY MAPFNl MAPFN2) (PROG NIL 

(OR MAPFN2 (SETQ MAPFN2 'CDR)) 

LOP 

(OR (AND MAPX MAPY) (RETURN NIL)} 

(APPLY:: MAPFNl (CAR MAPX) (CAR MAPY)) 

(SETQ MAPX (APPLY:: MAPFN2 MAPX)) 

(SETQ MAPY (APPLY" MAPFN2 MAPY)) 

(GO LOP))) 

(DE ::EVERY (MAPX MAPFNl MAPFN2) 

(COND ((NULL MAPX) T) 

((APPLY:: MAPFNl (CAR MAPX)) 

(::EVERY (COND (MAPFN2 (APPLY:: MAPFN2 MAPX)) 

(T (CDR MAPX))) MAPFNl MAPFN2)))) 

There are of course many ways of writing ~-functions and 
these are some representative solutions. 

2. (DE SQUARE (L) (MAPCAR L (FUNCTION (LAMBDA (X) 

(TIMES X X))))) 

(Solutions, Section 18) 



3. (DE PAIR (X Y) (MAPC2CAR X Y (FUNCTION CONS)) 

(DE COLLECTPAIR (ALA) 

(PROG (RES) 

<MAPC AL (FUNCTION (LAMBDA (X) 

(COND ( (EQ (CAR X) A) 

(27) 

(SETQ RES (CONS X RES> 

(RETURN RES))) 

(Solutions, Section 18) 



(28) 

Section 19 

1. (DE PASCAL (N) 
(PROG ( (INDENT 26) X OLD) 

(x TEST IF N BETWEEN 0 AND 10) 
(COND ((OR (GREATERP N 10) (LESSP N 0)) 

(PRIN1 "'N NOT IN INTERVAL") 
(PRIN1 "'N = ") (PRINT N) (RETURN))) 

(SPACES 18) 
{x PRINT HEADING) 
(PRIN1 '"PASCAL'S TRIANGLE") 
(TERPRI) 
(SPACES 18) (PRIN1 "'-----------------" 
(TERPRI) (TERPRI)' 
(x PRINT TOP OF TRIANGLE) 
(SPACES INDENT) (PRINT 1) 
(SETQ OLD (LIST 1)) 
(x OLD IS USED TO SAVE THE NUMBERS ON THE LAST LINE PRINTED) 

TOP {COND { {ZEROP N) (TERPRI) (TERPRI) (RETURN))) 
(SETQ INDENT (!DIFFERENCE INDENT 2)) 
(x X CONTAINS THE NUMBERS OF THE LAST LINE AND IS USED FOR 

CALCULATING THE NEW NUMBERS) 
(SETQ X (CONS 0 OLD)) 
(SETQ OLD NIL) 
(SPACES INDENT) 
(x PREPARATION DONE FOR NEXT LINE) 

LOP (COND ((NULL (CDR X)) (::PRINT THE LAST 1 AND THE LINE 
I S F I ~I I SHED) 

(PRJ NT 1) 
(SETQ OLD (CONS 1 OLD)) 
(SETQ N (SUB 1 N)) 
(GO TOP))) 

{:: CALCULATE THE NEW NUMBER FROM THE H/0 FIRST NUMBER ON X, 
PRINT IT AND SAVE IT ON OLD) 

(SETQ OLD (CONS (PRIN1 (IPLUS (CAR X) (CADR X))) OLD)) 
{SETQ X (CDR X)) 
(SPACES 3) 

If this statement is replaced by 

(SPACES (I DIFFERENCE 4 (NCHARS (CAR OLD)))) 

the triangle will be printed symmetrical. The function 
nchars[x] gives the number of characters that will be 
printed if~ is printed by~· The number of spaces 
depends on the number of characters in the number just 
printed. See further Section 22. 

(GO LOP))) 

(Solutions, Section 19) 



2o \1e assume an~ version, where the foll01~ing characters 
are used as separators: 

+ - :: I 

Their internal codes are resp 

78, 96, 92., 97, 122., 94, 107, 126, 77 and 93 

(29) 

Some combinations of separators should be considered as one 
entity, such as := o 

It is easy to extend these routines to also take care of other 
symbols, such that v , A and l 0 Even here there are combina
tions eg l =o 

(DE ALGOLSCAN NIL 

(PROG ((OLDBREAK (GETBRK)) L SYM TEMP) 

(SETBRK 1 (78 96 92 97 122 94 107 126 77 93)) 

LOP 

(SETQ SYM (RATOM)) 

(SELECTQ SYM 

(: (:: CHECK FOR :=) 

(SETQ TEMP SYM) 

(SETQ SYM (RATOM)) 

(SELECTQ SYM 

NIL)) 

(= (SETQ SYM 1 :=)) 

(SETQ L (CONS TEMP L))) 

(COND ( (EQ SYM 1 ENDALGOL) (SETBRK OLDBREAK) 

(RETURN (REVERSE L)))) 

(SETQ L (CONS SYM L)) 

(GO LOP))) 

(ALGOLSCAN) 

BEGIN INTEGER X;REAL Y ,Z; 

Z:=10o5; 

TOP: X:=READ; 

IF X=10 THEN GOTO OUT; 

Y := z::(X-12)/Y+12o3; 

GOTO TOP; 

OUT: PRINT(Y); 

END; 

ENDALGOL 

(Solutions, Section 19) 



(30) 

The following 1 ist wil 1 be returned 

(BEGIN INTEGER X ; REAL Y , Z ; Z := 10.5 ; TOP X := READ 

IF X= 10 THEN GOTO OUT ; Y := Z- %(X- 12 %) I Y + 12.3 

; GOTO TOP ; OUT : PRINT%( Y %) END ;) 

To read in we could have done 

(SETQ L (RATOMS 'ENDALGOL)) 

which gives a 1 ist of al 1 symbols. We could then go through 1 and 
look for pairs of symbols which should be combined. 

(Solutions, Section 19) 



(31) 

Section 21 

1. (DE ::DREMOVE (X L) 

(COND ((NLISTP L) L) 

( (EQ (CAR L) X) (::OREMOVE X (CDR L)))) 

(T (RPLACD (RPLACA L (:<DREMOVE X (CAR L))) 

(:<DREMOVE X (CDR L)))))) 

Observe how the recursion in car and cdr direction uses 
rplaca and rplacd. 

2. (DE ::DSUBST (X Y L) 

(COND ((EQ Y L) X) 

( (NL I STP L) L) 

(T (RPlACA L (RPLACA L (::DSUBST X Y (CAR L))) 

(:<DSUBST X Y (CDR L)))))) 

3. (DE ::DREVERSE (L) 

(COND ((NULL L) NIL) 

(T (NCONC (::DREVERSE (CDR L)) (RPLACD L NIL))))) 

4. (DE ::ADDPROP (ATM PROP NEW FLG) 

(COND ((NULL (CDR ATM)) (CADDR (RPLACD ATM (LIST PROP (LIST 

NEW))))) 

( (EQ PROP (CADR ATM)) (CAR (RPLACA (CDR ATM) 

(SUECTQ FLG 

(T (CONS NEW (CADR ATM))) 

(NCONCl (CADDR ATM) NEW)))) 

(T (::ADD PROP (CDDR ATM) PROP NEW FLG))))) 

In the first test the caddr is made for obtaining the correct 
value. 

5. (DE ::LCONC (PTR L) 

(COND ((NULL PTR) (SETQ PTR (CONS NIL NIL)))) 

(COND ((NULL (CAR PTR) (RPLACA PTR L) 

(RPLACD PTR (LAST L))) 

(T (RPLACD PTR 

(LAST (RPLACD (CDR PTR) L> 

We start to set up a pointer cell if it does not exist, then if 
this is the first element set the begin pointer and lastly 
concatenate the new 1 ist at the end and update the end pointer. 

(Solutions, Section 21) 



(32) 

6. (DE :~ATTACH (X Y) 

(RPLACA (RPLACD Y (CONS (CAR Y) (CDR Y))) X) 

]. We redefine insertnode 

(DE INSERTNODE (NODE TREE) 
(COND ((NULL TREE) NODE) 

(T (RPLACA (SEARCHTREE TREE NODE) 
NODE) 

TREE))) 

If the tree is empty node. is returned as the root of the tree, 
otherwise searchtree finds the terminal node, to which node 
is connected. But tree, the pointer to the root of the tree, 
is returned as value. 

Searchtree is defined as 

(DE SEARCHTREE (TREE NODE) 
(COND ((ORDER (GETDATA NODE) 

(GETDATA TREE)) 
(COND ((NULL (GETLEFT TREE)) (LEFTP TREE)) 

(T (SEARCHTREE (GETLEFT TREE) NODE)))) 
((NULL (GETRI GHT TREE) (RI GHTP TREE)) 
(T (SEARCHTREE (GETRIGHT TREE) NODE)))) 

Leftp and~ are introduced for readability In the same way 
as getdata, getleft etc. 

(MOVDQQ CDR LEFTP) 
(MOVDQQ CDDR RIGHTP) 

(Solutions, Section 21) 



Section 22 

1. (DE FILENAME (FILE) (FILENAME! (UNPACK FILE))) 

(DE FILENAME! (L RES) 

(COND ((NULL L) FILE) 

((EQ (CARL) '•) (PACK RES)) 

(i (FILENAME! (CDR L) (NCONCl RES (CARL)))))) 

Without the • in the filename we can return the original 
filename. This is done by filename] through returning the 
free variable file. 

An alternative is to use nthchar and directly check if the 
third character from the end is#. 

(DE FILENAME (FILE) 

(COND ((NEQ 1#(NTHCHAR FILE -3)) FILE) 

(T (FILENAME! (UNPACK FILE))))) 

Using string functions 

(DE FILENAME (FILE) STRF) 

(SETQ STRF (MKSTRING FILE)) 

(COND ((STREQUAL "#"(SUBSTRING STRF -3 -3)) 

(GLC STRF) 

(T Fl LE))) 

2. (DE STRPOS (SUBSTR STR) 

(PROG ((LSTR (NCHARS STR)) 

(MIN 1) 

MAX) 

(GLC STRF) 

(GLC STRF) 

STRF) 

(x USE SUBSTRING ON STR FOR GETTING SUCCESSIVE SUBSTRINGS. 
MIN AND MAX ARE LIMITS FOR THE SUBSTRING) 

(SETQ MAX (NCHARS SUBST)) 

LOP 

(COND ( (I GREATERP MAX LSTR) (:: NOMATCH) (RETURN NIL)) 

((STREQUAL (SUBSTRING STR MIN MAX) SUBSTR) 

(::MATCH) (RETURN MIN))) 

(SETQ MIN (ADDl MIN)) 

(SETQ MAX (ADDl MAX)) 

(GO LOP))) (Solutions, Section 22) 



(34) 

Section 23 

1. The index function, which will be generated, can be found 
in Knuth's Fundamental Algorithms. Given a k-dimensional 
array A with elements 

A [ I 1 , I 2 , .. . , I k] far 

1~11~d1, 1:(12(d2' 

INDEX[I 1, 12 , .•. , lk] 

l~lk:(dk the index function is 

:Larlr~:Lar 

where 

a ;Tfd 
r s 

r<s-(k 

The example wil 1 generate an index function 

INDEX[! ,J,K); 35::1 + ]::J + K- 42 

or a LISP expression 

(LAMBDA (I J K) (IPLUS (ITIMES 35 I) (ITIMES 7 J) K -42)) 

Some auxiliary functions are introduced and explained later. 

(DF DEFARRAY (ARR . INDICES) 
(PROG (LAMBDAVARS INDEXFN) 

(:: ALLOCATE SPACE AND ASSIGN THE ARRAY PO INTER) 
(SET ARR (ARRAY (MULT INDICES))) 
(:: GET THE CORRECT NUMBER OF LAMBDAVARIABLES) 
(SETQ LAMBDAVARS (VARS INDICES 

I (I J K L M N 0 P))) 
(x CONSTRUCT INDEX FUNCTION) 
(SETQ INDEXFN (GENINDEX INDICES LAMBDAVARS)) 
(::STORE INDEX FUNCTION ON THE ARRAYS PROPERTY LIST 

UNDER PROPERTY INDEXFN) 
(PUT ARR 1 INDEXFN (LIST 'LAMBDA LAMBDAVARS INDEXFN)) 
(:: CONSTRUCT AND STORE ACCESS FUNCTION) 
(PUTD ARR (LIST 'LAMBDA 

LAMBDAVARS 
(LIST 'ELT ARR INDEXFN))) 

(RETURN ARR> 

One weakness in this design is that the array names must differ 
from function and variable names that are in the system. 

(Solutions, Section 23) 



(DE GENINDEX (INDS VARS) 

(PROG ((L (CONS))) 

(:: L IS USED BY TCONC AS A QUEUE PO INTER) 

(~SIMPLE IF ONE-DIMENSIONAL) 

(COND ((NULL (CDR VARS)) (RETURN (CAR VARS)))) 

(~ GO LOOPING UNTIL THE INDEXFUNCTION IS BUILT) 

LOP 

(35) 

(TCONC L (LIST '!TIMES (MULT (CDR INDS)) (CAR VARS))) 

(SETQ INDS (CDR INDS)) 

(SETQ VARS (CDR VARS)) 

(COND ((CDR VARS) (GO LOP))) 

(TCONC L (CAR VARS)) 

(TCONC L (!MINUS (CONSTANT (CARL)))) 

(RETURN (CONS 'PLUS (CARL> 

Mult multiplies the numbers in a 1 ist. 

mult[(3 5 7)] = 105 

(DE MUL T (L) (COND ((NULL L) 1) 

(T (ITIMES (CARL) (MULT (CDR L> 

Vars returns a 1 ist of the kth first variables on a variable 
1 ist, where~ is the number-of indices. 

(DE VARS (INDS VARLIST) 

(COND ((NULL INDS) NIL) 

(T (CONS (CAR VARLIST) (VARS (CDR INDS) (CDR VARLIST> 

Constant calculates the constant in the index function. It goes 
through the generated index expression and adds the calculated ~r 

(DE CONSTANT (L) 

(COND ((NULL (CDR L)) 0) 

(T (I PLUS (CADAR L) (CONSTANT (CDR L> 

Setarray is defined by 

(DF SETARRAY (ARRPOS VAL) 

(:: A NO-EVAL FUNCTION) 

(SETA (EVAL (CAR ARRPOS)) 

(APPLY (GETP (CAR ARRPOS) 'INDEXFN) 

(MAPCAR (CDR ARRPOS) 'EVAL)) 

(EVAL VAL> 
(Solutions, Section 23) 



(36) 

Notice how we must evaluate car[arrpos] in order to get the 

array pointer, and also that we evaluate the indices and 

the value. 

(Solutions, Section 23) 



Section 25 

The choice function can be defined as 

(OF CHOICE (VAR VALLIST FORM) 

(PROG (VALUE) 

LOP 

(37) 

(COND ((NULL VALLIST) ("ALL VALUES USED, REPORT FAILURE) 

(FAILURE))) 

(SET VAR (CAR VALLIST)) 

(SETQ VALLIST (CDR VALLIST)) 

(" EVALUATE THE FORM WITH ERRORSET) 

(SETQ VALUE (ERRORSET FORM)) 

(COND ((NULL VALUE) (" BACKTRACKING HAS OCCURRED, 

MAKE A NEW CHOICE) 

(GO LOP)) 

(T (SUCCESS (CAR VALUE> 

The failure and success functions can be defined by 

(MOVDQQ ERRORB FAILURE) 

(MOVDQQ RETURN SUCCESS) 

The 8-queen problem can now be stated as 

(DE QUEEN (ROW BOARD) 

(PROG (COL) (RETURN 

(COND ((EQ ROW 9) ("ALL QUEENS ARE NOW PLACED ON BOARD) 

(PRINTBOARD) 

(SUCCESS 'DONE)) 

(T (CHOICE COL 

(1 2 3 4 5 6 7 8) 

(COND ( (TESTBOfiRD) (" OK TO PLACE QUEEN 

IN THIS COLUMN) 

(QUEEN (ADDl ROW) 

(PLACEBOARD))) 

(T (" CAN NOT PLACE HERE) 

(FA I LURE> 

(Solutions, Section 25) 



(38) 

If the problems are without solutions we will "errorbang" out through 
the function 8-gueen and return to the top-loop. A better solution is 
to catch this "errorbang" simply by putting an errorset in 8-gueen. 
We redefine it to 

(DE 8-QUEEN NIL (PROG (VAL) 

(SETQ VAL (ERRORSET I (QUEEN l (STARTBOARD))))) 

(RETURN (COND (VAL (CAR VAL)) 

(T 'FAILURE> 

These two functions are defined to be independent of the implementa
tion of the board. Startboard initializes a board, printboard prints 
the board, testboard checks if a queen can be placed safe at the posi
tion given by row and~ and returns the T, otherwise NIL, and place
board places the new queen on the board. The functions are without argu
ments but they can use row, board and~ as free variables. 

The board could be implemented as an 8x8 array or as a list with 64 
elements. A simpler representation is a list of those columns where 
queens already have been placed. Let us look at this representation a 
little closer and later discuss a problem concerning the other mentio
ned representations. 

Suppose on the first row a queen is placed in column one, on the second 
row a queen in column three and on the third row a queen in column five. 
The board is then a list (53 1). To test if a new queen placed on (rovl, 
col) is safe from attack from queens already placed, the following tests 
are made 

a. Is the column already occupied? Is~ in the board list. 

b. Is the diagonal already accupied? Take the first element c in the 
board list and compare if col is equal to c + 1, if it is the diago
nal is occupied otherwise take the next element c and compare if col 
is equal to c ~ 2 etc until all elements are tested. 

The functions can now be defined as 

(DE 

(DE 

(DE 

START BOARD NIL NIL) 

PRINTBOARD NIL (PRINT BOARD)) 

TESTBOARD NIL 

(PROG ((B BOARD) (V 1) P) 

TOP 

(COND ((NULL B) (" SAFE PLACE FOR THE NE\1 QUEEN) (RETURN T))) 

(SETQ P (CAR B)) 

(COND ((OR (EQ COL P) 

(EQ COL (IPLUS P V)) 

(EQ COL (!DIFFERENCE P V))) 

(" THE NEW QUEEN CAN NOT BE PLACED HERE) 

(RETURN NIL))) (S l . S . 25 ) o u1ons, ect1on 



(SETQ B (CDR B)) 

(SETQ V (ADDl V)) 

(GO TOP))) 

(DE PLACEBOARD NIL 

(CONS COL BOARD )) 

(39) 

An 8x8 array could naturally have been used as the representation of the 
board. A problem will then occur at backtracking and when an already 
placed queen must be removed from the array. The array is a global struc
ture and elements set in the array since the last choice-statement must 
get their old values when a failure statement is executed. After back
tracking to a choice-statement we want the environment to be exactly the 
same as it was the earlier time we were at this statement. This can be 
solved if a function with side effects (rplaca, setq, ~· seta etc) 
saves its old value. This technique is used by INTERLISP in the editor 
and the history package (not included in INTERLISP/360-370). All func
tions with side effects have a /-form (/rplaca, /setq, /put, /seta etc) 
and these functions save a form every time they execute. If this saved 
form is evaluated the side effect will be undone. 

(Solutions, Section 25) 



(40) 

Section 26 

1. First printstat. 

(DE PRINTSTAT NIL 

(TERPRI) 

<MAPC STATFNS (FUNCTION (LAMBDA (FNV) 

(PRIN1 (CAR FNV)) 

(TERPR I> 

(SPACES (!DIFFERENCE 20 (POSITION))) 

(PRINT (CAR (CDR FNV> 

In unstat we unadvise and remove corresponding pair from statfns, 
by using repassoc (see example 7c in Section 11). If arg to unstat 
is NIL all functions are unadvised. 

( DF UNSTAT FNS 

<COND ((NULL FNS) (SETQ FNS (MAPCAR STATFNS (FUNCTION CAR))) 

(SETQ STATFNS NIL)) 

(T (MAPC FNS (FUNCTION (LAMBDA (X) 

(SETQ STATFNS (REPASSOC STATFNS X> 

(APPLY 'UNADVISE FNS) 

FNS> 

In restat we only need to initialize the counters to 0 again. 

(DF RESTAT FNS 

<COND ((NULL FNS) (SETQ FNS (MAPCAR STATFNS (FUNCTION CAR> 

(MAPCAR FNS (FUNCTION (LAMBDA (FN) 

(PROG (TEMP) 

(SETQ TEMP (SASSOC FN STATFNS)) 

(COND ((NULL TEMP) 

p: IN CASE WE REST AT FUNCTION NOT 

ON STATFNS) 

NIL) 

(T (RPLACA (CDR TEMP) 0))) 

(RETURN (CAR TEMP> 

Yes, (CAR IN FOO) can be used and stat will create the counter 

%(CAR% IN% FOO%) 

but we must redefine repassoc to make an equal-test instead of an 
~-test. 

(Solutions, Section 26) 



(41) 

Section 27 

1. (DE PPDUIW (POS1 POS2) 

(PROG (N N SLOT) 

(::MAKE STACK POSITIONS IF THEY ARE GIVEN AS LITERAL .1\TOMS) 

(COND ((NULL POS1) SETQ POS1 (STKNTH -1 'PPDUMP))) 

((LITATOM POS1) (SETQ POS1 (STKPOS POS1 -1)))) 

(COND ((NULL POS2) (SETQ POS2 (STKNTH 4))) 

( (L ITATOH POS2) (SETQ POS2 (STKPOS POS2 -1))) 

((NUMBERP POS2) (SETQ POS2 (STKNTH (MINUS POS2) POS1)))) 

LOP 

(:: OUTER LOOP FOR EACH FUNCTION BLOCK) 

(SETQ N (STKNARGS POS1)) 

(SETQM1) 

LP 

(:: INNER LOOP FOR EACH SLOT IN A FUNCTION BLOCK) 

(COND ( (GREATERP M N) (GO NXTPOS))) 

(SETQ SLOT (STKARG M POS)) 

(PRIN1 (CDR SLOT)) 

(SPACES 2) 

(PRINT (CAR SLOT)) 

(SETQ M (ADD1 M)) 

(GO LP) 

NXTPOS 

(COND ( (EQ POS1 POS2) (RETURN))) 

(SETQ POS1 (STKNTH -1 POS1)) 

(GO LOP))) 

2. (DE ''RESET NIL (RETFRON 'EVALLOOP)) 

(Solutions, Section 27) 



(42) 

Section 28 

1. The value returned is -3 and the variable h in the £!£a will be 
bound to 

(FUNARG F [(A . 2)]) 

If the call to function in~ is changed the value 3 is returned. 

2. We want~ to make a function definition to randomprocess to look 
1 ike 

(LAMBDA (RANDNR) (FUNCTION (LIM) ++++++ (RANDNR))) 

To perform this~ is defined as 

(DF DP (PROC LOCVAR PARAM . FNBODIES) 

(PUTD PROC 

(LIST 'LAMBDA 

LOCVAR 

(LIST 'FUNCTION (CONS 'LAMBDA (CONS PARAM FNBODIES)) 

LOCVAR)))) 

~ is defined as 

(DP SPIT (L) NIL (PROG1 (CARL) (SETQ L (CDR L)))) 

alternate is defined as 

(DP ALTERNATE (PROCA PROCB) NIL 

(PROG (TEMP) (SETQ TEMP PROCA) 

we create a process by 

(SETQ PROCA PROCB) 

(SETQ PROCB TEMP) 

(RETURN (APPLY PROCB)))) 

(SETQ ALTPROC (ALTERNATE (SPLIT 1 (ABC DE F)) 

( s p L I T I ( 1 2 3 4 5 6 7> 

and the process is called by evaluating 

(APPLY AL TPROC) 

(Solutions, Section 28) 



Index 

--- A 

a-list (association list> •• 
CA el ••• an> (edit command) 
ADD I 
ADDPROP • 
ADVISE .• 
advising 
ALAMS (with compiler) 
ALPHORDER 
ANJ ••• 
APPEND 
APPLY • 
aoply mode 
APPLY* 
ARGLIST •• 
ARGTYPES 
arqument evnluation • 
arithmetic functions 
ARRAY • • • • 
array pointP.r 
ARrlAYP 
arrays 
assembler . 
assignment 
ASSOC • • • 
association list 
ATOM 
atom 
atom cell • 
atom manipulAtion functions 
ATTACH Cns exercisP.) 
attention-IJ 
attention-t.J 
attention-E 
attention-H 
attention-0 
attention-P 
at tention-r 

--- 8 ---

( 8 e I • • • • en l ( ecJi t co!Tlmand) 
backtrace ••••••• 
backtracking (exercise> 
BAKTRACE • • • • 
batch system 
BI (edit command) 
big integer • • • 
bindinq value • • 
BK (edit comm1nd) 
80 (edit commnnd) 

7, 57 
I 14 
62 

• 17. 57 
131 

• I 30 
14fl 
150 
67 

• 55 
82, 94 
94 
82 

• • 74 
• 74 
• 70 

61 
I 10 
110 
I 10 
I 10 
144 
25 

• 5fl 
7. 57 
12 
I 
4 

• I 07 
105 
151, 48 

• 151. 32 
151, 121 
I 51, 4fl 
151, 32 
151, 32, 92 

• I 51 

1 14 
33, 51, 13o 
122 
12o 

• 28 
51 
61 
77 

• I 14 
• 51 

/1/ 



121 

bri'lckets 
BREAK 
break 
bn~ak at batch 
break characters 
break commands 
break macros 
l:lREAKO 
l:lREAKl •••• 
8RcAKW •••• 
8T (break command) 
flTV (break cornmFmdl 
HTV* (break command) 
BTV/ (breilk commAnd I 

c 

C •••• R 
c ... R • 
c •• fl 
CM? •• 
cnr of form 
cnrrier 
CCillJEDP 
COil •• 
CEXP!i • 
CEXPfl* 
CH:XPfl 
Ci-'cXPfl* .. 
C CHAi<GE TO ••• I C P.di t comrnandl 
CHilfiACTEF? • 
CHCON ••• 
circulAr lists 
CLOCK • • 
CL~ISEALL 
CLISEf 
co'nment • 
CCI\', PILE • 
compiled function 
compiler .••• 
compiler macros • 
compiler questions 
computed macros (compiler> 
COi•\S (edit command) • 
CO;JCAT • • • • • • 
COIJD • • • • • • • • • 
conditional expression 
CONS • • • • • • • • • 
control characters •• 
conversion inteqer/floatinq 
COPY • • • • • • 
currP.nt expression 

D ---

dAtA types 
DATE 
DE 
debuqqinq packaqes 
DEFINE ••••• 

2 
127, 123 
123, 3 I, 46, 119 
51 
92 
48, 129, 136 
128 
127 
127 
128, 125 
48, 136 
48, 136 
136 
136 

10 
10 
10 
10 
83 
16 
74 
10 
74 
74 
74 
74 

1 I 5 
93 
93 
103 
149 
89 
f-l9, 97 
33 
146 
74 
144 
148 
144 
148 
1 18 
108 
21 
14, 21 
10 
!51 
63 
56 
49, 1 13 

4 
149 
24, 71 
46 
73 



DEfLJSf •••••.•••• 
DELETE (edit comm~ndl ••• 
CDL:LEfE ••• l (edit comm"lndl 
delimitAr •••••• 
destructive functions 
Dl-' •••• 
Dli-'FERENCE 
dot notAtion 
dottPd p~ir 
DREMOVE • 
DRi:cVERSE 
DSUlJST 

--- E 

E ••••• 
E (edit comrnAndl 
l Cfi!eVARSl 
EI:JCDIC-cod8 . 
8di t cornman,js 
EDIH' .• 
editor 
editor in batch use 
edit macros 
EDITP 
EDITV • 
EJECT • 
else if 
ELT • 
emoed (in editor) 
empty list 
EO 
EOP • 
EOUAL 
ERROR 
error r1andlinq 
Hl.lOfW •••• 

escilpe chArncter 
lVAL •••••• 
EVAL Coreak comrn~ndl 
eva! functions 
eval-nospread functions 
Pval-sprend functions 
EV11LA ••.••••• 
evnluatinq functions 
EVERY 
EXIT 
EXr>R 
EXPfl* 
EXPRP 
extrnct (in edit) 

--- l-' ---

l-' (Pdit co"lrnnndl 
i-'ALSI: •• 
l-' AULTEVAL 
I- !:X PI< • 
l-'EXPR* 

. 

131 

57 
114 
115 
I 
104 
71 
63 
6 
6, 41 
104 
104 
104 

t12 
I 17 
99 
9.1 
4f1, 1 1 J 
48 
46, I 13 
52 
118 
48 
4f3 
92 
14 
110 
117 
3 
II, JO;J 
61 
II 
120 
lit) 
121 
I 21, 95 
? 
82, 75 
I ?CJ 
71 
70 
70, 24 
82 
82 
87 
29 
74 
74 
74 
I 17 

50, I I J 
11, 67 
II') 
74 
74 



/4/ 

FG.1EATERP 
file qeneriltion 

, f i 1 e hand 1 i nq 
\file name 
\~il el-'NS • 
fU eVMIS 
!-'IX ••• 
HXP 
!-'LOA T • • 

number 

floatinq-point arithmetic 
floatinq-point number 
FLOATP •••• 
!-'MINUS •••• 
l-'NS (filRVARSl 
l-'NTYP • • • 
form 
form (break commanJl 
FPLUS •• 
FOUOTIElH • 
frRe list ..••. 
free propRrty list 
frRe variablRS 
fSU!JR • 
l-'SUBR* 
fTIMES 
fU:lARG 
funarq 
funarq-block 
funarq-expression 
FU;~CTION 

function block 
function cell •• 
function indiciltor 
function types 
functional expressions 
functions (user defined) 

--- G ---

qarbaqe 
qenercd 
GEJSYM 
GEr Cas 
GETBRK 
GETD 
GETP 
GETSEPR 
GLC •• 

collRctor 
arithmetic 

examplRl • 

qlobal value 
GNC ••• 
GO 
GO (breilk command) 
GREATERP 

--- H ---

half-spread functions ••• 
hexadecimal representation 

62 
97 
97, 52 
90, 97 
98, 52 
98 
63 
63 
63 
62 
2 
63 
62 
99 
74 
30 
48 
62 
62 
11, 101 
59 
79 
74 
74 

. 62 
140 
86, 139 
140 
83, 140 
86, 139 
133 
4, 72 
83 
70 
9, 21 
24 

101, 149 
63 
108 
59 
93 
73 
17 
93 
108 
77 
108 

• 81 
129 
63 

72 
63 



--- I ---

I (edit command) 
]/() functions 
ID!fi-'EREtJCE • 
if-then-else 
IGREATERP 
ILESSP 
I MI llUS 

l 17 
iN 
62 
14 
62 
62 
1)2 

implicit proqn 15, 54 
indicator 16 
!~biLE • • • • 89, 97 
liJi.'UT • • • • • 89, 97 
input functions 90 
(JiJSEHT AFTER ••• ) (edit commAnd) •• 115 
<I:JSERT ••• HEHJRE ••• ) (edit coPl"nndl •• 115 
int'"qer • • • • • • 1 
inteqer Ari th,netic 62 
interactive system 28 
intP.rprcotP.r • 28 
IiHERSECTJCU 56 
I PLUS • • • 62 
]QUOTIENT • 62 
JREMAI~DER 62 
!TIMES o2 

--- L 

LA ~Ill) A 
lambda-expression 
lambda-variable • 
LAPI-'LG (compilP.r) 
larqP. intcqer ( =biq inteqerl 
LAST • • • • • • 
LC (edit command) • 
LCb!L (cornoilerl 
LCliJC (as exP.rcise) 
left bracket 
LE,<GTH • • • • • 
LESSP • • • • • • 
LJ (edit commqnJ) 
LLJEU~iWTH 

LISP interpretP.r 
LISPX 
LIST • • • • • • 
1 is t • • • • • • 
list <evaluation of a) 
list cell ••• 
list <dement 
list-structured function 
LISTP • 
LITATOM ••••••••• 
literal atom ••••• 
literal atom (evaluation of 
LO (edit co'nrnAncJl • • • 
LO/\lJ • • • • • • • • • 
local variables •.•. 
location specification 
loJical functions 
LST~IL <compiler) ••• 

a) 

72 
72, 
77 
lt14 
61 
57 
115 
144 
105 
7 
57 
(Jl 

51 
92 
2il 
<)5 
55 
2 
31 
5 
2 
74 
55 
54 
1 • 
30 
51 
t)8, 
77 
I 15 
o7 
144 

83 

4 

52 

/5/ 



!61 

--- M ---

M (edit commAnd) 
M-notation 
machine-coded function 
MAKEHLE 
MAP • • • • • 
map functions 
MAP2C • 
MAP2CAfl 
MAPC 
MAPCAR 
MAPLIST 
MHO (edit command) 
ME'Ml 
ME:MJER 
MbtGE . 
MiilUS • 
MLJUSP 
MKATOM 
MK,~ •• 
MKSTRING 
MOV!J 
MOVOOO 

I 18 
9, 21 
74 
98, 52 
86 
86 

• 87 
87 
87 
86 
87 
I 17 
12 
55 
150 

• 63 
62 
109 
149 
10.3 
73, 32 
73 

I MOVE ••• TO .•• 1 I edit command) .• 116 

--- N ---

n (edit comrnancJI .••••• 
1-n el ••• enl (edit commAnd) 
IN el ••• enl ledit command) 
In e I ••• en I I edit cornrnandl 
lnl ledit command) 
NARGS • 
NCriARS 
NCONC • 
NCO~JC I 
NE(J •• 
NIL •• 
NLAMA (with compiler) 
NLAMHDA • • • • • . • 
nla mbdn-expr es s ion 
NLAML (with compiler) 
NLISTP • • . . • • • 
NOBINO ••••••• 

49, 
49 
49 
49 
49 
74 
107 
104 
104 
55 
5 
148 
72 

116 

72, 82 
148 
55, 41 
4 

• 71 
70 
70 
I 
I 10 

noevnl functions 
noeval-nospread functions 
noeval-spread functions • 
non-delimiter .••••• 
non-poiner data ..••• 
nondeterministic alqorithms 
nospread functions 
NOT •• 
NTHCHAR •••••• 

I exercise) 
71 
67 
108 

•• 122 

NULL ••••••• 
number • • • • • . 
number (evaluation of a) 
NUMBERP • • • • • • • 
NX I edit command I • • 

• 12 
I, 5 
30 
61 
I 14 



--- 0 ---

OK ( bn~a k command l 
OK (edit cornmand) 
open a file 
oprm macros 
OPENP • 
OR 
OUff'ILE 
OUTPUT 
output functions 

--- p 

P (edit command) 
P C file V Ar~S l 
PACK • • ••• 
pararnreter st'lck 
parenthP.ses 
patterns in editor cunr;'>nds 
PEEKC 
PLUS 
pnam e 
pnnme pointer 
pname strinq 
pointer ••• 
pointer data 
position on stack 
p p • • • • • • • 
PP (edit command) 
PP* • • • • • 
pretty print 
PRETTYPfH!JT • 
primary file 
PRiill 
PI/I !~2 
pr;r:u 
PRI::T 
PR!iHGEr 
p;; I i~ ru:: VEL 
PinG 
proq-feature 
proq-vc,riahle 
PRilG I . . . . 
PROG!i • • • • 
PROP UileVAilSl 
property 
property list • 
property value 
PU f • 
PUTL· 

() ---
(] ;ueer1 pronl P~l 
ClUl!TE • • 
OUIJTI I:::JT 

171 

129 
52 
89 
148 
QO 
67 
89, 97 
89 
91 

4<) 

09 
107 
77 
;> 

I 11 
Ol 
(J3 
5, IU7 
4 
5 
··1. II·:J 
I 10 
134 
92 
49 
<)2' 32 
02, 32 
92 
gq 

'-' I 
<ll 
!)4 

'JI 
<.l? 

92 
30 
30 
80, 77 
54 
54 
oq 
In 
I n • 4 
16 
17 
7.'3 

J?:) 
:22 
63 



/8/ 

R ---

R (edit commilndl 
RADIX •• 
RAND • 
RANDSET • 
RAfOM • 
RAfOMS 
READ • 
READC • 
HEADLINE 
·READP • • • 
READVISE 
REBREAK • • 
RECLAIM • 
RECOMPILE 
recursive functions • 
redefining a function 
REMAINDER • 

• 50 
• 64 

142 
142 
90, 92 

• 91 
90 

• 90 
• 91 
• 91 

131 
127. 125 

• 149 
• 146 

35 
• 32, 74 
• 63 
• 56 

• • • • • • • 17 
REMOVE • • • • • 
REMPROP • • • • • 
(REPLACE ••• WITH 
RESET •••• 
RETEVAL • • • 

• • • l (edit commilndl • • 1 15 
121, 31 

RETl-'ROM • • • 
RErURN 
REfURN (breilk command) 
REVERSE • • • 
RI (edit commnndl 
right bracket •• 
RO (edit commilndl 
RPAQQ ••• 
RPLACA • • • • 
RPLACD • 
RPLSTRING 
RSTfl I Nli • • • 
running LISP. in biltch 

--- s ---

S-expression 
S-notation 
SASSOC 
SAVE • 
SAV EDEl-' • • • 
SAVEFLG (compiler) 
SELECTQ 
separators 
SET •• 
SETA 
SETI:!RK 
SETQ • 
SETQQ • 
SETSEPR 
slot 
small inteqer • 
SMALLP • • •• 
SOI,\E • • • • 

• 138 
• • 138 

• 81 
• 4A, 129 
• 56 
• 51 

• • • 2 
• • 51 

• 79 
• 101,77 

102 
109 
91 
32 

• 8 
21, 9 
58 

• • • • 100 
• • • • • • 73 

•••• 144 
• 53 
• 92 
• 25, 77 
• 1 10 
• 93 
• 26, 77 
• 54, 77 
• 93 

134 
61 

• 62 

SORT • • • • • • • • • • • • 
• 87 

150 
sort (example on tree sortl • • 43 



SPACES 
spread functions 
SOCDR (as exnmplel 
stnck functions 
stack position 
STKARG 
STKEVAL • 
STKNAME • 
STKNARGS 
STKNTH 
STKPOS 
STKSCAN • 
STOP (brenk command> 
STREOUAL • • • • . 
STRF <compiler) •• 
string .••.•• 
strinq mnnioulation 
STR!NGP •••••• 

functions 

structure editor ••••• 
structure-changing functions 
SUtl1 
SUUERP 
sublist 
SUllR 
SUtlR* • 
SUBST . 
substitution macros 
SUBSTRING .•••• 

--- T 

TCUMPL ..•. 
TCONC • • • • • 
TERPRI •••. 
THRU (edit command> 
TIMES ....•• 
TO (edit comm<'md) 
top level binding l=qlobnl value) 
top level •.••. 
TRACE • • • • • • • 
tree sort (example) 
TRUE 
TS:JP 

u ---

U.B.A ••• 
u.u.I-" ••• 
UNADVISE:: 
unbound atom 
UNiJOX • • . • 
unboxed number 
UNlJ REAK • • . • 
undefined function 
u;,li.JO !edit command> 
U~liON .•.••• 
UNPACK • . • • • 
UNSAVEUEF ..•. 
UP (edit command) 

"UREAD ••••.• 

. . 

. 

/9/ 

91 
71 
59 
133 
134 
136 
137 
134 
136 
134 
134 
137 
J I' 48 
108 
144 
3. 2 2 
107 
108 
46 
101 
62 
74 
2 
74 
74 
56 
148 
109 

146 
104 
91 
1 17 
63 
I 17 
77 
3 
1 27. 38, 125, 12H 
43 
1 1 • 67 
149 

30, 119 
31. 1 19 
131 
30, 119 
149 
110 
127, 38, 124 
31. 1 19 
52 
56 
107 
73, 32 
50 
93 



/10/ 

user defined functions •••••• 24 

v ---

value (property value) 
value cell 
variable 
variable bindings • 
VARS (fileVARS) 
VIRGINfN •••• 

--- X ---

• • 16 
• 4. 77 

• • 21. 25 
• 77 
• 99 

129 

XTR (edit command> •••••••• I 17 

--- z ---
ZE~WP • • • • • • • • • • • • • 62 

0 <edit command> ••••• 
? <edit command> 
? (break command) • 
?= !break command> 
I (edit command) • 
I (break command) • 
IUNDO <edit command) 
: lprornt character for bn>ak) • 
<: el ••• en> (edit cor~mnndl 

'If' <~r (edit command) • • • • • • 
% <escape character) •••• 
* I for comments> • • • • • • 
* < promt character for F>di tor> 
* (fileVARSJ ••••••• 
*-markF>d functions ••••• 
@ (hexadecimnl notation> 
~ <stack position in break> • 
& lin edit patterns> 
-- lin edit patterns) ••• 
- <pro~t character for toploop) 
J <quote-sign) •••• 
" lstrinq delimiter) 
<(left bracket) •• 
> <right hracket> •• 

49 
• 49 
• 48 
• 130 
• 49 

• • 48. 31 
52 

• 31. 46 
• 114 
• 116 
• 2 

33 
47 

• 100 
35 
63 
136 

• I U 
• I 13 

29 
• 22 
• 3 
. 2 
• 2 



APPENDIX 

HOW TO RUN INTERLISP/360-370 ON YOUR COMPUTER 

This appendix should contain all necessary information depending 
on the installation for running INTERLISP/360-370. This page is 
only a skeleton of what information this appendix should contain 
and, hopefully, every installation will make an appendix of their 
own. 

INSTALLATION: 

COMPUTER: 

OPERATING SYSTEM } 

TIME SHARING SYSTEM 

HOW TO RUN LISP: 

Commands or procedures for running LISP. 

FILEHANDLING: 

How to allocate a dataset for LISP file hand! ing. 

How to delete a dataset or a memeber of a dataset. 

How to 1 ist names of the LISP files (members of the dataset). 

How to compress a dataset. 

THE SAVE-FACILITY: 

How to create a save. Allocation of dataset etc. 

CHARACTER SETS: 

Differences between the characterset used in LISP-details and the 
set used on your computer. 

Differences between character sets on available equipment, such 
as terminals, 1 ine printers, card readers etc. 

Special characters, such as 
end of 1 ine 

delete character 

delete a line 

control characters (attention). 


	Title page
	Contents
	Preface
	Acknowedgements
	References
	1. Primary datatypes in LISP
	2 Representations of atoms and lists
	3. Primitive functions
	4. Conditional expression
	5. Property-lists
	6. S-notation
	7. User-defined functions and assignment
	8. Running LISP
	9. Recursive functions
	10. Introduction to break and edit
	11. Some more functions
	12. Arithmetic functions
	13. Logical functions
	14. Function types
	15. Variable bindings
	16. Prog
	17. Evaluating functions
	18. Map functions
	19. I/O functions
	20. File handling
	21. Structure-changing functions
	22. Atom and string manipulation functions
	23. Arrays
	24. Edit
	25. Error handling
	26. Break and advise
	27. Stack functions
	28. Funarg
	29. Compiler and assembler
	30. Miscellaneous
	Solutions
	Index
	Appendix: How to run INTERLISP/360-370 on your computer



