
UO-LISP MANUAL Version 1.Sb

on

Z80 Base CPU, TRS-80 Model's I and III
with TRSDOS or TRSDOS like Operating Systems

by

Dr. Jed Marti

Distributed by

NORTHWEST COMPUTER ALGORITHMS

JULY 1984

ABSTRACT

This manual describes the ZBO based LISP system, UO-LISP, its
data structures, built in functions, operating procedures, the
complier and optimizer, an RLISP parser, a trace package, and a
structure editor.

CONTENTS

Contents and Introduction 0

Data Types 1

Functions. 2

Compiler, Optimizer and Fast Load 3,4

Editor 5

RL ISP .. 6

Trace and Miscellaneous Packages 7,8

Index .. 9

I

(

INTRODUCTION

UOLISP is a subset of Standard LISP (1] implemented for
the Z80 microprocessor. It runs in a minimum of thirty two
thousand bytes of storage and most effectively with forty eight
thousand or more. The system consists of the following:

1. An interpreter

2. A program to load precompiled object files ("fast
load" files)

3. A compiler for generating either fast load files or
directly executable code

4. An optimizing phase for the compiler

5. A parser for a subset of RLISP [2]

6. A function trace feature

7. A LISP structure editor and pretty printer

8. Numerous support packages

This manual is not intended as an introduction to LISP.
Readers interested in learning LISP are advised to c9nsult one
of the tutorials on the subject [3-6]. Some of the function
names may be different from those used in the books but the
correct name can usually be found by examining section titles
of this manual. Users of Standard LISP [1] will find lists of
differences in each section as well as with inaividua1
functions.

A t(t~ +1)q_ full J fcrlu,(&,,,t,,. J {II.,-,~ ,.J. ,Tlfl,..I for

;5 in f.le FutiSl Lr~.

l+ h~;
rl,, • j -

1,e," f'.)• ? lt J
<

."f

Y. W pf\l t, ~ 3),

$(.JJ~,,. I,.,._ 1

r J, .. s-
"'- \, /\,.,., J e"' ,1.. •

~ ,, ,JJ $i)M!£ P' ~fl /vr£ O"S

re !iJ r ftl<. '

IJn.SJL< p h~.

IJNJfJ

C. n-s c:, n 1-r (J.

{t..o,J,v ~

1.1 ITEMS

CHAPTER 1

DATA TYPES

An item is a 16 bit quantity. The last 12 or 13 bits
constitute the data portion of the value and the first 3 or 4
bits, its tag, indicating type and current accessability from
the base system.

1U..t. .ll§..e.

0 Used by garbage collector to indicate
item is in use.

1-2 Data type:
00 - Dotted-pairs.
01 Identifiers.
10 Integers.
11 Strings and function pointers.

3 Subtype bit for strings and function
pointers.

1.2 DOTTED-PAIRS

110 - Function pointer.
111 - String.

Up to 8192 dotted-pairs (32k bytes) may be referenced by the
UOLISP system depending on the amount of available storage. A
minimum of 300 pairs are required for the base system to
operate. To address a full 8k pairs requires that the data
portion of a dotted-pair pointer be an index into th~ "vector"
of dotted-pairs. Dotted-pairs are two contiguous items, four
bytes arranged in ascending storage order:

DATA TYPES

+--------+--------+--------+--------+
I CAR I CDR I

I byte 1 I byte 2 I byte 3 I byte 4 I
+--------+--------+--------+--------+

To compute the real address of a dotted-pair from its item
pointer, the value portion of the item is shifted left two bits
and the resulting value is added to the base address of the
pair space.

Dotted-pairs
Standard LISP.
permitted as well
function.

are entered and printed in the same form as
The list representation of dotted-pairs is
as the use of to represent the QUOTE

List notation eliminates extra parentheses and dots. The
list (a . (b . (c . NIL))) in list notation is (a b c). List
notation and dot notation may be mixed as in (ab . c) or
(a (b . c) d) which are (a . (b . c)) and
(a . ((b . c) . (d . NIL))). In BNF lists are recognized by
the grammar:

<left-part> ::= (I <left-part> <any>
<list> ::= <left-part>) I

<left-part> . <any>)

Note: () is an alternate representation of NIL.

1.3 IDENTIFIERS

Identifiers are the same as those defined in Standard LISP
except that all identifiers are interned and may not be removed
from the object list (the symbol table in this case). The
system may reference up to eight thousand identifiers, though
there are usually only 500 or so free ones.

Identifiers can have from 1 to 255 character print names.
The first character must be alphabetic or any other character
preceeded by the 1 escape character. successive characters
may be alphanumeric or other characters prefixed by the escape
character. If the value of the !*RAISE flag is NIL, lower case
characters are not converted to upper case. On machines with
no lower case, there is no !*RAISE flag.

Each identifier is two items in the symbol table. The
first is a pointer to the string, called the print~ by
which the identifier is known to the outside world. The second
is a pointer to a structure of values associated with the
identifier called the property .J...is.t. The symbol table is a
vector of these pairs.

1-2

DATA TYPES

The property list is implemented as a list structure with
the following attributes:

1. An atom is a flag (see the FLAG, FLAGP, and REMFLAG
functions)

2. A dotted-pair is an indicator-value pair (see the GET,
PUT, and REMPROP functions). There are three special
pairs for global values and functions, these being (GLOBAL
• XXX) , (EXPR . XXX) , and (FEXPR . XXX)

Thus the function REVERSE, a compiled EXPR has as its
symbol table entry (note that $6003 is a hexadecimal quantity
described later):

+--------+--------+--------+--------+
I I I I I
+--------+--------+--------+--------+

"REVERSE" (print name) ((EXPR . $6003))

1.4 INTEGERS

Integers are stored as 13 bit two's complement values. They
conform to the Standard LISP conventions for fixed numbers in
the range -4096 to +4095. Both positive and negative integers
are recognized by the LISP reader.

1.5 STRINGS

Strings are arbitrary character sequences from 0 to 255
characters in length. Strings serve as print names for
identifiers or as constants. A string pointer is a 12 bit
offset into the string space which is a single large character
ve.ctor. The minimal system requires a few more than 1200 bytes
of string space. Each string is a byte containing the number
of characters in the string followed by that number of
characters. Thus the string "REVERSE":

1-3

DATA TYPES

+-+-+-+-+-+-+-+-+
17 IRIEIVIEIRISIEI
+-+-+-+-+-+-+-+-+

Strings are entered surrounded by '"s. Unlike Standard LISP,
"'s are not allowed within the string.

1.6 FUNCTION POINTERS

Since compiled functions may occur almost anywhere in storage
and thus their addresses look like an arbitrary item, real
addresses of functions are hidden in the ll£.l_ address table. A
compiled or primitive function is normally addressed indirectly
through this table.

~ Address Table

+-----+
I I
+-----+ $7DAC
I I +----->+----------
1 I I I REVERSE

REVERSE function +-----+ I I code
pointer I I I I

+-----+ I

$6003 ----->l$7DACI-------+
+-----+
I I

Function pointers may not be read in but are displayed as 4
hexadecimal digits preceded by a dollar sign. The number in
the table may not be accessed except internally.

1-4

DATA TYPES

1.7 STACKS

There are two internal stacks. One contains stack frames,
activation records for parameter bindings and for local
variables in compiled functions. The other contains a pushdown
stack for return addresses and intermediate values. The stack
frames are in ascending storage order and the pushdown stack
descends. When they cross or are about to cross the system
stops.

The garbage collector examines both stacks for pointers to
structures. To assure that only valid items are contained in
the stacks means that:

1. All values less than 8192 ($2000) are pointers to
dotted-pairs.

2. All items greater than or equal to
The first 8k of storage must not have
have return addresses on the stack
collector might be called.

8192 are atomic.
routines which will

when the garbage

We have made this possible by putting dotted-pair space and
stacks in the low 8k of the system. Since functions are stored
above the 8k boundary, their return addresses look like
constants and are not examined by the garbage collector.

1-5

CHAPTER 2

FUNCTIONS

The functions that follow are presented in the format of the
Standard LISP Report [1]. Except for the low level and
compiler support functions the function descriptions closely
resemble those of the report.

Each function name appears with formal parameter names and
their expected types. These ?re any of the following:

alist - An association list. This is a list of dotted-pairs,
the CAR of which is an identifier and the CDR an
associated value of any type.

any - Any item or structure is permissible.

atom - Any item which is not a dotted-pair is an atom.

boolean - T (for true), or NIL (for false).

dlist - A list for the DEFLIST function consisting of a list
of two element lists the first element being an ideniifier
and the second a value to be added to its property list
(see DEFLIST).

dotted-pair - Any value returned by CONS.

extra-boolean - NIL or any value. Any value other than NIL
stands for true.

ftype - Either of the identifiers EXPR or FEXPR, one of the
two function types implemented.

function - A lambda expression, or a function-pointer.

function-pointfi An indirect pointer to the starting
address of a function .

.ig_ - An identifier.

FUNCTIONS

integer - An integer value.

lambda-expression - A LISP s-expression of the form (LAMBDA,
(...) ...).

number - A numeric value (an integer).

string - A string of characters surrounded by double quotes.

~ A dangerous value used by the compiler during
generation of absolute addresses of code.

If the formal parameter may be of more than
are listed surrounded by braces { ... }.
indefinite number of formal parameters, the
is enclosed in square brackets [...].

one type, the types
If there can be an

repeated parameter

The type of value that the function returns follows its
prototype. The method of evaluation of the function's
arguments appears on the second line of the definition. A
function either has its arguments evaluated before it is
invoked (an EVAL type function), or ~re bound to the formal
parameters without evaluation (a NOEVAL type function). The
actual parameters of a function are either spread amoung the
formal parameters (a SPREAD type function), or are collected
into a list and bound to the single formal parameter (a
NOSPREAD type function). EVAL, SPREAD type functions are
called EXPR's, and NOEVAL, NOSPREAD functions FEXPR's. There
are currently no EVAL, NOSPREAD or NOEVAL, SPREAD functions
implemented in UOLISP.

2.1 LOW LEVEL FUNCTIONS

The following functions are accessible by the user but are not
part of Standard LISP.

(!SPA X;integer)
Type: EVAL, SPREAD.
Using the last 8 bits of the integer x, print these bits
as an ASCII character.

(!SGA) :integer
Type: EVAL, SPREAD.
Read the next character from the input file and return its
character value as an integer from 0 to 255.

2-2

.,_;

FUNCTIONS

(R!S):id
Type: EVAL, SPREAD.
This function returns the character currently being
pointed to by the input scanner. It does not however scan
ahead another character as does READCH. This function is
used by the RLISP parser to form diphthongs.

(GETP!S X;id) :any
Type: EVAL, SPREAD.
Return the property list for the identifier X.
checking is performed.

{PUTP!S X:id PROP:any)
Type: EVAL,SPREAD.

No type

Replace the property list of the identifier X with PROP.
No type checking is performed.

(CATCH X;any) :any
Type: EVAL, SPREAD.
Evaluate the argument X (Xis preevaluated because CATCH
is an EXPR) and return this value. If a THROW occurs
during this second evaluation, return the value of the
argument of THROW.

{THROW X;any)
Type: EVAL, SPREAD.
Cause a jump back to the most current CATCH restoring
stack pointers and the like to the environment of the
CATCH. The value returned by CATCH is the value of the
actual parameter X. A THROW which is not in the scope of
a CATCH is caught by the Standard LISP reader.

(NCONS X;any) :dotted-pair
Type: EVAL, SPREAD.
Returns (X . NIL).

(XCONS A;any B;any) :dotted-pair
Type: EVAL, SPREAD.
Returns the dotted-pair (B . A).

(RECLAIM) ;NIL
Type: EVAL, SPREAD.
Forces a garbage collection.

2-3

FUNCTIONS

(NTOK) :atom
Type: EVAL, SPREAD.
The NTOK function reads the next token from the input
stream and generally returns it. The token (if any) is
stored in the global variable TOK!* and its type (an
integer) in the variable TYPE!*.

TYPE!*

0
1
2
3
4
5
6

TOK!*

nnn
id

*
*
*

string
id

Meaning

Integer
Identifier
(

)
String
Single character

converted to identifier
7 * Quote character (')

(* means "has no defined value")

(ORDERP A:any B:anyl_;_boolean
Type: EVAL, SPREAD.
A 16 bit comparison of the values of A and B are made.
This includes the tag fields. ORDERP returns T if A is
less than Bin the range 0 to 65535. The function is
useful for determining the order of items within a space.

(IDL!* X:id) :integer
Type: EVAL, SPREAD.
Returns the number of characters in
This does not include any ! 's
included on special characters.

(STL!* X:string} :integer
Type: EVAL, SPREAD.

the print name of X.
which might have to be

Returns the number of characters in a string less the two
enclosing "'s.

2.2 COMPILER SUPPORT FUNCTIONS

The following functions are used by the compiler to create
absolute code or fast load files.

2-4

FUNCTIONS

(BPUT X; inte~
Type: EVAL, SPREAD.
The last 8 bits of the integer X are stored at the
location in the global function pointer BPTR and the value
of BPTR is incremented by 1.

(CPLUS X;integer) :word
Type: EVAL, SPREAD.
Add the 12 bit sign extended value of X to the current
value in.the global function pointer BPTR and return this
16 bit value which must not be placed anywhere but in
binary program space. CPLUS is used to create absolute
jump addresses within a f~nction.

(LEFT X;integer) :integer
Type: EVAL, SPREAD.
Return the leftmost 8 bits of X as a positive integer 0 to
255.

(MKCODE) :function-pointer
Type: EVAL, SPREAD.
Create a new function pointer to return as the value of
MKCODE. The current value of the global variable BPTR is
stored in the real address table at the position pointed
to by the new function pointer. This function is used to
enter a compiled function into the real address table. It
should be called before any code is deposited with BPUT or
WPUT.

(MKGLOB X:dott~d-pair) :list
Type: EVAL, SPREAD.
Xis the dotted-pair (GLOBAL. XXX). Create a list of
two integers in the range 0 to 255 which are the two bytes
of the address of xxx in reverse order.

(MKREF X:any) :list
Type: EVAL, SPREAD.
This function is the same as MKGLOB except that X can be
any object. If X is a dotted-pair (or list), it is 'added
to the global variable MLIST so that it will not be
removed by the garbage collector. MLIST is not accessible
from LISP. MKREF is used by the compiler to generate the
addresses of quoted items.

(RIGHT X:any) :integer
Type: EVAL, SPREAD.
Return the rightmost 8 bits of X as an unsigned positive
integer in the range 0 to 255.

2-5

FUNCTIONS

(WPUT X:any}
Type: EVAL, SPREAD.
Same as BPUT except that the two bytes of X are placed
reverse storage order.

2.3 ELEMENTARY PREDICATES

in

These functions return T when the condition defined is met and
NIL when it is not.

{ATOM U:any) :boolean
Type: EVAL, SPREAD.
Returns T if U is not a dotted-pair.

(CODEP U:any) :boolean
Type: EVAL, SPREAD.
Returns T if U is a function pointer.

(CONSTANTP U;any) ;boolean
Type: EVAL, SPREAD.
Returns T if U is a constant
function pointer) ..

J..fill U:any V;any) :boolean
Type: EVAL, SPREAD.

(a number, string, or

Returns T if U points to the same object as V. Unlike
Standard LISP, fixed integers (not BIGNUM's) ~ EQ if
they have the same value. Strings with the same
characters are always EQ .

.u.,QN U;any V;any} :boolean
Type: EVAL, SPREAD.
Returns T if U and V are EQ. In UOLISP, EQ and EQN are
the same.

{EQUAL U:any V;any) :boolean
Type: EVAL, SPREAD.
Returns T if U and V are the same. Dotted-pairs are
compared recursively to the bottom levels of their trees.
All atoms must be EQ (EQN is the same as EQ).

2-6

'.._/

-------..

FUNCTIONS

(FIXP U;any) :boolean
Type: EVAL, SPREAD.
Returns T if U is an integer (a fixed number).

(IDP U;any} :boolean
Type: EVAL, SPREAD.
Returns T if U is an identifier.

(MINUSP U;any} :boolean
Type: EVAL, SPREAD.
Returns T if U is a number and less than 0. If U is not a
number or is a positive number, NIL is returned.

{NULL U;any) :boolean
Type: EVAL, SPREAD.
Returns T if U is NIL.

(NUMBERP U:any) :boolean
Type: EVAL, SPREAD.
Returns T if U is a number. NUMBERP is the same as FIXP.

(ONEP U;any) :boolean
Type: EVAL, SPREAD.
Returns T if U is a number and EQN to 1.
otherwise.

{PAIRP U;any) :boole.fil}
Type: EVAL, SPREAD.

Returns NIL

Returns T if U is a dotted-pair, else returns NIL.

(STRINGP U:any):boolean
Type: EVAL, SPREAD.
Returns T if U is a string pointer oth~rwise returns NIL.

{ZEROP U:anyl :boolean
Type: EVAL, SPREAD.
Returns T if U is a number and has the value 0, returns
NIL otherwise.

Since floating point numbers are not implemented, FLOATP
is the only Standard LISP function not defined. VECTORP is
defined when the vector package is loaded.

2-7

FUNCTIONS

2.4 FUNCTIONS ON DOTTED-PAIRS

The following are elementary functions on ·dotted-pairs. • All .,_;
functions in this section which require dotted-pairs as
parameters detect a type mismatch error if the actual parameter
is not a dotted-pair. This message looks like:

***** <xxx> is not a pair for <function>

where <xxx> is the invalid value, and <function> is the name of
the function detecting the error.

~ U;dotted-pair) :.£.D.Y
Type: EVAL, SPREAD.
(CAR (CONS ab)) ==> a. The left part of U is returned.
The 'type mismatch error occurs if the actual parameter is
not a dotted-pair .

..LlJ2B U;dotted-pair) :any
(CDR (CONS ab)) ==> b. The right part of U is returned.
The type mismatch error occurs if U is not a dotted-pair.

Unlike Standard LISP, the composites of CAR and CDR are
supported only to three levels.

CAAAR
CAADR
CADAR
CADDR
CDAAR
CDADR
CDDAR
CDDDR

CAAR
CADR
CDAR
CDDR

CAR
CDR

(CONS U:any V;any) :dotted-Qa.ll
Type: EVAL, SPREAD.
Returns a dotted-pair which is not EQ to anything except
itself and has U has its left (CAR) part and Vas its
right (CDR) part. If there no remaining free dotted-pairs
the garbage collector is called automatically. If there
are still no remaining pairs, the system halts with the

******* Free Cells Exhausted

{LIST [U:anyl) :list
Type: NOEVAL, NOSPREAD.
A list of the evaluation of each element of U is returned.

2-8

FUNCTIONS

(RPLACA U:dotted-pair V;any) :dotted-paii
Type: EVAL, SPREAD.
The CAR portion of the dotted-pair U is replaced by V. If
the dotted-pair u is (a . b) then <V b) is returned.
The type mismatch error occurs if U is not a dotted-pair.

(RPLACD U;dotted-pair V:any) ;dotted-pair
Type: EVAL, SPREAD.
The CDR portion of the dotted-pair U is replaced by V. If
dotted-pair U is (a. b) then (a . V} is returned. The
type mismatch error occurs if U is not a dotted-pair.

2.5 IDENTIFIERS

All identifiers and GENSYM's are interned.

(GENSYM) :id
Creates an identifier which is the characters Gxxxx where
xxxx is a hexadecimal number which is incremented each
time GENSYM. is called. The symbol generated is not
guaranteed to be unique.

The following Standard LISP functions are not implemented in
UOLISP.

COMPRESS EXPLODE INTERN REMOB

2.6 PROPERTY LIST FUNCTIONS

A "property list" is a collection of items which are associated
with an identifier for fast access. These entities are called
"flags" if their use gives the identifier a single valued
property and "properties" if the id is to have a multivalued
attribute: an indicator with a property. In UOLISP,
indicator-value pairs are dotted-pairs, and flags are atoms.

2-9

FUNCTIONS

Flags and indicators may clash, consequently care should
be taken to avoid occurrences of indicators which have the same
name as a flag. Likewise, the implementatiori of functions and
global variables requires that the indicators and flags EXPR,
GLOBAL, and FEXPR not be used.

(FLAG U:id-list V:id) :Nli
Type: EVAL, SPREAD.
U is a list of ids which are flagged with V. The effect
of FLAG is that FLAGP will have the value T for the ids of
U. Both Vandall members of U must be identifiers. No
type checking is performed.

(FLAGP U-:id V:id) :boolean
Type: EVAL, SPREAD.
Returns T if Uhas been previously flagged with V, else
NIL.

(REMFLA~ U:any-list V;id) :Nn
Type: EVAL, SPREAD.

~

Removes the flag V from the property list of each member
of the list U. Both V and all elements of U must be
identifiers.

!.L.i.i..Q .llll.1:id) :any
Type: EVAL, SPREAD~
Returns the property associated with the indicator !ND
from the property list of U. If U does not have the
indicator IND, NIL is returned .

.i.rn !.!..Li_g I ND : id PROP : a.D.Yl_;_fillY
Type: EVAL, SPREAD.
The indicator IND with the property PROP is placed on the
property list of the identifier U.

(REMPROP U;id IND;id) :NIL
Type: EVAL, SPREAD.
Removes the property with indicator IND from the property
list of u. Unlike Standard LISP, NIL is always returned.

FUNCTIONS

2.7 FUNCTION DEFINITION

Functions are global entities which are stored on the property
list of the (EXPR. XXX) or (FEXPR. XXX) pair. To maintain
compatibility with other . systems, functions should not be
defined with the PUT function .

.i..Illi FNAME:id _PARAMS:id-list FN:any) :id
Type: NOEVAL, NOSPREAD.
DE defines an EXPR type function named FNAME with the body
FN and formal parameter list PARAMS. Any previous
definitions of the function are lost. The fun~tion
created is a LAMBDA expression unless the !*COMP variable
is Tin which case the EXPR is compiled. The name of the
defined function is returned.

(DF FNAME;id PARAM:id-list FN:any) :id
Type: NOEVAL, NOSPREAD.
DF defines an FEXPR·type function named FNAME with the
body FN and a single parameter in the list PARAM. Any
previous definitions of the function are lost. The
function created is a LAMBDA expression unless the !*COMP
variable is Tin which case the FEXPR is compiled. The
name of the defined function is returned.

(GETD FNAME:any) :{NIL,dotted-pair}
Type: EVAL, SPREAD.
If FNAME is not the name of
returned. If FNAME is a
dotted-pair:

a defined function NIL
defined function then

(TYPE:ftype

is returned.

DEF:{function-pointer,lambda})

(PUTD FNAME:id TYPE:ft~ BODY:function) :id
Type: EVAL, SPREAD.

is
the

Creates a function with name FNAME and definition BODY of
type TYPE. If PUTD succeeds the name of the defined
function is returned. The effect of PUTD is that GETD
will return a dotted-pair with the functions type and
definition. Unlike Standard LISP, UOLISP does not have
GLOBALP returning T for functions.

If the function FNAME has already been defined, a
warning message will appear:

(FNAME redefined)

2-11

FUNCTIONS

The function defined by PUTD will be compiled be~ore
definition if the !*COMP variable is non-NIL.

(REMD FNAME:id) :NIL
Type: EVAL, SPREAD.
Removes the function named FNAME fiom the set of defined
functions. Unlike Standard LISP, NIL is always returned
by the REMD function.

UOLISP does not support the MACRO function type.
the DM function is not supported.

Consequently

2.8 VARIABLES AND BINDINGS

A variable is a place holder for a value which is said to be
bound to the variable. The scope of a variable is the range
over which the variable has a defined value. UOLISP supports
three binding mechanisms.

Local Binding
This type of binding occurs only in compiled functions.
Local variables occur as formal parameters in lambda
expressions and as PROG form variables. The binding occurs
when a lambda expression is evaluated or when a PROG form is
executed. The scope of a local variable is the body of the
function in which it is defined.

GLOBAL binding
Only one binding of a global variable exists at any time
allowing direct access to the value bound to the variable.
The scope of a global. variable is universal. Variables
declared GLOBAL must not appear as parameters in lambda
expressions or as PROG form variables. A variable must be
declared GLOBAL prior to its use as a global variable.

ALIST Binding
UOLISP does not support compiled FLUID variables as
Standard LISP. However all interpreted functions bind
variables on an association list permitting fluid
access for interpreted functions only.

does
local
style

Retrieval of values of variables occurs when they are
evaluated. The following functions declare the global property
and implement the assignment operation.

2-12

FUNCTIONS

(GLOBAL .:rn_LIST:id-list) :NIL
Type: EVAL, SPREAD.
The identifiers of IDLIST are declared global type
variables. If an identifier has not been declared
previously it is initialized to NIL. Identifiers already
declared GLOBAL are ignored.

(GLOBALP !.IJ: any) : boolean
Type: EVAL, SPREAD.
If u has been declared GLOBAL Tis returned, else NIL is
returned.

~ EXP: ic1 VALUE: any) : any
Type: EVAL, SPREAD.
EXP must be an identifier or an error occurs. The effect
of SET is replacement of the item bound to the identifier
by VALUE. If the identifier is not a local variable or
has not been declared GLOBAL an error occurs. The other
Standard LISP error checking is not performed.

(SETO VARIAB,I&:id VALUE:anyl ;any
Type: NOEVAL, NOSPREAD.
SETQ has the same effect as SET
argument is a variable and is
errors occur.

except that the first
not evaluated. The same

The following Standard LISP functions are not implemented:

FLUID FLUIDP UNFLUID

2.9 PROGRAM FEATURE FUNCTIONS

These functions provide for explicit control sequencing, and
the definition of blocks altering the scope of local variables.

~ LABEL: id)
Type: NOEVAL, NOSPREAD.
GO alters the normal flow of control within a PROG
function. The next statement of a PROG function to be
evaluated is immediately preceded by LABEL. A GO may only
appear in the following situations:

1) At the top level of a PROG referencing a label which
also appears at the top level of the same PROG

2-13

FUNCTIONS

2a) As the consequent of a COND item of a COND appearing
on the top level of a PROG

2b) As the consequent of a COND item which appears as the
consequent of a COND item to any level

3a) ·As the last statement of a PROGN which appears at the
top level of a PROG or in a PROGN appearin9 in the
consequent of a COND to any level subject to the
restrictions of 2a,b

3b) As the last statement of a PROGN within a PROGN or as
the consequent of a COND in a PROGN to any level
subject to the restrictions of 2a,b and 3a

If LABEL does not appear at the top level of the PROG in
which the GO appears, an error occurs:

***** LABEL is not a known label

(PROG VARS:id-list (PROGRAM:{id,any}]) :any
Type: NOEVAL, NOSPREAD.
VARS is a list of ids which are considered fluid when the
PROG is interpreted and local when compiled (see the
"Variables and Bindings" section). The PROGs variables
are allocated space when the PROG form is invoked and are
deallocated when the PROG is exited. PROG variables are
initialized to NIL. The PROGRAM is a set of expressions
to be evaluated in order of their appearance in the PROG
function. Identifiers appearing in the top level of the
PROGRAM are labels which can be referenced by GO. The
value returned by the PROG function is determined by a
RETURN function or NIL if the PROG "falls through".

{PROGN [U:any]) :fill.Y
Type: NOEVAL, NOSPREAD.
U is a set of expressions which are executed sequentially.
The value returned is the value of the last expression.

{PROG2 A:any B;anyl :any
Type: EVAL, SPREAD.
The two arguments are evaluated in order, and the value of
the second is returned.

Tl-i,s Cor P{(Oc;,)'}':, 5hov\d h~ u)ei) iu svrfDu~~ e1 Sd of sltrt0,.,i,-_> \M,re, ;~"" Or,QJ

ii\ " f) unct-:o~ tie+,~,,-;,~ o, Cofl)). (G,J
1
~ s\i;..\-e,,,f,tr ;s nori-~11

1
c,l\o-,,e ~)

(RETURN U: any_ r11..0G-N ;.,,.t-, o.ls. lit v•f\ . 1 ·i ; l .., ~ •
Type: EVAL, SPREAD. 1

J 1 '"'
1 1 s O r

Within a PROG, RETURN terminates the evaluation of a PROG
and returns U as the value of the PROG. The restrictions
on the placement of RETURN are exactly those of GO.

2-14

'-_.)

FUNCTIONS

2.10 ~RROR HANDLING

(ERROR NUMBER;intege~ MESSAGE:an..Yl.
Type~ EVAL, SPREAD.
NUMBER and MESSAGE are passed back to a surrounding
ERRORSET (the UOLISP reader has an ERRORSET). MESSAGE is
placed in the global variable EMSG!*. The error number
becomes the value of the surrounding ERRORSET as well as
being placed in the global variable ENUM!*. Local
variable bindings are unbound to return to the environment
of the ERRORSET. Global variables are not affected by the
process.

(ERRORSET U:any I:1..S..GR;booilM TR:boolean) :any
Type: EVAL, SPREAD.
If an error occurs during the evaluation of U, the value
of NUMBER from the ERROR call is returned as the value of
ERRORSET. In addition, if the value of MSGP is non-NIL,
the MESSAGE from the ERROR call is displayed on the
currently selected output device. The message appears
prefixed with 5 asterisks. The MESSAGE from the ERROR
call will be available in the global variable EMSG!*, the
number in ENUM!*.

If no error occurs during the evaluation of U, the
value of (LIST (EVAL U)) is returned.

2.11 ~OOLEAN FUNCTIONS AND CONDITIONALS

J..filfil fU;anyl) :extra-boolean
Type: NOEVAL, NOSPREAD.
AND evaluates each U until a value of NIL is found or the
end of the list is encountered. If a non-NIL value is the
last value it is returned, else NIL is returned.

(DF AND (U)
(PROG ()

(COND ((NULL U) (RETURN T)))
LOOP (COND ((NULL (CDR U)) (RETURN (EVAL (CAR U))))

((NULL (EVAL (CAR U))) (RETURN NIL)))
(SETQ U (CDR U))
(GO LOOP)))

2-15

FUNCTIONS

(COND [U:cond-formJ) :any
Type: NOEVAL, NOSPREAD.
The antecedents of all U's are evaluated in order of their
appearance until a non-NIL value is encountered. The..._;
consequent of the selected U is evaluated and becomes the
value of the COND. The consequent may also contain the
special functions GO and RETURN subject to the restraints
given for these functions in the "Program Feature
Functions" section. In these cases COND does not have a
defined value, but rather an effect. If no antecedent is
non-NIL the value of COND is NIL.

lNQT U;any) :boolean
Type: EVAL, SPREAD.
If U is NIL, return T else return NIL (same as· NULL
function).

(DE NOT (U) (EQ U NIL))

[U;anyl) ;extra-boolean
Type: NOEVAL, NOSPREAD.
U is any number of expressions which are evaluated in
order of their appearance. When one is found to be
non-NIL it is returned as the value of OR. If all are
NIL, NIL is returned.

(DF OR (U)
(PROG (X)

LOOP (COND ((NULL U) (RETURN NIL))
((SETQ X (EVAL (CAR U))) (RETURN X)))

(SETQ U (CDR U))
(GO LOOP)))

2.12 ARITHMETIC FUNCTIONS

All arithmetic functions verify that their arguments are
numeric before performing operations on them. The single error
message:

***** Non-numeric argument

is used by all numeric functions. All integer values are in
the range -4096 to +4095.

lAas U;number) :numbec
Type: EVAL, SPREAD.
Returns the absolute value of its argument.

2-16

FUNCTIONS

(DE ABS (U)
(COND ((LESSP U 0) (MINUS U))

(TU)))

(ADDl U;number) :number
Type: EVAL, SPREAD.
Returns the value of U plus lo

(DE ADDl (U) (PLUS2 U 1))

(DIFFERENCE □ :number V:number} :number
Type: EVAL, SPREAD.
The value U - Vis returned.

{DIVIDE U;number V;number) :dotted-pair
Type: EVAL, SPREAD.
The dotted-pair (quotient . remainder) is returned. The
quotient part is computed the same as by QUOTIENT and the
remainder the same as by REMAINDER.

(DE DIVIDE (U V)
(CONS (QUOTIENT UV) (REMAINDER UV)))

CEXPT U;integer V:integer) :integer
Type: EVAL, SPREAD.
Returns U raised to the V power. Unlike Standard LISP,
negative exponents are not permitted. Th~ function will
create incorrect results when the computed value is
greater than 4095.

(GREATERP U;number V;number} ;boo~~n
Type: EVAL, SPREAD.
Returns T if U is strictly greater than V, otherwise
returns NIL.

(LESSP U;nurnbfi V;number) :boolean
Type: EVAL, SPREAD.
Returns T if U is strictly less than V, otherwise returns
NIL .

..!..11.AX (U; integer]): integer
Type: NOEVAL, NOSPREAD.
Returns the largest of the values in U.

2-17

FUNCTIONS

{MAX2 U:number V;number} :number
Type: EVAL, SPREAD.
Returns the larger of U and V. If U and V are the same
value U is returned.

(DE MAX2 (UV)
{COND ((LESSP UV) V)

(T U)))

...lM.I.N [U;integerll :integer
Type: NOEVAL, NOSPREAD.
Returns the smallest of the values of U.

(MIN2 U;number V:numb~fl.l,pumber
Type: EVAL, SPREAD.
Returns the smaller of its arguments. If U and V are the
same value, U is returned.

(DE MIN2 (UV)
{COND ((GREATERP UV) V)

('I'U)))

<MINUS U:numberl ;numt>.e_i:_
Type: EVAL, SPREAD.
Returns -u.

{DE MINUS (U) (DIFFERENCE 0 U))

{PLUS [U:numberl) ;nu.Ill.Qtl
Type: NOEVAL, NOSPREAD.
Forms the sum of all its arguments.

{PLUS2 u:number Y...;.@m.Q.W:number
Type: EVAL, SPREAD.
Returns the sum of U and v.

(QUOTIENT !.L:.D..JJ.ID.Qtl V;number) :number
Type: EVAL, SPREAD.
The quotient of U divided by Vis returned. Division of
two positive or two negative integers is conventional.

(REMAINDER U:number V:nurnber) :number
Type: EVAL, SPREAD.
If both U and V are integers the result is the integer
remainder of U divided by v. If either number is negative
the remainder is negative. If both are positive or both
are negative the remainder is positive.

2-18

FUNCTIONS

(SUBl U;number) :number
Type: EVAL, SPREAD.
Returns the value of U less 1.

(DE SUBl (U) (DIFFERENCE U l))

{TIMES [U;numb..§rl) :numoer
Type: NOEVAL, NOSPREAD.
Returns the product of all its arguments.

(TIMES2' U: number ~nurnbe r) : nurnbe r
Type: EVAL, SPREAD.
Returns the product of U and V.

The following Standard LISP functions are not implemented:

FIX FLOAT

2.13 MAP COMPOSITE FUNCTIONS

.i..M.8E X; list FN; functionl..;.N.l.L
Type: EVAL, SPREAD.
Applies FN to successive CDR segments of X.
returned.

(DE MAP (X FN)
(PROG ()

LOOP (COND ((NULL X) (RETURN NIL))
(T (PROGN (APPLY FN (LIST X))

(SETQ X (CDR X)))))
(GO LOOP)))

(MAPC X;list FN;functionl :NIL
Type: EVAL, SPREAD.

NIL is

FN is applied to successive CAR segments of list X. NIL
is returned.

(DE MAPC (X FN)
(PROG ()

LOOP (COND ((NULL X) (RETURN NIL))
(T (PROGN (APPLY FN (LIST (CAR X)))

(SETQ X (CDR X)))))
(GO LOOP)))

2-19

FUNCTIONS

(MAPCAN X;list FN:functionl ;any
Type: EVAL, SPREAD.
A concatenated list of FN applied to successive CAR
elements of Xis returned.

(DE MAPCAN (X FN)
(COND ((NULL X) NIL)

(T (NCONC (APPLY FN (LIST (CAR X)))
(MAPCAN (CDR X) FN)))))

(MAPCAR X;list FN:f~nctionl :any
Type: EVAL, SPREAD.
Returned is a constructed list of FN applied to each CAR
of list X.

(DE MAPCAR (X FN)
(COND ((NULL X) NIL)

(T (CONS (APPLY FN (LIST (CAR X)))
(MAPCAR (CDR X) FN)))))

(MAPCON X;list FN:functionl :any
Type: EVAL, SPREAD.
Returned is a concatenated list of FN
successive CDR segments of X.

(DE MAPCON (X FN)
(COND ((NULL X) NIL)

(T (NCONC (APPLY FN (LIST X))
(MAPCON (CDR X) FN)))))

(MAPLIS,I X;.l.i§.t FN;functionl ;any
Type: EVAL, SPREAD.

applied to

Returns a constructed list of FN applied to successive CDR
segments of X.

(DE MAPLIST (X FN)
(COND ((NULL X) NIL)

(T (CONS (APPLY FN (LIST X))
(MAPLIST (CDR X) FN)))))

2-20

FUNCTIONS

2.14 COMPOSITE FUNCTIONS

(APPEND U: 1 i st V; 1 i st} :..l..i.fil
Type: EVAL, SPREAD.
Returns a constructed
is followed by the
copied, Vis not.

list in which the last element of U
first element of v. The list U is

(DE APPEND (U V)
(COND ((NULL U) V)

(T (CONS (CAR U) (APPEND (CDR U) V)))))

(ASSOC U:any V;alist}: {dotted-gair ,NIL}
Type: EVAL, SPREAD.
If u occurs as the CAR portion of an element of the alist
v, the dotted-pair in which U occurred is returned, else
NIL is returned. ASSOC does not detect a poorly formed
alist so an invalid construction may be detected by CAR or
CDR.

(DE ASSOC (UV)
(COND ((NULL V) NIL)

((ATOM (CAR V))
(ERROR 0 (LIST V "poorly formed ALIST")))

((EQUAL U (CAAR V)) (CAR V))
(T (ASSOC U (CDR V)))))

{ATSOC U;any V;alist} :lsi9.llJW-pair, filL.l
Type: EVAL, SPREAD.
ATSOC is the same as ASSOC except that the EQN
used for comparison purposes rather than EQUAL.
faster than ASSOC when the items being checked
identifiers or numbers. ATSOC does not check for
formed alist.

(DE ATSOC (UV)
(COND ((NULL V) NIL)

((EQN U (CAAR V)) (CAR V))
(T (ATSOC U (CDR V)))))

(DEFLIST U:dlist IND;id} :list
Type: EVAL, SPREAD.

test is
ATSOC is
for are
a poorly

A "dlist" is a list in which each element is a two element
list: (ID: id PROP: any) . Each ID in U has the indicator
IND with property PROP placed on its property list by the
PUT function. The value of DEFLIST is a list of the first
elements of each two element list. Like PUT, DEFLIST
should not be used to define functions.

2-21

FUNCTIONS

(DE DEFLIST (U IND)
(COND ((NULL U) NIL)

(T (CONS
(PROGN (PUT (CAAR U) IND (CADAR U))

(CAAR U))
(DEFLIST (CDR U) IND)))))

(DELETE U:any V:list) :list
Type: EVAL, SPREAD.
Returns V wi~h.the first top level occurrence of U removed
from it.

(DE DELETE (UV)
(COND ((NULL U) NIL)

((EQUAL (CAR V) U) (CDR V))
(T (CONS (CAR V) (DELETE U (CDR V))))))

(LENGTH X;anyl :inte,gfil
Type: EVAL, SPREAD.
The top lev~l length of the list Xis returned.

(DE LENGTH (U)
(COND ((ATOM U) 0)

(T (ADDl {LENGTH (CDR X))))))

(MEMBER A;any B:list) :extra-boolean
Type: EVAL, SPREAD.
Returns NIL if A is not a member of list B,
remainder of B whose first element is A.

(DE MEMBER (AB)
(COND ((NULL B) NIL)

((EQUAL A (CAR B)) B)
('I' (MEMBER A (CDR B)))))

(MEMO A:any B:lisll:extra-boolean
Type: EVAL, SPREAD.

returns the

Same as MEMBER but an EQ check is used for comparison.

(DE MEMQ (AB)
(COND ((NULL B) NIL)

((EQ A (CAR B)) B)
(T (MEMQ A (CDR B)))))

CNCONC U;list V:list) :list
Type: EVAL, SPREAD.
Concatenates V to U without copying u. The last CDR of U
is modified to point to V.

2-22

FUNCTIONS

(DE NCONC (UV)
(PROG (W)

(COND ((NULL U) (RETURN V)))
(SETQ WU)

LOOP (COND ((CDR W) (PROGN (SETQ W (CDR W))
(GO LOOP))))

(RPLACD WV)
(RETURN U)))

C PA IR U ; 1 i st V : 1 i st) : a 1 i st
Type: EVAL, SPREAD.
U and V are lists which must have an identical number of
elements. If not, an error occurs. Returned is a list
where each element is a dotted-pair, the CAR of the pair
being from U, and the CDR the corresponding element from
v.

(DE PAIR (U V)
(COND ((AND U V)

(CONS (CONS (CAR U) (CAR V))
(PA•IR (CDR U) (CDR V))))

((OR U V)
(ERROR 0

"Different length lists in PAIR"))
(TNIL)))

{REVERSE U;list) :list
Type: EVAL, SPREAD.
Returns the top level reversal
does not go to all levels).
of the actual parameter.

(DE REVERSE (U)
(PROG (W)

of the list U (the reversal
The reversed list is a copy

LOOP (COND (U (PROGN (SETQ W (CONS (CAR U) W))
(SETQ U (CD R U))

(RETURN W)))

(SUBLIS X;alist Y:any) :any
Type: EVAL, SPREAD.

(GO LOOP))))

The value returned is the result of substituting the CDR
of each element of the alist X for every occurrence of the
CAR part of that element in Y.

2-23

FUNCTIONS

(DE SUBLIS (X Y)
(COND ((NULL X) Y)

(T (PROG (U)
(SETQ U (ASSOC Y X))
(RETURN (COND

(U (CDR U))
((ATOM Y) Y)
(T (CONS

(SUBLIS X (CARY))
(SUBLIS X (CDR Y)))))

)))))

{SUBST U:any V;any W:any) !....2DY
Type: EVAL, SPREAD.
The value returned is the result of substituting U for all
occurrences of Vin W.

(DE SUBST (UV W)
(COND ((NULL W) NIL)

((EQUAL V W) U)
((ATOM W) W)
(T (CONS (SUBST UV (CAR W))

(SUB ST U V (CDR W))))))

The following Standard LISP functions are not implemented:

OIGIT LITER SASSOC

2.15 THE INTERPRETER

{APPLY FN;ffunction-pointer,lambda} ARGS:any-list) :any
Type: EVAL, SPREAD.
APPLY returns the value of FN with actual parameters ARGS.
The actual parameters in ARGS are already in the form
required for binding to the formal parameters of FN. FN
can be either a function-pointer, or a lambda expression.

~?.H\ v~+ort;f\uh\1 J Sil'<'\~\,/ aoqs~"\ \.JOr)l ';l\i"h (, ·''",~j c-i\.i ih,,,, Cl l~M~D!.'I hffess1Je,

De-~1f\e. ii Ml,, -\.Jl'ct10- fl-PPL (o, •"'J oil.[f",IJI"~ v~-i)1li.tJ CiJ;
{EVAL U:any) :any)

Type: EVAL, SPREAD. l D l ~ fPL tFN vJ:>.R.,S)

1 f h . . (COND no!<. Un1)1"\ r~)
The va ue o t e expression U 1s computed. (tvo, \ea. lc~trnl'LAMSOAlTI

b-.,, LO.,-~ le:hnd $1frp\ b11

(n\:- t,y.,,nll,Of.\ lU

c llr .(l h.', (c i) N s \ °' \J o\l Lj>,;-\t n I\) u i. <-~~ o·~ fj
2-24

\;,y111. \ l011s rN l/l\ll.S1>)
(T U,~fl1 fiJ Vl'lll..5 l))J

1 h,-) 'I,,, 1 J" , . c L \\ B l) f'I (l 5 ~ I ' 0n 1 ,,

L1 ~ p 1.5 ?1,f\•-IU ~ l \Jc,,~._>H

~,. • \ l A,\1BD ~ (v.) (Pl\.1 ~ ':< 5)) ())

hr-s v~\ic
\1..

FUNCTIONS

(EVLIS U;any-list} :any-list
Type: EVAL, SPREAD.
EVLIS returns a list of the evaluation of each element of
u.

(FUNCTION FN:function} :function
Type: NOEVAL, NOSPREAD.
The function FN is to be passed to another function. If
FN is to have side effects its free variables must be
GLOBAL. FUNCTION is like QUOTE and, unlike Standard LISP,
its argument is not compiled. The FUNARG mechanism is not
supported.

(QUOTE U:any) :any
Type: NOEVAL, NOSPREAD.
Stops evaluation and returns U unevaluated.

The Standard LISP function EXPAND is not supported. Macros are
not supported at all.

2.16 INPUT AND OUTPUT

The user
console
time and
noted in

normally communicates with UOLISP through the standard
device. UOLISP allows input from one disk file at a
output to another. Special devices are supported as
the appropriate installation guides.

(CLOSE FILEHANDLE;number} ;nu.I!lfil~
Type: EVAL, SPREAD.
Closes the file with the internal name FILEHANDLE writing
any necessary end of file marks and such. The value of
FILEHANDLE is that returned by the corresponding OPEN.
The value returned is the value of FILEHANDLE. If an
error occurs during a file close or the wrong file handle
is given, UOLISP displays an error but processing will
continue.

(OPEN FILE:string HOW:id) :number
Type: EVAL, SPREAD.
Open the file with the system dependent name FILE for
output if HOW is EQ to OUTPUT, or input if HOW is EQ to
INPUT. If the file is opened successfully, a value which
is internally associated with the file is returned. This
value must be saved for use by RDS and WRS.

2-25

FUNCTIONS

(LINELENGTH LEN:{integer. NIL}) ;integer
Type: EVAL, SPREAD.
If LEN is an integer the maximum line length to be printed
before the print functions initiate an automatic TERPRI is
set to the value LEN. The initial line length is s~t to
the width of the standard output device. The previous
line length is returned except when LEN is NIL. This
special case returns the current line length and does not
cause it to be reset. An error occurs if the requested
line length is less than 0. The maximum line length is
4095. If the line length is set to 0, no automatic
TERPRI's will be done.

(POSN) :integer
Returns the number of characters in the current output
buffer. When the buffer is empty, 0 is returned.

{PRINT U:any) :any
Type: EVAL, SPREAD .•
Displays U in READ readable format and terminates the
print line. The value of u· is returned.

{PRINl U:any) :any
Type: EVAL, SPREAD.
U is displayed in a READ readable form. In identifiers,
special characters are prefixed with the escape character
!, and strings are enclosed in" ... ". Lists are displayed
in list-notation.

(PRIN2 Q;any) :any
Type: EVAL, SPREAD.
U is displayed upon the currently selected print device
but output is not READ readable. The value of U is
returned. Items are displayed so that the escape
character does not prefix special characters and strings
are not enclosed in " ... ". Lists are displayed in
list-notation .

.i.fil1S. FILEHAN..Ql&.;number) :number
Type: EVAL, SPREAD.
Input from the currently selected input file is suspended
and further input comes from the file named. FILEHANDLE
is a number returned by the OPEN function for this file.
If FILEHANDLE is NIL the terminal input device is
selected. When end of file is reached on a non-standard
input device, the standard input device is reselected.
RDS returns the internal name of the previously selected
input file.

2-26

FUNCTIONS

(READ) ;any
Returns the next expression from the file currently
selected for input. Valid input forms are: dot-notation,
list-notation, numbers, strings, and identifiers with
escape characters. READ ignores comments. A comment
starts with a percent sign (%) and is terminated by the
end of line.

(READCH) : id
Returns the next character from the file currently
selected for input. Two special cases occur. If all the
characters in an input record have been read, the value of
!$EOL!$ is returned. Comments delimited by% and end of
line are not transparent to READCH.

{TERPRI) ;NIL
The current print line is terminated.

~ FILEHANDLE:number) :number
Type: EVAL, SPREAD.
Output to the currently active output file is suspended
and further output is directed to the file named.
FILEHANDLE is an internal name which is returned by OPEN.
The file named must have been opened for output, unless it
is a device that is always open (like the console). If
FILEHANDLE is NIL the standard output device is selected.
WRS returns the internal name of the previously selected
output file.

The following Standard LISP functions are not implemented:

EJECT LPOSN PAGELENGTH PRINC

2.17 SYSTEM GLOBAL VARIABLES

These variables provide global control of the LISP system, or
implement values which are constant throughout execution.

!*COMP - Initial value= NIL.
The value of !*COMP controls whether or not PUTD compiles the
function defined in its arguments before defining it. If
!*COMP is NIL the function is defined as a LAMBDA expression.
If !*COMP is non-NIL, the function is first compiled.

2-27

FUNCTIONS

!*ECHO - Initial value= NIL.
If *ECHO is T, input character will be written to the selected
output file as they are read.

EMSG!* - Initial value= NIL.
Will contain the MESSAGE generated by the last ERROR call (see
the "Error Handling" section).

ENUM!* - Initial value= NIL.
Contains the error number from the last ERROR call.

!SEOL!S - Value= an uninterned identifier.
The value of !$EOL!$ is returned by READCH when it reaches the
end of a logical input record.

!*FLINK - Initial value= NIL.
If !*FLINK is non-NIL, fast call instructions are generated in
plac~ of slow indirect calls in compiled code. Once a fast
call has been generated it may not be changed back to a slow
call. The timing ratio of slow to fast links is approximately
50 to 1.

~ - Initial value= NIL.
!*GC controls the printing of garbage collector messages.
NIL no indication of garbage collection will occur.
non-NIL, the number of free cells remaining after
collection will be displayed on the selected output file.

NIL - Value= NIL.
NIL is a special global variable.

T - Value= T.
Tis a special global variable.

!*OUTPUT - Value= T.

If
If \.....-I

each

If !*OUTPUT is T then the result of each LISP reader evaluation
is printed otherwise no value is printed.

!*RAISE - Value= NIL.
If !*RAISE is T then lower case characters are converted to
upper case during input. If NIL, no conversion takes place.
On machines which do not normally support lower case, this flag
is not implemented.

2-28

FUNCTIONS

UOLISP does not implement the Standardard
variable.

2.18 STANDARD LISP DIFFERENCES

LISP !$EOF!$

Functions aupported by UOLISP but are not in the Standard LISP
report are listed in the first two sections of this chapter.
The following Standard LISP functions are not currently
supported for a variety of reasons:

COMPRESS FLOATP PRINC
CxxxxR FLOAT REMOB
DIGIT FLUIDP SASSOC
DM FLUID UNFLUID
EJECT INTERN
EXPAND LITER
EXPLODE LPOSN
FIX PAGELENGTH

The vector functions GETV, MKVECT, PUTV, UPBV, and VECTORP
are implemented as a package which is interfaced to the RLISP
high level language.

2.19 ERRORS

Many error conditions are signaled by a system call to the
ERROR function. The following errors and their corresponding
numbers are detected in this manner.

1. Caused by a user typing the program interruption key
(implementation specific).

2. Undefined function call from compiled code.

3. Not used.

4. The argument of CAR, CDR, RPLACA, RPLACD and so on is
not a dotted-pair.

5. An arithmetic function was called with a non-numeric
argument.

6. An input or output file could not be opened. This
will usually be prefixed by some operating system
error message.

2-29

FUNCTIONS

7. A poorly formed association list was detected by
ASSOC.

8. Not used.

9. Not used.

10. An input or output error was detected from which the
operating system could not recover. This will usually
be preceeded by an operating system error message.

11. An unbound variable was detected during the evaluation
of a function or functional form.

12. The object of a GO could not be found within the
current PROG.

2.20 SYSTEM ERRORS

The system tries to maintain an operating environment. Some
severe errors cause complete termination and program restart
with global data intact but with stacks gone and so on. These
errors appear with 7 astersisks preceeding them and are
followed by the LITTLE BIG LISP prologue heading.

******* STACK OVFLW
This occurs when the frame stack gets
down stack. This usually means
preceeded to deeply or infinitely.

******* SYMBOL TABLE FULL

to close to the push
that recursion has

This error occurs when too many symbols have been added to
the symbol table. This is usually the result of to many
GENSYM's being done or too large a program being read in.

******* STRING SPACE FULL
This error occurs when the string table overflows into the
symbol table. This could be too many GENSYM's or too many
large string messages.

******* FREE CELLS EXHAUSTED
This error occurs when
have been used. To
pairs there are do:

(SETQ !*GC T)
(RECLAIM)

all available free dotted-pairs
determine how many available free

2-30

CHAPTER 3

FAST LOAD

Rather than compiling an entire system or reading and compiling
code every time, program modules are compiled into relocatable
fast load files. Most modern LISP systems provide this
facility in one form or another. The fast loading program is
built into the system. It reads binary code and top level
s-expressions to interpret. To load a precompiled package
enter:

(FLOAD "filename")

where "filename" is a disk file name. If all goes well the
system will respond with NIL. If you try to load the wrong
type of file, the error message:

•
***** FAST LOAD ERROR

will appear.

To create a fast load file you must enter the following
sequence:

(FLOAD "COMP")
(FSLOUT "filename")

FSLEND

%Load the compiler
%Create a file
%LISP source code here.

%End of source code.

The file "filename" will appear in the directory. All
S-expressions read between the FSLOUT and the FSLEND are
directed to "filename" with the exception of DE, DF, and PUTDs
which are evaluated and cause compiled functions to be dumped
to the file.

If a function must be evaluated during the fast load
generation process it should be tagged with the EVAL flag by
the FLAG function. The system has already flagged the RDS, IN,
ON, and OFF functions as EVAL type. Some functions must be
both dumped and evaluated. These are tagged with the EVALS
flag by FLAG. GLOBAL is the'only one one these flagged by the

FAST LOAD

system.

In RLISP the same sequence is accomplished except that
RLISP syntax is used in place of S-expressions.

Fast load files
independent. This
storage location.
independent.

are both relocatable and implementation
means, that they may be loaded into at any

To some degree files are also machine

3-2

CHAPTER 4

THE COMPILER AND OPTIMIZER

The compilation process is divided into two passes: the first
translates LISP into pseudo-assembly code called LAP (for ~isp
bssembly £rogram), the second translates this LAP into absolute
machine code and placea this in storage for execution or dumps
it to a fast load file for later reloading. An optional ·third
pass optimizes the LAP before assembling it.

4.1 OVERVIEW

The LISP interpreter contains code for reading functions into
the LISP system and executing them interpretively much like
other microprocessor based systems. Unfortunately interpreted
functions require large amounts of storage and execute very
slowly.

A more efficient scheme reads functions in the
interpretive form, and then compiles them to machine code to be
executed directly by the microprocessor. The interpreted
version of the function disappears, its storage becomes
available for use at a later time.

For
factorial
follows:

example, the
of a number

(DE FACT (N)

function FACT
recursively

(COND ((LESSP N 2) 1)

which computes the
is defined in UOLISP as

(T (TIMES2 (FACT (SUBl N)) N))))

In UOLISP, dotted-pairs, of which this
take 4 bytes each. 22 dotted-pairs are
a total of 88 bytes. UOLISP's compiler
the following code for FACT:

function is composed,
used to define FACT for
and optimizer generates

THE COMPILER AND OPTIMIZER

0000 ENTRY FACT EXPR
0000 CD1294 CALL ALLOC
0003 02 DEFB 2
0004 E7FE STOX HL -1
0006 110240 LDI DE 2
0009 F7 RST LINK
000A 1620 DEFW LESSP
000C EF RST CMPNIL
000D 2805 JREQ $1
000F 210140 LDI HL 1
0012 1813 JR $0
0014 $1:
0014 DFBF LDX HL -1
0016 F7 RST LINK
0017 8120 DEFW SUBl
0019 F7 RST LINK
001A A920 DEFW FACT
001C DF7F LDX DE -1
001E F7 RST LINK
001F 1921 DEFW TIMES2
0021 $0:
0021 CD8494 CALL RDLLOC
0024 FE DEFB -2
(FACT used 37 bytes)
FACT

A total of 37 bytes, less than half the size of the interpreted
version. The execution of the compiled version uses no
dotted-pairs and runs nearly 20 times faster. '-

4.2 COMPILATION MECHANISMS

Much support software is needed for compiled programs.
Compiled programs simply move information between registers and
call subroutines to perform most operations. In this section
we describe how various LISP constructs are implemented in LAP
and enumerate the various support functions required.

4.2.1 Parameter Passing

zero to 3 ararneters ma be passed to a function. The first
argument of a function (if 1 as any) will always be in the HL
register pair, the second in DE, and the third in BC.
Functions with more than three arguments cannot be compiled.

4-2

THE COMPILER AND OPTIMIZER

4.2.2 Stacks

Function parameters and PROG type variables are kept in a stack
frame, a contiguous block of locations pointed to by the IX
index register. When a function is invoked it creates a new
frame on the top of the stack by calling the ALLOC support
subroutine. ALLOC adds a number to IX to create a new empty
stack frame. It also checks for stack overflow and signals an
error if this has happened or is about to happen. When a
function terminates it calls the DALLOC routine which subtracts
the number of locations used from IX freeing the space for use
by the next function. The routine RDLLOC is called from
optimized code. It performs the same functions as DALLOC and
in addition does a double return to the function which called
the function which called RDLLOC. This saves one byte at the
end of most functions.

Storing and retrieving values from the stack frame is
accomplished by the two support routines LDX and STOX. Since
these operations occur frequently in compiled code it is
necessary that they use as little storage as pos~ible.
Therefore the LDX and STOX routines should be called ,using the
Z80 RST instruction with the following byte containing what
register pair is to be stored (or loaded), and the displacement
from the top of the stack frame. The format of the control
byte is given in the source code listings of LDX and STOX. The
LAP instructions generated by the compiler are also called LDX
and STOX and contain the register pair name and what
displacement is to be used.

Since these functions slow down the object code
considerably, the optimizer can replace them with their 6 byte
indexed move equivalents. This will speed up many functions
over 30%.

Let us examine a LAMBDA function with an imbedded PROG and
look at the code generated by the compiler.

(LAMBDA (A B) (PROG (C D) ...) ...

The generated LAP code pushes and pops the stack frame and
stores registers into the frame.

4-3

THE COMPILER AND OPTIMIZER

~ LAP

(LAMBDA (AB)

(CALL ALLOC)
(DEFB +4)
(STOX HL -1)
(STOX DE -2)

.. (PROG (C D) ...

(CALL ALLOC)
(DEFB +4)
(LDI HL NIL)
(STOX HL -1)
(STOX HL -2)

stack Frame

+-------------+
IL I<-- new IX
+-­
IH

A --+
I

+-------------+
IE I
+-­
ID

B --+
I

+-------------+
.<-- old IX

+-------------+
IL I<-- new IX
+-­
IH

C --+
I

+-------------+
IL I
+-­
!H

D --+
I

+-------------+
A .<-- old IX
B

Nested PROGs cause more frames to be allocated up to a maximum
of 64 accessable variables. The limiting factor is the 6 bits
of displacement in the LDX and STOX macros.

The Z80 internal stack (pointed to by the SP register) is
used for saving return addresses and intermediate values during
function evaluation. A call to a function FUN3 with 3
arguments stores the results of evaluation of the first two
arguments on the Z80 stack while the third is being computed.
The values are popped into the appropriate registers just
before the function is invoked.

(FUN3 (FUNA ...) (FUNB ...) (FUNC ...))

would generate the following code sequence:

4-1

'----1

THE COMPILER AND OPTIMIZER

... evaluate FUNA
(PUSH HL) ; Save result of FUNA on stack.
evaluate FUNB ...
(PUSH HL) ;Save result of FUNB on stack.
evaluate FUNC
(LDHL BC) ;Move BC to HL.
(POP DE) ;Result of FUNB is second argument.
(POP HL) ;Result of FUNA is first argument.
(RST LINK) ;Call FUN3.
(DEFW FUN3)

4.2.3 Calling Functions

The compiler will not always know the address of a function
being called either because it is not yet defined or it is
interpreted. A special internal subroutine called LINK is used
to transfer control at run time. Since both compiled and
interpreted functions can exist at the same time, LINK will
perform either of two functions. If an interpreted function is
being called from compiled code the LISP interpreter will be
invoked for that function. If the function being called is
compiled or is a system function the call to LINK will be
replaced by a direct call to that function. The call to the
LINK function must be an RST type link so that the 3 byte Z80
CALL instruction will exactly replace the compiled call. If
the system global variable !*FLINK is NIL, the substitution
will not take place and the slow link form will be used. This
is a useful debugging tool as it allows you to compile
functions and change their definitions (for tracing) without
reloading the system.

Compiled~

(RST LINK)
(DEFW function-name)

Changed l2Y LiN.K .tQ._;_

(CALL function-address)

The two byte DEFW attached to the LINK contains the symbol
table pointer of the function being called. At execution time
the LINK routine looks for either a compiled or interpreted
function attached to the name and either invokes EVAL,
generates the CALL, or if the !*FLINK flag is on, just
transfers to the function. If no such function is defined, the
undefined function error will occur.

4-5

THE COMPILER AND OPTIMIZER

4.2.4 The LIST Function

The LIST function is compiled in a special way to take
advantage of the Z80 internal stack. The arguments of the LIST
function are compiled and the results of each are pushed onto
the stack. When all have been computed the support function
CLIST is called.

(Fn ...)) (LIST (Fl ...)

compiles to:

evaluate Fl
(PUSH HL) ;Save result of Fl for CLIST.

;Evaluate other arguments.

evaluate Fn
(PUSH HL)
(LDA n)
(CALL CLIST)

;Save result of Fn for CLIST.
;Number of values on stack for
;call to CLIST routine.

4.2.5 COND Compilation

The LISP COND function is compiled into a series of tests and
conditional jumps. The CMPNIL support routine compares the
result of a predicate to NIL and sets the Z80 NZ and z flag
bits which control the conditional branch instructions
generated. If the last predicate bf the COND is T, the
predicate and jump will not be compiled (this is the usual
case) .

(COND (a0 c0) . . . (an en))

generates the following code:

*
*
*

...

evala te a0 ...
(RST CMPNIL)
(JPEQ G0001)
Evaluate c0 ...
(JP G0002)
(LABEL G0001)

(LABEL G000x)
evaluate an
(RST CMPNIL)
(JPEQ G0002)
evaluate en ...
(LABEL G0002)

;Is a0 NIL?
;Yes, jump to next antecedent.

;First consequent evaluated, quit.
;Come here if a0 is not true.

;Evaluate other antecedents.

;Try last predicate.

;Is last one NIL?
;Go return NIL then.

;Always come here when done.

4-6

\.J

THE COMPILER AND OPTIMIZER

Lines preceeded by an asterisk are not generated if the last
predicate is T.

4.2.6 PROG, GO, And RETURN

The PROG function and the control cons'tructs GO and RETURN are
compiled by inserting labels and values into a template.
RETURN's not in PROGs and illegally nested GO's are not
checked.

(PROG (X)

LBL
... (RETURN val)

(GO LBL)

...)
compiles to:

(CALL ALLOC)
(DEFB +2)
(LDI HL NIL)
(STOX HL -1)

(LABEL LBL)

evaluate val
(JP G0001)

(JP LBL)

(LABEL G0001)
(CALL DALLOC)
(DEFB -2)

;Space to save variable X allocated.

;PROG variable set to NIL.

;A PROG label generates a LABEL.

;Jump to end of this PROG.

;(GO LBL) generates a jump.

;All RETURN's come here.
;Free the stack frame allocated
;for x.

4-7

THE COMPILER AND OPTIMIZER

4.2"7 AND And OR Compiled

AND and OR are compiled identically except that the evaluation
of the arguments of AND terminates if one is NIL, and the
evaluation of OR terminates if one is non-NIL. The compilation
of AND generates JPEQ instructions after a comparison to NIL,
and the compilation of OR generates JPNEQ instructions.

(AND a0 an)

compiles to:

evaluate a0 ...
(RST CMPNIL)
(JPEQ G0001)

evaluate an ...

;Is result of a0 NIL?
;Stop evaluation if yes.

;Evaluate other arguments.

(LABEL G0001) ;Always end up here.

The OR function instance compiles exactly the same way, but
JPNEQ is generated instead of JPEQ.

4.2.8 Constants, Variables, And Quoted Values

These items are loaded directly into the correct register for
the function to which they are to be passed. Local and Global
variables may have values assigned to them with the appropriate
store instructions. The load register instructions
automatically add the correct tag bits.

Quoted items are saved on a list of compiled quoted values
so that the garbage collector will not remove them.· The value
representing the quoted item is loaded into the appropriate
register.

4.3 THE LAP INSTRUCTION SET

The LISP Assembly Program accepts the following instruction set
generated by the compiler (or user) and generates absolute
machine code or the correct information to place in a fast load
file. The optimizing phase implements many more instructions
which can be used only when the optimizer is loaded. The
following symbols are used:

4-8

\.,_)

THE COMPILER AND OPTIMIZER

pp - denotes a register pair HL, DE, or BC.
nn - an immediate 16 bit value.
n - denotes an immediate 8 bit value.
lbl - denotes a label found somewhere.
dsp - denotes an 8 bit stack displacement.
addr - denotes a 16 bit global address.

(ENTRY name type)
Serves as the entry point of function "name". ENTRY does
not generate any Z80 instructions. It must always be the
first instruction in every function as it causes the
creation of the code pointer to the first instruction of the
function and the definition of the function.

(LABEL lbl)
Defines a
function.

(LDHL pp)

label referenced elsewhere in the current
Labels are not known outside of a function.

Causes two Z80 register to register instructions to be
generated to transfer the contents of HL to BC or DE.

(LDI pp nn)
Generates
register
number, T

(LDX pp dsp)

a "load immediate" instruction to
pair pp with the 16 bit value nn.
or NIL, or a quoted item.

load the
nn may be a

Generates a call to the LDX routine to load the register
pair pp with a 16 bit value at dsp*2 bytes from the top of
the current stack frame. The control byte contains both the
register identifier and the displacement.

(LDA n)
Causes a single "Load A Immediate" instruction to be
generated which loads the 8 bit value n into the Z80 A
register. This instruction is used in the compilation of
the LIST function.

(STOX pp dsp)
Generates a call to the STOX reoutine to store register pair
pp at the displacement dsp*2 bytes from the top of the
currently active stack frame. The control byte generated to
follow the short call to the STOX routine contains both the
register identification to store and the 6 bit displacement.

(STO pp addr)
Generates a "store direct" instruction to store the value in
register pair pp in the value cell of a global variable at
addr.

(JP lbl)

4-9

THE COMPILER AND OPTIMIZER

(JPEQ lbl)

(JPNEQ lbl)
A long Z80 jump instruction is generated to get to the
location of the label named. The JP instruction is·an
unconditional jump. The JPEQ instruction generates a jump
conditional on the z condition code and the JPNEQ based on
the NZ condition code set.

(PUSH pp)
Generates the single byte instruction to push register pair
pp onto the Z80 stuck.

(POP pp)
Generates the single byte instruction to pop the Z80 stack
into the register pair pp.

(CALL name)
Generates a long 3 byte call instruction to the absolute
address of name. This absolute address is stored under the
CALL property as two integers representing the bytes of the
address in reverse order. Currently ALLOC, DALLOC, RDLLOC,
and the CLIST support routine addresses are so stored and
called.

(RST name)
Generates the single byte Z80 call instruction to one of 8
possible routines. A minimum of 3 RST · calls must be
available for the compiled code to operate correctly, one
for LINK, one for LDX, and one for STOX. The other RST's
used in this system may be changed into Z80 CALL
instructions, but the compiled code will be significantly
longer. Different implementations use different sets based
on the number of available RST's. Consult the
implementation guide to find what set is used. Currently
the following appear to be the best choices.

CMPNIL - compare HL to NIL, set z, NZ.
STOX - store register pair in stack frame.
LDX - retrieve register pair from stack frame.
CAR - take the CAR of HL.
CDR - take the CDR of HL.
LINK - slow link to defined function.
ALLOC - Allocate stack frame.
RDLLOC - Deallocate stack frame and return to caller.

(RET)
Generates the Z80 "return from subroutine" instruction.

(DEFW name)
Generates an identifier name for the LINK call.
expects a symbol table pointer.

4-10

LINK

THE COMPILER AND OPTIMIZER

(DEFB n)
Generates a single byte numeric value which is used as the
control byte for the STOX and LDX stack frame primitives and
for the ALLOC and DALLOC calls.

4.4 USING THE COMPILER

The compiler is stored as a fast load file.
must be manually loaded by typing:

(FLOAD "COMP")

In LISP it

The name of the compiler file varies from system to system.
After 30 seconds the machine will respond with the value NIL
and the prompt character. There are two options at this point.
You may either manually compile functions by typing:

(COMPD fn type body)

Where "fn" is the name of the function, "type" is either EXPR,
or FEXPR, and "body" is the LAMBDA expression of the function
to be compiled. To compile the factorial function presented
earlier using this method, you would enter:

(COMPO 'FACT 'EXPR
I (LAMBDA (N)

(COND ((LESSP N 2) 1)
(T (TIMES2 N (FACT (SUBl N)))))))

Functions may be compiled when entered by setting the !*COMP
switch to T. When a function is entered using either PUTD, DE,
or DF and this flag is on the function will be compiled before
being defined. Thus:

(SETQ ! *COMP T)
(DE FACT (N)

(COND ((LESSP N 2) 1)
(T (TIMES2 N (FACT (SUBl N))))})

will result in the function being compiled before being
defined.

Compiling functions into a "fast load" file involves the
FSLOUT function. FSLOUT is a special LISP reader which accepts
LISP programs, either typed in or from a file and compiles them
into the relocatable format. It controls setting of all flags
and proper formatting of the file for the FLOAD function. The
argument of FSLOUT is a file name. Use of FSLOUT is described
in the Fast Load Chapter.

4-11

THE COMPILER AND OPTIMIZER

4.4.1 Compiling FEXPR Calls.

When compiling calls to user defined FEXPRs or calls to PLUS,
TIMES, MIN, or MAX, the argument list is passed as a list to
the FEXPR for evaluation. This interpreted form interacts
poorly with compiled code for the following reason. All local
variable names declared in a function are replaced with their
stack frame locations by the compiler. Thus when the FEXPR
tries to evaluate its argument in the environment of the
calling routine, the variable names in the S-expression cannot
be found. The solution is to declare any variables to be
passed to an FEXPR for evaluation as GLOBAL. Note that this
need not be done for COND, PROGN, PROG, LIST, OR, and AND
because these forms are compiled into object code rather than
calls to these functions.

4.4.2 Compiler Flags

The following flags and global variables are used by the
compiler and are of interest to the user.

!*COMP
When non-NIL, causes DE, DF, and PUTD to automatically
the compiler to define a function.

call

!*FLINK
When non-NIL, the RST LINK - DEFW name
replaced by fast CALL instructions
happens only when the function call is

FAPOUT

LAP instructions ae
when executed. This

executed.

When non-NIL, causes the assembler to generate
a FAP file. FAPOUT should be set only
function discussed under generating PAP files.

the code for
by the FSLOUT

LAPP
When non-NIL, causes the LAP generated by the compiler, and
the hexadecimal machine code generated by the assembler to
be listed on the selected output device. The LAPP pr~nting
package causes the LAP code to be displayed in hexadecimal
and the text to be formatted.

4-12

THE COMPILER AND OPTIMIZER

4.5 THE LISP ASSEMBLY PROGRAM

The Lisp Assembly Program may be called directly with a list of
assembly functions by calling:

LAPZ80(NME:id, TYPE:id, LAPS:list) :NME
Type: EVAL, SPREAD.
NME is the name of the function to be compiled, TYPE is
either EXPR or FEXPR. LAPS is the list of LAP instructions
to be assembled. This may be useful for optimizing
functions that are critical to the execution of a program.
Likewise, it is easy to modify the assembler to add new
instructions to provide the ability to build special I/0
functions, special data transfer functions and the like
without modifying the source of the interpreter.

4.5.1 Augmenting LAP

To augment the LAP assembler perform the following steps:

1. On the property list of the name of the instruction
with the indicator BCNT place the number of bytes used
by the instruction.

2. Create a function with the name of the instruction.
This function should have arguments which correspond
to the operands of the instruction being defined. The
function should return a list of integers which
represent the bytes of the instruction being
generated.

As an example consider adding an OUT instruction. This
instruction has no arguments. In the HL register pair should
be the device address to send the last 8 bits of register pair
DE to. The Z80 code sequence generated is (in TDL mnemonics):

MOV C,L
OUTP E

Inclusion of this instruction would permit the LISP user to
implement by hand output to an arbitrary device. The LISP to
implement this instruction would then be:

(PUT 'OUT 'BCNT 3)
(DE OUT ()

(LIST3 77 58 105))

To get use of this instruction you must hand code a function in
LAP and pass it to the LAPZ80 assembler. For example, the
!$OUT function below has two numeric arguments, HL is the
device number to send the second argument, the last 8 bits of
DE to.

4-13

THE COMPILER AND OPTIMIZER

(LAPZ80 1 !$OUT 'EXPR
1 ((ENTRY !$OUT EXPR) (OUT) (RET)))

The output from the LAPZ80 program with the LAPP global set to ._;
Tis:

(0 NIL (ENTRY !$OUT EXPR))
(0 (77 78 105) (OUT))
(3 (2 01) (RET))
(!$OUT USED 4 BYTES)
l $OUT

The best way to learn how to add functions to the compiler and
the LAP assembler is to set LAPP to T and watch the output for
a number of functions.

4.5.2 LAP Support Routines.

A number of routines support the operation of the assembler.

1. MKREF - Returns a list of two integers corresponding
to the high and low order bytes of the item passed to
it.

2. MKGLOB - Returns a list of two integers corresponding
to the address of a global variable. To use this
function do:

3.

(MKGLOB (GGET name 'GLOBAL))

FAPABS - Given a list of integers
if the fast load output switch is
to be dumped to the output file.
returned as is. This function
load files are to be generated.
above would then be coded:

of an instruction,
on, causes the bytes

If not they are
must be used if fast

The OUT function

(DE OUT() (FAPABS (LIST3 77-58 105)))

4. FAPOUO - Used to output quoted items to fast load
files (do not use FAPABS for this).

4.5.3 The LAPP Printing Package.

The LAPP package replaces the simple minded LAP printing (just
list notation) provided with LAP. All numbers are printed in
hexadecimal and there is some attempt to format the LAP
instructions in conventional format. The assembly listing of
FACT at the beginning of the compiler section is an example of
its output. The package must be loaded with FLOAD in the usual

4-14

'--"

THE COMPILER AND OPTIMIZER

fashion. Output is enabled by setting the LAPP variable to To

4.5.4 A Demonstration Of LAP.

The following code demonstrates some of the methods and
possibilities of using LAP (RLISP syntax).

%
% Define some functions for intructions not part of LAP.
%

DEFLIST(
'((B 0)(C l)(D 2)(E 3)(H 4)(L S)(M 6)(A 7)),
I RR) ;

EXPR PROCEDURE MOV(R, RP);
%Generate MOV R,RP where Rand RP are A,B,C,D,E,H,L, and M.
FAPABS LIST(64 + B*GET(R, 'RR) + GET(RP, 'RR));
PUT (' MOVRR, ' BCNT, 1) ;

EXPR PROCEDURE ANI X;
%Generate an AND immediate instruction with X as its value.
FAPABS LIST(230, X);
PUT('ANI, 'BCNT, 2);

EXPR PROCEDURE ORIX;
%Generate an OR immediate instruction with X as its value.
FAPABS LIST(246, X);
PUT ('ORI, 'BCNT, 2) ;

DEFLIST(' ((BC 0) (DE 16) (HL 32) (SP 48)), 'SS);
EXPR PROCEDURE DAD RR;
%Generate a double add to HL instruction from register
%pair RR.
FAPABS LIST(9 + GET(RR, 'SS));
PUT ('DAD, ' BCNT, 1) ;

%
% Now do a fast PLUS2 without any type checking.
%
LAPZ80 ('PLUS2 ! *, 'EXPR,

'((ENTRY PLUS2!* EXPR)
(DAD DE) % Do the addition, screw up tags.
(MOVA H) % Make first 3 bits into numeric tag.
(ANI 31) % Clear garbage created by DAD.
(ORI 64) % Creates numeric tag in first 3 bits.
(MOV HA) % HL is numeric type now.
(RET))) ; % Return to caller.

4-15

THE COMPILER AND OPTIMIZER

EXPR PROCEDURE SLAR RR;
% Generate an SLAR instruction for register RR.
FAPABS LIST(203, 32 + GET(RR, 'RR));
PUT (' SLAR, ' BCNT, 2) ;

EXPR PROCEDURE RALR RR;
% Generate a RALR instruction for register RR.
FAPABS LIST(203, 16 + GET(RR, 'RR));
PUT ('RALR, 'BCNT, 2) ;

EXPR PROCEDURE DJNZ LBL;
%Generate a short DJNZ instruction to LBL. Assume that LBL is
%defined. LALST is the global association· list of labels and
%locations (relative to base of function). LOC is the current
%instruction location.
FAPABS LIST(l6, (CDR ATSOC(LBL, LALST) - LOC) - 2);
PUT ('DJNZ, 'BCNT, 2) ;

%
% SHIFT!-LEFT(A, B) -
% Shift the quantity in A left B number of times.
LAPZ80('qHIFTl-LEFT, 'EXPR,

'((ENTRY SHIFT!-LEFT EXPR)
(MOV BE) %B gets the number of shifts to do.
(LABEL LOOP) %Label for loop of shifting.
(SLAR L) %Shift right byte left to carry.
(RALR H) % Shift left byte left,

(DJNZ LOOP)
(MOV A I-I)
(ANI 31)
(ORI 64)
(MOV H A)
(RET))) ;

4.6 THE OPTIMIZER

% carry into low order.
%Continue until all shifted.
%Restore numeric tag.
%Clear garbage shifted in.
%New numeric tag created.

%Return to caller.

The code produced by the UOLISP compiler is generally large and
inefficient. The optimizer is an additional phase for the
compiler to increase the efficiency of generated code. It does
this by:

1. Removing useless instructions.

2. Converting long jumps into short
possible.

ones

3. Inverting conditionals wherever possible.

4. Open coding some arithmetic functions.

4-16

wherever

THE COMPILER AND OPTIMIZER

5. Folding stack frame allocations and deallocations and
removing them when not needed.

6. Substituting special Z80 instructions that are shorter
and faster than standard LAP forms.

Some of the optimizations produce smaller code, some
faster but larger. In general only a few functions in a
program need to be very fast. According to the maxim: "90% of
the time is spent in 10% of the code". The optimizations which
generate large but fast code can be turned on and off at the
users discretion.

4.6.1 Space Optimizations

The following optimizations produce short code and do not in
any way change the semantics of execution.

l.· DALLOC - If several DALLOt calls occur in a row, they
are combined into a single call. Thus:

CALL
DEFB
CALL
DEFB

DALLOC
-4
DALLOC
-6

becomes CALL
DEFB

DALLOC
-10

Secondly, if the folded DALLOC is directly followed by
a RET instruction, the RET is removed and the RDLLOC
routine is called. This routine incorporates the RET
saving both time and space.

CALL
DEFB
RE~

DALLOC
-10

becomes CALL
DEFB

RDLLOC
-10

2. LDX, fil.QX - This set of optimizations tries to remove
extra LDX and STOX instructions. Whenever an LOX or
STOX instruction is encountered, the optimizer scans
ahead across instructions which do not modify the
associated register. If it encounters an LDX
instruction which loads the same quantity that is
already in the register this extra LDX is removed.
For example:

4-17

THE COMPILER AND OPTIMIZER

CALL
DEFB
STOX
LDX
RST
RST
CALL
DEFB
RET

ALLOC
+2
HL -1
HL -1
CAR
CDR
DALLOC
-2

becomes CALL
DEFB

*STOX
RST
RST
CALL
DEFB
RET

ALLOC
+2
HL -1
CAR
CDR
DALLOC
-2

Since the LDX reloads what is already in HL, it is
removed. A second optimization removes STOX
instructions whose value is never loaded by an LDX
instruction. Thus the STOX instruction in the
optimized version (marked with an*) is also removed.

3. z..fil1 instructjons - Two optimizations changing long
forms into shorter instructions are performed. One
changes the 4 byte load global variable into register
into its three byte version if the register is HL. A
second optimization converts the move HL to DE
instruction (two single byte register moves} into a
single XCHG instruction. Each of these optimizations
saves one byte. Thus:

LDD HL global
LDHL DE

becomes LHLD global
XCHG

4. Dead~ - Two cases of dead code can occur. The \.J
first of these is code following a JP or JR
instruction. The second is code following a function
which never returns a value. ERROR and THROW are two
functions which never return. Code following these
forms up to but not including a LABEL instruction is
removed. If the function epilog is removed by this
process, the function is added to the list of those
which do not return a value. Thus:

5.

JP $0
JP $1
LABEL $2

becomes JP $0
LABEL $2

Forward .J..lJ.I!U2 If the destination
instruction is the next instruction it

of a jump
is removed.

6. Short Jumps - If the destination of a jump instruction
is less than 127 bytes from the current location, it
is replaced by its short form. Though this does not
speed up the code it is by far the most commonly
occurring optimization and results in the most
significant saving of storage.

7 . .J:.!d.I!U2 Inversion - Many COND tests have multiple jumps
which can be combined by inverting one of the tests.
Thus: _)

4-18

THE COMPILER AND OPTIMIZER

JPEQ $0
JP $1
LABEL $0

becomes JPNEQ $1
LABEL $0

8. Double Negation - The method of converting T/NIL into
a condition code will occaisionally introduce a double
negation followed by a conditional jump instruction.
The jump instruction is inverted and the call to NOT
or NULL is removed. Thus:

RST
DEFW
RST
JPEQ

LINK
NULL
CMPNIL
$0

becomes RST CMPNIL
JPNEQ $0

9. Frame Removal If by removal of STOX and LDX
instructions there are no stack frame references left
in a function, the ALLOC and DALLOC (or RDLLOC) frame
allocation calls are removed. A previous example
first has its STOX and LDX removed and then is
optimized as foilows:

CALL ALLOC becQmes RST CAR
DEFB +2 RST CDR
RST CAR RET
RST CDR
CALL RDLLOC
DEFB -2

This optimization saves a considerable amount of space
and greatly speeds up the execution of small
functions.

10. ~ ~auction - On machines which have short calls to
CAR and CDR, the calls CAAR, CADR, CDAR, and CDDR are
replaced with two short form calls to CAR and CDR
saving one byte. Thus:

RST LINK
DEFW CADR

4.6.2 Fast Optimizations.

becomes RST
RST

CDR
CAR

There are a few optimizations which increase the code size but
greatly increase the execution speed of the program. These do
not alter the semantics of execution.

1. Deallocate Frame - This optimization replaces a call
to the DALLOC routine with code to decrement the stack
frame register (IX). Thus:

4-19

THE COMPILER AND OPTIMIZER

CALL DALLOC
DEFB -10
RET

beco!fil;~ LXI DE -10
DADX DE
RET

This is at the expense of one byte, but it greatly
decreases execution time.

2. Stack Frame Reference - This optimization replaces the
LDX/STOX function calls with 2 indexed load/store
instructions. This costs 4 more bytes but runs about
10 times faster than the subroutine call. Code speed
ups of 30% or more are possible with this
optimization.

LDX HL -1 ~

STOX DE -2 becomes

MOV
MOV

MOV
MOV

L -l(X)
H 0 (X)

-3(X) E
-2(X) D

4.6.3 Dangerous Optimizations

This class of optimizations introduces some changes in the
semantics of functions. In particular, some of the safety
checks are disabled. These should be enabled only after the
operation of the functions being optimized has been verified to
be correct.

1. Frame hllocation - The stack overflow check is removed
and the allocation of the frame is open coded. There
are two forms used determined by the size of the
frame.

2.

CALL ALLOC becomes INX X
DEFB +2 INX X

CALL ALLOC becomes EXX
DEFB +10 LXI D +10

DADX D
EXX

The only problem with this optimization is recursion
to a great depth. It is possible that the frame stack
might cross the system stack and result in a system
crash.

ADDl/SUBl - This optimization replaces calls to ADDl
and SUBl with register increment and decrement
instructions. The optimization disables the check for
correct type. In addition, a change of sign will
cause the type of the value to change to something
else. This optimization can be used .Q.Il.ly if the sign

4-20

THE COMPILER AND OPTIMIZER

of the value will never change.

RST LINK
DEFW ADDl

RST LINK
DEFW SUBl

4.6.4 Use Of The Optimizer

becomes

becomes

INX HL

DCX HL

The optimizer works in conjunction with the compiler and LAP.
To enable the optimizer and the compiler from LISP enter:

(FLOAD "COMP") (FLOAD "OPT")
(SETQ !*COMP (SETQ !*OPT T))

At any time optimization can be enabled and disabled by setting
!*OPT to Tor NIL.

The two other levels of optimization are controlled by the
flags !*FAST and !*DANGER. Either or both of these may be
enabled.

4-21

CHAPTER 5

THE LISP EDITOR

The LISP editor is a set of functions which enable the user to:

1. Enter and test functions while remaining in the LISP
system.

2. Save and restore sets of functions and commands from
disk.

3. Modify functions and test them before saving.

The editor must first be loaded into storage using the fast
loading program. It may coexist with any of the other packages
with the following exceptions:

1. Compiled functions may not be edited. A function
which is edited and then compiled cannot be written
back to disk.

2. Functions entered in RLISP syntax must be edited in
LISPS-expression format.

5.1 OPERATION

The editor must first be loaded from its fast load file.
Operation is not automatic. Functions must be defined by using
the CREATE and CREATEF functions. Output of the editor is in
standard PRINT format unless the PRETTY pretty print package is
also loaded. In this case, all output from the editor is
through the pretty printer.

~ 1""' £A Wo,(J. --eto,es1"r h1 <A ,e lo£!
e

1 , .s~ t\,' ·t.- '6,,. 'n-~5 i',-~)'".:NI

o/he,l"'l 001 - c,.J tin A-S l l .!llf_. lh
') (o PtN .i. y ,,.,, i(;J n le n,,,.,,

\(o\l ~i1\ ~,e,.. t1 Y,U""h~~ o~
l ~ o..S """""'btr} n.i .. ,, . \

fJ'1w
1

\.f 1yo'-' .,::, 1 you ccu-. ~o ed~} ou, hl~ t:45'\. ______________________________________ _J.

THE LISP EDITOR

5.2 EDITOR COMMANDS

The commands of the editor are for the most part top level
function calls. They are listed alphabetically here.

(CREATE function-name)
Execution of this command causes the creation of an EXPR
type function with the name "function-name". The user
will be prompted for the argument list and the body of the
function. CREATE causes the function to be added to a
list of functions which can be edited and later saved on
disk. The equivalent of:

(DE FACT (N)
(COND ((LESSP N 2) 1)

(T (TIMES2 N (FACT (SUBl N))))))

is the following sequence (machine output is underlined):

(CREATE FACT)
ARGUMENTS: (N)
BODY; (COND ((LESSP N 2) 1)

(T (TIMES2 N (FACT (SUBl N)))))

(CREATEF function-namel
This is the same function as CREATE except that an FEXPR
is created instead of an EXPR.

(DEFINE S-expressionl
This function causes the S-expression to be added to the
list of items which can be saved on disk. In addition,
the S-expression is evaluated for its effect. Thus the
expression:

(DEFINE (GLOBAL '(X)))

will cause X to be declared as a global variable and the
declaration will be written to the disk file during a disk
SAVE.

(EDIT function-name}
This function permits the editing of the function named
provided it is not a compiled function. Commands to the
editor are normally single characters or digi~s sometimes
followed by S-expressions. The commands are:

1. nH - Examine the head (CAR portion) of the currently
displayed expression. If n is present, scan down n
CAR portions.

5-2

-

THE LISP EDITOR

2. nT -Examine the 1_gil (CDR portion) of the currently
displayed expression. If n is present scan down n CDR
portionso

3. L Backup to the structure being examined
previously. If this is at the top level, the function
is redefined. If n is present, backup n times.

4. is-expression - Insert the S-expression onto the
front of the expression currently being examined.
This operation is equivalent to

(APPEND (LIST s-expression) current-expression)

5. AS-expression - Append the S-expression to the tail
of the expression currently being examined. This is
equivalent to:

(APPEND current-expression (LISTS-expression))

6. f S-expression ~ Find all occurrences of S-expression
in the current expression for examination and possible
replacement.

7. RS-expression Replace the expression currently

8.

being examined with the n~w S-expression.

~ s-expression Replace the CAR portion
expression currently being examined with
S-expression.

of
the

the
new

9. D - Remove the head (CAR portion) of the current
expression. This is equivalent to:

(SETQ current-expression (CDR current-expression))

(EDITDEF .i_gj_
This function permits editing of clauses entered using the
DEFINE function. Here, id is the head of one of these
clauses. EDITDEF will display each definition with id as
a head. The user responds with an N to each definition
until the clause to be edited is reached and then responds
with Y. EDITDEF then invokes EDIT to modify this clause.

t~ESTRE
(~ file-name)

·Executing this function causes the file "file-name" to be
read from the disk and added to the list of editable
functions. As each function is, read in, its name is
displayed. The file must be terminated with an END. If
~£does not display the messge:

"**COMPLETED**"

5-3

THE LISP EDITOR

then enter an END from the keyboard. If there are errors
in the list, the loading process will terminated without
completing. The editor will only let you save a file
without errors in it.

(SAVE file-name)
Execution of
definitions
be stored in

this function will cause all functions and
created using DEFINE, CREATE, and CREA~EF to
the file "file-name".

5.3 EXAMPLE EDIT SESSION.

The following session llustrates some of the methods used in
the definition of a function, some global quantities; and
patching an improper function. Output from LISP is underlined.

(FLOAI~ "EDIT")
fil.L

(DEFINE (GLOBAL '(X)))
N..I.L

(DEFINE (SETQ X T))
T

(CREATE SUBLS)
ARGUMENTS*(A Y)
BODY*

(ASSOC Y X))

% Load the editor.
% Proper response when loaded.

% Define a global variable X.
% Proper response to definition.

% Define setting X to T.
% Xis set to T and (SETQ X T)
% is saved.
% Create the function SUBLS
% Define its arguments.
% Now define its body.
% Here are the lines of the body. (COND ((NULL X) Y)

(T (PROG (U)
(SETQ U
(RETURN (COND (U (CDR U))

SUBLS

((ATOM Y) Y)
(T (CONS (SUBLS X (CARY))

(SUBLS X (CDR Y)))))))))
% SUBLS is now defined.

*(SUBLS '((THIS. THAT) (A. B)) '(THIS IS A))
***** .CT .l.S. NOT b. RA1B FOR Qfil

% SUBLS doesn't work because Xis a GLOBAL.

*(EDIT SUBLS)
(EXPR LAMBDA lb. Il
*F X
X
*RA
*"
X
*RA

% Edit the definition of SUBLS.
(CONP ((NULL ..t..L-L

% Look for all X's.
% An X was found.
% Change an X to an A.
% Find the next X.
% Found another X.
% Change X to an A.

5-4

THE LISP EDITOR

% Find all X's and replace with A.

(SUBLS REDFINED)
.SUBLS

% Back out of editor and
% redefine SUBLS.

*(SUBLS ' ((THIS . THAT) (A . B)) '(THIS IS A))
(THAT .lS Iil. % SUBLS now works.

, * (SAVE "f i 1 e") % Save the function SUBLS and
% the global X.

The file "file" now contains:

(GLOBAL (QUOTE X))
(SETQ X T)
(DE SUBLS (A Y) (COND ((NULL A) Y) (T (PROG (U) (SETQ
U (ASSOC YA)) (RETURN (COND (U (CDR U)) ((ATOM Y) Y)
T (CONS (SUBLS A (CARY)) (SUBLS A (CDR Y))))))))))
FSLEND

5-5

CHAPTER 6

RLISP

Some may consider the rigours of coding in LISP with all its
parentheses a bit onerous. To provide a syntax more amenable
to users of contemporary high level programming languages, a
parser from RLISP to LISP has been implemented. This syntax
was invented by A. C. Hearn in 1973 to facilitate the
implementation of the symbolic algebra system, REDUCE [2]. The
subset described here is reasonably complete and is restricte~
only by the subset of Standard LISP implemented in UOLISP.
Users should note that there are significant differences
between the RLISP supported here and that used to support the
REDUCE system. Users interested in REDUCE should consult
ref ere nee [2] .

The RLISP parser contains its own top level EVAL
which reads LISP expressions in RLISP syntax, parses them
LISP and if there are no syntax errors, evaluatei them.
user can drop into LISP at any time.

loop
into

The

The remainder of this section presents the syntax of RLISP
together with examples of its use.

6.1 PROCEDURES

Functions are defined in RLISP as
parameters. The following syntax is used:

procedures

1. <function> ::= <ftype> PROCEDURE <id> <parameter list>;
<unlabeled statement>;

2. <ftype> ::= EXPR I FEXPR

3. <parameter list> ::= () <id> I (<id list>)

with

RLISP

4. <id-list> ::= <id>[,]*

A <function> is a PROCEDURE statement preceded by its type.
The identifier which must follow the PROCEDURE keyword is the
name of the function being defined. The parameter list must be
() if the function has no parameters. If the function has a
single formal parameter i't need not be enclosed in parentheses.
Two or more parameters must be enclosed in parentheses and the
identifiers must be separated by commas. Functions with more
than three parameters may be defined but may not be compiled.
The statement following the procedure heading may be~ c9mpound
BEGIN - END block or a simple statement or function call.

The RLISP procedure is parsed into a DE or DF function
form. The name and formal parameters from the heading line
become parts of the call and the statement following becomes
the body of the function. The LAMBDA expression is generated
by DE and DF's call to PUTD.

Example procedure prototype lines are given without theit
bodies.

EXPR PROCEDURE NOARGS();
EXPR PROCEDURE ONEARG SARG;
EXPR PROCEDURE MANYARGS(A0, Al, A2);
FEXPR PROCEDURE DOFEXPR X;

6.2 STATEMENTS

There are several different statement types in RLISP
corresponding to the different control constructs.

5. <BEGIN-END block> ::=
BEGIN SCALAR <id-list>; <statement>[;]* END I
BEGIN <statement>[;]* END

The identifiers in the optional SCALAR
local to the BEGIN - END block. These
the PROG while the statements separated
the body.

BEGIN

clause are variables
become the variables of

by semicolons become

A:= A+ l;
B := C

% A, B, and Care globals.
% Last statement has no ;

END;

BEGIN SCALAR X, Y;
X :=A+ l;
PRINT (Y := X - 5)

END;

% X and Y are local variables.

6-2

RLISP

6. <statement> ::= <id>:· <unlabeled statement> I

<unlabeled statement>

Labeled statements may occur only within BEGIN - END blocks. A
statement may have a single label which serves only as the
object of a GO TO statement. Labels are transferred, as is, to
the generated PROG form.

7. <unlabeled statement> ::=<BEGIN-END block> I

<IF statement> I

<do group> I

<WHILE statement> I

<REPEAT statement> I

<FOR statement> I

<RETURN statement> I

<GO TO statement> I

<ON/OFF statement> I

<IN/OUT/SHUT statement>
<value statement>

An unlabeled statement may be a control construct or
statement, a general catch all for stand alone
invocation, assignment, and the like.

8. <IF statement> ::=
IF <expression> THEN

<unlabeled statement l> ELSE
<unlabeled statement 2> I

IF <expression> THEN <unlabeled statement>

a value
function

The IF statement is in the classical form as either IF
THEN ELSE ... or just plain IF THEN. Like all other
RLISP statements, an IF statement has a value. If the
expression has a non-NIL value, then the value is the value of
unlabeled statement 1 otherwise the value of unlabeled
statement number 2. If there is no ELSE clause and the value
of the expression is NIL, the value of the statement is NIL.
Multiple IF ... THEN ... ELSE IF ... THEN ... ELSE IF... statements.
are parsed into a single COND with multiple antecedent
consequent pairs.

IF A< 10 THEN PRINT A;

IF ATOM A THEN A
ELSE REV CDR A. REV CAR A;

9. <do group> ::=<<<unlabeled statement>[;]*>>

The do group is translated into the LISP PROGN form. Statement
labels • are not permitted within the group, but GOTO's and
RETURN's are permitted within the scope of a surrounding BEGIN

END block. The value of the do group is the value of the
last statement.

6-3

RLISP

EXPR PROCEDURE PRINT2 X; % A different PRINT.
<< PRIN2 X; TERPRI(); X >>;

10. <WHILE statement> ::=
WHILE <expression> DO

<unlabeled statement>

The WHILE statement repeatedly evaluates the unlabeled
statement while the expression is non-NIL. The value of a
WHILE statement is NIL unless there is a RETURN within the
unlabeled statement which is not embedded within a BEGIN - END
block. The statement is translated into a FROG form with an
internal loop. The unlabeled statement is the consequent of a
COND or a single statement within this PROG, thus any RETURN
will be the value of the loop or the value of an internal PROG
from the use of a nested BEGIN - END block.

WHILE X DO
<< PRINT CAR X;

X := CDR X >>

11. <REPEAT statement> ::=
REPEAT <unlabeled statement>

UNTIL <unlabeled statement>

The REPEAT ... UNTIL ... statement mirrors the WHILE ... DO
construct except that the test for loop termination occurs

at the end of the loop rather than the beginning. The value of
REPEAT UNTIL is NIL unless there is a top level
RETURN present.

REPEAT<< PRIN2 CAR X;
X := CDR X;
IF X THEN PRIN2 ", ">> UNTIL NULL X;

12. <RETURN statement> ::= RETURN <unlabeled statement>

RETURN may be used only within a BEGIN END block and is
translated directly into the regular RETURN function call.

13. <GO TO statement> ::=GOTO <id>

The GO TO statement may be used only within a BEGIN - END block
and only to a label at the current lexical level within that
block.

14. <FOR statement> ::=
FOR EACH <id> IN <expression>

DO <unlabeled statement>
FOR EACH <id> IN <expression>

COLLECT <unlabeled statement>
FOR <id>:=<expression l>:<expression 2>

DO <unlabeled statement>

6-4

_J

RLISP

There are three forms of the FOR statement. The first form
evaluates the unlabeled statement with the identifier set to
each successivs element of the list resulting from the
expression. This FOR is mapped into something like the MAPC
function but in an internal form more suitable for compilation.
The value of a FOR statement of the first form is always NIL.
The second form of the FOR statement is like the first but the
word COLLECT instead of DO signifies that the results of the
statement being evaluated are collected into a list which is
returned as the value of the FOR statement. This form is
translated into an internal form roughly equivalent to a MAPCAR
statement. The only difference between these forms and MAPC
and MAPCAR is that local variables may be used within the
unlabeled statement with impunity whereas they would have to be
GLOBAL or FLUID in other systems. The final form of the FOR
statement is the usual iterative form which sets the identifier
to the value of the first expression and increments it
evaluating the unlabeled statement each time until the value of
the variable is greater than the value of expression 2.
Expression 2 is recomputed each tir11e through the loop. This
form of the FOR statement always has the value NIL and is
translated into a nested PROG. It may not have GOTO's out of
the range of the loop.

15.

FOR EACH X IN '(ABC) DO PRINT X;

FOR EACH X IN '(ABC) COLLECT ATOM X;

FOR I:=1:10 DO PRINT I;

<ON/OFF statement>
ON <id-list> I
OFF <id-list>

. ·­.. -

These two functions set global variables to T and NIL
respectively. ON and OFF work directly on global variables or
on variables which have an ON ·property. If the value of the ON
property is an identifier, this identifier is set to Tor NIL.
This permits setting of internal variable names with !* as in
RLISP. If the ON property is a list, there should be three
elements. The first is the name of the variable to assign Tor
NIL to. If this variable is NIL, no assignment is done. The
second element is the name of a function. If this function is
not present the file name in the third element position is
loaded by the fast loader.

6-5

RLISP

~

COMP
OPT
DEFN
ECHO
FLINK
OUTPUT
RAISE
GC
PRETTY
VECTORS

internal

!*COMP
!*OPT
!*DEFN
!*ECHO
!*FLINK
!*OUTPUT
!*RAISE
!*GC
! *PRET'l'Y

associated~ L package

"COMP" - compiler.
"OPT" - optimizer.

"PRETTY" - pretty printer.
"VECTORS" - vector package.

16. <IN/OUT/SHUT statement> ::=
IN "file-name" I
OUT "file-name" I
SHUT "file-name"

These 3 statements perform abbreviated versions of RDS,
WRS, and CLOSE. The IN statement opens the file name given for
input and selects that file as the standard input device. An
error will be given if no such file exists. Files may be
chained together if the last statement in the file is an IN but
may not be nested as in regular RLISP since only one disk file
may be open at a time. The OUT statement opens the file name
given for output and assigns the standard output device to be
this file. An error occurs if there already is a file by this
name on the disk. All subsequent output is directed to this '-""
file. The SHUT statement closes either an input file selected
by IN, or an output file selected by OUT.

6.3 VALUE STATEMENTS

Any statement which can not be parsed as a control
construct is assumed to be a value statement, that is, an infix
expression. The infix operators implemented are listed in
increasing order of precedence:

:=
OR
AND
<, >, LEQ, GEQ, NEQ, EQ, =
+ -
* I
**

What follows is the BNF for expressions starting with the
lowest precedence and working to the highest. Expressions are

6-6

RLISP

standard infix with the exception that function calls with
single arguments need not have the arguments enclosed in
parentheses, the . operator for CONS, and the ' for QUOTE.

17. <value expression> ::=
<id> := <unlabeled statement>
<boolean term>

A value expression can assign the value of a statement to a
variable or is just a boolean term. Note that an unlabeled
statement may be another value expression (the usual case).

18. <boolean term> ::= <boolean secondary> I

<boolean secondary> OR <boolean term>

A boolean term is a number of boolean secondaries separated by
OR's. Note that all the terms are collected into a single OR
by the parser to keep down the size of expressions.

19. <boolean secondary> ::= <relational expression> I
<relational expression> AND <boolean secondary>

A boolean secondary is like a boolean term only
connective. An expression ... AND ... AND ... AND ...
into a single (AND ...).

AND is the
is collected

20. <relational expression> ::= <CONS expression> I
<CONS expression>

<relational operator>
<CONS expression>

21. <relational operator> ::=
< I > I = I NEQ I LEQ I GEQ I EQ

A relational expression is two expressions separated by a
diadic operator which returns NIL or something else. The<
operator is translated into GREATERP, the> operator to LESSP,
the= operator to EQUAL, and the other operators are translated
into themselves.

22. <CONS expression> ::= <arithmetic expression> I

<arithmetic expression> . <CONS expression>

Two expressions separated by a . are the CAR and CDR parts of
a CONS function call. The dot operator is right associative,
so in a string of dot operators, the rightmost one is done
first. Dots within LISP s-expressions are not affected.

23.' <arithmetic expression> ::= <arithmetic term>
<arithmetic term>+ <arithmetic expression>
<arithmetic term> - <arithmetic expression>

The+ and - operators are right associative and are translated
into PLUS2 and DIFFERENCE respectively.

6-7

RLISP

24. <arithmetic term> ::= <arithmetic secondary>
<arithmetic secondary>* <arithmetic term>
<arithmetic secondary>/ <arithmetic term>

The* and/ operators are right associative and are translated
into TIMES2 and QUOTIENT calls respectively.

25. <arithmetic secondary> ::= <QUOTE expression>
<QUOTE expression> ** <arithmetic secondary>

The exponentiation operator ** is right
translates into an EXPT function invocation.
allowed only to positive integer powers.

26. <QUOTE expression> ::= <primary> I

'<LISP s-expression>

associative and
Exponentiation is

The ' operator causes the LISP s-expression reader to be
invoked to read the following LISPS-expression. Note that '
may not be used to quote an RLISP expression. One must use the
QUOTE function explicitly to do this.

27. <primary> ::= <unsigned integer>
<string>
(<unlabeled statement>
<id> I

<id> <expression> I

<id>() I
<id> (<expression>[,]*

A primary is an atom (like an unsigned integer, a variable
name, or a string), or an unlabeled statement (usually an
expression) enclosed in parentheses, or a function call. A
function with no arguments must have () following it to
distinguish it from a variable. A function with a single
formal parameter may be followed directly by its parameter
which need not be enclosed in parentheses. Functions with
multiple parameters must have these parameters enclosed in
parentheses and separated by commas.

6.4 SYSTEM FLAGS

For the most
UOLISP reader.
way in which the
* and may be set
to NIL.

part the RLISP reader works exactly like the
There are a number of flags which affect the

system operates. These are all prefixed by a
on by setting them to Tor off by setting them

!*DEFN - Initial Value= NIL.
If this variable is non-NIL, the parser form of the RLISP
expression entered will be displayed and not evaluated. By

6-8

RLISP

this means you may examine
convert RLISP into LISP.
turning on the !*DEFN flag
file with nothing but LISP

the parsing of a function or
By directing output to a file and
and reading in an RLISP file, a
can be created.

!*OUTPUT - Initial Value= T.
If this variable is NIL, the results of an evaluation of an
expression read by the RLISP reader will not be printed.

~-
This variable will always contain the results of the last
evaluation of the RLISP reader.

6.5 ERROR MESSAGES

The RLISP parser implemented for
successful in parsing. All parsing
reader which scans to a semicolon when
restarts at the top level. The errors
with their probable causes.

***** Missing Semicolon

UOLISP is not always
errors are caught by the
an error is detected and
are listed here together

When the parser finishes with a form the last token must
always be a semicolon. If this is not the case, an error
occurs and the parser scans until one is found.

***** Missing PROCEDURE
The word PROCEDURE did not follow the keywords EXPR, FEXPR,
or SYMBOLIC. This is usually a misspelling of the word.

***** Missing procedure name
The token following the word PROCEDURE
identifier.

was not an

***** Missing THEN
In an IF statement, the
usually means that the
constructed.

***** Missing DO

THEN could not be found. This
expression of the IF was improperly

In a WHILE or FOR statement, the DO keyword could not be
found. This usually means the conditional expression or FOR
loop object was not properly parsed.

***** Missing END
The last statement of a BEGIN END block must not be
followed by a semicolon, but rather an END. This usually
means that the last statement has been improperly
constructed. If the last statement has a semicolon on it,
the END will be an unrecognizable statement.

6-9

RLISP

*****Missing>>
The last statement of a do group (<< ... >>) must not. be
followed by a semicolon, but rather the>> terminator. If
the last statement is improperly constructed, this error
will occur. If a semicolon follows the last statement the
unrecognizable statement error will occur.

***** Unrecognizable statement
This happens when the first token of a statement is not a
keyword, nor can the expression parser make an expression
out of it. If the first word of a statement is a keyword
like ELSE, TO, DO, or COLLECT, this error will occur~
Usually it means a semicolon in the middle of a statement
before the error, or a semicolon as the last statement in a
block.

***** Missing (
A formal parameter list that has more than a single variable
or none at all must start with a left parenthesis.

*****Missing)
A formal parameter list that is poorly formed or is
the closing right parenthesis will cause this error
improperly balanced parentheses in expressions.

***** Non-id
Formal parameters must always be identifiers.

***** Operator misplaced

missing
as will

This error occurs when two infix operators occur without
intervening operand.

an

***** Missing IN
In a FOR EACH statement, the noise word IN is missing. The
correct format is: FOR EACH <variable> IN <expression>

***** Missing DO/COLLECT
In a FOR EACH statement, either of the keywords DO or
COLLECT is missing. The correct format is: FOR EACH
<variable> IN <expression> DO ... or FOR EACH <variable> IN
<expression> COLLECT

***** Missing id
The identifier in a FOR EACH, or iterative FOR statement
cannot be found after the EACH or the FOR.

***** Missing :
The colon in an iterative FOR statement cannot be located
this error occurs. The syntax of RLISP requires : rather
than TO as one might expect.

***** ERROR TERMINATION
All errors will be suffixed by this message meaning that
parsing will precede only with more user input.

6-10

\,_,I

RLISP

When an error occurs during evaluation, the error message will
be printed followed by the omnipresent ERROR TERMINATION
message. The WS global variable will contain the error messa~e
number.

6.6 STARTING UP RLISP

The RLISP system must first be loaded from the system disk
in the fast load format. The FLOAD function is entered in LISP
format with the name of the file.

(FLOAD "RLISP")

(BEGIN)

and the system will respond immediatly with:

RLISP - <date>

where the <date> is the date the system was last created. To
exit from RLISP back into LISP parsing you enter:

LISP;

to which the system should immediately respond:

ENTERING LISP ...

You may reenter RLISP at any time. All the functions of the
basic UOLISP system are available in RLISP and you may load
other packages on top of it, including the compiler, big number
package and so on.

6.7 EXAMPLES

The following
features of RLISP.
translations.

few functions illustrate some of the
They are given with their equivalent LISP

% Factorial in RLISP (see compiler section for LISP}.
EXPR PROCEDURE FACT N;
IF N < 2 THEN 1

ELSEN* FACT(N - 1);

% SUPREV - super reverse of tree to all levels.

6-11

RLISP

EXPR PROCEDURE SUPREV A;
IF ATOM A THEN A

ELSE SUPREV CDR A. SUPREV CAR A;
(DE SUPREV (A)

(COND ((ATOM A) A)
(T (CONS (SUPREV (CDR A))

(SUPREV (CAR A))))))

% A procedure with a WHILE loop.
EXPR PROCEDURE SEMISCAN();
<< WHILE NOT(TOK!* EQ '!; AND EQN(TYPE!*, 6))

DO NTOK();
NTOK() >>;

(DE SEMISCAN NIL (PROGN
(FROG NIL
G0008 (COND

((NULL (NOT (AND
(EQ TOK!* (QUOTE !;))
(EQN TYPE!* 6))))

(RETURN NIL)))
(NTOK)
(GO G0008))

(NTOK)))

6-12

CHAPTER 7

THE TRACE PACKAGE

A rudimentary trace package permits monitoring the entrance to
and exit from functions. The trace package must first be
loaded:

(FLOAD "TRACE")

To trace a particular function or set of functions enter:

(TR fl f2 ... fn)

fn are the functions to be traced. During the where fl ••o

evaluation
evaluated,
currently
exits, its

of these functions, just before each function is
its name and arguments will be displayed on the
selected output device. Just before the function
name and value are displayed.

If the function to be traced is a compiled or system
defined function, the TR function will ask for the number of
its arguments.

NUMBER OF ARGUMENTS FOR fn*

You should then enter 0, 1, 2, or 3. Remember that compiled
functions can have no more than 3 arguments.

To remove the trace property of a fun~tion or functions
enter:

(UNTR fl f2 ... fn)

The trace information will no longer be displayed with each
function. The UNTR will try and verify that the functions
named have been traced (it is possible to fool it). A message
will appear if the functions ae not traced.

A BREAK function is implemented. This function is
particularly useful for stopping the evaluation of a function
and for examining the contents of variables on the stack and
global variables. The function takes one argument, the value
of which is printed when BREAK is entered. At this time BREAK

THE TRACE PACKAGE

goes into a READ - EVAL loop similar to the top level UOLISP
read - eval loop. The syntax is always LISP even if RLISP is
loaded. If the function which has BREAK in it is not compiled,
you may display the values of any of its local variables and
even modify them. Likewise any global variables may be listed
and modified. You may even define functions. When you are
ready to resume execution you type EXIT. Note that errors made
during a BREAK do not cause you to return to the main read
loop.

7.1 IMPLEMENTATION

Tracing a function is accomplished by embedding the definition
of the function in a new function with the name of the old one.
The old definition is hidden away with a GENSYM name. The new
function has the same number of arguments as the old and the
code to print all information upon entering and exiting the
function. The UNTR function locates the hidden name of the
function and redefines it under its real name, the trace code
then disappears.

7.2 INTERACTION WITH THE SYSTEM.

Nearly all functions may be traced but there are a number of
interactions with the interpreter and compiler wich must be
explained.

1. Fast link function calls which have been converted
from slow links cannot be traced. If a function is
compiled and then executed with !*FLINK= Tit cannot
be reliably traced afterwards. Any call which is
converted to a fast call will bypass the trace code
while those which have not been converted will reach
the trace code. This leads to arbitrary results.

2.

3 .

Function
traceable
with.

calls within
because they

the
are

interpreter are not
all fast links to start

Precompiled "fast load" files are
that the !*FLINK flag is set
functions in it are evaluated.

traceable provided
to NIL before the

4. Once a compiled function has the trace code wrapped
around it, the !*FLINK flag may be set to T to speed
up execution. Since the defined function is now
interpreted (TR sets the !*COMP flag to NIL before
embedding the function to be traced) slow links will
not be converted to fast ones.

7-2

THE TRACE PACKAGE

7.3 EXAMPLE

The following is an example function which is compiled, and
then traced during its execution. Finally the trace is removed
and the function is executed again. Input provided by user is
underlined.

CFLOAD "TRACE") (FLOAD "COMP")
NIL

NIL

.ID£ .EAc.T l.Nl
(CONP ((LESSP N 21 ll

il {TIMES2 N {FACT (SUBl N))))))
(FACT USED 46 BYTES)
FACT

(SETO !*FLINK N..ILl..
,NIL

.!..'.IB FACT }
HOW MANY ARGUMENTS FOR FACT*i
(FACT REDEFINED)
T

(FACT 11.
("ENTERING "·FACT (3))
("ENTERING "FACT (2))
("ENTERING II FACT (1))
("LEAVING "FACT 1)
{"LEAVING II FACT 2}
("LEAVING "FACT 6)
6

{UNTR FACT)
(FACT REDEFINED)
T

{FACT il
720

rn TESTl lX n
(PROG ill..

{SETO A lil.
{BREAK "HELLO .EEQ11 TEST!:")
(PRINT (LIST AX lll.
(RETURN Al ll

TESTl

(TEST! "STRING" 'IDENTIFIER)
BREAK AT: HELLO FROM TESTl:
*A
12
*(SETO A .lll.

7-3

THE TRACE PACKAGE

34
*IDU.T
(34 "STRING" IDENTIFIER)
34

\.J

7-4

}(1 use
{pt

U)i_

CHAPTER 8

MISCELLANEOUS PACKAGES

8.1 THE VECTOR PACKAGE

This package supports the complete vector operations designated
by Standard LISP including vector input and output.

8.1.1 Functions

(GETV V;yector INDEX~integer) ;any
Type: EVAL, SPREAD.
Returns the value stored at position INDEX of
An error occurs if INDEX does not lie within
V) inclusive.

vector V.

***** INDEX subscript out of range

(MKVECT UPLIM j io teg1;.il_iyector
Type: EVAL, SPREAD.

0 . . (UPBV

Defines and aJlocates a vector with UPLIM + l
accessed as 0 .. UPLIM. Each element is initialized
An error will occur if UPLIM is less than·0.

elements
to NIL.

***** (UPLIM invalid vector size)

(PUTV V:yector INDEX:integer VALUE:any) :any
Type: EVAL, SPREAD.

~'~sf1

_:._a

Jf;

PUTV stores VALUE into the vector V at
VALUE is returned. If INDEX does not
0 .. (UPBV V) an error occurs:

***** INDEX subscript out of range

, J '!J "'~1

{) .:..,. ~ r ,{, {) '.E L • l) ,. l.Oti. l
.)J t.i i'

,_...,
')

"

position INDEX.
line in the range

MISCELLANEOUS PACKAGES

(UPBV U;any) ;{NIL,intefil..U_
Type: EVAL, SPREAD.
Returns the upper limit of U if U is a vector, or NIL if
it is not.

(VECTORP U;any) :boolean
.Type: EVAL, SPREAD.
Returns T if U is a vector and NIL if not.

8.1.2 Implementation

Vectors are implemented as lists. Consequently, linear search
is used to access vector locations. The list structure of
vectors is always:

(!$vector!$ nnn v[0] v [nnn])

The !$vector!~ tag is actually an FEXPR type function which
returns itself and arguments without evaluation. In this way
vectors are treated like constants. The elements of a vector
can be of any type and can even be of mixed types. Vectors of
vectors are even possible.

8.1.3 Input

Vectors may be read from RLISP source code in the format of the
standard LISP report only if the host computer supports square
brackets. Thus:

(1, 2, "Here a string", "There a string"]
[(1, 21, (2, 3], [3, 4J l

are possible. On machines without square brackets the left
square bracket is@ and the right square bracket is#. Output
is similar to input.

If vector input is not needed, vectors may be used from
RLISP by loading the vector package "VECTORS". In RLISP the
vector package is enabled by entering ON VECTORS;

8-2

MISCELLANEOUS PACKAGES

8.2 PRETTY PRINTING

The pretty printing package attempts to
s-expressions by indenting them and keeping
boundaries specified by LINELENGTH. The pretty
can be loaded directly by entering:

(FLOAD II PRETTY II)

or in RLISP:

ON PRETTY;

format LISP
them within the

print package

The pretty printer is interfaced to RLISP and the structure
editor. In RLISP, the result of each evaluation will be pretty
printed whenever the package is loaded. In the editor, all
output is pretty printed.

The interface function is PRETTYPRINT.

(PRETTYPRINT U;anyL.! .. fillY
.Type: EVAL, SPREAD.
Pretty prints the S-expression U within the boundaries set
by the LINELENGTH function. The value of U is returned.

8.3 LAPP MODULE

This small package is an extra for the compiler and does a
better job of displaying the result of the LAP assembler than
the smaller resident version. All values are displayed in
hexadecimal rather than decimal. Output is formatted into
columns for easier reading. The module is loaded by:

(FLOAD "LAPP II)

The module is
communication.

automatically

8-3

enabled without further

INDEX

!$eof!$ 2-29
!$eol!$ 2-28
!$ga 2-2
!$pa 2-2
!$vector!$ 8-2
!*comp 2-27, 4-11 to 4-12, 6-6,

7-2
!*danger 4-21
!*defn 6-6, 6-8
!*echo 2-28, 6-6
!*fast 4-21
!*flink 2-28, 4-5, 4-12, 6-6, 7-2
!*gc 2-28, 6-6
!*opt 4-21, 6-6
!*output 2-28, 6-6, 6-9
!*pretty 6-6
!*raise 2-28, 6-6

6-8

* 6-8
** 6-8

+ 6--7

6-7

I 6-8

< . 6-7
<< 6-3

= 6-7

> 6-7
>> 6-3

Abs 2-16
Addl 2-17
Alist 2-1
Alist binding 2-12
Alloc 4-3, 4-10
And 2-15, 4-8, 6-7
Any 2-1
Append 2-21
Apply . 2-24
Assoc 2-21
Atom 2-1, 2-6
Atsoc 2-21

Begin 6-2
Boolean 2-1
Bptr 2-5

Bput
Break

Caaar
Caadr:
Caar
Cadar
Caddr
Cadr
Call
Calling
Car
Catch
Cdaar
Cdadr
Cdar
Cddar
Cdddr
Cddr
Cdr
Clist
Close
Cmpnil
Codep
Collect
Comments
Comp
Compiler
Compress
Cond

functions

Cons
Constantp
Constants
Cplus
Create
Createf

Dalloc
De
Defb
Define
Deflist
Defn
Defw
Delete
Df
Difference
Digit
Divide
Dlist
Dm
Do
Do group
Dotted-pairs

Echo
Edit
Editdef

2-5
7-1

4-10

4-10

4-10

2-8
2-8
2-8
2-8
2-8
2-8
4-10
4-5
2-8,
2-3
2-8
2-8
2-8
2-8
2-8
2-8
2-8,
4-6
2-25
4-6,
2-6
6-5
2-27
6-6
4-1
2-9
2-16
2-8,
2-6
4-8
2-5
5-2
5-2

, 4-6,
6-7

4-3,
2-11,
4-11
5-2
2-21
6-6
4-10
2-22
2-11,
2-17,
2-24
2-17
2-1
2-12
6-5
6-3
1-1,

6-6
5-2
5-3

4-17
6-2

6-2
6-7

2-1,

6-3

2-8

~

Editor
Eject .. .
Else .
Ernsg!*
End
Entry " ..
En urn!* . .
Eq o

Eqn
Equal
Error
Error termination
Errors C, • ., •• o

Errorset
Ev a 1 Cl • • •

Eval flag
Evals flag
Ev 1 is
Expand
Explode
Expr o • • C,

Expr property
Expt
Extra-boolean

Fapabs. . ..
Fapout
Fapquo.
Fast links
Fast load
Fast load error .. .
Fexpr
Fexpr compiling
Fexpr property
Fix $ • • • • e •••

Fi xp
Flag
Fl agp . . "
F 1 ag s, . . .
Fl ink
F 1 oa d
Float
Fluid $ • • • • •

Fluidp.
For each statement
For iterative statement .. .
For statement
Free cells exhausted .. .
Fslend .. .
Fslout
Ftype
Function
Function calls
Function pointers
Function-pointer

Ge . .
Gensym

5-1
2-27
6-3
2-15, 2-28
6-2
4-9
2-15, 2-28
2-6, 6-7
2-6
2-6, 6-7
2-15
6-11
2-29
2-15
2-24
3-1
3-1
2-25
2-25
2-9
6-2
2-10
2-17, 6-8
2-1

4-14
4-12
4-14
2-28, 7-2
3-1
3-1
6-2
4-12
2-10
2-19
2-7
2-10
2-10
1-3, 2-9
6-6
3-1
2-19
2-13
2-13
6-5
6-5
6-5
2-30
3-1
3-1, 4-11
2-1
2-1, 2-25
6-8
1-4
2-1

6-6
2-9

Geq . 6-7
Get . 2-10
Getd 2-11
Getp1$. . . 2-3
Getv 2-29, 8-1
Gget 4-14
Global 2-13
Global binding 2-12
Global property 2-10
Globalp . 2-13
Go 2-13, 4-7, 6-4
Go to statement 6-4
Greaterp . 2-17, 6-7

Id . 2-1
Identifiers . 1-2, 2-9
Idl!* . . 2-4
Idp . 2-7
If statement . 6-3
In statement . 6-6
Indicators 1-3, 2-9
Integer . . . 2-2
Integers . . 1-3
Intern . . . 2-9
Items . 1-1

Jp . . • . . . 4-9
Jpeq . . 4-10
Jpneq . . 4-10

Label . • . . 4-9
Labels . 6-3

'-.._/ Lambda-expression 2-2
Lap 4-1, 4-8
Lapp . 4-12, 8-3
Lapp package 4-14
Lapz80 . 4-13
Lda . . 4-9
Ldhl . 4-9
Ldi . . • . 4-9
Ldx . 4-3, 4-9 to 4-10
Left 2-5
Length . . . 2-22
Leq . . . 6-7
Lessp . . 2-17, 6-7
Line length . . . 2-26
Link 4-5, 4-10
Lisp editor 5-1
List 2-8, 4-6
Liter . . 2-24
Local binding 2-12
Lposn . . . 2-27

Map . 2-19
Mapc . 2-19, 6-5
Mapcan . . 2-20
Mapcar . 2-20, 6-5
Mapcon . . 2-20

Maplist 2-20
Max 2-17
Max2 2-18
Member 2-22

/--- Memq 2-22
Min 2-18
Min2 2-18
Minus 2-18
Minusp 2-7
Mkcode 2-5
Mkglob . 2-5, 4-14
Mkref 2-5, 4-14
Mkvect 2-29, 8-1

Nconc 2-22
Neons 2-3
Neq 6-7
Nil 2-28
Not 2-16
Ntok 2·-4
Null 2-7
Number 2-2
Numberp 2-7

Off statement 6-5
On statement 6-5
Onep 2-7
Open 2-25
Opt 6-6
Optimization 4-16
Or 2-16, 4-8, 6-7
Orderp 2-4
Out statement 6-6
Output 6-6

Page length 2-27
Pair 2-23
Pairp 2-7
Parameters 4-2
Plus 2-18
Plus2 2-18, 6-7
Pop 4-10
Posn 2-26
Predicates 2-6
Pretty 6-6
Prettyprint 8-3
Prinl 2-26
Prin2 2-26
Prine 2-27
Print 2-26
Print name 1-2
Procedure . 6-2
Prog 2-14, 4-7, 6-2
Prog2 2-14
Progn 2-14, 6-3
Property list 1-2, 2-9
Push 4-10
Put 2-10

Rr:srn.£

Putd .
Putp!$
Putv .

Quote
Quoted values
Quotient .
R!$. .
Raise . . .
Rdlloc . . .
Rds
Read
Readch . . .

.
.

Real address table
Reclaim . . .
Remainder . .
Remd . . .
Rernflag . . .
Remob
Rernprop
Repeat . .
Repeat statement .
Ret . . .
Return
Return statement
Reverse
Right
Rlisp
Rplaca . .
Rplacd
Rst
~-·
Sassoc . .
Save . .
Scalar .
Scope
Set
Setq
Shut statement . .
Slow links
Stack frame . . .
Stack ovflw
Stacks
Statements . . .
Stl!* . . .
Sto
Stox
String
String space full
Stringp
Strings
Subl
Sublis
Subst
Symbol table full
System errors .

.

.
.

.
.
.

. . .

.

. . . .

. .

.

. .

. .

. . . .

.

. . . .

.

.

.

. . .

. . . .

2-11
2-3
2-29, 8-1

2-25, 6-8
4-8
2-18, 6-8

2-3
6-6
4-3, 4-10,
2-26
2-27, 6-8
2-27
1-4
2-3
2-18
2-12
2-10
2-9
2-10
6-4
6-4
4-10
2-14, 4-7,
6-4
2-23
2-5
6-1
2-9
2-9
4-10
5-3

2-24
5-4
6-2
2-12
2-13
2-13
6-6
2-28, 7-2
1-5, 4-3
2-30
1-5, 4-3
6-3
2-4
4-9
4-3, 4-9 to
2-2
2-30
2-7
1-3
2-19
2-23
2-24
2-30
2-30

4-17

6-4

4-10

System global variables . . . 2-27

T 2-28
Terpri 2-27

,,, Then 6-3
Throw 2-3
Times 2-19
Times2 2-19, 6-8
Tr 7-1
Trace package 7-1

Unfluid 2-13
Until 6-4
Untr 7-1
Upbv 2-29, 8-2

Value statements 6-6
Variables 2-12, 4-8
Vectorp 2-29, 8-2
Vectors 6-6

While statement 6-4
Word 2-2
Wput 2-6
Wrs 2-27
Ws 6-9

Xcons 2-3

Zerop . . . 2-7

List of References

1. Marti, J. B., A. c. Hearn,
Griss, "Standard LISP Report",
14, No. 10, October 1979, pp.
SIGSAM Bulliten, Vol. 14, No.

M. L. Griss, C.
SIGPLAN Notices, Vol.
48-68, reprinted in

1, 1980.

2. Hearn, A. C., "REDUCE 2 User's Manual", Utah Symbolic
Computation Group, UCP-19, March 1973.

3. Allen, J., "Anatomy of LISP", McGraw Hill, New York.

4. Winston, P. H., Horn, B.
Addison-Wesley Publishing
Massachusetts, 1981.

K. p,
Company,

"LISP",
Reading,

5. Weissman, Clark, "LISP 1.5 Primer", Dickenson
Publishing Company, Belmont, California, 1967.

6. Siklossy, Laurent, "Lets Talk LISP", Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

	Contents
	Introduction
	1. Datatypes
	2. Functions
	3. Fast Load
	4. The Compiler and Optimizer
	5. The LISP Editor
	6. RLISP
	7. The TRACE Package
	8. Miscellaneous Packages
	Index

