
UO-LISP NEWSLETTER

+-------------------------li ___________________ --------------+
I January 1984 Vol. 1. No. 1 I

+--+ I , •

Premier Edition

The growing number of UO-LISP µsers has prompted Far ·west to
publish this newsletter tq ' acquaint., users • wi tl} new software
being offered, provide tips dn use· of the system, ·1and broadcast
bugs and fixes. Each issue will provide news or upcoming -events
of interest to LISP programmers.?-. section will .be·. devoted to
answering questions from users ·,and as,'?- speci,il feature.,~ each
issue will ·have a complete' LISP progra'm designed to illuminate
to some aspect of the UO-LISP system.

We encourag~ you to submit programs, qµestions, articles,
and news of coming events. Our close connection with Lisp-means
that we are not always in touch with needs of beginning. users.
Your problem may be one which has not occurred to us and an
explanation of its solution will be of benefit to the entire
community. Or perhaps you have a program or utility which is of
use to everyone. You will be a much mor~ productive LISP
programmer if you can build on the tools provided by others and
do not have to "reinvent the wheel" for each new program.

New Software

Many improvements have been made in UOLISP since.the release cf
version 1.5 for CP/M and the TRS-80. The interpreter has been
augmented, the number of support packages has doubled, and a
large set of example programs in LISP and RLISP have been
implemented. The following changes have occurred since version
1.5.

The Manual

Perhaps the biggest change has been to the UO-LISP User's
Guide. The new manual is well over 300 pages long and is divided
into 12 chapters. It includes new sections on the document
formatter, big and fixed numbers, the revised structure editor,
the utility packages, the macro packages, and the Little Meta
Translator Writing system. In addition, ·nearly every function in
the entire manual is now described with an example of its
operation. Since the manual has gotten so large, we have also
created a hanctb0ok which includes all of the functions in the
system, 3 synopsis of commands for the editors, text processor,

2

and other systems, and a list of all packages in the system. To
keep the manual size reasonable, we have also created a report
series for the application and demonstration programs.

Version 1.14c Interpreter

1. COMPRESS, EXPLODE, and EXPLODE2 have been implemented.
COMPRESS takes a list of single character identifiers and
builds a lisp expression out of it. EXPLODE and EXPLODE2
create lists of characters from S-expressions.

2. The N2I function converts
identifiers. I2N converts
their corresponding numbers.

integers into single character
single character identifiers into

3. MACRO type functions have been implemented. MACRO functions
permit implementing WHILE ... DO ... , FOR loops, data
structuring in LISP without overhead (when compiled).

4. DIGIT and LITER return T when their arguments are single
characters which are digits and letters of the alphabet.

5. Up to 4 disk files may be open at any time in any combination
of input or output. Two other channels are connected to the
CP/M print and read devices. The user can also install his
own I/O drivers on any channel through the use of the INSTALL
function.

6. The FLUID variable binding mechanism is implemented. FLUID
variables are like GLOBAL variables, but can be used as
function parameters or as PROG variables. They also permit
variable name communication between interpreted and compiled
code.

7. A backtrace on error mechanism is implemented.-When an error
occurs, the contents of the ALIST and frame stack are
displayed.

8. The BPS!$ function displays the number of available
identifiers, free code pointers, string space available, and
the amount of remaining binary program space.

9. The loader and compiler check for overrunning the binary
program space.

10. Packages which have been loaded by the fast .loader can be
unloaded and their binary program space and code pointers can
be used for other packages.

11. A Coroutine mechanism has been implemented. This permits
executing up to 5 processes concurrently.

*12. The disk I/O routines permit random access files to be
used.

13. Many bugs have been fixed and many of the basic interpreter
functions have been recoded for speed and size improvement.

3

14. A short call mechanism permits the compiler to generate two
byte function calls for many functions with significant
savings in the size of compiled code (10%).

15. The garbage collector removes unreferenced identifiers from
the symbol table.

16. COND and LAMBDA now support an implied PROGN. The antecedent
of a COND or the body of a LAMBDA can be a set of
S-expressions without the necessity of adding a PROGN.

17. The PROGl function has been implemented. It is like PROGN,
but the value returned is the first of its statements rather
than the last.

18. The support functions EQCAR (equivalent to (EQ (CAR ..)
..)), REVERSIP (like REVERSE but does so in place destroying
the original list structure), LEQ, NEQ, and GEQ.

19. The COMMENT function has been implemented as a way of saving
annotation in a LISP fil~.

20. The vector data type has been moved inside the interpreter.

21. Read macros and a read table are now supported.

The Compiler and Optimizer

1. The basic compiler optimizes calls to LIST that have 1, 2,
and 3 arguments to the equivalent functions NCONS, LIST2, and
LIST3.

2. Implied PROGN is supported in COND's and LAMBDA expressions.

3. The PROGl function is open compiled.

4. Improvements have been made to the LAP pretty printer and LAP
interface.

5. Lambda expresssions as functions are compiled. Thus:
((LAMBDA (X) (ADDl X)) 12) is compiled correctly.

6. Improvements have been made in the code generated by the
basic compiler.

7. The FLUID variable type is supported in compiled code.

8. The two byte call mechanism is supported by the compiler as
an option.

9. The optimizer does argument reordering to take advantage of
registers.

10. Functions are listed as they are compiled during the fast
load file generation process.

4

11. The compiler and interpreter have been fixed to allow ~
compilation of functions with more than 3 arguments (up to 63
are permissible).

RLISP

1. The terse printer is interfaced to RLISP.

2. Some improvements have resulted in a reduction in the size of
the RLISP code.

3. Big numbers and fixed numbers are supported in source code.

The Trace Package

1. The basic package has been simplified by
BREAK function and the output improved. The
interfaced to the output facility. The
function has been reduced.

the removal of the
Terse printer is

size of a traced

2. An extended trace
well as assigments
permits selective
time.

package implements tracing of FEXPR's as
to variables. A program BREAK facility

tracing and environment examination at run

3. An execution profiling package has
package lists the number of times a
during the execution of a program.

The Document Formatting Program LISPTEX

been implemented. This
function gets called

The document formatting package implements LISP based word
processing. The formatter does text justification, centering,
page numbering, index and table of contents maintenance, table
formatting, and switching between different fonts.· This document
was formatted and printed by LISPTEX.

The Structure Editor

The structure editor has been completely rewritten. A file
package constructs and maintains multiple copies of the source
file by attaching a version number to the file name. More than
one file can be edited at any time. The structure editor
contains many new commands including the ability to perform
editing on more than one function or structure at a time. There
is a limited ability to maintain comments in the source file.
The editor also contains a character editor, a facility for
editing the individual characters of an atom or structure.

5

New Packages

Several new support packages have been implemented and many old
ones have been updated.

1. CP/M operating system support. This package includes a number
of routines which perform calls on the CP/M disk and basic
I/O routines. A second package implements more complex calls
and permits interaction with the CP/M filing system for
deletion and renaming of files as well as directory search.

2. Fast arithmetic, bit-logical operations, and random number
generator. This package contains routines for doing fast
addition, and subtraction as well as shifting and logical
operations on integers. A pseudo-random number generator is
implemented.

3. History saving read loop. This package maintains a list of
the commands that have been previously entered. These may be
examined, edited, and rexecuted.

4. Terse printer. This package complements the pretty printer
and can be used with the structure editor and the trace
package. It limits the amount of output from PRINT by
displaying only the top few levels of a tree structure and
the first few elements of an array or list.

5. Internal GLOBAL variables. This package implements named
access to many of the internal global variables used in the
system.

6. Macro packages. These packages contain a number of compiled
macros for advanced control and data structures in LISP. This
includes CASE, IF, FOR, REPEAT, and WHILE macros in the
control package, structure definition and assignment
functions in the data structures package, and some useful I/O
macros in a third package. The fourth package implements the
backquote facility for easy construction of macros.

7. Terminal drivers. This is a collection of routines to be
loaded with programs that require CRT screen operations. Each
terminal type has their own driver program. The source code
for the Televideo and ADM22 terminal drivers are included.

8. Sort packages. These two packages implement a list insertion
sort and a disk based merge sort so that large numbers of
items can be sorted into a disk file.

9. The LSED Screen Editor. This program edits LISP source
program files on a character rather than structure basis.

10. Z80 assembler package. This package is an extension to LAP
to permit all the Z80 instructions to be used.

·*11. File Transfer Program (FTP). This package permits you to
communicate with other UOLISP installations and with Far
West. The program includes an electronic mail facility, talk

facility, and the file transfer mechanism.

*12. Distributed LISP. This
and communication of
systems.

package implements
process between two

6

synchronization
or more LISP

*13. Franz LISP compatibility package. This package permits
Franz LISP programs to be written and tested. These can then
be moved to UNIX version of Franz LISP. Not all of Franz LISP
is supported.

14. Auto loading. This package implements automatic loading of
functions within the lisp system. A second package implements
package swapping.

15. Low level debugging. This package is a
level DDT which permits examination
functions and contents of buffers.

byte and address
of compiled LISP

16. The Little Meta Translator Writing System is now available
for CP/M systems.

*17. PROLOG. The programming language PROLOG implemented in LISP
(contributed by Rabbe Fogelholm of the Royal Institute of
Technology, Stockholm, Sweden). This package permits the user
to create and debug simple PROLOG programs.

18. A package has been written to support the construction of
read macros.

*19. Cross reference program. This program takes a UO-LISP
source file and displays information about which functions
are called from where, and what GLOBAL and FLUID variables
are used.

20. The 'hunk' data structure is a fast byte vector. It is
useful for storing single bytes in a fixed length vector and
retrieving the value without a list search as in the UO-LISP
vector structure. This will speed up many applications by an
order of magnitude.

Educational Software

Far West is now offering two packages for those learning LISP.
These make UO-LISP look like the LISP presented in various text
books. Currently packages exist for 'LISP' by Winston and Horn,
and the 'LISP 1.5 Primer' by Clark Weissman.

* item is to be released in the near future.

Demonstration Programs

A number of demonstration programs have been implemented. The

7

source code for these are distributed together with a document
describing each one and examples of its use (where applicable).

1. The SNAKE g~me. A game for CRT's: the snake gobbles the
random numbers that appear on the screen and gets longer. The
operator controls movement with characters from the terminal.
The game ends when the snake runs into itself or the wall.

2. Othello. A game program which
vectors. The program is not
known to win. The documentation
strategy used by the program.

demonstrates some uses of
very smart though it has been

describes the rules and the

*3. The NLARGE computer algebra system. This program accepts
equations and performs operations on them. For example,
(X+l)A2 is expanded into (XA2 + 2*X + 1). Bignums permit
(X+l)A20 to be expanded (we don't know what the limit is).
Polynomials can be added, subtracted divided, multiplied, and
differentiated with respect to any variable. The package also
includes some matrix manipulations to do computation of
determinants, matrix inversion and multiplication. The
program treats the algebraic operators as "objects" and is a
simple example of "object oriented" programming in LISP. A
demonstration program which runs about 10 minutes is
included.

4. Fruit world. A simple intelligent system shows how the Little
Meta Translator Writing System can be interfaced to a program
that knows about fuit and how to make inferences based on
this information. The input and output are English sentences.

5. Your Program. Far West is actively soliciting contributions
from users. These will either be published in the newsletter
or offered as part of the growing UOLISP program library.

UO-LISP Bugs & Complaints

We hope to keep this section small but we won't be foolish
enough to deny that there aren't any such things around. The
following have come to our attention:

Version l.Sa,b only (TRS-80 Model I, III). The Little META
Translator Writing system has a problem running under version
1.5a (not version 1.5 or before). The use of the sign in
the test-x- construct causes problems and the sample
distributed programs don't work. To solve this problem, edit
these files and place at least one blank after every minus
sign.

Version l.13-l.14b (CP/M system). Characters with a code less
than 32 are ignored by the input reader. Consequently
assigning entries for them in the read table will not work.
This has been fixed in subsequent versions.

8

Other News

FOLLK (Friends of LISP/Logo & Kids) is a recently formed
non-profit Educational & Scientific Corporation based in San
Francisco. It publishes a quarterly newsletter with articles
describing LISP, Logo, and PROLOG. It also sponsors computer
camps, a hot-line for answering questions about LISP, Logo and
other AI languages, and monthly FOLLK-Meets. A subscription to
the newsletter is $7.50 and a FOLLK regular membership is $25.00
and a student membership is $15.00. FOLtK can be reached at 254
Laguna Honda Boulevard, San Francisco, California 94116,
(415)-753-6555. FOLLK is not connected with Far West in any way.

Coming Events

The 1984 ACM Composium on LISP and Functional Programming will
be held at the University of Texas in Austin on August 5-8,
1984.

EUROSAM '84 International Symposium on Symbolic and Algebraic
computation will be held in Cambridge, England on July 9-11,
1984.

Bibliography

In this section we will list recently published articles and
books of interest to the LISP programmer. We would also like to
print book and article reviews.

Marti, J., 'The Little Meta Translator Writing System', Software
Practice and Experience, October 1983, pp. 78-xx.
Describes the Little Meta Translator Writing System by
presenting a syntax checker, an interpreter and a compiler
for a small programming language. Recommended reading for
Little Meta users (reprints are available on a first come
first serve basis from Far West).

Questions and Complaints from the Users

In this section we will present questions we have received from
users both over the phone and by letter as well as the best
answers we can give.

Can I reconfigure the data spaces for my own applications?
Answer: No. Z80 code is not very relocatable and not every
CP/M or TRS-80 system has a relocating linker. We have spent
considerable time tuning the data spaces so that most
applications will run without reassembling the system. The
8086 version of UO-LISP will be statically reconfigurable.
The Z80 system can be easily be reconfigured by Far West upon
request (please call us to discuss your needs). For example
we could create a version which permitted you to have 20
files open at one time, or a version with 32k binary program
space (at the expense of stack and dotted-pair space), or
most any other special request you might have, as long as it
will fit into 64k.

I'm getting really sick of seeing the CAR and CDR of NIL error

9

message.
There are two solutions to this problem. The easiest is not
to take CAR or CDR of an atom, usually this error is a
symptom of some other error. Some LISP dialects (Interlisp
and MacLisp for instance) do permit you to take CAR and CDR
of NIL, but not other atoms. If this style of programming
appeals to you, simply create a special CAR and CDR which
check for this special condition (don't forget the composites
too) :

(DE CAR!* (x) (AND (PAIRP x) (CAR x)))
(DE CDR!* (x) (AND (PAIRP x) (CDR x)))

Programs

In this first issue we include the following interesting
algorithm programmed by Julian Padget of the University of Bath
in England. It computes PI to as many decimal places as one
wishes to wait for using a method called "continued- fractions".
The following program can be run as is. The last lines computed
PI to 10 and 20 decimal places respectively. We have used this
routine to compute PI to 100 decimal places, but it takes about
30 minutes.

% Load the packages required.
(FLOAD "USEFUL")
(LOADF "MACROS" "RTABLE" "FIXED")

% !*PREC is precision to compute to, default=l0.
(GLOBAL I (!*PREC))
(SETQ !*PREC 10)

% Define a read macro for big numbers.
(DRM ! #

(WHILE (DIGIT (SETQ C (R!$)))
(WITH CL)
(INITIALLY (READCH))
(RETURNS (MKQUOTE L))
(DO (SETQ L (CONS (I2NO C) L))

(READCH))))
(DE I2NO (C) (DIFFERENCE (I2N C) 48))

% Compute PI for N iterations.
(DE PI (N)

(FOR (WITH AN2 ANl AN BN2 BNl BN TMPl TMP2)
(INITIALLY (SETQ AN2 tO)

{SETQ ANl tl)
(SETQ BN2 tl)
(SETQ BNl tl))

(FROM I 2 N)
(DO

(SETQ TMPl (BEXPT (BIGNUM (SUBl I)) 2))
(SETQ TMP2 (BSUBl (BTIMES2 t2 (BIGNUM I))))
(SETQ AN (BPLUS2 (BTIMES2 TMPl AN2)

{BTIMES2 TMP2 ANl)))
(SETQ BN (BPLUS2 (BTIMES2 TMPl BN2)

(BTIMES2 TMP2 BNl)})
(SETQ AN2 ANl) (SETQ ANl AN)
(SETQ BN2 BNl) (SETQ BNl BN)

(RETURNS (!$QUOTIENT
(BTIMES2 t4 (CONS O AN))
(CONS O BN)))))

% Gets about .75 digits/iteration.
(!$PRINT (PI 16))
(SETQ !*PREC 20)
(!$PRINT (PI 28))

10

This program uses both the FIXED and BIGNUM packages as well as
the MACROS, RTABLE, and USEFUL packages. Note that FIXED
automatically causes the BIGNUM package to be loaded if it is
not already so. The read macro for defined by the call to DRM is
used to all big numbers to be used in the source. Any number
prefixed by ant will be converted into big number format. The t
read macro uses must of the features of the WHILE macro which is
defined in the MACROS package. The argument of the PI function
is the number of iterations to perform. The algorithm computes
slightly less than .75 digits per iteration.

Next Issue

The next issue will appear in April 1984 and features articles
on the structure editor and a Little Meta translator for a
subset of LOGO.

UO-LISP NEWSLETTER

+--+
I January 1985 Vol. 2 No. 1
+--+

IBM PC Version Announced

Northwest Computer Algorithms is pleased to announce the immediate
availability of UO-LISP Version 3.0 for the IBM Personal Computer.
Two versions are being distributed: the Learn Lisp for $95.00 and the
basic compiler Version 3.0 for $150.00. The minimum requirements are
128k of main memory, at least one 320k double sided double density
floppy disk drive, and PC-DOS 1.1.

Basic Compiler Version

Version 3.0 is an extended version of UO-LISP Version 1.16a. It
supports a full 8k free pairs, 2k identifiers, lk compiled functions,
8k string space, and up to 500k or more of binary program space
permitting execution of very large programs. The package includes:

1. The Version 3.0 UO-LISP interpreter
2. The UO-LISP compiler for the Intel 8086 microprocessor
3. The trace packages, the execution profiler
4. RLISP
5. The structure editor
6. LISPTEX
7. BIGNUMs, FIXED numbers
8. Basic PC-DOS interface routines
9. Basic screen driver permitting setting of all screen

charactersistics and color graphics primitives
10. History saving read loop
11. Sort packages
12. Terse and pretty printers
13. All the macro packages

Little Meta is available as a separate package.

IBM-PC Learn Lisp System

The IBM-PC version of the Learn Lisp system is identical to that
of the Z80 system with the exception of larger data spaces and
built-in access to the system read table.

2

Differences between the Z80 and 8086 Versions

There are very few differences between the two systems. Listed
below are the major changes you would expect to find when moving from
Z80 Version 1.16a to 8086 Version 3.0.

1. More data space is available.

2. Read macro support is built-in, not part of the RTABLE file.

3. Most system functions are defined in Lisp. With the !*FLINK flag
set to NIL, most of the system functions can be safely redefined
at any time.

4. Error messages have been improved and more bad conditions cause
errors.

5. Print macros are defined for output of special data types.

FUTURE PLANS

Northwest Computer Algorithms plans several new product releases
and revisions in both the Z80 CP/M and the 8086 system in the coming
monthes.

1. A revised version of the Z80 CP/M manual over 400 pages long
including all new packages and more examples.

2. An optimizer and assembler for the 8086 as well as the rest of
the packages from the Z80 system.

3. Version 3.1 of the 8086 version (to be released this spring)
will support 32k free pairs, 16k string space, 4k identifiers,
4k compiled function pointers, and 300k compiled code space on
large machines. The new system will also include a fast floating
point package with 8087 capability. All previous programs will
be upwardly compatible with this new version.

4. Common Lisp. Version 3.1 will feature a large subset of Common
Lisp, the proposed ARPA standard for Lisp.

5. Objects (flavors). An objects package is
polished for release on all systems.

currently being

6. Application programs. Several large AI application programs are
being prepared for distribution. This includes the complete
REDUCE algebra system and an expert system writing tool.

3

Version 1.16a Z80 (CP/M)

There have been a few minor bug fixes to version 1.16 of the
interpreter and some of the packages as follows:

The Interpreter

1. The FLUID function has been changed so that the initial binding is
created on the bottom of the association list rather than the top.
The previous version exhibited the behavior of losing the top
level FLUID binding if it was created inside an interpreted PROG
or ERRORSET.

2. The PUTD function has been changed to do a REMO before the actual
function definition. The previous version would not allow you to
change the type of a function (from EXPR to FEXPR for instancef,
but rather would leave both definitions on the property list and
use the EXPR one during evaluation.

The Compiler

1. The compiler was modified so that function definition occurs only
after the compilation process has completed. This permits
compilation of a function which is redefining a previous function
which is also being used during the compilation process.

2. The FASLOUT function can be used by application programs that
define functions at read time (such as Little Meta and the objects
package) to place function definitions and other forms in fast
load files.

A SIMPLE OBJECT SYSTEM

In this issue we present a simple object oriented programming
system that you can implement and run on any basic CP/M, PC-DOS, or
MS-DOS system. It requires on the MACROS and STRUCT packages (the Z80
version), or the MACROS package (8086 version). In the next issue we
will present a simple simulation program (with graphics) that uses
the system to simulate the behavior of several flying airplanes.

"Object Oriented Programming" is not a new idea. The designers of
SIMULA and SMALLTALK pursued this style of programming in the 60's.
It is embodied in contemporary Lisp system technology as "flavors".
This article presents a small subset of the flavor system
capabilities designed specifically for simulation. There are many
other applications for object based systems that we will not relate
here.

A small collection of Lisp functions forms an "object system".
This includes functions for creating a class hierarchy of conceptual
objects, functions for creating objects (members of the classes),

4

functions for describing behaviors (called "methods'') of the objects,
and functions for accessing the behaviors and values associated with
the objects and classes. We examine each of these as they relate to a
simulation of one or more airplanes flying in an airspace.

In the boxes in the following text
programming system. Examples of the use of the
in code not in boxes.

is a
system

complete object
are contained

CLASSES

A simulation class is a place holder for a collection of objects
with common characteristics. A simulation program arranges classes in
a tree structured hierarchy with the most general at the top and the
most specific at the bottom. To understand this concept, consider two
different types of flying objects and a possible classification
scheme.

I
!---------\

!-----~--------\ I-­
I FlyingObjectsl--+--
\--------------/

I \
I \

\

XLocation=0
YLocation=0
XVelocity=0
YVelocity=0
(UpdateYourPosition)

!-----------\
IAirplanesl--+-- FlightPlan
\---------/ 1-- MinSpeed

IHelicoptersl--+-- FlightPlan
\-----------/ 1-- (Hover)

1-- (Takeoff) 1-- (TakeOff)

There are two important types of information in this structure: the
relationships between classes and the quantities and functions
associated with each class. Here we see that airplanes and
helicopters are both "FlyingObjects" but that airplanes have a
minimum safe speed and helicopters do not. Both objects have a
current 'XLocation' and 'YLocation' (initially 0), velocities
'XVelocity' and 'YVelocity' and a procedure, 'UpdateYourPosition', to
move the object to a new location. However, both objects have a
procedure called Takeoff, but that associated with airplanes is
different than that of helicopters.

The most important aspects of a class are: its superclasses, that
is, classes higher in the hierarchy, its variables and their default
settings, and a set of procedures that define operations on all
members of the class and its subclasses. In our small system classes.
are declared by the CLASS macro which collects the variables and
superclass information.

CLASS accepts two or more arguments. The first is the unquoted name
of the class being defined. The second is a list of one or more
classes from which this class will inherit varibles and methods. The
remaining arguments, by convention, are elements of an association
list of variables and default values for the class. We have defined
CLASS to simply put this information on the property list of the

5

class name under the indicators SOPERCLASSES and VARIABLES without
performing any evaluation of its arguments. The macro returns the
name of the class being defined.

The class hierarchy of airplanes and helicopters would be defined
as follows.

*(CLASS FlyingObjects (ROOT)
* (XLocation 0)
* (YLocation 0)
* (XVelocity 0)
* (YVelocity 0)
* (FlightPlan. NIL))
FlyingObjects

*(CLASS Airplanes (FlyingObjects)
* (MinSpeed. 0))
Airplanes

*(CLASS Helicopters (FlyingObjects))
Helicopters

Please note that we haven't really created any objects yet, just
classes of objects and their relationships. The first CLASS
declaration creates the class of FlyingObjects. It is a subclass of
the special ROOT class, the global class from which all objects
inherit the most basic methods.

The CLASS macro seen below merely
on the property list of the CLASS
under the indicator SUPERCLASSES
indicator VARIABLES.

places the values of its arguments
name. The superclass list goes

and the variable list under the

+--+
(DEFMACRO CLASS (cname supers . vars)
% Declare class 'cname' with the superclasses list
% 'supers' and the alist of variables 'vars'.

'(PROGN (PUT I ,cname 'SUPERCLASSES ',supers)
(PUT ',cname 'VARIABLES' ,vars)
',cname))

+--+

6

INSTANCES

We call the simulation of a real world object an "instance". This
instance involves both a data structure and operations on it. We
first examine the creation of the data structure and then the
declaration of "methods" for operating on it. The INSTANCE macro
creates a data structure corresponding to the state of a particular
simulation object. The INSTANCE declaration contains first the class
name of which the INSTANCE is a member. INSTANCE then requires an
unquoted name with which the data structure will be associated. This
is followed by an association list of variables and values. For
example, the following INSTANCE declaration creates the data
structure for a particular airplane and assigns an initial location,
minimum speed, and flight plan to it.

+--+
*(INSTANCE Airplanes N7374D
* (XLocation. 34)
* (YLocation. 75)

I * (MinSpeed . 45)
I * (FlightPlan . ' ((MOVE 45 0) (MOVE O 45))))
I N7374D
+--+

You can create as many instances as you have storage provided that
each has a special name. The variables of an instance are derived
from its CLASS declaration and all variables higher up the hierarchy.
Thus, MinSpeed is a variable which only the Airplanes class has,
while XLocation, YLocation, XVelocity, YVelocity, and FlightPlan are
shared by all FlyingObjects. More precisely: all variables are
inherited from higher levels of the hierarchy. If two or more
declarations of a variable exist, the lowest level value takes
precedence over the higher. Thus the XLocation value of 34 takes
precedence over the default value of O provided by the FlyingObject
CLASS declaration.

The INSTANCE macro performs several operations. It first collects all
variables into a large association list by wandering up the
hierarchy. The pair of functions COLLECTVARS and CVARSl builds an
alist with the following rules:

1. INSTANCE variable declarations have the highest precedence.

2. The variables of the class from which the instance is derived
superseed variables with the same name of higher level classes.

3. The final list of variables will have one occurrence of every
variable from the instance declaration and the class hierarchy
starting at the class of the instance.

+--+
(DEFMACRO INSTANCE (cname iname. vars)
% Declare instance 'iname' with the variables from
% the class 'cname' and set the variables in the
% alist 'vars' to new values. Drag down all variables
% and behaviors from the class structure.

'(PROGN (PUT ',iname 'VARIABLES
(COLLECTVARS (LIST' ,cname) ',vars))

(PUT ',iname 'CLASS '(,cname))
',iname))

(DE COLLECTVARS (classes vars)
% Collect the variables from the list of classes
% augmenting the list as we go higher in the
% structure. Lowest level variable declarations
% have the highest precedence.

(IF (NULL classes) THEN vars
ELSE (COLLECTVARS

(APPEND (CDR classes)
(GET (CAR classes) 'SUPERCLASSES))

(CVARSl (GET (CAR classes) 'VARIABLES)
vars))))

(DE CVARSl (nl vars)
% 'nl' is an alist of variables and values to merge
% into the old list 'vars'. Variables are added to the
% list only if they are not already there.
(IF (NULL nl) THEN vars
ELSEIF (ATSOC (CAAR nl) vars) THEN

(CVARSl (CDR nl) vars)
ELSE (CVARSl (CDR nl) (CONS (CAR nl) vars))))

+--+

METHODS

7

To manipulate the data of the INSTANCE structure we provide a
mechanism for declaring functions. This process is complicated by the
desire to allow multiple definitions of the same function, perhaps
one for each class. For example, the function FlyTo might have
different definitions for different classes: one FlyTo specific to
Airplanes and one specific to Helicopters. We declare functions with
the METHOD macro. The first argument of METHOD is the CLASS name with
which the function is to be associated. The second is the name of the
method followed by an argument list, and a body. METHOD creates a
function definition whose name is formed from the CLASS name and the
method name.

Before we look at a particular method, we must examine the means
for invoking a method. For historical reasons, the invocation of a
method is called "sending a message", consequently the procedure for
calling a method is named SEND. The first argument of SEND is the
name of the instance containing the data structure on which the

8

method is to operate. This argument can be computed at run time,
while fixed instance names must be quoted. The second argument of
SEND is the name of the method to be invoked. Subsequent arguments
are actual parameters of the method.

So that methods can access the particular instance they are to
operate on, the METHOD function creates an implied parameter, SELF.
This parameter is aways bound to the real name of the instance being
operated upon. SELF can be used as a local variable inside the
method.

Methods are inherited through the hierarchy in the
variables, though the process occurs at run time. The
ROOT, contains two very useful methods named SET!-YOUR
Since most classes are subclasses of ROOT, these two
always accessible. SET!-YOUR corresponds to SETQ
change the value of an instance variable. For example,
XVelocity of the instance N7374D we created earlier,
the following:

*(SEND 'N7374D 'SET!-YOUR 'XVelocity 32)
32

same manner as
special class
and GET!-YOUR.
functions are

and is used to
to change the
I would perform

The GET!~YOUR function performs the opposite task of retrieving the
value of an instance variable. To update the XLocation of N7374D I
would enter the following.

*(SEND 'N7374D 'SET!-YOUR 'XLocation
* (PLUS (SEND 'N7374D 'GET!-YOUR 'XVelocity)
* (SEND 'N7374D 'GET!-YOUR 'XLocation)))
66

Now, for an entire method: let us create a function which updates
the position of a FlyingObject by adding its X and Y velocity
components to its current X and Y locations. The method has no
arguments other than the implied name of the instance being modified.

*(METHOD FlyingObject UpdateYourPosition ()
* (SEND SELF 'SET!-YOUR 'XLocation
* (PLUS (SEND SELF 'GET!-YOUR 'XVelocity)
* (SEND SELF 'GET!-YOUR 'XLocation)))
* (SEND SELF 'SET!-YOUR 'YLocation
* (PLUS (SEND SELF 'GET!-YOUR 'YVelocity)
* (SEND SELF 'GET!-YOUR 'YLocation)))
![FlyingObject!}UpdateYourPosition

*(METHOD FlyingObject PrintPosition ()
* (PRINl (SEND SELF 'GET!-YOUR 'XLocation))
* (PRIN2 "x")
* (PRINT (SEND SELF 'GET!-YOUR 'YLocation))
* NIL)
![FlyingObject!}PrintPosition

Since UpdateYourPosition must operate on any FlyingObject, we use the
implied SELF formal parameter to tell SEND what instance XLocation,

9

YLocation, and the
PrintPosition method
display the current X
Consider the following

other variables are to be taken from. The
illustrates a simpler use of the functions to

and Y locations of the object specified.
use of PrintPosition and UpdateYourPosition.

*(INSTANCE Airplanes N5445E
* (XVelocity 3)
* (YVelocity. -2))
N5445E

*(SEND 'N5445E 'PrintPosition)
OxO
NIL

*(SEND 'N5445E 'UpdateYourPosition)
-2

*(SEND 'N5445E 'PrintPosition)
3x-2
NIL

I've implemented METHOD as a macro so that its arguments need not
be quoted. The PUTD inside the METHOD macro first creates a name for
the method composed of the class for which the method is defined
(enclosed in curly brackets) and the method name. In addition to the

normal parameter names of the method, the LAMBDA expression formal
parameter list contains the parameter SELF. The SEND function
(presented later) always includes the name of the instance being
operated on for this parameter. Thus, METHOD, is essentially a DE
function call with a funny name for the function and an extra
parameter. METHOD returns the constructed name of the method.

+--+
(DEFMACRO METHOD (cname bname vars . body)
% Define the behavior 'bname' for class 'cname'.
% 'vars' is a list of local parameters, and 'body'
% is a list of expressions to evaluate.

-(PROGN
(PUTD (MAKENAME ',cname I ,bname) 'EXPR

'(LAMBDA (SELF @vars) @body))
(MAK EN AME ' , cname ' , bname)))

(DE MAKENAME (cname bname)
% Construct a funny name to hide the function.

(COMPRESS
(APPEND I (! ! ! [)

(NCONC (EXPLODE enamel
(APPEND I (! ! ! })

(EXPLODE bname))))))
+--+

The SEND function complements METHOD by generating an APPLY to
call the appropriate method. The GETB function returns the definition
of the method that the message is being sent to (the function to be
called). Like the situation for variables, the function must be
located in the class hierarchy. Notice that the second argument of

10

APPLY includes the first argument of SEND, the instance name. This
becomes the value of the SELF parameter of every method.

+--+
(DEFMACRO SEND (inst bname . args)
% Invoke the behavior 'bname' for instance 'inst',
% with evaluated arguments 'args'.

-(APPLY (GETB (GET ,inst 'CLASS) ,bname)
(LIST ,inst @args)))

(DE GETB (hierarchy bname)
% Get Behavior definition for 'bname' starting with
% the list of classes 'hierarchy'.

(IF (NULL hierarchy) THEN
(ERROR O (LIST bname "is not a behavior"))

ELSE (LET ((df (GETD (MAKENAME (CAR hierarchy) bname))))
(IF df THEN (CDR df)

ELSE (GETB
(APPEND

(CDR hierarchy)
(GET (CAR hierarchy) 'SUPERCLASSES))

bname)))))
+--+

The final touches on this objects package are the basic methods
for the ROOT class, SET!-YOUR and GET!-YOUR. SET!-YOUR merely does a
RPLACD on an element of the alist under the VARIABLES indicator for
the instance named in the SEND. GET!-YOUR just returns the value from
the alist.

+--+
(METHOD ROOT SET!-YOUR (var val)
% Root behavior to assign a value to an instance
% variable (no error checking).

(RPLACD (ATSOC var (GET SELF 'VARIABLES)) val)
val)

(METHOD ROOT GET!-YOUR (var)
% Root behavior to retrieve the value of an instance
% variable (no error checking).

(CDR (ATSOC var (GET SELF 'VARIABLES))))
+--+

•'

•

11

Conclusions

This simple objects package has a large number of deficiencies.
In particular, the following improvements would need to be made for
use in larger applications:

1. Error checking (there isn't much)

2. Compilation of methods

3. Direct calls to methods rather than a lookup through the
hierarchy

4. Faster access to variables

5. Manipulation of inheritance

6. More versions of SEND for FEXPR and MACRO style methods

7. More primitive ROOT methods

In the next newsletter we will present a simple simulation using this
objects package.

UO-LISP NEWSLETTER

+---+
I April 1985 Vol. 2 No. 2 I
+---+

Please accept our apologies for the lateness of this issue.
Your July issue should be on time. We hope you like the new
print of the newsletter, as we have just purchased a Hewlett
Packard Laserjet printer with which we will be augmenting the
print quality of all our documentation.

Version 3.1 Announced

Northwest Computer Algorithms takes pleasure in announcing
Version 3.1 of UO-LISP for the IBM-PC computer and compatibles.
Version 3.1 is a major enhancement of Version 3.0 featuring
larger data spaces and additional functionality. This includes:

■ 16k free pairs (8k in V3.0)

■ 16k bytes of string space (8k in V3.0)

■ Small integers in the range -8192 and 8191

■ The Little Meta Translator Writing System

■ A compiler option for open coding commonly used functions
such as the CAR and CDR composites, small integer
arithmetic, and some predicates.

■ The MAPOBL function scans the identifier table applying a
user supplied function to each symbol.

UO-LISP Version 3.1 requires a minimum of 256k bytes of main
storage and PC-DOS 1.1 and higher, or MS-DOS 2.0 and later. The
system is source code compatible with Version 3.0 and Version
1.16 (the CP/M version).

2
Simulation Using the Simple Objects Package

In last months news letter, we presented a
programming system. In this issue
functionality to the objects package and
with a simple simulation of a number
objects.

simple object based
we add additional
demonstrate its use
of moving interacting

From the last issue, recall that there are a number of
built-in behaviors: GET!-YOUR, SET!-YOUR and so on. We now add a
behavior to destroy an instance of an object. This function
simply removes any properties associated with the object system.

+---+
I (METHOD ROOT KILLYOURSELF () I
I % Remove all object properties associated with SELF. I
I (REMPROP SELF I SUPERCLASS ES) I
I (REMPROP SELF 'VARIABLES) I
I (REMPROP SELF I CLASS)) I
+---+

During the course of a long simulation hundreds of objects may
be created. KILLYOURSELF frees up storage allocated to an object
when it is no longer in use. Since KILLYOURSELF resides at the
ROOT of the hierarchy, the behavior can remove any object.

Most simulations require dynamic object creation. The
INSTANCE declaration is ill suited to this purpose, hence we
introduce an analogous construct, MAKE, for constructing objects
at run time. Like INSTANCE, MAKE constructs an object instance
but with the added twist that the object's class and name can be
computed at run time. The INSTANCE declaration automatically
quotes the objects name and class.

+---+
I (DEFMACRO MAKE (cname iname . vars) I
I % Construct an object instance. This function has the exact I

I % same arguments as INSTANCE, but cname and iname are I
I % computed at run time. I
I ' (PROG (tmp) I
I (SETQ tmp ,iname) I
I (PUT tmp 'VARIABLES I

I (COLLECTVARS (LIST , cname) I
I (FOR (IN x ' , vars) I
I (COLLECT (CONS (CAR x) (EVAL (CDR x))))))) I

j (PUT tmp 'CLASS (LIST ,cname)) I

I (RETURN tmp))) I
+---+

You should add these two procedures to the objects package
listed in the previous issue.

The
moving

following
objects of

program simulates interactions among some
different types. So that you can understand

3
the interactions better, I've called these Aliens and Bullets.
Each of these is a type of MovingObject the topmost class is our
hierarchy. Basically:

/---------------\
I MovingObject I
\---------------/

I I \
I I \

/ I \
/--------\ I /---------\
I Aliens I I I Bullets I
\--------/ I \---------/

I

An Explosion
different than
MovingObjects
follows:

/------------\
I Explosions I
\------------/

is another moving object. Though its behavior is
that of Aliens and Bullets we attach it to
for convenience. This class hierarchy is coded as

+---+
I (CLASS MovingObjects (ROOT) I
I % MovingObjects have a location and velocity. I
I (Xloc. O) % Initial X location* 10. I
I (Yloc . 0) % Initial Y location * 10. I
I (Xvel . 0) % Initial X velocity* 10. I
I (Yvel . 0) % Initial Y velocity * 10. I
I I
I (CLASS Explosion (MovingObjects) I
I % An explosion has a location, state (changes with time) I
I % and picture. I
I (Xloc . 0) % Y Location * 10. I
I (Yloc . 0) % Y Location * 10. I
I (State . 0) % Explosion state. I
I (Picture. NIL)) % Explosion picture. I
I I
I (CLASS Aliens (MovingObjects) j
I % An alien is a MovingObject with a 4 character picture. I
I (Picture. ((-1 o <) (0 o *) (1 o >) (0 1 A)))) I
I I
I (CLASS Bullets (MovingObj ects) I
I % A bullet is a moving@ sign. I
I (Picture. ((0 0 !@)))) I
+---+

MovingObjects have only one common procedure. The object erases
its previous screen image by writing blanks at all its locations
and then gets drawn at a new location. As you can see from

4
above, each object has a picture associated with it. The picture
is a list of 3 element lists. The first two elements of each
picture element are x and y coordinates relative to the center
of the object at which to display the third element of the list;
a character. The CLIPW routine displays a single character at
coordinates x and y provided that x and y lie within the screen
boundary.

+---+
I % Load the terminal package if not present. I
I (COND ((NOT (GETD I CURSOR)) (FLOAD "TERMINAL"))) I
I I
I (GLOBAL I (TERM!-MAXX TERM! -MAXY)) I
I I
I (DE CLIPW (x y c) I
I % Write a character cat location x y unless it's off I
I % the screen. I
I (IF (NOT (OR (MINUSP x) (GREATERP x TERM!-MAXX) I
I (MINUSP y) (GREATERP y TERM!-MAXY))) THEN I
I (CURSOR X y) I
I (PRIN2 c))) I
+---+

We now provide two routines: one to erase an object by drawing
blanks over it, and the other to display it in a new position.

+---+
(METHOD MovingObjects EraseYourself ()
% Clear an objects screen representation.

(FROG (lx ly)
(SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
(SETQ ly (QUOTIENT (SEND SELF 'GET!-YOUR 'Yloc) 10))
(FOR (IN pos (SEND SELF 'GET!-YOUR 'Picture))

(DO (CLIPW (PLUS lx (CAR pos))
I (PLUS ly (CADR pos)) "")))))
I
I (METHOD MovngObjects DrawYourself ()
I % Draw an object on the screen.
I (FROG (lx ly)
I (SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
I (SETQ ly (QUOTIENT (SEND SELF 'GETl-YOUR 'Yloc) 10))
I (FOR (IN pos (SEND SELF 'GET!-YOUR 'Picture))
I (DO (CLIPW (PLUS lx (CAR pos))
I (PLUS ly (CADR pos))
I (CADDR pos))))))
+---+

The controlling routine, MoveYourself, first erases the object
currently on the screen, then updates its position based on its
current velocity, and then draws the object at its new location.
The key fact to notice is that the MoveYourself routine can be
used by all moving objects: in this program, both Aliens and
Bullets both use this routine to update their positions.

+---+
I (METHOD MovingObjects MoveYourself () I
I % Move an object by clearing it from the screen, I
I % updating its position, and then redrawing it. I
I (SEND SELF 'EraseYourself) I
I (SEND SELF 'SET!-YOUR 'Xloc I
I (PLUS (SEND SELF 'GET!-YOUR 'Xloc) I
I (SEND SELF 'GET!-YOUR 'Xvel))) I
I (SEND SELF 'SET!-YOUR 'Yloc I
I (PLUS (SEND SELF 'GET!-YOUR 'Yloc) I
I (SEND SELF 'GET!-YOUR 'Yvel))) I
I (SEND SELF 'DrawYourself)) I

+---+

While both Bullets and Aliens move around on the screen, they
have slightly different behaviors. A bullet disappears when it
goes off the screen. We let the Alien decide what happens when
it's hit by a bullet rather than the other way around. To keep
track of what bullets are active, we keep a list of active
object names for each type of object. Thus, when a bullet goes
off the screen, it both deletes its instance data structure
(using the KILLYOURSELF behavior) and removes the instance name
from the list of active bullets.

+---+
% Lists of currently active objects.
(GLOBAL' (Bullets Aliens Explosions))

(METHOD Bullets ChangeYourself ()
% If the bullet goes off the screen, erase its object from
% the list of active bullets.

(PROG (lx ly)
(SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
(SETQ ly (QUOTIENT (SEND SELF 'GET!-YOUR 'Yloc) 10))
(IF (OR (MINUSP lx) (GREATERP lx TERM!-MAXX)

(MINUSP ly) (GREATERP ly TERM!-MAXY)) THEN
(SEND SELF 'EraseYourself)
(SEND SELF 'KILLYOURSELF)
(SETQ Bullets (DELETE SELF Bullets)))))

+---+

In addition to running off the screen and disappearing, Aliens
are destroyed by bullets. The collission results in an explosion
and disappearance of both objects. In the following code
segment, if the alien being examined is sufficiently close to
any bullet on the screen, it destroys both objects and signals
that an explosion should take place at the point of
intersection.

+---+
(METHOD Aliens ChangeYourself ()
% If an alien runs off the screen, then remove it. If it
% runs into a bullet then start an explosion.

(PROG (lx ly blowup)
(SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
(SETQ ly (QUOTIENT (SEND SELF 'GET!-YOUR 'Yloc) 10))
(IF (OR (MINUSP lx) (GREATERP lx TERM!-MAXX)

(MINUSP ly) (GREATERP ly TERM!-MAXY)) THEN
(SEND SELF 'EraseYourself)
(SEND SELF 'KILLYOURSELF)
(RETURN (SETQ Aliens (DELETE SELF Aliens))))

(FOR (IN b Bullets)
(WHEN

(AND
(EQUAL lx

(QUOTIENT (SEND b 'GET!-YOUR 'Xloc) 10))
(EQUAL ly

(QUOTIENT (SEND b 'GET!-YOUR 'Yloc) 10))))
(DO (SEND b 'EraseYourself)

(SEND b 'KILLYOURSELF) j
(SETQ Bullets (DELETE b Bullets)) I
(SETQ blowup T))) I

(IF blowup THEN I

(SEND SELF 'EraseYourself) I
(SETQ Explosions I

(CONS I
(MAKE 'Explosion (SETQ blowup (GENSYM))) j

Explosions)) I
(SEND blowup 'SET!-YOUR 'Xloc I

(SEND SELF 'GET!-YOUR 'Xloc)) I
(SEND blowup 'SET!-YOUR 'Yloc I

(SEND SELF 'GET!-YOUR 'Yloc)) I
(SEND SELF 'KILLYOURSELF) I
(SETQ Aliens (DELETE SELF Aliens))))) I

+---+

An explosion is scheduled by the Alien ChangeYourself behavior.
An explosion is a sequence of two different pictures that are
done during each simulation step. The object variable State
associated with each explosion tells which of the two pictures
to display and when to terminate the explosion.

7

+---+
I (METHOD Explosion Nextstate () I
I % Change an explosion to the next state. I
I (PROG (state) I
I (SETQ state (SEND SELF 'GET!-YOUR 'State)) J

I (IF (ZEROP state) THEN I
I (SEND SELF 'SET!-YOUR 'Picture I
I 1 ((-1 o -) (-1 1 !.) (o 1 I) (1 1 !.) (1 o -) I
I (1 -1 !.) (o -1 I) (-1 -1 !.))) I
I (SEND SELF 'SET!-YOUR 'State 1) I

I (SEND SELF 'DrawYourself) I

I ELSEIF (ONEP state) THEN I
I (SEND SELF 'EraseYourself) I
I (SEND SELF 'SET!-YOUR 'Picture I
I 1 ((-2 o -) (o? !) (2 o -) (0 -2 !))) I
I (SEND SELF 'SET!-YOUR 'State 2) I
I (SEND SELF 'DrawYourself) I
I ELSEIF (EQUAL state 2) THEN I
I (SETQ Explosions (DELETE SELF Explosions)) I
I (SEND SELF 'EraseYourself) I
I (SEND SELF 'KILLYOURSELF)))) I
+---+

The top level driver completes the simulation. It clears the
screen and runs the simulation until no more objects are active
and then stops.

+---+
I (DE RunTheScreen () I
I % Run the screen until no more objects are visible. I
I (LINELENGTH 0) I
I (CLEAR) I

I (WHILE (OR Aliens Bullets Explosions) I
I (DO (FOR (IN o (APPEND Bullets Aliens)) I
I (DO (SEND o 'MoveYourself) I
I (SEND o 'ChangeYourself))) I
I (FOR (IN o Explosions) I
I (DO (SEND o 'Nextstate)))))) I
+---+

To run the simulation we create an instance of an alien and a
bullet headed at each other. We put the names of these instances
on the appropriate lists so the top level loop changes their
states at the appropriate times.

+---+
% Put two objects on the screen and let them go at it.
(SETQ Aliens

(LIST (INSTANCE Aliens Al
(Xloc . 300)
(Yloc . 120)
(Xvel . 5)
(Yvel. 0))))

(SETQ Bullets
(LIST (INSTANCE Bullets Bl

(Xloc . 400)
(Yloc . 120)
(Xvel . -6)
(Yvel. 0))))

(RunTheScreen)
+---+

The initial screen configuration should
The two objects "rush" at each other
explosion, only, if you haven't compiled
be in any great hurry.

resemble the following.
and disappear in an

the program, they won't

+---+
I I
I I
I I
I " I
I <*> @ I
I I
I I
I then I
I I
I I
I I
I , I • I
I -> I
I • I • I
I I
I I
I I +---+

Finally, we demonstrate a more complex example, one with four
initial objects aimed at each other but with anhilation
scheduled at different times.

+---+
I % Now Put 4 objects on the screen. I

I (SETQ Aliens (LIST I
I (INSTANCE Aliens Al I
I (Xloc. 100) (Yloc. 100) (Xvel . 5) (Yvel . 0)) I
I (INSTANCE Aliens A2 I
I (Xloc. 200) (Yloc. 200) (Xvel . 6) (Yvel -6)))) I
I (SETQ Bullets (LIST I
I (INSTANCE Bullets Bl I
I (Xloc. 205) (Yloc. 100) (Xvel . -5) (Yvel . 0)) I
I (INSTANCE Bullets B2 I
I (Xloc. 250) (Yloc. 150) (Xvel . -5) (Yvel . 5)))) I

I (RunTheScreen) I
+---+

Institute of Artificial Intelligence

The Institute of Artificial Intelligence is sponsoring a
summer training program for workers in the field of Artificial
Intelligence. Their brochure states:

"The Institute of Artificial Intelligence is a permanent,
fully independent repository of AI experience, learning and
research. Its primary goal is in-depth education and training
of functional AI practitioners, such as knowledge engineers,
project managers, and AI system programmers. The Institute is
affiliated with Harvey Mudd College, the prestigious
engineering and science school of the Claremont Colleges."

The Institute can be reached at (213)-201-0106 or

The Institute of Artificial Intelligence
1888 Century Park East, Suite 1207
Los Angeles, California

90067-1716

Classes commence June 24, 1985.

UO-LISP Version Number Changes

Northwest Computer Algorithms has renumbered the versions of
UO-LISP to simplify ordering and communication with our users.
UO-LISP Version 1 is for the older TRS-80 systems, Version 2 for
the Z80 CP/M systems, and Version 3 for the 8086 family. Each
version is futher specified by a release number, and, for the
Version 3 group, still further by a modification number. The
following table gives the current versions and numbers:

Version Current CPU Operating
Name Release Family System(s)
------- ------- ------ ---------

Vl Vl.5B Z80 TRSDOS

V2 V2.16 Z80 CP/M 2.2

V3 V3.0.03 8086 PC-DOS, MS-DOS

The old version CP/M system Vl.16 is
(BLS.l) style configuration is no
purchasers of this configuration can
less than the total price of the add-ons

now called V2.16. NOTE: The
longer sold. However,

buy the new Version 2 at
of the previous system.

New Product Configurations

To streamline mail-order distribution, we have simplified UO-LISP
packaging and ordering. The following package pricing applies as
of July 1, 1985:

UO-LISP Vl
Little Meta Vl

UO-LISP V2
Learn Lisp V2
Little Meta V2
UO-LISP V2 with Lisp

Tutorial Support

UO-LISP V3
Learn Lisp V3
Little Meta V3
UO-LISP V3 with Lisp

Tutorial Support

Reference Manual V3
Reference Manual V2
Reference Manual Vl
Tutorial Guide
Newsletter 1 Year
Back issues

$80.00
$40.00

$125.00
$85.00
$80.00

$160.00

$150.00
$85.00
$80.00

$185.00

$30.00
$30.00
$20.00
$15.00
$12.00

$3.00

UO-LISP NEWSLETTER

, ... •'.

Hard on the heels of the last late newsletter is this Summer
issue. We switch from programming with objects to customizing
the LSED screen editor by including the complete source code for
an EMACS style interface.

Feature: EMACS style Interface for LSED

LSED is a completely user programmable editor. The system
provides the basic interface functions and the user configures
the system to perform in whatever manner desired. This can take
the form of rebinding the control character sequences to perform
different functions thus permitting the special keys on some
systems to operate correctly. Alternatively, the system can be
configured to look like some other editor. This is particularly
useful if you are used to something like Wordstar or Emacs.

The user's guide provides some simple examples of
key sequences· for different. terminal types. In this
we examine a complete rework of the editor to make it
the popular Emacs editor.

rebinding
exposition
look like

There are 4 undocumented functions that need to be examined
for this effort~ .We include them as a bonus to newsletter
subscribers.

1

(eFARM CHAR:integer KEYMAP:alist REPT:integer):tri-boolean
Type: EXPR.

eFARM calls the function associated with character CHAR
based on the current KEYMAP. KEYMAP is the association list
formed by the BIND function. REPT is the number of times
that the command should be repeated. If the command
succeeds, the value of the function OK is returned, if it
fails, the value of the function FAIL is returned and if
the command is to terminate LSED execution, the value of
TERM is returned (these are checked for by the OKP, FAILP
and TERMP functions). If CHAR is the first of a multiple
character command, more characters will be read by eFARM to
complete the command.

(eGET):integer
Type: EXPR.

eGET returns the next "raw" character from whatever input
is currently selected. This includes keyboard input, input
from a keyboard macro, and input from the file copy on the
screen. eGET should be used for any non-echoing input of
characters.

(eGETV N:integer):{list,tri-boolean}
Type: EXPR.

eGETV returns a list of characters for line N of the file
being edited. It does all appropriate swapping to and from
disk files and so on. It returns FAIL if there is no such
line in the file.

(eREAD MSG:string):list
Type: EXPR.

eREAD causes MSG to appear in the middle window and to
return a list of characters that the user types following
this prompt. eREAD should be called for any user input of
text information.

Emacs is more than a set of keybindings and extensions.
There are many additional functions not bound to any keys that
are supported. The following is about 1/3 of the total available
functions in the Unix EMACS system. The following text contains
very brief descriptions of functions and bindings that follow in
boxes.

To assure that the file we are cr~ating is compilable
without loading LSED and the screen driver, we declare global
variables we need from the basic system.

2

.9.:-
0 Some globals from LSED and the terminal drivers.
(GLOBAL I (

!#C .9.:-
0 The current key map.

TERM!-MAXX .9.:-0 The last screen column.
TERM!-MAXY .9.:-

0 The top most row (starting at 0) .
!#FY .9.:-0 The current file line number.
!#FX .9.:-0 The rest of the current line .
!#SX .9.:-

0 Current screen column number.
!#SY .9.:-

0 Current screen row number.
))

The first function allows us to have multiple keymaps: the
mapping between control key sequences and functions that do
things. This function would enable us to switch between the
Emacs mode and the regular LSED mode, invaluable during
debugging the package. We will call the standard key map
UO!-LISP and the EMACS set EMACS. We switch to the (currently
empty) EMACS key map before we- start rebinding keys.

% Keep around the current key map name.
(GLOBAL '(!#KEYMAPNAME))
(SETQ !#KEYMAPNAME 'UO!-LISP)

(DE USEKEYMAP (name)
% Switch to keymap name. The current command list is saved
% under its name (in !#KEYMAPNAME) and the new keymap is
% selected.

(PUT !#KEYMAPNAME 'LSEDKEYMAP !#C)
(SETQ !#C (GET name 'LSEDKEYMAP))
(SETQ !#KEYMAPNAME name))

(USEKEYMAP 'EMACS) % Switch to emacs keymap.

We now work through the control keys, binding them to their
appropriate functions and defining new ones when there are no
equivalents in the base system. Recall that BIND has two
arguments, the first a list of the ASCII codes of the control
characters that trigger the evaluation of the second argument,
the name of a function. The first set, AA through AI (tab), are
bound to built-in functions. LSED doesn't work well with tabs,
so we use the tab key to evaluate expressions in the top window,
something that basic Emacs has no command for.

3

(BIND I (1) 'BOL) 9,-
0 AA beginning of line

(BIND I (2) 'BACKC) % AB backwards character
(BIND I (J) 'QUITNS) 9,-

0 AC quit without saving
(BIND I (4) 'DELFC) 9,-

0 AD delete forward character
(BIND I (5) 'EOL) 9,-

0 AE end of line
(BIND I (6) 'FORC) 9,-

0 AF forward character
(BIND I (8) 'DELBC) 9,-

0 ,.._H backwards character
(BIND I (9) 'EEXP) 9,-

0 tab eval expression

The function bound to ,.._J (line feed) has no counterpart in
LSED. The line feed key operates like the return key except that
it automatically indents the next line the same number of blanks
that the previous line has. We accomplish this by retrieving the
current line of characters (using eGETV and the current line
number !#FY). We insert a carriage return and as many blanks as
we find in the previous line. The LBLS function counts the
number of blanks at the beginning of the line.

(BIND '(10) 'NLIND) % <lf> new line and indent.
(DE NLIND ()
% Terminate the current line, indent the next to where
% ever this one starts.

(PROG (cl)
(SETQ cl (eGETV !#FY))
(CINS 13)
(FOR (FROM i 1 (LBLS cl)) (DO (CINS 32)))
(RETURN (OK))))

(DE LBLS (1)
% Returns the number of blanks at the beginning of line 1.

(IF (NULL 1) THEN 0
ELSEIF (EQCAR 1 32) THEN (ADDl (LBLS (CDR 1)))
ELSE O))

LSED normally irretrievably expunges deleted text from the
file. The kill to end of line command (connected to AK) places
deleted text in a special buffer for retrieval at a later date.
The command takes the part of the current text line following
the cursor, erases it from the screen, and appends •it to the
kill buffer variable !#KBUFFER. The function also intercepts
subsequent ,.._K's and causes their text to be added to the buffer.
The COPYONE function copies the first element of the tail of the
list as we destructively replace the CAR of this element with a

4

carraige return (13) character to terminate the line. This is an
important fact to remember when constructing LSED functions: all
lines must end with a carriage return.

(BIND '(11) 'KEOL) % AK kill to end of line
(GLOBAL '(!#KBUFFER))
(DE KEOL ()
% Delete the rest of the current line (do this by RPLACing).
% Append all this stuff to the !#KBUFFER buffer and keep
% doing so as long as AK is pressed. Note that if we are
% already at the end of the line, don't add to kill buffer,
% but just do a DELFC.

(PROG (c)
(SETQ !#KBUFFER NIL)

11 (IF (EQUAL !#FX '(13)) THEN (DELFC)
ELSE (SETQ !#KBUFFER (NCONC !#KBUFFER

(LIST (COPYONE !#FX))))
(CLEAR! -EOL)
(RPLACA ! #FX 13)
(RPLACD !#FX NIL))

(SETQ c (eGET))
(IF (EQUAL c 11) THEN (GO 11)

ELSE (RETURN (eFARM c !#C NIL)))))

(DE COPYONE (1)
% Creates a new list 1 with the first element replaced.

(CONS (CAR 1) (CDR 1)))

The ENTER (or sometimes RETURN) key is bound to SELF. SELF
causes the character to be entered as is into the file, in this
case, causing a new line. The OPENL function (AO) is similar in
flavor except that it backs up before the inserted character
efectively opening a blank line (or with the remainder of the
current one) following the one the cursor is on.

(BIND '(12) 'REDRAW)
(BIND '(13) 'SELF)
(BIND '(14) 'DOWNL)
(BIND ' (15) 'OPENL)
(DE OPENL ()

~ 0

%
~
0

~ 0

AL
AM

AN
AO

redraw screen
new line
next line
open new line

% Insert a new line at the current position but leave the
% cursor where it is by backing up one character.

(CINS 13)
(BACKC))

5

The AQ key causes one more character to be read and inserted
as is into the input file. This is most useful for entering
control characters (such as AA into LISPTEX document files).

(BIND '(16) 'UPL)
(BIND ' (1 7) 'QC)
(DE QC ()
% Insert next character

(CINS (eGET)))

% AP previous line
% AQ quote next character

as is into the file.

The transpose character function TCHAR switches the next two
characters in the file if there are any and one of them is not a
carriage return. The cursor is left in its original position.
Note that CINS moves the cursor ahead

(BIND '(19) 'FIND) % AS find forward
(BIND '(20) 'TCHAR) % AT transpose next 2 characters
(DE TCHAR ()
% Read the next two characters, but quit if they
% are anything funny.

(FROG (cl c2)
(SETQ cl (CURC))
(IF (FAILP (FORC)) THEN (BACKC) (RETURN (FAIL)))
(SETQ c2 (CURC))
(IF (OR (EQN cl 13) (EQN c2 13)) THEN

(BACKC) (RETURN (FAIL)))
(BACKC) (DELFC) (DELFC)
(CINS c2) (CINS cl) (BACKC)
(RETURN (BACKC))))

When we implemented LSED we decided that the 80x24 character
screens common on most small computers were not sufficient to
support multiple window editing. Instead we adopted the strategy
of editing files simultaneously. The following commands
implement this facility and switching between the files. Note
that some of these commands require regular characters as
modifiers •for AX (for example AXE). In this case we provide a
binding for both upper and lower case versions of the character.

6

(BIND I (21) 'REPT) 9.:-0 "'U repeat next command
(BIND I (2 2) 'FORP) 9.:-0 "'V forward page

(BIND I (24 3) 'QUITNS) 9.:-
0 "'X "'C exit emacs

(BIND I (24 5) 'ECOM) 9.:-0 "'X "'E middle window eval
(BIND I (24 6) 'SAVEX) 9.:-0 "'X AF save and exit
(BIND I (24 9) 'INSF) 9.:-0 "X "'I insert file
(BIND I (24 17) 'SAVEF) 9.:-

0 "'X "Q save but no exit
(BIND I (24 22) 'VISITF) 9.:-

0 "X "'V visit file
(BIND I (24 26) 'SW) 9.:-

0 "X A z shrink window
(BIND I (2 4 40) 'DKM) 9.:-0 "X (define keyboard macro
(BIND I (24 41) 'EKM) 9.:-0 "X) end of keyboard macro
(BIND I (24 69) 'KM) 9.:-

0 "X E execute keyboard macro
(BIND I (24 101) 'KM)
(BIND I (2 4 78) 'OTHERF) 9.:-0 "'X N other file
(BIND I (24 110) 'OTHERF)
(BIND I (2 4 80) 'OTHERF) 9.:-

0 "'X p other file
(BIND I (24 112) 'OTHERF)

The yank from kill buffer command copies the kill buffer
into the file at the current position. This feature is normally
used as in cut and paste editing or to move blocks of text
between two files. Since the kill buffer is not destroyed by the
command it can be inserted in more than one place or carried
between files. The FINALLY clause removes the final carriage
return ending the last line of the kill buffer.

(BIND '(25) 'YFKB) % "Y yank from kill buffer.
(DE YFKB ()
% Yank the stuff from the kill buffer and place in the file.
% This kludgy version updates the screen. This probably
% shouldn't happen unless the kill buffer is small. The kill
% buffer is not cleared.

(FOR (IN 1 !#KBUFFER)
(DO (FOR (IN c 1) (DO (CINS c))))
(FINALLY (DELBC))
(RETURNS (OK))))

The LTTOP function (bound to escape!) rolls the line the
cursor is on (l#SY on the screen) to the top of the screen. It
does this by rolling up the screen a line at a time until either
the end of file is encountered (ROLLUP returns FAIL) or the line
is at the top of the screen. Note that ROLLUP causes !#SY to be

incremented for every successful roll.

(BIND '(26) 'ROLLUP)
(BIND ' (2 7 3) 'QUITNS)
(BIND '(27 27) 'ECOM)
(BIND '(27 33) 'LTTOP)
(DE LTTOP ()

% AZ roll screen up
% esc AC_quit no save
% esc esc execute expression
% esc ! line to top of window

% Move the current line to the top of the window by
% scrolling.

(FROG ()
loop (IF (EQN !#SY TERM!-MAXY) THEN (RETURN (OK)))

(IF (FAILP (ROLLUP)) THEN (RETURN (FAIL)))
(GO loop)))

7

We now branch into some word processing functions, those
dealing with words, and sentences. For example, the esc A
command causes the cursor to skip over all non-printing
characters and then invert the case of all alphabetic characters
until some non-alphabetic character is encountered. The function
CINV inverts the case of a single character and returns NIL when
a non-alphabetic is encountered. CWINV scans over control
characters and blanks and then the word inverting case. Notice
that one must always check for FAILP of a cursor movement
operation. Not doing this will generally cause an infinite loop
when the cursor reaches end of file.

(BIND '(27 44)
(BIND '(27 46)
(BIND '(27 60)
(BIND '(27 62)
(BIND '(27 94)
(DE; CINV (c)

I BOP)
'EOP)
'BOF)
'EOF)
'CWINV)

% esc, beginning of window
% esc . end of page
% esc < beginning of file
% esc > end of file
% esc ~ case word invert

% Invert the case of character c. Returns NIL if c is not
% an alphabetic character.

(IF (AND (GEQ c 65) (LEQ c 90)) THEN (PLUS c 32)
ELSEIF (AND (GEQ c 97) (LEQ c 122)) THEN (DIFFERENCE c 32)
ELSE NIL))

(DE CWINV ()
% Invert the case of a word.

(PROG (c)
11 (IF (GREATERP (CURC) 32) THEN (GO 12))

(IF (FAILP (FORC)) THEN (RETURN (FAIL))
ELSE (GO 11))

12 (IF (SETQ c (CINV (CURC))) THEN
(DELFC) (CINS c)
(IF (FAILP (FORC)) THEN (RETURN (FAIL))

ELSE (BACKC) (GO 12)))
(RETURN (OK))))

8

Moving backwards a word is a bit more difficult as the CURC
function alwyas returns the next character in the input line. As
before we bind both esc Band esc b to the command. This command
checks for failure of BACKC so that the result of backing up to
the beginning of file des not result in an infinite loop.

(BIND '(27 66) 'BW) % esc B backwards word
(BIND '(27 98) 'BW)
(DE BW ()
% Move backwards a word.

(PROG ()
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (BACKC)) THEN (GO 11)
ELSE (RETURN (FAIL))))

12 (IF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK))
ELSEIF (OKP (BACKC)) THEN (GO 12)

ELSE (RETURN (FAIL)))))

Delete forward word is a function in the same fashion.

9

Notice that many of the key bindings for commands operating on
words are bound to key sequences that are difficult to remember.
If you are in the habit of moving the cursor through words and
sentences you might consider binding these sequences to single
character codes or to the special function keys.

(BIND '(27 68) 'DFW) % esc D delete next word
(BIND '(27 100) 'DFW)
(DE DFW ()
% Delete all the blanks up to and including the next word.

(PROG ()
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (DELFC)) THEN (GO 11)
ELSE (RETURN (FAIL))))

12 (IF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK))
ELSEIF (OKP (DELFC)) THEN (GO 12)

ELSE (RETURN (FAIL)))))

Forward sentence and forward word are more of the same.

(BIND '(27 69) 'FS) % esc E forward sentence
(BIND '(27 101) 'FS)
(DE FS ()
% Move forward a sentence. A sentence is terminated with a
% . l or? and followed by a blank, EOF, or end of line.

(PROG ()
sl (IF (MEMBER (CURC) '(46 33 63)) THEN (GO s2)

ELSEIF (OKP (FORC)) THEN (GO sl)
ELSE (RETURN (FAIL)))

s2 (IF (FAILP (FORC)) THEN (RETURN (OK))
ELSEIF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK))
ELSE (GO sl))))

(BIND '(27 70) 'FW)
(BIND '(27 102) 'FW)
(DE FW ()

% esc F forward word

% Move forward over blank
% the end of this word.

characters and A-Z characters to

(FROG ()
11 (IF (MEMBER (CURC) I (3 2

THEN
ELSE

12

(IF (OKP (FORC))

(IF (NOT (MEMBER (CURC)
(IF (OKP (FORC)) THEN

ELSE
(RETURN (OK))))

13)) THEN
(GO 11)
(RETURN (FAIL))))
' (3 2 13))) THEN
(GO 12)
(RETURN (FAIL))))

J

10

Delete backward word is a bit different than just backing up
as we don't want to delete extra characters. Changing the case
of a word to lower is, of course, the analog of changing it to
upper case.

(BIND '(27 72) 'DBW) % esc H delete backward word
(BIND '(27 104) 'DBW)
(DE DBW ()
% Delete the blanks before and the previous word.

(PROG ()
11 (IF (MEMBER (CURC) '(32 13)) THEN

(DELFC)
(IF (OKP (BACKC)) THEN (GO 11)

ELSE (RETURN (FAIL))))
12 (IF (MEMBER (CURC) '(32 13)) THEN (RETURN (OK)))

(DELFC)
(IF (OKP (BACKC)) THEN (GO 12)

ELSE (RETURN (FAIL)))))

(BIND '(27 76) 'CWL) % esc L case word lower
(BIND '(27 108) 'CWL)
(DE CWL ()
% Lower the case of the next word. Skip over any blanks in
% the way.

(PROG (c)
11 (IF (MEMBER (CURC) 1 (32 13)) THEN

(IF (OKP (FORC)) THEN (GO 11) ELSE (RETURN (FAIL))))
12 (SETQ c (CURC))

(IF (AND (GEQ c 65) (LEQ c 90)) THEN
(DELFC) (CINS (PLUS c 32))

ELSEIF (MEMBER c '(32 13)) THEN (RETURN (OK))
ELSEIF (OKP (FORC)) THEN (GO 12)
ELSE (RETURN (OK)))))

The replace command requires collecting two strings and then
performing replacements throughout the rest of the file. We
first check the strings for the presence of AG. We use this
character to signal the command to be aborted. Once both strings
have been read, the FND function locates the first occurrence of
the string. If none are found the routine returns success or
failure based on the number of replacements performed. If an
occurrence of the !#ROLD string is found, its characters are
deleted and replaced with those of the new string and the search
and replacement continues.

(BIND '(27 82) 'RPL) % esc R replace
(BIND '(27 114) 'RPL)
(GLOBAL ' (! #ROLD ! #RNEW))
(DE RPL ()
% Search for the string !#ROLD and replace it them with
% !#RNEW. Display the count of replacements in the
% message window.

(PROG (rplcnt)
(SETQ rplcnt 0)
(SETQ !#ROLD (eREAD "Search for:"))
(IF (MEMBER 7 !#ROLD) THEN (MSG '("aborted"))

(RETURN (FAIL)))
{SETQ !#RNEW (eREAD "Replace with:"))
(IF (MEMBER 7 !#RNEW) THEN (MSG '("aborted"))

(RETURN (FAIL)))
loop (IF (FAILP (FND !#ROLD)) THEN

(IF (ZEROP rplcnt) THEN (MSG '("no replacements"))
(RETURN (FAIL))

ELSE {MSG {LIST rplcnt "occurrences replaced"))
(RETURN (OK))))

(FOR {FROM i 1 (LENGTH !#RNEW)) (DO (DELBC}))
(FOR (IN c ! #ROLD) (DO (CINS c)))
{SETQ rplcnt (ADDl rplcnt))
(GO loop)))

11

The final commands and functions are mere repetitions of
earlier ones.

(BIND '(27 85) 'CWU) % esc U case word upper.
(BIND ' (2 7 11 7) 'CWU)
(DE CWU ()
% Convert the next word to all upper case.

(PROG (c)
11 (IF (MEMBER (CURC) '(32 13)) THEN

(IF (OKP (FORC)) THEN (GO 11) ELSE (RETURN (FAIL))))
12 (SETQ c (CURC))

(BIND
(BIND
(BIND
(BIND
(BIND
(BIND
(BIND

(IF (AND (GEQ c 96) (LEQ c 122)) THEN
(DELFC) (CINS (DIFFERENCE c 32)) (GO 12)

ELSEIF (MEMBER c '(32 13)) THEN (RETURN (OK))
ELSEIF (FAILP (FORC)) THEN (RETURN (FAIL))
ELSE (GO 12))))

' (27 86) 'BACKP) ~ 0 esc V backwards page
' (27 118) 'BACKP)
I (27 88) 'ECOM) ~

Q esc X execute lisp in mini
I (27 120) 'ECOM)
I (27 90) 'ROLLDN) % esc z roll down
I (27 122) 'ROLLDN)
I (27 127) 'DELBC) ~ 0 del delete backward character

12

To compile this batch of functions you must first load the
MACROS package. To run the system, you must first load LSED and
then the emacs file.

In the next Issue:

The next issue of the UO-LISP newsletter will present details of
the upcoming release of version 2.17 for Z80 CP/M systems, and
version 3.2 for IBM PC users. The feature article will be a rule
based expert system for generating musical scores.

UO-LISP NEWSLETTER

October 1985 Vol. 2 No. 4

Version 3.2 Learn Lisp Announced

Version 3.2 of the UO-LISP Learn Lisp system is now
available from Northwest Computer Algorithms. This newest
version contains many long awaited features:

1. Generic Arithmetic. Bignumber arithmetic is now automatic
when the small integer magnitude is exceeded. Small number
arithmetic is accomplished with the usual functions, but
each is prefixed with an I: IADDl, IPLUS2, etc ..
Bignumber-only arithmetic is accomplished by the same
functions prefixed with a B: BADDl, BPLUS2, etc .. On the
other hand, the PLUS2 function both verifies numeric
operands are present and decides whether IPLUS2, BPLUS2, or
FPLUS2 (for floating point) is to be called.

2. Floating Point. 7 digits of accuracy, arbitrary exponents.
Floating point numbers are entered in the usual format.
output is in standard notation for reasonable sized numbers
and scientific notation when a fixed exponent range is
exceeded. The generic arithmetic package converts fixed
operands to floating point whenever at least on argument is
floating.

3. Space Sizes Dotted-pair space has been expanded to 16384
possible pairs. String space has expanded to accomodate
about 2000 strings with an aggregate length of 32k bytes.

4. New Functions. Several new functions have been added:
TRINTS: turn on saving the name of interpreted functions on
the alist for traceback. UNTRINTS Turn off the interpeted
function tracing. CLOSEALL Close all open files. MAPOBL
Apply a function to every identifier in the symbol table.

Blackjack

In place of the promised music generation program, we offer this
program submitted by Andrew Parker. The program is divided into
two parts, the first is a general program for shuffling a deck

2

of cards. The second plays the game. We present this pretty much
as we received it.

%***
%
%
%
%
%
%
%
%
%
%
%
%
%

This program shuffles a deck of cards. The shuffled
deck is returned as a list. The deck of cards is
maintained in the global variable "deck". The deck
is a standard 52 card deck with no JOKERs. The user
can modify "deck" by adding the additional elements
required. For example to add two JOKERs you would do
the following:

(SETQ deck (APPEND deck '(JOKER JOKER)))

Two decks can be shuffled together by APPENDING the
global variable 11deck 11 to itself.

% create the deck of cards
(GLOBAL ' (deck))

(SETQ deck '(!2H !3H !4H !SH !6H !7H 18H !9H !l!OH JH
QH KH AH !20 !30 !40 !SD !60 !70 !80 !90
!l!OD JD QD KO AD !2C !3C !4C !SC !6C !7C
!SC !9C !l!OC JC QC KC AC !2S !3S !4S !SS
!6S !7S !8S !9S !l!OS JS QS KS AS))

%**
% remove!-nth - removes the nth element of a list.

% ARGUMENTS: 1 - a list (the deck of cards)
% element!-number - the position of the
% nth element

% RETURNS: the list 1 with the nth element removed

% SIDE EFFECTS: none

(DE remove!-nth (1 element!-number)
(COND ((NULL 1) NIL)

((EQ element!-number 1) (CDR 1))
(T (CONS (CAR 1)

(remove!-nth (CDR 1)
(SUBl element!-number))))))

%**
% return!-nth: returns the nth element of the list 1 as
% an atom.

% ARGUMENTS: 1 - a list (the deck of cards)
% element!-number: the position of the
% nth element of the list
%
% RETURNS: the nth element of the list 1 as an atom

% SIDE EFFECTS: none

(DE return!-nth (1 element!-number)
(COND ((NULL 1) NIL)

((EQ element!-number 1) (CAR 1))
(T (return!-nth (CDR 1)

(SUBl element!-number)))))

%**
% shuffle

% ARGUMENTS: 1 - a list (the deck of cards)

% RETURNS: the list 1 randomly rearranged.

% SIDE EFFECTS: none

(DE shuffle (1)
(PROG (card!-position length!-1)

(COND ((NULL 1) (RETURN NIL))
((EQN 1 (SETQ length!-1 (LENGTH 1)))

(SETQ card!-position 1))
(T (SETQ card!-position

(ADDl (QUOTIENT (RANDOM)
(QUOTIENT 8191

1 ength ! -1))))))
(RETURN (CONS (return!-nth 1 card!-position)

(shuffle
(remove!-nth 1 card!-position))))))

%**
% get!-deck

% ARGUMENTS: none
9-c 0

% RETURNS:
%
%

a list that represents a shuffled deck
of cards

% SIDE EFFECTS: reassigns the global variable "deck"
% to the order

(DE get!-deck ()
(SETQ deck (shuffle deck)))

STOP

The second program section plays the game. There are
machine dependent parameters at the beginning that
fiddled for non-IBM compatible machines (this worked
Tandy Model 2000 without change).

3

a few
must be
on the

(COND ((NOT (GETD 'CURSOR)) (FLOAD "TERMINAL")))

(GLOBAL ' (
my!-deck % deck of cards to be delt
dimond % diamonds
club % clubs
heart % hearts
spade % spades
joker % joker
upper!-left % upper left corner of card
upper!-right % upper right corner of card
lower!-left % lower left corner of card
lower!-right % lower right corner of card
top!-edge % top edge of card
side!-edge % side edge of card
card!-back % back of card
your!-current!-bet % amount you are betting
your!-hand % A-list representing your hand
your!-total % amount of money you have left
computer!-hand % A-list of the computers hand
double!-hand)) % A-list of your double hand

%
% The following values must be set for the type of
% computer you are using. The default is for the IBM PC
% and the COMPAQ deskpro.

(SETQ dimond 4)
(SETQ club 5)
(SETQ heart 3)
(SETQ spade 6)
(SETQ joker 2)
(SETQ upper!-left 218)
(SETQ upper!-right 191)
(SETQ lower!-left 192)
(SETQ lower!-right 217)
(SETQ top!-edge 196)
(SETQ side!-edge 179)
(SETQ card!-back 178)

%
% your!-hand and the computer!-hand are A-list
% representing the cards that have been dealt. The
% A-list looks as follows:
%
% (((x!-position . y!-position) (card . suit))
% ((x!-position. y!-position) (card. suit)))

% There is one entry for each card a player has been
% dealt. At the beginning of each hand the lists are

4

% set to NIL and the totals to zero.
9--
0

(SETQ deck'(
1 2 3 4 5 6 7 8 9 10 11 12 13 9--

0 hearts
14 15 16 17 18 19 20 21 22 23 24 25 26 9--

0 diamonds
27 28 29 30 31 32 33 34 35 36 37 38 39 9--

0 clubs
40 41 42 43 44 45 46 47 48 49 50 51 52)) 9--

0 spades

%**
% get!-normal!-card -
9--0

% ARGUMENTS - card!-number: numeric value representing
one playing card. If the
number is greater then 52

%
%
%
%

it is assumed to be a joker

% RETURNS - a dotted pair in which the CAR is the
card value 2-10, J-A and the CDR is the
suit 3-hearts, 4-dimonds, 5-clubs,

%
%
% and 6-spades.

(DE get!-normal!-card (card!-number)
(PROG (suit card)

(COND ((LESSP card!-number 14)
(SETQ suit heart)
(SETQ card card!-number))

((LESSP card!-number 27)
(SETQ suit dimond)
(SETQ card (DIFFERENCE card!-number 13)))

((LESSP card!-number 40)
(SETQ suit club)
(SETQ card (DIFFERENCE card!-number 26)))

((LESSP card!-number 53)
(SETQ suit spade)
(SETQ card (DIFFERENCE card!-number 39)))

(T (SETQ suit joker)
(SETQ card "J 11)))

(COND ((EQ card 11) (SETQ card "J"))
((EQ card 12) (SETQ card 11Q11))

((EQ card 13) (SETQ card "K"))
((EQ card 1) (SETQ card "A")))

(RETURN (CONS card suit))))

%**
%
%
%

OUTPUT SECTION

%**
% print!-card!-id - displays the card value 2-10, J-A
% and the graphic representation of the suit.

(DE print!-card!-id (card!-frame)
(TERPRI)

5

(CURSOR (PLUS (CAAR card!-frame) 4)
(DIFFERENCE (COAR card!-frame) 2))

(PRIN2 (CADR card!-frame))
(!$PA (CDDR card!-frame)))

%**
% print!-card!-back - if the card is delt face down,
% fill in the back

(DE print!-card!-back (card!-frame)
(PROG (x y)

(TERPRI)
(SETQ x (ADDl (CAAR card!-frame)))
(SETQ y (COAR card!-frame))
(FOR (FROM I 1 6)

(DO
(CURSOR x (DIFFERENCE y I))
(FOR

(FROM counter 1 8)
(DO (!$PA card!-back)))))))

%**
% print!-card - displays one card on the screen. The
% x,y position is the upper left hand corner of the card.
%
% ARGUMENTS: card!-frame - an A-list representing the
% card and its position
% ((x!-position. y!-position)
% (card!-value . suit))
(DE print!-card (card!-frame)

(PROG (x y card)
(SETQ X (CAAR card!-frame))
(SETQ y (COAR card!-frame))
(SETQ card (CDR card!-frame))
(TERPRI)
(CURSOR x y)
(!$PA upper!-left)
(FOR (FROM I 1 8) (DO (!$PA top!-edge)))
(!$PA upper!-right)
(FOR (FROM I 1 6)

(DO
(CURSOR X (DIFFERENCE y I))
(!$PA side!-edge)
(PRIN2 11 11)

(!$PA side!-edge)))
(CURSOR x (DIFFERENCE y 7))
(!$PA lower!-left)
(FOR (FROM I 1 8) (DO (!$PA top!-edge)))
(!$PA lower!-right)))

%**
% erase!-card - removes a card from the screen. It does
% not repaint any underlying cards.

(DE erase!-card (card!-frame)

6

. .,

(PROG (x y)
(SETQ x (CAAR card!-frame))
(SETQ y (CDAR card!-frame))
(FOR (FROM i 0 7)

(DO
(TERPRI)
(CURSOR x (DIFFERENCE y i))
(PRIN2 11 11)))))

%**
% redrawl-hand - re-paints a hand on the screen.

(DE redraw!-hand (hand)
(COND ((NOT (NULL hand))

(print!-card (CAR hand))
(print!-card!-id (CAR hand))
(redrawl-hand (CDR hand))))

%**
% get!-card - get the first card off the deck
% The card returned is an A-list (card value. suit)

(DE get!-card ()
(PROG (card)

(COND ((NULL my!-deck)
(CURSOR 1 2)
(CLEAR!-EOP)
(PRIN2T "I'm shuffling a new deck, please wait")
(SETQ my!-deck (get!-deck))))

(SETQ card (get!-normal!-card (CAR my!-deck)))
(SETQ my!-deck (CDR my!-deck))
(RETURN card)))

%**
% card!-position
% ARGUMENTS hand - A-list representing one hand
% RETURNS: a dotted pair contianing the x!-position and
% y!-position to display the next card

(DE card!-position (hand)
(COND ((LESSP (DIFFERENCE (CDAAR hand) 4) 14)

(CONS (PLUS2 (CAAAR hand) 8) 22))
(T (CONS (CAAAR hand)

(DIFFERENCE (CDAAR hand) 4)))))

%**
%
%
%

BLACK JACK

%**
% deal - deals out the first two cards for black jack.

(DE deal ()
(PROG (card)

(CLEAR)

7

(TERPRI)
(CURSOR 5 24)
(PRIN2T "The House")
(CURSOR 58 24)
(PRIN2T "Your Hand")
(SETQ computer!-hand

(SETQ double!-hand
(SETQ your!-hand NIL)))

(FOR (FROM i 1 2)
(DO

(SETQ your!-hand
(APPEND

(LIST
(CONS (CONS 58

(DIFFERENCE 26 (TIMES i 4)))
(get!-card)))

your !-hand))
(print!-card (CAR your!-hand))
(print!-card!-id (CAR your!-hand))
(SETQ computer!-hand

(APPEND
(LIST

(CONS (CONS 5
(DIFFERENCE 26 (TIMES i 4)))

(get!-card)))
computer!-hand))

(print!-card (CAR computer!-hand))
(COND ((NEQ i 1)

(print!-card!-id (CAR computer!-hand)))
(T (print!-card!-back

(CAR computer!-hand)))))))) •

%**
% total!-cards
% ARGUMENTS: hand - A-list containing all the cards in
% a hand.
% RETURNS: a numeric value representing the total of
% the hand.

(DE total!-cards (hand)
(PROG (aces total card!-value)

(SETQ total (SETQ aces 0))
(WHILE (NOT (NULL hand))

(DO
(COND ((NUMBERP (CADAR hand))

(SETQ card!-value (CADAR hand)))
((EQ (CADAR hand) 11 A")

(SETQ card!-value 11)
(SETQ aces (ADDl aces)))

(T (SETQ card!-value 10)))
(SETQ total (PLUS total card!-value))
(SETQ hand (CDR hand))))

(WHILE (AND (GREATERP total 21)
(GREATERP aces 0))

8

(DO
(SETQ total (DIFFERENCE total 10))
(SETQ aces (SUBl aces))))

(RETURN total)))

%**
% deal!-your!-cards
% ARGUMENTS: your!-hand - A-list representing a players
% hand

(DE deal!-your!-cards ()
(PROG (command ender)

(SETQ ender (SETQ command 'H))
(SETQ PROMPT!* "(H)it, (S)tay, (D)double, (Q)uit: 11

)

(WHILE (AND (NOT (MEMQ command '(!S !s)))

(DO

(LESSP (total!-cards your!-hand) 21)
(NOT (MEMQ command '(!Q !q))))

(TERPRI)
(CURSOR 1 2)
(CLEAR!-EOL)
(SETQ command (READ))
(COND ((MEMQ command '(!H !h))

(SETQ your!-hand (deal!-card your!-hand)))
((AND (MEMQ command '(!D !d))

(EQ (LENGTH your!-hand) 2)
(EQ (CADAR your!-hand)

(CADADR your!-hand)))
(do!-double)
(SETQ command 'S)))))

(CURSOR 1 2)
(CLEAR!-EOL)
(RETURN command)))

%**
% deall-card
% ARGUMENTS
% RETURNS

hand - A-list representing one hand
an A-list with the additional card in it.

(DE deal!-card (hand)
(PROG ()

(SETQ hand (APPEND (LIST (CONS (card!-position hand)
(get!-card)))

hand))
(print!-card (CAR hand))
(print!-card!-id (CAR hand))
(RETURN hand)))

%**
% do!-double - control function for when you double.
% The computer hand will never double.

% ARUGMENTS - none we will always double your!-hand

(DE do!-double ()

9

(PROG (command)
(SETQ double!-hand (LIST (CAR your!-hand)))
(SETQ your!-hand (CDR your!-hand))
(erase!-card (CAR double!-hand))
(print!-card (CAR your!-hand))
(print!-card!-id (CAR your!-hand))
(SETQ double!-hand

(LIST (CONS (CONS
(DIFFERENCE (CAAAR double!-hand) 26)
(PLUS (CDAAR double!-hand) 4))

(CDAR double!-hand))))
(CURSOR (CAAAR double!-hand) 24)
(PRIN2 "Double Hand")
(print!-card (CAR double!-hand))
(print!-card!-id (CAR double!-hand))

'(SETQ your!-hand (deal!-card your!-hand))
(SETQ double!-hand (deal!-card double!-hand))
(SETQ PROMPT!* "YOUR HAND - (H) it, (S) tay: ")
(WHILE (AND (NOT (MEMQ command '(!S !s)))

(LESSP (total!-cards your!-hand) 21))
(DO

(TERPRI)
(CURSOR 1 2)
(CLEAR!-EOL)
(SETQ command (READ))
(COND ((MEMQ command '(!H !h))

(SETQ your!-hand
deal!-card your!-hand))))))

(SETQ command 1 H)
(SETQ PROMPT!* 11 DOUBLE HAND - (H) it, (S) tay: 11)

(WHILE (AND (NOT (MEMQ command '(!S !s)))
(LESSP (total!-cards double!-hand) 21))

(DO
(TERPRI)
(CURSOR 1 2)
(CLEAR!-EOL)
(SETQ command (READ))
(COND ((MEMQ command '(!H !h))

(SETQ double!-hand
(deal!-card double!-hand))))))))

%**
% who!-won - determines who won the game. It displays
% the results on the screen and adjusts your!-total
% winnings.

% ARGUMENTS:
%
%
%
%

hand - A-list representing the hand
to compare against the
computer.

hand!-type - discription for the display
'double or 'first

(DE who!-won (hand hand!-type)
(COND ((AND (LEQ (total!-cards hand) 21)

(LEQ (total!-cards cornputer!-hand) 21))

10

,;

(COND ((LES SP
(total!-cards hand)
(ADDl

(total!-cards cornputer!-hand)))
(PRIN2 "Computer wins")
(PRIN2 hand!-type)
(PRIN2 "hand")
(SETQ your!-total

(DIFFERENCE
your!-total
your!-current!-bet)))

(T (PRIN2 "You win")
(PRIN2 hand!-type)
(PRIN2 "hand")
(SETQ your!-total

(PLUS
your!-total
your!-current!-bet)))))

((LEQ (total!-cards hand) 21)
(PRIN2 "You win 11)

(PRIN2 hand!-type)
(PRIN2 "hand")
(SETQ your!-total

(PLUS your!-total your!-current!-bet)))
((LEQ (total!-cards computer!-hand) 21)

(PRIN2 "Computer wins")
(PRIN2 hand!-type)
(PRIN2 11 hand")
(SETQ your!-total

(DIFFERENCE your!-total
your!-current!-bet)))

(T (PRIN2 "We're both over, no winner")))

%**
% BLACKJACK - main controller loop for playing
% blackjack.

(DE BLACKJACK ()
(PROG (command)

(CLEAR)
(SETQ your!-total 2000)
(TERPRI)
(CURSOR 1 12)
(PRIN2 "Type any character to start ")
(WHILE (EQ (DIRECTIO 255) 0)

(DO (SETQ SEED!* (QUOTIENT (RANDOM) 819))))
(WHILE (AND (NOT (MEMQ command '(!Q !q)))

(GREATERP your!-total 0))
(DO

(SETQ your!-current!-bet 0)
(WHILE (OR (EQ your!-current!-bet 0)

(NOT (NUMBERP your!-current!-bet)))
(DO

(SETQ PROMPT!* 11 11
)

(TERPRI)

11

{CURSOR 1 2)
(CLEAR!-EOP)
(PRIN2

"Please enter your bet, you can wager up to $ 11)

(PRIN2 your!-total)
{PRIN2 11

:
11

)

(SETQ your!-current!-bet (READ))))
(deal)
(COND ((NOT (MEMQ

(SE'I'Q command (deal ! -your! -cards))
I (! Q ! q)) J

(redraw!-hand (REVERSE computer!-hand))
(COND ((OR (LEQ (total!-cards your!-hand) 21)

(AND double!-hand
(LEQ

(total!-cards double!-hand)
21)))

(WHILE (LEQ

(DO

(total!-cards computer!-hand)
16)

(SETQ computer!-hand
(deal!-card computer!-hand))))))

(CURSOR 1 4)
(CLEAR!-EOP)
(who!-won your!-hand 'first)
(CURSOR 1 3)
(CLEAR!-EOP)
{COND (double!-hand

(who!-won double!-hand 'double)))))))
(CLEAR)
{TERPRI)
{CURSOR 1 12)
{PRIN2 "Your total is$")
(PRIN2 your!-total)
(CURSOR 1 2)
(SETQ PROMPT! * II* II)))

12

The program is executed by simply calling the function
BLACKJACK.

	Volume 1, Number 1
	Volume 2, Number 1
	Volume 2, Number 2
	Volume 2, Number 3
	Volume 2, Number 4

