
utilisp

i

Short Contents

1 Introduction . 1

2 Predicates . 7

3 Evaluation . 11

4 Flow of Control . 15

5 Manipulating List Structure . 25

6 Symbols . 35

7 Numbers . 39

8 Strings . 47

9 Vectors . 53

10 Macros . 57

11 Input and Output . 61

12 Code Pieces . 75

13 Compilation . 77

14 Errors and Debugging . 81

15 Memory Management System . 87

16 Structure Editor - USE . 91

17 Unix Interface . 99

18 Miscellaneous . 101

19 Common Lisp like Libraries . 103

20 X-Window Interface . 105

Index . 107

ii utilisp

iii

Table of Contents

1 Introduction . 1
1.1 General Information . 1
1.2 How to Run and Stop the System on Unix 1
1.3 Notational Conventions and Notes on Syntax 2
1.4 Data Types . 4
1.5 Lambda Lists . 5

2 Predicates . 7
2.1 Predicates on Data Types . 7
2.2 General Purpose Predicates . 8

3 Evaluation . 11
3.1 The Evaluator . 11
3.2 Various Functions Concerned with Evaluation 11

4 Flow of Control. 15
4.1 Conditionals . 15
4.2 Iteration . 18
4.3 Non-local Exits . 21
4.4 Mapping . 22

5 Manipulating List Structure 25
5.1 Cons manipulation . 25
5.2 List Manipulation . 26
5.3 Alteration of List Structure . 29
5.4 Tables . 30
5.5 Sorting . 32
5.6 Hashing . 33

6 Symbols . 35
6.1 The Value . 35
6.2 The Definition . 36
6.3 The Property List . 37
6.4 The Print Name . 38
6.5 Creation of Symbols . 38

7 Numbers . 39
7.1 Numeric Predicates . 39
7.2 Conversion Functions . 41
7.3 Arithmetics . 42
7.4 Logical Operations on Numbers . 45

iv utilisp

8 Strings . 47
8.1 Characters . 47
8.2 String Manipulation . 47
8.3 Manipulation of Characters in Strings. 51
8.4 Converting Strings and Numbers . 51
8.5 Bit String Manipulation . 51

9 Vectors . 53
9.1 Vector Manipulation . 53
9.2 References . 54

10 Macros. 57
10.1 Evaluation of Macros . 57
10.2 Defmacro Facility . 58
10.3 Backquote Facility . 58

11 Input and Output . 61
11.1 Streams . 61
11.2 Allocating Files . 63
11.3 Printed Representation . 64

11.3.1 The Printer . 64
11.3.2 The Reader . 66
11.3.3 The Readtable . 67
11.3.4 Setting Readtable . 69

11.4 Input Functions . 69
11.5 Output Functions . 70
11.6 Formatted Printing . 71
11.7 Indented Printing . 72

12 Code Pieces . 75

13 Compilation . 77
13.1 Compiling Functions . 77
13.2 Declaration . 78
13.3 Storing Compiled Objects . 79
13.4 Difference from the Interpreter . 79
13.5 Providing Space for Compiled Codes . 79

14 Errors and Debugging 81
14.1 The Error System . 81
14.2 Attention Handling . 84
14.3 The Debugger . 85
14.4 The Low-Level Debugger . 86

15 Memory Management System 87

v

16 Structure Editor - USE 91
16.1 Invoking USE . 91
16.2 USE Session . 92
16.3 Scope and Position Numbers . 93
16.4 Pattern Matching Rules . 93
16.5 Printing Current Scope . 93
16.6 Changing the Scope . 94
16.7 Searching . 95
16.8 Inserting and Deleting Parentheses . 95
16.9 Inserting and Deleting S-expressions . 96
16.10 Replacing S-expressions . 98

17 Unix Interface . 99
17.1 Calling Shell Commands . 99
17.2 Environment Variables . 99
17.3 Command Line Arguments . 99

18 Miscellaneous . 101

19 Common Lisp like Libraries 103

20 X-Window Interface . 105

Index . 107

vi utilisp

Chapter 1: Introduction 1

1 Introduction

1.1 General Information

The UtiLisp32 is a new implementation of UtiLisp for Unix system. The original UtiLisp
(University of Tokyo Interactive LISt Processor) system was designed for highly interactive
programming and debugging of sophisticated programs on mainframes.

The new UtiLisp system is a transportation of the original UtiLisp. UtiLisp32 is for Unix
4.2 bsd machines whose CPU’s have 32 bit address bus. It is now available on MC68010,
MC68020 and Vaxen. This new UtiLisp is called "Unix UtiLisp" or simply "UtiLisp".

The transportation was done carefully so that the new system is compatible to old
one. However some of operating system interface functions were not implemented or have
different formats.

This document is intended to serve both as a User’s Guide and as a Reference Manual
for the language and the system. It is hoped that those who are familiar with the Lisp
language acquire a complete knowledge of the system from this manual.

1.2 How to Run and Stop the System on Unix

UtiLisp32 on Unix is supported as Unix shell command. It is invoked from shell as
follows:

% utilisp

Options are:

-h size This specifies that the heap area is to be size kilo bytes. The default heap size
is 512 kilo bytes.

-ls size This specifies that the parameter stack is to be size kilo bytes. The defalut
stack size is 32 kilo bytes.

-cs size This specifies that the code stack is to be size kilo bytes. The defalust stack
size is 16 kilo bytes.

-bs size This specifies that the binding stack is to be size kilo bytes. The default stack
size is 64 kilo bytes.

-es size This specifies that the environment stack is to be size kilo bytes. The default
stack size is 16 kilo bytes.

-m size The area used by malloc is to be size kilo bytes. The default area size it 16 kilo
bytes.

-d filename
The system is booted up from the file designated by filename. The sized of
stacks and malloc area are automatically set to the corresponding ones when
the dumpfile was executed.

2 utilisp

-gctype type
This specifies the Garbage Collection (GC) algorithm. 0 specifies the Copying
GC; 1 specifies the Mark ans Sweep GC. Thought the Mark and Sweep needs
3 times as much GC time as the Copy GC, since it requires as a half heap
memory, this algorithm might be superior for the programs that use the huge
memory spaces.

-n This specifies that UtiLisp32 should not read and evaluate the file named
.utilisprc in your home directory on starting up.

-F filename
This specifies that UtiLisp32 should read and evaluate filename file on starting
up.

-p size This specifies the extendheap-ratio(0-100). If the size of live cells exceeds
extendheap-ratio % of heap size after an GC, extendheap was called and
heap size becomes twice as before.

-E expression
expression is evaled as an Lisp expression on starting up.

If you have a run command file named " .utilisprc " in your home directory, the
UtiLisp32 system will read and evaluate it first. This evaluation is identical with that of
the standard toplevel Lisp loop, except that the results are not displayed. The -n option
supresses this initial evaluation.

After the evaluation of the run command file (if any), UtiLisp32 enters the toplevel loop.
Each S-expression read in is evaluated and the result is displayed. Note that the toplevel
evaluator is eval, not evalquote.

The session is terminated by evaluating the function quit. If one wishes to terminate
the session abnormally, evaluate function abend.

There are cases in which these system functions are not recognized by the Lisp reader,
e.g., when the readtable or obvector has been destroyed. In such cases, the UtiLisp32
session can be terminated by ten consecutive exclamation marks (!!!!!!!!!!) at the
beginning of an input line from the terminal.

In case an endless or unexpectedly long computation should occur, an attention interrupt
from the terminal (usually by means of interrupt) will stop the current computation and
the system enters the break loop. For details, see Chapter ~see Chapter 14 [ErrDebug],
page 81 "Errors and Debugging".

1.3 Notational Conventions and Notes on Syntax

There are several notational conventions, which should be understood before reading the
manual in order to avoid confusion.

In this manual, Lisp symbols are printed in typewriter type style . Italic words
appearing in S-expressions represent certain Lisp objects the details of which are irrelevant
or explained elsewhere.

In what follows, a Lisp object whose car is a and cdr is b may sometimes be written
in the form (a . b). However, note that a and, especially, b are not necessarily atoms.

Chapter 1: Introduction 3

Thus, a list beginning with the symbol progn may be written in the form (progn . body),
where body is a list following progn. Similarly, in titles of descriptions of functions, "plus
. args", for example, args indicates a list of arguments following the function plus.

Lisp symbols appearing as titles are followed by a description of its arguments. And
if it is not an ordinary function, its category will be shown in curly brackets, "" and "".
Specifically, the categories are "Function”, "Special Form", "Macro", and "Variable". The
following examples illustrate the manner in which the arguments are described:

Special Formquote arg
quote is a " special form " and takes one argument.

Functioncons x y
cons is an ordinary function and requires exactly two arguments, x and y, and their
absence generates an error.

Functiongensym (prefix) (begin)
gensym may take zero to two arguments; prefix and begin are optional.

Functionplus . args
plus may take arbitrarily many (possibly zero) arguments.

Function- arg . args
- may take arbitrarily many (but at least one) arguments.

As in the examples, argument names appear in italics in the description of the function.
The symbol "=>" is used to indicate evaluation in examples, e.g., "foo => nil" means

that "the result of evaluating foo is nil".
There are several terms which are widely used in this manual but will not be rigorously

defined. They are: S-expression, which means a Lisp object, especially in its printed
representation; dotted pair , which means a cons ; and atom , which means a Lisp object
other than a cons . Note that an atom does not necessarily mean a symbolic atom; it may
be a number, string, etc. It is recommended that those who are not familiar with these
terms consult an appropriate Lisp textbook.

Several characters have special meanings in UtiLisp, i.e., single quote(’), backquote(‘),
comma(,),semicolon(;), and slash(/).

Semicolons are used for comments. When the Lisp reader encounters a semicolon, it
ignores all the characters remaining on the current line and resumes reading from the
beginning of the next line. In such a case, a blank space is automatically introduced
between the last symbol preceding the semicolon and the first symbol on the next line.
However, a semicolon may occur as an element of a string (see remarks on double quotes
below).

A single quote ’ has the same effect as the special form quote(see below). For example,
’foo is read as (quote foo), and ’(cons ’foo ’bar) is read as (quote (cons (quote foo)
(quote bar))), etc.

Slashes are used for escaping characters possessing special functions so that they are
merely interpreted as normal alphabetic characters. For example, /’foo is read as a symbol

4 utilisp

whose print name is "’foo" and not as "(quote foo)". Thus, one must type " // " to convey
the symbol " / " to the Lisp reader.

Double quotes are used for indicating strings. Any characters occurring between a double
quote and the next double quote are read as a string. Double quotes occurring inside strings
should be typed twice. For example, """" represents a string consisting of one double quote.
A string may extend beyond the ends of a line.

Concerning backquotes and commas, see Chapter ~see Chapter 10 [Macros], page 57
"Macros".

1.4 Data Types

There are ten data types in UtiLisp32, i.e., symbol, cons, fixnum, bignum, flonum,
string, vector, reference, stream, and code piece .

A symbol has a print name, a value (sometimes called a binding), a definition,

and a property list . The print name is a string which is the value of the function
pname when applied to the symbol in question; this string serves as the printed representa-
tion of the symbol. The value may be any Lisp object, and is interpreted as the value of
the symbol when the symbol is used as a variable. The symbol may also be in unbound
state, in which case, it has no value at all. Access to the value of a symbol is effected
by evaluating the symbol, and the value may be updated by using the functions set and
setq. The definition is functional attribute of the symbol; access is effected by getd and
updating by putd or defun. The property list contains an even number(possibly zero) of
elements; direct access and updating are effected by plist and setplist, respectively, but
it is usually more convenient to use the functions get (for access), putprop (for adding and
updating properties), and remprop (for removing properties). symbol is the basic function
for creating a new symbol with a certain print name. All symbols which are normally read
in are registered in a table called obvector, and any of these which bear the same name are
identified by means of the function intern (for details, see Chapter ~see Chapter 11 [Inand-
Out], page 61, "Input and Output"). The function gensym serves to generate a sequence of
distinct symbols.

A cons is a Lisp object possessing two components, car and cdr, which may be any
Lisp objects. Access to these two components is effected by the functions car and cdr,
respectively, and updating by rplaca and rplacd, respectively. A cons may be constructed
by means of the function cons.

There are three kinds of numerical objects in this system, upon which arithmetical
operations may be performed; one is fixnum which possesses 28-bit signed integer value.
Bignum is an integer of arbitrary length. Both fixnum and bignum are categorized as
integers. Most of arithmetic functions convert the type between the two automatically.
The other is flonum which possesses 64-bit floating point value. The accuracy is about 15
decimal digits in MC68000 series and 17 decimal digits in Vax.

A string is a finite(possibly zero) sequence of character. Each character has an 8-bit
code value which is usually interpreted in terms of the ASCII code. Independent access
to and updating of these characters are effected by means of the functions sref and sset,
respectively. The length of a string may be known by applying the function string-length.

Chapter 1: Introduction 5

A vector is a finite(possibly zero) ordered set of Lisp objects. Vectors are created by
means of the function vector. Access to the vector element is effected by means of the
function vref and updating by the function vset. The length of a vector may be known
by applying the function vector-length.

A reference is a pointer indicating an element of a vector. It is often useful to have
access to and update elements of vectors. A reference is created by the function reference;
access to and updating of the corresponding element can be effected by means of the func-
tions deref and setref, respectively.

A stream is an object related to I/O. All the I/O operations in this system are carried
out by means of such intermediary streams, which are created by the function stream.

A code piece is a segment of machine code which constitutes the body of a predefined or
compiled functions. Code pieces have names, normally a symbol, access to which is effected
by means of the function funcname.

1.5 Lambda Lists

A lambda-expression is the format specifying an interpreted function in Lisp, and is of
the form

(lambda lambda-list . body)

where body is a list of forms. Usually, lambda-list is a list of symbols which corresponds
to the so-called formal parameter list in certain other programming languages.When a
lambda-expression is applied to given values of the argument (actual parameters), the sym-
bols are bound to these values, and the forms constituting body are evaluated sequentially
and the result of the last of these evaluations becomes the final result of the application.
The formal parameters are then unbound and the state is restored to that of preapplica-
tion. If the number of actual arguments is not equal to the length of lambda-list, an error
is generated.

In UtiLisp32, an element of lambda-list may be either a symbol or a list of the form
(symbol . defaults)

When the number of actual arguments to which the function is applied is less than
the length of lambda-list, the given actual arguments are first bound to the corresponding
symbols. The remaining elements of lambda-list must have the list form (symbol . defaults).
Here, defaults is a list of forms which are evaluated sequentially and the result of the last
one (or nil in the case when defaults is empty) is bound to symbol. If an actual argument
corresponding to a symbol associated with a list defaults is given, then the symbol is bound
to this actual argument and the associated list defaults is merely ignored.

Default values are evaluated after the binding of the preceding arguments, hence, they
may depend upon the results of the preceding bindings.

Examples of lambda-lists:

(a b c) actual parameters for a, b, and c are all required.

(a b (c))
a and b are required but c is optional; the default value of c is nil.

(a b (c 0))
a and b are required but c is optional; the default value of c is 0.

6 utilisp

(a b (c (print "Default value is used for C.") 0))
a and b are required and c is optional; when the default value is used, the
indicated message is printed.

(a b (c (cons a b)))
a and b are required and c is optional; the default value of c depends upon a
and b.

Chapter 2: Predicates 7

2 Predicates

A predicate is a function which tests the validity of some condition involving its argu-
ments and returns the symbol t if the condition holds, and the symbol nil otherwise.

When a Lisp object is used as a logical value, it is interpreted as false if and only if it
is nil; all Lisp objects other than nil are interpreted as true.

2.1 Predicates on Data Types

The following predicates are for testing data types. These predicates return t if its
argument is of the type indicated by the name of the function, nil if it is of some other
type.

Functionsymbolp arg
symbolp returns t if arg is a symbol ; otherwise nil.

Functionconsp arg
consp returns t if arg is a cons ; otherwise nil.

Functionlistp arg
listp is equivalent to consp. This is incorporated mainly for compatibility with
other Lisp systems.

Functionatom arg
atom returns t if arg is not a cons ; otherwise nil.

Functionfixp arg
fixp returns t if arg is a fixnum object, i.e., a small integer number; otherwise nil.

Functionbigp arg
bigp returns t if arg is a bignum object, i.e., a big integer number; otherwise nil.

Functionintegerp arg
integerp returns t if arg is a fixnum or a bignum, i.e., an integer number; otherwise
nil.

Functionfloatp arg
floatp returns t if arg is a flonum object, i.e., a floating-point number; otherwise
nil.

8 utilisp

Functionnumberp arg
numberp returns t if arg is a fixnum, a bignum or a flonum, i.e., a numerical object;
otherwice nil.

Functionstringp arg
stringp returns t if arg is a string ; otherwise nil.

Functionvectorp arg
vectorp returns t if arg is a vector ; otherwise nil.

Functionreferencep arg
referencep returns t if arg is a reference pointer; otherwise nil.

Functionstreamp arg
streamp returns t if arg is a stream ; otherwise nil.

Functioncodep arg
codep returns t if arg is a code piece ; otherwise nil.

2.2 General Purpose Predicates

The following functions are some other general purpose predicates.

Functioneq x y
eq returns t if x and y denote the same Lisp object; otherwise nil. Lisp objects which
have the same printed representations are not necessarily identical. However, the
interning process ensures that two symbols with the same print name are identical
(see Chapter ~see Chapter 11 [InandOut], page 61 "Input and Output", for details).
Unlike some other Lisp systems, equality of values of small integer numbers (fixnums
) may also be compared using eq.

Note: In this manual, the expression "two Lisp objects are eq" means that they are
the same object.

Functionneq x y
(neq x y) is equivalent to (not (eq x y))

Chapter 2: Predicates 9

Functionequal x y
equal returns t if x and y are "similar" Lisp objects; otherwise nil. That is, two
strings are equal if they have the same length and all the characters in corresponding
positions are the same, two bignums are equal if they have the same integer value,
two flonums are equal if they have the same floating-point value, two vectors equal
if their size is same and all their contents are eq, and two cons cells are equal if their
respective cars and cdrs are equal inductively. In all other cases, two objects are
equal if and only if they are eq.
If two Lisp objects are equal, they have the same printed representation, however, the
reverse does not necessarily hold (e.g., for symbols which have not been "interned").

Functionnot x

Functionnull x
not returns the symbol t if x is eq to nil; the symbol nil otherwise. null is
equivalent to not; both functions are incorporated for the sake of readability. It is
recommended that null is used for checking whether a given value is nil, and that
not be used for inverting a logical value.

UtiLisp32 also includes various predicates in addition to those introduced in this chapter.
These will be described in the chapters on the various data types accepted by these predi-
cates; for example, the predicate zerop is described in Chapter ~see Chapter 7 [Numbers],
page 39, "Numbers".

10 utilisp

Chapter 3: Evaluation 11

3 Evaluation

3.1 The Evaluator

The process of evaluation of a Lisp form is as follows:

If the form is neither a symbol nor a cons, i.e., if it is a fixnum, a bignum, a flonum, a
string, a code piece, a vector, a reference or a stream, then the result of its evaluation
is simply the form itself.

If the form is a symbol, then the result is the value to which that symbol is bound. If
the symbol is unbound, an error is generated.

A so-called special form (i.e., a cons identified by a distinguished symbol in its car)
is evaluated in a manner which depends upon the particular form in question. All of these
special forms will be individually described in this manual.

If the form in question is not a so-called special form, then it requires the application
of a function or a macro to its arguments. The car of the form is a lambda-expression or
the name of a function. If the function is not a macro, the cdr of the form is a list of forms
which are evaluated sequentially, from left to right, and the resulting arguments are then
supplied to the function; the value finally returned is the result of applying the function to
these arguments.

The evaluation process for macro forms is described in Chapter ~see Chapter 10 [Macros],
page 57, "Macros".

A more detailed and accurate description of the evaluator will be given after various
improvements of present implementation have been carried out.

3.2 Various Functions Concerned with Evaluation

Functioneval x
eval evaluates x, and returns the result. Ordinarily, eval is not often used explicitly,
since evaluation is usually carried out implicitly. eval is primarily useful in programs
concerning Lisp itself, rather than in its applications.

Functionapply fn arglist
apply applies the function fn to the set of arguments given by arglist, and returns
the resulting value.

Functionfuncall fn . args
funcall applies the function fn to the set of arguments args, and returns the resulting
value. Note that the functional argument fn is evaluated in the usual way, while
function which constitutes the car of an ordinary Lisp application is not.

Example: s

12 utilisp

(setq cons ’plus) => plus
(funcall cons 1 2) => 3
(cons 1 2) => (1 . 2)

Thus, explicit application using funcall, instead of simple implicit function appli-
cation, should be used for functional arguments, since, the binding of the function
is not examined by the evaluator in simple implicit function applications, whereas
when funcall is used, the functional argument symbol is evaluated first, yielding a
function which is then applied in the ordinary manner.

Special Formquote arg
quote simply returns the argument arg. Its usefulness largely consists in the fact that
its argument is not evaluated by the evaluator.
Example: s

(quote x) => x
(setq x (quote (cons 1 2))) => (cons 1 2)
x => (cons 1 2)

Since quote is very frequently used, the Lisp reader allows the user to reduce the
burden of keying in the program by converting S-expressions preceded by a single
quote character "’" into quoted forms. For example,

(setq x ’(cons 1 2))

is converted into
(setq x (quote (cons 1 2)))

Special Formfunction fn
The form ((quote x); these alternative forms are available for the sake of clarity in
reading and writing programs. It is recommended that function be used to quote
a piece of a program, and that quote be used for segments of data. The compiler
utilizes this information to generate efficient object codes.
Note: Function-valued arguments in Lisp functions should be evoked using funcall.
See the description of funcall (above) for details.

Special Formcomment . args
comment ignores its arguments and always returns nil; it is useful for inserting ex-
planatory remarks.

Special Formprogn . args
The arguments args are evaluated sequentially, from left to right, and the value of
the final argument is returned. This operation is useful in cases where it is necessary
to evaluate a number of forms for the sake of the concomitant side effects but only
the value of the last form is required. Note that lambda-expressions, cond forms, and
many other control structure forms incorporate this property of progn implicitly (in
the sense that multiple forms are handled in a similar manner).

Chapter 3: Evaluation 13

Special Formprog1 . args
prog1 functions in the same manner as progn, except that it returns the value of
the first argument rather than the last. prog1 is most commonly used to evaluate a
number of expressions, with possible occurrence of the side effects, and return a value
which must be computed before the side effect occur.

Example:

(setq x (prog1 y (setq y x)))

This form interchanges the values of the variables x and y.

Special Formprog2 . args
The action of prog2 is the same as that of progn and prog1, except that it returns
the value of its second argument. It is incorporated mainly for compatibility with
other Lisp systems.

(prog2 x y . z)

is equivalent to

(progn x (prog1 y . z))

Macrolet bindings . body
A let form has the syntax:

(let ((var1 vform1)
(var2 vform2)
...)

bform1
bform2
...)

which is automatically converted into and effectively equivalent to the following form:

((lambda (var1 var2 ...)
bform1
bform2
...)

vform1
vform2

...)

It is often preferable to use let rather than to directly use lambda, since the variables
and the corresponding forms appear textually close to one another, which increases
the readability of the program.

As let forms are converted into lambda application forms, all the values of the vform’s
are computed before binding any of these values to the corresponding var’s. For
example, vform2 cannot depend upon var1, that is, if var1 appears in vform2, then
a variable named var1 must have been bound somewhere outside this let form.

14 utilisp

Macrolets bindings . body
lets is similar to let except that lets binds its variables sequentially, one by one,
while let, as mentioned above, binds them at once. (lets is a contraction of "let
Sequentially").
A lets form has the syntax:

(lets ((var1 . vforms1)
(var2 . vforms2)
...)

bform1
bform2
...)

which is effectively equivalent to:
((lambda ((var1 . vforms1)

(var2 . vforms2)
...)

bform1
bform2
...))

each list vforms-i constitutes the default value list for the corresponding var-i, and
therefore can depend upon the preceding var’s (see Section 1.5, "Lambda Lists", for
details).
Note: The interpretation of lets is faster than that of let. However, once compiled,
their speeds become identical.

Chapter 4: Flow of Control 15

4 Flow of Control

The present system provides a variety of structures for the flow of control.
Functional application is the basic method for constructing programs. Moreover, the

definition of a function may always call the function being defined. This process is known
as "recursion".

Both explicit and implicit progn structures may be used for sequential execution of
programs. The forms in a progn structure are evaluated sequentially from left to right.

In this chapter, some even more flexible control structures are described. Conditional
constructs are useful for making decisions, while iteration and mapping constructs may be
convenient for repetition. There are also more flexible control structures known as non-local
exits.

4.1 Conditionals

A conditional construct incorporates a decision in a program, resulting in the execution
of one of several alternatives in accordance with certain logical conditions.

Special Formand . args
and evaluates the arguments sequentially, from left to right. If the value of some
argument is nil, then nil is returned and the remaining arguments are not evaluated.
If the value of all the arguments are non-nil, then the value of the last argument is
returned. and can be interpreted for logical operation, where nil stands for false
and non-nil for true .
Example: s

(and x y)
(and (setq temp (assq x y))

(rplacd temp z))
(and error-exists (princ "There is an error!"))

Note: (and) => t

Special Formor . args
or evaluates the arguments sequentially, from left to right. If the value of some
argument is nil, the next argument is evaluated. If there are no remaining arguments,
then nil is returned. However, if the value of some argument is non-nil, then that
value is immediately returned and the remaining arguments, if any, are not evaluated.
or can be interpreted as a logical operation, where nil stands for false and non-nil
for true .
Note: (or) => nil

Special Formcond . clauses
The arguments of cond are usually referred to as "clauses". Each clause consists of a
predicate followed by a number (possibly zero) of forms. The predicate is called the
"antecedent" and the forms are called the "consequents".
Thus, a cond-form might have the following syntax:

16 utilisp

(cond (antecedent consequent consequent ...)
(antecedent)
(antecedent consequent ...)
...)

Each clause represents an alternative which is selected if its antecedent is satisfied
and the antecedents of all preceding clauses were not satisfied when evaluated.
The clauses are processed sequentially from left to right. First, the antecedent of the
current clause is evaluated. If the result is nil, the process advances to the next
clause. Otherwise, the consequents are evaluated sequentially from left to right (in
a progn manner), the value of the last consequent is returned, and the remaining
clauses (if any) are not processed. If there were no consequents in the selected clause,
then the value of the antecedent is returned. If the clauses are exhausted, that is, the
value of every antecedent is nil, then the value of the cond form is nil.

Special Formselectq key-form . clauses
Many programs require multiplex branchings which depend on the value of some form.
A typical example is as follows:

(cond ((eq x ’foo) ...)
((eq x ’bar) ...)
((memq x ’(baz quux mum)) ...)
(t ...))

selectq is incorporated for convenience in such situations. A selectq form has the
following syntax:

(selectq key-form
(pattern consequent consequent ...)
(pattern consequent consequent ...)
(pattern consequent consequent ...)
...)

The first argument key-form is evaluated first (only once). The resulting value is
called the key. The key-form is followed by a number of cluases, each of which
consists of a pattern followed by a number (possibly zero) of consequent forms. The
pattern of each clause is compared with the key, and if it "matches", the consequents
of this clause are evaluated, and selectq returns the value of the last consequent. If
there are no "matches", or if there is no consequent in the selected clause, then nil
is returned. Note that the patterns are not evaluated.
The objects which may be used as the patterns and their "matching" conditions are
as follows:
1. Any atom (symbol, number, etc.), except the symbol t The key matches if it is

eq to the atom.
2. A list The key matches if it is eq to one of the top-level elements of the list.
3. The symbol t The symbol t constitutes a special pattern which matches anything.

Example: The preceding example is expressed with selectq as follows:
(selectq x

(foo ...)

Chapter 4: Flow of Control 17

(bar ...)
((baz quux mum) ...)
(t ...))

Note: The symbol t itself may be used as the first component of a clause, in a
non-trivial manner, by selecting (t) as the pattern.

Special Formmatch key-form . clauses
match is a special form for pattern matching. A match form has the following syntax:

(match key-form
(pattern consequent consequent ...)
(pattern consequent consequent ...)
(pattern consequent consequent ...)
...)

The first argument key-form is evaluated first (only once). The resulting value is
called the key. The key-form is followed by a number of clauses, each of which
consists of a pattern followed by a number (possibly zero) of consequent forms. The
pattern of each clause is compared with the key, and if it "matches", the consequents
of this clause are evaluated, and match returns the value of the last consequent. If
ther are no "matches", or if there is no consequent in the selected clause, then nil is
returned. Note that the patterns are not evaluated.
The Objects which may be used as the pattern and their "matching" conditions are
as follows:
1. nil The key matches if it is nil.
2. Any symbol except the symbol nil The key matches any symbol, and the symbol

is lambda-bound to the key. The binding is unbound when the pattern matching
fails. When the matching succeeds, the binding is kept during the evaluation of
the clause and is unbound immediately before the evaluation ot the match form.

3. non symbolic atom The key matches if it is eq the atom.
4. (quote S-expression) The key matches if it is eq the S-expression.
5. cons other than 4 The key matches if its car "matches" the car of the pattern

and its cdr "matches" the cdr of the pattern.

Example: s To return the S-expression if what is read in is of the form (quote S-
expression); the first element if it is a list; nil for all other cases:

(match (read)
((’quote sexpr) sexpr)
((top . rest) top))

The same program would become with cond form as follows:
(lets ((x (read)))
(cond ((atom x) nil)

((and (eq (car x) ’quote)
(consp (cdr x))
(null (cddr x)))

(cadr x))
(t (car x))))

18 utilisp

Function copy is realized with match as follows:
(match x
((head . tail) (cons (copy head) (copy tail)))
(x x))

Note: When the some variables appear more than twice in pattern, consistency of
the parts correspond to the same pattern would not be checked. The variable is
lambda-bound by the last corresponding part.

4.2 Iteration

Special Formprog locals . body
prog is a special form which provides temporary variables, sequential evaluation of
forms, and goto operations. A typical prog form might have, for example, the fol-
lowing structure:

(prog (var1
(var2 . inits2)
var3
(var4 . inits4))
tag1 statement1

statement2
tag2 statement3

...)

var1, var2, . . . are temporarily bound variables. The binding of these variables prior
to the execution of the prog are saved, and when the execution of the prog has been
completed, the original bindings are restored. If a variable is associated with an initial
value list inits, then the elements of the list are evaluated sequentially, from left to
right, and the value of the last one becomes the initial value of the variable. If there
are no initial value forms, then the variable is initialized to nil.
Example:

(prog ((a t)
b
(c (print "c is bound")

(car ’(foo . bar))))
. body)

Here, the initial value of a is t, that of b is nil, and that of c is the symbol foo.
Before the binding of c is executed, the indicated message is printed. The bindings
are processed sequentially, and the value of each form may depend upon previous
bindings.
The portion of a prog which follows the variable list is called the body. The elements of
body may be atoms, which are called tags, or cons cells, which are called statements.
After the temporary variables have been bound, the forms in the body are processed
sequentially. Tags are not evaluated, whereas statements are evaluated and their val-
ues discarded. If process reaches the end of the body, then nil is returned. However,
two special devices (described below) may be used to alter the flow of control in the
body of a prog.

Chapter 4: Flow of Control 19

When
(return $x 1$... $x n$)

is evaluated, then processing of the body is terminated and the value of the last
argument $x n$ is returned as the value of the prog form. If n=0, i.e., if no arguments
are present, then the value returned will be nil. Only those return statements which
are explicitly included in the body of a prog form should legitimately be used in this
manner (for example, a return statement occurring within the definition of a function
called during the execution of a prog will generate an error when the program is
compiled.)

When
(go tag)

is evaluated, then the evaluation process is resumed from the statement labelled with
tag (in case there is no statement associated with tag, i.e., when tag is at the end of a
prog body, the prog routine is simply terminated); tag is not evaluated. If the label
tag does not occur in the body of the prog form currently being executed, the body
of the innermost prog form properly including the current one is searched, and so
forth; if tag is found, then the execution sequence leaves the current prog form and
the program execution is resumed from the point labelled with tag. If the label tag
does not occur in any prog form which contains (go tag), then an error is generated.
Any statement of the form (go tag) must explicitly be included in the prog form
containing the destination indicated by tag.

Special Formgo tag
See the explanation under the entry for prog above.

Note: tag may be an atom of any type including symbols or fixnums . Since the
process of searching is effected using the equality criterion eq, bignum, flonums,
strings, vectors, etc. are generally not appropriate as labels.

Functionreturn . args
See the explanation under the entry for prog above.

Special Formloop . body
loop is a special form used for simple iteration. The arguments of loop are eval-
uated sequentially from left to right. As long as exit is not evoked during these
evaluations, this process is interminably repeated. However, if an exit form is en-
countered, the inner-most loop containing it is terminated and the value of the last
argument of this exit is returned as the value of that loop form.

Example: The top-level loop of UtiLisp32, although actually defined in terms of
machine language, could have been defined as follows:

(loop (print (eval (read))))

20 utilisp

Functionexit . args
See the explanation under the entry for loop above. exit being an ordinary function,
its arguments are evaluated sequentially, from left to right, in the usual manner.
When a loop form is to be compiled, the corresponding exit forms must be explicitly
contained in the loop.

Macrodo index-part exit-part . body
do is a control form which facilitates iteration using so-called index variables. The
first argument index-part is a list, the elements of which have the form

(var init next)

where var is a symbol employed as an index variable, init is the initial value assigned
to var, and next is a form which is computed after each iteration, whereupon the
resulting value is assigned to var.
The initial values are computed sequentially, and only after this process is completed
are they bound to the corresponding variables; the same applies to subsequent as-
signments arising from the next forms.
The second argument exit-part has the syntax as

(end-test . exit-forms)

After initially binding the index variables, and after each round of next value updat-
ing, the form end-test is evaluated. If the result is non-nil, the termination process
begins; the forms constituting the list exit-forms are evaluated sequentially, from left
to right, and the value of the last one (or nil, if the list exit-forms is empty) will be
returned as the value of the do form. The index variables are then unbound, their
original values are restored, and the evaluation of the do form terminates.
Otherwise, if the evaluation of end-test yields nil, execution of body begins; body is
a list of forms, which are evaluated sequentially, from left to right, and the results are
discarded. When body is exhausted, the evaluation process proceeds to the evaluation
of the next forms.
Any next form may be omitted from index-part when no assignment of the corre-
sponding variable is required after iteration; in this case, var merely serves as an
ordinary local variable. Any initiation form init may also be omitted; in this case,
nil becomes the initial value of the corresponding var.
A do form, being a macro, is automatically converted into an equivalent combination
of let and loop. Thus, to depart from a do form, the function exit may be used in
its body, exit-part, or the next forms of its index-part. It should be borne in mind
that, since the init forms are evaluated outside the loop, the use of exit in an init
form will terminate the evaluation of a still "larger" do or loop form than the one
under consideration.
Example: s Printing all the elements of a list x separated by a space may be performed
by the following program:

(do ((l x (cdr l)))
((atom l))
(prin1 (car l))

Chapter 4: Flow of Control 21

(princ " "))

When each element of a vector v is a number, their sum may be computed by the
following program:

(do ((i 0 (1+ i))
(l (vector-length v))
(sum 0 (plus sum (vref v i))))

((= i l) sum))

Note that, in this example, the body of do is empty. This is, in fact, the case in many
applications, since the index and exit parts of a do control form can, in themselves,
be quite powerful. Also note that, when (vref v i) is computed, the variable i still
retains its previous value, that is, the next value (1+ i) has not yet been assigned to
it. l does not have a next part, and is merely a temporary variable which facilitates
the computation of end-test.

Macrodo* index-part exit-part . body

4.3 Non-local Exits

Special Formcatch tag . forms
catch is a function primarily utilized for non-local exits non-local exit. (catch tag .
forms) evaluates the elements of the list forms and returns the value of the last form,
unless an expression of the form (throw tag . values) with the same tag is encountered
during the evaluation of forms, in which case the arguments in values are evaluated,
and catch immediately returns the last of the values (or nil when values is empty)
and performs no further evaluation.

Note: The argument tag is evaluated, which is not the case in some other Lisp
systems. However, no repeated evaluation is applied to the elements of the list forms,
which are evaluated only once as the normal arguments of a function. The special
action of catch occurs during the evaluation of its arguments, rather than during the
execution of catch itself; the function catch, in itself, only returns its last argument
(or nil when there is only one argument tag) if the evaluation of its arguments is
completed without calling throw.

Example:

(catch ’atomic
(mapcar l

(function
(lambda (x)

(cond ((atom x) (throw ’atomic x))
(t (car x)))))))

This program returns a list of the car ’s of the elements of the list l, if the latter are
all non-atomic, otherwise, the first atomic element of l is returned.

22 utilisp

Functionthrow tag . values
As described above, throw is used in conjunction with catch for (primarily non-local)
exits. throw conveys the value of the last argument in values (or nil when values is
empty) back to the closest preceding catch in the execution sequence which possesses
the same tag and has not yet been evoked. Any catch forms (or other control forms
or functions) which may be nested between the throw form under consideration and
the corresponding catch are effectively ignored. See the above description of catch
for further details.
Note: As in the case of catch, both tag and forms in values are evaluated, unlike the
corresponding function throw in some other Lisp systems.
Example: The following program returns a rather than b.

(catch ’a (catch ’b (throw ’a ’a)) ’b)

4.4 Mapping

Mapping is a type of iteration in which a certain function is successively applied to
portions of a list or a vector given as an argument. There are several options for the
manner in which the portions of the list or the vector are chosen and the results returned
by the application of the function are presented.

The table shows the relations between the six map functions on list structures.
+---+
| | applies function to |
| |--------------------------+
| | successive | successive |
| | sublists | elements |
+------------------------+-------------+------------+
	its own		
	first	map	mapc
	argument		
+--------------+-------------+------------+			
	list of the		
returns	function	maplist	mapcar
	results		
+--------------+-------------+------------+			
	nconc of the		
	function	mapcon	mapcan
	results		
+---------+--------------+-------------+------------+

Functionmap list fn
The function fn is applied to the successive sublists of list, i.e., first list itself, then its
cdr, then cddr, and so on. The value returned is its original argument list (possibly
modified by fn).
Example:

(map ’(a b c) (function prin1))

This program prints out

Chapter 4: Flow of Control 23

(a b c)(b c)(c)

and returns (a b c)

Functionmapc list fn
The function fn is applied to the successive elements of list, i.e., first the car of list,
then its cadr, then caddr, and so on. The value returned is its original argument list
(possibly modified by fn).
Example:

(mapc ’(a b c) (function prin1))

This program prints out
abc

and returns (a b c)

Functionmaplist list fn
The function fn is applied to the successive sublists of list, i.e., first list itself, then its
cdr, then cddr, and so on. The value returned is a newly created list of the results
of these applications.
Example:

(maplist ’(a b c) (function prin1))

This program prints out
(a b c)(b c)(c)

and returns ((a b c) (b c) (c))

Functionmapcar list fn
The function fn is applied to the successive elements of list, i.e., first car of list, then
its cadr, then caddr, and so on . The value returned is a newly created list of the
results of these applications.
Example:

(mapcar ’(a b c) (function prin1))

This program prints out
abc

and returns (a b c), which appears the same as the original arguments, but, actually,
has newly been created.

Functionmapcon list fn
The function fn is applied to the successive sublists of list, i.e., first list itself, then
its cdr, then cddr, and so on. The value returned is the results of these applications
concatenated together.
Example:

(mapcon ’(a b c) (function ncons))

This program returns ((a b c) (b c) (c))

24 utilisp

Functionmapcan list fn
The function fn is applied to the successive elements of list, i.e., first car of list, then
its cadr, then caddr, etc. The value returned is the results of these applications
concatenated together.
Example:

(mapcan ’(a b c) (function ncons))

This program returns (a b c), which appears the same as the original argument, but,
actually, has newly been created.

Functionmapv vector fn
mapv successively applies fn to all the elements of vector, in increasing order of indices.
The arguments presented to the function fn are reference objects "pointing" to
the elements of vector. See Chapter 9, "Vectors", for further information about
reference . The value returned by mapv is simply the original argument vector
(possibly modified by the execution of the function fn).
Example:

(mapv (vector 5)
(function (lambda (r)

(setref r (read)))))

This will return a vector of five Lisp objects consecutively read in.

Functionmapvector vector fn
mapvector also applies fn to all the elements of vector, in increasing order of indices.
However, in this case, the arguments presented to fn are the elements themselves,
rather than references "pointing" to them (see the description of mapv). mapvector
returns a new vector the components of which are the corresponding results of these
applications.

Chapter 5: Manipulating List Structure 25

5 Manipulating List Structure

5.1 Cons manipulation

Functioncar x
car returns the car of x. If x is an atom, an error is generated.

Functioncdr x
cdr returns the cdr of x. If x is an atom, an error is generated.

Functionc...r x
All the compositions of car and cdr, upto a total of four, are defined as, so-called,
"built-in" functions. The names of these functions begin with c, followed by a se-
quence of a’s and d’s corresponding to the indicated composition of functions, and
end with r.
Example:

(cddar x)

is effectively the same as
(cdr (cdr (car x)))

Functioncr x
cr returns x itself, and is the function in the c...r group for which the total number
of a’s and d’s is zero. This function is sometimes useful when dealing with mapping
functions. For example,

(mapcar list (function cr))

may be used to obtain a top-level copy of list.

Functioncons x y
cons is a primitive function which creates a new cons cell, the car and cdr of which
are x and y, respectively.
Example: s

(cons ’a ’b) => (a . b)
(cons ’a ’(b c d)) => (a b c d)

Functionncons x
(ncons x) is effectively the same as (cons x nil)

26 utilisp

Functionxcons y x
xcons (an abbreviation of "eXchange cons") differs from cons only in that the order
of the arguments is reversed. xcons is useful when the cdr part of the result should
be evaluated before the car part.
Example:

(xcons ’a ’b) => (b . a)

Functioncopy x
copy creates and returns a copy of x. The atoms constituting the copy are the same
as those constituting the original argument x, but all the cons cells of the copy are
newly created.
Note: List structures in which a non-atomic node is indicated by more than one
pointer are not copied faithfully; such nodes will be duplicated in the "copy". Copying
a cyclic structure in this manner results in an endless computation.

5.2 List Manipulation

The following section explains some of the basic functions provided for manipulating
lists . A list is defined recursively as either the symbol nil, which represents an empty
list, or a cons whose cdr is a list. However, it should be noted that, although their
arguments are denoted by the word list, the functions described below are applicable
whether or not the final atom is nil. Most functions treat the dotted list as if the last non-
nil atom being nil .

Functionlast list
last returns the last top-level cons of list. If list is an atom, an error is generated;
if the toplevel structure of list is cyclic, then an endless computation occurs.
Example:

(last ’(a (b c) d e)) => (e)
(last ’(a b c . d)) => (c . d)

Functionlength list
length returns the length of list. The length of a list is the number of its top-level
elements.
As in the case of last, if the top-level structure of list is cyclic, an endless computation
occurs.
Example: s

(length ’(a (b c) d e)) => 4
(length nil) => 0

(length ’(a b c . d)) => 3

Functionfirst x
(first x) is equivalent to (car x)

Chapter 5: Manipulating List Structure 27

Functionsecond x
(second x) is equivalent to (cadr x)

Functionthird x
(third x) is equivalent to (caddr x)

Functionfourth x
(fourth x) is equivalent to (cadddr x)

Functionfifth x
(fifth x) is equivalent to (car (cddddr x))

Functionsixth x
(sixth x) is equivalent to (cadr (cddddr x))

Functionseventh x
(seventh x) is equivalent to (caddr (cddddr x))

Functionnth n list
nth returns the nth top-level element of list, where (car list) is counted as the zeroth
element. If n is negative or not less than the length of list, an error is generated. Note
that (nth 2 x) is actually (third x) rather than (second x).
Example:

(nth 2 ’(a b c d e)) => c

Functionnthcdr n list
nthcdr applies cdr to the second argument for n times, and returns the result; for
n=0, the result is simply list itself. If n is negative or not less than the length of list,
an error is generated.
Example:

(nthcdr 2 ’(a b c d e)) => (c d e)

Functionlist . args
list constructs and returns a list of its arguments, ordered in the same manner as
the arguments themselves.
Example: s

(list 1 2 (car ’(3 5)) (+ 2 2)) => (1 2 3 4)
(list) => nil

28 utilisp

Functionappend . lists
The result of append is essentially a concatenation of its arguments, however, avoiding
physical alteration, the arguments are copied (except for the last one; see also the
description of nconc below). The tail of the resulting list is physically identical with
that of the last argument.
Example: s

(append ’(a b c) ’(d e) nil ’(f g h))
=> (a b c d e f g h)

(append) => nil

Note: When several lists are to be appended and the order of the resulting list is
not essential, the longest argument should be placed last since it is not copied; this
reduces both computing time and required memory space.

Functionreverse list
reverse creates a new list, the top-level elements of which are the same as those of
list but arranged in reverse order. reverse, unlike nreverse (see below), does not
modify its argument.
Example:

(reverse ’(a (b c) d)) => (d (b c) a)

Functionnconc . lists
nconc returns a list which is the concatenation of the arguments. The arguments
(except the last one) are physically altered in the manner of rplacd rather than
copied (see also the description of append above).
Example: s

(setq x ’(a b c))
(setq y ’(d e f))
(nconc x y) => (a b c d e f)
x => (a b c d e f)

Note that the value of x itself has been altered, since the cdr of its last cons has been
replaced by the value of y. Note: when x is nil,x is not altered.So,you use not side
effect but return value.

Functionnreverse list
nreverse reverses its argument list, which is altered in the rplacd manner throughout
the list (see also the description of reverse).
Example:

(setq x ’(a b c))
(nreverse x) => (c b a)
x => (a)

Note that the value of x itself has been altered, since the original list has been modified
in rplacd fashion.

Chapter 5: Manipulating List Structure 29

Special Formpush item var
(push item var) has the same effect and value as

(setq var (cons item var))

but is more readable. var must be a bound variable. push is useful, along with pop
(see below), in maintaining a list in the manner of a push-down stack.

Special Formpop var
(pop var) has the same effect and value as

(prog1 (car var) (setq var (cdr var)))

but is more readable. var must be a symbol which is bound to a non-atomic value prior
to the execution of pop. pop is useful, along with push (see above), in maintaining a
list in the manner of a push-down stack.

5.3 Alteration of List Structure

The functions rplaca and rplacd serve to alter existing list structure; that is, to change
the car and cdr of existing cons cells.

Since structure is physically altered rather than copied, caution should be exercised when
using these functions, as unexpected side effects may occur if portions of the affected list
structures are common to several Lisp objects. The functions nconc and nreverse also
alter list structure, however, they are not normally used to obtain such side effect side
effect, rather, the concomitant list-structure modification is effected purely for the sake of
efficiency and corresponding non-destructive functions are also available.

Functionrplaca x y
rplaca replaces the car of x by y and returns (modified) x. x must be a cons, while
y may be any Lisp object.

Example:

(setq x ’(a b c))
(rplaca x ’n) => (n b c)
x => (n b c)

Functionrplacd x y
rplacd replaces the cdr of x by y and returns (modified) x. x must be a cons, while
y may be any Lisp object.

Example:

(setq x ’(a b c))
(rplacd x ’c) => (a . c)
x => (a . c)

30 utilisp

Functionsubst x y z
(subst x y z) substitutes x for all occurrences of y in z (using eq for testing equality)
and returns the modified copy of z. The original z is not altered, as subst recursively
copies all the cons cells of z, replacing by x all elements which are eq to y.

Example:
(subst ’a ’b ’(a b (c b))) => (a a (c a))

Note: List structures in which a non-atomic node is designated by more than one
pointer are not copied faithfully; such nodes will be duplicated in the "copy". Ap-
plying subst to a cyclic structure results in an endless computation.

5.4 Tables

UtiLisp32 provides several functions which simplify the maintenance of several varieties
of tabular data structures assembled from cons cells.

The simplest of these structures is just an ordinary list of items, which represents an
ordered set.

An association list is a list the element of which are cons cells. The car of each such
cons is called a "key" and the cdr represents an associated datum.

Although these simple data structures are convenient for small data bases, their form
is such that search time increases linearly with the size of the data base, and consequently
they are inefficient when handling large amounts of data. Large- scale data bases are best
maintained using vectors and hashing functions (see Chapter ~see Section 5.6 [Hashing],
page 33 for details).

Functionmemq item list
(memq item list) returns nil if item is not identical (with respect to the function
eq) with one of the elements of list, otherwise, it returns the portion of list beginning
with the first occurrence of item. The procedure searches list on the top-level only.
Since memq returns nil if item is not found, and a non-nil object if it is found, memq
may be used as a predicate.

Example:
(setq x ’(a b c d e))
(memq ’c x) => (c d e)
(memq ’foo x) => nil

Functionmember item list
member functions in the same manner as memq, except that equal, rather than eq, is
used for comparison.

Functionmem predicate item list
mem functions in the same manner as memq, except that it takes an additional argument
predicate, which may be any predicate taking two arguments.

Chapter 5: Manipulating List Structure 31

(mem (function eq) a b)

is effectively identical with
(memq a b)

and
(mem (function equal) a b)

with
(member a b)

Example:
(mem (function (lambda (x y) (0= (+ x y))))

13
’(1 3 -4 -13 7 -6))

=> (-13 7 -6)

Functiondelq item list (n)
When the optional argument n is absent, delq returns list with all top-level occur-
rences of item deleted; eq is used for comparison. The argument list is actually altered
in the rplacd manner when occurrences of item are exercised, except that any initial
segment of list all the elements of which are eq to item is not altered in this manner
(see Example below). If n is present, it must be a fixnum and only the first n top-level
occurrences of item are deleted. n may be zero, in which case, list itself is returned
without any alteration.

Example:
(setq x ’(a b a b))
(delq ’b x) => (a a)
x => (a a)

Note: delq should be used for value, not for effect. Thus, the two pairs of operations
(setq y ’(a b a b))
(setq y (delq ’a y))

and
(setq y ’(a b a b))
(delq ’a y)

result in different values of y. The value returned by delq is \code(b b) in both cases.
However, y is given the value \code(b b) in the former case and (a b b) in the latter.

Functionremq item list (n)
remq yields the same result as delq, except that list itself is not altered; what is
returned is a copy of the original argument list with the first m top-level occurrences
of item removed, where m is the minimum of n and the number of top-level occurrences
of item in list.

32 utilisp

Functionevery list predicate
every applies predicate, a predicate function of one argument, to the top-level ele-
ments of list sequentially, from left to right. If predicate returns non-nil for every
element, then every returns t. If any of these applications yields nil, then every
returns nil immediately, and no further applications are executed.

Functionsome list predicate
some applies predicate, a predicate function of one argument, to the top-level elements
of list sequentially, from left to right. If predicate returns non-nil for some element,
then some immediately returns the portion of list beginning with the element which
yielded non-nil, and no further applications are executed. If all the applications yield
nil, then some returns nil.

Functionassq item alist
assq searches for and returns the first element in the association list alist the car
of which is eq to item, if such an element exists, or otherwise, nil is returned. The
association list may be updated by applying rplacd to the result of assq, if the latter
is not nil.
Example:

(assq ’c ’((a b) (c d) (e f))) => (c d)

Functionassoc item alist
assoc functions in the same manner as assq, except that equal instead of eq is used
for comparison.

Functionass predicate item alist
ass functions in the same manner as assq, except that it takes an additional argument
predicate, a predicate taking two arguments, which is used for comparison. In the
special case where predicate is eq, this function effectively reduces to assq.

5.5 Sorting

Functionsort table predicate
The list table is arranged in increasing order, using the ordering relation corresponding
to predicate, and the resulting ordered list is returned. predicate should be a function
of two arguments, which returns non-nil if and only if the first argument is strictly
less than the second in the sense of total ordering relation.
Example:

(sort ’(3 1 4 5 2) ’greaterp)
=> (5 4 3 2 1)

Chapter 5: Manipulating List Structure 33

5.6 Hashing

Some hashing scheme is desirable in order to reduce the computing time required for data
retrieval in large-scale data bases. Time required for searching an item remains constant
using hashing, as long as the hash table is large enough, compared with the number of its
entries.

UtiLisp32 provides a standard hashing function for Lisp objects to facilitate the main-
tainance of hashed data bases.

Functionhash x
hash computes hash value for x and returns it as an integer number fixnum . The
result may be positive, negative, or zero. Its properties guaranteed are:
1. Objects which are equal are hashed to the equal value.
2. A fixnum is hashed to itself.
3. A bignum is hashed to non negative value.
4. A string is hashed to non-negative value.
5. A symbol is hashed to the same value as its print-name.

34 utilisp

Chapter 6: Symbols 35

6 Symbols

Symbolic atoms such as x or cons are called symbols in UtiLisp32. A symbol is asso-
ciated with four Lisp objects; the binding is the value of the symbol when it is used as a
variable; the definition is the functional definition of the symbol when it is used as the
name of a function or a macro; the property list is used to retain various Lisp objects
associated with the symbol ; the print name is used for input and output operations.

6.1 The Value

A symbol may be associated with its value, which may be a Lisp object of any type,
and is returned as the result of evaluating the symbol . The symbol may be in unbound
state, in which case the symbol has no value at all; when an unbound symbol is evaluated,
an error is generated. Newly created symbols (by intern, gensym, etc.) are initially in the
unbound state. A symbol is called a variable when the primary concern is its value.

The value of a variable may be changed either by lambda-binding or by assignment;
when a symbol is lambda-bound, its previous value is saved and will be restored later,
whereas assignment discards the previous value. lambda-binding is sometimes called
simply binding in this manual.

The symbols nil and t always must be bound to themselves; they may not be assigned
nor lambda-bound (The error of changing the value of t or nil is not detected!).

Functionset variable new-value
Assignment to variable is effected by the function set. The value of variable is
changed to new-value which may be any Lisp object. The previous value of variable,
if any, is discarded. set returns the newly assigned value new-value.

Special Formsetq . args
(setq x y) is effectively the same as (set ’x y)
Additional feature of setq is concurrent assignment of variables without explicit tem-
porary variables. A setq form such as

(setq var1 form1 var2 form2 ...)

is used for this purpose. form1, form2, . . . are all evaluated first, sequentially, in this
order. Then their resulting values are assigned to var1, var2, . . .
Example: Values of two variables x and y are exchanged by

(setq x y y x)

Functionboundp variable
boundp returns t if variable is bound to some value; otherwise, i.e., if it is unbound,
nil is returned.

Functionmake-unbound variable
make-unbound makes variable unbound. The current value of variable, if any, is
discarded. make-unbound returns the symbol variable as its value.

36 utilisp

6.2 The Definition

A symbol may be associated with its functional definition, or definition, for short.
When a function is called via its name, that is, when the first argument of funcall or apply
is a symbol, or a symbol appears as the car of a form to be evaluated, the definition of
that symbol is called as a function. When a symbol is not defined as a function nor a macro,
the symbol is said to be undefined ; an error is generated when an undefined symbol is
used as a function.

Macrodefun name lambda-list . body
defun is used for defining functions. name should be a symbol. A list

(lambda lambda-list . body)

will be the new definition of name. The previous definition of name, if any, is dis-
carded. defun returns name as its value.

Macromacro name lambda-list . body
macro is used for defining macros. name should be a symbol. A list

(macro lambda (arg) . body)

will be the new definition of name. The previous definition of name, if any, is dis-
carded. macro returns name as its value.
Note: Macros are more elegantly defined using defmacro. See Chapter ~see Chap-
ter 10 [Macros], page 57 "Macros", for detail.

Functiongetd sym
getd returns the definition of a symbol sym. If sym is undefined, an error is generated.

Functionputd sym def
putd makes the definition of sym be def. sym must be a symbol while def may be
any Lisp object. It returns sym as its value.

Functiondefinedp sym
definedp returns t if sym is defined as a function or a macro; otherwise, i.e., if it is
undefined, nil is returned.
Note: definedp returns nil for special form indicators such as cond, since they are
not defined as an ordinary function nor a macro. Use the function specialp (see
below) to discriminate special form indicators.

Functionspecialp sym
specialp returns t if sym is a special form indicator (such as cond or prog); otherwise,
it returns nil.

Functionmake-undefined sym
make-undefined makes the symbol sym undefined. Current definition of sym, if any,
is discarded. It returns sym as its value.

Chapter 6: Symbols 37

6.3 The Property List

Every symbol is associated with its property list, which is a list used for associating
certain Lisp objects with symbols. A property list has an even number of elements; each
pair of elements constitutes a property. The first of the pair is called the indicator or the
name of the property, and the second is a Lisp object called the value of the property .

Example: A property list which have the form
(Japan Tokyo England London France Paris)

indicates that there are three properties named Japan, England and France, and their
values are Tokyo, London and Paris, respectively.

When a symbol is created, its property list is set initially to nil.
Note: Printnames, bindings and functional definitions are often implemented as

properties of symbols in various Lisp systems; however, they are not implemented as
usual properties in UtiLisp32.

Functionget sym name
get searches for a property of sym named name. If it finds such a property, it
returns the value of that property ; otherwise, it returns nil.
Note: If the value of a property is nil, it is impossible to distinguish whether that
property exists or not, only from the result of get.

Functionputprop sym value name
If the symbol sym has no property with its name being name, then putprop adds a
new property named name with the value value; otherwise, the value of the existing
property is updated to value. putprop returns value as its resulting value.

Macrodefprop sym value name
(defprop x y z) is effectively the same as (putprop ’x ’y ’z)

Macrodefnprop sym value name
(defnprop x y z) is effectively the same as (putprop ’x (function y) ’z)

Functionremprop sym name
remprop removes the property of sym with its name being name. If sym has no such
property, it merely does nothing. remprop returns nil as its value.

Functionplist sym
plist returns the property list of sym.

Functionsetplist sym property-list
setplist sets the property list of sym to property-list. It returns property-list as
its value.

38 utilisp

6.4 The Print Name

Every symbol has an associated string called the print name, or pname for short. This
string is used as the printed representation of the symbol in input and output operations.

Though print names are normal character string objects (see Chapter ~see Chapter 8
[Strings], page 47 "Strings", for more information about strings), modifying them (by sset,
etc.) requires certain care, since they are used to hash symbols into the Lisp name table,
obvector (see Chapter ~see Chapter 11 [InandOut], page 61 "Input and Output", for
details).

Functionpname sym (new-name)
pname returns the print name of the symbol sym. If the second parameter new-name
is specified, the print name of the symbol sym is changed to new-name.

6.5 Creation of Symbols

Functionsymbol pname
symbol creates and returns a new uninterned symbol with its print name being
pname.

Functionsymbol-copy sym
symbol-copy creates and returns a new uninterned symbol with its print name is
same as sym.

Functiongensym (prefix) (begin)
gensym generates a new print name, and creates a new "uninterned" symbol with that
print name (see Chapter~see Chapter 11 [InandOut], page 61 "Input and Output",
for "interning").
The generated print name is prefixed by a string, which is initially g but may be
changed by giving gensym a string argument prefix. The prefix string is followed by a
4-digit decimal representation of an integer number. This number is incremented by
one every time gensym is called and only the least significant 4 digits are used. This
number can also be initiated by giving a fixnum to gensym as its second argument
begin.
Example: s

(gensym) => g0034
(gensym "gen") => gen0035
(gensym "abc" 15) => abc0015
(gensym) => abc0016

Note: Print names of symbols generated by gensym are primarily for ease of their
inspection in printed representations. After ten thousand gensym calls, the print
name of the generated symbol will be the same as the first one, but they are not the
same symbol,as far as they are not interned.
See also Chapter~see Chapter 11 [InandOut], page 61 "Input and Output", for intern
which may create a symbol with given print name .

Chapter 7: Numbers 39

7 Numbers

There are three types of numbers in UtiLisp32, namely fixnums, bignums and flonums
.

The fixnums of UtiLisp32 have a signed integer value of 28 bits. No overflow checking
is made on arithmetical operations for fixnums only. All the results are treated modulo
2^28.

The bignums are arbitrary long integer. The integer which exceeds the length of fixnum
will be bignum . The bignums are made when the reader reads a big integer and when results
of computation exceed the limit of fixnum . But some functions don’t do this conversion.
The fixnum and the bignum are categorized to integers together.

The flonums have a 64-bit floating point value with the accuracy of about 15 decimal
digits in MC68000 microprocessors. In case of Vax, the accuracy is about 17 decimal digits.
Neither overflow nor underflow are checked on arithmetical operations on flonums .

Integers are denoted using conventional decimal notation (e.g., 15) and flonums using
decimal notation with a decimal point (e.g., 15.0); flonums may also have "exponent part"
indicated by the character "‘^’" (e.g., ‘1.5^1’).

Functions described in this chapter expect numbers of appropriate types for their argu-
ments; if an argument of an illegal type is given, an error is generated.

Functions on numbers are grouped into three categories by the type of the numbers they
accept: Functions the name of which includes alphabetic characters (e.g., plus) are applied
to all of the types of the numbers. Conversions between fixnum and bignum are automat-
ically made in these functions. Functions consisting only of non-alphabetic characters are
special purpose functions. If their names end with the character "$" (e.g., +$), they are
for flonums only; otherwise (e.g., +), for fixnums only. Notice that no overflow check or
conversion to bignum are made for fixnum functions. These rules apply to all the functions
described in this chapter except explicitly stated otherwise.

Special purpose arithmetic functions are computed more efficiently than general purpose
ones, especially when the functions using them are compiled.

7.1 Numeric Predicates

Functionzerop x

Function0= x

Function0=$ x
zerop, 0= and 0=$ return t if x is zero (of proper type); otherwise, they return nil.

Functionplusp x

40 utilisp

Function0< x

Function0<$ x
plusp, 0< and 0<$ return t if x is a positive number (of proper type); otherwise, they
return nil.

Functionminusp x

Function0> x

Function0>$ x
minusp, 0> and 0>$ return t if x is a negative number (of proper type); otherwise,
they return nil.

Functionoddp x
oddp returns t if x is odd integer; otherwise, it returns nil. x must be a fixnum or
a bignum .

Function= x y

Function=$ x y
= and =$ return t if x and y are equal numbers (of proper type); otherwise, they
return nil.
Note: Equality of numbers is also tested using the function equal; equality of fixnums
is also tested using eq.

Function# x y

Function<> x y

Function#$ x y

Function<>$ x y
#, <>, #$ and <>$ return t if x and y are not equal numbers; otherwise, they return
nil.

Functionlessp args

Chapter 7: Numbers 41

Function< args

Function<$ args
lessp, < and <$ return t if the number of arguments is less than 2, or each argument
(except the last) is strictly smaller than its successor; otherwise, they return nil.

Functiongreaterp args

Function> args

Function>$ args
lessp, < and <$ return t if the number of arguments is less than 2, or each argument
(except the last) is strictly larger than its successor; otherwise, they return nil.

Function<= args

Function<=$ args
lessp, < and <$ return t if the number of arguments is less than 2, or each argument
(except the last) is strictly smaller than or equal to its successor; otherwise, they
return nil.

Function>= args

Function>=$ args
lessp, < and <$ return t if the number of arguments is less than 2, or each argument
(except the last) is strictly larger than or equal to its successor; otherwise, they return
nil.

7.2 Conversion Functions

Functionfix x
fix converts a flonum x into an integer (a fixnum or a bignum) and returns that
integer; rounding is used for the conversion. \beginfunctionfloatx float converts a
fixnum or a bignum x into a flonum and returns that flonum .

42 utilisp

7.3 Arithmetics

Functionplus . args

Function+ . args

Function+$. args
plus, + and +$ return the sum of its arguments. With no argument, plus and +
return 0, and +$ returns 0.0.

Functionminus x
minus returns the nagative of x.

Functiondifference arg . args
difference returns its first argument minus all the rest of its arguments.

Function- arg . args

Function-$ arg . args
With only one argument, - and -$ behave the same as minus; they return the negative
of the argument. With more than one arguments, - and -$ are effectively the same as
difference; they return their first argument minus all of the rest of the arguments.

Functiontimes . args

Function* . args

Function*$. args
times, * and *$ return the product of its arguments. With no argument, times and
* return 1, and *$ returns 1.0.

Functionquotient arg . args

Function// arg . args

Chapter 7: Numbers 43

Function//$ arg . args
quotient, // and //$ return the first argument divided by all of the rest of its
arguments. For //, the division performed is integer division with truncation; for //$,
floating-point division; for quotient, the type of the division performed depends on
the type of the arguments.
// is written here as "//" rather than "/" since "/" is the escape character in UtiL-
isp32 syntax and must be doubled.

Functionadd1 x
(add1 x) is equivalent to (plus x 1)

Function1+ x
(1+ x) is equivalent to (+ x 1)

Function1+$ x
(1+$ x) is eqivalent to (+$ x 1.0)

Functionsub1 x
(sub1 x) is equivalent to (difference x 1)

Function1- x
(1- x) is equivalent to (- x 1)

Function1-$ x
(1-$ x) is equivalent to (-$ x 1.0)

Macroincr var amount
(incr var amount) is equivalent to (setq var (+ var amount))

Macrodecr var amount
(decr var amount) is equivalent to (setq var (- var amount))

Functionremainder x y
‘’ x y ‘$’ x y

•
remainder, ‘’ and ‘$’ return the remainder of x divided by y. The sign of the
result is the same with x (if not zero).

44 utilisp

Functionmax arg . args
max returns the largest of its arguments.

Functionmin arg . args
min returns the smallest of its arguments.

Functionabs x
abs returns $|$x$|$, the absolute value of the number x.

Functionexpt x y

Function\ x y

Function\$ x y
expt, \ and \$ return the yth power of x. y must be a fixnum . When x is a fixnum
and y is non negative, then the result will be a fixnum or bignum ; in all the other
cases, the result will be a flonum .

Functionsin x
sin computes and returns sin x. x may be any type of numbers, and the result is a
flonum .

Functioncos x
cos computes and returns cos x. x may be any type of numbers, and the result is a
flonum .

Functiontan x
tan computes and returns tan x. x may be any type of numbers, and the result is a
flonum .

Functionarcsin x
arcsin computes and returns arcsin x. x may be any type of numbers, and the result
is a flonum .

Functionarccos x
arccos computes and returns arccos x. x may be any type of numbers, and the result
is a flonum .

Chapter 7: Numbers 45

Functionarctan x
arctan computes and returns arctan x. x may be any type of numbers, and the result
is a flonum .

Functionsqrt x
sqrt computes and returns the square root of x. x may be any type of nonnegative
numbers, and the result is a flonum .

Functionlog x
log computes and returns the natural logarithm of x. x may be any type of positive
numbers, and the result is a flonum .

Functionlog10 x
log10 computes and returns the ordinary logarithm of x. x may be any type of
positive numbers, and the result is a flonum .

Functionexp x
exp computes and returns a flonum the natural logarithm of which is x.

7.4 Logical Operations on Numbers

Following functions treat fixnums as bit sequences of 28-bit long. If a non fixnum
argument is supplied, an error is generated.

Functionlogor . args
logor returns bitwise logical "or" of the arguments. When no arguments are supplied,
0 is returned.

Functionlogand . args
logand returns bitwise logical "and" of the arguments. When no arguments are
supplied, -1 is returned.

Functionlogxor . args
logxor returns bitwise logical "xor" of the arguments. When no arguments are
supplied, 0 is returned.

Functionlogshift x y
logshift returns x logically shifted y bits. If y is positive, x is shifted left; if y is
negative, x is shifted right. Absolute value of y should be less than 28.

46 utilisp

Chapter 8: Strings 47

8 Strings

A string is a Lisp object consisting of a sequence of zero or more characters. Strings
are primarily used for manipulating texts. Print names of symbols are also represented
using strings .

Characters of a string may be independently referenced and updated using sref and
sset, respectively. The subscript origin for strings is zero. If a subscript value specified is
not appropriate, i.e., if it is negative or greater than or equal to the length of the corre-
sponding string, an error is generated.

Characters are fixnums which resides between 0 and 255, i.e., representable in one byte
(8 bits). They are usually treated as ASCII character codes in input and output operations.

Strings may also be seen as vectors of small non negative integer fixnums ranging 0
through 255. This kind of usage may save a considerable memory space, compared with
the use of normal vectors which requires 4 bytes for each component.

8.1 Characters

Characters are a fixnum which resides between 0 and 255. They are treated as ASCII
codes in input and output operations.

Functioncharacter x
Some of the functions manipulating strings require their arguments to be a
character . Though most of the functions introduced in this chapter automatically
coerce strings or symbols to characters, there are certain cases in which explicit
conversion is required.

character coerces x to a single character, represented as a fixnum . If x is a
character, i.e. a fixnum which resides between 0 and 255, x itself is returned. If x is
a non-null string, its first character is returned. If x is a symbol, the first character
of its print name is returned. Otherwise, an error is generated.

8.2 String Manipulation

Note that the subscript origin for strings is zero.

Functionstring x
Functions manipulating strings require string arguments. Though most of the
functions introduced in this chapter automatically coerce symbols to strings, there
are certain cases in which explicit conversion is required.

string coerces x into a string . If x is a string, x itself is returned. If x is a symbol,
its print name is returned. If x is a character, a one-character string containing x
is returned. Otherwise, an error is generated.

48 utilisp

Functionmake-string length (char)
make-string allocates and returns a new string of the length given by length. If
the optional argument char, which must be a character, is given, all the characters
of the allocated string will be initiated to char; otherwise, to the fixnum 0 (not the
character code for "0").

Functionstring-length string
string-length returns the number of characters in string, which is one more than
the largest subscript value for string.

Functionstring-equal string1 string2
string-equal compares two strings and returns t if two strings have the same
length and all the corresponding characters are the same; otherwise, it returns nil.

Although comparison of equality of two strings is also effected by the function equal,
string-equal is more specific and, therefore, more efficient.

Functionstring-lessp string1 string2
string-lessp compares two strings in dictionary order. The result is t if string1
is the lesser, and nil if they are equal or string2 is the lesser.

Example: s
(string-lessp "abc" "abd") => t
(string-lessp "abc" "ab") => nil

Functionsubstring string (start) (end)
substring extracts a substring of string, starting at the character indexed by start
up to but not including the character indexed by end. Thus, the length of the string
returned will be end minus start. The default value for end is the length of string,
and that of start is 0.

Example: s
(substring "abcde" 1 3) => "bc"
(substring "abcde" 1) => "bcde"
(substring "abcde") => "abcde"

Note: Even if both start and end are omitted, substring makes a new copy of string
and returns that copy.

Functionstring-append . strings
Any number of strings are copied and concatenated into a single string . If no
arguments are given, string-append returns a null string "".

Chapter 8: Strings 49

Functionstring-reverse string
string-reverse returns a copy of string with the order of characters reversed. The
original string is not physically altered (see also the description of string-nreverse
below).

Functionstring-nreverse string
string-nreverse returns string with the order of characters reversed. The reversing
is made on the argument string directly, physically altering the order of characters in
string (see also the description of string-reverse above).

Functionstring-search-char char string (from)
string-search-char searches for char through string starting at the index from. It
returns the index of the first appearance of char, or nil if none is found. char may
be a character or a list of characters, in the latter case, the subscript of the first
occurrence of one of the listed characters is returned. The default value for from is
zero.
Example:

(string-search-char "b" "abcde") => 1

Functionstring-search-not-char char string (from)
string-search-not-char is the same as string-search-char except that it
searches for the occurrence of character which is not char, or, when char is a list,
not a member of char.
Example:

(string-search-not-char "0" "007") => 2

Functionstring-search key string (from)
string-search searches for the string key in the string string. The search begins
at subscript from, the default value of which is zero. The value returned is the
subscript of the first character of the first instance of key, or nil if none is found.
Example:

(string-search "word" "Where is the word?") => 13

Functiontranslate string table
translate converts characters in string using table as the conversion table. table
must be a string of 256 characters. Its subscript-n character substitutes the character
whose code is n. The argument string is physically altered. translate returns the
(modified) string.

Variablelower-case

50 utilisp

Variableupper-case
Values of lower-case and upper-case are standard conversion tables for converting
upper-case characters to lower-case ones and the reverse, respectively. These tables
are also used by the Lisp reader and the printer (see Chapter ~see Chapter 11 [Inand-
Out], page 61 "Input and Output", for details).

Functionstring-amend string1 string2 (from)
string-amend moves characters in string2 into string1 physically altering characters
in string1. All the characters in string2 are moved to the portion of string1 beginning
with the specified subscript value from. The default value of from is 0.

Functionstring-amend-and string1 string2 (from)

Functionstring-amend-or string1 string2 (from)

Functionstring-amend-xor string1 string2 (from)
string-amend-and, -or and -xor are the same as string-amend except that char-
acters in string2 are not simply moved into string1, rather, logical "and", "or" or
"xor" of characters in string2 and corresponding characters in string1 are moved to
a portion of string1 beginning with the specified subscript value from. The default
value of from is 0.

Functionstring-trim string (char)
string-trim trims consecutive chars from both left and right ends of string and
returns it. The default value of char is a blank space.

Functionstring-left-trim string (char)
string-trim trims consecutive chars from left end of string and returns it. The
default value of char is a blank space.

Functionstring-right-trim string (char)
string-trim trims consecutive chars from right end of string and returns it. The
default value of char is a blank space.

Functionstring-match pattern string
string-match matches string against pattern and returns t or nil according to the
result. pattern is a (limited) regular-expression, with special characters " ? " and "
* ". " ? " matches any single character, and " * " matches any sequence of characters
(possibly empty). There is no way to escape these special characters.
Example: s

(string-match "?b?" "abc") => t
(string-match "*b*" "b") => t

Chapter 8: Strings 51

8.3 Manipulation of Characters in Strings

Characters of strings are independently manipulated by following functions. Note that
the subscript origin of strings is zero.

Functiongetchar string index
getchar returns the index-th character of string as an interned one-character symbol.
Example:

(getchar "abc" 2) => c

Functionsref string index
sref returns the index-th character of string as a character, i.e., a fixnum .

Functionsset string index character
sset sets the index-th character of string to character, and returns character.

8.4 Converting Strings and Numbers

Consecutive characters of a string may be considered as a binary representation of an
integer number. Following functions are for conversions between such character sequences
and fixnums .

Functioncutout string pos length
cutout converts a character sequence beginning at the pos-th character of string with
length length into a fixnum . length should be positive. Upper bytes of the result
will be padded with zero.

Functionspread value length
spread converts a fixnum value into a string which contains the binary representation
of value. The resulting string has the length length, which should be positive. If value
cannot be represented in length bytes, only lower bytes are converted and overflowed
upper bytes are ignored.

8.5 Bit String Manipulation

A string may also be regarded as a sequence of binary digits (bits). Thus, an array
of logical values may be represented by a string, in which case, one character holds eight
distinct logical values. Using this representation, the memory space required for a large-scale
bit table will be eight times smaller than when each character of a string is used to represent
one logical value, or thirty-two times than when each vector element is used. To facilitate
such a representation of bit tables, following functions are provided by UtiLisp32. Compact
representation of bit tables using following functions may save considerable memory space,
however, computing speed will be somewhat slowed down. Note that functions such as
string-amend-and, -or and -xor may also be useful for logical operation on bit tables.

52 utilisp

Functionbref string index
bref returns t if index-th bit of string is set; otherwise, it returns nil. index should
be non negative and smaller than eight times the length of string.
Note: Bits are indexed from left to right, the most significant bit of the 0th character
of string being 0.

Functionbset string index value
If value is non nil, the index-th bit of string is set; otherwise, it is reset. index should
be non negative and smaller than eight times the length of string. bset returns value
as its value.

Chapter 9: Vectors 53

9 Vectors

A vector is a Lisp object that consists of a number (possibly zero) of elements, each of
which is a Lisp object again. The individual elements are selected by numerical subscripts
origined zero. An error is generated if an subscript value specified is not appropriate, i.e.,
if it is negative or not less than the number of the elements.

As elements of a vector are accessed in constant time, it is advantageous compared
with list structure consisting of binary cons cells when a large amount of data is to be
manipulated. Disadvantage of using vectors, compared with lists, is that the size should
be known before used.

Vectors are arbitrarily allocated and discarded like cons cells; they are independent
objects on their own right, rather than being attributes of symbols as in some other Lisp
systems. However, it is usually convenient to lambda-bind or assign a vector to a symbol,
to use the symbol as its name, since vectors are not directly identified by the Lisp reader.

Multi-dimensional arrays are represented by vectors of vectors ; vectors the elements
of which are vectors again.

9.1 Vector Manipulation

Functionvector size (filler)
vector allocates and returns a vector with its size being size; its subscript ranges
from 0 to size - 1. If the optional argument filler is not given, all the elements of
the allocated vector are initiated to nil. Otherwise, if filler is given, the allocated
vector will be initiated using filler in the same way as the function fill-vector (see
the description of fill-vector below).

Functionvector-length vector
vector-length returns the number of elements of vector.

Functionvref vector subscript
vref returns the subscript-th element of vector.

Functionvset vector subscript value
vset sets value into the subscript-th element of vector. vset returns value as its value.

Functionfill-vector vector filler
fill-vector fills vector with specified data and returns (modified) vector.
When filler is an atom and not a vector, all the elements of vector become filler.
When filler is a list with one or more elements, vector is filled with the elements
of that list . The subscript 0 element of vector is assigned the car of the list,
subscript 1, the cadr, and so on. If the list is shorter than vector, remaining elements

54 utilisp

of vector are not affected. If the list is longer, remaining elements of the list are
merely ignored.
When filler is a vector, vector is filled with corresponding elements of the filler vector
. If the filler vector is shorter, remaining elements of vector are not affected. If the
filler vector is longer, remaining elements of the filler vector are merely ignored.
Example: s When the value of v is a vector with, for example, 10 elements,

(fill-vector v nil)

fills the vector with nil’s.
(fill-vector v ’(0 1 2 3 4))

sets first 5 elements of the vector with 0, 1, 2, 3, and 4, respectively. Remaining 5
elements are not affected. If the value of w is another vector with the same size,

(fill-vector v w)

copies the contents of w into v.

9.2 References

It is often required to pass a vector and its subscript as a pair to functions. It would
be more convenient if the pair could be treated just as a variable. UtiLisp32 provides
reference objects for this purpose.

A reference is a pointer to an element of a vector . The pointed element is accessed
by deref and updated by setref. deref and setref are also applied to variables, i.e.,
symbols. It is recommended that deref and setref should be used in functions which
utilize call-by-reference parameter, instead of eval and set.

Functionreference vector subscript
reference makes and returns a reference pointing to the subscript-th element of
vector.

Functionderef reference
deref returns the value of reference; if it is a symbol, the value of the symbol; if it is
a reference, the element of a vector it is pointing.

Functionsetref reference value
setref sets value to reference; if it is a symbol, its value is set; if it is a reference
pointer, the pointed element of a vector is set. setref returns value as its value.

Functionreferred-vector reference
referred-vector returns the vector an element of which is pointed by reference.
Note: Computation of this function requires time proportional to the subscript of the
element pointed by reference.

Chapter 9: Vectors 55

Functionreferred-index reference
referred-index returns the subscript of the vector element pointed by reference.
Note: Computation of this function requires time proportional to the subscript of the
element pointed by reference.
See also mapvector and mapv (Section 4.4, "Mapping") which perform certain com-
putation on all the elements of a vector .

56 utilisp

Chapter 10: Macros 57

10 Macros

10.1 Evaluation of Macros

When a cons cell with its car being a symbol is evaluated, the evaluator inspects the
definition of that symbol . If the definition is a cons cell, and its car is the symbol macro,
then that definition is called a macro. The cdr of the definition is treated as a function
that has one argument. The evaluator applies that function to the cdr of the original form.
The result of this application is evaluated again by the evaluator, and the value returned
by this re-evaluation is finally returned as the result of the evaluation of the original form.

Example: Suppose the definition of ncons is
(macro lambda (x) (list ’cons (car x) nil))

This is a macro; it is a cons the car of which is the deffn Macro symbol is as follows:
The evaluator recognizes that the form to be evaluated is a cons cell the car of which

is a symbol, i.e., ncons; the definition of the symbol ncons is examined and the car of
the definition is found to be the symbol macro. Then the evaluator takes the cdr of the
definition, which is a lambda-expression, and applies it to the cdr of the original form, i.e.,
the list (’foo). x is bound to (’foo) and the result of the application will be (cons ’foo
nil).

The evaluator then evaluates this new form in place of the original one. (cons ’foo
nil) is evaluated to (foo) and so the result of (ncons ’foo) is, finally, (foo).

Macros may be expanded recursively; expanded form of a macro form can be another
macro form, in which case, the expanded form is expanded again, until it becomes a non-
macro form.

Macros are used for a variety of purposes. For example, custom-made control structures
are easily implemented with macros.

Example: while-do construct such as
(while-do condition . body)

is defined as a macro using macro special form as
(macro while-do (x)

(nconc (list ’loop
(list ’and (car x) ’(exit)))

(cdr x)))

which expands the original form into
(loop (and condition (exit)) . body)

Using macros may result in a considerable time and space overhead while the program
is executed interpretively. However, once compiled, programs using macros are executed
as efficiently as those without macros, since the compiler expands macro calls prior to the
compilation. Thus, using macros is considered to pay no penalty on run-time performance.
Efficient execution may only be realized through compilation anyway.

As macros are expanded in compilation time, macros should not refer to global variables.
The expansion should be the same in any context (on the assumption that, of course, car
still means car, cdr means cdr, etc).

58 utilisp

Macros cannot be applied to arguments in the same way as usual functions. Macros takes
arguments which are not evaluated yet, while application is calling a function with already
evaluated arguments. Thus, calling funcall or apply with macros as the first argument
will generate an error.

Macromacro-expand . form
macro-expand only expands a macro in form and returns it without second evaluation.
Example:

(macro-expand incr x 3) => (setq x (plus x 3))

10.2 Defmacro Facility

Complicated macros must have access to structural details of their argument lists. Such
an access requires densely nested car and cdr functions, which may not only increase
the difficulty of programming but also damages the readability of the resulting program.
defmacro facility is provided to facilitate access to portions of the argument list by giving
names to portions of the argument list.

Macrodefmacro name arg-pattern . body
A defmacro form of the syntax

(defmacro name arg-pattern . body)

is expanded into
(macro name (@) . expanded-body)

where arg-pattern may be an arbitrarily complicated tree structure of symbols, which
serves as a template of the argument list. Its car represents the car of the argument
list, its cdr, the cdr of the list. expanded-body is almost the same as body ex-
cept that all the accesses to the symbols in arg-pattern are converted to accesses to
corresponding portions of the argument list.
Example: The while-do in the former example may be more elegantly defined using
defmacro as follows:

(defmacro while-do (condition . body)
(nconc (list ’loop

(list ’and condition ’(exit)))
body))

10.3 Backquote Facility

It is still not easy to define a macro even with defmacro. The difficulty lies in the fact
that two different forms must be considered at a time: The expanded form which will be
finally evaluated is one; the form which produces that form is the other, and this form is
what the programmer have to write down. The backquote facility is provided to facilitate
the construction of the latter.

The backquote character (‘) is defined as a read macro (see Chapter ~see Chapter 11
[InandOut], page 61, "Input and Output" for detail), which acts similarly to normal single
quote (’) that makes a quoted form of the S-expression following it. However, when a form

Chapter 10: Macros 59

included in the following S-expression is preceded by a comma (,), that form is not quoted
while all the other portions are effectively quoted.

Example: s ‘x is read in as (quote x) which is the same as ’x.
‘(a ,b c) is read in as (list ’a b ’c). As b is not quoted, it is evaluated when the whole

form is evaluated.
while-do macro may be still more elegantly defined as

(defmacro while-do (condition . body)
‘(loop (and,condition (exit))

.,body))

Backquotes may be nested. When backquotes are nested twice, double comma will make
a form to be evaluated in the first evaluation of the whole form; a form preceded by a single
comma will be evaluated in its second evaluation.

60 utilisp

Chapter 11: Input and Output 61

11 Input and Output

11.1 Streams

Streams are Lisp objects through which I/O operations are performed. Streams may
be connected to an external file or to the user terminal. File streams are created by the
function stream. They should be opened by the functions inopen or outopen before being
used.

Any number of streams may be connected to a single external file. It is also possible to
open two or more streams connected to one file in output mode. However, it is difficult to
predict the result of output operations in such cases, since the files are modified through
file buffers.

Functionstream filename
stream makes a stream which is connected to the external file defined by filename.

When making a stream from a Unix file descriptor which has already been opened,
the descriptor must be given as a fixnum to the filename parameter.

Functionstring-stream string
String string is used as a stream.

Functioninopen stream
inopen opens stream as an input stream. When opening is unsuccessful, an error is
generated; otherwise, it returns stream.

Functionoutopen stream
outopen opens stream as an output file. When opening is unsuccessful, an error is
generated; otherwise, outopen returns stream.

Functionappendopen stream
appendopen opens stream as an open file and makes it append mode. When opening
is unsuccessful, an error is generated; otherwise, appendopen returns stream.

Functionclose stream
close closes the file associated with stream. When closing is unsuccessful, an error
is generated; otherwise, it returns stream.

62 utilisp

Variableopenfiles
The value of openfiles is a list of streams which are currently open. The most re-
cently opened stream comes first in the list . The list is automatically maintained
by inopen, outopen, appendopen and close; the user may not update the value of
openfiles explicitly.
Example: All the files currently open are closed by

(mapc openfiles (function close))

Functionstream-mode stream
stream-mode returns the current state of stream; if it is open as an input file, it
returns the symbol inopen; if it is open as an output file, it returns the symbol
outopen; if it is not open, it returns nil.

Functionlinelength (stream)
linelength returns the maximum line length allowed, for output streams. The de-
fault value for stream is the value of standard-output.

Functioncursor (stream)
cursor returns current column position of stream for output streams, where column
zero being the first column. The default value of stream is the value of standard-
output.

Functioncolleft (stream)
When stream is an output streams, it returns how many more characters can be
printed on the current line. The default value of stream is the value of standard-
output.
Note: (cursor) + (colleft) is always equal to (linelength) for outputstreams.

Functioncharleft (stream)
colleft for the variable length line.

Functionstring-stream-index (string-stream)
The fixnum number of bytes already read or written from the beginning of the string-
stream.

Functionstring-stream-limit (string-stream)
The fixnum number of bytes readable or writable for the string-stream.

Variablestandard-input

Chapter 11: Input and Output 63

Variablestandard-output
Values of these variables are streams for which I/O operations are normally performed;
values of these variables are used as the default values of stream arguments in various
I/O functions. Reading and printing are elegantly directed to a desired stream by
lambda-binding these variables to the stream. Using this style, these variables will
recover their old values when they are unbound. The initial values of standard-input
and standard-output are the same as those of terminal-input and terminal-
output, respectively, which are the streams connected with the user terminal (see
below).

Example:
(let ((standard-input some-stream)) (read))

is effectively the same as
(read some-stream)

Variableterminal-input

Variableterminal-output
Values of these variables are the streams which are connected to the user terminal.

Example: While the standard output stream is directed to some file stream, messages
to the terminal can be explicitly directed to the terminal as in the following example

(let ((standard-output some-stream))
(cond ((null l)

(print "l is null" terminal-output))
(t (mapc l ’print))))

Variableprompt
Value of prompt is a string which is used for prompting input from the terminal.
Initial value of prompt is "> " . It is recommended that subsystems of the Lisp
system should bind prompt to certain string which identifies the subsystem to notify
the terminal user what the prompting system is, or, what kind of input is expected.

Example:
(setq name

(let ((prompt "Who are you? "))
(read)))

11.2 Allocating Files

Functionalloc filename
alloc returns filename itself. This function is only for compatibility with UtiLisp on
mainframes.

64 utilisp

11.3 Printed Representation

Lisp objects are not directly handled since they are stored inside the machine memory.
In order to examine these Lisp objects, UtiLisp32 provides a representation of its objects
in the form of printed text; this is called the printed representation.

Functions such as print, prin1, and princ take a Lisp object as their argument, and
send the characters of its printed representation to a stream; these functions are known as
the printer.

The function read takes characters from a stream, interprets them as a printed repre-
sentation of a Lisp object, constructs a corresponding object, and returns it; this function
is known as the reader.

This section describes printed representation of various Lisp objects.

11.3.1 The Printer

Printing is done either with or without slashification. The non slashified repre-
sentation looks simple and readable to human eyes, but they may not be properly read
in again by the machine. The slashified version is faithfully converted back into Lisp
objects by read, except for some peculiar objects, namely, streams, vectors, references,
and code pieces .

The printed representation of an object depends on its type.
For an integer : If the integer is negative, the printed representation is preceded by a

minus sign (-); if non negative, no sign is printed. Then comes the decimal representation of
the absolute value of the integer . Slashification does not affect the printing of integers
.

For a flonum : The printed representation is preceded by a sign (+ or -), then a digit
zero (0),a decimal point(.), and the fraction part which is a sequence of decimal digits.
Number of digits in the fraction part is specified by the value of the symbol digits. Then
comes the exponent part indicator (‘^’), sign of the exponent part (+ or -), and the value
of the exponent part in two decimal digits. Thus, the number of characters of the printed
representation of a flonum is, in total, digits + 7. Slashification does not affect the printing
of flonums .

For a symbol : If slashification is off, the printed representation is simply the succes-
sive characters of the print name string of the symbol . If slashification is on, some
special characters are preceded by the escape character / . The decision whether escape is re-
quired is made using the current readtable, i.e., the current value of the symbol readtable.
Objects printed with slashification on are always read back faithfully, provided that the
same readtable is used as when it is printed out.

For a string : If slashification is off, the printed representation is simply the suc-
cessive characters of the string . If slashification is on, the string is printed between
double quotes ("), and double quotes inside the string are duplicated.

For cons cells: The printed representation for cons cells tends to favor to lists, rather
than dotted pairs. It starts with an open parenthesis. Then, the car of the cons is printed,
and the cdr of the cons is examined. If it is nil, a close parenthesis is printed. If it is
anything but a cons, then a space, a dot, a space, and that object is printed followed by

Chapter 11: Input and Output 65

a close parenthesis. If it is a cons, a space is printed and the printing starts again all over
from the point after the open parenthesis is printed, using this new cons followed by a close
parenthesis. This procedure produces the usual printed representation such as those seen
in this manual.

For a code piece : The printed representation has the syntax C# name, where name is
the name of the code piece, normally the name of the function to which the code piece
is associated. Code pieces are not read back in properly.

For a stream : The printed representation has the syntax S# name, where name is the
name of the external file which the stream is connected to. When the stream is connected
to terminal, the name is "terminal-input" or "terminal-output" . Streams are not read
back in properly.

For other objects: The printed representation has the syntax type # address, where type
is a character indicating the type of the object ("V" for vectors, "R" for references),
and address is the decimal representation of the current address of the object. The address
is merely for convenience in discriminating two objects; the objects may be relocated by
the garbage collector. Vectors and references are not read back in properly.

Variabledigits
The value of digits, which must be a positive fixnum, specifies how many digits
are to be printed in the fraction part of the printed representation of flonums . The
initial value of digits is 7, and, thus, the length of the printed representation of a
flonum is, initially, 14.

Functionatomlength x
atomlength returns the length of the printed representation of an atom x. The
printing is assumed to be slashified . If x is not an atom, an error is generated.

The following additional feature is provided for the printed representation of cons
cells; as a list is printed, print maintains the length of the list so far, and the
depth of recursion of printing lists . If the length exceeds the value of the variable
printlength, print will terminate the printed representation of the list with ???
and a close parenthesis. If the depth of recursion exceeds the value of the variable
printlevel, the list will be printed as ? . These features allow abbreviated printing
which is concise and suppresses detail.

Variableprintlevel

Variableprintlength
Values of these variables are used as described above. Their initial values are 4 and
10 respectively. Infinitely deep or long printed representation may be obtained by
setting zero to these variables.

66 utilisp

11.3.2 The Reader

The purpose of the reader is to accept characters, interpret them as the printed rep-
resentation of a Lisp object, and return the corresponding Lisp object. The reader does
not accept all the printed representations; the printed representations of vectors, references,
streams, and code pieces are not read in again. However, the reader has many features
which are not seen in the printer.

The reader accepts slashified printed representation of numbers, symbols, strings, and
conses . Some special characters may be defined as single character object, which are read
in as a one character symbol of that character. Macro characters may be defined, reading
which will cause a call to a function associated with that character. See following sections
about the readtable and read macros.

Symbols with the same print name are read as the same object. This is realized by
keeping all the useful symbols in a table called the obvector. This table is organized as
a hash table the keys used are print name of symbols . The registration process to the
obvector is called interning.

Variableobvector
The value of obvector is the current obvector. An interned symbol sy is a top-level
element of the list which is the element of the obvector, the index of which is given
by

(‘’ (hash (pname sy))
(vector-length obvector))

Variabledefault-obvector
Value of default-obvector is the initial value of obvector. All the predefined sym-
bols are initially registered in this table.

Functionoblist (obvector)
oblist returns a list of symbols registered in obvector. The default value of obvector
is the current value of the symbol obvector. The list is newly created each time when
this function is called.

Variableintern
The value of intern is the interning function used by the reader, which must be a
function of one argument. When a character sequence which is to be interpreted as
a symbol is encountered, the Lisp reader calls this function with one argument, the
string consisting of the characters of that sequence. The result of reading the symbol
will be the result of this function.
The initial value of intern is the function intern (see below). Any user-defined name
table management principle may be established by binding intern to a user-defined
interning function.

Chapter 11: Input and Output 67

Functionintern string (obvector)
intern searches obvector for a symbol which has the print name string-equal to
string. If it is found, intern returns that symbol ; if not, a new symbol with its
print name being string is created, registered in obvector, and returned as the value
of intern. The default value for obvector is the current value of the symbol obvector.

Functionintern-soft string (obvector)
intern-soft works almost the same as intern except that it does not create a new
symbol . obvector is searched for a symbol with the print name string-equal to
string. If it is found, a list beginning with that symbol is returned; if not found, nil
is returned.

Functionremob symbol (obvector)
remob searches obvector for a symbol which is eq to symbol. If found, it is removed
from the table making it hidden from the Lisp reader; if not, nothing is done. It
returns nil as its value. The default value of obvector is the current value of the
symbol obvector.

11.3.3 The Readtable

The reader is controlled by a vector called the readtable. A readtable is a vector
consisting of 256 fixnum elements, the index n element of which corresponds to the character
of ASCII code n, and indicates the nature of the character.

Currently, only lower 16 bits of each element are used. Their meanings and the initial
values in the default readtable are as follows:

0x0000001
(LSB) means that this character is an ordinary alphabetic character. All the
usual characters have this bit on and others off.

0x0000002
means that this character is an extended alphabetic character. This bit is
currently not used.

0x0000004
means that this character is a digit. Characters "0" through "9" has this bit
on.

0x0000008
means that this character is a sign. "+" and "-" has this bit on.

0x0000010
is alternate meaning bit. This bit is used in several ways. For example, "-"
has this bit on, while it is off for "+".

0x0000020
means the escape character. " / " has this bit on.

68 utilisp

0x0000040
means that this character should be slashified in a symbol . Characters with
special meaning have this bit on.

0x0000080
means that this character should be slashified when appeared at the top of a
symbol . Special characters, signs, and digits have this bit on.

0x0000100
means string quote character. Double quote has this bit on.

0x0000200
means macro character. The macro definition (a function with no argument) is
in the corresponding position of the macrotable.

0x0000400
means right parenthesis, ") ".

0x0000800
means dotted pair dot, ".".

0x0001000
means left parenthesis, " (".

0x0002000
means blank and alike, which is normally skipped between lexical elements.

0x0004000
means a single character object.

0x0008000
means that this character terminates a symbol or a number. All the special
characters have this bit on.

The macrotable is used to hold the definition of macro characters. The definition should
be a function of no argument, the result of which is returned as the object read in.

Variablereadtable

Variablemacrotable
Values of readtable and macrotable are the current readtable and the macrotable,
respectively. The initial value of these variables are the same as those of
default-readtable and default-macrotable, respectively (see below). User
defined readtable or macrotable may be used by binding these variable to certain
values.

Variabledefault-readtable

Variabledefault-macrotable
Value of these variables are the standard readtable and the standard macrotable of
the system.

Chapter 11: Input and Output 69

11.3.4 Setting Readtable

Characters may be defined as a macro character by the function readmacro. When
the reader encounters a macro character in the input text, a function associated with that
character is called. The result of the function is returned as the return value of read.

Functionreadmacro char fn (readtable) (macrotable)
char is defined as a macro character associated with fn. This definition is done in
readtable and macrotable given as arguments. If they are absent, current values of
readtable and macrotable are assumed.

Example: s The macro character "’" could have been defined by
(readmacro (character "’")

(function (lambda nil (list (quote quote) (read)))))

Note that this works not only for (read) but also for (read some-stream); the latter
binds the variable standard-input to some-stream, making (read) in the definition
of the read macro input from that stream.

If the backquote character " ‘ " never be typed in from certain terminal, an alternative
character, say, " % ", may be settled for backquote macro by

(readmacro "%" (vref macrotable 96))

96 is the ASCII code for " ‘ ".

Predefined read macros are quote "’", backquote " ‘ ", and comma " , ". See Chapter
10, "Macros", for backquote and comma.

Characters may be defined as single character objects. When the reader encoun-
ters one of them (except when reading characters in a string), then it is read as an
interned single character symbol, regardless of preceding or following characters.
Single character objects may be defined by the function single-character.

Functionsingle-character char (readtable)
char is defined as a single character object in readtable. If readtable is not supplied,
current value of readtable is assumed.

Example:
(single-character "&")

From then on,
a&nil&b

will be read as 5 symbols, a, &, nil, &,and b.

11.4 Input Functions

Functions described in this section bind the variable standard-input to the argument
stream, before reading any character in. Thus, input is always performed on standard-
input stream. The default value of stream is the current value of standard-input.

70 utilisp

Functionread (stream)
read reads in one printed representation of a Lisp object from stream, and returns it
as its value.

Functionreadline (stream)
readline reads the current line, from current position to the line end, and return a
string consisting of the characters read in. The next character input from the stream
will be the first character on the next line.

Functionskipline (stream)
skipline works the same as readline except that it returns nil, instead of a string.

Functioncurrent-line (stream)
current-line returns the current line of stream as a string object. Returned string
includes all the characters in the current input line, regardless of the current character
position. The character position is not affected. Notice that this function only reads
the current buffer contents of stream and never updates the stream. The line which
is spread over two buffers is not read by current-line.

Functiontyi (stream)
tyi inputs one character from stream and returns its code as a fixnum .

Functiontyipeek (stream)
tyipeek returns the next character of stream. The difference with tyi is that tyipeek
does not advance the current character position of stream. Thus, consecutive calls of
tyipeek will result the same.

Functionreadch (stream)
readch is the same as tyi, except that, instead of returning a character as a fixnum,
it returns an interned symbol the print-name of which is a one- character string of
the character read in.

11.5 Output Functions

The functions in this section first bind the variable standard-output to the argument
stream, before any actual output. Thus, output operations are always performed on the
standard-output stream. The default value for stream is the current value of the symbol
standard-output.

Functionprin1 x (stream)
prin1 outputs the printed representation of x to stream, with slashification . The
value of prin1 is x.

Chapter 11: Input and Output 71

Functionprint x (stream)
print works the same as prin1, except that print terminates the current line after
printing out.

Functionprinc x (stream)
princ is the same as prin1 except that the printing is done without slashification
.

Functiontyo char (stream)
tyo outputs the character whose ASCII code is specified by char to stream. tyo
returns char as its value.

Functionterpri (stream)
terpri terminates the current line of stream. terpri returns nil as its value.

Functionflush (stream)
flush flushes out the contents of buffer of stream and returns nil. In general, output
of newline character flushes out stream .

Functiontab n (stream)
tab will set the character position of stream at the column n. If the current character
position is less than n, spaces are printed out until the column n is reached; if the
current position exceeds the column n, the line is terminated and n spaces are put
out on the next line. tab returns nil as its value.

11.6 Formatted Printing

It is often required to print Lisp objects in the midst of a certain message. For example,
given a symbol sy and a number num, one might require such an output as

"The symbol sy appeared num times."

with sy and num varying time to time. Of course, this can be achieved by
(progn (princ "The symbol ")

(prin1 sy)
(princ " appeared ")
(prin1 num)
(princ " times.")
(terpri))

but this looks ugly and not readable.
This kind of output is required so often that the system provides formatted printing

facility.

72 utilisp

Macroformat pattern . args
format is a macro for formatted printing. The first argument pattern is a string
specifying the output format and the rest of the arguments args is a list of forms
which are evaluated and used according to pattern.
The string pattern is normally printed out as it is. However, when a slant character
(/) is encountered, printing is controlled by the directive character immediately
following it. If the directive character requires arguments, values of args are used
sequentially from left to right. Control directive characters currently available and
their meanings are as follows:

s prints one Lisp object with slashification .

c prints one Lisp object without slashification .

b prints one character the code of which is supplied as an argument.

g pretty-prints one Lisp object.

t tabulates to the column specified by the argument.

n terminates the current line.

/ prints " / ".

Case of directive characters is ignored.
Example: The former example is printed by

(format "The symbol /s appeared /s times./n" sy num)

11.7 Indented Printing

Printed representations of Lisp object are not easily examined by human eyes, especially
when parentheses are densely nested. The indented printer prind will help you producing
more readable outputs by giving appropriate indentation.

Functionprind x (width) (asblock) (level) (length)
x is printed with certain indentation. width is the maximum width for printing, the
default value of which is the line length of the current output stream. When asblock is
non nil, then the print out will be more compact than when it is nil (the readability
may be somewhat damaged). The default value of asblock is nil. When level and
length arguments are supplied, they should be non negative fixnums, and when they
are non zero, the maximum level and length of printing lists will be level and length,
respectively. quote forms such as (quote a) are printed as ’a . Moreover, when the
value of the variable usebq is non nil, backquotes and commas are used for printing
cons and list forms; (list a ’b c) is printed as ‘(,a b ,c), (cons ’a b) as ‘(a .
,b)

prind returns nil as its value, unlike print which returns its first argument.

Variableusebq
When the value of usebq is non nil, backquotes and commas are used in the print
out of prind. The initial value of usebq is nil.

Chapter 11: Input and Output 73

Macropp funcname
The definition of the symbol funcname is printed so that the definition will be re-
covered when the print out is read in and evaluated. Usual functions are printed
as

(defun funcname lambda-list . body)

Macros defined using defmacro are printed as
(defmacro funcname lambda-pattern . body)

Other macros are printed as
(macro funcname lambda-list . body)

74 utilisp

Chapter 12: Code Pieces 75

12 Code Pieces

A Code piece is a Lisp object which contains machine language instructions and some
Lisp objects which are accessed from the code. Though code pieces may itself be used as
functions, it is usually more convenient to use their names, i.e., symbols, as functions. Code
pieces are either predefined by UtiLisp32 or obtained by compiling lambda forms.

A code piece has its name, which is normally a function symbol associated with that
code piece .

Functionfuncname code
funcname returns the name of code.
Number of arguments for a code piece may be restricted to reside in some range.
The minimum and the maximum numbers of arguments are stored somehow in the
code pieces for run time checking, and may be examined by the following functions.

Functionminarg code

Functionmaxarg code
minarg and maxarg return the minimum and the maximum number of arguments
for code, respectively. The values returned by these functions may not always be
precise. However, it is guaranteed that an error is generated when code is applied to
less arguments than the result of minarg or more than the result of maxarg. If code
allows arbitrarily many arguments, maxarg returns -1.
A code piece may be constructed by the following function.

Functionload-code x
load-code constructs and returns a code piece specified by the argument x, which
has the syntax

(name maxarg machine-code quoted)

where name is the name of the function, maxarg is the maximum number of arguments
of the function, machine-code is a list of fixnums each of which represents one half
word (16 bits in Suns, 8 bits on Vaxen) of the machine code, and, finally, quoted is a
list of Lisp objects accessed from the machine code.

Macroprogram-load c-library . funcs
The C program functions in the C library are used as the Lisp functions. funcs is a
list of the form

(Lisp-function-name C-function-name list-of-the-parameter-types nil type-
of-the-return-value)

The return value type may be one of fix, float and string.
(program-load ’("-lm") ’(arctan2 "atan2" (float float) nil float))

76 utilisp

Macrocode-load compiled . c-library
A number of the object files are loaded. compiled is a list of the object files generated
by a compiler. c-library specifies other C libraries. A list of the file names may be
given to compiled.
This function can not be used when the incremental load does not exist in System V.
In that case, make-a.out may be used for the compiled codes to be executed.

Macromake-a.out a.out compiled c-library
make-a.out generates the executable file for UtiLisp/C which includes the compiled
codes. As the compiled code does not automatically execute lispsys.l, compied must
include lispsys.o.

Functiondumpfile filename
Currently loaded codes and heap information are written out to a file. When this
file is specified with -d option at the next rebooting, the system will restart with the
same state.

Chapter 13: Compilation 77

13 Compilation

The Lisp compiler is a program which translates interpretive functions, which have the
form of lists, into machine codes which are directly executed by the hardware. The merit
of compilation is that the execution speed will be considerably improved.

13.1 Compiling Functions

Macrocompile . function-names
The compiler is evoked by simply applying the macro compile as

(compile . function-names)

where function-names is a list of symbolic atoms the definitions of which are lambda
expressions. The definition of these symbols will be replaced by the compiled code.
compile returns the list function-names as its value.
Example: Interpretive functions f and g are compiled by:

(compile f g)

Macrorevert . function-names
The interpretive definition of a function which is compiled using compile is saved
in the property list of the function symbol as its previous-definition property.
revert sets the definition of the symbols in function-names to their previous-
definition properties. revert returns function-names as its value.
The calling interface of compiled and interpretive functions are totally compatible.
Thus, a compiled function may call interpretive functions and vice versa.
Macro calls in the definition of the function being compiled are expanded before the
compilation. Thus, such macros must be defined before the compilation.
Usually, the compiler generates various run time check codes. When the program
has been completed and there is no possibility of errors, these check codes may be
superfluous. The following variables are used to give direction to the compiler whether
such check codes are required or not.

Variabletypecheck
When the value of typecheck is non nil, the compiler generates type check codes;
otherwise, no run time type check code is generated. The initial value of typecheck
is t.

Variableubvcheck
When the value of ubvcheck is non nil, the compiler generates check codes for
unbound

variables; otherwise, unbound variables are not checked in the object code. The initial
value of ubvcheck is t.

78 utilisp

Variableindexcheck
When the value of indexcheck is non nil, the compiler generates check codes for
array or string index range; otherwise, no run time check code for index range is
generated. The initial value of indexcheck is t.

Variableudfcheck
When the value of udfcheck is non nil, the compiler generates check codes for
undefined function; otherwise, no run time check code for index range is generated.
The initial value of udfcheck is t.

13.2 Declaration

Various declarations may be required for exact compilation. The macro declare and
defconst and the function reset-compilation-flags are provided for such declarations.

Macrodeclare item-list indicator
declare is used to declare that the elements of item-list have the attribute indicated
by indicator. Currently, the indicators used are special, redefine and fix-value.

Macrodefconst var val
When it is evaluated by the interpreter, it has the same effect as (setq var val).When
it is compiled, the code in which vars are replaced by vals is generated. An error
occurs when var is assigned a new value in the context in which var is assumed a
constant.

Functionreset-compilation-flags
reset-compilation-flags revokes all the declarations effected via the macro
declare so far.

The compiled object is designed so as to use static scope rule for local vari-
ables(authentic Lisp scope rule is dynamic). For exact compilation of functions which
utilize global variables, all the non locally referred variables(i.e., variables referred from
functions other than that which binds the variable) should be declared to be special.

The declaration of special variables is effected by
(declare var-list special)

where var-list is a list of non locally referred variables.
Example: When variables x and y are used non-locally, they should be declared special

before compiling functions which binds them by
(declare (x y) special)

If a non local variable is not properly declared, the compiler treats the variable as a
special variable; the value of a local variable is stored somewhere on the system stack access
to which can only be possible from the function which binds the variable.

Chapter 13: Compilation 79

For calls to some of the predefined functions (such as atom, car, cdr, etc.), the compiler
generates certain machine code sequences which work effectively the same as these functions.
Thus, if some of the predefined standard functions are to be redefined by the user program,
they should be declared by

(declare fn-list redefine)

where fn-list is a list of the names of predefined functions which are to be redefined.
By the declaration

(declare sym-list fix-value)

you can tell the compiler that the symbols in sym-list have only fixnum value.

13.3 Storing Compiled Objects

The compiler puts the compiled code in a relocatable form (in a form of list of numbers
and some Lisp objects) in the property list of the name of the compiled function as its
compiled-code property. This may be printed to a file as a normal Lisp object and may
later be read back in. This relocatable form may be converted into machine code object
(code piece) by the function load-code. The result of load-code may be put into the
definition cell of the function name by the function putd (see Chapter ~see Chapter 12
[CodePiec], page 75,"Code Pieces", for details).

Example: If the relocatable compiled code for the function f is stored in the file connected
to an input stream which is the value of the variable obj, the definition of f may be loaded
by:

(putd ’f (load-code (read obj)))

13.4 Difference from the Interpreter

As the compiled object is designed so as to attain efficient execution, some differences
exist between the run time behaviour of compiled codes and interpretive codes.

Non local go and return in prog forms as well as non local exit in loop forms are not
allowed in compiled functions. Only available non-local exit structure is that provided by
catch and throw.

13.5 Providing Space for Compiled Codes

Compiled codes are stored in an area called fixed-heap which is different from usual
heap for ordinary Lisp objects. When a large amount of code should be compiled, the size
of the fixed-heap must be specified to be large enough. This can be achieved by supplying
an optional parameter "-f" to the Unix command utilisp as

% utilisp -f n

where n is a number indicating how many kilobytes should be provided for compiled
objects. The default value of n is 64. If enough fix heap space doesn’t exist, then Lisp
process abnormally terminates.

As the garbage collector does not collect garbages in the fixed-heap area, re-compilation
of functions leaves uncollectable garbages. See Chapter ~see Chapter 15 [MMS], page 87,
"Memory Management System", for details.

80 utilisp

Chapter 14: Errors and Debugging 81

14 Errors and Debugging

14.1 The Error System

UtiLisp32 generates an error when some invalid operation is tried by the program; for
example, when the car of an atom has been taken.

When an error is generated, the value of the symbol corresponding to the kind of the
error is examined. The value is interpreted as a function, which is called by the system
with one argument; it depends upon the kind of the error what this argument is. The
initial value for these symbols are the symbols themselves. These symbols themselves are
defined as standard error handlers, which print an appropriate error diagnostic message,
the information passed as the argument, and the function in which, or while evaluating
arguments of which, the error took place.

Then the value of the symbol break is examined, which should be a function of no
argument, and this function is then called in the environment where the error has occurred
(the variables have the same values as when the error took place). The result of this function
call will be the result of the function during the evaluation of which the error occurred.

Variablebreak
The value of break is a function which is called by the standard error handlers after
printing error diagnostics. The initial value of break is break itself.

Functionbreak
break first binds standard-input and standard-output to the streams connected
to the terminal, i.e. terminal-input and terminal-output, readtable and
macrotable to the standard ones, prompt to the string "@", and then enters a
read-eval-print loop similar to the top-level loop. This loop may be terminated
by the

Functionunbreak . args
unbreak is used to terminate a break loop. The inner-most break loop is terminated
and the value returned by that break will be the last argument of unbreak. If no
break encloses an unbreak call, an error is generated.
Following are the variables the values of which are used as the error handlers, and,
at the same time, function names of the standard error handlers. The initial values
of these variables are themselves. The optional argument where is interpreted as
the function name where the error has occurred. The default value of where is the
function from which the error handler is called. When an error handler is to be called
explicitly (usually by funcall), an appropriate function name should be given for
this optional argument.
Example: The function cadr could have been defined as:

(defun cadr (x)
(cond ((or (atom x) (atom (cdr x)))

(funcall err:argument-type x ’cadr))
(t (car (cdr x)))))

82 utilisp

Variableerr:argument-type

Functionerr:argument-type x (where)
The type of x was not valid for the function applied to it.

Variableerr:buffer-overflow

Functionerr:buffer-overflow dc (where)
A string or a symbol is read in which is longer than the string buffer. The size of the
string buffer is, currently, 512 characters. dc is always nil.

Variableerr:catch

Functionerr:catch tag (where)
throw was called with its first argument being tag, but the corresponding catch with
its first argument eq to tag was no found.

Variableerr:end-of-file

Functionerr:end-of-file stream (where)
The end of the file was reached while reading the file associated with stream. stream
is automatically closed.

Variableerr:floating-overflow

Functionerr:floating-overflow dc (where)
Overflow of a floating point number occurred. dc is always nil.

Variableerr:function

Functionerr:function x (where)
x was used as a function but is illegal as a function, i.e., a non-symbolic atom or a
cons cell which is not a lambda expression.

Variableerr:go

Chapter 14: Errors and Debugging 83

Functionerr:go tag (where)
A go form was evaluated with tag but the corresponding prog that has the label tag
in its body was not found.

Variableerr:index

Functionerr:index index (where)
index was used as an index for a vector or a string, but is out of index range or not
even a fixnum .

Variableerr:io

Functionerr:io stream (where)
stream was used for some I/O operation but has not been opened properly; an input
stream was used for output, the reverse case, or stream was not open at all.

Variableerr:number-of-arguments

Functionerr:number-of-arguments dc (where)
The number of arguments for a function was too many or too few. dc is always nil.

Variableerr:open-close

Functionerr:open-close stream (where)
Opening or closing of stream failed. Occasionally, some diagnostic message, besides
that of the Lisp system, is printed out by the operating system.

Variableerr:read

Functionerr:read dc (where)
The character sequence read in cannot be interpreted as a Lisp object. This error is
often caused by an improper usage of dots (.).

Variableerr:return

Functionerr:return dc (where)
return, exit, or unbreak was called but the corresponding prog, loop, or break was
not found. dc is always nil.

84 utilisp

Variableerr:unbound-variable

Functionerr:unbound-variable var (where)
var was evaluated but is unbound.

Variableerr:undefined-function

Functionerr:undefined-function fn (where)
The symbol fn was used as a function but is undefined.

Variableerr:variable

Functionerr:variable x (where)
x was used as a variable but is not a symbol.

Variableerr:zero-division

Functionerr:zero-division dc (where)
Division by zero was attempted. This error may occur in both integer and floating
arithmetics. dc is always nil.

Two special errors are handled quite differently. They are the overflow of the system
stack and the shortage of the available memory. When a stack overflow occurs, or when the
garbage collector failed to collect enough memory for computation, a diagnostic message
indicating the kind of the error is printed, all the variables recover their top-level values,
and UtiLisp32 resumes the top-level loop.

When a stack overflow occurs during a garbage collection, UtiLisp32 prints out a message
and the Lisp session is terminated abnormally, since such a situation is fatal and recovery
is impossible.

14.2 Attention Handling

When the execution of a Lisp program is interrupted from the terminal (usually by the
break key), the attention interrupt handler attention interrupt handler is called. If the
system is during a certain I/O operation, this call will be postponed until the termination
of that I/O.

Variableattention-handler
The value of attention-handler is the attention interrupt handler, which must be
a function of no argument. The initial value of attention-handler is break.

Chapter 14: Errors and Debugging 85

14.3 The Debugger

The debugger is a collection of functions which are useful in debugging Lisp programs.
As debugger is designed for interpretive functions, it is recommended to debug programs in
interpretive form and then compile them into machine codes (see Section~see Chapter 13
[Compile], page 77,"Compilation", for details).

Macrotrace . funcnames
trace takes arbitrarily many arguments which are names of interpretive functions.
The functions listed in funcnames become traced; the function name and arguments
are printed on entry to these functions, the name and the result of the function are
printed on exit, with the nesting level, in appropriate indention.

Tracing is effected by automatically rewriting the definition of the traced functions.
This alteration can be restored by the function untrace.

Macrotrace-when pred . funcnames
trace-when is the same as trace except that tracing is conditional. The form pred
is evaluated each time a function listed in funcnames is called, and that function call
will be traced if and only if the value of evaluating pred is non-nil. As arguments
to the function are already bound when pred is evaluated, pred may depend upon
the arguments.

Macrountrace . funcnames
untrace stops tracing of the functions listed in funcnames.

Functionbacktrace (n)
With no argument, backtrace returns a list of the names of all the functions which
are nesting around the current environment. When n is supplied, a list of the names
of only n innerly nested functions is returned. Inside the break loop of the standard
error handler, this function may be used to examine the calling sequence upto where
the error has occurred.

Functionoldvalue (n)
With no argument, oldvalue returns a list of dotted pairs. The car of each pair is a
variable which is bound by lambda-binding and the cdr is its previous value before
the binding. If the variable had been in unbound state before the binding, its previous
value is indicated by the symbol *UnBoundVariable*. The order in the list is such
that recently bound variables come earlier. When n is supplied, only pairs concerning
recent n bindings are included. This function may be used to get information on the
binding history.

86 utilisp

Variabletoplevel
The value of toplevel is a function of no argument which is used as the Lisp top-level.
The initial value of toplevel is utilisp.

Functiontoplevel
toplevel first undoes all the variable bindings except top-level ones. Then the value
of the variable toplevel is examined. The value should be a function of no argument,
and this function is then called. As the initial value of the toplevel is the symbol
utilisp, toplevel can be used to resume the top-level loop.

14.4 The Low-Level Debugger

The low-level debugger is a collections of functions for debugging the UtiLisp system
itself. As they are primarily prepared for maintainance of the system, some of them are not
safe; misuse of them may cause a fatal error. They should be used with proper knowledge
of the physical represenation of various Lisp objects.

Functionaddress x
address returns the current memory address of x as a fixnum . If x is a reference,
the address of the vector element pointed by x is returned. If x is a fixnum, x itself
is returned.
Note: The Lisp objects may be relocated by the garbage collector, except for those
which are allocated in the fixed-heap area.

Functionpeek addr length
peek returns a string which contains a copy of the machine memory beginning at
(address addr) and length long.

Chapter 15: Memory Management System 87

15 Memory Management System

The memory space used by the UtiLisp32 is divided into four areas. They are:

heap

for usual Lisp objects (including symbol area)

fixed-heap
for predefined objects and compiled codes

stack for control information and temporary storage

kernel for the system kernel

The size of the heap and the fixed-heap and areas may be specified by the parameters
at the initiation of the Lisp process (see Chapter ~see Chapter 1 [Introduc], page 1, "Intro-
duction", for details). The sizes of the kernel area is system-defined constants. The size
of the area available for the heap area is the maximum memory size allowed for a user job
by the operating system minus the total size of all the other areas.

When an object is to be allocated, by cons for example, and not enough space is left in
the heap area, then the garbage collector is called.

The garbage collector gathers all the Lisp objects which will never be accessed; the
memory space occupied by them becomes reusable. Then, the execution of the original
program is resumed.

The garbage collector may also be called explicitly by gc.

Functiongc
gc invokes the garbage collector. It returns nil as its value.

Following functions are for asking states and setting parameters of the memory manage-
ment system. The unit of memory space used in these functions is byte in UtiLisp32.

Functionextendheap size
extendheap expands the size of the heap area specified at the initialization to size
bytes. Success will return t, failuare nil.

FunctionextendheapK size
expandheapK expands the size of the heap area to size kilo bytes. Success will return
t, failuare nil.

Variablegc-hook
When a value is bound to gc-hook, this value will be funcall-ed after GC.

Functiongccount
gccount returns a fixnum which indicates how many times the garbage collector has
been called since the system initiation.

88 utilisp

Functiongctime
gctime returns a fixnum indicating CPU time required for gc so far. The unit used
is one 60th second.

Functionheapsize
heapsize returns the size of the heap area as fixnum .

FunctionheapsizeK
heapsizeK returns (heapsizeK)/1024.

Functionheapfree
heapfree returns the size of the free heap area as fixnum .

FunctionheapfreeK
heapfreeK returns (heapfreeK)/1024.

Functionsymsize
symsize returns the size of the symbol area as fixnum . In UtiLisp/C, symsize
returns 0 since the heap area is not divided for each type.

Functionsymfree
symfree returns the size of the free symbol area as fixnum . In UtiLisp/C, symfree
returns 0 since the heap area is not divided for each type.

Functionfixsize
fixsize returns the size of the fixed heap area as fixnum . In UtiLisp/C, fixsize
returns 0 since the heap area is not divided for each type.

Functionfixfree
fixfree returns the size of the free fixed heap area as fixnum . In UtiLisp/C, fixfree
returns 0 since the heap area is not divided for each type.

Functionstacksize
stacksize returns the size of the stack area as fixnum .

Functionstack-used
stack-used returns the size of the stack area currently in use.

Chapter 15: Memory Management System 89

Functionstack-bottom
stack-bottom returns the bottom of the stack.

Functionstack-top
stack-top returns the top of the stack.

Functionstack-base
stack-base returns the current base of the stack.

FunctionstackWM
stackWM returns the list of pairs of the maximal stack size ever used and the max
stack size (in bytes) for each of the parameter stack, binding stack, code stack and
environment stack.

Functioninit-stackWM
init-stackWM will reset the max record displayed by stackWM.

90 utilisp

Chapter 16: Structure Editor - USE 91

16 Structure Editor - USE

USE (Utilisp Structure Editor) is a structure-oriented editor for inspecting and changing
list structures, which may be Lisp programs or data.

One merit of using USE, compared with text-oriented editors such as Emacs or vi,
is that editing is done on Lisp data structures themselves, rather than on their printed
representations; USE has the knowledge of the hierarchical structure of the edited data,
and the editing commands of USE reflect this hierarchy. Another merit is that the editing
is done in the Lisp environment; arbitrary Lisp form may be evaluated during editing and
currently edited structures may also be manipulated by Lisp functions.

USE always manipulates a copy of the original list structure; all the atoms in the copy
are the same with the original ones, but all the cons cells are newly created for the copy.
Thus, when a USE session is aborted by a k command, the original program or data is not
affected at all.

16.1 Invoking USE

Following macros are used to invoke USE and, on their normal termination, restore the
edited result.

Macroed fn
ed invokes USE for editing interpretive functions. The definition of fn will be
edited. ed puts edited result in the definition cell of fn on normal termination.

Macroedv var
edv invokes USE for editing values of variables. The value of var is edited. edv sets
edited result in the value cell of var on normal termination.

Macroedp sym
edp invokes USE for editing properties of symbols . The property list of sym is
edited, and the result will become the new property list of sym on normal termi-
nation.

Macroedf file-name
edf invokes USE for editing text files containing printed representations of Lisp ob-
jects. file-name is evaluated first. Its result must be a string representing the name
of the file to be edited. It is often convenient to set a file name to a variable and use
that variable as the argument of edf, since a file name may be quite complicated. A
string indicating the file name may also be used directly as an argument of edf, since
a string is evaluated to itself.
What is edited is a list of all the objects the printed representations of which are
stored in the file. The order of the elements in the list is the same as in the file. In
other words, an extra left and a right parentheses are assumed at the beginning and

92 utilisp

at the end of the file. The top-level elements of the result of editing will be printed
back to the file on normal termination.
Note: Rewriting an external file does not affect the state of the Lisp objects, even if
the file contains function definitions such as defun or macro forms. The content of
the file should be evaluated to effect redefinition.

Macroedl loc
edl invokes USE for editing some data which never be edited by ed, edv nor edp. loc
should be a form to access a component of certain structure, for example, (car cons)
to access the car of a cons cell cons, (vref vec n) to access n-th element of a vector
vec. loc is evaluated first, and its value will be edited by USE. The result will be put
back to where it was derived from, on normal termination.

Functionuse x
use is the USE system itself. It is normally called using above macros, but users may
also call use directly. use returns one component list of the edited result, when the
use session is normally terminated; it returns nil when it is terminated abnormally
(by k command).

16.2 USE Session

USE prompts terminal-input by "?" when it expects a command. If a symbol or a
number is typed in, it is interpreted as a command; otherwise, especially when you type in
a list, the list is interpreted as a form which is evaluated and the result is printed. When
the form is evaluated, the symbol ? is bound to the current scope (see the next section for
details). The e command may be used to evaluate an atom.

Usee form
The form form is evaluated and the result is printed.

Arbitrarily many commands and their operands may be typed on a single line. They
are executed sequentially, as long as no error is found. When an error is found, the rest of
the current input line will be ignored.

Following two commands are for terminating an editor session.

Useq
q (quit) terminates the current session normally. The edited result will be restored
depending how the editor is called from one of the macros described in the previous
secrion.

Usek
k (kill) terminates the current session abnormally. The edited result will be merely
discarded no matter how the editor is called, and the original definition, value, prop-
erty list, etc. are not affected.

Chapter 16: Structure Editor - USE 93

16.3 Scope and Position Numbers

The editor always have current scope, which is a portion of the whole Lisp object being
edited. The scope may be nested; the current scope may be an element of its parent scope,
and this parent scope may again have its parent, and so on. All insertion, deletion, and
replacement are effected only inside the current scope.

When the current scope is a list, elements in the list are specified by their positions. A
positive fixnum n represents the n-th element. A negative number -n represents the n-th
element counted from the last. 1 means the first element and -1 the last.

Example: s Suppose the current scope is (a b c d e f g), then
1 means a .
3 means c .
-1 means g .
-3 means e .
10 is invalid.
-10 is invalid.

16.4 Pattern Matching Rules

It is sometimes desired to search a certain pattern of Lisp object, without specifying
its detail. For example, a form setqing to a symbol x may be of programmer’s concern
irrespective of the value assigned. This example may be expressed as (setq x ?).

The rules of pattern matching are quite simple:
1. A pattern matches an Lisp object equal to it.
2. ? matches any Lisp object.
3. ??? matches any portion of a list.

Example: s
(car x) matches (car x) but not (car ’(a b)) .
(car ?) matches both (car x) and (car ’(a b)) .
(cons ? ?) matches both (cons x x) and (cons x y) .
(list ???) matches both (list) and (list x y z) .
(a ??? z) matches any of (a z) , (a b z) , or (a b c d e z) .

16.5 Printing Current Scope

Usep
p (print) command prints the current scope in usual abbreviated way. See Chapter
~see Chapter 11 [InandOut], page 61, "Input and Output", for abbreviated printing.

Usepp
pp (pretty print) command prints the current scope with appropriate indention. See
Chapter ~see Chapter 11 [InandOut], page 61, "Input and Output", for pretty-
printing.

94 utilisp

Uselevel n

Uselength n
level and length commands are used to set the maximum printing level and length
in abbreviated printing to n. n should be a fixnum .

Note: The level and the length specified by these commands are only effective in one
editor session. The values of printlevel and printlength are not affected.

16.6 Changing the Scope

Usen

Use-n

Use0
Position numbers themselves are commands to change the scope to the position spec-
ified. The command 0 changes the scope to the parent of the current scope, i.e. a list
which contains the current scope as its element.

Usetop
top command changes the scope to the whole Lisp object being edited.

Usen
n (next) command moves the scope to the element next to the current scope in the
parent scope. When there is no parent scope or the current scope is the last element
of the parent scope, it is an error.

Usel
l (last) command moves the scope to the element one before the current scope in the
parent scope. When there is no parent scope or the current scope is the first element
of the parent scope, it is an error.

Usew
w (where) command prints where the current scope is beginning from the top level.

Chapter 16: Structure Editor - USE 95

16.7 Searching

Usef pattern
f (find) command searches an Lisp object which "matches" pattern in textual order
(searches car before cdr). Searching is done in the current scope only. If one is
found, the scope is changed to the Lisp object found. The intermediate scopes are
saved and can be accessed using the command "0". If pattern is not found, a message
is generated and the scope remains unchanged.

Useff pattern
ff (find forward) command is the same as f command except that the search begins
in the next scope, that is after the current scope.

Usefb pattern
fb (find backward) command is the same as f command except that the search is
performed in reverse direction (cdr before car) and the search begins in last scope,
that is, before the current scope. current scope.

Usefn
fn (find next) command is the same as ff command except that the same pattern is
used as previous f ff or fb command.

16.8 Inserting and Deleting Parentheses

Usebi m n
bi (both in) command inserts an open parenthesis at the left of m and a close paren-
thesis at the right of n. m and n are position numbers.
Example:

(a b c d e)
bi 2 4

--> (a (b c d) e)

Usebo n
bo (both out) command deletes the parentheses enclosing n which should be a list. n
is a position number. It is the inverse operation of bi.
Example:

(a (b c d) e)
bo 2

--> (a b c d e)

96 utilisp

Useli n
li (left in) command inserts an open parenthesis at the left of n, and a close paren-
thesis at the end of scope. n is a position number.
Example:

(a b c d e)
li 2

--> (a (b c d e))

Useri n
ri (right in) command inserts an open parenthesis at the beginning of scope and a
close parenthesis at the right of n. n is a position number.
Example:

(a b c d e)
ri 2

--> ((a b) c d e)

Uselo n
lo (left out) command moves the open parenthesis of n to the beginning of the current
scope. n must a Position number which specifies a list.
Example:

(a (b c d) e)
lo 2

--> ((a b c d) e)

Usero n
ro (right out) command moves the close parenthesis of n to the end of the current
scope. n should be a position number specifying a list.
Example:

(a (b c d) e)
ro 2

--> (a (b c d e))

16.9 Inserting and Deleting S-expressions

Usei pos sexpr
i (insert) command inserts sexpr at the right of pos. If pos is a number, it is inter-
preted as a position number. Otherwise, it is interpreted as a pattern and the first
Lisp object found to match pos is assumed. To use a number as a pattern, quote
the number like ’3. In this case, the quote is not included in the pattern used for
matching.
Example: s

Chapter 16: Structure Editor - USE 97

(a b c d e)
i 3 x

--> (a b c x d e)
i b (foo bar)

--> (a b (foo bar) c x d e)

Note: Insertion to the top of a list can be achieved by specifying 0 for pos.

Usea sexpr
a (append) command replaces the tail of the current scope by sexpr. If the current
scope is atomic, the whole scope is replaced by sexpr.
Example: s

nil
a (a b c)

--> (a b c)
a d

--> (a b c . d)

Usein sexpr
in (insert next) commands inserts sexpr at the right of the current scope in the parent
scope.

Used pos
d (delete) command deletes pos from current scope. The meaning of pos is the same
as in i command.
Example: s

(a b c d e)
d 3

--> (a b d e)
d b

--> (a d e)

Usey pos
y (yank) command inserts an Lisp object most recently saved by the editor at the
right of pos. What is saved is either the Lisp object deleted using d command, Lisp
object replaced using r command, or the result of evaluating a form which is typed
in instead of a command. The meaning of pos is the same as in i command. This
command can be used, with d command, to move a portion of Lisp object inside the
edited structure.
Example: s

(a b c d e)
d 3

--> (a b d e)

98 utilisp

y a
--> (a c b d e)

(cons ’a ’b) => (a . b)
y 3

--> (a c b (a . b) d e)

16.10 Replacing S-expressions

User pos expr
r (replace) command replaces pos with expr. pos has the same meaning as in i
command.
Example:

(a b c d e)
r 3 (foo bar)

--> (a b (foo bar) d e)

Usera pattern expr
ra (replace all) command replaces all Lisp object in the current scope which matches
pattern with expr. Number of actual replacements is reported.
Example:

(a x b x c)
ra x y

--> (a y b y c)
2 occurrences are replaced

Chapter 17: Unix Interface 99

17 Unix Interface

17.1 Calling Shell Commands

Functioncall command-string
This function executes command-string and waits its termination. Because the exe-
cution is done by a subprocess rather than UtiLisp32 itself, some commands such as
cd have no effect on the status of UtiLisp32. Return value is a fixnum that represents
the status of the command execution.

Functioncd (dir)
cd changes the current working directory of UtiLisp32 to dir which must be a string.
The default value for dir is the user’s home directory defined by the HOME environ-
ment variable.

17.2 Environment Variables

Functiongetenv name
getenv searches environment variable list for the name name and return its value as
a string . If the variable is not defined, nil is returned.
Example:

(getenv "HOME") => "/usr/usr1/bill"

Functionputenv name value

Functiongetpid
getpid returns the process ID of the current process.

Functionsyscall . . .
syscall calls the Unix system call.

Functionerrno
errno returns the error number returned by the system call.

17.3 Command Line Arguments

Functionargv
argv returns the command line that invoked UtiLisp32 as a list of strings . Note
that the command name itself is also included as the first element of the list.

100 utilisp

Chapter 18: Miscellaneous 101

18 Miscellaneous

This chapter describes functions that do not seem to fit anywhere else.

Functiontime form
With no argument, time returns the CPU time elapsed by the Lisp system since its
initiation. This includes the time required for garbage collection and for external
programs which are called using call. If the optional argument form is supplied,
form is evaluated again, and CPU time required for this re-evaluation is returned.
The time is returned as a fixnum object in one 60th seconds.

Functionquit
quit will return control to the caller of the UtiLisp32, usually to Unix shell. All the
files opened by in the UtiLisp32 will be automatically closed.

Functionabend
abend abnormally terminates the UtiLisp32.

Variableversion
The value of version is a string which indicates version of the system.

Functiondate-time
date-time returns a string containing the date and time.
The string has the format

"YYMMDDHHMMSS"

where YY are two least significant digits of the year, MM, month, DD, day, HH, hour in
24-hour system, MM, minute, SS, second.
Example: At 5:30 in the evening of January the 20th, 1988,

(date-time) => "880120173000"

Functionuserid
userid returns user name as a string .

Functionutilisp
utilisp is the top-level loop of the UtiLisp32. An S-expression is read in, evaluated
and printed. This is repeated again and again. The prompting character
of the top-level loop is ">" . This symbol utilisp is the initial value of the symbol
toplevel (see Chapter ~see Chapter 14 [ErrDebug], page 81, "Errors and Debug-
ging", for details).

102 utilisp

Variable?
Each time a form read in is evaluated in a utilisp loop or in a break loop, the result
is set to the variable ?.
Example: s In the top-level UtiLisp loop,

(cons ’foo ’bar) => (foo . bar)
? => (foo . bar)

Macrosetl loc val
setl is a macro which makes it easy to describe list structure modification or vector
element updating. It is particularly useful for defining such macroes that access and
update an element simultaneously. loc is either a variable name or an expression
which indicates the element in list or vector. val is a value set to the place indicated
by loc. setl rerurns the value val. Example: s

(setl x y) is equivalent to (setq x y)
(setl (car x) y) is equivalent to (car (rplaca x y))
(setl (cadr x) y) is equivalent to (car (rplaca (cdr x) y))
(setl (vref v 3) y) is equivalent to (vset v 3 y)
(setl (plist x) y) is equivalent to (setplist x y)
(setl (nth n x) y) is equivalent to (car (rplaca (nthcdr n x) y))

Functionexfile filename (show)
exfile evaluates (executes) all the S-expression in the file specified by filename and
returns nil. If show is non-nil, exfile output the result of each evaluation. The
default value for show is nil.

Macropackage-load lispfile . externals

Chapter 19: Common Lisp like Libraries 103

19 Common Lisp like Libraries

(to be included)

104 utilisp

Chapter 20: X-Window Interface 105

20 X-Window Interface

(to be included)

106 utilisp

Index 107

Index

(Index is nonexistent)

108 utilisp

	Short Contents
	Table of Contents
	1 Introduction
	2 Predicates
	3 Evaluation
	4 Flow of Control
	5 Manipulating List Structure
	6 Symbols
	7 Numbers
	8 Strings
	9 Vectors
	10 Macros
	11 Input and Output
	12 Code Pieces
	13 Compilation
	14 Errors and Debugging
	15 Memory Management System
	16 Structure Editor - USE
	17 Unix Interface
	18 Miscellaneous

