
'"

,.'.=

",1'

I,: "

 tf\{f1) (~tv t')c.Ir't:ttM \ c G::nt-l'p. CN~ ..

I d- (0 W ~<;T O/t'-t(?:rN t;.-,..
fNfr,r SO:V J WI S. $'S 7of:,

This report describes the imple~~nt~~ion of LISP on the U~ivac 1108.

'l'he primary purpose of this report is to shoi-l hm., certain of the more _

sticl-y problems ':ol'e.re solved in this i;::plenentation. TllE!Se, or sim:Uar

techniques could be used in the impleL'l2ntation of other t<mgua6es.

Secondarily, this report ~vill also serve as the maintenance docume~t for

1108 LISP and should be read by anyone before be peeks into the sys~em.

Familiarity with the 1108 is not a requireme:nt to understand \-lh<lt is

cO,ntained here. I have attempted to describe '!.-7h:!t is i;oing on in 11achine

,independent concepts.

Familiarity with LISP is required. Befor~,any one ~~~ds this, he

should read the 1108 LISP Reference !Ianua1, or at leas t h<'~IC scme. idea of

what 1.ISP b all about.

'l'he: LISP system on the 1108 is cssenti~l1y c'm inccl-prc:ter tnat the

user uses to evaluate expressions. {'7ht:':~ he n~eds ;norc speed, he '"::.2.y usc

a compiler to generate m~c~ine cede. :he code generated by the com~iler

is placed directly in core and replaces the sou rca langu3~e that ~~s

interpreted. There are also facilities for saving objects that have been

constructed (like compiled functions) for use at a la~er date.

When originally pondering this implementation of LISP, I paid parti

cular attention to two problems. Ft rat, I "lanted a dynar.dc mcnary

allocation scheme. There an:! m;lTIY tit ffcrf'nt t:lpe~: of I)h1cC:'..'3 tn LISP (like

numbers, lIsts, atomi.c symbol~, (:("'i'Jh'J code. ~tc..). Ir- h; brc·;1)1t.ll1

to predict in advance ,£lOW much ~;p<l(C 'JOuld b~ nccued fot- t.!:e;,:! dif:.'ercn':

types of information •• I wanted C! syste~ that could alloc-.ltc w!la::cvcr

space WClS needed and yet still be <i~le co keep trac!: of ~"'!1';::: is going on

so that - say - garbage colll?ctio;.1s can be perfoD!led.

'Secondly, I wanted a good a:1d sp'E:ecy la."'J.bda-calculu.'5 ::.ype evaluo.tion

schct1c •. The one nonnal1y used is terribly sh)'''' (?,pends too mo.Id~ ti"C1C

10ov1.·r'g up tl1.l'1 o S Ot! n.,... ... rn- ... y I-frot-r) anr1 "'''. "'_,t,.(.,,'.n,"'1.t ".I .. ~~~_C1,:r (·J".n ~.,:O(·'''_'. •• • 1... 0' "-'-L'~"'" ~~, .. >,' _.J -, -.'- _ . contc.l.tr:::;

,
i J
'I '

1
: ~i
'fl

, ~: }(
" " : if.

, "

I

.1

,"

';!
,'.'

" '

::., .

In order to solve the memory allocation problem, I considered core

chopped into pages. Each page is 128 words long (this can,he easily

' changed). This means that words 0 through 01778 are on one page, as are

vords 0170008 through 0171778 , and so forth. These pages extend all the

vay toward 03777778" So what, you ask.

Well t the big rul is that we can put any type of information on any

page as long_as we put only that type of infornation on that page. For

instance, words 0170008 through 0171778 might be allocated for storing

atomic symbols, words 0172008 through 0173778 reight be used for integers,

aud so forth. After the sys tern runs a ~,Thile) nemory will be chopped up

into pages of integers, pages of list structure; pages of compiled cadet

etc~ In this way, the system adjusts to how mUlch of each type of information:

is needed.

N~Wt the next problem is that given a pointer, we need to be able to

tell what kind of information it points to. Therefore, a page table is

maintained that contains an entry for each p;\l~e. Each entry looks like:

TYPE

lyPe is a code indicating the' type of infornation contained on the

associated page. E.g. word at PAGTAB + 0 describes the page from ° to

01778 , PAGTAB + 0748 describes 0170008 through 017177 8 , etc. The page

size is a power of two so that this association can ~e affected easily

with a shift. That is, given a pointer, we find out w-hnt kind of fellow

is being pointed at by shifting off the lov orllf~r 7 1 II.:~ lllll\ III, lug lIds

as ~n index into the page table.

The other fields of the page table are currently not used, but are

reserved for possible future goodies. For instance, we might want to do

a virtual ~emory scheme someday. Then we would need a field to indicate

the presence or absence of the page in' core as well as well as a field

giving the actual address.

,
__ "V ,.". _ ._-,

','r
" .)

. "
.~;. "

,'.,

Notice that the available pages are all words from address 0

through 03777778 , In reality, many of these are not really available;

like only words 0100008 through maybe 0451778 might really be available

,/"""\

/) 1 : .~/
, -'

for holding information. These are the only pages linked togethe= in an

available page list. Furthermore, notice that the largest possi~:e address

~s 03717718 instead of 07777778 , This is because a pointer in lD8 LISP

can be either positive or negative. At one time, the big plan was to

run this r.arbage collector in parallel with everything else. If this

were done, the garbage collector could mark activity by co~plemen:ing

pointers and not hurt anybody because pointers are grabbed with a load

magnitude. Tricky, huh? too bad I never did it.

There are eight types of information in 1108 LISP and they a=e

indicated by the following codes:

o c list structure, i.e. consed nodes;

1 c: integers;

2 = octals or print-name characters;

3 0 floating point numb~rs;

4 c addresses out of bounds, i.e. address within system coding,

pages not yet allocated, or pages not even part of the system;

5 a compiled code;

6, c linkage nodes (see below):

7 c: atomic symbols.

CONSED, type 0

1 word each, 128 per page.

/
,f

CAR POINTER

l :s;
C~R POIlTTER

, '"

...

Numbers 7 types 1, 2, 3

1 word each, 122 per page.

BInARY ~TUHBER

-~
The reason that there are only 122 per page is that every 32"- word is

set aside as a bit table to that the garbage collecto-r can nark the

31 words following it,

COMPILED CODE, type 5

1 word, 128 per page,

F J A I X H U I
I --..

-,

NEXT INSTRUCTlmI

.
ETC.

" ,- - LINKAGE, type 6
.

2 words each, 64 ver page.

LMJ XL, JUMP TO

INFO

'---------------_.:.-_-------------.-

" - The general reason for linkage nodes is that we need to al1occ~elittle

tiny pieces of executable code. I will go into more detail lctcr.

.,."

(-

.,
'~?l ;'

"1' '

"

' ..

"

ATOMIC sY}mOLS, type 7

2 words each, 64 per page.

where:

VALUE

PROPERTY LIST

HASH LINK

PRINT NAl'IE

VALUE PRO?ERTY LIST

HASH LHi'K PRINT NA~'fE

~ pointer to value of this ato~~c s~bol if it has e

constant binding, 0 if it, does not;

a pointer to property list;

= pointer to next atomic symbol that has the same

hash total (see chapter on input);

• 1

This means

L 7f

that

a pointer to print name (a list of octals, each one

containing six characters of the print-name in fieldata).

the picture of an atomic ~ymbol (lik~ DIFFERENCE) might look like: '

TYPE
1 r T

) to system subtraction routine
TYPE 0 TYPE 0 'L: :-~H-l--
..t 1/ 1

TYPE ,.
-,

VALUE TO ATOM ATTRIBUTE

I,
, "

If we consider a given point in time, the 1108 LISP system actually

contains Inany nvni.lnble spnce li!lts. There is .::m avnilaulc spncc list for

each type of information along with ~l:l avail:?u1e p2ze lis t. Nm.r really,

thert~ are two l!.val1ab1e pnr,e listn. on':! for th(~ J -hank <lod onr: for the

D-bank, but thin is due to the 1108 h .. rdt-rarc; let ts prct(!l~d that tile;:e is

only onc.
. , '
. ~ :

, I

I
I

I

- ", .

The idea for allocating storage is that ~hcn we need a certain type

of node, we extract one from the available space list for that type, or

if the available space list for that tYTle is cr::pty, then we take an

available page and build an appropriate avail~ble space list on it.

All this magic is effected like so: there is a table of 3 word items.

one item for each of the 8 types. Each iten looks like:

uu XR, GETPAGE 0

GP(X)
I

PUT (X)

BANK SIZE TYPE AVAIL

tmere:

GETPAGE &:: the page extraction routine (see below)

GP(x)

PUT(=<)

AVAIL

BANK

SIZE

TYPE

= prlgc initialization routine for this type.

c:: node storage routine for this type.

:=: available space list for this type.

lO: pJ;"eferred bank, 1 for conpiled eoce.

= size of node of this type.

= type, what did you expect?

Note to non-1108 folk. LHJ is the subroutine 1 tllka~~e instruction,

i.e. put program counter into indp.x register el\1.1 JI1I1'1;'

In a virgin system, there is only an available p,lge 11:; t; the avail

able space list for each type is empty. mOlCn ·,.,re Hant to create a node of

a given type we load up appropriate registers with what is Boing to be

put into the node and then do an VOU XL, TY?TAB+3'~type. This gets us to

the first word of the iteo for this type which im~ediately links off to

the page getting rectine (GETP GE above). This j s <: ccnnnon routi::1c that

each type entry pdints to whenever th9re is no available sp~cc list for

this type. TIlis routine wIll: ~xtract a pase fcom the ~vailable page

.J '!::~~:.I:/~:'~ '," .'
iv.\'l,", "
, t.::

"

, ,
. ':, ",,'

'.

, .

-
, "

, "

list (a garbage 'collection happens if none are available), builds an

available space list for this type on it using code pointed to by GP(x) ,

points to it with AVAIL, puts the type in the page table, and finally

changes the first word of the ite~ so that it points to the norea1

storage routine. (i,e. it now says utJ XR-~PUT(x». NoW' we can start over.

Instead of linking to GETPAGE we enter the normal storage routine which

will extract a node from the available space list, fill it in, and set a

new available space list. But just before leaving it checks to see if

the available space list for this type is now empty, and if it is, the

first word is-reset to point to GETPAG so that if we need another node

of this type, another page is allocated.

One might ask if it is possible for'an a~ailable sp~ce list for a

type to reside on more than one page.

one garbage collection has happened.

Of course, but only after at least

The garbage collector will create a
,

new available space list for each type and these lists will be exhausted

before any neH pages are allocated for that type.

Garbage collection is a two phase process and is started whenever we

need another page and none is available. First, all active structure is

marked by a recursive subroutine. The base cells from which marking

starts are: all cells on the value stack (see chapter on stacks); th~

hash table; and whaFcver pointers were to be stored in the node being

created. After all active structure is marked, memory is swept and

available space lists are built for each type of information.

Numbers (types 1, 2,' and 3) are marked by setting a bit in a bit

table which can be found by dividing the address 'of tho lIulllbcr by 32.

The quotient ti.mes 32 addresses tile bit 'Word and tim lH"'-IIt1I~r tells us

'Which bit.

• Nodes 'With pointers (types C, 6. and 7) arc marked by cOinple:nentinB

an address contained therein, i.e. car pointer for caused nodes, jump-to

address for linkage nodes, and hash li~k for atomic symbols. Then each

pointer in such a node is marked recursively.

Cornpfl{'!d corle (,type 5) 1£; marked by ~;ct t f nv, till! lO~/(!r h~\l f of tho

associated pnge table entry non-zero and then m3.rking frofTt th2 address

'F","

, ;.

," "

,," ,

a valid pointer will appear to point out of bounds so that we do not get

hurt by assuming they arc all addresses. Obviously, ~dd=esscs out of

bounds (type 4) are not marked.

Sweeping is accomplished by scanning through the page table. For

each entry therein, a sweeplng routine is entered for the typ~ of

informa.tion contained on that page. Each such routine will unwark all

ma.rked nodes and tie all unmarked nodes together in an av~ilable space

list. lVhen done, we check to see if there was anything active on the

page, If there was, then the available space list for th~s page is added

to the available space list for this type of infor~ation. But if tha

entire page is garbage, then we reset it to type 4 and add it to the
I

available page list.

When done sweeping, we fix up the noce storage table by plugging in
'. ~

the available space lists for each type and setti.ng the ju~p addresses

in the fir~t wordi to the right thing. Finally, we check to spe if the

node being created can now be stored; i.e: it can if its type has a non

empty available space list or if a page is available. Obviously, if there

is no room for the node, then tole bring the ",rorld to an cnd.

A few general remarks are worth mentioning. First, notice that

compiled code does .get collected soocwhat. That is, if enough compiled

code becomes inaccessable that spans a page then the page is released and

the code disappears.

Second, we notice that this method has a small tendency to peck

memory without having to change pointer!'!. nHlt f.4 • ;1 r t I'" "'f' e1l1] pet

garbage, we arc going to cnd up with an <lv!l11nhl,' "I"lrp l!o;r lllr Pilch

type of info!'nwtion: that it: scattered across all pa~ .. es cont:dlling this

type, this available sI9ace list will be completely exhaused before a new

page has to be obtained. This method is not fool proof though. For

example, we could run a job that begins by allocating 200 n~des for .
integers but only 2 of them remain sctive, one in each p2ge of integers

created. If the run never needs to create anoth~r in!:egcr r:Cldc, tlten 101£:

are wasting 128 word~ i.c. the page that. would be rc:eascri f~ one of the

j.ntegers 'l-7ere moved to the other pai?C.

--,~ It .. , •
' .. ,",

. '
~i;5'i;J'

','

, ,

Due to the way LISP operates, garbage tends to be released in large blocks

and will therefore tend to span pages so that quite a few pages are

usually released during a garbage collection.

So maybe you ask, fIlmy don t t you compact memory so that everything

is nice and tidy?" This seems like an unnecessary waste of time here.

TIle normal reason for compacting memory during a garbage collection is

that two things, like free storage and compiled code space, are growing
-

tm'lard each other. In 1108 LISP, I do not have this problem due to my

sup~rduper dytlamic allocation scheme. It might be wise if I co~pacted

memory as a last resort, but I just have not done it yet (there are minor

problems about making sure vlhat is and what {sn' t a poin tcr in compiled

code),

N~w to move on to bigger and better things, we still have ~ne problem

\ of evaluating LISP expressions. This means that w~ holVC to iopler.lent ~ho

lambda-caleu] us, '1(.'11, \ole all 1.:.no'"" that LISP does not usC! the real lambda

calculus, but it comes reasonably close. Anyway. in essence the problem

is binding arguments to vlhich a function is being applied to the variables

used in the definition of the function, correspondence of actual and

formal parameters, if you wish.

Suppose we have a function defined by a lambda-expression say

(LAMBDA(X Y) EXPR)', and we apply it to some arguments, maybe by «LAl1BDA

(X Y) EXPR)ARGI ARG2). What this means is that we have to evaluate

EXPR and during this evaluation something has to tell us that X is bound

to (Ilmeans") ARGI and Y is bound to ARG2. The tcclm! 'lUI> I chose is the

famous old associntion list. An nnr;ocintioll]J(l't J~l il Ilnl of consed

pairs (VloAl)(V2·AZ)"') where thl' V'ti {\n~ v~rbbh'!, anel tlte A's are

arguments. The current association list is always pointed to be a fixed

register. In the nbo~e cxmnplc during the evaluation of EXPR. the current

association list starts out like «Y.AEG2)(X.ARGl) •••). Any time that

we encounter X during the evaluation of EXPR, He will go peek into the

current association list and discover that its value is AP,Gl.

'rhe only trouble wIth the association list 1.5 that it i~; not too

efficic~t; c~c c~~ spend 1~ite ~ bit of ti~e l00~in~ thinGS up on it.

• j

."

-.. '

"t

.~

In some other implementations of LISP, the "special cell" trick is used.

" It is usually more efficient; but has another drawback~ it just doesn't

work! For instance, using special cells, it is just impossible to define ".

a function that composes two other functions, i.e. CO~~OSE=(L~'~DA (Fl F2)

(FUNCTION(LAlffiDA(X)(Fl(F2 X»»), By using the association list, along

with some other trickery, the above function can indeed be defined.

Furthermore, the inefficiency doesn't bother me at all. One of the

design goals of 1108 LISP was to provide a coopiler that could be used to

"augment the interpreter by translating interpreted code into machine code.

One of the compiler's main job is to notice ~lIli.ch variables do not have

to be looked up on the association list and generate code to load their

values directly.

Tne only other thing that is needed to realize a~ evaluation scheoe

for LISP is some sort of stacking mechanism to keep everything under

control. In 1108. LISP there are two stacks. The pri~~ry one I call the

value stack and ab,aYD contaIns pointers, na~ely. arzuncnts for functions,

local variables, return addresses, and the like. The other stack is the

control stack and contains non-pointers, usually inde:-:es into the value

stack.

In 1108 LISP, a function is represented by a pointer to the code to

execute in order to compute ~hatever result is to be computed. That is,

the code for a function diddles the stack so that the result of the

function is sitting on top of it. During execution of the code for a

function, the value stack looks like this:

• 1.:rD-!l~~ __ _
,, _____ 'J.....TEfP 1 __ -1

r-______ ~I_N_R_G_~ __ _

I ~~--_I
. AR.G 2

{---- Yo'!'

,1
, !

, -

XT are the index registers controlling the value stack; XT always

points to the next available word and XF points to the current function

base, i.e. the word "here the result of the function \'1i11 eventually be

stored. During execution of the function, thir. word holds the return

address and the old association list (the current one is pointed to by

another register, XL).

The other \.;'Ords are the arguments of the function and any local

variables that it might require. For instance, the code compile.d for a

function that was defined by (I~~1BDA(ARGl ARG2 •.• ARGN) (PROG (Te~?l TC-P2 •••

TEHPM) ••• » w~uld assume that the stack looked as above.

No~., what we need to do is to be able to apply another function.

The general rule in 1108 LISP for evaluating I an expression like (FN Al A2 ••• A.'-:::)

is to stack the value of everythi.ng, includin~ the function. T~is means

that when we finish stacking everything and Hant to apply the f'.!:1ction,

we have to knott where it is in the stack. So the very first thing that

we do before starting the evaluation is to mark the stack. This is done

by putting a pointer to the top of the vafue stack (current value of XT)

into the top of the control stack. Lets draw some pictures; lets suppose

that the value stack looks like:

~XT

WI I
A2 I
Al I

SAVED A-LISTI RET ~XF

and we want to evaluate (fN A B) nnd le;\Vc Jtr: v,llllP on top IIr tll/~ value

stack. We mark the stack nnd move the vnlucn nf n i , A, ~:lId II onto it.

Now it 1001~s like:"

•
--. -- '-~-""------ --, _. - --- .. -_.-..
~~lue ~f.!~ __ .J __

value of A
value of F:~

I------Hl ,".
~------.!.~~--".L"-"-

~---XT

, q 1
.~--.--------.. :.---~ --- ,

Si\YED A-~_~~JlJ.'.!::TL!'.l; L-XF

'! .. ,\L!!E

.'

."

. (

'-,' '

Now, \ole link to the function application routine. This routine moves

up the stack pointers. That is, XF is saved in the control stack. the

address of the code representing the function is picken up (top of

control stack points to lJOrd containing it), the return address and

association list are saved in this word, X7 is changed to the new base,

and the function is jumped to. Now the stacks look like:

~XT

B --
A

.
SAVED A-LIST

I
RETUP~l

WI

A2

Al

SAVED A-LIST I RETUm1 (Old XF)
~ ----1 CmlTROL

VALUE

Now the stacks have been pushed up and we can execute the code for

the function that was just entered. ~fuen we have the result cooputed,

we leave :f,t in a specified register and lear to the exit routine. The

exit ~outine simply undoes everything and leaves the stacks just like

they were before with the result pushed into the top of the value stack

(it is also possible to simply leave it in its register without pushing

it into the value stack).

The !nost important thing to 11;1 i"I~ t.pri~ l~ t.\,iil tllJ" tnot'I.lolI t.o b~

applied was moved onto the 5t.Hd-. 1,1 t~,v;actly til!' Ht1lnl' !1lfll\nt~r cI~1 i. ts

arguments. Thnt is, the function Ciln be lo'nkrd lip on tile n:;~~ocintton

l:1,tlt, Ctlll1p!ll:('d I.ly :lml'll'l uther cxpn!!;~.ion) or ret.r!.eved as the con~;tant

value of an atomic symbol (the usual case), This gives an elegance to

1108 LISP that is missing in other systems. In other 6yste~s) one looks

up the indicator EXPR for functions alld A?VAL for argur:!cnts. A symbol

can mean ttvo different thinr,s depending Oil T,;!:L,re it is llD020 -- ~or Di"t;:!J,.C!

r'

\ ..

'1:

".

Then to make things worse sometimes the function is desired as ar~ument

and we have to fake the system out by saying (FUXCTIO~, PLUS) or worse

yet, (QUOTE PLUS), yechhh! In 1108 LISP, lolhcncver you Hrite PLUS p you

mean that function that computes the sum of its arguments, that's all

there is to it.

As a sidelight, , ... e can say (FUNCTION FN) in 1108 LISP. but the

purpo~e is simply to solve the free variable problem; it in no way acts

as a 'quoting'.' mechanism. As a matter of fact, as long as I ~ editor

ializing, this shouldn't even be necessary; the purpose served by

FUNCTION should be done automatically when \,e handle LAHZDA.

In 1108 LISP, I could have done this very easily. I dlcn't because

I wanted to maintain some compatability with other syste::ns. Now! wish

that I had; I also wish I had changed CAR and CDR to sonething reasonable

like FIRST and REST, 0 well, the world probably isn't ready for so~cthing

. quite so radical..

Lets proceed. The evaluation algorithm in 1108 LISP essentially

looks at an e~~ression and manipulates the stack in the indicated manner.

We can describe this process very easily with a simple flow chart. Let

E represent the expression to be evaluated. This means that we enter the

evaluator with the stack looking like:

II

{
>.1,

(9
,"

, '.

EVAL

A t D

IS E AN NO IS (CAR E) A
SPEC 1AL-I'O P2'!?

t-ATOHIC? r

n 1 YES J
IS E AN NO EXIT, E

~L!Y .. !~
ATmnC SYHBOL r-----T' IS RESULT THI: SL\C::

C
-J Y~S

E L
IS E A NO

I i(CONSTANT? (rV,\L (CJ...? E)

t YES , .!,
, .'

~ <CD"· Ell I

LOAD CONSTANl1 LOOKUP ON +
VALUE I A-LIST

1 L ---
-0 ,.

r:' ,.~ ?
EXIT F.xIT

CALL
THE FUl~CTIO~r

L->ENTRY

(+ EXIT

NOTES:

A - E is nn atom if its type f O.

n -. E :[~l nn n!.ol:tI c nymbol If type 7.
II

C - E is a constant if (CAR 1':) :i 0;

(CAR E) is the value, sec description of atonic s)~bols.

D - I.e. is an expression like (QUOT~ x) or (CO:ill (P E) •..), or

(LAmmA (V) E), etc. '::lis is sir:n::lec! Ly ;: :If'i:;ll In' pO!:lt.\.;-

in t!lr! v.11;\c port of the ato:dc [;yrnDol. rC;Jrc,;:"nting the ~;pecial

For insr.ance, tflC .:.comic 5Y;:ID01
............. -..., ..
L:\...·.I.':.Jl\ ..lV01':t..

. ,-"'-

\
- ';,

, t

)-/'-

7

I -EVU\H NIL L
:=============:=============:. '7 PRI ~;T - ~;.~·lE

where EVLAH is the routine to do ",hatever we do for L~mDA.

E - (EVAL (CAR E» stacks the value of (CAR E). i.e. calls EVAL

r.ccurs1.vely.

F - wIlen ali done evaluating the stacks look like:

~ ______________ ~~XT
/

\
\

~-------------iH etc.
~}Value

11V:'f--. ___ . -.,..-_-~ Value

of (CADR

of (CAR 1

- NIL!
----- // 9LD ALIST FETU~i k-- XF

I' VALUE ---' CONTROL
c/)\!:~ (. .

Lets look at an example. suppose our expression to evalu2te is

(PLUS X 3). This expression is not atomic and PLUS does not say special

form, so we are goi~g to apply a function to argun:ents. We mark the

stack and then evaluate each elenent of the list. So we come back in to

evaluate PLUS; it is a constant and its value is the address of the

nccition function in the systel'1. Nm. we have to evaltl;~t'1' X; we can assu;:te

that we find its value on the nssociaLlon 1.1:1t. Fill, i I y \.'.~ t.~· ... alliatc 3,

which evaluates to it~>elf. Now that the fUllction alld [Ill IlH C1rguments

are evaluated, He leap into the function entry yout1.ne ~,hic;h rushes up

the stack as mentioned above and jumps to thc addition routine. The
" addition routine p;rabs its arr-umentn from the stack, pcrfon:1s any nccess3ry

type conversions. adds them, stores the resul t in a nc\-,' node in mCrJory,

exits, and we cot:le back into EVAL and we are done.

, ': ..

"~@:1G~
, /

~'

,'. ,

'j'

i:
'i,

If I for e.xample.,. our expression \OTere (Cm;D (P 1 EI) ... (P E», we
n n

would notice the negative pointer in the ato~lc ~ymbol COND and scurry

off to the routine to handle conditionals. This routine evaluates each

predicate in turn until a true one is found 1 evaluates the associated

expression, and exits.

~

Now, the only exciting thing that renains is to see hm.,., a user

defined function gets interpreted. Suppose \.:e define a function like so:

(CSET 'ADD3 (LM1BDA eX) (PLUS x 3»).

To evaluate this we evaluate CStT (systen constant), evalute
t

(QUOTE ADD3) (special-form), and finally ,.,e have to evaluate (LA!-~DA(X)

, " ":, ~.

..,.- --

(PLUS X 3». The value of this must be a function that adds three to its

argument. In 1108 LISP, a function is represented by a pointer to

executa.ble code. Th,;ts, is the raison d'etrc of the l:inkage node - type

6 above. . --

What we need here is a little piece of executable code that will get

us back into the interpreter whenever the function being defined is applied.

Ergo, evaluation of (LN1BDA(X) (PLUS X3» creates a linkage node that looks

like:

.'
6

\j)'~V·"'_. __ .. _Lt--~-__ -;-'--·+--_AP_P_LY_~---I «X) (PLUS X 3»

When we apply the pscUilo-funct1.nn CSI:T, tit 1:1 1\111 _If\~ 111l.1t! get:;. Get

hI' as t1le COllst:ltlt vnluc of,AI)DJ. 50 th"t the [lto:,)tlc: !.ymhol AUP) now look.!;

like: "
7 r

I
0 ~

H I taL I
, 2 _t __ , ___ ~ .

[
.1

. . __ .. _____ .. __ ... __ "_,, I

6 ~ __

~uu XL,

l

APP:=]
~

v " . « ..)(PU,.) X 3)}

/

/
/

-j

, I

; \
I

1
I

, "J f

'-,)

"

;_ .. '

';j

,~ -:

" i\,
\. ~

::coo

(1;)

the function in the linkage node and the argu::lcnts in the stack. It

extracts the variable list fran the.definition list and toes tllru a

little loop c~nsing each vari~blc to its corresponding argument and

adding this pair to the currcnt association list, when done it returns

to EVJ\L. giving" it the body of the function, (PLUS X 3), and evaluates

this in an environaent where X neans 6, i.e. association list starts with

(Xo6) ••). This evaluation computes the result of applying AD~3 as was

.' required.

,The advantages of using the li~kage node are ttlofold. First, it

makes the interpreter lightning fast. That is whe:never we apply a func:ion,

ue do not have to go looking do~~ the property list for some indicator

like EXPR or SUBR. In 1108 LISP we just go me~rily leaping into the code

for the function. If the function is one supplied by the systcm, then we

jump into the system. On the other hand, if it is a user function that

needs to be interpreted, then there is a linkage node sitti~g there to

route us back into APPLY to do the right thing.

The second beauty of the linkage node is that it solves the problem

'of linkage between compiled and interpreted code. Namely, the 1108 LISP

compiler generates machine code directly into memory and puts the address

of this code into the value part of the atomic sYClbol nillning the function.

There'after, application of the function ",111 Jump 1.0 C(lI.;\" I !'II cd.I.! (Just

like n system function) instead of a 1 illka~:c node.

:. '

}~;,.:\.
-"\;~"'::"':; ;~"""":"::'~"'~' -- -'-- -

, . ~ ,

. , ' ,

- i

.I

·1
:1

I
I
:1'
1.

1
j

!
i

	Norman_Lisp_1108_Impl-19690001_a
	Norman_Lisp_1108_Impl-19690002_a
	Norman_Lisp_1108_Impl-19690003_a
	Norman_Lisp_1108_Impl-19690004_a
	Norman_Lisp_1108_Impl-19690005_a
	Norman_Lisp_1108_Impl-19690006_a
	Norman_Lisp_1108_Impl-19690007_a
	Norman_Lisp_1108_Impl-19690008_a
	Norman_Lisp_1108_Impl-19690009_a
	Norman_Lisp_1108_Impl-19690010_a
	Norman_Lisp_1108_Impl-19690011_a
	Norman_Lisp_1108_Impl-19690012_a
	Norman_Lisp_1108_Impl-19690013_a
	Norman_Lisp_1108_Impl-19690014_a
	Norman_Lisp_1108_Impl-19690015_a
	Norman_Lisp_1108_Impl-19690016_a
	Norman_Lisp_1108_Impl-19690017_a

