
".

LIS P
by Eric Norman

This document describes LISP) a hi~h-level lan­
gua9,e for symbolic comnutations. The intent is
to describe LISP in ~enera1. However, specifics
are given concernin~ a particular version, name­
iy the T.ISP system for the UNIVAC 1108 as imple­
mented at the University of Hisconsin r.oTl1nutin~

Center.

t,
,1

• I
I

Contents

1108 LISP

1. INTRODUCTION TO LISP ••

2. The UNIVERSE OF DISCOURSE •

2.1 Atomic Objects •

2.1.1 Numbers.

2.2

Integers

Octals

Rea1s

2.1.2 Atomic Symbo1s~ •

2.1. 3 Unprintable Objects •

Composite Objects

2.2.1 Lists.

2.3 Additional Syntatic Rules.

.

.

Page

1-1-

• 2-1

• 2-1

• • 2-2

2-2

2-3

• 2-4

2-4

2-5

3. THE LANGUAGE 13-1

4.

3.1 Evaluation · . . .
3.2 Functional Application

3.3 Evaluation of Atoms.

3.3.1 Variables ·
3.3.2 Constants ·

3.4 Summary.

THE OPERATIONS

4.1.· Some Primitive Functions

4.1.1 Construction.

4.1.2 Selection.

4.1.3 Predication.

Truth-Values

4.2 Special-Forms

4.2.1 QUOTE.

4.2.2 COND

4.2.3 AND,OR,NOT.

.. . . .- 3-1

3-2

3-3

• • 3-3

• • • • 3-4

. • 3-4

4-1

4-1

.4-1

• 4-2

· 4-3

• • (.-3

· (.-4

; .4-1.

p-- -

11) Page 2
<'

Contents

110S'LISP f; .,t'-

Page

4.2.4 LAHBDA 4-5
4.3 Functional Definition. · 4-6 ::
4.4 LAHBDA Revisited . · 4-7

Free Variables

4.4.1 The FUNCTION Function . · 4-8

5. THE LISP SYSTEN . · 5-1

5.1 The Evaluator. · 5-1
5.2 The Standard. Supervisor. · 5-1
5.3 An Example · 5-2

6. EHBELLISHMENTS ',- · 6-1

6.1 Pseudo-Functions . .- .- 6-1-

6.1.1 READ. • 6-1
6.1.2 PRINT . • 6-1
6.1.3 RPLACA t RPLACD 6-1 .. }

6.2 DO . . • 6-2

6.3 PROG . • 6-2

6.3.1 SET,SETQ. • • 6-3
6.3.2 GO. • 6-4
6.3.3 RETURN. • 6-4

6.4 Property Lists • 6.;..5'

6.4.1 PUT . • 6-5
~:J~,';. 6.4.2 GET • 6-5 ,

-, 6.4.3 Flags . • 6-5

6.5 Arithmetic . .. • 6-6

Mixing Types

Real Comparisons
.J

7. THE COHPLETE LISP SYSTEH. 7-1

7.1 The Expanded Supervisor. • 7-1 'V \. ,'J
7.2 The Conversational Hode. 7-3

"

~ ..
• f

.......

Page 3

. Contents

1108 LISP

7.2.1 Another Example . •

7.3 Debugging Aids .
7.3.1 TRACE,UNTRACE •

7.3.2 The Back-Trace. ...
7.4 LISP Control Cards .
7.5 Alarms . ..

8. EXTENSIONS OF LISP 1.5.

8.1 Implicit DO.

8.2 Implicit AND,

8.3 Indefinite Arguments • •
8.4 Initializing PROG Variables.

8.5 Macros .
Appendix A FACILITIES INDEX

Append~x B RUNNING UNnER EXEC-VIII .

. .

-.

• •

• 7-5

• 7-5

• 7-5

• 7-6

• 7-8

• 8-1

.8-1

.8-1

.8-2

.8-2

• B-1

Chapter 1

INTRODUCTION TO LISP

LISP is yet another programming language that belongs in the

category of list-processing languages; that is~ it deals with

(manipulates, performs computations on) objects that have a

certain amount of structure. Although there is- essentially

only one type of structured object available in LISP, it is a

very general one and can serve to represent any type of struc­

tured object desired, (although sometimes not efficiently).

LISP is at its best when dealing with objects that have unpre­

dictable sizes, like representations of t~eorems in proposi~

tional calculus, ppssible moves to be made in a game such as

chess, complex molecules in organic chemistry, or electrical

circuits; LISP has been used to solve pr~blems in all these

areas.

It has been found that once people get used to LISP~"~t becomes

an extremely useful and powerful tool. This is because LISP

assumes most of the "dirty-workU of progra~ing; namely, allo­

catiori of memory, saving temporary results and the like. How­

ever, it does take a while before one can feel at ease with

LISP. This is caused mostlyby the syntax which, although very

simple and consistent, is somewhat difficult to read (the claim

is that LISP is really an acronym ~or Lots oflnsipid ~tupid

Pa1:'entheses).

Furthermore, LISP requires that one think in a manner different

fr~m other programming languages; specifically, LISP emphasizes

the expression 'instead of the statement. By -an expression we

mean something that specifies a valtle' to becomputed;.a state­

ment indicates something to be done with such a value. The

justification for this approach is that the value computed by

an expression is that in which we are really interested. For

example, when we ~~ite an ALGOL assignment statement such as

V ;= A + B, the important thing is the sum of A and B;

LISP 1:-1
-'

------- -~~ ----- - ~~

.172 ,1.UP

'~.'.

.. ::"

the fact that we assign their sum to V is only a means to an end;

i.e., we do the assignment because we are going to need the sum

of A and B later, either because it is the answer we want or be­

cause it is going to be used in another expression. In LISP such

behavior is discouraged. Instead of computing the sum of A and

B beforehand, we compute it when we want it; that is, we write an

expression that comput~s A + B as a subexpression of some other

expression that needs this sum. Or if A + B is the answer that

we desire, then we need do nothing more than write it; the LISP

system assumes that we are interested in knowing what the sum is

and ther'efore prints it.

The impact of the LISP approach is that in order to understand
,

LISP, we have to forget that we ever.knew about such things as

assignment statements or sequences of instructions and begin think­

~ng of ways to build up expressions that describe the result we

want. Another way of saying all this is that in LISP' we describe

the answer that we want and not the steps that the machine is to

perform in order to co~pute it.

This programming approach makes LISP a very high-level language

and this paper describes it as such. We are going to talk about

LISP in more or less abstract concepts and not concern ourselves

w~th the details of what is actually happening inside some com­

puter. Readers who are interested in such details are encouraged

to consult other references such as the LISP 1.5 PRDIER (by

Weismann; Dickenson Publishing Company, Inc., Belmont, California,

1967) or the LISP 1.5 PROGRAMHER'S MANUAL (by HcCarthy, et.al;

TheN.LT. Press; Cambridge, Hassachusetts, 1962).

Although the primary purpose of this paper is to describe LISP,

we are also going to describe a particular LISP system; n~~ely,

The,University of Wisconsin Imp1ementatiofr for the UNIVAC 1108

computer. It will not always be indicated when LISP in general

or 1108 LISP in" particular is being described. The assumption

being that this will usually be obvious. In those cases where

the distinction is not obvious, it is so intentionally. The

.. ~ , .,'

\, LISP 1-3

reason is that 1108 LISP has fundamental differences in design from

other LISP systems. For those familiar with other systems. the two

most important differences are the manner in which functions are

treated and the manner of communicating with the LISP supervisor. It
c

is ,hoped that the treatment of LISP provided herein is much "cleaner"

and less confusing than that of other LISP systems.

We shall be more interested in developing the principl~s ~hat un­

derlie LISP than we are in describing what LISP actually is. That

is, the following chapters are intended to convey only enough in­

formation so that we can get a feeling . .for LISP and how '-it.'illigQI; _be

used. Appendix A is included to give all the specifics really avail- -

able in 1108 LISP.

~. \ ..
LISP 2-1

Chapter 2
-

THE UNIVERSE OF DISCOURSE

In order to gain an understanding of any programming language, we
~

~ust eventually b~ abLe to answer three questions. First,what

objects are available to manipulate; that is, ,,,hat types of data

areQ allowed? SecondJ .. ~hat are the manipulations or computations
• ·'4

that we may perform Ot; these objects? And finally. how do we in-

dicate tte computations that we desire; i.e., how do we write a

prqgram? ··.Although these questions are logically asked in this

oider, .. wE? shall answer them in a different order; namely, we are

g41ng to answer the first, then the third, and finally the sec-
~. ..

one ... The reason is mostly'~p'at in the case of LISP it seems eas-

l~r~·to· answer them· this wax, but we shall also find that it is
. . 0

~~p6ssible to answer any ~ne of them.without gi~ing at. l~a~t some
I:;;t. -' . '" ~ ~,,> "" -' .. "

.. hint as to the answers of the others.
I .6' ."

qu this.c?~tert we shall describe the objects that LISP is ca­

~able of';ani~ulating and also give the rules for writing them.

Thet ~sJ we shal~ indicate which character sequences that we
~ave to submit as input (e.g., via a punched card or· teletype)

!p aider to specify a certain LISP object to the system. When

the'LISP input-routine detects a character sequence in its in­

put,.th~t·represents a LISP object, it creates the appropriate

r~presentatibn in the memory of the computer. The LISP system

w1:1i deal exclusively with this internal representation as it

goes about its business and will only reconvert it to external

f()t-m when it is necessary,to.pri.nt. a LISP object.

2.l· ATOMIC OBJECTS

Our· first concern shall be those .objectsthat are atomic. We

say that an object is atomic because He do not co'nsider it to

be built out of other obj ects. The general rule for ,,,riting

atomic objects is that they must be delimited on both sides by

a punctuation mark. The punctuation marks of LISP are space,

comma, period, a~d left- and right-parentheses. In 1108 LISP addI­

tional vunctuation marks are included. namely: square brackets,

broken brackets (greater than and less than signs), the apostrophe,

and the question mark punch. .

2,; 1.1 Numbers

As with most other languages, ~ISP includes numoers in its universe

of discourse and,' as uswi!~·"'t1{ere are two kinds:' integers ang reals.

l.te&ers are written as any sequence of" decimal alklts optionally

preceded by a sign and' optionally followed by t·he letter "E" and a

·decimal scale factor. Exampl;as of integers are: 0, +3, 10, -256,

1£6 (same as 1000000), and -0. Examples of non-integers are: +,
A-i lAB, -IDEE.

Iu·tegers may also be written in octal. This is indIcated" 'by a seq­

uence of octal digits with optional sig~ and followed by the letter

tlQ" ~nd an octal scale factor. Legal octal numbers are oq, 77Q3

(same as 77000Q), and -77Q2. A minus sign indicates that the one's

complement is desired and sc~ling is performed by dOing a circular

left shift of the signed result; hence, -77Q2 is the same as

777777770077Q.

Real" numbers must contai~ a decimal point, which may not be the

first character, and may optionally be followed by the letter "Ett '

and' a decimal- expone.nt. Examples of real numbe.rs are 0.0, 3.14159,

4.3EIO, and -2.061E-22.

2.1.2 Atomic Symbols

O~e of the features of LISP that allows symbolic computations is

the admission of atomic symbols into the universe of discourse.

For the time being, we can think of an atomic symbol as a "char-
'3 f

acter string" although ,,:e shall discover later that it is really

a little more. We usually write an atomic symbol as any sequence

r-lOf characters that begins with a letter of the alphabet; howeveJ, Lhe 1108 vers~on of LISP will treat any character sequence that

'cannot be ~nterpreted as a number as an atomic symbol.

· .

LISP 2-3

Sometimes the need arises to ~ite atomic symbols that contain punc­

tuation marks. This is done by preceding the offending character

with an "!". The "I" means that the object being written is an

atomic symbol and that the next character is to be included in t~is

atomic symbol no matter what it is.
\,.

Examples of atomic symbols are:

ABC, NIL, +lOEl:;, A! (B (prints as "A(B"), A-VERY-LONG-ATOHIC-SYNBOL,

213 (note, this is an atomic symbol, not a number; furthermore, it

is the same atomic symbol as 123), and II (prints as "1").

We must notice that "atomic symbol" and "atomic object" do not mean

the same thing. The set of atomic objects so far includes as (dis­

joint) subsets the sets of atomic symbols, integers, octals, and

reals. In order to discourage confusion, we shall henceforth use

"atom" to refer to atomic objects in general and use "atomic symbol"

when we mean exactly that.

2.1.3 Unprintable Objects

There is a class of objects in LISP that cannot be introduced as

input; that is, there is no way that an internal representation

can be generated for them by the input routine. The only way such

objects can be created is by internal computations. The most im­

portant member of this class is the function. The impact of al­

lowing a function to be a LISP object is that it may be manipulated

as freely as any other object. LISP is somewhat unique in this

respect.

Because such objects exist, the system needs a convention to in­

dicate when an attempt is made to print one. Since an unprintable

object is almost always a named function, the system will print

such a function as (FN], where FN is an atomic symbol that names

the function (we shall discover shortly what we mean when we say

that a function is "named" by an atomic symbol). In the rare

case when an unprintable obje~t is not a named function, the 1108

LISP system will produce a character sequence something like

[4:44006Q]. If one of these fu~ny things appears in our output» it

probably indicates that we have made an error; 80, for most purposes t

such a charact~r sequence should be interpreted as a diagnostic

meaning "attempt to print unprintable object".

2.2 COMPOSITE OBJECTS

So far, our universe of discourse is known to contain atoms. In

order to ~xpand it even further, we will allow objects to be put

together to form larger objects. The LISP operation that allows

us to do this is called construction and works as follows: Given

any two objects, say Al and A2, we can group them together to form

a new object, which we shall write (AI' A2).

Now given only one atom A and the construction operation, we have

an infinite class of objects, i.e., A, (A-A), (A.(A-A», «A.A)-A),

and so forth.

When writing these objects, we should include a space before and

after the period in order to avoid confusion with real numbers,

although the spaces are not required if no confusion is possible.

2.2.1 Lists

This set of composite objects is fine in theory, but nobody would

~ant to have to write or read a large one; therefore, we shall.

concentrate on a certain subset of these constructed objects that

i-s'·much more convenient. We shall call members of the subset

lists, i.e., we want the ability to speak of lists of atoms, or

lists of ~ists, etc.

First, we need a conventional representation for the empty list.

LISP uses the atomic symliol NIL fo~ .~his purpose. Now, a list

whose elements are the Objects XI ,_ X2 , X3, ••• Xn is represented

by the composite object

(X' - (X • (X • ••• (X • NIL»»
1 2 3 n

------------------------------------ -------------------------

LISP 2-5

We may write such an object as:

,(Xl X2 X3 ••• Xn)

with spaces or commas separating the elements if they are atomic._

Notice, a list is not a new' type of object, but only a certain

type of composite objece that is far more convenient to write.

Looking ahead a bit, we can consider that we will want to per­

form- operations ~"ith lists such as getting or removing the first

element. These operations are very easy since we have functions

that get the left and right parts of composite objects; i.e., the

left-hand part of a list is its first element and the right-hand

part is the list that remains after the first element is removed.

Furthermore, when we remove all the elements, i.e., when we take

the right-hand part of a list of one element like (X • NIL), we
n

get the empty list j~st as we would expect.

We can notice the rule that a composite object may be written

completely in list notation if and only if every atomic right-hand

part of a constructed object contained therein is the atomic symbol'

NIL.

A few examples of the list notation are:

(A • (B • NIL» may be \on'itten (A B);

«A· NIL) • «B. NIL) • NIL» is the same as «A) (B»;

NIL is the same as (');

«A· B) • «C. D) "NIL» may be written «A-B) (C'-D»;

while (A • (B • (C • D») cannot be written as a list be-

cause the-D is in the wrong place •

. , .. ', As' a sidelight, the last example above is so close to being a list that

it may be written as (A B C • D) and will in fact be 'printed that way.

2.3 ADDITIONAL SYNTATIC RULES

The following rules apply when punching objects:

(1) Atoms may not cross card boundaries.

(2) Spaces and commas are equivalent, i.e., (A,B,C) is the same

as (A B C).

(3) A punctuation mark preceded by or followed by any number of

sp?ces or commas is equivalent to that punctuation mark.

(4) A question mark punched anywhere on a card causes it and all char­

acters following it to be ignored until the end of the card.

(5) Square and crooked brackets ([,],<, and » may be,~seq in
v

place of parentheses.

The three types of parentheses also have another useful feature.

Wh 1 i b k t i t d i ")11. "]Il, or· enever a c os ng rae e s encoun ere, .e., ,

">", :it is forced to match the corresponding opening bracket,

i. e., "(", "[", or "<", by generating closing brackets that

match opening' brackets' until the correct match is obta.~ned. For

example, if we a.r~ going to punch a large cbmposite object we

may start it with a II [" 'and use parentheses within the objeet.

Now, when. we get t~ the end, we do not have to count the n~ber

~f unmatched le£t~parentheses that we have written so far; we

simply punch a If]" and the system will generate the correct hum­

ber of right-parentheses. That is [A' (B C] is equivalent to '
(A (B C» and (A{B eJ< (D E) F) is equivalent to (A(B C)«D E) ,F».

I , ,r

We should point out that the output routine only uses parentheses.
-

Square brackets are reserved for printing unprintable objects.

. - - .. - .' ".

. .

,;)

"

. -,,"

Chapter 3

THE LANGUAGE

Now that we have a class of objects at our disposal, we have an­

swered the first question presented at the beginning of 'chapter

2. In this chapter we ~hall answer the third question, namely,

how to write LISP programs.

3.1 EVALUATION

As indicated in the' 'introduction, the way that we do things in

LISP is by evaluat~ng expressions; that is, assuming that the

answer we seek is represented by some LISP object (as it usually

is), then all'we do is submit qn expression that will compute

this object. The LISP system will evaluate the expression and

print its value. " ,

Intuitively, ·ev~ry expression denotes some value by giving a

method of obtaining that value in terms of other known or comp­

utable values. For instance, we are familiar with (non-LISP)
10 .

expressions such as 5+1, SINen x N/4), or \ ()'
£, f x •

x=O

LISP 3-1

In the s~cond' example we have expressed a value in terms of the

three values N, 1f, and 4, right? Absolutely not! We have ex­

pressed the value~in terms of six values, namely, the values that

1Je indlcate by the symbols SIN, 1f, XJ N, I. and 4. The point

is that in order to evaluate an expression, we have to know the

values of all symbols appearing therein, and, furthermore, we

must know what we are supposed to do with these values. In the

example above, we suppose~ly know the va~ues of the symbols

n, x, and N and we (by convention) "agree that the expression

1f ~ N indicates that we are supposed to apply the value (function)

represented by x to the values (arguments) represented by nand

4.

The same principles apply in LISP, although there is no restric­

tion that the value of an expression must be a number; it may

;- •. :° 0 :

. ..., •.

be any LISP object. What we are going ,to describe in this chapter

are the conventions or rules that allow us to assign values to '

symb~is appearing in expressions and that indicate to us what we

are supposed to do with these values. '

Application of the rules '<Q.ll henceforth be called tlevaluation";

Le., wh.~mever we say something like "evaluate" from now on, we . , ,

are referring specifically to the rules about to be described.

We shall also reser"'·e the word "value" to use only when we are

referring to the object that arises by ~val~av~ng a LISP expr~ssion.

Traditionally we tend t~ vse the word "value" in another context~

namely, when we say .some~hing like "the value of SIN for IT/2 is

I". Since this is not the way we ~re using'the word "value" here,

we shall u$e.the.word "result" in this context; Le., we shall

say lithe result of SIN" instead of "the value of SIN".

The questio~'now ,arises, just what is a LISP expression? In LISP,

an expression is just ~nother LISP object; that is, LISP programs

are also LISP 'data and the only reason th~ we would call such an

object "program'" instea~ of "data" is that we intend to use it as

~ach. $0 henceforth, by "expressi-on" we shall mean an object

that '.7e intend to' evalu~te. For convenience, lye shall not allow

~ll objects to be expressions, but rather only those objects that

can be ".·ritten in list-:-notation; l.e., all expressions will be

either atoms or lists.

3.~, FUNCTIONAL APPLICATION

When the ',~pression to be evaluated is a list, say (AI A2 ••• An>'

tbenthe rule (with one exception very shortly) is to evaluate

each of the expressions Al thr,ough An and then apply the function

that arose as the value of Al (if :he-value of Al is not a function,

we have made a mistake) to the arguments that arose as the values

of A2 through An' The result of applying this function is taken

as the value of the entire expression. For example, assuming

that we already know that the atoms PLUS, 1, and 2 evaluate to

the addition function and the numbers 1 and 2, then the expression

,_ ,) ... '

~." .. "

LISP 3<i

(PLUS 1 2) evaluates to 3.

1'hQ ~G eX~f't:{ln 'To f~ S's nIl? :S 'iI'Ilh~ Aj l~ (note:· tilts 1.s i":Qt the

same as saying Al evaluates to) an atomic symbol that indicates a

non-standard method of evaluation. Such expressions are called -

special-forms and will be covered in the next chapter. For the

time being~ we can mention that the reason we bave special-forms

FJl ¥-y...4
4';01('::­

<tei-J D '

is that we 'desire certain> operations that do not quite behave'

like functions. Spec"i£ically, they do not want their "arguments"

e.valut:fted'~ .

3-.3' . ·EVALUATION OF ATOM~
•. c:~~'

"'4)en we evaluate an ~xpression that is an atom, we use tne following

rUle: " .

11. the atom is not an atomiC' symbol, then the v'alue of the expres-

.. o1o~ Is'the eXPFession itself; i.e., I 'evaluates to-I,' 2'~o 2, etc.

tlowever .. if it is an atomicsymo'o1, then it truly m~st bea'symbol;"'
• ." ,:., r • •

~liat is~ it must stand 'for some LISP object. This associated object
<:.

is· 'taken as the value of the atomic' symbol. We shall call the mech-

.nism 'by.. which an atomic s~bol is made to stand' :E'or some other ob";' ,

J~ct a binding. 'In LlSP there a~e two mecbanisms by which sucn a

binding might be effected; they are called constant and fluid bind­

Ing~. Row such bindings are established and maintained will be

cbvered' Itlter. For the time' being, we sb~11 describe the intu:! tive .

DOt~on of what they mean. '

3~l,l Variables

Fluid b~t:ciings are used to associate the'dUinmy variables appearirig':

in the definition of a function with the arguments or"the function

when i.t is applied •. ~ 'Iherefore~ ~e shall 'use the wo.r..d" "variable'!"

to refer to an atomic symbol that has a fluid binding. ~luid bfnd- "

ings are temporary, since they only 'exist during the time that a

function is being applied. ~actly how they work will be discussed

below when we cover functional abstraction under the special-form

LAMBDA.

LAJ)--1,{3DA

- Q-.

3-4' LISP
I'" c.'

3.3;2 Constants

.........

Constant bindings are those associations that remain in effect un- ~
til explicitly changed by the User and are 7 theref()re, more permanentl

,than fluid bindings. They al'Ways take precedence over fluid bind-.:­

ings, i.e' t if a constant binding has been established for an atomic

symbol. any attempt to establish a fluid binding' for it is nonsense

since the constant binding will always be used.
c· ,

'ale most important use of the constant binding is to give a name

to a function. For example, the system provide"s a constant bind-

itr,g l)'.etween the atomic symbol PLUS and the addition function; hence~

when we evaluate (PLUS 12), the valuE' of PI,US is the addition

function that we desire. It is also possible, as we shall see be­

lOw, to establish such a binding for a' function of our own choosing ,."

so'that'we may:;Jse the function whenever we desire.

Let us apply these rules of evaluation to a simple case so that we
can get ~ better understanding of what is going on. In the beginning

of this chapter we used the example SIN(n x N/4); in LISP" it is

written(SIN{QUOTIENT(T~MES PI N) 4.0». Let us evaluate this ex­

pression (making appropriate assumptions when we need to).

Evaluate (SIN(QUOTIENT(TIHES PI N) 4.0». It is a list, so first

evaluate SIN and (QUOTIENT(TIMES PI N) 4.0).

E.valuate SIN.

It isan'atomic symbo~ so let us assume that it is

constantly bound to that function that takes the sine

of its argument •

Evaluate (QUOTIENT(TIMES PI N) 4.0).

Again a list, so evaluate QUOTIENT 7 (TIMES PI N), 'and 4.0 •

Evaluate QUOTIENT.

Assume constantly bound to division function.

Evaluate (TIMES PI N).

Another list, so

, E,ia'iuate TIl-1ES.

Another assumed constant.,

Evalua te PI.

. .

"

I •

Assumed constantly b~und to a number.

Evaluate N.

LISP 3-5

Let us assume that it is fluidly bound to some n~ber~

i.e.) that N represents the argument of a function that

uses this expression to compute its result.

Apply function, i.e., do multiplication.

Evaluate 4.0.

Atom, but not atomic symbol, so value is 4.0.

Apply division function, i.e., take quotient.

Apply function. We are finally computing the sine that we desired.

It seems like an awful lot of work to evaluate an expression whose

value is so obvious, but this is 50 because we chose an expression

that had an obvious value. For instance, what if our expression

were something like «FN X) Y)? The value of this expression is

not so obvious, but our evaluation soheme still applies. Our rule

says that to evaluate the expression, we first evaluate (FN X) and,

Y and then apply the value of (FN X) to the value of Y. Now here

is something that loi°e have not been accustomed to doing, i.e. com­

puting a function to be applied instead of sfcply using the name

of it. According to ~he LISP evaluation method, we always compute

the function to be applied; however, we usually perform the com­

putation by evaluating an atomic symbol that has a constant binding

to the desired function, so that) in most cases, we are simply

writing the name of the function we desire.

,.,

- ,

. Cba,p t,er 4

THE OPERATIONS

- LISP 4-1

Finally, we get to the second question of Chapter 2, namely wha~

manipulations can we do with LISP? We shall begin by learning a

few of the functions that are provided by the system~ then cover

a few special-forms that enable us to build complicated express­

tions, and finall~ see how~e may create our own functions. But

first, we want to establish a notational convention for functions.

We shall often have occasion to talk about the function that is

bound (in the constant fashion) to an atomic symbol. We shal~'

write this function as [Xl, where X is tHe atomic symbol whose

value is the function being referred to.

The reason for establishing this convention is twofold. First,

it is going to save us a lot of writing; and second, the system

uses this convention when it prints a function, which remember,

is unprintable. That is, when the need arises 'to print an un­

printable object, the. LISP system searches through all atOmic

symbols looking for one to which the object is constantly bound

and, if sucessful, prfnts it out in the form [xl.

4.1 SOME PRIMITIVE FUNCTIONS

4.1.1 Construction

We. ,learned above that the fundamental building operation of ,LISP­

is construction. There is a function provided by the system that

does, ,exactly this and is bound to the atomic symbol CONS.

If, for example, the atomic symbols A and B are currently bound to

the number 1 'and the list~(2 3 4), then the expression (CONS A B)
~ . --""" .~

will evaluate to the object (1: (2 3 4», which we may write as

the list (1 2 3 4).

4-2 LISP
---~------- ------

ill ".

4.1.2 Selection

Since we have the ability to build objects, we shall also desire

the ability to take them apart. Specifically, the system provides

two functions [CAR] and [CDR], which retrieve the components of a

composite object; i.e., if X is currently bound to the composite

object (Al ·A2), then the value of (CAR X) is Al and the value of

(CDR X) is A2 • If [CAR] or [CDR] is applied to an atom, the

value is unspecified. ,

Technically, these are the only two selection functions we need;

however, it is often useful to be able to get at deeper components

of ~n object. Therefore, the system provides a function for each

atomic symbol of the form C···R, where the ellipsis indicates a

string of A's ana Dis whose length, in this implementation, must

be between 0 and 35, inclusive. Such functions represent succes­

~ive applications of [CAR] and [CDR] from right to left~ . i.e.,

(CADDR X) evaluates to the same object that (CAR(CDR(CDR X») does.

For the sake of generality, [CR] is the identity function.

It is useful to notice what these operations do to lists-.· - If L is

currently bound to a list, then (CONS X L) creates a new list with

the value of X as its first element; (CAR L) evaluates to the first

element of the list L; (CDR L) evaluates to the tail of the list

L; i.e., if L is (1 2 3), (CDR L) is (2 3); (CADR L) evaluates to

the second element of the list; and so forth.

4.1. 3 Predication

We shall also need the ability to ask questions about objects,

such as, is an object atomic, or, are two objects the same? There­

fore, we need a ~onvention to represent truth and falsehood since

we did not see fit to include truth~values in our universe of dis­

course. In LISP, the atomic symbol NIL is interpreted as falsehood

and any other object is interpreted as truth. To facilitate use

of truth values, a few constant bindings are provided automatically;

namely, both the atomic symbols NIL and F are bound to falsehood

(NIL). The atomic symbol T is constantly bound to itself and is

conventionally used to represent truth.

.'"

4.2

'LISP '4-3

LISP has a function [ATOM] whose result is true if its argument: is

an atom and false if it is composite: There is also a function [EQJ

whose result is true if its two arguments are the same atomic symbol

, and false if they are different atomic symbols. [EO] is intended to
• ¥

,.

be used on atomic symbols only; if it is not given atomic symbols as

argum~nts, its result is not specified (although it does ,give one).

To compare t~o objects in general we use [EQUAL], whose result is

true if its two arguments are the same (meaning that they would appear
t.

identical if printed), whether they be atomic symbols, numbers) or

composite objects. However~ it does not work for functions (after a11s

nothing could).

LISP also has the function [NULL], whose result is true if its ,ar­

gument is the empty list and false otherwise. Due to the manner in

which lists ~re represented and the fact that NIL'is con~tantly

bound to itself, (NULL x) has the same value as (EQ X NIL).

SPECIAL-FORMS

We s4all now cover a few of the special-forms of LISP t that ist . those

cases where an expression of the form (Al A2 ••• An> does not in­

dicate a functional ,a,pplication, but rather a' special method of eval­

uation that will dep~nd on what ~ is.. One word of warning t the

atomic symbol (Al above) ~sed to indicate a special-form does have a

constant binding to an unprintable object; however, this object is not

a function and is not even useful. The onlY.,re.g.son that this is

~entloned is that it does prohibit us from using such an atomic symbol

as a variable.

\~\ 4.2.1 QUOTE
. ,

A very important special-form is sig~~led by the appearance of the

atomic symbol QUOTE. When QUOTE.is encountered, it indicates that

the object appearing to be the argument is the actual object de­

sired and not an expression that should be evaluated to get the

object. For instance, (CONS(QUOTE A) (QUOTE (B C») evaluates to

.(J;. .B C); A and (B C) are not evaluated.

This special-form is used so often that 1108 LISP allows an abbre-
. -

vlation for.it. Namely, we can write fA instead of (QUOTE A). This

'''''.',

------~

translation is effected at the time the objcect is ,read in; Le.,

whenever the input routine encounters the punctuation mark apos­

trophe, it reads the next object and quotes it. Hence, the above

eX8!!1ple is more conveniently written as (CONS 'A'CH C».

4.2.2 COND

Th~ if-then-else idea is embodied in the sp~cial-form represented
• .. ~ .• ~ t

by,COND. We write a conditional expression like so:
.* ~'.

(COpri (p 1 El,.) (p 2 E2) .'.. (P n 'Enn

'The rule for evaluating such a form is as feilows: Each P is eval­

uated from left to right unti1 one is found whose value is true;

then the associated E is' evaluated and its value is the value of

Ittie entire conditl.onal' expression~ 'It is the case t11at 9 no P' after

the 'first true one and no E except the one' se1ec'tiad will be eval";''''

t' '!it~., if n, one ,~£ the p's 'is true, then the value of the C!onditionj

, 'a1 expression is unspecified. We usually write T as the last P to
~ ,

tgu.arantee that the conditional expression always has a value,:

4.02.3

* ,~

,"' ..
As anexainple of the use of COND, suppose tna'Cr.!' ana N are cur-

redt1y boun8 to numbers and that we w!shto obtain the larger of
~ .

the two; we can do this by writing'

(COND «GREATERP M' N) 'if) (T N»)

wh~re' the' result of rGREATERP] is true if' its first: argument iI.'

grea~er than 'its second;':"

AND~ 0!l, NOT

The spec1:.al-f,orms, AND and 'OR, and the function INOT] are usually

used in one of theP' sot, a conditional expression» althougfi'tbere

is'no' re~triction'that they must be.

The format for AND is:
••• P)' , n

The rule for evaluating AND is that the P's' are evaluated from

left to right until one turns out to be false. If one does, the

value of the U?Cpression is false 'at:ld no more pts are evaluated;

-~ .' . . ' '

.,

i;

(

LISP 4-5'

1f no P is false. the value of the expression is true. The value

of (AND), by the above rule~ is true.

OR is similar to AND. except that a P that is true stops the eval­

uation with a value of true and no true P causes the value of the

expression to be false.

Due to the representations of truth and falsehood in LISP, [NOTl

and '[NULL] are the same f~nctions.

4.2.4 LAMBDA

We come now to a sp~cial-f<:>rm that S,ives LISP immense power. The . .
sp.ecial-form signaled by the appearance 9f the atomic symbol LAMBDA

allows us to. create functions. The idea ·is similar to the use of a

declaration, such as PROCEDURE in ALGOL. However s, in LISP it is

. not to be thought of as a declaration; that is, LAMBDA does not

allow us to declare a function, it allows' us to compute one.

~he special-forms and primitive functions that we have already

learned allow us to build up complicted expressions. LAMBDA allows­

us to specify that an expression so buil~ is to be used to compute

the result of a function whenever the function is applied. To do

so we must also specify which .variables appearing in the expression

are intended to stand for the arguments of the function ~eing

developed.

101' :instance. under COND we wrote the expression

t~ND «GREATERP M N) M)(T N»

which evaluated to the larger of M andN. Now, if we write

(LAMBDA (M N)(COND «GP~ATERP M N) M)(T N»)

the value of this expression is a function that will select the

larger of its two arguments. "That is, we have created a function

which uses the rule given by the conditional-expression to compute

its result and specified that th~ variables M and N appearing in

the expression are to stand for the first and second arguments,

respectively, of the function. For exampl~

«LAMBDA .(X Y)(COND«GREATERP X Y) X)(T Y») M N)

also evaluates to the larger of M and N.

Those who are familiar with the lambda-calculus will recognize

!i-v -L.LSP
I~ ",

this concept immediately; however, we shall find that the treat­

ment of free variables in LISP differs from that of the 1ambda­

calculus.

The format of the special-form ~rnDA is:

(LAMBDA (V V," V) E)
. 1 2 n

where each V must be an atomic symbol that wii1 never have a con-
t.

s~ant binding, and E is any expression (that will probably contain

occurrences of the V's). The value of this special-form is a func­

tion of n arguments that, whenever applied, will compute its result

by evaluating E in an environment in which each V is fluidly bound

to the correspond ~rgument.

Now we have to be careful to notice what gets evaluated and when.

Specifically, evaluating a LAMBDA-expression only creates a func­

tion; the expression E that will be used to compute the result of

·the function is not evaluated when the function is created. but

rather when we apply the function to arguments. Furthermore. im­

mediately before it is evaluated. the variables appearing after

the LAMBDA are given fluid bindings to the arguments of the func­

tion so that during the evaluation of E, these variables stand for

the right things, namel!, the arguments to which the function is

being applied. After the result is computed, these fluid bindings.

disappear and any fluid bindings that the variables' had before

application reappear.

By the. way, there is nothing illegal about having functions of no

arguments; we create them with expressions like (LAMBDA () E) or

(LAMBDA NIL.E).

4.3 FUNCTIONAL DEFINITION
-

Now that we have the ability to cr~ate a function via LAMBDA, we

want to be able to give the functio~ a name so that we may use it

in more than one place. For this purpose we usually use a con-

stant binding.
- . ~ . - .. - "- .

..•.

:.. ':- .'-- :--' ' ...

- _.' :-" :~~. - .' <C. •• -. •

.. "
- - : ~ -"

~
t' .:
~

[1!\
\~

4.4

LI,sP 4.7

There is an operator in LISP bound to 'the atomic symbol CSET which.

besides delivering a value when 'applied to arguments. also has a

,permanent effect on the system (such operators are called pseudo-'

functions in LISP). In this case the effect'is to establish-a

constant binding between the first argument of [CSET], which must

be an atomic s~~bol, and its second argume.nt, which may be any

.object. The value of an expression (CSET "'(QUOTE X) Y), is the

value' of Y, but the important thing is the effect; ,namelYI after

the evaluation of this expression, the value of X will alwaY$, be

whatever Yevaluated to above unless it is explicitly changed by

another CSET.

Ergo, if we evaluat~ the expression

(CSET 'MAX

(LAMBDA (X Y)

(COND

«GREATERP X Y) X)

(T Y)
»)

the special-form LAMBDA computes a function that will select the

larger of its two arguments, and this function is then bound con~

stantly to the atomic symbol ~~ by [CSET]. Now, all we have to

db hereafter to get the larger of two numbers. say N} and Nt is

evaluate the expression

LAMBDA REVISITED

There is one more point about the LISP evalua,tion method that needs

t~he mentioned; 'namely, what happens if an atomic symbol is en­

countered during the evaluatio~ of an expression that neither has

a constant binding nor appears as a variable in a LAMBDA-form that

surrounds the expression. For instance suppose that we define a

function thus:

(CSET 'FN (~~BDA (X) (PLUS X FV»)

~-.---------------------

1!::-8 L'J:.SP

...... ,
~ ,

If we ever apply this function to an argument, the expression

(PLUS X FV) \dll have to be evaluated. We can evaluate PLUS

since it is a constant and ~e can evaluate X since it will be

bound to the argument, but what value do we assign to FV ~s-

suming it is not a constant)? If we go back and look at the

mechanism for applying a function created by the special-form

LAMBDA, we remember that before the expression defining the

result of the application is eval~ated, ~he variables appearing

after the LAMBDA are bound to the arguments of the function.

These bindings are added to those bindings for fluid variables

that are currently active and when we evaluate a fluid variable,

we look through all these bindings and take the most recent one.

Therefore, the value of FV above will be that object that ap­

peared as an argument to the most recent function that has an

FV as a dummy .variable and has not finished computing its re­

sult.

Example, suppose we define ,two or more functions in addition

the one above:

(CSET'Fl (LAMBDA (X FV) (FN X»)

(CSET'F2 (LA}ffiDA (FV X) (FN FV»)

to

It would seem, since we should be able to rename the dummy vari-

abIes of a function systematically, that these two functions are

the same; unfortunately, they are not. The value of (Fl 1 2) is

l since FV is bound (during the evaluation of (PLUS X FV) in [FN])

to 2; 'while the value of (F2 1 2) is 2 since FV gets bound .to.l.

If there is no binding available for a variable that is to be .
evaluated, then the system will object. What happens then dep-

ends on the mode of operation (conversational or batch) and will

be covered below.

4.4.1 The FUNCTION Function

It often happens that this treatment of fluid variables is not

the one desired, i.e., i£ we use the special-form LAMBDA to cre­

ate a function in-which an atomic symbol appears free (it is

r
L

•

(

.........

neither included in the lis~ of variables following the LA}mDA

nor will it ever have a constant binding), the value of this

variable will depend on the bindings in e~fect at the time the
, ,

function is applied. What we often want is the bindings for

these free variables that were' in effect at the time the fUnc­

tion was created.

LISP,' 4-9

LISP supplies a function [FUNCTION] for such cases. Sp,ecifically,
, v -

[FUNCTION] takes,a function as argument·and delivers as its re-

&ult a new function whose free v~ria~les will be bound (whenever

this function is applied to arguments) to the bindings that they

had when [FUNCTlqN] w~~ applied.
.

Let us see why this is necessary. Suppose we wish to define a

function that will take two functions of one argument and com-
pose them~ i.e., we want the expression «CO~~OSE'CAR CDR) '(123» . .'

to evaluate to 2 just as (CADR '(I 2.3» would. It is tempting to try

to define [COMPOSE] thus:

ceSET 'COMPOSE (LAMBDA (FA FB)(LAMBDA (X) (FA (FB X»»)
• • & -

but this does not work since as we leave [~OMPOSE], the bindings

for FA and FB evaporate so that when we apply the .function created

by [COMPOSE 1 (the function created by the second LAMBDA above), .
FA and FB are not bound to the right things. To get [COMPOSE] to

work, we define it thus:

(CSET 'COMPOSE

(LAMBDA (FA FB)(FUNCTION (LAMBDA (X) (FA (FB X»»»

Now after we compute the desired composition, we give this func­

tion to [FUNCTION], which captures the bindings of FA and FB (and

all other current bindings) and delivers a function that will use

the captured bindings whenever it is applied.

The above example is well worth careful study since-it not only

demonstrates the necessity of [FUNCTION], but also demonstrates

one of the exotic things that can be done with the special-form

LAMBDA.

e ••• !~'-' -.

------ ~----~-----

'.

.,

Chapter 5

THE LISP SYSTEM

LISP 5-1

By now we have learned the essentials of LISP. Tnere is a lot more

to LISP; however, we shall take time here to study the entire 1108

LISP system so that we can actually run programs.

5.1 THE EVALUATOR

The heart of the LISP system is the evaluator, which will evaluate

an expression by the method we have described above. In LISP,

the evaluator is available to the user via the function [EVAL].

That is, (EVAL], when supplied an object ap an argument, will com­

pute the value of that object. The environment that [EVAL] uses,

i.e., bindings for fluid variables, is those bindings that are

active at the time I EVAL] is applied. However, it is rarely nec­

essary to use [EVAL) explicitly, since the standard LISP super-

(- visor provides it automatically_

.......

5. 2 THE STANDARD SUPERVISOR

The standard supervisor of LISP will operate in the following

manner. First, it requests an object to be evaluated by printing

the message "EXPRESSION TO EVALUATE:". It then reads an expre­

sion that we supply and has the evaluator compute the value of

the expression. Finally, it prints the message "VALUE IS:" followed

by the value computed for the expression and returns to repeat
\

this cycle.

Therefore, a normal LISP job is a series of expressions that are

to be evaluated. The first expressions probably use pseudo-func­

tions (like reSET]) that establish as constants the functions that

we want to use. These will be fbllowed by expressions that use

these functions to compute the answers that we are seeking.

5.3 AN EXAMPLE

The following is an actual printout of a LISP run. This run

defines and tests functions that perform basic computations on

sets, assuming that a set» say {AI A2 A3}t is represented by the .,

list (AI A2 A3).

"':.

. ...

","

...

5-4 LISP . ., ".

?CA,~Tl:.SIAN PROOUCT of 51 £, S2
ICS~T 'lA~rESIAN'LAMBOA(Sl 52)

(I~DEX 51 NIL(FUNCTION(lAHBDAIIl Jl)

~_I~~CJ_E ~ ___ ~_~ __ J_~ ._JX~_~L<;'lJ_9.J~J LAM_aQ...~LLL.!-!_21 (C9J!S «(O_~~J_ll.L.J.A~ _____________________ . __

[(Ai<TI:.SIAN)

E~PRtS~lO~ TO EVaLUATE: _ 4 __ • _______ ._ •• ________ • ___ •• ___ .~ _______ • _______ • ________ _

?ALL SUBSETS OF S
(C5FrfrU~~H(lAM8DA(5J

«(UNO
(t f~ U L L S) t (NIL) J

I T { pol u E:. X (POW E:. R (CDR 5))·N 1 L

---- --.,)------------ ------------

_ •• ___ - •• - ._ • - ___ • _____ ._ ._. ____ • _____ • ______ • _______ • _____ • __ •• _________ •• ______ • o. _ •• __ ,, __ ." __ • ___ • ___ ._. _____________ .. _. __ •• ___ ••

lFUNCTION(LAMBDA(1 J)(CONSlcor'lS((.AR S)l)(CONS J>

VAllIE IS:

--- -- ------ ------------- ---------------.
EXP~L5S]ON TO EVALUATE:

?TlST CASl5
(UNl')l~ ·{Al A2 AJ AS} '(AI A3 A"i A6)

(A2 ~~ Al AJ A~ A6)
,-

EXPR~S~la~ TO EVALUATE;

CINllkSEC T10N'(AI A2 A3 AS)'IAl AJ A"i Ab» -=:.-'--------------------------_._--------_._---

VAli,l 1 s:

(A! 1\)

-- -- ---. ..,.-~--- - --- ---- ... - ----.--- ._-----_.- ----
(~ARTESIAN'(AI A2 AO) t,81 52})

VALlll IS:

«AI. I:lli (Al .52) (1\2. BI) (A.2 • B2) (AD. Bil (AU. B2»

txrwlS510N TO ~VALU~TE:

(PO',,~: r~ t (A l:l C 0 J)

'1~Ldf: IS:

((t. (:;t CD) (B (D) (A CD) Leu) (A _ B_ g l_ (U D I (A 0) ~ D) (A B C). ___ (.13 C) .t A,

(-

LiSP 0-.

Chapter 6 .

EMB.ELLISID1ENTS

What we have learned so far is.theoretically sufficient; how~ver,

there are many -i-dditional facilities in LISP that make it much.

easier to use and more effici,ent to run. ' ..

6.1 PSEUDO-FUNCTIONS

In Chap,ter 4, Section 3. ~. w~ introduced the pseudo-.function lCS.ET1,

whose p~imary purpose was to affect the sy~t~ rather than deliver

a value.' In this' section we shall learn of a few ~ore that turn ..
out to be,useful.

'. For input purp.oses LISP provides the func tion [READ], which is a

function of no arguments whose result ,is the next object appearing

on the input device_ For instance. if we submit the following

card image to the supervisor

(READ) (A -B)

the value is the object (A-B).

6.1.2 PRINT
..

We can produce our own ou~put via the pseudo-function [PRINT].

lPRINT} will pr1nt its argument on the output device and, deliver . .

·that objeet as.its result.

6.1.3 . RP LA CA , RPLACD

The 'pseudo~functions [RPLACA] and lRPLACDl allow us to alter com­

posite objects. For instance, if we evaluate the expression

(RPLACA '(A'B) 'X), the object (A-B) is changed to the object

(X"B); similarly, ·the effect of the expression (RPLACD '(A"B) 'X)

is to change (A·B) to (A"X) " . The result i; both cases is the

first argument, which will be the altered object. We must be

sure to notice the essential' difference between an expression

su~h as (RPLACA '(A·B) 'X) and (CONS 'X (CDR '(A·B»). The ,
value in either case is an object (X"B); however, the effect

is different. In the latter case we have constructed a new

object; while in the former, we have altered the structure of

an already existing object.

Since these pseudo~functions permanently alter representations

the computer, they mu~t be used with extreme caution. \ .
instance, if we evaluate ~he expression

«LAMBDA (X) (RPLACD (CDR X) X» '(A B»

the value and effect is the infinite list.

(B A B A B A·'·).

If an infinite list such as this is given to a function that

" searches a list (like [EQUAL]), an infinite loop could occur.

6.2 00

It often happens that we want to use such pseudo-functions for

their effect only and ignore their results. In order to accom­

plish this, we may us~ the special-form 00. The format of DO

is ',-----

(DO El E~
and the rule for evaluate e~ch EI from,left

to ~ight and ignore all values excep

the value of the DO-axpression. For

and then read an answer the expression

(DO (PRINT REQUEST) (READ»

has the effect and value desired.

6.3 PROG

request

Also available in LISP is another special-form that allows us to

execute statements in a manner similar to other languages, such

as ALGOL or FORTRAN. This special mode of operations is sign~led

(

by the appearance uf the special-for~ P~OG~ and is written thus:

(PR~G (VI V2 ••• Vn) Sl S2 S3 ••• Sn)

Ea~h VI is an atomic symbol representing a variable that will be

local to the PROG and eachSl is either an expression that will

be evaluated and the value discarded or an atomic symbol that"

represents a label and can be referenced by the special-form GO.

LISP 6-3

The rule for evaluating a PROG is as f.ol,:Lows: Upon entry to the

fROG, each local variable is bound to NIL and these bindings are

added to those bindings currently .active (i.e. ». these binding!? are

maintained in the same fashion as the variables following a

LANBDA). Then the. non-atomic statements are evaluated in sequence

using these expanded bindings. The value of each such expression

will be discarded; hence~ it behooves us to use pseudo-functions

in the SfS so that something useful happens. When we run out of

statements. the PROG is. exi.ted. NIL becomes the value, and the

bindings for the PROG variables dis.appear.

If PROG were used only as above, its usefulness would be limited;

therefore, there are some more special-forms that are used in

conjunction with a PROG.

f ~.l SET .SETQ

The pseudo-function {SET) is used to change the binding of a

variable. It is writt·en like reSET] and operates identically

if its first argument already has a constant binding,; however a

if its first· argument is not a constant. then it looks through

the fluid bindings currently active and changes the most recent

bi.nding of its first argument so that it is bound to the second

argument. If this fails (i.e., if it cannot find a fluid bind­

Ing)y [SET] will create a new fluid binding for the variable

and put it at such a place that it is local to the most recent

PROG, as if it had been written there to begin with.

As with [eSET], the normal use of [SET) will have the first

argument quoted, e.g.,

(SET (QUOTE V) E)

....... ~. .

hen"ce," the special-f"orm SETQ is p~ovided that effects this quoting.

That is, the above may be more conveniently written

(SETQ V E).

Comparing LISP with other languages we will recognize SETQ as

the LISP version of the assignment statement; namely, the effect

of (SETQ V E) is the same as V:~E in ~~GOL or V=E in FORTRAN.

6.3.2 GO

The special-form GO is the analogue of the GO TO statement else­

where. Whenever an expression of the form (GO L) is evaluated,

the LISP system immediately returns to the most recent PROG and .
finds the label L among the statements comprising the body of the

PROG. Evaluation will then continue with the statement following

the label. If the label cannot be found in the most recent FROG,

then the LISP system will complain and terminate the current evalu­

tlon. We must notice that L is the label desired, not an expres­

sion that will evaluate thereto.

6.3.3 RETURN

The special-form RETURN i$ used to exit a PROG without falling off

the end. Whenever (~TURN V) is encountered, V is evaluated, then

the most recent FROG is exited with the result being the velue of V.

If we wish to have a function that will reverse a list, we can take

"advantage of the PROG feature and define it:

. ' .: ...

(CSET 'REVERSE (LAMBDA (L)

(PROG (ANSWER)

LOOP

(COND «NULL L) (RETURN ANSWER»)

(SETQ ANSWER (CONS (CAR L) "~SWER»

(SETQ L (CDR L»

(GO LOOP)

»)
(REVERSE '(A B C» will evaluate to (C B A) and

(P~VERSE '«A B) (C D) (E F») will evaluate to «E F) (C D) (A"B» •

·~.

..

(,

L!SP, 6-5'

6.4 PROPERTY LISTS

An often useful feature of LISP is the ability to manipulate

property lists. We may think of a property list as a symbol _

table that is associated tNith each atomic symb'oL Each sllch

symbp~ table is a list of the form:

«II • VI) (1 2 • V2) ••• (In· Vn»)

where each I is an atomic symbol and each V is an object. We

usually refer to a property list entry, i~e.,. one of the

(I '. V)'s, as, an attribute~value pair, where I is the attribute

and'V is the value (not to be confused with the word "valueft

as used elsewhere). Every atomic symbo~ initially has an empty

property list.

6.,4.l PUT

' ..

The pseudo-function [PUT] is used to establish or update an

attribute-value pair. IPUT] takes three arguments: the first

1s the atomic symbol whose property list 1s desired, the second

1s an atomic symbol representing the attribute to be entered,

and the third is the value to be associated with that attribute.

The effect of [PUT] is either to update the entry for the

attribute if one already exists or to add a new attribute-value

pair if not. The result of [PUT] is its first argument.

6.4.2 GET

erne function [GET] allows us to retrieve the values associated

.... :' with attributes. The two arguments of [GET] are the atomic

symbol whose property list is desired and the attribute whose

associated value is desired. The result of [GET] is the as­

sociated value if one exists or NIL if there 'is no entry for

the attribute.

6.4.3 Flags
f .J

\ There are times when having a value associated with an attribute

is not important, but -the presence or ab'sence of that attribute

is. For such purposes, property lists are also allowed to con-

., ..

tain flags; that is, a flag is an atomic symbol that may appear

as an element of a property list and indicates something special

about 'the a'tomic symbol to whose property list it belongs •.
,

6.4 .• 3.1 FLAG

We insert flags on a property list by the pseudo-function [FLAG),

whose first argument is the atomic symbol that is to be flagged

and whose second argument is an atomic symbol that is the flag to

be inserted. The result of {FLAG] is its first argument.

6.4.:1.2 IFFLAG

We test for the presence of flags with [IFFLAG]. This function

takes two arguments similar to {FLAG] and its result is true if

and only if the flag appears on the property list.

6.S 'ARITHMETIC

LISP has a supply of arithmetic functions and predicates that

may be used to effect whatever number-crunching is necessary.

These functions will be detailed in Appendi~ A; however, a few

general principles wil~ be stated here.

First, integers and octals appear to be identical to the arith­

metic functions; that is, (PLUS 5 10) and (PLUS 5 l2Q) both

evaluate to 15.

Second, mixing real and integer arithmetic is allowed. The

convention established in LISP is that if any of the arguments

of an arithmetic function is real, then the result is real;

otherwise, the result is an integer.

Finally, comparisons involving real.numbers are.subje~ted to

a tolerance of 3.0E-6; that is, two real numbers are compared

by taking the absolute value of the quotient of their difference

and the first number. If this absolute value is less 3.0E-6

then the two numbers are cons~dered equal. - -
-"

. ". ~ - - .-.. - - -. -

- - - -" - ..

"'l" •

.\
I

--­...

.. ""' .•.

LISP 7--1

Chapter 7

THE COMPLETE LISP SYSTEM

In Chapter 5 we learned enoughoabout the'11D8 LISP system to

enable us to use it. We shall now cover theoentire system in

a~l its intimate detail so that we may use it more effectively.

70,.1 THE EXPANDED SUPERVISOR

We saw above that the supervisor essentially cycles through °a

Tesd-evaluate-print sequence. Now that we have the PROG feature,

we can write such a supervisor in LISP •.

(CSET 'LISP (LAMBDA (INPUT-GETTER)

(FROG (VALUE)

CYCLE

'(CLEARBUFF)

(PRINT , EXPRESSION I TOI EVALUATE:)

(SETQ VALUE (EVAL (INPUT-GETTER»)

(PRINT 'VALUE! IS:)

(PRINT VALUE)

(GO CYCLE)

»)
The only stranger here is the pseudo-function [CLEARBUFF} which

sets up the input routine to begin at the front of the next card.

It so happens that this function is actually availab1e in the

1108 LISP system t although the variables oINPUT-GETTER and VALUE

and the label CYCLE are invisible. But, this does mean that we can .
callOthe LISP supervisor ourselves whenever we want to.

For example, when running in the conversational mode, we may

attempt to evaluate an atomic symbol that has neither a constant

nor a fluid binding. When this happens, the system will request

a value from us by having us submit an expression the value of

which is to be used as the value of the unbound variable. Now

o~we may need to'define a few more functions so that this value

can be computed or so that the request w,ill not be made again.'


~~~~~~~- -~~~~~-- --

In order to do this we submit (LISP READ) as the expression to be 

used to compute the value (we can also submit (LISP) since [READ] 

is assumed if no argument is supplied. When the system evaluates' 

this expression, a new level of supervision is established in 

which we may do whatever we need to do. 

Eventually, we are going to want to leave this new level of super­

vision with a value to be used in the interrupted evaluation. 

Since the LISP supervisor is a PROG feature, we get out of it 

with a RETURN, i.e., we simply submit an expression like (RETURN V) 

to the current supervisor. The special-form RETURN exits from 

the most recent PROG, which in this case is the supervisor, and 

the value computed from V is used to resume the interrupted eval­

uation. 

m1en LISP starts running,a level of supervison is automatically 

established for us. If we RETURN from this level, we do exactly 

what we would expect, we leave LISP and return to the 1108 executive. 

The purpose of the variable INPUT-GETTER above is to allow us to 

use a non-standard form of input if we desire. For instance, if 

for some reason we prefer the function and list of arguments form 

of· input that is used in other LISP systems, we can get it by 

starting out with: 

(CSET 'AWFUL (LAMBDA NIL (CONS (READ) (QUOTEM (READ»») 

(CSET 'QUOTEM (LAMBDA (L) 

(CONn 

«NULL L) NIL) 

(T (CONS (LIST 'QUOTE (CAR L»(QUOTEM (CDR L»» 

») 
(RETURN (LISP AWFUL» 

-
After this we submit input as a function name followed by a list of 

arguments and the function [AWFUL] will be used to transform our 

input into expressions suitable for evaluation . 

. "" 



( , 

LISP 7-3 

7.2 THE CONVERSATIONAL MODE 

LIS~ will operate most effectively when used in the conversational 

mode. This is not due as much to ad hoc abilities as it is to the 

overall philosophy of LISP. Specifically, LISP allows us to do ,our 

work, so to speak, incrementally. That is, we are allowed to de­

fine a ,function that we know we will need, try it out on a few test 

cases to be sure that it works, and then forget about it and go on 

to define other functions. This is not the case with many other 

languages where all desired functions or subroutines have to be de­

fined before any of them can be used. 

However, 1108 LIS:!? does have some abili ties that are included ,. ~nly 

to help us when running conversationally: The fact that the system 

queries the user when it finds an unbound variable is one of these. 

The assumption here is that such an unbound variable is either a 

misspelling of the desired variable or is intended to evaluate to 

a function that we have not yet established as a constant. Inthe 

first case we can temporarily fix things by submitting the correct 

variable; i.e., this variable ~ be evaluated and its value (the 

one we really intended) is used to resume the interrupted evaluation. 

This does not really cure everything since the message and request 

for a value will appear every time that the offending variable is 

evaluated; but we can usually stop the request temporarily by us­

ing SETQ to establish a binding for the misspelled variable at the 

most recent PROG, which is probably the current level of supervision. 

After that, we will have to patch up the d'efinition of the function 

so that it is written correctly (there are facilities in LISP that 

allow us to do this without redefining the entire function). 

If it is the case that the unbound variable is supposed to have a 

constant binding to a function and' we have not estaplished the 

binding yet ('vhether by accident or design), then all we have to 

do is supply a suitable function; e.g., we can submit an expres­

sion like 

(CSET tUBV (LAHBDA (X) » 



The value of this expression-is exactly the function that we 

need in order to continue, but the expression also establishes 

a constant binding so that the value will not be requested 

ar,ain. 

We must remember that such requests can only be handled when 

running conversationally. When running in the batch mode, the 

same messages will appear indicat~ng unbound variables or the 

like, but the system has no recourse in this case except to 

terminate the current evaluation and try again on the next 

expression submitted for evaluation. 

7.2.1 Another Example 

Below is a listing from the teletype of an actual conversation 

with the LISP system. It is included to demonstrate the con­

versational·mode. 

...... 

..- ..: 



:' 
\ 

.. ~Li.?P 

11 U~ LI!.>!-, V 6.2 

E,\l-'HE~;:iION 'f0 E\JALUA'lE: 
(CSET ''::;blii"l (LAMblJA( NUM)( NIl. 0) » 

VALUE IS: 

(!:Iutd) 

._EX1-J.hE~SION TO E\JALUA1E: 
(~wl"t1 144) 

NO VALUE IS BOUND 10 NI 

PLEASE SUPPLY ONE 
(CSET 'NI<-LAMBDA( ThY) (CONU 
«EUUAL(S~UAhE lh¥)NUM)ThY) 
('!'(NICAVEhAGE«,tU01 IENl NUM l,tt¥)ThY> 

NO VALUE I!J BOUND TO S~UAhE 

PLEASE SUPPLY ONE 

(LISP) 

EX-PnESStOM' -10 EvALUA1E: 
(C$EI - "SUU'AhE( LAMBDA( X)( '1 IMES X X> 

VALUE IS: 

C:iblUArtEJ 

EX.t-'nE~~IG:\i TO EVALUATE: 
(C:;,ET'A\;~:u,.A·GE(LAM.Bl>A(X ¥)(~U01IEN'l(.PLUS X ¥)2.,O> 

VALUE I!.;: 

CAVEn:AGEJ 

£Xt-'nE.::..::.I·ON- TO EVALUATE: 
(ltE', lh1N '::'I.LtJAnE) 

\i~tJE IS: 

-EXP.H.ES);tlON '10 EVALUA.tE: 
(SG.hl 20) 

VALUE IS: 

EXPtiESSION 10 EVALtJA'IE: 
(.n.ETUriN NIL) 

END OF LISP 

LISP 7-4A 



~~~~ ---,- ----- Ll.;;tP 1-5 

('7.3 ~EBUGGING AIDS

- ...

There are a few facilities provided by the LISP system that aid us

in debugging our program.

The pseudo-function [TRACE] allows us to monitor the evaluation of

exp~e8sioris. [TRACE] takes one argument, which must be a list of

a1;:omic symPQls tpat are constantly 9oundto. functions. The effect

of [TRAC;:] is to cause the arguments of any of these functio~s to

he printed out whenever the function is applied and to cause the

result to be printed when the function finishes comPll,ting ?-~ •
..

'1ne pseudo-function[UNTRACE] takes one arg.ument
.,' ~ .

just as [TRACE]

The result ku.t removes ~he traCing. froti} the listed functions.

of.poth of these ps~ud~-functions is ,NIL.

Note, I~RACEl. ~~rks eq~ally well whether the function being, ~rac~d

ig dne that we have defined or one that the system provi-des for

~s; .but remember, since a special-form is not a function~' ~ny.at­

t.,pJ: to trace it is absurd.
-, "

1,.3.2' The Bac:;k-Trace

Whenever an error occurs that forces termination of an evaluation,.

the system will provide a printout of the contents of the push­

down stack at.that time. Most of these entries will seem to be

&l~berish; however, the entries that are preceded by three periods

are prooably of interest. These entries are either bindings of

variables or expressions that are being evaluated.

Binding lists are kept internally in the same fpnnat as· properFY-

11sts~·i~e., variable consed with value. They wili always. co~tain

oC,currences of the character string II [l" when printed (this string ..

is caused by a speci~l gadget inserted to mark places in the envi­

ronment where PROG's occur so that SETQ can establish bindings if

it needs to). For instance when we see something like

(P.- l)(L ··Y)(A 1 2)(L • X)[])

.. 1n the back-trctcej it means that N is bound to 1,' L is bound to Y ..

- A is bound to the list (1 2), and the binding of L to X is not

"';".t,

currently'active (it is shielded by the first L).

When we look at the most recent,bindings, the variables that are

bound can help identify the last function applied and the values

to .which they are bound can point out the arguments that this

function received.

The expressions being evaluated will show the sequ~nce of eval­

uations of expressions and their sub-expressions that led up to

the error.

,7.4 LISP CONTROL CARDS

The control cards of LISP may be used to affect the operation of

th~ system when desired. They are identified,as input images
~

that have a colon as the'first character followed immediately py

a word specifying the action to be taken. They.are always rec­

ognl~.ed. and interpreted when encountered by the input routine.

rLIST
appearing anywhere in the ~nput stream instructs the

input routine to print cards as they are read. It is

transparent to the user; i.e., a :LIST card can be

placed anywhere in the input stream and the only notice­

able effect will be that cards following, the ;LIST card

are lis,ted.

:UNLIST

instructs the input routine to stop printing cards as

t~ey are read. It is also transparent. The system

will notice if it is being used from a teletype (con­

versational mode) and if so, will pretend that it had

a :UNLIST card as its first image. Conversely, if the

system notices that it is being run in the batch mode,

then it automatically starts out listing, cards.

: TIME

causes a printout of the time that has been spent eval­

uating expressions and collecting garbage. The 'print­

out format is

EVALUAtION'X.XXX, GARBAGE COLLECTION Y.11rI/N

"

,
. '~

· ..
(.

: STOP

: BACK

: OOPS

:FROH

. ..,..',

LISP 7-7

It means that X.XXX.seconds have been required to perform

all evaluations so far, that Y.YYY of these seconds have

been needed to collect garbage, and that N garbage collec­

tions have ocurred.

The :TIME card is not transparent; i~.e., after this card

is processed, the system will return to the latest level

of supervision and request the next expression to eval­

uate.
. ...

will cause the LISP system to die and retu~n to EXEC just

as if a RETURN had been performed.on th~ ~op level of

supervision.

causes a back-trace to be printed followed by a return

to the latest level of supervision.

causes the system to regress to the beginning of the read

rout~ne and attempt to read an object again. It is used

when running conversationally and an uncorrectable error

was made whil~ submitting the current object.

instructs the input routine to begin reading from an

alternate file in SDF format that has been assigned to

the run. An internal file name must begin in column

7, i.e., there is exactly One space between the :FROM and

the file name •

The input routine will continue reading from this file

until an end-of-file is reached or until another :FROM

card appears. In the l~tter case it starts reading the

second file and will return to the first file when it

encounters the end of the second file. Nesting of

alternate files is al~owed up to a depth of five.

When switching to an alternate file, the ~urrent list­

ing mod~'will s;ay in effect and will be reset when

this file is left. That is, if we are currently listing

7-.!:$ LIS?

7.5

..........

:EOF

:LISP

: EXEC

ALARMS

cards and we begin reading an alternate file in

which a :UNLIST card appears, we will begin list­

ing"cards again when we finish reading" the al­

ternate file.

If we are both reading from an alternat~ file

and not listing cards as they are read, then the

messages EXPRESSION TO EVALUATE: and VALUE IS:

will not appear.

simulates an end-af-file on an alternate file

that is being"read; If this card is placed i~ .
the normal input stream, it is ignored.

causes the system ta return to the latest level

of supervision and request a new expression to

evaluate. It also shuts down all alternate files

that were being re"ad and resets the listing mode.

1s the linkage into EXEC-8 to interpret one of

its control card~. An EXEC control card must

begin in column 7 (i.e., column 7 contains the

master space). For example, the following se­

quence might be used to read from a input file

that has been built previously (say by a @DATA

card) and stored on tape:

:EXEC @ASG,MT FILE,T,l234

:FRQM FILE

:EXEC @FREE FILE.

The messages below will appear when evaluation cannot proceed.

When we say that a value is requested from the user after the

message is printed, we mean that this only happens in con-

o versational mode~When in batch mode or for other messages,

a back-trace is provided followed by a request for the next

expression to evaluate unless the error is fatal.

(

LISP 7-9

NO VALUE IS BOUND TO X

means. that an attempt was made to evaluate an atomic symbol for

which no binding exists. It can also be caused by supplying too.

few arguments to a user-defined function (see below). A value

is requested from the user but no binding will be established

unless done explicitly.

X IS NOT A FUNCTION

means that the first element of a list neither indicates a spe­

cial form nor does it evaluate to a fUnction. A function is re­

q.uested.

CANNOT TAKE CAR OR CDR OF X

means that a car-cdr chain ran across an atomic object. Eval­

uation is terminated.

WARNING t X CANNOT BE BOUND BECAUSE OF MISSING ARGUMENT

means that too few arguments were supplied to a user-defined func­

tion •. This is only a warning; evaluation will continue but NO

VALUE IS BOUND TO X will appear if the offending variable is

ever evalua ted.

WARNING, X IS AN ILLEGAL VARIABLE

means that a variable was used after a LAMBDA or PROG that has

a constant binding. .This also is only a warning. The constant

binding of the atomic symbol will not be changed and will con­

tinue to be used if the atomic symbol is evaluated.

GO X ILLEGAL

means that the label of a GO does not appear in the most recent

PROG. Evaluation terminates.

VALUE OF X IS NOT A FUNCTION

means that an operation (like [TRACE])needs an atomic symbol that

is bound to a function and it is not. A function is requested

and bound constantly to the atomic symbol.

STACK OVERFLOW

means what it says a~d no back-trace is provided. This is prob­

ably'caused by infinite recursion. If this happens during a

garbage collection, the system will die with its last gasp being

the message END OF LISP.

7~-lO LISP

",.

, MEMORY IS EXHAUSTED

means that the garbage collector could not regain anything. Eval­

uation terminates.

GUARD MODE and ILLEGAL INSTRUCTION

are error messages that can be caused by real wierd mistakes. The

most likely causes are supplying too few arguments to a system-de­

fined function or supplying a bad argument to a system-defined

function (like supplying an atom when a list is required) •.

After any error that causes evaluation to cease, the "LISP system

will check to make sure that it has not bfoen clobbered. If it

has, an appropriate message will appear and processing will halt.

Control will return to EXEC.

1-

(

-----------"----------------

Ch?pter 8

EXTENSIONS OF LISP 1.5

In the previous chapte~s we failed to mention a few facts about

the evaluation of special-forms in 1108 LISP. They are not

really that necessary and are usually not applicable to other

versions of LISP, but they are ~orth mentioning here.

8.1 IHPLICIT DO

LISP 8-1

The first extension of LISP 1.5 is involved in the special-forms

LAMBDA and CONDo ~n both cases we are allowed to write more than

one expression instead of only one as we 'implied before. When we

do so." we mean that each expression is to be evaluated in order

and the value of the last one is to be taken as the desired value;

just as if we had surrounded the expressions with a DO.

This means that the format of a LAMBDA-expression "is now

(LAMBDA (VI V2 ••• Vn) El E2 ••• Em>

The understanding is that whenever a function created by such an

expression is applied, the E's are evaluated while the variables

are bound to the arguments and the value of the last E is the

result of the function.

Similarily, if we write a conditional expression like:

(COND ••• (p El E2 En) •••)

we mean that if P turns out to be true." then each E is to be

evaluated and the last E is to be taken as the value of the

conditional expression.

8.2 IMPLICIT AND

A further extension of the conditional expression is that if a

P turns out to be true but its corresponding E is undefined (i.e.,

an unsatisfied conditional expression), then evaluation con­

tinues at the next P. For instance, in the expression

(COND (Pl " (COND (P2 E2)

" (P J E3»)

8-2 LISP
'tI. ' ..

If P1 is true but P2 and P3 ar~ both false; then the value of the

entire expression is the value of E4: Warning, if we ever define

a function by a conditional expression that might not be satisfied

and use the function as an E in a conditional expression, this

same behavior could result and is probably not what we intend.

8.3 INDEFINITE ARGUMENtS

We.Rften desire to be able to define a function that will take an

indefinite number of arg~ents. (An example of this is the sys­

tem function [PLUS].) To do this we use an atomic symbol other

than NIL to terminate the list of variables appearing after the . '.
LAMBDA. When such a function is applied, ,this atomic symbol is

bound to a list of the arguments remaining after all others are

bound. For instance, a LAMBDA-expression like
(LAMBDA (X Y Z • I) E) ~. (l." fA M ~ S - d p,; i: '" e.t A (. t4 JI'n1

means that the function expects at least three arguments. The

f'irst three will be bou~d to X, Y, and Z, while a11 others will

be grouped into a list, which will be bound to I. If it is

possible for the function to receive no arguments, then we write

it as

(LAMBDA L E)

where L will be bound to a list of all arguments supplied.

8.4 INIT~ALIZING PROG VARIABLES

It often happens that we do not wish a variable appearing after

. a .PROG to be initially bound to NIL. When this is the case, we.

can (in lieu of doing a SETQ at the beginning to give it the

desired binding) write a list of the form (PV E) instead of just

the PROG variable. This means' that the PROG variablE PV is to

be bound initially to the value of the expression'E instead of

NIL. The PROG variables are initialized from left to right.

When E is evaluated,sll PROG variables preceding (PV E) have

their initial values and the variables following it do not.

(

For example, a function to count the number of elements in a list

C3U be defined by:

(CSET 'LENGTH (LAMBDA (L)

" (PROG {(N 0»
LOOP

(COND «NULL L)(RETURN N»)

(SETQ N (PLUS N 1)

(SETQ L (CDR L»

(GO LOOP)

»)

8.5 MACROS

Since LISP expressions are also LISP objects, it seems that it

would sometimes be more convenient to compute an expression that

will evaluate to the desired value than it would be to compute

"" the value itself. 1108 LISP has a feature that allows us to do

exactly this. The pseudo-function [MACRO] takes one" argument,

which must be a list of atomic symbols to which functions are

constantly bound. [MACRO] will set things up so that each of

these atomic symbols now represents a special-form with the fol-
~ ~

lowing method of evaluation. When one of these atomic symbols
'?- "

1) I appears as the first element of an expression, its associated

\ i function (the one to which it was bound before [~~CROl was used)

1 \ will be applied to the expressions appearing after the special­

lifO.... Notice, the. functio" receives the actual expressions s,!.
arguments, not the values of these expressions, as is normally

the case. The result of this functional application will then

be evaluated and the value will be used as the value of the

original expression.

·U-4 illS?

For example,we may be writing a program in which we need an
n'

analogue of the notation r f(x). To do so we could define

function:

(CSET 'SIGMA (LAMBDA (LOWER, UPPER FN)

(COND

«GREATERP LOWER UPPER) 0)

(T (PLUS (FN LOWER) (SlGMA (PLUS LOWER 1) UPPE~ FN»)

»)
10

Now we can get r
x=O

2 x by evaluating

(SIGHA 0 10 (FUNCTION (LAMBDA (X)(TIMES X X»»
, ,

If we are really clever, we can use the macro facility to en­

able us to write:

(SUM X (0 10) (TIMES X X»

We do this by first defining a fUnction that will rewrite such an

expression into the proper form:

(CSET 'SUM (LAMBDA (VAR LIMITS EXP)

(LIST 'SIGMA

(CAR.LIMITS)

(CADR LIMITS)

(LIST 'FUNCTION

(LIST 'LAHBDA

(LIST VAR) .

EKP

»
»)

Then we do (MACRO '(SUM» and we are ready to go.
-

Another provision of {MACRO] is the ability to define new

special-forms. For instance, the special-form OR cannot be

written as a function because all of its "argumentsll are not

'. ,

(

LISP 8-5

necessarily evaluated. However, we could define it as a macro by:

(CSET 'OR (LAHBDA L

(CONI)

«NULL L) 'F)

«EVAL (CAR L» 'T)

(T (CONS ·'OR (CDR L»)

»)
(MACRO '(OR»)

\

Now when we write (O~ PI P2 ••• P~), the function defined above

will return either the expression F if there are no p's, T if

PI is true, or (O~Pi ... ·Pn) if PI is false. The evaluation

of this expression gives us exactly what'we want.

" f

1 '

.. ' .. :'
.~ ...

'---, LISP: A-l

Appendb A

FACILITIES INDEX

In this appendix we shall list all atomic symbols that are loaded -

with the 1108 LISP system and have constant bindings, i.e., are

either bound to a system-defined function or represent a special­

form. We shall also describe the meaning of the associated func-

. tions, pseudo-functions, and special-forms. Each entry is headed '.

by a sample form, e.g. t the entry for CAR appears under.

(CAR X)

Thissamp~emeans that [CAR] is a function of one argument, which

we shall indicate by the letter X while des.cribing this function.

Tnat is, X represents the value of whatever expression is written

in its place. This method for representing argu~ents applies to
,..

functions and .pse\lgo-functionsj it wil~ be changed when we get-to .-

speCial-forms because the concept of argument is not valid there.

Entries are organized into categories according to their purposes.

Under each categO.ry or entry some of the 'labe1.ed paragraphs below

may app~ar. If any appears under a category heading, it applies

to every entry in the category.

VALUE: indicates a description of the value of the sample

.form, i.e., the result of applying the function or

the rule for evaluating a special-form.

£'fFECT:. denotes that this entry is a pseudo':"function and its

effect On the system is described.

RESTRICTIONS: precedes any restrictions on the arguments, i.e, if

they must be numbers, lists, functions, etc.

NOTES:

EXAMPLE:

DEFINITION:

LOOPS:

gives any miscellaneous information.

precedes clari.fying examples.

precedes a definition of the function in LISP.

appears if the function could go into an infinite

loop or cause a stack overflow if given anargu­

ment thatisa self-containing object (such objects

.,:

can only be created by [RP~CA], [RPLACD], or some

pseudo-function that uses them).

SPECIAL~FOfu~: flags certain special-forms that appear along with

the entries for functions to contrast them with

similar functions.

SEE: indicates that useful information also appears in

previous sections •

..

." ""

.. ~. .

." ,~.

<.

(

BASIC SYHBOL }!ANIPULATION

(CONS X Y)

'VALUE: the composite object (X • Y).

(CAR X)

RESTRICTIONS: X must be composite (created by [CONS]).

VALUE: Z if X is (Z . w)

(CDR X)

RESTRICTIONS: X must be composite.

VALUE: W if X is (Z • 1-1). c

(C, •• R X)

NOTES: •• , indicates any string of A!s and D's whose 1e~gth

is between 0 and 35, inclusive.

VALUE: successive applications of [CAR] or [CDR] to X.

E~AMPLE: (CADDR X) is the same as (~AR(CDR(CDR X»).

RESTRICTIONS: X must be so composite that no application of

[CAR] or [CDR] acts upon an atom.

(RPLACA X Y)

:~

RESTRICTIONS: X must be composite.

EFFECT: 1f X is (Z • W) it is changed to (Y • W).

VALUE: X (changed).

SEE: Section 6.1.3.

(ULAC!) X Y)
RESTRICTIONS: X must be composite.

EFFECT: if X is (Z . W) it is changed to (Z • Y).

VALUE: X

SEE: Section 6.1.3.

LISP A-3

"A-4 LISP

BASIC PREDICATES

(ATOM X)

VALUE: true if X is an atom, false if X is composite.

(~Q X Y)
VALUE: true if X and Yare the same atomic symbol, false if

(EQUAL X Y)

they are different atomic symbols t false if X and Y

are different kinds of objects (e.g., X is "an integer

and Y is composite).

VALUE: true if and only if X and Yare the same, whether

they be atomic symbols t numbers, or composite. Inte­

gers are converted to reals if necessary, i.e.,

(EQUAL 10 10.0) is true as are (EQUAL 10 12Q) and

(EQUAL 10 10.0000001).

NOTES: value not specified if X and Yare functions.

LOOPS:

(NULL X)

VALUE: " true if and only if X is ~he empty list, which is

represented by the atomic symbol NIL.

(NOT "X)

VALUE: true if and only if X is false.

NOTES: same function as [NULL].

" . ;'

ARITIlMETIC FUNCTIONS

RESTRICTIONS: all arguments below must be numbers.

SEE: Section 6.5.

(PLUS N1 N2 ••• Nn)

VALUE: N1 + N2 + ••. + Nn

LIS'P A-5

NOTES: will accept any number of arguments. (PLUS) evaluates

tQ O.

(TIMES N1 N2 ••• Nn)

VALUE: N1 x N2 x ••• x Nn

NOTES: (TIMES) evaluates to 1.

(DIFFERENCE X Y)

VAl.UE: X - Y

(QUOTIENT X Y)

VALUE: number theoretic quotient', 'of" X:':and 'Y 'if ~e:Lther is

real,' otherwise real quotient.

(REMAINDER X Y)

VALUE: number theoretic rema~nder of division of X by Y if '

neith,er is real, otherwisQ floating-point residue of

division ••

(ADD1 X)

VAJ;i,UE': X + 1

(SUBl X) .
- . 'VALUE: X - 1

(MINUS X)

VALUE: one's complement of X.

(~TIER X)

VALUE: the largest integer less than or equal to X if X is

real, otherwise X.

EXAMPLE: (ENTlER iO.5) = 10, (ENTlER -10.5) = -11.

\A-6 ,LISP
"

(LOGaR Xl. X2 ••• Xn)

VALUE: logical sum of Xl

NOTES: (LOGaR) D OQ

(LOGAND Xl X2 ••• Xn)

through X regarded as 36 bit words.
n

VALUE:

NOTES:
logical product of Xl through Xn "

(LOG~iD) a -OQ (36 l-bits)

(LOGXOR Xl X2 ••• Xn)

VALUE: Xl ·tbrou~h Xn ~re haif-added.

NOTES: (LOGXOR) '='OQ

(LEFTSHIFT X N)

VALUE! X shifted left N bits with a-bits entering from

the right if N is positive. If N is negative, value

is X shifted rigb,t circularly ~(b:tts. '. ' ..

, .

ARITHNETIC PREDICATES

RESTRICTIONS: all arguments must be numbers.

SEE: Section 6.5.

(ZEROP X)

VALUE: true if X is zero, false if not.

NOTES: comparison is exact; that is, real numbers "close"

to zero are not considered zero by [ZEROPI •.

(EQUAL X Y)

NOTES: see BASIC PREDICATES above.

(NUMBERP X)

NOTES: X need not be a number.

VALUE; true if X is an-integer, an octal, or a real; false

otherwise.

(FIXP X)

VALUE: tru~ ,if X is not real, false if it is.

(FLOATP X)

VALUE: true if andonl~ 1f X is real.

(l-1INUSP X)

VALUE: true if anti only if X is negative.

{CREATERP X Y)

VALUE: , true if X is gre~ter than Y, false if X is less than

or equal. to Y.

(LESSP X Y)

VALUE,: true .if X is less than Y, false if X is greater than

or equal to Y.

NOTES: of (EQUAL X Y), (GREATERP X Y), and (LESSP XY) only

one will be true, even 'if'- X and Yare real numbers

"close" to each other".

LISP A-7' . ,

,,~-8 ,LISP

.. .,.. ... ,

BINDING ESTABLISHMENT

(CSET A V)

RESTRICTIONS: A must be an atomic symbol.

EFFECT: A will receive a constant binding to V.

VALUE: V

(CSETQ A V)

SPECIAL-FORM:

NOTES: (CSETQ CON VAL) is equivalent to (CSET (QUOT~ CON) VAL).,

(DEFINE L)

RESTRICTIONS: L must be a list of the form

({NAMEl Ei) (NAMEl E2) ::., (NAMEn En}}

EFFECT~ each E is evaluated and bound constantly to its cor­

responding NAME. The NAME's are not evaluated •.

VALUE: a list of tbe NAME's.

NOTES: (D~~IN~'«(Nl El) (N2 E2) ••• (Nn En})}

has the same effect as the sequence

(CSETQ Nl El), (CSETQ N' E) (CSETQ N E)
2 2-·" n n

(SET A V)

RESTRICTIONS: A must be an atomic symbol.

EFFECT: if A h~s ~ constant binding, then its binding is

changed to V; if A has a fluid binding, its current

one is changed to V; otherwise, a binding of A to V

is created at the level of the most recent PROG.

VALUE: V

(SETQ A V)

SP.EC,IAL-FOR.~:

NOTES: (SETQ VAR VALUE) is equivalent to (SET (QUOTE VAR) VALUE) •

(

, , ,LISP A-,9

LIST HANIPULATION

RESTRICTIONS: L must be a list or NIL.

-
VALUE: a list containing th.e elements Xl through Xn'in that

order.

NOTES: is equivalent to (CONS Xl (CONS X2 .•• (CONS Xn NIL»).

(LIST) evaluates to NIL.

(MEl-illER X L)

VALUE: true if and only if X is [EQUAL] to one of the e1e-.

mants of L.

LOOPS: ... -
EXAMPLE: EMEMBER teA B) '(A B (A (A B» C» is false.because

(A B) is not an, element of thtr ·lis't.

(APPEND Ll L2),.

VALUE: a list consisting of the elements of L1 followed by

the elements of L2•

EXAMPLE: (APPEND teA B C) teD E

(A B·t D E(F G) H)~

LOOPS:

(F G) H»evaluates to .
~,~ - ~. ..

DEFINITION; (CSETQ APPEND (LAMBDA (Ll L2)

(COND

(MCONC Ll L2)

«NULL Ll) L2)

'(T (CONS (CAR Ll) (APPE.L~D (CDR Ll) L2»)

»)) .

VALUE: same as (APPEND Ll ,L2) •.

EFFECT: Ll is changed ,so that L2 is its final segment.

LOOPS:

NOTES: It is"very easy to create a circular list with [NCONCJ,

e.g., b~ '(NooNC X X).

DEFINITION: (CSETQ NCONC (LAtffiDA (Ll L2)

(COND .

«NULL L1) L2)

(T (RPLACD L1 (NCONC (Gm~ L1) L2»)

»)

,1\-10 " LISP . , .

(LENGTH L)

VALUE: the number of elements in L.

LOOPS:

NOTES: (LENGTH NIL) = 0

(REVERSE L)

VALUE: the list (X X ••• X) if L is the list (Xl X2 ••• X). n n-l 1 n
LOOPS:

DEFINITIDN: see example in 6.3.3.

, -'

I,

'-"'!.'.
, -,

, .
. .. ~_, 'M ~ ~~_

I

SEQUENCING

'RESTRICTIONS: L must be a list, or NIL. FN must be a func­

tion of one argument.

(MAP L FN)

EFFECT: FN is applied to every final segment of L.

VALUE: NIL

LOOPS"!

DEFINITION: (CSETQ MAP (LAMBnA (L FN)

(PROG NIL

(HA?CAR L ,m)

LOOP

(COND «NULL L) (RETURN:.N!I:.)}}

(FN L)
. -

(SETQ L, (CDR L)r.> "" '- .' :' ,

(GO LOOP>'

»)

tFFEC~: ~ is applied to every ,e~ement of L.

VALUE: NIL

LOOPS:

DEFINITION: same ps [MAP] except (FN L) is changed to

(FN (CAR L».

(ONTO L FN)

VALUE: a list whose elements are the 'results of applying

PN to every final segment of L.

LOOPS:

DEFINITION: (CSETQ ,ON-TO (LAMBDA (L FN)

(COND

(HAPLIST L FN)

«NULL L) NIL)

(T (OONS (FN L) (ONTO (CDR L) FN»)

»)

NOTES: equivalent to (ONTO L FN).

LISP A,,:,il

--------------------~.----
- --- -

--------c,.--...,;-~-~ .. -~..L-aJ,--------

(INTO L EN)

VALUE: a list whose elements are the results of applying.

PH to each element of L.
LOOPS:

DEFINITION: same as rONTO] except (FN L) is change,d to
",

(FN (CAR L».

(~l'IPEX L' END FNN): .

. '0

. ~STRICTIONS! FNN must be a function of two arg.um~nts.

lfAt'UE: ... if L is the l~st (Xl~ X.z o~ • ~ . Xn), the result of [INDEXJ
. ~ '..
is' eqt:d"v~tlent to tqe exp.1,"e~~ion _

($~Xl,':FNN"X2 ••• (FNN 'Xu END»).

Lf)O~S ; If .: ,

. ftnNITION: (,C~.ETQ INPEX (LAMBDA (L END FNN) '."

(CoND
(tmn.i" 1.) *'END1 " • . ~.

(~(FNN (CAR L) .nl-{DEX (CDR L), END, FNN) ~) iJI

)'
IUMPLE: (AP:eEND X Y) is ~quival~nt to (INDEX X Y, CONS) .',

(INDEX L 0 PLUS) evaluates to the sum of the ele­

-onents of L.

(ONDEX (L END FNN~,

Il'tSTRICTIONS: same as INDEX

VALUE: the same aS,the expr~ssion

(FNN L ~FNN (CDR L) (~ (CD' '. "DRL) El,'lD)1) .

t;qOps:

tfEFINITION: same as,lINDEX] ~cept.(FNN (CAR L) ••• is

cb4~ed to (FNN L

• w _

..

.,~ \Z; .

"

,

PROPERTY LIST MANIPULATION

RESTRICTIONS: A and I must be atomic symbols.

SEE: Section 6.4.

(PUT A I V)

LISP A-l3

EFFECT: the property list of A is altered so that the attri­

bute I becomes associated with- 'the value V.

VALUE: A

(GE'l' A 'I)

VALUE: the value associated Yit~ the attribute I on the pro­

perty list of A. If the attribute I does not appear

on the' property list of ':) the value is NIL.
'"

(PROP A I FN)

BESTRlCTIONS: FN must be a function of, no argumen~s.

~UE: the ,entry for I o~ the property list of A if such an . . ~. . - - . . ~-

entry' exists (i.e., I consed with its associated

, ~alue); if an entry for I does not exist, the value

1s FN applied to no arguments.

DEFINITION: assuming that I and FN are bound to the desired

attribute and function and that PL gets.bound

to tqe property list of A, then this function

will have the same result as [PROP}.

(REHPROP A I)

(CSETQ PROP LOOK (L&~DA CPL I FN)

(COND . 'p

((NuLL <> (FN))

«EQ (CAAR PL) !) (CAR PL»

(T (PROPLOOK (CDR PL) I FN»

»)

£FFECT: then entry for I is removed from the property list

of A; -~f no such entry exists) nothing happens.

VALUE: A

.•. -.

-----::-: ~.- .~.~' -----
,-,

(FLAG A I)

EFFECT: The flag I is added to the property list of

A.
VALUE: A

(IFFLAG A I) Of

VALUE: True if and only if the flag I appears on the

p'r~p~ty ~is~ of A.

(UNFLAG A I)

EFFECT: The flag I is removed from the property list

of A •
..

VALuE: A

-. '. -:

.. -.. - .-"-- . :.: ~. -.. - . '"

.: .. ,:' ..

'"':. ... " -

LISP ,A-15 ,

EVALUATION

(EVAL E)

VALUE: the value in the expression E in the current environ-..

LOOPS:

(FUNCTION FN)

ment;, that is, using the current bindings of fluid

variables.

lmSTRICTIONS'; FN must be a function.

1JtAL1JE·:-" a new 'function which, when applied, will have its

free variables bound to the values they have now

(when we ap,ply (FUNCTION]) instead of the bindings

that they would normally have at the time of a~pli­

cation.

(LISP'IR)

RESTRICTIONS: IR must be a function of no arguments.­

EFFECT: a new level of supervision is entered, using IR to

fetch expressions to evaluate.

VALUE: whatever appear.s after the RETURN that causes the

level of supervision to be left.

NOTES: IR is opti~nal; if omitted, [READ] is assumed.

DEFINITION: see Section 7.1.,

(MACRO L)

RESTRICTIONS: L must be a list of atomic symbols that are

~ound constant1~ to functions.

EFFECT: each atomic symbol in L is changed so that it repre­

sents a special-form. Whenever such a special-form
<>,

.,.. appears, it is evaluated by applying the function

~riglnally bound to this atomic symbol to the expres­

sions (not their values) that appear as "arguments"

in the special-form. The result of this'application

is then evaluated and becomes the value of the

special-form.

'."""',',
. ,

INPUT

(READ)

VALUE: the next object appearing in the input stream.

EFFECT: the input routine is advanced past this object.

NOTES: There is no such thing as a syntax error. If the

(READCR)

input image does not conform to the rules for punch­

ing LISP objects, [READ] will make some sense (usually

nonsense) out of it.

VALUE: an atomic symbol whose print-name is (i.e., would be

printed a~ the next character in the input stream.

EFFECT: the input routine advances over this character.

NOTES: the next character is taken unconditionally, even if

(TOKEN)

• it ~s a punctuation mark or an exclamation point.

Due to the 1108 executive, there is no guarantee

about how many trailing blanks will appear in an

input image.

interpreted.

LISP control cards are recognized and

VALUE: the next token in the input stream. This will be

either an atomic symbol (then [TOKEN] acts like [READ])

or a non-blank punctuation mark (then it acts like

[READCH]) •

EFFECT! the input routine is advanced past this token.

(CLEARBUFF)

EFFECT: the input routine is conditioned so that it will

begin with the first character of the next input

image.

VALUE: NIL

NOTES: if the input routine is already ready to begin on a

new card, nothing happens.

(

(LOAD FILE)

RESTRICTIONS: FILE must be an atomic symbol whose print­

name is an internal file name of a FASTRAND

file that. has been assigned to the run.

VALUE: the first object that has been placed in this file

via [Du}W] or NIL if the end-of-file is read.

LISP A-I7

EFFECT: the constant values and property lists of atomic

symbols are altered to reflect their condition when

they were dumped.

NOTES: if FILE is omitted, the next object on the las~ £~le

given to [LOAD] or [DUMP] is loaded.

·A-IS (LISP - /. .

. \..,.~ '.
'.

.. ~ ..

OUTPUT

(PRIN! X C)

RESTRICTIONS: C must be an integer between 0 and 128.

EFFECT: the object X is edited into its external representa~

t~on'beginning in column C of the print buffer.

VALUE: NIL

NOTES: C is optional; if omitted, editing begins in the next

avaIlable column. If the p~+nt buffer is filled during .

~i~ingJ it is .pr~nted and editing.conti~u~s ~n column

C of the next buffer.

(PltINT X LIM)

RESTRICTIONS: LIM must be an inte&er~ •

EFF~CT: X is edited beginning at the next available column

a~d the final (partially filled) print buffer is

~n~ed. .

VALUE: X

NOTES: LIM is the maximum number of lines that can be 'R;t:inted

"U:~. th'l applic~tio~ of [PRINTL If .omitted. 1.00 is ..

assumed.

(.T~RPRI)
4

EFFECT: the print buffer is p~inted if it contains anlt~ing.

VALUE: NIL

NOTES: The pJ;'.int buffer can only contain something if [PRIijl]

~ ~een used. If it is empty, nothin&.happens.

(DUMP X FILE)

RES~RJCTIONS: same as LOAD above.

EFFECT: The object X is dumped starting.at sector._O of FILE.

~bi~.aump includes constant. values and property lists'

of atomic symbols.

VALUE: NIL

ROTES: If FILE is omitted, dumping starts at the next sector

of the last file specified in a [DUMP] or [LOAD}.

E

~'

(

. .".'.

~SCELLANEOUS

(SUBST X Y Z)

LISP A-l.9

VALUE: an object~ obtained from Z by changing all occurrences

of Y therein to X.
wops:
OEFIlHTION: this definition is close to' what really. ~ppens;

however. the actual function [SUBST] in 1108 LISP -

will not create any new objects unless absolutely

necessary (because a replacement for Y has been

made).

..

(GENSYM Hl

C.CSETQ SUBST (LAMBDA (X Y z) ._

(COND

«EQUAL Y'Z) X)
('(ATOM Z) Z)

tT· (.c.;oNS (SUBST X Y (CAR ZU (Sl)BS1' X Y <CI)R Z»))

»)

VALUE: a brand new atomic symbol guaranteed to be unique;

that is. (EQ (GENSYM) X) will always be false, even
.

if X is an atomic symbol whose 'print-name happens to

coincide w1th the print-name Qf the atomic symbol

generated.

NOTES: When a generated atomic symbol is printed, it will

appea~ as H:N, . where 11 is some integer. If H is

.CIit'tted. the atomic symbol G is assumed.

E~~LE: If [GENSYM] has never been used, the atomic symbol

generated by evaluation of {GENSYM (GENSYM 'LABEL»

will be p:;i~ted as LABEL:l:2.

(OBLIS1' FN)

RESTRICTIONS: FN must be a function of one argument.

EFFECT: FN is applied to every' atomic symbol currently in

existence with the exception of those generated by

[GENSYM}.

~- ------------~~~--~~---

VALUE: NIL

NOTES: If FN is omitted, all the atomic symbols will be

printed.

(AHB X Y)

VALUE: ambiguous, either X or Y.

NOTES: LISP's ver~ion of a random number generator is this

random "argument picker.

(IFTYPE X N)

RESTRICTION:

VALUE:

N must be an integer between 0 and 7.

tru~ if and only if the object X is of type N,

where N is:

o means composite object (built by [CONS])

1 means integer

2 means octal

3 means real

4 means address out of bounds (like system

defined functions)

5 means compiled code

6 means linkage node (usually, created by the

special-form LAMBDA or a car-cdr chain)

7 means atomic symbol

NOTES: Types 4, 5 and 6 are unprintable objects and are the only

ones tha t can be" func tions.

(ERASE L)

RESTRICTIONS: L must be a list of atomic symbols

EFFECT: Each atomic symbol in L has its property list

emptied (set to NIL) and its constant binding

(if it has one) removed.

VALUE: NIL

/

. ,

) ,

DEBUGGING

(TRACE L N S)

,RESTRICTIONS: L must be a list of atomic symbols to which

functions are constantly bound. Nand S mus,t

be integers.

LISP A-21

EFFECT: Each function bound to an element of L is trapped so

that its arguments will be printed when it is applied

and its result is printed after it is computed.

Tracing begins as soon as the function has been

applied S times and ends after it has been traced N

times.

VALUE: NIL

NOTES: If S is omitted, I is assumed.

(UNTRACE L)

If N is zero, the functions will never stop being traced.

If both Nand S are omitted, 0 and I are assumed.

Tracing uses [PRINT] with a five line limit.

RESTRICTIONS: same as L'in TRACE above.

EFFECTS: TraCing 4s removed from the functions indicated in L.

VALUE: NIL

(!-IEWDEF N FN)

RESTRICTIONS: N must be an atomic symbol to which a function

c~eated by evaluation of a LAMBDA-expression

is constantly bound. FN is a function of one

argument.

EFFECT: The LA}lBDA-expression that evaluates to [NJ is recon­

structed and FN is applied to it. This result is

then evaluated and replaces the old binding .. of· N.

VALUE: N _ - .-

EXA~LE: This pseudo-function is used to fix faulty defini­

tions when running conversationally. For instance,

suppose 'ole have defined a function [TEST] that erro­

neously contains the expression (CONS X), where we

t . .I\-22 ,l', LISP

'really meant (CO~S X L). Instead of redefining

[TESTJ, we can pat~h it up by evaluating

(NEWDEF 'TEST

(LAMBDA (I) (SUBST '(CONS X L) '(CONS X) 1))

".

"

(
'"

CONPILER

(*BEGIN)

(*EHIT I A)

(*ORG A)

(*EPT N)

(*HACRO X)

(*CHAIN X)

(*DEF X)

. ,

NOTES: These functions are necessary for the LISP compiler

and are of no concern to us. They are only listed

here since these atomic symbols do have constant . .
bindings and therefore cannot be used as variables.

(*CAR X)

VALUE: same as (CAR X); .. •

LISP 1,\-23

NOTES: There are some· wise guys (like the LISP compiler) who

want to take CAR's and CDR!s of atoms. [*CAR] allows

th~ to transgress in this manner without terminating

evaluation.

("'CDR X)

NOTES: Same idea as *CAR.

I '

~-24)LISP . '

TRUTH FUNCTIONAL CONSTANTS l' 'D'· - .. 't-."
NIL

Evaluates to NIL.

T

Evaluates to T.

F

Evaluates to NIL.

"'~,t.

-
~::~~~
• 'f,,~

-. rD ~i ~ .
• >.

LISP ::\;....25 '

SPECIAL-FORMS

A letter used in the sample for a special-form represents whatever

object is actually written in its place and not the value of that

object, since the concept of that object having a value does not

necessarily apply"

(QUOTE X)

VALUE: X

NOTES: [READ] translates 'X into (QUOTE X).

(COND (~1 Ell E12 ••• Eln) (P 2'E2l ••• E2m).·· • (Pi Eil •• ·~ij»

VALUE; Each P is evaluated from left to right. When one is

found that is true, each associated E is evaluated. . . .
The value of the last such E becomes the value of the

cond1~i~nal ex~ression. If the last E is a conditional

expression for whicbn~P is t~ue, then evaluation

continues with the next P in the f~rst'conditional

exprfitssion.

(WiBDA(V1 V.i;< .••• Yn) El E2 ••• Em}

P~STRICTIONS: Each V must be an atomic sYmbol that

will never have a constant binding.

VALUE: a function"of n arguments whose result is computed

by evaluating El through Em in an environment where

each V is bound (fluidly) to the corresponding argu­

ment of' the function. The value obtained from the

la~t Ehecomes th~ result when the function is applied.

(DO 'E1 -E2 :· • En' .
VALUE: the value of the last E, but all Ets are evaluated.

EFFBtT: whatever ef~ect the E's have.

(AND PI P2 ••• Pn)

VALUE: true if no·P evaluates to false; if one does, the

value is false and no more pIS are evaluated.

..

VALUE: false if no P evaluates to true; if one does, the

value is true and no more pts are evaluated.

... E) m·
VALUE: the same function as the value of

~~CT:QN (UMBDA (Vi' V2 ·••• Vn.~~l ~2 ••• Em»

~ ,' ...
'" , .

.. .. - of:

0', _ •.

Q. ~. ..' ,. •

. ,

•• :'"" .!, .

, ": .. , .,

. . .. ",

~ .. -- .. :":~J"''''' :
. --'

.. ::fii"

..

----;- ... ,

.. ". -.. .~
" lIP

,. .•.

PROGRAH FEATURE

(PROG (V1 V2 ••• Vn> S1 S2 ••• Sn)

, '
RESTRICTIONS: Each V must be either of the form PV or (PV E)~

where PV is an atomic symbol without a cons_tant

. binding.

EFFECT: For each V of the form PV, PV is bound to NIL; for

each V of the form (PV E), PV is bound to the value

of E. ·Then each non-atomic S is evaluated in this

expanded environment.,

VALUE: NIL, but see RETURN below.

NOTES: The SIS that are atomic symbols are labels that may
.'

be referenced by GO.

(SETQ PV V)

NOTE;S: see BINDING· ESTABLISHMENT above. . ~ . . .
'~', '

(GO LAB)

RESTRICTIONS: LAB must be'a label appearing in the PROG that

(~.) surrounds this GO.
EFFECT: Evaluation of the statements in the surrounding PROG

continues with the statement following the first

appearanc~ of the label LAB.

(RETURN V)

EFFECT: V is evaluated anu its value becomes the value of the

most recent PROG-expression.

j.

.(

/
r

\

~---~-- --- " -------.----~-----

LISP B-1

Appendix B

RUNNING LISP UNDER EXEC-VIII

Since LISP resides on the 1108 system library, to use the LISP system

we submit a run with a standard UWCC 1108 @RUN· statement followed by

a @LISP control statement followed by the expressions that we wish to

evaluate. LISP is not a processor in the 1108 executive sense; that

is, there are no automatic facilities in ~ISP for producing or updating

files of source input. To do so we use the DATA processor of EXEC VIII

and :FROH control card of LISP.

The format. of the @LISP statement is

@LISP,options

where the options can be

B

C

Z

means that LISP is to be run in batch mode.

means that LISP is to be run in conversational mode •.

Note: neither of these options is necessary, because

LISP determines the mode automatically 'whe~ it is loaded.

inhibits checking to see if [CAR] or [CDR] is being applied

to an atom.

If the LISP system cannot recover from a GUARD MODE or ILLEGAL

INSTRUCTION error, the 1108 message indicating that such an error

occurred will probably appear. The messages are IGDM or IOPR,

respectively .. follmved by a register dump. These errors are fatal.

Th~ deck setup is illustrated on the follOwing page.

, .

~.
't ... " ;.:.l'~.

('9;"­

I
~

~

r fF1N

J. EXPRESSION$

/'LI.~P
'~f<:UN . f~O~}jAH ,F;F}-F;~'UUOU

I
I I IIID I IHr

,,- -,.
. I

T.O BE EVA:LUATED

o 0 I 3 0 0 n 0 0 0 0 I 0 0 0 0 1 I I I I 0 0 COO 0 0 0 0 0 0 0 0 OiO 0 (} 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 COO 0 0 0 0 n 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0
12l.51 Illq"UnH~~n~~~~unMDnnn~~~U~M»~n»~~~~~~a«"«u.~~~~~~u~~~~~QA~"Vu~ronnnH~~~n""

I 1 1 I 1 1 1 lIt lIt 1 1 '1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 lIt tIt t t ttl 1 1 1 1 lIt 1 tIl tIl 1 1 1 1 1 1 1 I 1 1 1 1 IIi tIl 1 11 1 1
',f:l':"~~,:;:~ t~r.:~~ ~~fr?:~: ::,~:::~~_~;::: ~ft;::'f~~ :?1.:.1.f~~(~~:... " ... ~,~{!(.. ·\k·;.. .

2 2 2 2 2 2 2 2 2 2 2 2 2 t 2222222"1;222 'l'H 2 ,.4"1..2 22·;:ll2 212 2·i:;·r;q i212··:t2·?1J2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 22222.2222
. :THEJJN~\h.:.RS1TY·:··OF,··: \ViSCOl'\iSH\:·

33333333333 j]333 ~333.n:·:n3~;33~·.J.3n·lxn~3:·~);r ... 33333'1p.J333333333333313333~333333J3
, :~:'//!~;J~ ~::~~(::~ :.;::r.'::)?'::'~:' "~,~~~:!~.~:,.:::~::;: h::/ .. :':~ l.'· '-.;:,::.~ . -

44 144444 144444444 t II h'iF4 4 {~.~ 4 4 ;ffh:~ 4 ~··.f ~', 4~ ~·i14 ,144 A n·;.:~.; ~ ,N:4 4 4 4 4 ~ ~ 4444444444444 4 4 4
:.:", .. : ·~:O~·.~~0::.'jl*~,;~~:~J (·E.::~·~~T::::=~ :. ,

S 5 5 15 Is 5 5 5 15 5 '5 5 a 5 5 5 5 5!ll} [j5 5,5 5 5 5,;j!j ~ 5 5 .~ ~.:} 5 5 5 ~~ :;, 'n·~ 5 5 ~,j :;:·11 '7J;;; ~ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 .. 5 5 5 5 5 5 5 5
• "".:;,~.~.:~~) ... " '.:;.,:",,1. ~.:.::.:;' -'''' .•... " ~-~ •. :, ~ ",

G G Ii S G 6 Is 6 6 6 Ii 6·6 S 6 B 6 6 6 5 6 C ~ 6 6 ~ Ii 6 S G 5 6 6 5 6 6 6 6 6 6 6 6 6 S 6 6 6 6 G S 6 G 6 G G 6 G Ii 6 6 6 6 Ii 6 6 6 S 6 6 6 Ii Ii 6. Ii G Ii 6 6 5.

177 7 n 71 7.1 71 f I 117 17 !7] 17 11 7 7777 11 77 .111 77 7117 7 1117 7 711 77 777 71117 n 77 17 n 17 1 7,7 7117

I a 8 a 8 8 8 B 8 8 8 18 8 8 8 18 8 8 ~ 8 B 8 8 8 S e 8 8 8 8 /J.B 8 8 a B 8 8 as g 8 8 8 8 8 8 8 8 8 8 S 8 8 8 8 8 8 8 8 8 B 8 8 8 9 8 8 8 g B 8 {S 8 8 8 8
, . 4 . .

9 19 9 9 9 9 19 9 9 !l S 9 9 9 9 9 9 9 99 9 9 II ~ ~ 9 9 9 9 5 9 9 $S 9 9 9 9 9 9 9 9 g S 99 9 9 9 9 9 ~ 9 9 9 ~ 9 9 :J ~ U !IS 9 9 9 !l H 9 gg 9 9 9 9 9
lIJ.SJ)i9l0"~q~agn~a~.unHft~n.a.ft~V~.~~YDqagQ~6UUUUMaUUM~.H~U~pV~M6"D"~ro"pn~~~~q~n

llm .•• B.i: ______ __ _. .. 0171411.

.-
f.

~ t:::1:a

~1
{

u I .'1>1

I I I

, 0 0 .~ .) ..
11ftll

1 1 1 n
b22 4 ~

333)~

I

iU ~44 I

55 t 111
I
666

J ~ 111 U
''''1

888 I

~B r~ II ?n
71U,

	Norman_Lisp_1108_Ref-19690001_a
	Norman_Lisp_1108_Ref-19690001_b
	Norman_Lisp_1108_Ref-19690002_a
	Norman_Lisp_1108_Ref-19690002_b
	Norman_Lisp_1108_Ref-19690003_a
	Norman_Lisp_1108_Ref-19690003_b
	Norman_Lisp_1108_Ref-19690004_a
	Norman_Lisp_1108_Ref-19690004_b
	Norman_Lisp_1108_Ref-19690005_a
	Norman_Lisp_1108_Ref-19690005_b
	Norman_Lisp_1108_Ref-19690006_a
	Norman_Lisp_1108_Ref-19690006_b
	Norman_Lisp_1108_Ref-19690007_a
	Norman_Lisp_1108_Ref-19690007_b
	Norman_Lisp_1108_Ref-19690008_a
	Norman_Lisp_1108_Ref-19690008_b
	Norman_Lisp_1108_Ref-19690009_a
	Norman_Lisp_1108_Ref-19690009_b
	Norman_Lisp_1108_Ref-19690010_a
	Norman_Lisp_1108_Ref-19690010_b
	Norman_Lisp_1108_Ref-19690011_a
	Norman_Lisp_1108_Ref-19690011_b
	Norman_Lisp_1108_Ref-19690012_a
	Norman_Lisp_1108_Ref-19690012_b
	Norman_Lisp_1108_Ref-19690013_a
	Norman_Lisp_1108_Ref-19690013_b
	Norman_Lisp_1108_Ref-19690014_a
	Norman_Lisp_1108_Ref-19690014_b
	Norman_Lisp_1108_Ref-19690015_a
	Norman_Lisp_1108_Ref-19690015_b
	Norman_Lisp_1108_Ref-19690016_a
	Norman_Lisp_1108_Ref-19690016_b
	Norman_Lisp_1108_Ref-19690017_a
	Norman_Lisp_1108_Ref-19690017_b
	Norman_Lisp_1108_Ref-19690018_a
	Norman_Lisp_1108_Ref-19690018_b
	Norman_Lisp_1108_Ref-19690019_a
	Norman_Lisp_1108_Ref-19690019_b
	Norman_Lisp_1108_Ref-19690020_a
	Norman_Lisp_1108_Ref-19690020_b
	Norman_Lisp_1108_Ref-19690021_a
	Norman_Lisp_1108_Ref-19690021_b
	Norman_Lisp_1108_Ref-19690022_a
	Norman_Lisp_1108_Ref-19690022_b
	Norman_Lisp_1108_Ref-19690023_a
	Norman_Lisp_1108_Ref-19690023_b
	Norman_Lisp_1108_Ref-19690024_a
	Norman_Lisp_1108_Ref-19690024_b
	Norman_Lisp_1108_Ref-19690025_a
	Norman_Lisp_1108_Ref-19690025_b
	Norman_Lisp_1108_Ref-19690026_a
	Norman_Lisp_1108_Ref-19690026_b
	Norman_Lisp_1108_Ref-19690027_a
	Norman_Lisp_1108_Ref-19690027_b
	Norman_Lisp_1108_Ref-19690028_a
	Norman_Lisp_1108_Ref-19690028_b
	Norman_Lisp_1108_Ref-19690029_a
	Norman_Lisp_1108_Ref-19690029_b
	Norman_Lisp_1108_Ref-19690030_a
	Norman_Lisp_1108_Ref-19690030_b
	Norman_Lisp_1108_Ref-19690031_a
	Norman_Lisp_1108_Ref-19690031_b
	Norman_Lisp_1108_Ref-19690032_a
	Norman_Lisp_1108_Ref-19690032_b
	Norman_Lisp_1108_Ref-19690033_a
	Norman_Lisp_1108_Ref-19690033_b
	Norman_Lisp_1108_Ref-19690034_a
	Norman_Lisp_1108_Ref-19690034_b
	Norman_Lisp_1108_Ref-19690035_a
	Norman_Lisp_1108_Ref-19690035_b
	Norman_Lisp_1108_Ref-19690036_a
	Norman_Lisp_1108_Ref-19690036_b
	Norman_Lisp_1108_Ref-19690037_a
	Norman_Lisp_1108_Ref-19690037_b
	Norman_Lisp_1108_Ref-19690038_a
	Norman_Lisp_1108_Ref-19690038_b
	Norman_Lisp_1108_Ref-19690039_a
	Norman_Lisp_1108_Ref-19690039_b
	Norman_Lisp_1108_Ref-19690040_a
	Norman_Lisp_1108_Ref-19690040_b
	Norman_Lisp_1108_Ref-19690041_a
	Norman_Lisp_1108_Ref-19690041_b

