“ve

MIIVAC 1108 Reference Manual

LISP

by Fric Norman

This document describes LISP, a hich~level lan-

suage for symbolic compnutations. The intent is

to describe LISP in eeneral. However, specifics
are given conterning a particular version, name-
ly the 1.ISP system for the UNIVAC 1108 as imple-
mented at the Universitv of Wisconsin Comnuting

Center.

e

l‘

2.

INTRODUCTION TO LISP. . .
The UNIVERSE OF DISCOURSE

2.1 Atomic Objects . . .
2.1.1 Numbers . . .
Integers
Octals

. Reals

Contents -

1108 LISP

2.1.2 Atomic Symbols. .
2.1.3 Unprintable Objects

2.2 Composite Objects .

2.2.1 Lists . o o .

2.3 Additional Syntatic Rules,

THE LANGUAGE

3.1 Evaluation

3.2 Functional Application

3.3 Evaluation of Atoms.

3.3.1 Variables . .
3.3.2 Constants . .

3.4 Summary. o .

THE OPERATIONS

4.1.1 Construction.
4,1.2 Selection . .
4.1.3 Predication .

Truth-Values

4.2 Special-Forms

. . .

4.2.1 QUUTE
4.2.2 COND
4.2.3 AND,OR,NOT, .

.

'4.l~ Some Primitive Functions

o e ,’3"' l

e o 3"‘1
- - 3"'2
. « 3-3

4-3
Jh-4
: Jb4-4

S.

6.

Page 2

Contents

1108 ' LISP -

4,2.4 TAMBDA . . . ¢ o . .
4.3 Functional Definition. . . e
4.4 LAMBDA Revisited « ¢ ¢ o o o

Free Variables
4.4.1 The FUNCTION Function
THE LISP SYSTEM ¢ o s « o s « o =

5.1 The Evaluator. . « « o o o+ &
5.2 The Standard Supervisor. . .
5.3 An Example . + &+ ¢ ¢ ¢ o o

EP"BELLISHP{ENTS A A e A

6.1 Pseudo-Functions . « « « . .

6.1.1 READ. + v v o o o + &
601.2 PRINT e o . e o o .0 o
6.1.3 RPLACA,RPLACD

6.2 DO . . 3 e & o o . . o o . 3
6.3 PROG 4 & & o s va o o o o o

6.3.1 SET,SETQ. + « & & « &
6-3.2 GO‘ . o * Ll
6.3.3 - RETIIRN.

6.4 Property Lists

6.4'1 PUT L] L] . L] L] L] L] o L]
. 6.4.2 CGET v o o o o o o o «
6.4.3 Flags . « v & « o s+

6.5 Arithmetic
Mixing Types

Real Comparis?ns
THE COMPLETE LISP SYSTEM.

7.1 The Expanded Supervisor. . .

7.2 The Conversational Mode. . .

Ry

Page

« 6-1
« 6-1)
. 6-1 :)

. 6-3

. 6-4
. 6-4

- 6-5

.
T
W

+ 6-5

- 6-6

«7-1

. 7-1
.7-3

R

Page 3

. Contents

1108 LiISP

7.2.1 Another Example

7.3 Debugging Aids . . .

7.3.1 TRACE,UNTRACE .

7.3.2 The Back-Trac
7.4 LISP Control Cards .

7.5 Alarms

8. EXTENSIONS OF LISP 1.5. .

8.1 Implicit DO,
8.2 Implicit AND

e,

8.3 1Indefinite Arguments .
8.4 TInitializing PROG Variables.

8 - 5 Macros * . . L] L] L .

Appendix A FACILITIES INDEX

-

.

*

ppendix B RUNNING UNDER EXEC-VIII .

> o . *« o @ e+ o s » 8~3

.\(

LISp 1-1

Chaptar 1
INTRODUCTION TO LISP

LISP is yet another programming language that belongs in the by
category of list-processing langﬁages; that is, it deals with
(manipulates, performs computations on) objects that have a
certain amount o% structure. Although there is essentially
only one type of structured object available in LISP, it is a
very general one aﬁd can serve to represent any type of struc-
tured object desired (although sométimes not efficiently).
LISP is at its best when dealing with objects that have unpre-
dictable sizes, liké representations of theorems in proposi-
tional calculus, possible moves to be made in a game such as
chess, complex molecules in organié chemistry, or électrical

circuits; LISP has been used to solve problems in all these

‘areas,

It has been found that once people get used to LISP, it becomes
an extremely useful and powerful tool. This is becaﬁse LISP
assumes most of the "dirty-work" of programming; namely, allo-
catiofi of memory, saving temporary results and the like. How-
aver, it does take a while before one can feel at ease with
LISP. This is caused mostlyby the syntax which, although very
simple and consistent, is somewhat difficult to read (the claim
is that LISP is really an acronym for Lots of Insipid Stupid

Parentheses).

Furthermore, LISP requires that one think in a manner different
from other programming languages; specifically, LISP emphasizes
the expression'instéad of the statement. By an expression we
mean something that specifies a value to be computed;.a state-
ment indicates something to be done with such a value. The
justification for this approach'is that the value computed by
an expression is that in which we are really interested. For
example, when we write an ALGOL assignment statement such as

V i= A + B, the important thing is the sum of A and B;

[

»

1-52° .LIIP

the fact that we assign their sum to V is only a means to an end;
i.e., we do the assignment because we are going to need the sum
of A and B later, eilther because it 1s the answer we want or be-
cause it is going-to be used in another expression. In LISP such
behavior is discouraged. Instead of computing the sum of A and

B beforehand, we compﬁte it‘when we want it; that is, we write an
expression that computes A + B as a subexpression of some other
expression that needs this sum. Or if A + B is the answer that
we desire, then we need do nothing more than write it; the LISP
system agsumes that we are interested in knowing what the sum is

and therefore prints it.

The impact of the LISP approach is that in order to understand
LISP, we have to forget that we ever knew about such thinés as
assignment statements or sequences of instructions and bégin think-
ing of ways to build up expressions that describe the result we
want. Another way of saying all this is that in LISP we describe
the answer that we want and not the steps that the machine is to

perform in order to coﬁpute it.

This programming approach makes LISP a very high-level language
and this paper describes it as such. We are going to talk about
LISP in more or less ab;tract concepts and not concern ourselves
with the details of what 1s actually happening inside some com—
puter. Readers who are interested in such details are encouraged

to consult other references such as the LISP 1.5 PRIMER (by

Weismann; Dickenson Pubiishing Company, inc., Belmont, California,
1967} or the LISP 1.5 PROGRAMMER'S MANUAL (by McCarthy, et.al;

The M.I.T. Press; Cambridge, Massachusetts, 1962).

Although the primary purpose of this paper is to describe LISP,
we are also going to describe a parﬁigﬁlar LISP system, namely,
The University of Wisconsin Implementation for the UNIVAC 1108
computer, It will not always be indicated when LISP in general

or 1108 LISP in particular is being described. The assumption

being that this will usually be obvious. In those cases where

the digtinction is not obvious, it is so intentionally. The

e

v

reason is that 1108 LISP has fundamental differences in design from
other LISP systems. For thosé familiar with other systems, the two
most important differences are the manner in which functions are
treated and the manner of commugicating with the LISP supervisor. It
is hoped that the treatment of LISP provided herein is much "cleaner"

and less confusing than that of other LISP systems.

We shall be more interested in developing the principles that un-
derlie LISP than we are in describing what LISP actually is. That
is, the following chapters are intended to convey only enough in-

formation so that we can get a feeling for LISP and how it-might be

used. Appendix A is included to give all the specifics really avail- "

able in 1108 LISP. .

Lo
..hiat as to the answers of the others. .

LiSP

Chapter 2
THE UNIVERSE'OF DISCOURSE

In order to gain an understandiqg of any programming language, we
must eventually be able to answer three questions. First, what ~
objects are available to manipulate; that 1s, what types of data
are” allowed? Second, what are the manipulatigﬁs or computations
that ﬁewhay perform on these objects? And finally, how do we in-
dicate the computations that we desire; i.e., how do we write a
prqgram? Although these questions are 1og1callv asked in this
ofder,,we shall answer them in a different order; namely, we are

ghing to answer the first, then the third and finally the sec-

'ond The reason is mostly that in the case of LISP it seems eas-

igfhto answer them this way, but we shall also find that it is

impossfble to answer any one of them without glvinq at leagt some

'

r e - . ®

In this,cpapterﬁ we shall describe the objects that LISP is ca-
pable of méqigulating and also give the rules for writing them.
Thet ié, we shall indicate which character sequences that we
have to submit as input (e.g., via a punched card or‘teleéypej
in order to specify a certain LIS? object to the system. When
the LISP input-routine detects a character sequence in ité in-
puttﬁhgt'reﬁresents a LISP object, it creates the appropriate
representatlion in the memory of the computer. The LISP system
wil} deal excluslvely with this internal representation as it
goes about its business and will only reconvert it to external

form when it is necessary to print a LISP object.

- ATOMIC OBJECTS

Our first concern shall be those objects that are atomic. We
say that an object is atomic because we do not consider it to
be built out of other objects. The general rule for writing
atomic objects is that they must be delimited on both sides by

a punctuation mark. The punctuation marks of LISP are space,

2-1

2-3

LIS

2:1.1

comma, period, and left- and right-parentheses. In 1108 LISP addi-
tional punctuation marks are included, namely: square brackets,
broken brackets (greater than and less than signs), the apostrophe,

and the question mark punch. .

Numbers 4

As with most other languages, LISP includes numbers in its universe

of discourse and,’ as usual, there are two kinds: Integers and reals.

Igtegers are written as any sequence of decimal dipits optionally

preceded by a sign and optionally followed by the letter "E" and a

-decimal scale factor. Examples of integers are: 0, +3, 10, -256,

16 (same as 1000000), and -0. Examples of'hbn-integers are: +,
A, 3AB, -10EE.

Integers ﬁay also be written in octal. This is indicated by a seq-

" uence of octal digits with optional sign and followed by the letter

2.1.2

|

e

"Q" and an octal scale factor. Legal octal numbers are 0g, 77Q3
(same as 77000Q), and -77Q2. A minus sign indicates that the one's
complement is desired and scaling is performed by doing a circular
left shift of the signed result; hence, -77Q2 is the same as
7777777700770 |

Real numbers must contain a decimal point, which.may not be the
first character, and may optionally be followed by the letter "E"
and‘a_decimal~exponent. Examples of real numbers are 0.0, 3.14159,
4,3E10, and -2,061E-22,

Atomic Symbols

One of the features of LISP that allows symbolic computations is
theladmission of atomlc symbols into the universe of discourse.

For the time being, we can think of an atomic symbol as a “char-
acter string'" although we shall discover later thét it is really
a little more. We usually write an atomic symbol as any sequence
of characters that begins with a letter of the alpﬁabet; however,
the 1108 version of LISP will.treat any character sequence that

cannot be 4nterprete& as a number as an atomic symbol.

2.1.

LISP 2-3

Sometimes the need arises to write atomic symbols that contain punc-—
tuation marks. This 1s done by preceding the offending character
with an "I". The "!" means that the object being written is an
atomic symbol and that the next character is to be included in this

atomic symbol no matter what it is.
v

Examples of atomic symbols are:
ABC, NIL, +10EE, A!1(B (prints as "A(B"), A-VERY-LONG-ATOMIC-SYMBOL,
213 (note, this 1s an atomic symbol, not a number; furthermore, it

is the same atomic symbol as 123), and 1! (prints as "I").

We must notice that "atomic symbol'" and "atomic object" do not mean
the same thing. The set of atomic objects so far includes as (dis-
joint) subsets the sets of atomic symbols, integers, octals, and
reals. In order to discourage confusion, we shall henceforth use
"atom" to refer to atomic objects in general and use "atomic symbol"

when we mean exactly that.

Unprintable Objects

There is a class of objects in LISP that cannot be introduced'as
input; that is, there is no way that an internal representation

can be generated for them by the input routine. The only way such
objects can be created is by internal computations. The most im-
portant member of this class is the function. The impact of al-
lowing a function to be a LISP object is that it may be manipulated
as freely as any other object. LISP is somewhat unique in this

respect.

Because such objects exist, the system needs a convention to in-
dicate when an attempt i1s made to print one. Since an unprintable
object is almost always a named function, the system will print
such a function as [FN], where FN is an atomic symbol that names
the function (we shall discover shortly what we mean when we say
that a function is "named" by an atomic symbol). In the rare

case when an unprintable object is not a named function, the 1108

LISP system will produce a character sequence something like

2-4 LISP

[4:44006Q)]. 1If one of these funny things appears in our output, it

probably indicates that we have made an error; so, for most purposes,
such a character sequence should be interpreted as a diagnostic

meaning "attempt to print unprintable object".

2.2 COMPOSITE OBJECTS v

So far, our universe of discourse is known to contain atoms. In
order to expand it even further, we will allow objects to be put
together to form larger objects. The LISP operation that allows
us to do this 1is called construction and works as follows: Given
any two objects, say Al and Az, we can group them together to form

a new object, which we shall write (A1 . Az).

Now given only one atom A and the comstruction operation, we have
an infinite class of objects, i.e., A, (A-A), (A-(A-A)), ((A-A)-A),

~ and so forth.

When writing these objécts, we should include a space before and
after the period in order to avoid confusion with real numbers,

although the spaces are not required if no confusion is possible.

2.2,1 Lists

This set of composite objects is fine in theory, but nobody would
want to have to write or read a large one; therefore, we shall
concentrate on a certain subset of these constructed objects that
is'much more convenient. We shall call members of the subset
lists, 1i.e., we want the ability to speak of lists of atoms, or
lists of lists, etc.

e,

First, we need a conventional representation for the empty list.
LISF uses the atomic symbol NIL for this purpose. Now, a list
whose elements are the objects Xl’-XZ’ X3, v Xn is fépresented

by the composite object

(xi - X

3

p ¢ Ky v wee (X - NILD)))

N

2.3

LISP 2-5

We may write such an object as:

Xy Xy Xy e X)) |
with spaces or commas separating the elements if they are atomic._
Notice, a list is not a new type of object, but only a certain '

type of composite object’ that is far more convenient to write.

Looking ahead a bit, we can consider that we will want to per-
form operations with lists such as getting or removing the first
element. These operations are very easy since we have functions
tﬁat get‘the left and right parts of composite objects; i.e., the
left-hand part of a list is its first elemeﬁt and the right-hand
part is the list tﬁat remains after the first element is removed.
Furthermore, when we remove all the eléments, i.e., when we take
the right-hand part of a iist of one element like (Xn - NIL), we

get the empty list just as we would expect.

We can notice the rule that a composite object may be written
completely in list notation if and only if every atomic right-hand
part of a constructed object contained therein is the atomic symbol

NIL.
A few examples of the list notation are:

(A - (B - NIL)) may be written (A B);

((A « NIL) - ((B » NIL) « NIL)) is the same as ((A4) (B));

NIL is the same as ();

((A-» B) « ((C - D) +'NIL)) may be written ((A-B) (C<D));

while (A - (B » (C « D))) cannot be written as a list be-

cause the -D is in the wrong place.
As- a sidelight, the last example above is so close to being a list that
it may be written as (A B é . D) and will in fact be printed that way.

ADDITIONAL SYNTATIC RULES

The following rules apply when punching objects:
(1) Atoms may not cross card boundaries.
(2) Spaces and commas are equivalent, i.e., (A,B,C) is the same

as (A B C).

2-56 LIZP : . o N , , .

(3) A punctuation mark preceded by or followed by any number of

£y

spaces or commas is equivalent to that punctuation mark.
(4) A question mark punched anywhere on a card causes it and all char-
acters following it to be ignored until the end of the card. -
(5) Square and crooked brackets ([,],<, and >) may be used in
place of parentheses.v .

The three types of parentheses also have another useful feature.

Whenever a closing bracket is encountered, i.e., '")", "]"

, OX"
“s>¥ it is forced to match the corresponding opening bracket,
i.e., "(", "[", or "<", by generating closing brackets that
match opening brackets until the correct match is obtained. For
example, if we are going to punch a large composite object we
may start it with a "[" and use parentheses within the object.:
Now, when we get to the end, we do not have to count the ‘number
of unmatched left-parentheses that we have written so far; we
simply punch a "]" and the system will generate the correct num-
ber of right-parentheses. That is [A (B C] is equivalent to

(A (B) and (A[B CJ< (D E) F) is equivalent to (AB O((® B) B).)

We should point out that the output routine only uses parentheses.

Square brackets are reserved for printing unprintable objeéts.

3.1

Chapter 3
THE LANGUAGE

No& that we have a class of objects at our disposal, we have an-
swered the first question presented at the beginning of Chapter
2, In this chapter we shall answer the third question, namely,
how to write LISP programs,

EVALUATION

As indicated in the”introducfion, the way that we do things in
LISP is by evaluating expressions; that is, assuming that the
answer we seek is represented by some LISP object (as it usually
is), then all we do is submit an expression that will compute

this object. The LISP system will evaluate the expression and

print its value. *

Intuitively .every expression denotes some value by giving a
method of obtaining that value in terms of other known or comp-
utable valués., For instance, we are familiar with (non-LISP)
expressions such as 5+1, SIN(m x N/4), or lg‘ fk;)-

x=0

In the second‘example.we hdave expressed a value in terms of the
three values N, m, and 4, right? Absolutely not! We have ex-
pressed the value’ in terms of six values, namely, the values that
we indicéte by the symbols SIN, w, x, N, /, and 4. The point

is that in order to evaluate an expression, we have to know the
values of all symbols appearing therein, and, furthefmore, we
must know what we are supposed to do with these values. 1In the
exémple above, we supposedly know the values of the symbols

T, xs and N and we (by convention) agree that the expression

m x N indicates that we are supposed to apply the value (function)

represented by x to the values (arguments) represented by 7 and
4'

The same principles apply in LiSP, although there is no restric-

tion that the value of an expression must be a2 number; it may

LISP 3-1

LIS?’

3.2

be any LISP object. What we are goihg,to describe in this chapter
are the conventions or rules that allow us to assign values to -
symbols appearing in expressions and that indicate to us what we

are supposed to do with these values. - -

Application of the rules will henceforth be called "evaluation";
i.e., whenever we say something like "evaluate" from now on, we

are referring specifically to the rules about to be described.

We shall also reserve thz word "value" to use only when we are
referring to the object that arises by evaluating a LISP.expression.
Traditionally we tend to use the word "value" in another context,
namely, when we say something like "the value of SIN for n/2 is

1". Since this is not the way we are using the word "yalue" here,
we shall use the word "result" in this context; i.e., we shall

say "the result of SIN" instead of "the value of SIN".

- The question now arises, just;ﬁhét is a LISP expressioﬁ? In LISP,

an expression is just gnother LISP object; that is, LISP programs
are also LISP data and the only reason that we would call such an

object "program" instead of "data" is that we intend to use it as

such. So henceforth, by "expression" we shall mean an object

that ve intend to evaluate. For convenience, we shall not allow

21l objects to be expressions, but rather only those obijects that

r——

can be written in list-notation; i.e., all expressions will be

either atoms or lists.

FUNCTIONAL APPLICATION

When the ‘gxpression to be evaluated is a list, say (Al A2 eve An),
then” the rule (with one exception very shortly) is to evaluate
each<of the expressions Al thrpugh An and then apply the function
that arose as the value of Al (if Fhe“vélue of Al is not a function,
we have made a mistake) to the arguments that arose as the values
of A2 through An. The result of applying this function 1is taken

as the value of the entire exprgssion. For example, assuming

that we already know that the atoms PLUS, 1, and 2 evaluate to

the addition function and the numbers 1 and 2, then the expression

gy

LISP 3-3

(PLUS 1 2) evaluates to 3.

The éne exegption to this rale is whew A; is (ncte: thls 1s ot the

same as saying A, evaluates to) an atomle symbol that indicates a

1 F 2y
non~standard method of evaluation. Such expressions are called - quif;
T speclal-forms and will be covered in the next chapter. For the cenbd
LAMBDA

time being, we can mention that the reason we have special-forms
is' that we desire certain operations that do not quite behave ’
Yike functions. Specificai&y; théy do not want their "arguments"
evaludted., . '

3. 3 T'EVALUATION OF ATOMS
dhen we eyaldéﬁe an expression that is an‘agbm; we use the deloﬁing
rule:’

. Bf the atom is not an atomic' symbol, then the value of the expres-

" gloh 1s the expression itself; i.e., 1 evaluates to 1, 2 to 2, etc.
ﬂowever, 1f it is an atomic symbol, then it truly must be a symbol;
ghat is, it must stand For some LISP object. ’Tﬁis éssociatédfohjéct
is taken as the value of the atomic’ symbol. We shall call the mech- -
anism by which an atomic symbol is made to stand for some other ob~
§ect a biﬁding. In LISP there are two mechanisms by which such a”
binding might be effected; they are called constant and fluid bind- |
ings. How such bindings are established and maintained will be
covered later. For the time being, we shall describe the intuitive’
notion of what they mean.

L4

3¢3,1 Variables _ T .

Fluid bindings are used to associate the dummy variables appearing -
in the definition of a function with the arguments of the function
when it is apﬁlied.':Therefore; we shall use the word "variable
to refer to an atomic symbol that has a fluid binding. Fluid bind- "
ings are temporary, since they only exist during the time that a
function is being applied. Exactly how they work will be discussed
below when we cover functional abstraction under the speqial—form
LAMBDA. e

3.3.2

3.4

rféonstapt bindings are those associations that remain in effect un-

. symbol, any attempt to establish a fluid binding for it 1s nonsense
__since the constant binding will always be used.

‘Constants

til explicitly changed by the user and are, therefore, more permanent
than fluid bindings. They always take precedencé over fluid bind--

ings, i.e., if a constant binding has been established for an atomic

The most important use of the‘éoﬁstant Bindidg is to gi?e a name

to a function. For example, thg‘system'provideé a constant bind-

itz between thevatomic symbol PLUS and the addition fﬁnctiong Hence,
whé%'we evaluate (PLUS 12), the value of PLUS is the addition
function thét we desire. It is also possible, as we shall see be-
low, to estabiish such a binding for a function of our own cboosing :

so’ that we may use the function whenever we desire.

‘SUMMARY

Let us apply these rules of evaluation to a simple case so that we

- ean get a better understanding of what is going on. In the beginning

5

of this chapter we used the example SIN(m x N/4); in LISP, it is
written (SIN(QUOTIENT(TIMES PI N) 4.0)). Let us evaluate this ex-

pression (making appropriate assumptions when we need to).

Evaluate (SIN(QUOTIENT(TIMES PI N) 4.0)). It is a list, so first
evaluate SIN and (QUOTIENT(TIMES PI N) 4.0).
Evaluate SIN.
It is an atomic symbol, so let us assume that it is
constantly bound to that function that takes the sine
of its argument.
Evaluate (QUOTIENT(TIMES PI N) 4.0).
Again a list, so evaluate QUOTIENT, (TIMES PI N), and 4.0,
Evaluate QUOTIENT.) :
Assume constantly boﬁnd to division function.
Evaluate (TIMES PI N). '
Another list, so '
' Evaluate TIMES.
Anather asspﬁéd‘coﬁstanr,.

Evaluate PI. .

LISP 3-5

Assumed constantly bound to a number.

Evaluate N.

Let us assume that it is fluidly bound to some number,

i.e., that N represents the argument of a function that

uses this expression to compute 1ts result.
Apply function, i.e., do multiplication.
Evaluate 4.0, ¢
Atom, but not atomic symbol, so value is 4.0.
Apply division function, i.e., take quotient.
Apply function. We are finally computing the sine that we desired.

It seems like an awful lot of work to evaluate an expression whose
value is so obvious, but this is so because we chose an expression
that had an obvious value. For instance, what if our expression

were something like ((FN X) Y)? The value of this expression is

" not so obvious, but our evaluation scheme still applies. Our rule

says that to evaluate the expression, we first evaluate (FN X) and-
Y and then apply the value of (FN X) to the value of Y. Now here
is something that we have not been accustomed to doing, i.e. com~
puting a function to be applied instead of simply using the name
of 1t. According to the LISP evaluation method, we always compute

the function to be applied; however, we usually perform the com-

putation by evaluating an atomic symbol that has a constant binding

to the desired function, so that, in most cases, we are simply

writing the name of the function we desire.

LISP 4-1

- Chapter 4
THE OPERATIONS

Finally, we get to the second question of Chapter 2, namely what
manipulations can we do with LISP7 We shall begin by learning a
few of the functions that are provided by the system, then cover
a few special-forms that enable us to build complicated express-
tions, and finally see how ‘we may create our own functioms. But

first, we want to establish a notational convention for functions.

We shall often have occasion to talk about the function that is
bound (in the constant fashion) to an atomic symbol. We shall’
write this function as [X], where X is the atomic symbol whose

value is the function beéing referred to.

The reason for establishing this convention is twofold. First,

- it is going to save us a lot of writing; and second, the system

uses this convention when it prints a function, which remember,
is unprintable., That is, when the need arises to print an un-
printable object, the LISP system searches through all atonic
symbols looking for one to which the object is constantly bound
and, if sucessful, prints it out in the form [X].

SOME PRIMITIVE FUNCTIONS
Construction

We .learned above that the fundamental building operation of LISP"
is construction. There is a function provided by the system that

does exactly this and is bound to the atomic symbol CONS.

I1f, for example, thé atomic symbols A and B are currently bound to
the number 1 and the list®(2 3 4), then the expression (CONS A B)
will evaluate to the object (1:(2 3 4)), which we ma& write as

the 1list (1 2 3 4).)

4-2
.

el

LISP

4.1.2

4.1.3

Selection

N TERER

Since we have the ability to build objects, we shall also desire
the aﬁility to take them apart. Specifically, the system provides
two functions [CAR] and [CDR], which retrieve the components of a_
composite object; i.e., 1if X is currently bound to the composite .
object (Al-Az), then the value of (CAR X) is Al and the value of
(CDR X) is A,. If [CAR] or [CDR] is applied to an atom, the

value is unspecified. ¢

Technically, these are the only two seieétion functioﬁs we need;
however, it 1s often useful to be able to get at deeper components
of an object. Therefore, the system provides a function for each
atomic symbol of the form C-:-R, where the ellipsis indicates a
string of A's and D's whose length, in this implementation, must
be between 0 and 35, inclusive. Such functions represent succes-
sive applications of [CAR] and [CDR] from right to left, i.e.,
(CADDR X) evaluates to the same object that (CAR(CDR(CDR X))) does.
For the sake of generality, [CR] is the identity function.

It is useful to notice what these operations do to lists, - If L is

currently bound to a list, then (CONS X L) creates a new list with
the value of X as its first element; (CAR L) evaluates to the first
element of the list L; kCDR L) evaluates to the tail of the list

L; 1.e., if L is (1 2 3), (CDR L) is (2 3); (CADR L) evaluates to

the second element of the list; and so forth.

Predication

We shall also need the ability to ask questions about objects,

such as, is an object atomic, or, are two objects the same? There-

fore, we need a converition to represent truth and falsehood since

we did not see fit to include truth-values in our universe of dis-

course. In LISP, the atomic symbol NIL is interpreted as falsehood

and any other object is interpreted as truth. To facilitate use

of truth values, a few constant‘bindings are provided automatically;

namely, both the atomic symbols-NIL and F are bound to. falsehood

(NIL). The atomic symbol T is constantly bound to }tself and is fgg

conventionally used to represent truth.

4,2

4.2.1

e | LISP '4-3 .

1ISP has a function [ATOM] whose result is true if its argument is

an atom and false 1f it is coméositei There is also a function [EQ]
whose result 1s true 1f its two arguments are the same atomic symbol
and false if they are different atomic symbols. [EQ] 1s intended to
be used on atomic symbols only; 4f it is not given atomic symbolé‘as
arguments, its result is not specified (although it does.give one).

To compare two objects in gemeral we use [EQUAL], whose result is

true if its two arguments are the same (meaning that they would appear
identical if printed), whether they be atomic symbols, numbers, or
composite objects. However, it does not work for functions (after all,

nothing could).

LISP also has the function [NULL], whose result is true if its ar-
gument is the empty list and false otherwise. Due to the manner in
which lists are represented and the fact that NIL is édﬁstantly
bound to 1tse1£, (NULL X) has the same value as (EQ X NIL).

SPECIAL-FORMS

We shall now cover a few of the speciai;forms‘of LISP, that is, those
cases where an expressioh of the form (Al,Az v An) does not in-
dicate a functional application, but rather a specizl method of eval-
pation that will depgﬂd on what A1 is.. One word of warning, the
atomic symbol (A1 above) psed to indicate a special-form does have a
constant binding to an unprintable object; however, this object is not
a functidn‘and is not even useful. The onlywreéson that this is
mentioned 1Is that it does prohibit us from using such an atomic symbol

as a variable.

QUOTE

A very important special-form is signaled by the appearance of the
atomic symbol QUOTE. When QUOTE is encountered, it iﬁdicates that
the object appearing to be the argument is the actual object de-
sired and not an expression that should be evaluated to get the
object. For instance, (CONS(QUOTE A)(QUOTE (B C))) evaluates to
(ABC)y A and (B C) are not evaluated.

This special-form 1s used so often that 1108 LISP allows an abbre-
viation for . it. Namely, we can write 'A instead of (QUOTE A). This

44

Lipr

4,2.2

&203

translation is effected at the time the object 1s read in; i.e.,
whenever the input routine encounters the punctuation mark apos-
trophe, it reads the next object and quotes 1t. Hence, the above

example is more conveniently written as (CONS 'A' (B C)).

COND
The if—then—else idea is embodied in the spécial—form represented

by. COND. We write a conditional expression like so:
(COND (2 E)) (Py E)) <+ (B, E))

‘The rule for evaluating such a form is as follows: Each P is eval-

uated froo left to right until one 1s found whose value is true;
then the associated E is evaluated and its value is the value of
the entire conditional expression. Yt 1s the case that no P after

thé‘first true one and no E except the on? selected will be eval~"

,néted If none of the P's is true, then the value of the dondition-

;’jal expression is unspecified. We usually write T as the last P to

xggarantee that the conditional expression always has a value,

As an example of the use of COND, suppose that™M and N dre cur-
redtly bountl to numbers and that we wish to obtain the larger of
the two; we can do this by writing

(COND ((GREATERP M N) M) (T N
vﬁgré’the‘result of [GREATERP] is true if its first argument 15" -

greater than 1its second. -

AND, OR, NOT

The special~forms, AND and OR, and the function [NOT] are usually
used ih one of the B's of a conditiondl expression, although there

is no restriction that they must be.

The format for AND is:

(AND P, P, --c P)

The rule for evaluating AND is that the P's are evaluated from

left to right until one turns out to be false, If one does, the

value of the expression 1s false and no mote P's are evaluated;

-
-

4.2.4

LISP

if no P is false, the value of the éxpression is true. The value

of (AND), by the above rule, is true.

OR is similar to AND, except that a P that is true stops the eval-
uation with a value of true and no true P causes the value of the

expression to be false,

Due to the representations of truth and falsehood in LISP, [NOT]
and [NULL] are the same functions.

LAMBDA

We come now to a special-form that gives LISP immense power. The
special-form signéled by the appearance of the atomic symbol LAMBDA
allows us to create functions. The idea .is similar to the use of a

declaration, such as PROCEDURE in ALGOL. However, in LISP it is

. not to be thought of as a declaration; that is, LAMBDA does not

" allow us to declare a function, it allows us to compute one.

The special-forms and primitive functions that we have already
learned allow us to build up complicted expressions. LAMBDA allows-
us to specify that an expression so built is to be used to compute
the result of a function whenever the function is aﬁplied. To do
80 we must also specify which variables appearing in the expression
are Intended to stand for the arguments of the function being

devaloped.

For :instance, under COND we wrote the expression
CCOND ((GREATERP M N} M)(T N))

~which evaluated to the larger of M and N. Now, if we write

(LAMBDA (M N) (COND ((GREATERP M N) M) (T N)))
tﬁe value of this expression is a function that will select the
larger of its two arguments. That is, we have created a function
which uses the rule given by the conditional—expression to compute
its result and specified that the variables M and N appearing in
the expression are to stand for the first and second arguments,
respectively, of the function. For example,

{(LAaMBDA (X Y)(COND((GREATERP X Y) X(T Y)))Y M N)

also evaluates to the larger of M and N.

Thogse who are familiar with the lambda-calculus will fecognize .

G-y

Lisy

4.3

thls concept immedlately; however, we shall find that the treat-
ment of free variables in LISP'differs from that of the lambda-

calculus,

The format of the special-form LAMBDA is: -
’ (LAMBDA (Vl V2 e Vn) E)

where each V must be an atomic symbol that w}li never have a con-
stant binding, and E is any expression (that will probably contain
occurrences of the V's). The value of this special-form is a func-
tion of n arguments that, whenever applied, will compute its result
by evaluating E in an enviromment in which each V is fluidly bound

to the correspond argument.

Now we have to be careful to notice what gets evaluated and when.
Specifically, evaluating a LAMBDA-expression only creates a func-
tion; the expression E that will be used to compute the result of
the function is nbt evéluated when the function is created, but
rather when we apply the function to argﬁments. Furthermore, im-
mediately before it is evaluated, the variables éppearing after
the LAMBDA are given fluid bindings to the arguments of the func-
tion so that during the evaluation of E, these variables stand for
the right things, namely, the arguments to which the function is
being applied. After tge result is computed, these fluid bindings.
disappear and any fluid'bindings that the variables had before
application reappear.

By the way, there is nothing illegal about having functions of no
arguments; we create them with expressions like (LAMBDA () E) or
(LAMBDA NIL.E). ‘

FUNCTIONAL DEFINITION

Now that we have the ability to create a function via ﬁAMBDA, we
want to be able to give the function a name so that we may use it
in more than one place. For this purpose we usually use a con-

stant binding.

3

Fel

bob

LISP

There 1s an operator in LISP bound to the atomic symbol CSET which,

begides delivering a value when applied to arguments, also has a

permanent effect on the system {such operators are called pseudo~

functions in LISP). In this case the effect is to establish-a
constant binding between the first argument of [CSET], which must

be an atomic symbol, and its second argument, which may be any

object. The value of an expression (CSET “(QUOTE X) Y) is the

value of Y,'bu: the important thing is the effect; namely, after
the evaluation‘of this expression, the value of X will always be
whatever Y evaluated to above unless it is explicitly changed by
another CSET. ‘

Ergo, if we evaluate the expression . -
(CSET 'MAX
(LAMBDA (X Y)
(COND
((GREATERP X Y) X)
(T 1) | \ .
) S

the special-form LAMBDA computes a function that will select the
larger of its two arguments, and this function is then bound con-
stantly to the atomic symbol MAX by [CSET], WNow, all we have to
do hereafter to get the larger of two numbers, say N; and N, is
evaluate the expression '

€MAX N

N

1 N9

LAMBDA REVISITED

There is one more point about the LISP evaluation method that needs
to be mentioned; namely, what happens if an atomic symbol 1s en-
countered during the evaluation of an expression that neither has
a constant binding nor appears as a variable in a LAMBDA-form that
surrounds the expression. For ihstance suppose that we define a
function thus: . . |

(CSET 'FN (LAMBDA (X) (PLUS X FV)))

b4=7

4-8 LISP

3

4.4,1

If we ever apply this function to an argument, the expression
(PLUS X FV) will have to be evéluated. We can evaluate PLUS
since it is a constant and we can evaluate X since it will be
bound to the argument, but what value do we assign to FV (@as-
suming it is not a constant)? If we go back and look at the
mechanism for applying a function created by the special-form
LAMBDA, we remember that before the expression defining the
result of the application is evaluated, (the variables appearing
after the LAMBDA are bound to the.arguments of the function.

These bindings are added to those bindings for fluid variables
that are currently active and when we evaluate a fluid variable,
we look through all these bindings and take the most recent one.
Therefore, the value of FV above will be that object that ap-
peared as an argument to the most recent function that has an
FV as a dummy variable and has not finished computing its re-
sult, ’

Example, suppose we define two or more functions in addition to
the one above: |

(CSET'F1 (LAMBDA (X FV) (FN X)))

- (CSET'F2 (LAMBDA (FV X) (FN FV)))

It would seem, since we should be able to rename the dummy vari-

———d

ables of a function systematically, that these two functions are
the same; unfortunately, they are not. The value of (F1 1 2) is
3 since FV is bound (during the evaluation of (PLUS X FV) in [FN])

to 2; while the value of (F2 1 2) is 2 since FV gets bound to 1.

If there is no binding available for a variable that is to be
evaluated, then the system will object. What happens thenvdep—
ends on the mode of operation (conversational or batch) and will

be covered below.

The FUNCTION Function

It often happens that this treatment of fluid variables is not
the one desired, i.e., 1f we use the special-form LAMBDA to cre-

ate a function in 'which an atomic symbol appears free (it is

\ —

il

Na

LIsp.

neither included in the list of variables following the LAMBDA
nor will it ever have a constant binding), the value of this
yériable will depend on the bindings in effect at the time the
functioh is applied. What we often want is the bindings for
these free variables that were in effect at the time the func;.

tion was created.

LISP supplies a function [FUNCTION] for such cases. Specifically,
{FUNCTION] takes,a‘function as arguméhtfand delivers as its re-
sult a new function whose free variablés will be bound (whenever
this function is applied to arguments) to the bindings that they
had when [FUNCTION] was applied. '

Let us see why this is necessary. Suppése we wish to define a

function that will take two functions of one argument and com-

pose them, i.e., we want the expression ((COMPOSE'CAR CDB) (12 3))

4-9

to evaluate to 2 just as (CADR '(1 2 3)) would. It is tempting to try

ta define [COMPOSE] thus:)

(CSET 'COMPOSE (LAMBDA (FA FB) (LAMBDA (X) {FA (Ep ¥)))))
but this does not work since as we leave {COMPOSE], the bindings
for FA and FB evap&rate so that when we apply the function created
by [COMPOSE] (the function created by the second LAMBDA above),
FA and FB are not bound to the right things. To get [COMPOSE] to
work, we define it thus: '

(CSET 'COMPOSE :

(LAMBDA (FA FB) (FUNCTION (LAMBDA (X) (FA (FB x))))))

Noﬁ after we compute the desired composition, we give this func-
tion to [FUNCTION], which captures the bindings of FA and FB (and
Qll other current bindings) and delivers a function that will use

the captured bindings whenever it is applied.

The above example is well worth careful study since it not only
demonstrates the necessity of [FUNCTION], but also demonstrates
one of the exotic things that can be dome with ﬁhe special-form
LAMBDA.

5.1

5.2

Chapter 5
THE LISP SYSTEM

By now we have learned the essentials of LISP. There is a lot more

to LISP; however, we shall take time here to study the entire 1108

LISP system so that we can actually run programs.

THE EVALUATOR o

The heart of the LISP system is the_evaluator, which will evaluate
an expression by the method we have described above. In LISP,

the evaluqtor is avgilable to the user via the function [EVAL].
That is, [EVAL], when supplied an object as an argument, will com~
pute the value of that object. The enviromment that [EVAL] uses,
i.e., bindings for fluid variables, is those bindings that are

active at the time [EVAL] is applied. However, it ié rarely nec-

essary to use [EVAL] explicitly, since the standard LISP super-

visor provides it automatically.

THE STANDARD SUPERVISOR

The standard supervisor of LISP will operate in the following
manner. First, it requests an object to be evaluated by printing
the message "EXPRESSION TO EVALUATE:". It then reads an expre-
sion that we supply and has the evaluator compute the value of

the expression. Finally, it prints the message "VALUE IS:" followed

by the value computed for the expression and returns to ﬁepeat

this cycle.

Therefore, a normal LISP job is a series of expressions that are
to be evaluated. The first expressions probably use pseudo~func-
tions (like [CSET]) that establish as constants the functions that
we want to use. These will be followed by expressioné that use

these functions to compute the answers that we are seeking.

5.3 AN EXAMPLE

The falloiving is an actual pfintout of a LISP run. This run
definés and tests functions that perform basic computations on
sets, assuming that a set, say {Al AZ A3}, is represented by the
list (Al A2 A3).

- >

ExbrfSSI0w TO EvaLuaTey — T e e e e B
PCARTESIAN PRODUCT OF S1 & S2 &
(CSET "CARTESIAN(LAMBDA(S] S2)
(IMDEX S1 NIL(FUNCTION(LAMBDA(IL J1,
S AINOEX S2 JY.(FUNCTION(LAMBDA(I2 J2) (CONS(CONS 1} 12)J2> B
NVALgb 153
CCARTLSIAND
ERPRESSION 1O EVALUATE: S, ;
FALL SUBSETS OF S
(CSETIPUNER(LAMBDA(S)
(COND
(EHULL SY*UINLI)
CFTUINOEX(POWER(CDR S)INIL e e e e~
(FUNCTION(LAMBDA(I J)(CONS{CONS(CAR S)I1)(CONS 1 u>
VALUE 153 S B
CPOSERD
T EXPuwL5510N TO EVALUATE: - T
2TesT CASES . N
(UNTON "L&al AZ A3 AS) °(Al A3 A4 A6)))
Vaune IS« e _ e i
ta2 A5 A1 A3 A4 AG) ,
EXPRESSION TO EVALUATE; o ~
LVINTERSECTIONT (AL A2 A3 AS)'(AL A3 A4 Ap)) S
VALuk 1S3)
(A} A3)
L EXPRESSION TO EVaLUATE: .
(CARTESIAN® (Al A2 AO) '{B1 B2))
VALUt. Isz: . .
((A1 o B1) {A] o B2) (A2 » Bl) (A2 « B2) (AD . Bl) (AD o B2)) _
EXPRESSION TO EVALUATE: .
(POLER' (A B C D))] e

Yaluk 153

(th B C D) (B CD) (AcCD) (Cu) (ABD) (BD) (ADJ} (D) (ABC) (B C) (A

W . S

Chapter 6
EMBELLISHMENTS

What we have learned so far is .theoretically sufficient; hdwgver,
T there are many agdditional facilities in LISP that make it much.

easier to use and more efficient to run, ..

6.1 PSEUDO-FUNCTIONS

In Chapter 4, Section 3., we introduced the pseudo-function [CSET};
whose primary purpose was to affect the system rather than deliver
a value, In this section we shall learn of a few more that turn

out to be useful,

6:1.1 READ e -
" ¥or input purposes LISP provides the function [READ], which is a
function of no argumenfs whose result is the next object appearing
on the ipput device, For instance, if we submit the following .
card image to the supervisor
(READ) (A°B)
the value 1s the object (A<B).

6.1.2 PRINT

&

We can produce our own ddgput via the pseudo—function [PRINT].
{PRINT] will print its argument on the output device and deliver
that object as its result.

6.1.3 RPLACA,RPLACD

Thee pseudo-functions [RPLACA] and [RPLACD] allow us to'alter com-
posite objects, For instance; if we evaluate the ex%reséion
(RPLACA '(A°B) 'X), the object (A-B) is changed ﬁo the object
(X-B); similarly, -the effect of the expression (RPLACD '(A*B) 'X)
is to change (A*B) to (A°X). " The result 1; both cases 1s the

gl

6.3

first argument, which will be the altered object. We must be
sure to notlce the essential'differenée between an expression
such as (RPLACA '(A*B) 'X) and (CONS 'X (CDR '(A+B))). The
vaiue in either case is an object (X*B); however, the effect
is different. In the latter case we have constructed a new
object; while in the former, we have altered the structure of

an already existing object.

- Since these pseudo-functions permanently alter representations
e ithin the computer, they must be used with extreme caution.

“-For instance, if we evaluatezghe expression

((LAMBDA (X) (RPLACD (CDR X) X)) '(A B))
the value and effect is the infinite list.
(BABABA +++). o

If an infinite list such as this is given to a function that

.. searches a list (like [EQUAL]), an infinite loop could occur.

DO

It often happens that we want to use such pseudo-functions for
their effect only and ignore their results. In order to accom-

plish this, we may use the speciai~form DO. The format of DO

is
(Dm)

1
and the rule for evaldating‘i is to evaluate each El from.left
to right and ignore all values excep e last, which becomes

the value of the DO-expression. For example;~to print a request
and then read an answer the expression
° (DO (PRINT REQUEST) (READ))

has the effect and value desired.

PROG

Also available in LISP is another special-form that allows us to
execute statements in a manner similar to other languages, such

as ALGOL or FORTRAN. This special mode of operations is signaled

~

> 3.1

Lisy 0O—O

‘by the appearance of the speclal-form PROG, and 1s written thus:

(PRQG {Vl vz s V) sl 32 53 cee Sn)

Ea;h Vl is an atomic symbol representing a variable that will be
local to the PRCG and each-S1 is either an expression that will
be evaluated and the value discarded or an atomic symbol that:

represents a label and can be referenced by the specilal-form GO.

The rule for evaluating a PROG is as follows. Upon eantry to the
PROG, each local variable is bound to NIL and these bindings are

added to those bindings currently active (i.e., these bindings are

maintained in the same fashion as the variables folléwing a
LAMBDA). Then the. non-atomic statements are evaluated in sequence
using these expanded bindings. The value of each such expréssion
will be discarded; hénce, it behooves us to use pseudo-functions

in the $'s so that something useful happens. When we run out of .

_ statements, the PROG is exited, NIL becomes the value, and the

bindings for the PROG variables disappear.

If PROG were used only as above, its usefulness would be limited;
therefore, there are some more special-forms that are used in

conjunction with a PROG.

SET,SETQ

The pseudo-function [SET] is used to change the binding of a
variable. It is written like [CSET] and operates identically
if its first argument already has a constant binding; however,
if its first argument is not a constant, then it looks through
the fluid bindings currently active and changes the most recent
binding of its first argumeﬁt so that it is bound to the second
argument. If this fails (i.e., if it cannot find a fluid bind-
ing), [SET] will create a new fluid binding for the variable
and put it at such a place that it is local to thg mést recent
PROG, as if it had been written there to begin with.

As with [CSET], the normal use of [SET] will have the first
argument quoted, e.g.,

(SET (QUOTE V) E)

hence, the special-form SETQ is provided that effects this quoting.

That 1s, the above may be more conveniently written
(SETQ V E).

Comparing LISP with other languages we will recognize SETIQ as)
the LISP version of the assignment statement; namely, the effect

of (SETQ V E) is the same as V:=E in ALGOL or V=E in FORTRAN.

6.3.2 GO

The special-form GO is the analogue of the GO TO statement else-
where. Whenever an expression of the form (GO L) is evaluated,
the LISP system immediately returns to the most recent PROG and
finds the label L among the statements comprising the body of the

PROG. Evaluation will then continue with the statement following

the label. If the label cannot be found in the most recent PROG,

then the LISP systeﬁ will complain and terminate the current evalu-

tion. We must notice that L is the label desired, not an expres-
sion that will evaluate thereto. \

6.3.3 RETURN

-

The special-form RETURN ig used to exit a PROG without falling off
the end. Whenever (RETURN V) is encountered, V is evéluated, then

the most recent PROG is exited with the result being the value of V.

1f we wish to have a function that will reverse a list, we can take

"advantage of the PROG feature and define it:

(CSET 'REVERSE (LAMBDA (L)
- (PROG (ANSWER)
LooP
(CoND ((NULL L) (RETURN ANSWER)))
(SETQ ANSWER (CONS (CAR L) ANSHER))
(SETQ L (CDR L))
(GO LOOP)
)
(REVERSE '(A B C)) will evaluate to (C B A) and

(REVERSE '((A B) (C D) (E F))) will evaluate to ((EF) (CD) (A B))

! b
% 2

. © LISP

6.4 PROPERTY LISTS

60_4q1

6.4,2

6.4.3

An often useful feature of LISP Is the ability to manipulate
property lists. We may think of a property list as a symbol _
table that is associated with each atomic symbbl;' Each suchﬂ
symbol tabla is a list of the form:

(1) = V) (T, « V) =ee (I - V)Y
where each I is an atomic symbol and each V is an object. We
usually refer to a property list entry, i.e., one of the
(I - V)'s, as an attribute-value pair, where I is the attribute
and V is the value (not to be confused with the word "value"
as used elsewhere). Every atomic symbol initially has an empty
property list. ' '

-

PUT

The pseudo-function [PUT] 1s used to establish or upéaﬁe én
attribute-value pair. [PUT] takes three arguments: the first
is the atomic symbol whose property list is desired, the second
is an atomic symbol representing the attribute to be entered,

and the third is thg value to be associated with that attribute.

. The effect of [PUT] is either to update the entry for the

‘attribute if one already exists or to add a new attribute-value

pair if not. The result of {PUT] is its first argument.

GET

The Function [GET] allows us to retrieve the values associated
with attributes. The two arguments of [GET] are the atomic
symbol whose property list is desired and the attribute whose
associated value is desired. The result of [GET] is the as-
sociated value if one exists o; NIL if there 'is no entry for

the attribute.

Flags

2

There are times when having a value associated with an attribute
is not important, but the presence or absence of that attribute

is. For such purposes, property lists are also allowed to con-

6~-5

YU aRLOT

6.4.3.1

6.4.3.2

6.5

tain flggs; that is, a flag is an atomic symbol that may appear q
as an element of a property list and indicates something special '
about the atomic symbol to whose property list it belongs.

FLAG ' :
We insert flags on a property list by the pseudo-function [FLAG],
whose first argument is the atomic symbol that is to be flagged
and whose second argument is an atomic symbol that is the flag to
be inserted. The result of [FLAG] is its first argument.

IFFLAG

We test for the presence of flags with [IFFLAG]. This function
takes two arguments similar to [FLAG] and its result is true if
and only if the flag appears on the property list.

"ARITHMETIC

LISP has a supply of arithmetic functions and predicates that
may be used to effect whatever number-crunching is necessary.
These functions will be detailed in Appendix A; however, a few
general principles will be stated here.

First, integers and octals appear to be identical to the arith-
metic functions; that is, (PLUS 5 10) and (PLUS 5 12Q) both

evaluate to 15.

Second, mixing real and integer arithmetic is allowad. The
convention established in LISP is that if any of the arguments

" of an arithmetic function is real, then the result is real;

otherwise, the result is an integer.

Finally, comparisons involving real numbers are .subjected to
a tolerance of 3.0E-6; that is, two real numbers are compared
by taking the absolute yalqe of the quotient of tﬁeir difference
and the first number. If this absolute value is less 3.0E-6
then the two numbers are considé;ed equal. A-T;

' ° :

7.1

LISP

Chaptex 7
THE COMPLETE LISP SYSTEM

In Chapter 5 we learned enough-about the 1108 LISP system to
enable us to use 1t, We shall now cover the .entire system in

all its intimate detail so that we may use it more effectively.

THE EXPANDED SUPERVISOR

We saw above that the supervisor.essentially cycles through a
read-evaluate-print sequence. Now that we have the PROG feature,
we can write sucﬂha supervisor in LISP.,
(CSET 'LISP (LAMBDA (INPUT-GETITER)

(PROG (VALUE)

CYCLE

{CLEARBUFF)

(PRINT 'EXPRESSION! TO! EVALUATE:)

(SETQ VALUE (EVAL (INPUT-GETTER)))

(PRINT 'VALUE! IS:)

{PRINT VALUE)

(GO CYCLE) .

)))
The only stranger here is the pseudo-function [CLEARBUFF] which
sets up the input routine to begin at the front of the next card.

1t so happens that this function is actually available in the
1108 LISP system, although the variables INPUT-GETTER and VALUE
and the label CYCLE are invisible. But, this does mean that we can

call ‘the LISP supervisor ourselves whenever we want to.

For example, when running in the conversational mode, we may
attempt to evaluate an atomic symbol that has neither a constant
nor a fluid binding. When this happens, the system will request
a value from us by having us submit an expression the value of

which is to be used as the value of the unbound variable. Now

-we may need to define a few more functions so that this value

can be computed or so that the request will not be made again.-

-

71

In order to do this we submit (LISP READ) as the expression to be
used to compute the value (wé can also submit (LISP) since [READ]
is assumed if no argument is supplied. When the system evaluates®
this expression, a new level of supervision 1s established in

which we may do whatever we need to do.

Eventually, we are going to want to leave this new level of super-
vision with a value to be used in the interrupted evaluation.

Since the LISP supervisor is a PROG feature, we get out of it

with a RETURN, i.e., we simply submit an expression like (RETURN V)
to the current supervisor. The special-form RETURN exits from

the most recent PROG, which in this case is the supervisor, and

the value computed from V is used to resu&é the interrupted eval-

uation.

When LISP starts running,a level of supervison is automatically

“established for us. If we RETURN from this level, we do exactly

what we would expect, we leave LISP and return to the 1108 executive.

The purpose of the variable INPUT-GETTER above is to allow us to
use 2 non-standard form-of input if we desire. For ;nstance, if
For some reason we prefer the function and list of arguments form
of .input that is used in other LISP systems, we can get it by
starting out with:
(CSET 'AWFUL (LAMBDA NIL (CONS (READ) (QUOTEM (READ)))))
(CSET 'QUOTEM (LAMBDA (L) ' "
© (coND '
((NULL L) NIL)
(T (CONS (LIST 'QUOTE (CAR L)) (QUOTEM (CDR L))))
)))
(RETURN (LISP AWFUL))
After this we submit input as a fuﬁgkion name followed by a list of
arguments and the function [AWFUL] will be used to transform our

input into expressions suitable for evaluation. 1

g

LISP

7.2 THE CONVERSATIONAL MODE

LISP will operate most effectively wﬁen used in the conversational
mode, This 1s not due as much to ad hoc abllities as it is to the
overall philosophy of LISP. Specifically, LISP allows us to do our
work, so to speak, incrementall&. That is, we are allowed to de-
fine a-function that we know we will need, try it out on a few test
cases to be sure that it works, and then forget about it and go on
to define other functions. This is not the case with many other
languages where all desired funct;ons or subroutines have to be de-

fined before any of them can be used.

However, 1108 LISP does have some abilities that are'includedpqnly
to help us when running conversationally. The fact that the system
queries the user when it finds an unbound variable is one‘of these.
The assumption here is that such an unbound variable is either a
misspelling of the desired variable or is intended to evaluate to

a function that we have not yet established as a constant. In the
first case we can tempofarily fix things by submitting the correct
variable; i.e., this variable can be evaluated and its value (the
one we reallﬁ intended) is used to resume the interrupted evaluation.
This does not really cure everything since the meséage and request
for a value will appear every time that fhe offending variable is
evaluated; but we can usually stop the request temporarily by us-
ing SETQ to establish a binding for the misspelled variable at the
most recent PROG, which is probably the current level of supervision.
After that, we will have to patch up the definition of the function
so that it.is written correctly (there are facilities in LISP that
allow us to do this without redefining the entire function).

If it is the case that the unbound variable is supposed to have a
constant binding to a function and we have not established the
binding yet (whether by acéident or design), then all we have to
do 1s supply a suitable function; e.g., we canrsubmit an expres-
sion like

(CSET 'UBV (LAMBDA (X) =--)}

7.2.1

The value of this expression-1s exactly the function that we
need in order to continue, but the expression also establishes
a constant binding so that the value will not be requested

again.

We must remember that such requests can only be handled when
running conversationally. When running in the batch mode, the
same messages will appear indicating unbound variables or the
like, but the systém has no recourse in this case except to
terminate the current evaluation and try again on the next
expression submitted for evaluation.

.

Another Example

Below is a listing from the teletype of an actual conversation

with the LISP system. It is included to demonstrate the con-

versational mode.

-~

.2kl

eLlpp
1108 LIsp V 6.2

EAPHESSION T0 EVALUATE:
(CSET ‘Sl (LAMbBLACNUMI(NI 1.0)))

VALUE 1IS5%

i

Countll

EXPRESSION TO EVALUATE:

(36nl 144)
NO VALUE 1S BOUND 10 NI

FLEASE SUPPFLY ONE :

(CSET “NICLAMBDACTIY)>C(COND
((EWUAL(SGUAKE THYINUM)ITKY))
(T(NICAVERAGECGUOTIENT NUM TnY)ThY>
NO VALUE IS BOUND 10 SGUAKE

PLEASE SUPPLY ONE

(LISP)

EXPRESS10Y 'TO EVALUATE:
(C3ET - *SUUARE(LAMBDA(X)(1IMES X X>

VALUE IS5:
LsuUARE?2

EXrnES5I0N TO EVALUATE:?

(CHOET *AVERAGE(LAMBDACX Y)I(WUQGTIENT(PLUS X Y)2.0>

VALUE IL:
LAVERAGE]

EXrnES>10N 10 EVALUATE:
(nEiUnN SwJAnE)

VAL JE 153

‘EXPRESSION 10 EVALUAYTE: cw

(5anT 20)

VALUE Ibs:

447214

EXPHESSION 10 EVALJUATE:
(nETURN NIL)

CEND OF LISP

LISP 7-4A

" 7.3

7.3.1

7"0 302

, - - Ny 13

PEBUGGING AIDS

There are a few facilities provided by the LISP system that aid us
in debugging our program. '

TRACE, UNTRACE

The pseudo-function [TRACE] allows us to monitor the evaluation of
expressions. [TRACE] takes one argument, which must be a list of

‘atomic symbols that are constantly bound to functions. The effect

of [TRACE] is to cause the arguments of any of these functions to
be printed out whenever the function is applied and to cause the
result to be printed when the function finishes computing it.

&

The pseudp-function[UNTRACE] takes one argument just as [TRACE]
taut removes the tracing from the listed functions. The result
of- poth of these pseudo-functions is NIL.

Nbfe; IIRA&EI works equally well whether the-function being};:acgd'
18 one that we have defined or one that the system provides for

as; .but remember, since a special-form is not a function, any at-

tefipt to trace it is absurd.

The Back-Trace

LIRSS O

Whenever an error occurs that forces termination of an evaluation, .
the system will provide a printout of the contents of the push-
down stack at.that time. Most of these entries will seem to be
gibberish; however, the entries that are preceded by three periods
are probably of interest. These entries are either bindings of

variables or expressions that are beilng evaluated.

Binding lists are kept internally in the same format as property-
118%s, 1.e., variable consed with value. They wili“alwajs.copéain
occurrences of the character string '"[]" when printed (this étring,ﬂ
is caused by a special gadget inserted to mark places in the envi-
ronment where PROG’g'occur so that SETQ can establish bindings if
it needs to). For instance when we see something like

e (V- DA DAL DA DD |

.in the back-trdce, it means that N is bound to 1, L is bound to Y,
" A is bound to the list (1 2), and the binding of L to X 1s not

¥

/=2

' 7-6 LESP

7.4

currently active (it is shielded by the first L).

When we look at the most recent bindings, the variables that are
bound can help identify the last function applied and the values
to which they are bound can point out the arguments that this

function received.

The expressions being evaluated will show the sequence of eval-
vations of expressions and their sub-expressiohé that led up to

the error.

LISP CONTROL CARDS

The control cards of LISP may be used to affect the operation of
the system when desired. They are identified as input images

that have a colon as the first characﬁer“foilowed'iﬁmediately by .

a word specifying the action to be taken. They are always rec-
ognized and interpreted when encountered by the input routine.
LIST o . :
appearing anywhere in the input stream instructs the
input routine to print cards as they are read. It is
transparent to the user; i.e., a :LIST card can bg‘
placed anywhere in the input stream and the only notice-
able effect will be that cards following the :LIST card

are listed.

tUNLIST A
instructs the input routine to stop printing cards as
they are read. It is also transparent. The system
will notice if it is being used from a teletype (con-
versational mode) and if so, will pretend that it had
a :UNLIST card as its first image. Conversely, 1f the
system notices that it is being run in the batch mode,
then it automatically starts out listing cards.

¢ TIME
causes a printout of the time that has been spent eval-
uvating expressions and collecting garbage. The print-

out format is
'EVALUAIION'X.XXX, GARBAGE COLLECTICN Y.YYY/N

N

:STOP

¢BACK

:00PS

:FROM

LISP

It means that X.XXX seconds have been required to perform
all evaluations so far, that Y.YYY of these seconds have
been needed to collect garbage, and that N garbage collec—

tions have ocurred.

The :TIME card is not transparent; i.e., after this card
is‘processed, the system will return to the latest level
of supervision and request the next expression to eval-
uate.

will cause the LISP system to die and return tc EXEC just
as if a RETURN had been performed on the top level of

supervision,

causes a back-trace to be printed followed by a return

to the latest level of supervision.

causes the system to regress to the beginning of the read
routine and attempt to read an object again. It is used
when running conversationally and an uncorrectable error

was made while submitting the current object.

instructs the input routine to begiﬁ reading from an
alternate file in SDF format that has been assigned to
the run. An Internal file name must begin in column

7, 1i.e., there is exactly one space between the :FROM and
the file name.

The input routine will continue reading from this file
until an end-of-file is reached or until another :FROM
card appears. In the latter case it starts reading the
second file and will return to the first file when it
encounters the end of the second file. Nesting of

alternate files is allowed up to a depth of five.

When switching to an alternate file, the current list-

-ing mode will stay in effect and will be reset when

this file is left. That is, if we are currently listing

7-7

7.5

cards and we begin reading an alternate file in
which a :UNLIST card appears, we will begin list-
ing cards again when we finish reading the al-
ternate file.

If we are both reading from an alternate file
and not listing cards as they are read, then the
messages EXPRESSION TO EVALUATE: and VALUE IS:
will not appéar,

-zEOF

simulates an end-of-file on an alternate file
that is being read. If this card is, placed in -

the normal input stream, it is ignored.
:LISP
causes the sysfem to return to the latest level
of supervision and request a new éxpression to
evaluage. It also shuts down all alternate files
that were being read and resets the listing mode.
$EXEC : -
is the linkage into EXEC-8 to interpret one of
its control cardg. An EXEC control card‘ﬁust‘
begin in column 7 (i.e., column 7 contains the
master space)., For example, the following se-
quence might be used to read from a input file
..that has been built previously (say by a @DATA
card) and stored on tape:
:EXEC QASG,MT FILE,T,1234
. :FROM FILE
tEXEC @FREE FILE,

ALARMS

The messages below will appear when evaluation cannot proceed.

When we say that a value is requested from the user after the

message is printed, we mean that this only happens in con- i
versational mode. When in batch mode or for other messages, -)
a back-trace is provided followed by a reqdest for the next

expression to evaluate unless the error is fatal.

i
v

LIsSP

NO VALUE IS BOUND TO X _
means that an attempt was made to evaluate an atomic symbol for
which no binding exists. It can also be caused by supplying too .
few arguments to a uger-defined function (see below), A value)
is requested from the user but no binding will be established ‘
unless done explicitly.

X IS NOT A FUNCTION
means that the first element of a list neither indicates a spe-~
eial form nor does it evaluate to a function. A function is re-
quested.)

CANNOT TAKE CAR OR CDR OF X
means that a car-cdr chain ran across an atomic object. Eval-
vation is terminated. _

WAR&ING, X CANNOT BE BOUND BECAUSE OF MISSING ARGUMENT
means that too few arguments were supplied to a user-defined func-

tion. This is only a warning; evaluation will continue but NO
VALUE IS BOUND TO X Qill appear if the offending variable is
ever evaluated.

WARNING, X IS AN ILLEGAL VARIABLE
means that a varlable was used after a LAMBDA or PROG that has
a constant binding. This also is only a warning. The constant
binding of the atomic symbol will not be changed and will con-
tinue to be used if the atomic symbol is evaluated.

GO X ILLEGAL
means that the label of a GO does not appear in the most recent
PROG. Evaluation terminates.

VALUE OF X IS NOT A FUNCTION
means that an operation (like [TRACE]) needs an atomic symbol that
is bound to a function and it is not. A function is requestéd
and bound constantly to the atomic symbol.

STACK OVERFLOW ’
means what it says and no back-trace is provideﬁ. "This is prob-
ably ‘caused by infinite recursion. If this happens during a
garbage collection, the system will die with its last gasp being

. the message END OF LISP.

7-9

7-10 Lisp

‘.MEMORY IS EXHAUSTED : .
mesns that the garbage collector could not regain anything. Eval-
uation terminates. T

GUARD MODE and ILLEGAL INSTRUCTION .
are error messages that can be caused by realwﬁierd mistakes. The
most likely causes are supplying too few arguments to a system-de-
fiped function or supplying a bad argument to a system-defined

™ " function (like supplying an atom when a list is required).

After any error that causes evaluation to cease, the LISP system
will check to make sure that it has not been clobbered. If it
has, an approprlate message will appear and processing will halt.
Control will return to EXEC.

8.1

8.2

LISP

Chapter 8
EXTENSIONS OF LISP 1.5

In the previous chapters we fajled to mention a few facts about
the evaluation of special-forms in 1108 LISP. They are not
really that necessary and are usually not applicable to other

versions of LISP, but they are worth mentioning here.

IMPLICIT DO

The first extension of LISP 1.5 is involved in the special-forms
LAMBDA and COND., In both cases we are allowed to write more than
one expression instead of only one as we implied before. When we
do so, we mean that each expression is to be evaluated in order

and the value of the last one is to be taken as the desired value;

. Just as if we had surrounded the expressions with a DO.

This means that the format of a LAMBDA-expression ‘i1s now
(LAMBDA (V1 V2 s Vn) El E2 LR Em)

The understanding is that whenever a function created by such an
expression is applied, the E's are evaluated while the variables
are bound to the arguments and the value of the last E 1s the

result of the function.

Similarily, if we write a conditional expression like:

(COND *-* (P E1 E2 e En) cee)
we mean that if P turns out to be true, then each E is to be
evaluated and the last E is to be taken as the value of the

conditional expression.

-IMPLICIT AND

A further extension of the conditional expression is that if a
P turns out to be true but its corresponding E is undefined (i.e.,
an unsatisfied conditional expression), then evaluation con- A
tinues at the next P. For instance, in the expreséion
(COND (P, (COND (P, E,)
(?, E3)))
(T E,))

8-2 LISP

8'3

8.4

If Pl is true but P2 and P3 are both false, then the value of the Ei
entire expression is the value of E&' Warning, if we ever define

a function by a conditional expression that might not be satisfied

and use the function 25 2n E in a conditional expression, this

same behavior could result and is probably not what we intend.

INDEFINITE ARGUMENTS

We often desire to be able to define a function that will take an
indefinite number of arguments. (An example of this is the sys-—
tem function [PLUS]}.) To do this &e use an atomic sfmbol other
than NIL to terminate the list of variables appearing after the
LAMBDA. When such a function is applied, this atomic symbol is
bound to a list of the arguments remaining after all others are

bound. For instance, a LAMBDA-expression like _ '
(LAMBDA (XY Z - I) E) - HARGuUM&EVTS - g;@_h_'.-' EVRLUITE

means that the function expects at least three arguments. The

first three will be bound to X, Y, and Z, while all others will
be grouped into a list, which will be bound to I. If it is B
possible for the function to receive no arguments, then we write
it as i
(LAMBDA L E)

where L will be bound to a list of all arguments supplied.

INITIALIZING PROG VARIABLES

It often happens that we do not wish a variable appearing after

& PROG to be initially bound to NIL. When this is the case, we

car (in lieu of doing a SETQ at the beginning to give it the
desired binding) write a list of the form (PV E) instead of just
the PROG variable. This means that the PROG variable PV is to
be bound initially to the value of the expression'E instead of
NIL. The PROG variables are initialized from left to right.
When E is evaluated, all PROG variables preceding (PV E) have
their initial values and the variables following it do not.

Patan N

8.5

s o R e e Bt
st

For example, a function to count the Hhmber of elements in a list
can be defined by: ;
(CSET 'LENGTH (LAMBDA (L)
“(PROG ((N 0))
LOOP .
(CoND ((NULL L)(RETURN N)))
(SETQ N (PLUS N 1))
(SETQ L (CDR L))
(GO L0oOP)
)))

MACROS

Since LISP expressions are also LISP obje;ts, it seems that it
would sometimes be more convenient to compute an expression that
will evaluate to the desired value than it would be to compute
" the value itself. 1108 LISP has a feature that allows us to do -
exactly this. The pseudo-function [MACRO] takes onme argument,
which must be a list of atomic symbols toc which functions are
constantly bound. [MACRO] will set things up so that each of

these atomic symbols now represents a special-form with the fol-

lowing method of evaluation. When one of these atomic symbols

\ appears as the first element of an expression, its associated
% function (the one to which it was bound before [MACRO] was used)
will be applied to the expressions appearing after the special-

.

i
%
Xform. Notice, the function receives the actual expressions as |

arguments, not the values of these expressions, as is normally

the case. The result of this functional application will then
B M S
be evaluated and the value will be used as the value of the

original expression.

R DEFP2oP

-

"B-4 WISP

For example,we may be writing a program in which we need an

analogue of the notation g f(x). To do so we could define
function: x=m
(CSET 'SIGMA (LAMBDA (LOWER UPPER FN) -
T T (COND
((GREATERP LOWER UPPER) 0)
(T (PLUS (FN LOWER) (SIGMA (PLUS LOWER 1) UPPER FN)))
1)) : | '
0, .
Now we can get £ x~ by evaluating
x=0

(SIGMA O 10 (FUNCTION (LAMBDA (X) (TIMES X X))))

If we are really clever, we can use the macro facility to en-

able us to write:
(SuM X (0 10) (TIMES X X))

We do this by first defining a function that will rewrite such an

expression into the proper form:

(CSET 'SUM (LAMBDA (VAR LIMITS EXP)
(LIST 'SIGMA
(CAR LIMITS)
(CADR LIMITS)
(LIST 'FUNCTION
(LIST 'LAMBDA
(LIST VAR)..
EXP
N
" e)

Then we do (MACRO '(SUM)) and we are ready to go.

Another provision of [MACRO] is the ability to define new
special-forms. For instance, the specilal-form OR cannot be

written as a function because all of its "arguments' are not

——

LISP

necessarily evaluated. However, we could define it as a macro by:

(CSET 'OR (LAMBDA L
- (COND
((NULL L) "F)
((EVAL (CAR L)) 'T)
(T (CONS "OR (CDR L)))
)
(MACRO '(OR))

Now when we write (OR’P1 P2 o Pﬁ)’ the function defined above
will return either the expression F if there are no P's, T if

Pl is true, or (OR:Pé ~-"Pn) if Pl is false. The evaluation

of this expression gives us exactly what we want.

—

B

LISP 'A-1 -

Appendix A
FACILITIES INDEX

In this appendix we shall list all atomic symbols that are loaded -
with the 1108 LISP system and have constant bindings, i.e., are
either bound to a system~defined function or represent a special-

form. We shall also describe the meaning of the associated func-

- tions, pseudo-functions, and special-forms. Each entry is headed ™

by a sample form, e.g., the entry for CAR appears under .

(CAR X) . _
This sample means that [CAR] is a function of one argument, which
we shall indicate by the letter X while describing this function.
That is, XArepresents the value of whatever expression is written
in its place. This method for representing arguments gpplies to
fundziops and pseudo-functions; it will be changed when we get to -

gpecial—forms because the concept of argument is not valid there.

Entries are organized into categéries according to their purposes.

Under each category or entry some of thé-labeled paragraphs below

may appear. If any appeérs under a category heading, it applies

to evefy entry in the category. -

VALUE: indicates a description of the value of the sample
.form, i.e., the result of applying the function or
the rule for evaluating a sbecial—fbrm. .

EFFECT: denotes that this entry is a pseudo-function and its
effect on the system is descrided.

RESTRICTIONS: precedes any restrictions on the arguments, i.e, if
they must be numbers, lists, fuhctions, etc.

NOTES: gives any miscellaneous inforﬁation.

EXAMPLE: precedes clarifying examples. i

DEFINITION: precedes a definition of the function in LISP.

LOOPS: appears if the function could go into an infinite

loop or cause a stack overflow if gilven an argu-

ment that is a self-containing object (such objects

can only be created by [RPL@CA], [RPLACD], or some
pseudo-function that uses them). '
SPECIAL-FORM: flags certain special-forms that appear along with
) the entries for functions to contrast them with
similar functions. A -

SEE: indicates that useful information also appears in

previous sections,

eyt

w-
3 @

.
’

LISP A-3

BASIC SYMBOL MANIPULATION

(CONS X V)
*VALUE: the composite object (X * Y).

(CAR X) :
’ RESTRICTIONS: X must be composite (created by [CONS]).
VALUE: Z if X is (Z * W) '

(CDR X)
RESTRICTIONS: X must be composite.
VALUE: W if X is (2 » W).

(C***R X) |
NOTES: ... indicates any string.of A's and D's whose length
is between 0 and 35, inclusive. _
VALUE: successive applications of [CAR] or [CDR] to X.
EXAMPLE: (CADDR X) is the same as (CAR(CDR(CDR X))). .
RESTRICTIONS: X must be so composite that no application of
[CAR] or [CDR] acts upon an atom.

(RPLACA X Y)
RESTRICTIONS: X must be composite.
EFFECT: 1f X is (Z * W) it is changed to (Y - W).
VALUE: X (changed).
SEE: Section 6.1.3.

o

(RPLACD X Y)
RESTRICTIONS: X must be composite.
EFFECT: if X is (Z * W) it is changed to (Z + Y).
VALUE: X
SEE: Section 6.1.3.

© oA=L LISP

>

BASIC PREDICATES

(ATOM X)

VALUE:

(EQ X Y)
VALUE:

(EQUAL X Y)
VALUE:

NOTES:
LOOPS:

{NULL X)
VALUE: .

{NOT X)
VALUE:
NOTES:

true if X is an atom, false if X is composite.

true if X and Y are the same atomic symbol, false if

they are different atomic symbols, false if X and Y
are different kinds of objects (e.g., X is an integer

and Y is composite).

true if and only if X and Y are the saﬁe, whether
they be atomic symbols, numbers, or composite. Inte-
gers are converted to reals if.necessary, i.e.,
(EQUAL 10 10.0) is true as are (EQUAL 10 12Q) and
(EQUAL 10 10.0000001).

value not specified if X and Y are functionms.

true if and only if X is the empty list, which is
represented by the atomic symbol NIL.

true if and only if X is false.
same function as [NULL].

-~

Foatisin)

ey

LISP A-5

ARITHMETIC FUNCTIONS

RESTRICTIONS: all arguments below must be numbers.
'SEE: Section 6.5.

(PLUS Nl NZ e Nn)
VALUE: N, + N, + -+« + N
1 2 n .
NOTES: - will accept any number of arguments. (PLUS) evaluates

to 0.

(TIMES N1 N2 LR Nn)

VALUE: Nl X NZ X eees X Nn

NOTES: (TIMES) evaluates to 1.
(DIFFERENCE X Y))) v

VALUE: X -Y

(QUOTIENT X Y) |
VALUE: number theoretic quotient of X'and Y -if neither is

real, otherwise real quotient.

(REMAINDER X Y)
VALUE: number theoretic remainder of division of X by Y if .
neither is real, otherwise floating-point residue of
division. '

{ADD1 X)
VALUE: X + 1
{SUB1 X).
VALUE: X - 1
(MINUS X)
VALUE: one's complement of X.

(ENTIER X) /
VALUE: the largest integer léégﬂfhan or equal to X if X is
real, otherwise X.
EXAMPLE: (ENTIER 10.5) = 10, (ENTIER -10.5) = -11.

,A-6 LISP

.

(LOGOR Xl-XZ see Xn) ‘ ' : E
VALUE: logical sum of Xl through Xn regarded as 36 bit words.
NOTES: (LOGOR) = 0Q
(LOGAND X, X, *++ X) | o
VALUE: logical product of Xl through Xn'
NOTES: (LOGAND) = -0Q (36 1-bits)

(LOGXOR X; X, +** X)
VALUE: X, through X are half-added,
NOTES: (LOGXOR) = 0Q

(LEFTSHIFT X N)
VALUE: X shifted left N bits with 0-bits entering from
the right 1f N is positive. If N is negative, value

is X shifted right circularly N bits.

11

‘.‘!’Q\ *

LISP A-7

ARITHMETIC PREDICATES

RESTRICTIONS: all arguments must be numbers.
SEE: Section 6.5.

(ZERO? X)
VALUE: true if X is zero, false if not.) ‘
NOTES: comparison is exact; that is, real numbers "close"

to zero are not considered zero by [ZEROP], .

(EQUAL X Y)
NOTES: see BASIC PREDICATES above.

(NUMBERP X)
NOTES: X need not be a number,
VALUE; true if X is an-integer, an octal, or a real; false

otherwise.

(FIXP X) , _
VALUE: truée if X is not real, false if it is.

(FLOATP X) o
VALUE: true if and only if X is real. o

{MINUSP X)
VALUE: true 1if and only if X is negative.

{GREATERP X Y)
VALUE: true if X is greater than Y, false if X is less than

or equal to. Y.

(LESSP X Y)
VALUE: true if X is less than Y, false if X is greater than

or equal to Y.
NOTES: of (EQUAL X Y), (GREATERP X Y), and (LESSP X Y) only
one will be true, even if X and Y are real numbers

close' to each other.

A-8 LISP

BINDING ESTABLISHMENT '§§

(CSET A V)
ﬁESTRICTIONS: A must be an atomic symbol.
EFFECT: A will receive a constant binding to V. -
VALUE: V

(CSETQ A V)
SPECIAL~FORM:
NOTES: (CSETQ CON VAL) is equivalent to (CSET (QUOTE CON) VAL).

(DEFINE L) : .
RESTRICTIONS: L must be a list of the form
((NAHE1 El) (I‘IAI'SE2 EZ) ::{ (NAMEn En))

EFFECT: each E is evaluated and bound constantly to its cor-

respdnding NAME. The NAME's are not evaluated.
VALUE: a list of the NAME's.

.] LIS

NOTES: (DEFINE'((N, E;) (N, E,) (N ED))

has the same effect as the sequence

(CSETQ Nl El)’ (CSETQ NZ EQ),----, (CSETQ Nn En)

(SET A V) '
RESTRICTIONS: A must be an atomic symbol.
EFFECT: i1if A has a constant binding, then its binding is
changed to V; if A has a fluid binding, its current
one is changed to V; otherwise, a binding of A to V
is created at the level of the most recent PROG.
VALUE: V '

(SETQ A V)
SPECIAL-FORM:
= NOTES: (SETQ VAR VALUE) is equivalent to (SET (QUOTE VAR) VALUE).

- LISp

LIST MANIPULATION

RESTRICTIONS: L must be a list or NIL.

(LIST X X, ==+ X)

2

VALUE. a llSt containing the elements Xl through X in that
order.

NOTES: 1is equivalent to (CONS Xl (CONS X, -+ (CONS Xn NIL))).

2
(LIST) evaluates to NIL.

(MEMBER X L)
VALUE: true if and only if X is [EQUAL] to one of the ele-.
ments of L.
LOOPS : | _
EXAMPLE: (MEMBER '(AB) "(AB (A (A éi) C)) is false because
(A B) is not an element of the list.

(APPEND L, L,) _
VALUE: a list consisting of the elements of Ll\followed by ..
the elements of L2
EXAMPLE: (APPEND '(A B C) '(D E (F G). H)) evaluates to -
(ABCDE (F c) H).. ST ”
LOOPS: '
DEFINITION; (CSETQ APPEND (LAMBDA (L1 L2)
(COoND ’
((NULL L1) L2)
(T (CONS (CAR L1) (APPEND (CDR L1) L2)))
) 3D
{NCONC L Ly
VALUE: -same as (APPEND L1 L2)
EFFECT: Ll is changed so that L, is its final segment.
LOOPS:

NOTES: It is very easy to create a circular llst with [NCONC],
e.g., by (NCONC X X).) '
DEFINITION: (CSETQ NCONC (LAMBDA (L1 L2)
(COND
((NULL L1) L2)
(T (RPLACD L1 (NCOQC (CDR L1) L2)))
) S

\A~10 , LISP

(LENGTH L)
VALUE: the number of elemeﬁts in L.
LOOPS:
NOTES: (LENGTH NIL) =0

(REVERSE L)
VALUE: the list (Xn Xn-l oo Xl) if L is the lis? (Xl X
LO0OPS: ‘
DEFINITION: see example in 6.3.3.

2

*«s e xn)'

'

SEQUENCING

"RESTRICTIONS: L must be a list, or NIL, FN must be a func-

tion of one argument. -

(MAP L FN)
EFFECT: FN is applied to every final segment of L.
VALUE: NIL |
LOOPS:
DEFINITION: (CSETQ MAP (LAMBDA (I FN)
(PROG NIL
LOOP
(COND ((NULL L) (RETURN NIL)))
(FN 1) '
(SETQ L (CDR L))~ .- "o -
(G0 LoOP)
)
(MAPCAR L ‘FN) .
EFFECT: FN is épplied to every element of L.
VALUE: NIL '
LOOPS:
DEFINITION: same as [HAP] except (FN L) is changed to
(FN (CAR L)). ' '
{ONTO L FN)

VALUE: a list whose elements are the results of applying
FN to every final segment of L. :
LOOPS:
DEFINITION: (CSETQ ONTO (LAMBDA (L FN)
(COND
((NULL L) NIL)
(T (CONS (FN L) (ONTO (CDR L) FN)))
M)

(MAPLIST L FN)
NOTES: equivalent to (ONTO L FN).

- Vit

LISP A-11

(INTO L FN)

VALUE: a list whose elements are the results of applying.
i . FN to each eleméht of L.
LOOPS:
DEFIEITION: same a5 {ONTd} except (FN L) is changgg to
(FN (CAR L)).

(INDEX L END FNN) ..
RESTRICTIONS. FNﬁ must be a function of two arguments.
VALUE' “4f L is the list (Xt Kyttt X), the result of [INDEX]
’ 15 equivalent to the expression
(Eah,;x,,gpnu.'xz -+ (FNN 'X_ END))).

L_()Ol_;s; . N
 DEFINITION: (CSETQ INDEX (LAMBDA (L END FNN)
S ‘ (Cowp _
o (&WLL 1) “END) . .
(T (¥RN (CAR L) (INDEX (CDR L) END FNN)))
M

EXAMPLE: (APREND X ¥) is equivalent to (INDEX X Y CONS).
(I&DEX L 0 PLUS) evaluates to the sum of the ele---_._~
sments of L.
{ONDEX (L END FNN)
RESTRICTIONS: same as INDEX
. VALUE: the same as the expression
{FNN L (FNN (CDR L) ++- (FNN (CD"'DR L) EXND))) ..
LEOPS::
DEFINITION: same as. [INDEX] except (FNN (CAR L) +-- is
changed to (FNN L +--

Lisp

(PROPERTY LIST MANIPULATION

RESTRICTIONS: A and I must be atomic symbols.
' SEE: Section 6.4.

(PUT A I V) -
‘ EFFECT: the property list of A is altered so that the attri-
. . . bute I becomes associated with the value V.
VALUE: A
(GET A T))

VALUE: the value associated with the attribute I on the pro-
perty list of A, 1If the attribute I does not apbear-
oh the property list of A, the value is NIL.

{PROP A I FN)
RESTRICTIONS: FN muét be a function of no arguments.
VALUE: the entry for I on the property list of A if such an
| “entry~exists (i.e., I consed witﬁ its associated
o value); if an entry for I does not exist, the value
(:;’ : is FN applied to no arguments. .

' DEFINITION: assuming that I aﬁd FN are bound to the desired
attribute and function and that PL gets.bound
to the property list of A, then this function
will have the same result as [PROP]. -

(CSETQ PROPLOOK (LAMBDA (PL I FN)
(covp g
(’(NULL{) (FN))
((EQ (CAAR PL) I) (CAR PL))
(T (PROPLOOK (CDR PL) I FN)) -

- »)

(REMPROP A I) R
EFFECT: then entry for T 1s removed from the property list
of A. If no such entry exisis, nothing happens. .
VALUE: A '

A-13

(FLAG A 1)

EFFECT: The flag I is added to the property list of
A.
VALUE: A

(IFFLAG A 1)

-/.
VALUE: True if and only if the flag I appears on the
‘property list of A.

(UNFLAG A I)

EFFECT: The flag I is removed from the property list
of A.

a

VALUE: A

- : ‘ LISP .A-15

1

EVALUATION 4 ‘ .

(EVAL E)
VALUE: the value in the expression E in the current environ-

ment; that is, using the current bindings of fluid -~
varlables,
LOOPS:

(FUNCTION FN)
RESTRICTIONS: FN must be a function.
WALUE: a new function which, when applied, will have its
free variables bound to the values they have now
(when we apply [FUNCTION]) instead of the bindings
that they would normally have at the time of appli-
cation. '

(LISP IR) . A
RESTRICTIONS: IR must be a function of no arguments.
EFFECT: a new level of supervision is entered, using IR to

fetch expressions to evaluate. '
VALUE: whatever appears after the RETURN that causes the
level of supervision to be left. '
NOTES: IR is optional; if omitted, [READ] is assumed.
DEFINITION: see Section 7.1.:

(MACRO L) .)

RESTRICTIONS: L must be a list of atomic symbols that are

bound constantly to functions.

EFFECT: each atomic symbol in L is changed so that it repre-
sents a special-form. Whenever such a specilal-form
appears, it is evaluated by applying the function -
originally bound to this atomic symbol to the expres-
sions (not their values) that appear as "arguments"
in the special—form.. The result of this application
is then evaluated and becomes the value of the

special~form,

A-16 LISP S5

2

(READ)
‘VALUE:' the next object appearing in the input stream.
EFFECT: the input routine is advanced past this object. :
NOTES: There is no such tﬁing as a syntax error. If the
input image does not conform to the rules for punch-
ing LISP objects, [READ] will make some sense (usually

nonsense) out of it,

(READCH)

VALUE: an atomic symbol whose print-name is (i.e., would be
printed aeg the next character in the input stream. ‘

EFFECT: the input routine advances over this character.

NOTES: the next character is taken unconditionally, even if
it és a punctuation mark or an exclamation point.
Due to the 1108 executive, there is no guarantee
about how many trailing blanks will appear in an
input image. LISP control cards are recognized and

interpreted.

{TOKEN)

VALUE: the next token in the input stream. This will be
either an atomic symbol (then [TOKEN] acts like [READ])
or a non-blank punctuation mark (then it acts like
[READCH]) . .

EFFECT: the input routine is advanced past this token.

{CLEARBUFF)
EFFECT: the input routine is conditioned so that it will
R begin with the first character of the next input
image. '
VALUE: NIL o

NOTES: 1f the input routine is already ready to begin on a

new card, nothing happens.

—

 LISP

(LOAD FILE) .
RESTRICTIONS: FILE must be an atomic symbol whose print-
‘ name is an internal file name of a FASTRAND
file that has been assigned to the run. . -
VALUE: the first object that has been placed in this file |
via [DUMP] or NIL if the end-of-file is read.
EFFECT: the constant values and property lists of atomic
symbols are altered to reflect their condition when
they were dumped. h
NOTES: if FILE is omitted, the next object on the last file
given to [LOAD] or [DUMP] is loaded.

a-17

~A-18 ;LISP

OUTPUT , o | [

(PRIN1 X C)
RESTRICTIONS: C must be an integer between 0 and 128,
EFFECT; the object X is edited into its external representa-
tion beginning in column C of the print buffer.

VALUE: NIL . ‘ '

ﬁOTESé C is optional; if omitted, editing begins in the ne#f
available column, If the print buffer is filled during
editing, it is printed and editing continues in column
C of the next buffer. .

(PRINT X LIM)
RESTRICTIONS: LIM must be an integer.’ ,
EFFECT: X is edited beginnjing at the next available column
and the final (partially filled) print buffer is
pﬁin:éd;. ' ' g
VALUE: X | _ |
NOTES: LIM is the maximum number of lines that can be printed |
with the application of [PRINT], If omitted, 100 is_ v -

assumed,

(TERPRI) , S

EFFECT: the print Luffer is printed if it contains anything.

VALUE: NIL | o

NOTES: The print buffer can only contain something if tPRINl]
tiss been used. If it is empty, nothing happens.

{DUMP X FILE)
RESTRICTIONS: same as LOAD above.
L EFFECT: The object X is dumped starting. at sector O of FILE.
This ,dump includes constant.valﬁes and property lists-
, of atomic symbols. -
VALUE: NIL
NOTES: If FILE is omitted, dumping starts at the next sector
of the last file specified in a [DUMP] or [LOAD].

.

LIS? A-13

MISCELLANEQOUS

(SUBST X Y Z)

VALUE:

LOOPS:

an object, obtained from Z by changing all occurrences
of Y therein to X.

DEFINITION: this definition is close to’ what really happens;

(GENSYM H).
VALUE:

NOTES:

EXAMPLE:

(OBLIST FN)

howeverl the actual function [SUBST] in 1108 LISP -
will not create any new objects unless absolutely
nebessary (because a replacement for Y has been
made) .
(CSETQ SUBST (LAMBDA (X Y Z)
(conp -, X .
((EQUAL Y Z) X)
((ATOM Z) Z)
{T (CONS (SUBST X Y (CAR Z)) (SUBST X Y (CDR Z))))

)

a brand new atomic symbol guaranteed éo be uniqﬁé;
that is, (EQ (GENSYM) X) will always be false, even
if X is an atomic symbol whose'print—namé happens to
coincide with the print-name of the atomic symbol
generated.

When a generated atomic symbol is printed it will
appear as H:N, where N is some integer. If H is

omitted, the atomic symbol G is assumed.

If [GENSYM] has never been used, the atomic symbol
generated by evaluation of {GENSYM (GENSYM 'LABEL))
will be printed as LABEL:1:2. '

RESTRICTIONS: FN must be a function of one argument.

EFFECT:

FN is applied to every atomic symbol currently in
existence with the exception of those generated by

[GENSYM].

A=20 JLISP . . ‘ ' .

VALUE: NIL ']

NOTES: 1If FN is omitted, all the atomic symbols will be
‘ printed.

(AMB X Y)
VALUE: ambiguous, either X or Y.
NOTES: LISP's version of a random number generator is this

random argument picker.

(IFTYPE X N) _
RESTRICTION: N must be an integer between 0 and 7.
VALUE: , true if and only if the object X is of type N,

where N is:

0 means composite object (built by [CONS])
1 means integer . .
2 means octal

means real

HoWw

means address out of bounds (like system

defined functions)

"‘:./'

means compiled code .
6 means linkage node (usually, created by the
special-form LAMBDA or a car-cdr chain)

7 means atomic symbol

S a

NOTES: Types 4, 5 and 6 are unprintable objects and are the only
ones that can be functions.
(ERASE L)
RESTRICTIONS: L must be a list of atomic symbols
EFFECT: Each atomic gymbol in L has its property list
. ' emptied (set to NIL) and its constant binding
(if it has one) removed. -

A

VALUE: NIL

N

DEBUGGING

(TRACE L N 8)
* RESTRICTIONS: L must be a list of atomic symbols to which

EFFECT:

VALUE:
NOTES:

(UNTRACE L)

- _ LISP A-21

functions are constantly bound. N and S must

be integers.

-

Each function bound to an element of L is trapped so
that its arguments will be printed when it is applied
and its result is printed after it is computed.
Tracing begins as soon as the function has been
applied S times and ends after it has been traced N
times. '

NIL o

If S is omitted, 1 is assumed.

If N is zero, the functions will never stop being traced.

If both N and S are omitted, 0 and 1 are assumed.
Tracing uses [PRINT] with a five line limit.

RESTRICTIONS: same as L in TRACE above.

EFFECTS:
VALUE:

(NEWDEF N FN)

Tracing ds removed from the functions indicated in L.

NIL

RESTRICTIONS: N must be an atomic symbol to which a function

EFFECT:

VALUE:
EXAMPLE:

N

created by evaluation of a LAMBDA-expression
is constantly bound. FN is a function of one
argument.
The LAMBDA-expression that evaluates to [N] is recon-
structed and FN is applied to it. This result is

then evaluated and replaces the old binding. of N.
—

This pseudo~functioﬁ is used to fix faulty defini-
tions when running conversationally. For instance,
suppose we have defined a function [TEST] that erro-

neously contains'the expression (CONS X), where we

tA-22J LISP

Teally meant (CONS X L). Instead of redefining
[TEST], we can patch it up by evaluating

(NEWDEF 'TEST

| (LAMBDA (I) (SUBST '(CONS X L) '(CONS X) 1)))

COMPILER

(*BEGIN)

(*EMIT 1 A)
(*ORG A)
(*EPT N)
(*MACRO X)
(*CHAIN X)
(*DEF X)

NOTES:

(*CAR X)

VALUE:

NOTES:

{*CDR X)
NOTES:

LISP A-23

These functions are necessary for the LISP compiler
and are of no concern to us, They are only listed
here since these atomic symbols do have conmstant

bindings and therefore cannot be used as variables.

same as (CAR X). - = ¢

There are some wise guys (like the LISP compiler) who
want to take CAR's and CDR's of atoms. [*CAR] allows
them to transgreés in this manner without terminating

evaluation.

Same idea as *CAR.

_24 LISP
p2by

TRUTH FUNCTIONAL CONSTANTS

NIL
Evéluates to NIL.

Evaluates to T.

Evaluates to NIL.

If

LISP A-25 .

SPECIAL~FORMS

VA

A letter used in the sample for a special-form represents whatever
object is actually written in its place and not the value of that

object, since the concept of that object having a value does not

necessarily apply.

(QUOTE X)
VALUE: X
NOTES: [READ] translates 'X into (QUOTE X).

(COND (P Ejq Eqp ot Ej) (By Epy oo By) o0 (B Ejp o0 Egy))
VALUE: Each P is evaluated from left to right. When one is
found that is true,.each associated E is evaluated.
The value of the last such E bécomes the value of the
conditional expression. If the last E is a conditionmal
expression for whidh{noiP is true, then evaluation
continues with the next P in the first-conditional

exprasﬁion;

(LAMBDA (V, q&'-~- Yn) E, E, **° Em) _ -

RESTRICTIONS: Each V must be an atomic symbol that

will never have a constant binding.

VALUE: a function'of n arguments whose result is computed
by evaluating El through Em in an environment where
each V is bound (fluidly) to the corresponding argu-
ment of the function. The value obtained from the

last E becomes the result when the function is applied.

(00 E; B, *++ E) . .
VALUE: the value of the last E, but all E's are evaluated. .
EFFBLT: whatever effect the E's have.

C e

(AND P, P, «++ P) '
VALUE: true if no P evaluates to false; if one does, the

value is false and no more P's are evaluated.

A-25 LI5P

:
<

(OR P, Py ... Pn)

VALUE: false if no P evaluates to true; if one does, the

value is true and no more P's are evaluated,

(LAMDA(V1 VZ

VALUE: the same function as the value of
gF?NCT?QN (LAMBDA (VI_VZ,’f' Vn) El %2 see ?m))

. 2

LY Vn) El E2 s e Em)‘

} aniiald

LISP A-2;

t

PROGRAM FEATURE

{PROG (Vl V2 see Vn) Sl 82 coe Sn)
;RESTRICTIONS: Each V must be either of the form PV or (PV E),
, where PV is an'atomic symbol without a constant
~binding. ' "
EFFECT: For each V of the form PV, PV is bound to NIL; for

e each V of the form (PV E), PV is bound to the value

of E. ‘Then each non-atomic S is evaluated in this
expanéed enviromment.
VALUE: NIL, but see RETURN below.
NOTES: The S's that are atomic symbols are labels that may
be refeéenced by co. . ;

(SETQ PV V)
NOTES: see BINDING- ESTABLISHMENT above.

. {GO LAB) .
RESTRICTIONS: LAB must be a label appearing in the PROG thatr
surrounds this GO. ,
EFFECT: Evaluation of the statementsoin the surrounding PROG
continues with the statement following the first
appearance of the label LAB. -

(RETURN V) »
EFFECT: V is evaluated and its value becomes the value of the

most recent PROG-expression.

“ve. "

m—

o,
/ “

LISP B-1

Appendix B

RUNNING LISP UNDER EXEC-VIII

Since LISP resides on the 1108 system library, to use the LISP system

we submit a run with a standard UWCC 1108 @GRUN statement followed by

a @LISP control statement followed by the expressions that we wish to
evaluate. LISP is not a processor in the 1108 executive sense; that
is, there are no automatic facilities in LISP for producing or updating
files of source input. To do so we use the DATA processor of EXEC VIII
and :FROM control caxrd of LISP.

. The format of the @LISP statement is

@LISP,options .
where the options can be

means that LISP is to be run in batch mode.
means fﬁat LISP is to be run in conversational mode..
Note: neither of these options is necessary, because
LISP determines the mode automatically when it is loaded.
Z inhibits checking to see if [CAR] or [CDR] is being applied

to an atom.

If the LISP system cannot recover from a GUARD MODE or ILLEGAL
INSTRUCTION error, the 1108 message indicating that such an error
occurred will probably appear. The meéssages are IGDM or IOPR,

respectively, followed by a register dump. These errors are fatal.

The deck setup is illustrated on the following page.

/mrxn _ — | ; r i\' R

EXPRESSIONS TO BE EVALUATED

seatrvDnlar ST et

aatecan

Q’LIVP : .
1' . b .
WFIIH HORMENS FFFF DOUU . N
] ; 4
- : . 00
AR R R R ‘ 1K
00 Joooo0o000D0 Jo000]]]])00000000000000000000000000000000000C000030000000000B0000500 {11!
1234858718 8100121145151713182021222324252627282930 31323334 3536 3738 3840 41 42 43 44 4346 47 48 4950 51 5zsastsssss1sasisosxsm«s.smmmnnmmn‘nnmo
RERERRE 1331111i11ill111Illlli!!1111!11111!1!1Iil!111111!11111111111111111111111 222
22522177 973277 ' 222272222222222222222222 f33
1933333333333333533333333 [144
_ EAAAE4414004444400044040 BOS
£ ; 4 REEE: 5QaJ§33b5555555545554555555555 566
556566]5555558656586SGCbSSGSB&GSGSSSBbEBBEGBS566585BBGSGBGGE58668656685555856565 171
i777’7777771!i!1777’7771177171717771177777777771777777777771717717717 IRAREARRRL ﬁsﬁ
IassssssasaSBaaslsaaxsssasaasssaaasaaaaassassazasasssa893ssssssasassasasssaasasa o
T)
@ 19999939598599099999899°9999908995539539999¢ 493199w99999°39uesasﬂsssﬂnqsssssﬁaa =2
m!’ izé(PR NN I8200220252528 2020050 N2 MINITRBISA0AATMASLGET LRI SO SER2EI M 088 55!50’!5&5!!:621‘-16335.75! 30N nnu ?&75 1“';’;!653

	Norman_Lisp_1108_Ref-19690001_a
	Norman_Lisp_1108_Ref-19690001_b
	Norman_Lisp_1108_Ref-19690002_a
	Norman_Lisp_1108_Ref-19690002_b
	Norman_Lisp_1108_Ref-19690003_a
	Norman_Lisp_1108_Ref-19690003_b
	Norman_Lisp_1108_Ref-19690004_a
	Norman_Lisp_1108_Ref-19690004_b
	Norman_Lisp_1108_Ref-19690005_a
	Norman_Lisp_1108_Ref-19690005_b
	Norman_Lisp_1108_Ref-19690006_a
	Norman_Lisp_1108_Ref-19690006_b
	Norman_Lisp_1108_Ref-19690007_a
	Norman_Lisp_1108_Ref-19690007_b
	Norman_Lisp_1108_Ref-19690008_a
	Norman_Lisp_1108_Ref-19690008_b
	Norman_Lisp_1108_Ref-19690009_a
	Norman_Lisp_1108_Ref-19690009_b
	Norman_Lisp_1108_Ref-19690010_a
	Norman_Lisp_1108_Ref-19690010_b
	Norman_Lisp_1108_Ref-19690011_a
	Norman_Lisp_1108_Ref-19690011_b
	Norman_Lisp_1108_Ref-19690012_a
	Norman_Lisp_1108_Ref-19690012_b
	Norman_Lisp_1108_Ref-19690013_a
	Norman_Lisp_1108_Ref-19690013_b
	Norman_Lisp_1108_Ref-19690014_a
	Norman_Lisp_1108_Ref-19690014_b
	Norman_Lisp_1108_Ref-19690015_a
	Norman_Lisp_1108_Ref-19690015_b
	Norman_Lisp_1108_Ref-19690016_a
	Norman_Lisp_1108_Ref-19690016_b
	Norman_Lisp_1108_Ref-19690017_a
	Norman_Lisp_1108_Ref-19690017_b
	Norman_Lisp_1108_Ref-19690018_a
	Norman_Lisp_1108_Ref-19690018_b
	Norman_Lisp_1108_Ref-19690019_a
	Norman_Lisp_1108_Ref-19690019_b
	Norman_Lisp_1108_Ref-19690020_a
	Norman_Lisp_1108_Ref-19690020_b
	Norman_Lisp_1108_Ref-19690021_a
	Norman_Lisp_1108_Ref-19690021_b
	Norman_Lisp_1108_Ref-19690022_a
	Norman_Lisp_1108_Ref-19690022_b
	Norman_Lisp_1108_Ref-19690023_a
	Norman_Lisp_1108_Ref-19690023_b
	Norman_Lisp_1108_Ref-19690024_a
	Norman_Lisp_1108_Ref-19690024_b
	Norman_Lisp_1108_Ref-19690025_a
	Norman_Lisp_1108_Ref-19690025_b
	Norman_Lisp_1108_Ref-19690026_a
	Norman_Lisp_1108_Ref-19690026_b
	Norman_Lisp_1108_Ref-19690027_a
	Norman_Lisp_1108_Ref-19690027_b
	Norman_Lisp_1108_Ref-19690028_a
	Norman_Lisp_1108_Ref-19690028_b
	Norman_Lisp_1108_Ref-19690029_a
	Norman_Lisp_1108_Ref-19690029_b
	Norman_Lisp_1108_Ref-19690030_a
	Norman_Lisp_1108_Ref-19690030_b
	Norman_Lisp_1108_Ref-19690031_a
	Norman_Lisp_1108_Ref-19690031_b
	Norman_Lisp_1108_Ref-19690032_a
	Norman_Lisp_1108_Ref-19690032_b
	Norman_Lisp_1108_Ref-19690033_a
	Norman_Lisp_1108_Ref-19690033_b
	Norman_Lisp_1108_Ref-19690034_a
	Norman_Lisp_1108_Ref-19690034_b
	Norman_Lisp_1108_Ref-19690035_a
	Norman_Lisp_1108_Ref-19690035_b
	Norman_Lisp_1108_Ref-19690036_a
	Norman_Lisp_1108_Ref-19690036_b
	Norman_Lisp_1108_Ref-19690037_a
	Norman_Lisp_1108_Ref-19690037_b
	Norman_Lisp_1108_Ref-19690038_a
	Norman_Lisp_1108_Ref-19690038_b
	Norman_Lisp_1108_Ref-19690039_a
	Norman_Lisp_1108_Ref-19690039_b
	Norman_Lisp_1108_Ref-19690040_a
	Norman_Lisp_1108_Ref-19690040_b
	Norman_Lisp_1108_Ref-19690041_a
	Norman_Lisp_1108_Ref-19690041_b

