RHATL

Pedagogic Algorithmlc Language

A Reference Manual and A Primer

Arthur Evans, Jr.

Department of Electrical Englneering

Massachusetts Institute of Technology

February 1968

Introduction and Acknowledgements

PAL -- Pedagogic Algorithmic Language =-- is a computer
programming language that has been developed as a teaching
vehicle in connection with the subject 6,231, Programming
Linguistics, in the Electrical Engineering Jepartment at the
Massachusetts Institute of Technology. 6.231 is desighed to be
taught to second term sophomores who have aiready taken ar
introductory subject in computer programming and who intend o
take further subjects in Computer Science. The present decument
is both a primer and also a reference manual for the PAL
language,

PAL is éurrent1y implemented in CTSS, a general purpose time
sharing system running on a modified I1BM 7094 computer at the MIT
Information Processing Service Center, and is used interactively
by students. A major part of 6.231 is a set of homework
exercises to be carried out on the computer.

PAL is itself written in BCPL, a general purpose programming
language. Since BCPL has been designed to bootstrap itself
easily onto other computers, it should be possible to implement
PAL on a new computer without excessive difficulty (as these

things go).

PAL is a product of the effort of many people.
Intellectually, PAL is a direct descendant of (SWIM, a language
developed by Peter J. Landin. (See "“The next 700 programmine
languages", by P. J.’ lLandin, <Comm. ACM 9, 3 (March 19v0),
157-164.) The initial implementation of PAL was by Landin and
James H, Morris, dJdr., in LISP. The PAL language described in
the present document has been designed by the joint efforts of
Thoma$ d. Barkalow, Arthur Evans, Jr., Robert M. Graham, Morris,
Martin Richards, and John M, Wozencraft. The implementation s
the work of Barkalow and Richards. The lansuare BTPL is the work
of Richards. The present document is by FEvans, with critical
assistance from the rest of the tean. Barkolow wrote apvendix

3.3, and appendix 2.1 is the work of Richards ind lorris.,

Forward to the Student

This document is your principle source of information about
the PAL language. When it has been supplemerted with class
handouts on the mechanics of using the computer, vyou will have

all of the informa-ion you need to write progrims in PAL ono
carry them through execution on the computer.

A short gzlance at this manual will reveal that it is no! ye!
complete, there being sections referred to in the table of
contents that do not yet exist. Some of the mwissing sections

will be passed out in class during the semester,

Undoubtedly typographic and other errors will be found in
this manual, The 6.231 staff will be grateful for all such
errors reported,

tn your initial approach to this manual, the following wmay
be found useful. Read first the introductory sections to the
four main chapters: sections 1.0, 2.0, 3.0 and 4.u, Joing so
will give you an overall introduction to what is in PAL. (Were
section 0,3 written it would serve this purpose.) Next read
sections V.1 and 0.2, which explain the format of the manual and
many of the conventions used, After that all there is to do is

to read chapters 1 to 4 in order,

Before attempting to write a PAL program, study section 0.4
and appendix 3. You will also need some material passed out in
class.

The worked examples {n appendix 4 will undoubtedly be found
useful. Another source of correct PAL programming available to
you is the PAL library, accessible on the computer. |t contains

some examples of well written PAL text,

Good luck!

—a

Table of Contents

Chapter 0: Introduction
1. Conventlions Used In this Manual
the plan of the manual
page numbering conventlions
underlining and quoting conventlons
2. Syntactic Description
formalism used for syntax
syntactic ambigulty
3. Overview of the PAL Language
4, Canonic PAL vs Implementation PAL

Chapter 1: PAL's Alphabet and Vocabulary

0. Introduction

1. Characters: PAL's Alphabet
compos i te tokens
comment conventions
blank - tab - newline
string constants

2., Functors

3. Punctuatlion

k., Identifiers
constants
varijables
literals

Chapter 2: The Simple Applicative Subset of PAL
0. Introduction
1. Functional appllcation
2. Tuples
3. Infix and prefix functors
4, Built-In functions
5. Condltional expresslions
6. Lambda expressions
7. "Let" expressions
8. '"Where'" expressions

Chapter 3: Imperatives

0. Introduction

1. Sequences

2. Assignment
simple
s imul taneous
to a tuple

3. Transfer of control
labels
local goto
non=-local goto

4, Conditlonals In sequences

tit

Table of Contents

Chapter 4: Definitions
0. Introduction
1. Simple deflinitlions
2. Functlon form definitlons
3. Simultaneous definitions
4, Recursive definitions
5. Within definlitlions

Chapter 5: Other Topics
1. Paths
2, Lists
3. The functor "%"
4k, The operator 'J!
LookupindJ

5. yal and res

Appendix 1: Language Toplcs
1. Data types
2. The principle of conformality
3. Scope rules
k., Recursion

5. Sharing

Appendix 2: The Complete Syntax of PAL
1. The complete BNF syntax
2. The syntax as a parsing algorithm

Appendix 3: Implementation Toplcs
1. Features dependent on the current implementation
2. Typling conventlons for various consoles
3. Library routines

Appendix 4: Examples of the Use of PAL

The Table of Contents was last modified on 02/04/68 at 16:22
Evans.

fv

by

Conventlons used in this Manual 0.1 -1
(This section was last modifled on 02/03/68 at 23:10 by Evans.)

This document is designed to serve two purposes in that it
is to be both a primer and also a reference manual for the
language PAL. There seems to he ample evidence in the computer
profession that these two goals are Incompatible in a single
document. To the extent this Is true, then, this document seems
to be more successful as a reference manual than as a oprimer.

Nonetheless, the newcomer to PAL should find it adeauate.

Ihe Plan of the Manual

Following this Introduction, there are five chapters
describing the PAL 1language and then several appendices on
various topics. The first four chapters, which make up the bulk
of the manual, are divided Into sections each describing some
aspect of PAL. Each section 1Is subdivided into (up to) six

parts, as follows:

dntroduction
Eormulae
Notes
Semantics
Examples

Advice

The first letter of each of these words ldentifies the
subsection. Thus a reference to section 1.2/N refers to the

Notes in part 2 of chapter 1. Chapter 5 1is on miscellaneous

Conventions used in this Manual 0.1 - 2
language topics and Is organized less formally,

A few more words about the six subdivisions are 1In order.
In some sections, one or more of the subdivisions will be
missing, since they would serve no useful purpose. When the

sections are present, they describe a new concept as follows:

. Jlntroduction: Informal introductory comment about the new
concept is given. |If the concept requires understanding of
some aspect of PAL which appears later in the manual, a few

words are given here about the missing ideas.

. Formulae: The syntax of those aspects of the lanpuage
relevant to the new concept is given. The notation used is

described in section 0,2,

. Notes: Frequently, further notes and descriptive material
are necessary concerning the syntax. Sometimes this s
because the syntax equations do not tell the whole story,

and it is necessary to give more information.

. Semantics: In thls subdivision, we give the meaning of PAL

program elements the user might write using the new concept.
The discussion here is Informal, assuming the existence of a

"friendly" reader,

. Examples: Examples are given of PAL program elements using

the new concept.,

. Advice: Frequently there are (issues of convenlience or

running efficiency retated to the new concept of which the

Conventions used in this Manual 0.1 - 3

user should be aware but which find no home elsewhere.

Page Numbering Conventlons:

The pages of thls manual are numbered to indicate thelr
section, and are not numbered consecutively as usual. Thus the
first page of the present section Is numbered "0.1 - 1", The
first page In the Notes part of section 3 of chapter 2 would be
numbered "2,3/N - 1". Page numbers in appendices are prefixed
with "Ap", so the first page of Appendix 1.1 is numbered

"Ap 1.1 - 1",

underlining and Quoting Conventions

In a manual such as this one, it is frequently necessary to
refer in text to constructs of the language. To distinguish them
from the English text that is the manual, such constructs will
usually be surrounded by the double-quote mark " , On occasion
where no ambigulty may result, such constructs will be
underlined. These conventions apply only to in-line text and do
not apply to text displayed on a 1line by itself (usually
centered). For example, we might be discussing the PAL

expression
(x + 1)»(x + 2) where x = 7

and refer in text to the functor "+" or to the variable x or to

the punctuation "where'".

Conventlions used in this Manual 0.1 - &

The words "Interpret” and "Denote"

“&Q

Certain words will always be wused in this manual In a

technical sense only,

%

Syntactic Description 0.2 -1

(This sectlon was last modified on 02/03/68 at 23:14 by Evans.)

lntroduction

In specifying a computer language, there are two problems to
solve: It is first necessary to specify exactly which strings of
characters (out of all possible such strings) are legal sentences
in the language; and It Is next necessary to specify exactly what
is the meaning of each such legal sentence. The first problem
has to do with the syntax of the language, and the second has to
do with semantics. [In this section the technique used 1in this

manual for the speciflication of syntax will be discussed,

Ihe Formalism used for Syntax

The term "syntax" has to do with specifying those strings of
characters that are legal Instances of a particular class, It
has been found that specifying syntax is done most conveniently
with the use of a formalism., That Is, a particular notation Iis
used that gives an exact definition of what are the legal
strings. Since the strings being defined are the strings of the

languaze, we use the term "meta-linguistic" to refer to marks

used in the definition,

Six meta-linguistic marks are used In our formalism:

The first two of these marks are "meta-linguistic brackets', used

to enclose the name of a construct. The third mark is a single

Syntactlic Description 0.2 - 2

entity: "colon-colon-equal'. It can best be read as "is defined
to be'". The fourth mark Is best read "or'". The last two marks
serve as parentheses at the meta-linguistic level. These marks
are used in the formal description of the syntax, and it s
assumed that identical marks are not used in PAL. (In section
1.1 we will see that special provision is needed to talk about
the fact that each of these symbols other than "::=" is actually

used Iin PAL.) The use of this notation will now he explained.
A definitlion such as
{letter> ::= al b lcl d]|] el f| ¢«

may be read as, "An element of the meta-linguistic class <letter)
is defined to be either "a" or "b" or "¢'" or "d" or "e'" or "f" or
"g" Thus the definition specifies that each of the first six
characters of the alphabet, lower case, 1is a member of the
syntactic category <letter>, Having this definition, we may

write
{string> ::= <(letter> | <(string> <(letter>

This can be read, "The class <string> is defined to be either a
<(letter> or a <string> followed by a <letter>." Note that
{string> Is defined In terms of Itself. We will now show that
"abc" Is a <string> In terms of the above definition. It Is not
a <letter>, so we ask If It Is a <string> followed by a <(letter>.
Since "c" is a letter, the answer Is yes providing that we can

show that "ab" is a <stringd>. Similarly, we can deduce that "ab"

is a <string> iIf we can show that "a" is one, since "b" is a

Syntactic Description 0.2 - 3

{letter>. But "a'" Is a <stringd because it Is a <{letter>, and we

conclude that "abe" is a string.

An English sentence equivalent to the above definition of
the class <string> might be, "A {(string> Is a sequence of any
length of items from the class <letter>." Althourh it is easy to
give an English sentence equivalent to the syntax equation just
given, we shall see many syntax equatlions that are sufficiently
complicated that an equlivalent English description would be

awkward,

Let us continue this example further. Suppose that we

define

{LETTER> =::= A | B | CID]| E] F |G
0

<digit> 1=

In PAL, the programmer may use as names identifiers made up out
of arbitrarily long strings of <(letter>s, <LETTER>s and <digit>s.
(Of course, the entire alpha?et Is avallable to the PAL user
instead of just the fi}st six letters, but the present

explanation is more easily given this way.) Thus we might

propose defining <name)> by

{char> ::= <letter> | <LETTER> | <digit>

{name> ::= <char)> | <name> <char>

As it happens, however, there are two restrictions that we wish
to have in PAL: First, if the name conslists entirely of digits,

it is Interpreted as an integer and not as a prosrammer's name;

Syntactic Description 0.2 - 4

and second, a name two or more characters 1long consisting
entirely of lower case letters Is interpreted as a "system word"
built into PAL with a predefined meaning, and is not available to
the programmner for his use as an lIdentifier. Me will now
provide, as our example of the syntax notation to be wused, a
complete description of a class <variable> which does not include

integers or system words.

Before doinz so, we will expand the notation, The syntax
equation given above for <name> has a form that appears quite
often In this sort of work, It defines one item as a string of
arbitrary length of instances of some other item. Because this

is conmon, it Is expedient to introduce a notation. \ile write
<name> ::= <char>y

to indicate that a <name> consists of one to arbitrarlly many
instances of <char>. Note that the mark '"='" as used here means
"arbitrarlly many", or "as many as desired", neither of which is

quite the same as "iInfinlty".

Actually, we do not need the definition of <{char>, since we

can wrlte
¢(name> ::= { <letter> | <LETTERY | <digit) }~

The intent of this notation Is that it define the same class of
strings as that defined by the previous notation. Possible

instances of the class name Include the following:

v

Syntactic Description 0.2 - 5§
a A & aAf3g lab 9000 alb2c3db

With this notation, the classes <lnteger> and <{system word>

mentioned earlier can be defined by the equations

]

{integer> :: <digit>?

{system word> ::= (]etter)f

Here a system word consists of two or more <(letterd>s, according
to the definition., Similarly, a class consisting of two or nmore

{name>s separated by plus signs could be defined by

<¢summation> ::= <named> { + <name> }

In a language like Fortran where symbols are no more than six

characters long and must start with a letter, we might have
{symbol> ::= <(LETTER> { <LETTER> | <ddigit> }:
(Remember that only upper case letters are available in Fortran.)

We now provide the definition of <variable)> promised
earlier. Assuming that the classes <digit>, <letter> and

CLETTERY> are already defined, we have

¢symbol head> ::= <digit> { <letter> | <LETTER>}
| <letter>, | <LETTER)Y | <digit> }
| <LETTER>

{variable> ::= <(letter>

| <symbol head> [<letter> | <LETTER> | <digit> },

Syntactic Description 0.2 - 6

The reader should satisfy himself that <(variahled> as defined here

has all the properties asked for,

Svptactic Ambiguity

It is quite easy to write syntax with the property that
certain strings are deflined by the syntax in more than one way,

In such a case, we say that the syntax Is ambiguous, Consider
<{sheep nofse) ::= baa | <sheep noise> <sheep noise>
This definition is ambiguous, since the phrase
baa baa baa

can be a <{sheep nolse> In more than one way. The difficulty is
that we do not know whether the baa in the middle should be
assoclated with the first or third baa to make a <{sheep nolise>,
and there is nothing In the definition to tell wus which.

Alternatively, we could have
{sheep nolse 1> ::= baa | <(sheep noise 1> baa

:= baa | baa <{(sheep noise 2>

{sheep nolise 2>

It should be <clear that each of these two definitions s
unambiguous, the first associating baas to the 1left and the
second assocliating them to the right. Further, each of the three

definitions defines the same class of strings.

In a language such as PAL, It is usually possible to write

syntax definitions unambiguously., The definition of <variabhle)

Syntactic Description 0,2 - 7

above was somewhat complex because of the desire to make it
unambiguous. (The reader should satisfy himself that it s,
indeed, unanbiguous.) However, we shall frequently choose to

give ambiguuous syntax, mainly because removing the ambiguity

from the formulae seems to Introduce more problems than it

solves. (Of course, we must remove the ambiguity somewhere if we
are no have a reasonable definition of a language. Usually the
Notes sectlon will address this issue.) Consider the case of

arithmetic expressions on integers. We micht have
{operator> ::= + | = | ® | [/

{expression> ::= <(integer> | (<expression>)

| <expression)> <operator> <expression>

(Here <integer> Is as above.) This syntax is ambiguous, since

phrases 1like
2 + 3 x4

can be interpreted in more than one way. |t should be clear that

this problem is serious, since one interpretation gives 1lh as an

answer and the other gives 20.

We first show that it is possible, in definitions such as
this, to produce an unambifuous syntax. Using <integer)> as

above, we define

{primary> ::= <(integer> | (<expression 1>)

Syntactic Description 0.2 - 8
Ctermd> ::= <(primary> | <term> { * | / } <primary>

{expression 1> ::=2 <(term)

| <expression 1> { + | = } <term

The reader should satisfy himself that the same strings that are
{expresslion)>s are also <expression 1>s, but that <expression 1)s

are unambiguous.

Now that we have shown that It Is possible (at least in this
case) to wrlite unambiguous syntax, we explain why we frequently
choose not to. The definltion of <expression> Is simpler and
more stralghtforward than that of <expression 1>. It is clear at
a glance what strings are <expression>s, but deducine what
strings are <{expression 1>s takes a bit more study, Thus from
the point of view of the learner, It seems preferable 1in such
cases as this one to choose the ambiguous syntax for the

formulae,

Of course, there Is still a problem to solve: The purpose
of a manual such as this one 1Is to convey, accurately and
unambiguously, just what Is the meaning of each sentence in the
language. This Is done in the present manual by appending to the
formal syntax In the Formulae section such English description as
seems appropriate, and it is this latter that goes into the Notes
section. In a definition such as the above of <(expression>, the

following discussion would be provided:

The definition of <expression> [s ambiguous. To deduce the

meaning of amhiguous phrases, note the precedence table

Syntactic Description 0.2 -9

given below.

Operator Precedence
+ 1
- 1
* 2
/ 2

Here each operator Is assigned a precedence. In cases where
a particular subexpression may be associated with the
operator on either its left or 1its right, it will be
associated with whichever operator has higher precedence.

In cases of equal precedence, the operator on the left will

- be used.

%V The reader should satisfy himself that the {informal discussion

just given will have the same effect as the formal definition of

{expression 1>,

Canonic PAL vs Implementation PAL o4 -1

(This section was last modified on 02/04/68 at 16:37 by

Evans.)

The term "the PAL language" Is actually somewhat ambliguous,
since there are several different possibllities as to what It
means. The problem has to do with the ,avallable character set.
Ideally, we could write programs In canonic PAL, a version of PAL
which assumes the exlstence of an arbitratily 1large character
set. In practice, we are concerned In this manual with the
Implementation of PAL as it exists (In the spring of 1968) on
CTSS on the IBM 7094 at MIT. |In addition, unfortunately, we are
also concerned with problems arising from the fact that some
console devices attached to CTSS differ from others, and

different characters are available on different consoles.

The present section of the manual concerns itself with the
distinctlion between canonic PAL and the PAL implemented on CTSS.

The problems of differing console devices are discussed In

Appendix 3.2,

It Is convenient for PAL's designers to assume the existence
of a very large character set. For example, it would be pleasant
to use the marks "A" and V" for the Boolean connectives "and"
and "or", respectively, since these are the marks usually used In
loglc. Unfortunately these marks are not avalilable on typewriter
devices attached to the computer to which we have access. Thus
the writer of a manual such as this one faces a problem: Should

he use "A", or should he replace that mark by something that can

be input to the computer?

Canonic PAL vs Implementation PAL 0.4 - 2

In the present manual, we opt for the latter cholce. The
purpose of this manual 1Is to assist a new user of PAL to
understand PAL. Since the reader's objective Is to be able to
use PAL on a computer, it seems most useful to describe PAL In a
manner as close as Is convenient to the notation actually used on
the computer; Thus thl% manual describes an _J|mplementation of
PAL -- indeed, a particular implementation on a particular

computer at a particular time.

On the other hand, the main part of this manual jgnores the
problem (mentioned above) of differing consoles. For example,

the relation of a being greater than b Is expressed In this

manual as

even though there are some consoles not equipped to type the

""greater than" mark. From such consoles one might type
agrhb

(as explained in detall in Appendix 3.2).

1.0 -1

Chapter 1:

The Baslic Elements of PAL

(This section was last modified on 02/02/68 at 11:55 by

Evans.)

In defining a conventional language, we start with an
alphabet. Using this we make up first words and then larger

constructs such as sentences and paragraphs. A similar technique
is used in defining the PAL 1language. PAL's alphabet s

(roughly) the set of characters that can be typed on the devices
avallable. (A complete description of PAL's alphabet Is found in

section 1.1.)

PAL's alphabet is used to make up words. There are several
ways to organize PAL's words into hierarchical classes, one of

which is the following:

identifier

variable

constant
quotation
numeric

jiteral

functor

punctua;lon

Introduction

The classes just shown are based

members are put In PAL. Another

snyntactically, but that is less
Wwe consider first the meaning of

defer till later In this section

jdentifiers are words avallable to the programmer to

the vélues which he wishes to manipulate

computation.

same value -- a value which can be deduced from the form of

identifier. Such

three forms:

values;

(We

denote numeric

"huyilt-in" values. see

breakdown of numerics into those

those that denote real values.)

Identiflers other than

identifiers are called gonstants.,
quotations, which denote strings;
and ljterals,

later

constants

to Chapter 1 1.0 - 2

on the purpose to which their

way to categorize PAL's words is
useful for the present purposes,
and

each of the above <classes,

the syntactic categorization.

denote

in the course of a

Certaln identifiers, such as "2", always denote the

the

and come in

numerics, which

which denote certalin

that there s a further

that denote jnteger values and

These

are varlables.

denote values of the programmer's choosing -- frequently denoting

different values during the course of a computation.

ldentifiers,

section 1.4,

word whose

A functor is a

evaluated,

functor "+" indicates addition,

the operation of augmenting a tuple.

section 1.2.

both varlable and constant,

is the execution of an operation,

and the functor

are discussed 1In

effect, when the program is

For example, the

“"aug'" iIndicates

Functors are discussed in

Introduction to Chapter 1 1.0 - 3

The remalining words in PAL's vocabulary are called
punctuations. These include "let", "and", "11" and others.

Punctuations are discussed In section 1.3,

As suggested above, an alternate way to categorize PAlL's
words Is syntactically, or by the form rather than by the meaning

of the word. We might then have the following classes:

variable
quotation

numeric

reserved word

special

Here the first three classes are as above., A reserved word is

one made up of two or more lower case letters, This class
includes "true" (a literal in the first categorization), "aug" (a
functor), and "let" (a punctuation). The class special then

includes "+" (a functor) and "." (a punctuation). It Is always
possible to tell by looking at a word which syntactic class It is
a member of, but the first categorization does not have that
property. (The only way to tell that "let" serves as a
punctuation is to look at a list. On the other hand, it s

clearly a reserved word, by its form,)

A1l of this discussion is best summarized by the following

table. Note that each of PAL's words (other than variables,

quotations and numerics) Is shown exactly once In this table,

with the exception of "=" which is shown twice. (This symbol |is

Introduction to Chapter 1 ' 1.0 - &

used as both a functor and also as a punctuation.)

reserved word special
literal ‘true false nil dummy
functor not aug val res jj + = % /[oxx & |
<=>%%
punctuation " let in where within ()YEI 1§ =.
rec and 11 goto > 3 =1,

Characters: PAL's Alphabet 1.1/1 -1

lntroduction: (This section was last modified on 02/02/68 at

12:28 by Evans.)

As mentioned In section 1.0, text in PAL 1language s

written using a particular alphabet which 1Is made up of
characters. This sectlon contains a listing of PAL's character

alphabet, along with certaln other (information relevant to

creating PAL text.

The alphabet chosen for PAL Is the so-callied ASC!| alphabet.
ASCI] == the word is acronymic for American Standard Code for
- Information Lnterchange =-- represents a standard character set
which (hopefully) will some day be available on all computers and
all console devices. Because of ASCII's growing acceptance In
the computer world In general and at MIT in particular, PAL's
designers have chosen It for the Implementation language of PAL.
The full ASCI| character set, as defined by USASI (the Unlted
States of America Standards Institute), consists of 128
characters. Of these, 94 are printable graphics; some others are
format effectors such as space, backspace, tabulate, new=-line,
etc.; and the rest are control characters of no interest to the
present discussion. PAL's alphabet includes the graphics and a
selection from the format effectors. (The interested reader may
learn more about ASCI! by consulting Communications of the ACM,

volume 8, Number 4 (April 1965), pages 207-214,)

In this less than perfect world, many console devices are

deficient in that they do not provide for direct input of all of

the character set. Appendix 3.2 contains the information needed

Characters: PAL's Alphabet 1.1/1 - 2

to use PAL from the various devices which are actually available.
In this primer, the entire ASCI! set Is assumed to be avallable,
since it is possible (albeit somewhat awkward) to input or print

any character with any device.

A PAL program should be regarded as one continuous character
stream rather than as a sequence of lines or card images, In that
the transition from one line to the next has no significance In
the language., (There are two exceptions to this rule: The
newline character Is treated as a space, so a construct such as
an identifier which may not have embedded spaces may not be
continued from one line to the next, Also, newline terminates
the comment convention.) In the program text, the actual
transition from one 1line to the next is indicated by the
character "newline", the character produced when the '"carriage

return” key is typed.

Characters: PAL's Alphabet 1.1/F - 1

<upper case letter> ::=
AIBICIDIEIFIGIHIT|JIKILIMINIOIPIQIRISITIUIVIWIX|YIZ

{lower case letter> ::=

alblclidlelflglhiiljlikilIminiolplalirisitiulviwixlylz
{letter> ::= <{upper case letter> | <(lower case letter>
<Jigit> st 0| 1| 231 41 5)161 718129
<alphanumeric> ::= <letter> | <digit>

(special character> = | | ™ | # | $ 1 21 &1 " | C1) | »|
+ 1, 01 =107 11 ;1 <less than> | = | <{greater than>
P2 110 I NP1~ _ 1 Y Cleft brace> | <bar> |

{right brace> | ~

(format effector> ::= <spaced | <(tab> | <newline> | <backspace)

| <black ribbon shift> | <red ribbon shift)
{character> ::= <alphanumeric> | <{special character>
{composite token> ::= [/ | = | => | ==
{quotation> ::= ' <any character other than '>=

<reserved word> ::= <(lower case letter>:

Characters: PAL's Alphabet 1.1/F - 2
Speclal Definitions:
{less than> '::=

{greater than> ::=

{right brace> ::=

{space)> ::=

{tab> ::

<newline> ::=
{backspace> ::=

<{black rlbbon shift> ::=

i

{red ribbon shift> ::

Characters: PAL's Alphabet 1.1/N - 1

Notes:

1. Qmission of Spaces. In PAL as in English, the presence or
absence of spaces can affect the meaning of what Is written:
"DIGIT" and "DIG IT" have different meanings. On the other hand,
there are many places in PAL where the user may insert spaces as
he chooses to improve the readability of the text. (See appendix
4 for some very readable examples of PAL.) The following rules
specify where spaces are optional in PAL. In these rules (and
only In these rules), the word "namer" is used to stand for a
variable, a quotation, a numeric or a reserved word. Further,
the word "space" stands for any arbitrary concatenation (one or
more characters long) of the characters space, tab and newline.

In preparing PAL text, proceed as follows:

1. Provide space on each side of each word. (Here word Is

used in the sense of section 1.0.)

2. Place arbitrary space between any two characters,

providing they are not both part of the same namer and that

they do not make up a composite token.

3., Eliminate space at will, providing only that the effect
Is not to cause two alphanumerics that were previously

separated by space to become adjacent,

The above three rules are to be obeyed in order, Note that
following rule 3 can result in the elimination of space required
by rule 1. Since alphanumerics are used in PAL only in namers,

the effect of these three rules may be seen to be the following:

Characters: PAL's Alphabet 1.1/N - 2

Space is required between namers that would otherwise be
adjacent, and space is optional at all places except in the

mliddle of a namer or a composlte token,

2. Speclal definitions. The 9% ASCI| printable graphics are

included in the class <character>. In addition, the following
format effector classes will be used whenever they are needed,

although typographic problems make it awkward to define them in

the usual way.

{space>

{tab>

<{newline>
{backspace>

<{black ribbon shift>
{red ribbon shift>

In addition, the followling five classes represent characters that
are used in the syntax definitions of this manual, For this

reason, these characters cannot appear in syntactic equations.

<less than>
{greater than>
<{bar>

{left brace>

{right brace>

Each above class consists of the single character represented by

jts name.

Characters: PAL's Alphabet 1.1/N - 3

One other sort of syntactic class is left undefined. For

exanple, the class
<any string not including "newline'">

is used in the next paragraph but never defined, since the

membership of the class Is obvious from the name of the class.

3. Comment conventions. The user may insert certaln arbitrary

sequences of characters 1Into his programs to Iimprove the
self-documentation of what he writes, The presence of the

sequence

// <any string not including "newline"> <newline>

will not affect a program, That 1is, a double~slash and all

characters to its right will be ignored on any line.

4. Quotations. As will be seen In more detall in section 1.4,
one of the basic data types the programmer may manipulate Is
strings of characters. A string 1Is an ordered sequence of

characters from PAL's alphabet. A quotation is (roughly) any

sequence of characters not including the single quote mark ' ,

surrounded by quotes. Inslde of a quotation, and only in a
quotation, the characters space, tab and newline have meaning.
In other words, the newline character may be quoted. However,
because doing so 1Is awkward, PAL recognlzes certaln special
conventfons inside of quotations, as described in detall In
section 1.4, Because of the existence of these conventions, the

syntax shown is not completely correct. (Correct syntax appears

Characters: PAL's Alphabet 1.1/N = 4

in section 1.4.)

5. Jlnteraction between comment and auotation conventions. Two)
rules have been given for speclal processing of text by PAL:

between the composite token "//" and the next succeeding newline,

and between successive Instances of the single quote. These
rules interact in the following way: a '"character reading"
program that is part of the PAL translator examines text 1in the
same order that it is written, from left to right on each 1line
and from top to bottom of the page. Whenever processing of
elther of these rules begins, the other rule Is ignored until the
end of the effect of the first rule. Thus // in a quotation does

not signify a comment, and single quotes need not be paired In

comments.

6. Composite Yokens. A composite token Is made up of two w
special characters from the basic alphabet which have a speclal
meaning when used together. They must be typed 1in adjacent
positions on the paper, with no Intervening space or newline.

The composite tokens are now listed.

// comment convention. See Note 3 above.

: the assignment operator. See section 3.2.

-> the conditional. See sections 2.5 and 3.4,

*h the infixed exponentiation operator. See section 1.2/S.

7. Unused characters, The observant reader will have noticed

that the class <special character> iIncludes the following w@@

Characters: PAL's Alphabet 1.1/N - 5
{
S characters that are not (apparently) used in PAL:
"#?@\A\N

These characters are avallable for programmer use in quotations.

Functors 1.2/71 - 1

lntroductlion: (This section was last modified on 02/04/68 at
16:47 by Evans.)

Functors are those words in PAL's vocabulary whose effect,
when the program of which they are a part is evaluated, Is the
execution of an operation. For example, the "+" |[n the

expression
3+ 4

Is a functor indlcating addition. Even assuming that Add denotes
a function of two arguments that returns their sum, there 1Is an

important difference between the previous expression and
Add(3, &)

Functors may be infix operators; l.e., they may appear between
thelr operands. Thus there is a syntactic Issue In deduclng that

the left operand of "+" |n
3 x4 + 5

is the product of 3 and 4 and s not just 4. There 1is no such

problem Iin an expression such as

Add(Mult(3, u4), 5)

Functors

Formul ae:

{functor> ::=
{infix arithmetic functor>

| <prefix arlithmetic functor>

| <infix logical functor>

| <prefix logical functor>

| <arithmetic relational functor>
| <equality relational functor>

| <tuple-making functor>

| <jumping functor>

| <operator defining functor>

| <unsharing functor>
{infix arithmetic functor> ::= + | = | = | [/ | #*=
{prefix arithmetic functor> ::= + | =
<infix logical functor> ::= & | <vertical bar>

{prefix logical functor> ::= not

<arithmetic relational functor>

{less than)> | <greater than>
{equality relational functor> ::= =

{tuple~-making functor> ::= aug

{jumping functor> ::= jj | val | res

1.2/F - 1

Functors

{operator defining functor> ::= %

{unsharing functor> ::= §

<inflx functor> ::=
<Infix arithmetic functor>
| <infix logical functor>
| <arithmetic relational functor>
| <equality relational functor>

| <tuple-making functor>

{prefix functor> ::=
(prefix arithmetic functor>

| <prefix logical functor>

| <unsharing functor>

1,2/F - 2

Functors 1.2/N - 1
Notes:

Note that the Infix loglical functors are "&" (read "and")
and "|" (read "or"). The reserved word and is also used in PAL,
but for a completely different purpose. (It is used as a

conjunction between the components of a simultaneous definition.

See section 4.3.)

The mark "=" is used both as a functor and as a punctuation.

PAL's syntax is such that its purpose can never be confused.

The classes <infix functor> and <prefix functor)> are not
used elsewhere. in this section, but they are used in other parts
of the manual., Their deflnitions are presented here for later

convenience.

Functors 1.2/ - 1

Semantlics:

A short description Is now given of each of the functors.

The functors are described in this section In the same order that

they appear in 1.2/F.

Infix Arithmetic Functors

L 2

Indicates addition, either between two integers or between

two reals,

indicates subtractlion, elther between two integers or

between two reals.,

indicates multiplication, elther between two Integers or

between two reals.

indicates division, elther between two integers or between

two reals,

Indicates exponentliatlion, In that "a*»#b" in PAL Is the same

as "ab" in conventional mathematical notation. The 1left

operand may be Integer or real, and the right operand must

be integer. The value [s the same type as the left operand.

Prefix Arithmetic Functors

leaves unchanged any numerlic operand, and Is undefined for

non-numerlic operands.

Functors 1.2/ - 2

- changes the sign of any numeric operand.

Infix Loglcal Functors

& The expression "p & q" is defined If both p and g denote
logical values. It denotes the value true if both p and g
do, and denotes false otherwlise.

| The expression "p | q" Is deflined If both p and g denote
logical values., It denotes true If either p or g do, and
denotes false otherwise.

Prefix Loglical Functor

not Changes the sense of a logical operand, in that ‘''not true"

Is “"false" and "not false" is '"true".

Arithmetic Relational Functor
< less than
> greater than

Each of the relational functors Is defined iIf 1(ts two operands
are either both integer or both real. The expression "a relat b"
(where relat Is one of the two relatlonal functors just 1listed)

will be denote true if the value denoted by 3 stands in relation
relat to that denoted by h.

Functors 1.2/ - 3

Equality Relational Eunctor

This infix binary functor Is deflned If 1Its operands are
integers, reals, truth values or strings. |f both operands
are of the same type and have the same value, the relation
Is true, while otherwise It is false. Note that the result
is defined (and false) if the two operands are of different

type.

Juple-Making Functors

aug

If T denotes an p-tuple and E denotes any value, the
expression "T aug E" denotes an pt+tl-tuple whose first n
elements have the same values as (and share with) the
corresponding elements of J and whose ptl-st element shares
with E. For further detalls on tuples, see section 2.2,

For more on sharing, see Appendix 1.5.

Jumping Functors

val

res

JJ

see section 5.5

see section 5,5

see section 5.4

Operator Defining Functor

Suppose that E and E are any expressions and N Is a name.

Then the expression "E %N F" denotes the same value as does

Functors 1.2/S - &

the expression "N(E, F)". In other words, % permits writing

a prefix binary function in Infix form.

Unsharing Functor

$ This prefix unary functor may be applied to any object
whatsoever. The result of the appllication denotes the same
value as does the argument, but the result does not share
with any other object. (Of course, components of the result

may share. See appendix 1.5 on sharing.)

Comment

Throughout the previous discussion, the Issue of identifying
the left and right operand of the various infix functors has been
fgnored. That Is, this sectlon does not specify what

interpretation is to be placed on an expression such as

pP&aqlr

Is the left operand of "|" to begor Is it to be "p & q"?

Simitarly, we do not know the interpretation of
a+b %f c

These Issues are discussed In sectlon 2.3 on Inflx operators and

in sectlon 5.3 on %.

Punctuatlon 1.3/71 -1

lntroduction: (This section was last modifled on 02/04/68 at
16:49 by Evans.)

Those words of PAL's vocabulary that are nelther identifiers
nor functors are called punctuations. This last Is a sort of
catch all set that includes all of those constructs that seem to

find no home elsewhere.

Punctuation 1.3/F - 1

Eormulae:

{punctuation> ::=
{bracket>
| <definitional punctuation>
| <conditional punctuatlion>
| <{1ambda-expression punctuation>
| <imperative punctuation)
| <label defining punctuation>

| <tuple punctuation>

<bracket> ::= C |) I L 111} 1]
<definitional punctuation> ::= 1let | in | where | within | rec
| and | =

<conditional punctuation> ::= => | |
{lambda-expression punctuation> ::= 11 | ,
(imperative punctuation> ::= ; | goto | :=
{label definlng punctuation> ::= :

{tuple punctuation> ::= ,

Punctuation 1,3/N - 1

Notes:

It should be noted that "=" Is both a punctuation and a
functor. PAL's syntax is such that it Is always possible to tell

at any occurrence which class It belongs to.

All three types of brackets may be used, and they are
equivalent in effect. The only proviso Is that they must be

matched. (For example, the expression

(x+1]/{x-1)

is not correct.} In the syntax formulae used hereafrer only
round brackets will be used, but the reader should understand any

palr may be used.

Identifiers 1.4/71 - 1

lntroduction: (This section was last modified on 02/03/68 at
24:10 by Evans.)

Identifiers permit the programmer to Identify and to
reference the various values which enter Iinto a computation.

Identifiers are either vartables or constants. A varlable is an

identifier selected by the programmer, which he may use to denote
any value produced during the course of a computation. Thus
variables are of the programmer's choosing and will, in general,
denote different values during the course of a computation. A
constant Iidentiflier, on the other hand, has the property that the
value it denotes is "obvious" from the form of the identifier,
and further that this value cannot change during the course of a
computation. For example, the constant identifier 2 always

denotes the second positive Integer.

Certain variable identifiers are predefined when the user
begins to use PAL, in that they denote values provided by the PAL
system designers. For the most part, these values are functions
that the user could not write himself, They are 1listed In

sectlion 2.4,

ldentifiers 1.4/F =~

Formulae:
identifier> ::= <variable> | <constant>

{variable> ::= <lower case letter>

| <variable head> <alphanumerlic>?

{variable head> ::=

Kdigit)?

| {letter>

| <lower case letter>” { <upper case letter> | <digit> }

| <upper case letter>
{constant> ::= <quotation> | <numeric> | {literal>

{quotation element> ::=
<any character other than * or ' >

| *n | *t | *b | #*s | %% | #' | *xk | *r
<quotation> ::= ' <quotation element>, '
{numeric> ::= <!ntéger numeric> | <real numeric>
<integer numericd> ::= <digitd?

<real numeric> ::= <digitd? . Kdigit>T

{literal> ::= true | false | nil | dummy

1

Identifiers 1.4/N - 1

Motes:

In general, the iIntent Is that any sequence of one or more
alphanumerics may be used as an lidentifier. However, some such
sequences have speclial meanings. An identifier consisting
entirely of digits is a constant denoting an intecer,
Identifliers two or more characters long consisting entirely of
lower case letters are not avallable for arbitrary use by the
user but are instead speclified by the designer of the PAL system.
Some such identifiers are 1literals, denoting built-in values,
Others are functors (see sectlon 1,2) or punctuations (see
section 1.3)., The rather complex syntax for variable excludes
both classes. It also provides an unamblguous definition, as

explained in section 0.2,

Note that both "1." and ".1" are not members of the class
<real numeric> according to the syntax, since at least one digit
is rwquired on each side of the decimal point. They would have

to be written as "1.0" and "0.1", respectively.

ldentifliers 1.4/S - 1

Semantics:

The value denoted by a variable depends on the evaluation of

the program of which it is a part,

A constant denotes a value that can be deduced from the form
of the constant, Constants in PAL have the property that they
never share with anything. (Thus, for example, a constant cannot
be updated. See 3.2/N for further discussion of this point,) e

now discuss how the value denoted by a constant Is determined.

A quotation denotes a string whose characters are the
characters appearing between the quote marks. In a quotation
(and nowhere else) the characters space, tab and newline have
meaning. In addition, the character "*'" has speclial meaning in a
quotation. The "*" and the character immediately following the
ll*"

are replaced by a single character, according to the

following table:

*n newline

*t tab

*bh backspace

*S space

xt '

*k black ribbon shift
*r red ribbon shift

If "*«" is followed by any character other than one listed In this
table, the effect is undefined. In any particular implementation

of PAL, there will be some upper 1limit on the maximun length

\ﬁ§

ldentifiers 1.4/ - 2

string permitted. See appendix 3.1 for current details,

An Integer numeric denotes that integer represented by the
diglts which make up the identifier. In any particular
implementation, there will be limits on the range of possible
values that can be denoted. For example, there will be an upper
limit on the magnitude of the integers that can be represented.
The effect of using an integer numeric that denotes a value too
large for the implementation Is not defined. (See appendix 3.1

for detaills.)

A real numeric denotes that rational number represented by
the digits that make up the identifier. In any particular
implementation, the largest possible value, the smallest positive
value and the precision will be limited. The effect of exceeding

these limits is not defined. (See appendix 3.1 for details.)

The literal true denotes the abstract object truth, and
false denotes falsehood. (Each occurrence of true could be

replaced by the expression "(0=0)" and each occurrence of false
by "(0=1)",) The 1literal pil denotes the zero-tuple. The

literal dummy denotes the same value denoted by an assignment

statement. See section 3.1 for further detalls.

2,0 - 1

Chapter 2:

The Simple Applicative Subset of PAL

(This section was last modified on 02/04/68 at 03:20 by

Evans.)

The simple applicative subset of PAL consists of those
aspects of the language which permit new values to be expressed
in terms of (perhaps complex) operations on existing values.
Starting with the set of constants provided hy the desisners of
PAL and with a bullt In set of operations (such as '"+'", "=', "l

etc.) for expressing new values in terms of existinz ones, the

programmer can write expressions such as

2 + 3
or
(7 » (8 +9))/ 5
We are concerned in this chapter with such expressions. To

restate our concern in terms of languages such as Fortran, we are
concerned with the sort of construction that can appear on the
rigcht side of an assignment statement. We defer till the next

chapter a discussion of assignment statements themselves.

In the first three sections of this chapter, we will discuss
the application of a function to arguments. First we wil)

consider the case where the application is explicit. That is,

Iintroduction to Chapter 2 2.0 - 2

the programmer writes both the function and its arcument(s) In

the usual form. For example, writing

Add(2, 3)

means the application of the function Add to the arguments 2 and
3. (Assume for the moment that Add denotes a function that does
addition.) Next we will discuss 1Infix operations that the
programmer may write. (An Infix gperator 1is one that appears
between its arguments, rather than before them as did Add in the

previous example. The latter case [s sometimes referred to as

prefix.) The programmer may write

instead of the previous expression. Clearly, writing
2 + 3 = 4
is much more convenient than writing

Add(2, Mult(3, 4))

but there are problems with the simpler notation. It is only by

convention that the example is Interpreted as shown and not as
Mult(Add(2,3), 4)

In other words, the interpretation of the prefix form s
unambiguous, but the Infix form permits ambiguity unless suitable

rules are supplied. These rules are given In section 2.3,

Introduction to Chapter 2 2.0 - 3

The examples given above use integers as the arguments to
the functions. In many of the Jlater examples given 1In this

chapter, expressions such as

will be used. Clearly, such expressions are meaninzful only |If
(a) x and y have values, and (b) the values are such that "+" can
be applied to them (l.e., the values are numbers), We will
assume in the examples gliven in this chapter that similar such
conditions hold. In sections 2,6 and 2,7 we will see how
variables "are created", with the final detalls being suoplied in
chapter 4. In section 3.2 we see how a variable, once created,

may have its value changed.

Functional Application 2,171 - 1

Introduction: (Th:s section was last modified on 02/04/68 at
03:30 by Evans.)

In this section, we are concerned with the application of a
function to arguments, In the simplest case, both the function

and its argument are glven. For example, the expression
Sqrt 8

denotes the result of applying Sqrt to 8. Either the function or
the argument may be the vresult of arbitrarily complex

calculations. Thus the expression
(x y) (z w)

denotes the result of applying (the result of applying x to y) to

(the result of applying z to w).

Note that PAL differs from conventional notation In not
requiring parentheses to surround arguments: Juxtaposition s

adequate to indicate application. Thus we permit either

or
x(y)

rather than require the latter.

Functional Application 2.1/F - 1

Formulae:

{comblnation)> ::= §expression> {expression>

| <combination> <{expression>

Functional Appli

Hotes:

The intent of the syntax is

application associates to the left.

XYy z
is to be interpreted as
(xy)z
rather than as
x (yz)

As usual, parentheses may be used to

the programmer wishes.

cation 2.1/N =1

to show that functional

That is, the expression

indicate any grouping that

Functional Appllication 2.1/ - 1
Semantigs:

we will use the terms rator and rand to stand for the
function and its argument, respectively. (The terms are short
for "operator" and '"operand".) The meaning of a function

evaluation is to perform the following:
. Evaluate both the rand and the rator.
'. Apply the (value of) the rator to the (value of) the rand.

The value of the functional application 1is the value thus
produced, The order of evaluation of the rand and the rator |Is
not specified in this manual: The wuser should not make any
assumptlons based on the order of evaluation of the rand and the

rator.

In many cases, a function needs more than one argument. For

example, Add needs two numbers. By convention in PAL, all
functions have exactly one argument. Thus in applications such
as

Add(2, 3)

it is to be understood that Add is applied to the 2-tuple denoted
by 2,3. It should not be inferred that the rand of Add must be
an explicit 2-tuple. All that is necessary is that the rand be

any expression which denotes a 2-tuple of integcers.

Part of the definition of a function is the specification of

the number of components of its argument. When the function 1is

Functional Appllication 2.1/S - 2

applied, the argumant must have this same number of components or
the effect of the application Is undefined, This condition is
called the principle of conformallity, and it is discussed in

further detail in appendix 1,2.

If the function being applied is one defined by the
procrammer, the semantics of the application are found in section

2.6.

Tuples 2.2/71 - 1

Introduction: (This sectlon was last modified on 02/04/68 at

10:17 by Evans.)

Just as a palir is an ordered collection of two nbjects and a
triple is an ordered collection of threc objects, so we use the
termn p-tuple for an ordered collection of pn objects. Thus
2~tuple is another word for pair. We will frequently use the

word tuple to stand for an n-tuple of unspeclified size.

The programmer's usual way to write a tuple is with ecornmas,

so that
11, 12, 13, 14

denotes that b4=-tuple whose elenents are as shown. The elements
of a tuple may be accessed by applying the tuple to an inteerer,

Thus if 5 denotes the 4-tuple just given, then

denotes 2. In other words, a tuple acts as a function over

positive integers.,

The tuple is the only construct available to the PAL

programiter to specify objects with structure, Since an element

of a tuple may itself be a tuple, it should be clear that

arbitrarily couplex objects can be specified,

lla

J4e will use phrases such as "a tuple of numbers" or
nuaber tuple" to refer to a tuple each of whose elements is a

nunber. Clearly, a number tuple bears strong resenblance to a

Tuples 2.2/71 - 2

one~dimensional array in languages such as Fortran, Similarly,

an m=tuple of n-tuples of nunbers is similar to an m by p array. f'@

Formulae:

Tuples

O=tupled> ::= nid

<big tuple>

{tuple> ::

::= <expresslon> [, <expression> }“
[

{U-tuple> | <big tuplie>

2.2/F -1

Tuples 2,2/8 -1
Hotes:

A tuple is an ordered collection of zero or more itenms, each
of which can be any object at all. The O-tuple is denoted hy the
word nil. The comma may well be thought of as an infixed,
non-associative tuple-maker. There is no simple representation

for a l-tuple.

It should be clear to the reader that it is the comma rather
than the parentheses that Indicates a tuple. The parentheses are
needed only if PAL's grammatical rules would otherwise indicate
an alternate grouping. The fact that corma (s non-associative
(as suggested by the last sentence of the preceeding paranranh)

is quite important. WNote that each of

1, 2, 3
and
(1, 2, 3
and
1, (2, 3)

cach denotes a different object. The first denotes a 3-tuple,
and the next two each denote a (different) 2-tuple. I f comma

were associative, one or the other of the last two would denote

the same object as the first.

The tuple-making functor aug, mentioned in scction 1.2, is

an infixed operator whose left operand may be a tuple and whose

Tuples 2.2/N = 2

right operand may be any expression. Let I be any n-tuple and E

be any expression. Then
T aug E

denotes that ntl-tuple whose first n elements are the same as the
elements of I (although they do not share) and whose np+l-st

element is the value denoted by E. (See appendix 1.2 for further

discussion of sharing.)

There is an Important distinction between a 1-tuple and the
object that is the single element of the 1-tuple: The former can
be applied to 1 to get the latter. Probably the most convenient

way to indicate a l-tuple whose value is that denoted by F is by

the expression

nil aug E
Note that

nil , E

would not do, since this latter denotes a 2-tuple whose first

element is nil and whose second element is E.

Tuples 2.2/ - 1
Seinantics:

A tuple denotes a bundle of information. Here the '"bundla"
consists of the n elcements of the tuple, in order. There are twn
essentlally different ways such a bundle may be used: As an
object manipulatable by the programmer, it may be assiened to a
variable or used anywhere In an expression where 2 tuple s
peramitted. In addition, there is another way to wuse tunles,
Clearly, it must be possible to extract the elenents of a tuple
from the tuple. This is done by applying the tuple (as a
function) to an argument whose value is the inteser Lk, thus
vielding the k-th elecinent of the tuple. The application i3

undefined, of course, if it Is not the case that

vhere n is the order (i.e., the number of elements) of the

tuple.

In section 5.1 a notation is given applying a path to a
tuple. Here it is assumed that the tuple's elements are
theiselves tuples, etc., and the path is a selector that picks
its way through the structure. |In section 5.2 the idea of 1lists
is introduced. A list is either nil or a 2-tuple whose second
element is a list.

Note carefully the effect of sharing. |If, for example, I

denotes the tuple denoted by

a' bl o

Tuples 2.2/8 - 2

- then a shares with I_1, b with T_2 and ¢ with I_3.

Tuples 2.2/F - 1

Suppose that

rl denotes nil aug 1
r2 denotes 1, 2
r3 denotes 1, 2, 3

rb denotes 1, 2, 3, &

Thus we have four tuples, each of whose elements is an integer.

Then the expression
rh 3

denotes the value 3. Here the tuple rl is being applied to the

integer 3 to produce the third element of the tuple. Similarly,

then, the expression

r3 (rh 2)

denotes the value 2. (rbk Is applied to 2, yielding 2, and r3 is

applied to that.) Now suppose that s denotes the object denoted
by

rl, r2, r3, rk

The 4-tuple denoted by s is something 1like a 1lcwer-trianzuular
array. lIgnoring sharing, the value denoted by s could he written

as

(ni] aug l)l (1l Z)I (1I 2I 3)[(1, 2' 3’ [4)

%w

Tuples 2,2/ - 2

The result of applying s to an integer will be a tuple, so that

the expression

s 3 2
denotes the second element of the third element of s. That is,
it will be the second element of r3, or 2, (Reimverniber that the

rules of PAL require that the preceeding cxpression bhe

interpreted as
(s 3) 2
rather than as

s (3 2)

which would have no meaning, sincecan intezer cannot he applied,)

For the final example, suppose that Add, Sub, liult and Div

denote functions that do addition, subtraction, multiplication

and division, respectively. Suppose further that x denotes the

value denoted by

Thus x decnotes a 4-tuple each of whose elements is a function,

Then the expression
x 2 (2, 3)

denotes the value =1. (x is applied to 2, vielding Sub, and 2

minus 3 is =1.) Now suppose that y denotes that value denoted bhy

the expression

Tuples . 2.2/E = 3
(1, 2), (3, u), (5, 6)

That is, y denotes a 3-tuple each of whose elements is a 2-tuple.

Then the expression
x (y 2 1) (y 3)

denotes the value 30. (Evaluating y 2 1 Involves applying y to 2
and the result to 1. Application of ¥ to 2 vyields the 2-tuple

, and applying that to 1 ylelds 3. x then is applied to 3,

-

3.4

yielding Mult. The rand of Mult is y 3, or 5,6, and 5 times § Is

30.)

€

Infix and Prefix Functors 2,371 - 1

lntroduction: (This section was last modified on 02/04/68 at
17:18 by Evans.)

In section 2.1, we saw that we can Indicate the application
of a function to arguments In the usual mathematical way: f(x)
denotes the applicatlion of f to x. Here the rator (function) s
written before the rand (argument), so thls form is called prefix
form. Conventional mathematlcs also permits Inflix operators,
such as "+" or "/, which are written between their operands; and
so PAL permits Iinfix forms also. In this section we discuss such

infix operators. Also discussed are certain prefix operators.

PAL uses the term fupctor to refer to the infix and prefix

operators that are part of the language.

Infix and Preflix Functors 2.3/F - 1

Eormulae:

{expresslion> ::=
<identifier>
| <expression> <inflix functor> <expresslion>
| <prefix functor)> <expression>
| <expression> % <{variable> <{expresslion>

| (<expression>)

Infix and Prefix Functors 2.3/N - 1

Notes:

1., It is not convenient to extract from the complete syntax of
PAL exactly that part which pertains to Infix functors, so the
syntax given on the preceeding page 1Is only an approximation,
Functional application (see section 2.1) and conditional
expressions (see section 2.5) interact strongly, and in a real
sense everything else in PAL interacts weakly. Nonetheless, the
present section attempts to explain the use of Infix functors.

To the extent that they are used In constructions not Involving
other syntactic forms, the presént discussion is correct. (The

complete syntax of PAL Is given In appendix 2.)

2. The classes <prefix functor)> and <infix functor> used in the

syntax are defined in section 1,2.

3. Since the syntax glven above for <expression>s Is ambiguous,
we must provide additional information to specify whether the

construction

X +y * 2
Is to be treated as

X + (y » 2)
or as

(x + y) » 2

Infix and Prefix Functors 2.3/N - 2

To deduce the meaning of such ambiguous phrases, note the

following precedence table:

Functor Precedence
4 5
aug 7
I 10
& 15
not 17
= 20
> 20
< 20
+ 25
- 25
* 30
/ 30
*n 35
$ 40

Here each infix functor is associated with a numerical value,

called its precedence. In cases where a particular subexpression
may be associated with the functor on either Its Tleft or |its
right, It will be assocliated with that one which has higher
precedence. In cases of equal precedence, the functor on the
left will be used. "%" is special In that it Is ternary functor

(i.e., it has three operands). The above rule may be followed

if the "3" and the varlable immediately to Its right are taken as

a single functor, with precedence 5,

Infix and Prefix Functors 2.3/N - 3

In the ambiguous example shown above, the y can go with
either the "+" on its left or the "+" on Its right, Since the
precedence of times (30) is higher than that of plus (25), y s
seen to be an operand of times, and the first interpretation
shown above is used. (This Is fortunate, since that
interpretation Is the "usual" one. Of course, I{t 1Is not just

fortultous.)

Careful attention to the rule given for the IiInterpretation
of equal precedence 1Is partlicularly Iimportant 1In situations
involving multiplication and division. In choosing an

Iinterpretation of

X/ v/ z

we are concerned with y. Since the functor on its left has the
same precedence as that on 1Its right, our rule dictates
associating y with the functor on its left. Thus the preceeding

expression Is Interpreted as If it were written

(x / y) / 2z

which Is mathematically equivalent to

X / (y *» 2)

Of course, the programmer may Indicate any grouping he 1likes by

judiclous placement of parentheses,

4, Expressions such as

Infix and Prefix Functors 2.3/N - &
fx + vy

are also ambliguous but are not covered by the previous rule. A
convenient way to think about the Interaction of functlonal
application and infix functors Is to assume that there 1Is an
(invisible) functor between the rator and the vrand which
indicates functional appllication. Then let the invisible functor
have precedence 45, and the previous rule holds. In the present
example, the functor "functional application'" to the 1left of x
has precedence 45, higher than the precedence of "+", so that x
Is the operand of f (i.e., the right operand of "functional
application'") rather than the left operand of "+'", Thus the

example Is equivalent to

(f x) + vy
rather than to

f (x + y)

This rule covers not only the Interaction between functional

application and infix functors, but also cases such as

As explalined in section 2,1/N, functional appllication assoclates

to the left, so this example is equivalent to

(f x) vy

Infix and Prefix Functors 2.3/ = 1

Semantics:

An expression involving Infix or prefix functors denotes a
value, and this section describes how that value may be deduced.

Proceed as follows:

Step 1: Assoclate with each Infix functor its left and
right operands, using the rules of the previous part of thls
sectlon. Similarly, associate with each prefix functor Its

operand, which Is the expresslion Immediately to its right,

Step 2: If the entire expresslon has been evaluated,

then quit; otherwise, continue with either step 3 or step 4.

Step 3: Replace an identifier by the value which It

denotes. Continue at step 2.

Step 4: Select an Infix functor both of whose operands
have been evaluated, or a prefix functor whose operand has
been evaluated, and replace the functor and operand(s) by
that value which Is the result of applying the functor to

the operand(s). Contlinue at step 2.
Several points should be noted.

1. No order of evaluation 1is to be inferred from this
description, In In that step 2 may be followed by either step 3
or step 4. The programmer is cautioned not to write a program
whose successful evaluation depends on a particular order of
evaluation of expressions. (O0f course, sequences are executed In

the order written, and the programmer may be quite conflidant

Infix and Prefix Functors 2.3/8 - 2

about certaln aspects of the order of evaluation of conditlonals,

etc.)

2. The evaluation of step 3 Is described iIn section 1,4/S.
In general, the value denoted by a varlable depends on the

program of which It Is a part.

3. Step 4 Involves the semantics of the various functors of

PAL. These are explalned in section 1.2/S.

Infix and Prefix Functors 2.3/E - 1

Examples:

Each example glves, on successive lines, a PAL expression
involving infix functors and an equlvalent PAL expression without
infilx functors. For the purpose of these examples, assume that

the functions Add, Sub, Mult and Dly correspond to the functors

Nalt, MW WM and "/", respectively. (That s, "Add(x, y)"

denotes the same value as does "x + y", etc.)
1. An arithmetic expression:
x+y*(z-w)/t
Add(x, Div(Mult(y, Sub(z, w)), t))

Note how parentheses are used In the first line to override the

interpretation PAL would otherwise give.
2. Another one:
(=b + Sqrt(bab - Llxaxc)) / (2%3)

Div(Add(Negate b, Sqrt(Sub(Mult(b, b),
Mult(Mult(s, a), ¢)))), Mult(2, a))

Here Negate is the function that does unary minus. This example
should convince anyone not previously convinced that Infix form

has advantages for people,

Infix and Prefix Functors 2.3/A - 1

Advice:

The alert programmer who Is well versed on the precedence
values of the operators can often reduce the use of parentheses
in complex expressions to a minimum, While there 1Is nothing
wrong with doing so, it should be reallzed that the insertion of
redundant parentheses In PAL expressions pever affects the
computation. Frequently, Inserting such redendant parentheses
will Improve considerably the readability of the resulting text,

with at least three adavantages:

o It Is less likely that the programmer will make mistakes.
The alert programmer referred to In the first sentence may
happen to remember incorrectly the relative precedence of,

say, "&" and e,

. The programmer will find it easier later to modify what he
has written, since he is more easily able to tell later what
he originally intended. Slince In the nature of things every
program will be modiflied several times during its lifetime,

this Is an important consideration.

. Anyone else reading the program will be able to tell more
easily what was intended. Since most PAL programs will be
turned In as homework, making them easier to read by a

grader has definlite advantages.

The programmer should take these polnts seriously, as they

represent a philosophy of programming practice that has been

found, over the years, to pay off.

Built In Functions A R |

rodu on: (This section was last modifled on 02/04/68 at

10:58 by Evans.)

The designers of PAL have provided for the user certain
“"built in'" functions that are available in PAL with no special

effort on the wuser's part. For the most part, these are

functions that the user could not himself write in PAL. (Some of
thein could be so written, but only awkwardly.) These functions

are listed and described in this section.

Built In Functions 2.4/78 - 1

The functions that are built in to PAL are now listed. They
fall into four categories: type-checking prodicates, strinr

wmanipulating functions, type conversion functions and

miscellaneous.

Type-checkinz Predicates:

Each of the following functlons Is a predicate whose donain is
all objects. Its value will be grue if (and only if) it s

applied to an object of the type that is part of its name,

Isboolean
Isstring
Isfunction
Isprograinclosure
Islabel

Istuple

Isreal

Isinteger

If x denotes any object whatsoever, then the expression

(Isboolean x) | (lsstring x) | (Isfunction x)
| (Isprograwmclosure x) | (Islabel x) | (lstuple x)

| (Isreal x) | (lsinteger x)

is always defined and is always true. (Remember that "|" is the
infix logical functor "or".) In other words, if we consider for
each predicate shown the set of objects for which the opredicate

is true, then the union of these sets is all possihle objiects.

Built In Functions 2.4/5 - 2

Further, there is no object that is In more thar one of these

sets.

S = ipulati Functions

The followine three functions are used for manipulating strinecs,

For further details about these functions (including the effect

of their application to Improper arguments), see Appendix 3.3,

Stem This function is to be applied to a string of leneth
one or more. The value of the function is the first

character of the string.

Stern This functlon is to be applied to a string of len~th
one or more. The value of the function s that same

string with its first character removed.

Conc This function is to he applied to two strincs, of anv
lengths., Its value is that strine obtained by
concatenating the second strine to the end of the

fFirst.

Type Convers Eupctions
For further dctails about these functions, see Appendix 3.3.

ltoR This functlon, applied to an integer, returns a real

nunber with the same value.

Rtol This function, applicd to a real, returns the larcest

possible integer which is 1less than eaual to the

Built In Functions T G

argument.,

Stol If this function is applied to a strins each of whose

characters is a digit, the value of the function s

that intezer represented by the strins.

liiscellancous Functions

Lookupind This function is wuseful for determining the valun
associated with a particular identifier, civen the name
of the identifier as a string. Its wuse is «iven in

section 5.4,

Order This function, applied to a tuple, returns the number
of elements of the tuple at the top level, More
precisely, it returns the largest intezscer k such that
the application of the tuple to Kk is defined. See

appendix 3.3.

Print This function may be applied to any object whatsoever,

Its effect is to print the value of the object, in a

suitable form. See appendix 3.3.

Readch This function may be used to read characlers from an

input device. See appendix 3.3.

Atonn This predicate is applicable to any object. It returns
a BIV@M o

true if its argument is an inteser, a rpah\or a strinr.v
(lote that these are precisely the same objects to

which "=" may be applied.)

Null

Share

Built In Functions 2.47/5 - 4

This predicate Is applicable to any object. It returns

true if the argument is the zero-tuple.

This function may be applied to any two objects. I ts

value is true if the two objects share.

Conditional Expressions 2.5/71 -1

ntr : (This sectlon was last modifiled on 02/01/68 at
21:5Y9 by Evans.)

One of the principle sources of power in computing languages
is the ability to express evaluations such that the course of the
evaluation Is dependent on values previously calculated. The
conditional expression, whose value is one of two expressions
depending on whether or not a given expression is true, 1is the
linguistic feature available in PAL (as well as in many other

programming languages) to accomplish this need, Thus the

expression

(x >0) =-> x ¢ (-x)
denotes the absolute value of Xx. The first parenthesized
expression denotes either true or false, depending on whether x
is or Is not greater than zero. |If true, the value denoted by
the entire expression Is that denoted by x =-- the expression
between the "=>" and the "!" -- while if false the value of the
entire expression is that denoted by "(-x)" -- the expression to
the right of the "!", (Neither set of parentheses Is needed In

this expression.)

Conditional Expressions 2.5/F - 1

mu

{conditional expression) ::=

{expression> -> <{expression> ! <{expression)

Conditional Expressions 2.5/N - 1

Notes:
The mark "=>" |s a composite token in PAL, and must be typed
with no space between the "-" and the '">". (See Note 6 in

section 1.1/N.)

The conditional expression as shown provides for only a
two-way branch. In the case where a many-way branch 1is needed,
the usual technique is that the expression to the right of the
"M also be a conditional expression. An example of this s

shown below,

Conditional Expressions 2.5/ - 1
Semantics:
Consider a conditional expression of the form

B -> E1 ! E2

The value denoted by such an expression is determined as follows:

Step 1: The value denoted by B is determined. If this
value is other than true or false, the value of the entire

conditional expression Is undefined.

Step 2: |If the value denoted by B is true, then the value
denoted by the conditional expression is the value denoted
by El, while otherwise the value denoted by the conditional

expression is the value denoted by E2.
Several points should be noted:

1. The value denoted by B is determined before either E1 or E2

is evaluated.

2. Only one of E1 or E2 Is evaluated., The programmer may rest
confidant that the expression "selected" by the evaluation of B

is the only one evaluated,

Conditional Expressions 2.5/E -1

Examples:

We wish to write an expression dependent on the value of x
such that the value denoted by the expression is one when x s
between zero and ten, inclusive, and 1Is zero otherwise. A

possible such expression Is
(x <0) => 0 } (x>10) => o0 ! 1

(The parentheses shown are not needed.) An alternate expression

with the same value is
x <0 | x> 10 -> 0 ! 1

The first example shows a conditional expression with (in effect)

a three=-way branch.

The expression

illustrates the Importance of evaluating only that one of the
expressions that is "selected", since it would clearly be wrong

to evaluate "1/x" in the case that x denoted zero.

Lambda Expressions 2.671 -1

Introduction: (This section was last modified on 02/04/628 at

11:02 by Evans.)

In conventional mathematics, writing

f(x) = x +1
indicates the definition of a function £ of one argument, It
seems clear that writing

f(y) = y + 1

defines the same function. WYWhat we are concerned with is the

essential nature of the value of f. That is, f seems to be

that function of x that "x+1" is

and we require a notation for that idea. The 1lambda notation
provides an answer to this need., The object which can be written

as
Ax.x + 1
is precisely the desired object, and the definition
f = Ax.x + 1

has precisely the same meaning as the two previous definitions.

Simitarly, the lambda expression
AMx, v) o x +y

is

Lambda Expressions 2.6/1 = 2
that functlion of x and y that "x+y" is
so that
Add = Mx, y) . x +y
and
Add(x, y) = x + vy
have precisely the same meaning.
Now consider the definition

f o= M. (Ay. x + y)

Although it is somewhat hard to express in English, the careful

reader should be able to see that "f is that function of x that

'that function of y that x+y is' is", An alternate syntactic
forin for this definition is
f=)\xy,x+y

The character "A" is not part of the PAL alphabet (it is not

listed in section 1.1) so the punctuation "11" is used insteard.

The lambda notation was first proposed by the mathematician
Alonzo Church, and 1t is freguently referred to as Church's
tambda calculus, For those so Interested, the original
description of lambda notation may be found in 2272?2?72?2?22?2727

Another paper possibly worth consulting is ?2??2?27?2727?7??

Lambda

Fornul ae:

{laiwbdAa expression> ::=

11 <bound variable part)

{bound variable part> ::=

<{bound variable element??

{bound variabhle element> ::=

Expressions

= {expression>

{variable> | ()

| (<variable> | , <variable> }:’)

2.6/F -

Lambda Expressions 2,6/ - 1

A lambda expression denotes a function. The bound variahln
part indlicates those names which are to be "substituted for" in

the lambda body by the arguments to which the function s

applied, Thus

11 x.x+1

denotes a function of one argument. Applying this function to an

argument such as 2

Implies the substitution of 2 for x 1in the

lambda body, resulting in

A function such as that denoted by

1T (x, y) . x + vy

must be applied to a 2-tuple of integers (or of reals), so that

applying it to

(2, 3)

resdlts in

On the other hand, a function such as that denotcd by

11 xo 11 yo X + y

is Jifferent. Applyinz it to 2 produces

Lamhda Expressions 2.6/5 - 2
11 yo 2 + y
and applying this to 3 produces '2 + 3', That is,

(11 x. 11 yo x +y) 23

(11 yv. 2 +y) 3
= 2+3

The lawbda expression just explained may be written alternatively

as

11T x y . x+y

This latter (note the syntax) has a bLound variable part with two
bound variable elements, while the former is a lambda expression
whose body happens also to be a lambda expression. The
transformational properties of the objects denoted respectively

by these two lambda expressions are indistinsguishable,

Rather complicated bound variable parts are possihle. The

function denoted by the lambda expression
11 (x, ¥v) 2 . E

(where E is some expression presumably involving x, y and z)
should be applied to a 2-tuple, and the result is a function to

be applied to a single argument.,

The appearance of empty parentheses "()" in a bound variahble

part defines a function that may only be applied (in that

argument position) to a 0-tuple. Thus

Lambda Expressions 2.6/S - 3

1 () . E

is a lambda expression which, when applied to a zero-tuple, will
produce the value E. Applying it to any other value results in a

detected run-time error,

Consider now all variables that occur in the <expression)
part of a lambda expression. Those that are listed in the <hound
variable part> are called the boupnd yariables of the lanmbhia

expression, and any other variables appearinae in the <{expression)

are free variables of the lambda expression.

e conslder now the semantics of the anplication to
arzuments of a lambda expression. The effect is as if the

following steps were performed:

Step 1: The actual arguments to which the lambda expression
is being appllied are compared with the <bound variable part>
of the lambda expression, to Insure that the principle of
conformality is met. (This concept is explained in appendix
1.2.) If it is not met, the effect of the application s

not defined.

Step 2: Fach bound variable is associated with the actual
argument which occupies the same position in the argument
list., (The success of step 1 Insures that this can be

done.)

5tep 3: The <expression> is evaluated. Fach bhound variable

in the <expression> Is treated as if it had beren replaced by

Lambda Expressions 2.6/S - &

its assoclated actual parameter, the assoclation beingz that

described in step 2. Free variables are evaluated as usual.

Step 4: The value determined In step 3 is the value of the

application,

"Let" Expressions 2.7/71 = 1

Introduction: (This section was last modified on 02/04/68 at
13:34 by Evans.)

In what has gone so far, we have assumed that vartables

existed and have felt free to use as examples such expressions as

without explalning how x came to denote an Integer. PAL provides
two syntactic forms to permit the user to "create" new varliables:
the let expression, defined In this section, and the where
expression, defined in the next sectlion. Each of these uses the

idea of a deflnition, as defined in Chapter 4.
Consider the PAL expression

let x =1 and y = 2
in

let 2 = 3%x + bL»y
in

X * y * Z

In evaluating this expression, x and y are first "created" as new
variables, with values 1 and 2 respectively., Next z 1Is created
with value ll. The value of the entire expression is determined

to be 22.

"Let" Expressions 2,7/F = 1

Eormulae:

{let expression)> ::= let <definitlon> in <expression>

Notes:

"tet" Expresslions 2.7/N - 1

The class {definltion> used in the syntax 1is defined In

Chapter 4., Sectlion 4,0 contains a summary of Its definition, and

the rest

simplest

where k,
(Chapter

possible

of chapter 4 contains the detalils needed. In the
case, a <definitlon> is of the form

N1, N2, ... , Nk = Exp
the number of variables on the left, may be one or more.
4 explains In detail how the various syntactic forms

for deflnitions may be recast Into this form.)

"Let" Expressions 2.7/ = 1

An expression of the form
let N1, N2, ..., Nk = Expl In Exp2
Is evaluated as If it had been written

[11 (N1, N2, ..., Nk) . Exp2] Expl

The semantics of such an application of a lambda expression to
arguments is explained In section 2.6/S. Briefly, the effect Is
as if the Nf are created with the Indlicated 1Initlal values and
then Exp2 Is evaluated. On completion of the evaluation, the NI
just created go out of existence. (More precisely, they revert
to what ever value -- If any == they had before the indicated
expression was encountered.) In other words, the "scope of the

definition" of the variables Nl Is confined to the expresslion

Exp2.

"Let" Expresslions 2,7/ - 1

Examples:
Consider the expression
let x = 5 In [(x+1)*(x~-1)]

There are two ways to explain the evaluation of such an

expression. Taking the less formal way first, we have

1. A new varlable x Is created denoting 5. The expresslion

Is square brackets is then evaluated.

2. The expression shown 1Is replaced by the lambda

expression

11 x. (x+1)e(x-1)] 5

which Is then evaluated,

The reader should be sure to understand the second explanation,

reviewing section 2.6/S as much as necessary,

Consider now the expression shown in 2,7/1, here rewritten

wlith added parentheses:

let [(x=1) and (y=2)]

In
{ let z = (3#x + Ury)

in

X ¢ty = 2

"Let" Expressions 2.7/E - 2

The expression In braces Is evaluated with x and y denoting 1 and
2, respectively. The first part of the evaluation Is to create 2
denoting 11, and the value denoted by the entire expression Is
22. The reader should take the trouble to satisfy himself that

this expression Is equivalent to
[110x, ¥). (11 2. xeyez) (3#x + 4xy)] (1, 2)
All of the parentheses and brackets shown here are needed.

For the final example, consider the expression

let x = 2 iIn
let y = 3 In
X +y
+ (let y = x + 10 in x + y)
+ (let x =2+ y inx *y)

+x+y
This expression denotes
2 + 3 + (2 +13) + (6 * 3) + 2 + 3

or 43, Note carefully the scope of the definitions In the two

parenthesized let-expressions.

"Where" Expressions 2.8/1 - 1

lntroduction: (This section was last modified on 02/04/68 at
13:47 by Evans.)

As suggested in section 2.7/!, there are two syntactic
devices available in PAL for deflning variables: the Jlet
expression and the where expression. The former Is described 1In

section 2.7 and the latter In thls section.

Eormulae:

{where expression>

. e
..8

"Where'" Expressions

{expresston> where <definition>

2.8/F = 1

"Where'" Expressions 2.8/N - 1

Notes:

The class <definition> referred to In the syntax Is defined
in chapter 4. Section 4.0 contalns a summary of Its syntax, and

the rest of the chapter contains the necessary detalls.

The syntax shown Is inadequate, since It does not provide

enough information for parsing. In particular, consider
let Defl in Exp where Def2

The syntax does not specify whether thils expression Is equivalent

to

(let Defl In Exp) where Def2
or to

let Defl in (Exp where Def2)

In fact, the latter parsing Is correct. A safe rule to remember

is thils:
The effect of a let extends as far to the right as possible.

The effect of a where extends as 1little to the left as

possible.,

The reader shoqld satisfy himself that this parsing Issue |Is
important. Suppose that the varlable a denotes 2. Then the

expression

"Where" Expressions 2.8/N - 2
(let x = a In x + a) where a = 1

denotes 2, since the definition following the where Is in effect
during the evaluation of the entlire expression 1in parentheses.
(The outer definition of 3 Is hidden.) x Is deflined to denote 1

also, and the sum is 1+l. On the other hand, the expression
let x = a In (x + a where a = 1)

denotes 3, since here the effect of the definition after the
where Is limited to the parentheses. Thus x Is defined to denote
the outside a, or 2, and the sum Is 2+]. Removing the

parentheses from each of these two expresslions would cause the

first to be the same as the second and would 1leave the second

unchanged.

o

3.0 -1

Chapter 3:

The Imperative Subset of PAL

(This section was last modified on 02/04/G8 at 02:26 by

Evans.)

In chapter 2, we were concerned with those aspects of PAL in
which certain values are expressed In terms of other values. The

only calculating tool avallable was functional application.

In the present chapter, we will Introduce into PAL certain
additional linguistic constructs which the user has seen in other
languages, such as Fortran or PL/1. In section 3.1, we examine
how such constructs may be executed sequentially, just as
statements are executed sequentially in other lancuages. Then In
section 3.2, we will consider PAL's assignment statements, the
lingulistic construct that permits the value denoted by a variable

to be changed., In section 3.3, we will examine transfer of
control ("goto" statements) and the related topic of 1labels.

Finally in section 3.4 we consider sequences Iinvolving

conditionals.

Sequences 3.1/71 - 1

Introduction: (This section was last modified on 02/04/68 at
17:46 by Evans.)

In tanguages such as Fortran or PL/Il, there Is the notion of
the sequential execution of one statement after another.
Similarly In PAL, sequentlal execution is an Important idea. The
term "sequence" means a set of actions to be executed (iIn
general) in the order written by the programmer. Section 3.3
shows how thls order may be altered by the programmer with the

"goto" statement. The present section discusses sequences.

Sequences 3.1/F - 1

Formulae:

{sequence> ::= <sequence element> { ; <sequence element> }:

{sequence element> ::=

Cassignment statement>
| <goto statement>
| <conditional sequence element>
| <expression>
| (<{sequence>)
| <label> <{sequence element>

| dummy

{label) ::= <(varlable> :

Sequences 3.1/N - 1
Notes:

Asslgnment statements are discussed In section 3.2, goto

statements and labels In section 3.3, and conditional statements

in section 3.4,

The literal duymmy may stand alone as a sequence element,
denoting the same value as does an an assignment statement. Its
purpose Is similar to that of the CONTINUE statement in Fortran,

providing a place not otherwise available to place a label,

The syntax shown Is ambiguous, since the class <expression>
includes <{sequence>s. Nonetheless, It Is suggestive of the truth

of the situatlion.

Note that according to the syntax a 1abel may be placed on
any element of a sequence. This fact 1Is true, although the

syntax shown slightly misrepresents PAL's actual syntax.

Assignment Statements 3.2/1 - 1

Introduction: (This section was last modified on 02/04/68 at
02:32 by Evans.)

In PAL as In most conventional programming languages, the
purpose of an assignment statement Is to make it possible to
alter the value denoted by a varlable. Thus for example,

executing

causes x to denote the value denoted by E, regardless of what
value x denoted previously. Indeed, x may previously have

denoted a string and E a label, or any other types.

A second example of assignment is

Here the result of applying £ to x is (roughly) the location into
which to store the value 1. For example, suppose that f denotes
a 3-tuple and that x denotes 2. Then the effect of the above

assignment statement s to assign the value 1 to the second

component of f.

A third type of assignment is il1lustrated by

(x >y => x! y) := 0

Here the effect is that whichever of x or ¥y denotes the larger

value is to be assigned the value 0.

Assignment Statements 3.2/1 - 2

A final type of assignment is illustrated by

X, V, 2 3= Wk, 5, b

The intent here is the simultaneous assignment of the three

values on the right to the three varlables on the left.

Assignment Statements 3.2/F - 1

Formulae:

@%/

{assignment statement> ::=

{left element> { , <left element) }: t= <expression>

{left element> ::=

{variable> | <combination> | <{conditional expression>

Assignment Statements 3.2/N - 1

Strictly speaking, the syntax of assignment statements Is
<expression> := <expression>

since statements with this syntax are accepted by the PAL

translator. This syntax admits statements such as

or

The effect of either of these statements is nugatory: in both
cases, a new cell is created which does not share with anything
else. (In the first case, this cell will contain 1 and 1iIn the
second case it will contain 3.) Then the contents of that «cell
will be altered, That is, there will be no detectable effect

from the execution of elther of these statements. Similarly,

executing a statement such as
Sqrt 8 := 55

(where "Sqrt" is the square root function) also is nuzatory. A
new cell is created to hold the square root of eight, and this

cell is then updated to hold 55.

Assignment Statements 3.2/ - 1

Semantics:

If the left side of an asslgnment statement is a variabhle,
the intent is that the value denoted by that variable 1Is to be
changed. |If the left side is a comblination, the result of its
evaluation is taken to designate a location and the contents of
that location is to be changed. Similarly, a conditional on the
left side Is evaluated to select the location to be changed. I f
the left side is a tuple, the value denoted by the expression on
the right must be a tuple of the same length, The effect is the
simul taneous assignment of the values on the right to the
elements named on the left, It 1Is Important to vrealize that
"simultaneous" is the key word in the preceeding sentence, The
next part of this section contains several examples to emphasize

this point.

The effect of sharing becomes of Interest solely In the
assignment statement. If variables x and y share, the effect of
asslgning to elther of them is to change the value denoted by
both of them. This subject Is discussed further in the Examples

and Advice parts of this section. Sharling is discussed at length

in appendix 1.5.

Assignment Statements 3.2/F - 1

Examnples:

The effect of the statement

is the same as that of the two stetements

in that in each case X Is set to 3 and y is set to 4. Howiever,

the assignment statement

X, ¥y =2 Y, X

Is more complex, since It is the Intent that both assienwents be
done simultaneously. In other words, the values denoted by x and

Y are interchanged.

Now suppose that | denotes 2 and that f denotes a b5-tuple.

Then executing
i, f1 ::= 1 + 1, 37

changes the second element of f to 37 and changes i to 3. Since
the two assignments are simultaneous, It is the "old" value of i

that is used on the left.

Assume that the following examples have bheen preceeded by
sujtable definitions such that a denotes 1, b denotes 2 and ¢

denotes 3. Assume further that

Assignment Statements 3.2/E - 2

X denotes 1, 2, 3
y denote the object denoted by a, b, ¢

2 denotes 4, 5, 6

Then the execution of

will result In x denoting the value
4, 2, 3

Here the left side Is a combinatlon which denotes the first

element of the 3-tuple x, and it Is this element that Is changed,

Executing
a, b, ¢ = 7, 8, 9

wlill cause new values to be assligned to a, b and g, so that the

value denoted by y will be
7, 8, 9

This Is because the elements of y share with a, b and ¢. Note

however that executling
y = 11, 12, 13

will have no effect on a, h or ¢ but will change only y.

Finally, executing

21, 23 := 23, 21

Asslgnment _‘S tatements
wWill result in z denoting the 3-tuple

6, 5, &

3.2/F = 3

Assignment Statements

Advice:

Dne of the mo:st common errors in PAL

effect of sharing. Consider the following:

let i =1 iIn

let t =1, 2, i, b In
Print t;

Pe=4;

Print t

The effect of the first "Print" is to print
(1, 2, 1, &)

and that of'the second is

since 1 shares with £ 3.

to

302/,\ - 1

neslect

the

Transfer of Control 3.3/1 -1

rodu ¢t (This section was last modified on 02/04768 at

02:34 by Evans.)

The concept of executling one statement after another 1is an
important one in PAL, just as it is in other langsuages. As in
many languages, execution normally proceeds from one statement to
the next in the order written, but this order may he altecred by
the programmer as he desires. Two notions are needed: the
"roto" statement, executlon of which effects '"transfer of
control"; and the label, which marks a point in the prosram as A

possible candidate for being the "target" of a zoto statement.

Formul ae

Transfer of Control

{goto statement> ::= goto <expression>

<{label>

-
=

{variable> :

3.3/F - 1

Transfer of Control 3.3/M - 1
Notes:

The syntax on the preceeding page 1Iis not particularly
helpful, in that it glves no clue as to where in a PAL program a
label may be placed. This topic will be discussed in more detail
in section 3.1 above, on sequences. For the purposes of the
present discussion, it suffices to say that labels may be placed
in-a program at points to which control may meaningfﬁlly he

transferred. For a complete discussion, see appendix 2.

In a goto statement, the expression must be one which

'denotes a label.

Transfer of Control 3,3/ - 1
Semantics:

The effect of labelling a statement 1is to deflne a new
variable whose name Is that of the label and which denotes '"that
point in the program where the label stands'". Such a value may
(in the last analysis) only be used as the "operand" of a goto,
although it may be assligned, passed as an argument, incorporated
into a tuple, etc., beforehand. The scope of a label is the
smallest enclosing block In which it exists. (See appendix 3.1

for a discussion of scope.)

The effect of executing a goto statement is to '"transfer
control" to that statement labeled by the value of the

{expression>.

Note that the identifler used as a label Is a variabhle and
not a constant, so that it posslibhle to update it with an

assignment. An example below illustrates this point,

For a complete description of the scope of a label, see

Appendix 1.3, For a description of goto's in terms of the

operator jli, see section 5.h.

)

Transfer of Control 3.3/E - 1

Examples:

.Consider the following segment of PAL code:

L: Print 1;
goto M;

B Print 2;
M := N;
goto L;

Nz Print 3.

The effect of executing this segment will be to print '"1213",
Note that M Is a variable (not a constant) that initially 1is
assoclated with. the "Print 2" statement but which later (as a

result of assignment) becomes assoclated with the "Print 3"

statement.

Conditionals in Sequences 3.071 - 1

odu ¢ (This sectlon was last modifled on 02/04/68 at

02:35 by Evans.)

Just as the course of evaluation of an expression may be
made dependent on the truth value of some proposition, so also
may the sequential execution of a sequence be made dependent on a

proposition,

Conditionals In Sequences 3.4/F - 1

rmu

{conditlional sequence element> ::=

{expression> => <{sequence element>

.

id QLM{—

<sequencg€

)

Conditlionals in Sequences 3.4/ = 1
Semantics:

A conditional sequence element is evaluated by evaluating
first the <expressiond>. |If It denotes true, the value 1is that
denoted by the element between the "=>" and the "I'; if it
denotes false, the value Is that denoted by the element to the

right of the "!"; and otherwise the value is undeflined.

Introduction to Chapter 4 b,0 - 1
(This section was last modified on 02/04/68 at 14:12 by Evans.)

In sections 2.7 and 2.8 the Idea of definitions was
mentioned, in connection with let-expressions and
where-expressions. In this chapter we describe such deflnltions,
through the use of which the programmer may Introduce names of
his own choosing into his program, at the same tlme assoclating
"Initial values" with those names. Sectlion 4.2 discusses
function form definitions, which permit the programmer to define
his own functions. Section 4.3 Is on simultaneous definitions,
section 4.4 on recursive definitions, and sectlon 4.5 on within

definitions.

For convenience, the complete syntax of <definition)>s Is now

given:

{definltion> ::=
¢simple definlition> { and <simple definition> |~
| rec <simple definltion>

| <simple definition> within <definition)

{simple definition> ::=
<variable> { , <variable> || = <expression>
| <variable> <bound variable part> = <expression>

| (<definition>)

Simple Deflinitions 4.1/71 - 1

lntroduction: (This section was last modified on 02/04/68 at
14:17 by Evans.)

The simplest possible type of definition is of the form

Var = Exp

where VYar is a varlable and Exp Is any expression. The effect is
the creation of Var, Initialized to denote the value denoted by

Exp. A more complex definition Is one of the form
N1, N2, ..., Nk = Expression

In this case Expresslion must denote a k-tuple, and each of the Nl
is assoclated with the corresponding element of that k-tuple.

This section contains a discussion of both types of definition.

Simple Definitlons
Formulae:

<simple definition> ::=

(varlable> { , <variable> fo = {expression>

[

hol/F - 1

Simple Definitlons 4,178 - 1

- Semantics:
%w The evaluation of a definition Involves the creatlon of one
or more new variables, initlialized to denote certain values. A

{simple definitlion> as described in the syntax part of this

section Is processed as follows:

Step 1: Evaluate the expresslion to the right of the equal

sign.

Step 2: Let k be the number of names to the left of the
equal slgn. |If kK is one, go to step 5 while otherwise

continue at step 3.

Step 3: The value determined In step 1 must be a k-tuple,

If not, the effect of the definition Is undefined.

%V Step 4: Each of the kK names to the left of the equal sign
is created as a new varlable, Initialized to denote the
value of the correspondling component of the k-tuple denoted

by the right slde. The new names share with the

corresponding component. The processing of the definition

is complete.

Step 5: The name to the left of the equal sign Is created

as a new variable, initialized to denote the value denoted

by the right side. The new name shares with the right side.

It follows from this description that the entire right side |Is
evaluated before any new varlables are created. Thus it Is not

possible for the expression on the right to refer to any of the

o

Simple Definitlons 4,1/ - 2

variables being defined. (Section 4.4 discusses recurslive
definitlions, the facility that permits clrcumventing this

restriction.)

Simple Definitions 4b.1/E - 1

Examples:

The effect of the deflinition

Is the creation of the new varlable x Inftlalized to denote 3.

Because 3 Is a constant, X does not share with anything.

Suppose that I denotes a tuple of order three or more. Then

the definition
z2=T3

creates the new variable z which shares with the third component

of I.

The deflnition

creates a new instance of a variable x, Initialized to be one
greater than the x In the block in which this definition appearts.

(See appendix 1.3 on scope rules.)
Suppose that U denotes a 2-tuple. Then the definition
X, v = U

creates new x and y, sharing with the first and second components
of U respectively, The effect is undefined iIf it Is not the case

that U denotes a 2-tuple.

Functlon Form Deflinitions 4,271 - 1

lntroduction: (This section was last modifled on 02/04/68 at
14:18 by Evans.)

In section 2.6/1, it was suggested that (mathematically) the

definition

f(x) X + 1

and
f o= Ax.x + 1

are equlvalent. Since a lambda-expression Is an expression, It
is clear that the second line is an acceptable Instance of a
{definition> in PAL (providing of course that the "A" Is replaced
by "11"), Because the first form Is convenient for people, It
has also been provided by PAL's designers. Such a definition |Is

called a fupnction form definition,

Function Form Definitlions

Eormulae:

{function form definlition> ::=

{varlable> <bound variable part> = <{expression>

{bound variable part> ::= <bound variable element?f

<{bound variable element> ::= <(variable> | ()

| (<variable> { , <variable> }:)

4.2/F - 1

Functlion Form Deflinitions b.2/N - 1

Notes:

The definitions of <(bound variable part> and <bound variable
element> just glven are lidentical to the definitions glven in
section 2.6 in connection with lambda-expressions. (The

definltlons are repeated here for convenience.)

Functlion Form Definitlons 4,278 - 1

Semantics:

A function form definition can most easily be described by
showing the simple definition to which It 1is equivalent, The

definition

{variable> <bound variable part> = <{expression)

may be replaced by the definitlion

{variable> = 11 <bound varlable part> . <expression)

The object to the right of the equal sign Is a lambda expression
(the syntax of <bound variable part> 1in this section and in
section 2.6/F Is ldentical), so this definition is In the form of
a simple definition and explained by the discussion in section

u. 1.

The application to arguments of a functlon deflned by a

function form definlition Is explained In section 2.6,

Function Form Deflinitlions 4,2/E - 1
Examples:

The definitlion

defines a function f whose value 1i{is one greater than Its
argument. The bound varliable of thils definition is x, and there
are no free varlables. The value of "f 4" s determined by

replacing X by 4 In the expression "1 + x", yielding "1 + u4'" or

2.
The definition
Add x y = x + vy
Is equivalent to the definitlion
Add = 11 x y,x + vy
and therefore to
Add = 11 x.(11 y. x + y)

The function denoted by Add 1Is to be applied to a number,
yielding a function which upon appllcation to a second number
ylelds thelr sum., For example, having defined Add this way, the

function f defined above could alternatlively have been defined as
f = Add 1

A definition with equivalent effect Is

Functlion Form Definltions

fy = Add1ly

More examples of function form definltions can be

appendix &.

4.2/E - 2

found

In

€

Simul taneous Definltions 4,371 - 1

Introduction: (This section was last modifled on 02/04/68 at
14:23 by Evans.)

It Is frequently convenient to be able to define several
variables simultaneously rather than to define them sequentially.
For example, suppose It Is deslred to Interchange the roles of x

and ¥y In a block. Elther the simultaneous definition

X =y and vy X

or the simple definition
X, ¥ = VY, X

could be used, with equivalent effect. In each case, the right
side Is evaluated completely before new variables x and y are

created.

Simul taneous Definitions 4,3/F - 1

Formulae:

{simul taneous deflnition> ::=

¢simple definitlon> { and <(simple definition> |~

Simul taneous Definitions 4,3/ - 1
Semantics:
The effect of a simultaneous definition Is the following:

Step 1: Replace each individual definition by an equivalent
simple deflnition as follows: If the definition 1Is a
function form definition, replace It as described In section
b.,2, If the definition is a recursive definition, replace
it as described In section 4.4, If the definition Is a

within definition, replace it as described in section 4.5,
Step 2: The definition is now in the form
Nl = E1 and N2 = E2 and ... and Nk = Ek

where each of the Nl is a variable. Now replace It by the

form
Nl[Nzl se s 9 Nk = El, EZ' so e Ek

Step 3: The definition Is now In the form described In

section 4.1, and the explanation of 4,1/S may be followed.

Note that the evatuatlion Is recursive, since some one of the

<basic definition>s in one of the alternates may Itself be a

{definition> In pérentheses.

Simultaneous Deflinitions L.3/E - 1

Recursive Definitlons . 471 -1

Introduction: (This section was last modified on 02/04/68 at
14:33 by Evans.)

In evaluating a definition, the right side |Is evaluated
before the name on the left side is created, so that any instance
of that same name which appears on the right Is evaluated as It
would be in the block In which the definition appears.
Equivalently, the body of a definition may not refer to ‘the
variable being defined. Although this situation is wusually the
one desired, there are sometimes cases In which it 1Is Important
that it be possible to refer to the variable being defined. The
usual such case is the recursive functlion, in which the function
being defined is used as part of Its own definition. (Many of
the syntax equations of thls manual are recursive, 1In that the
class being defined is used as part of its own definition,) The
usual example given of a recursive function 1Is factorial. In

English, we might say

The factorial of o Is defined tobe 1 If pn s 0 and Is

defined to be n'tlmes the factorial of pn=1, otherwise.

It should be clear that this definition will work If pn Is a
non-negative integer, and that it will "loop forever" iIfn s a

non~integer or Is negative,

The naive programmer might attempt to express the above

definltlon in PAL somewhat as follows:

Factorial n = (n=0) => 1 ' n * Factorial(n - 1)

Recursive Deflinitlions b4/l - 2

Of course this will not work, since the Instance of "“Factorial"
on the right 1Is pot the function being defined but some
"Factorial" defined 1in an outer block. (If, as might be
expected, there Is no "Factorial" In any outer block, the effect
of the definition Is undefined.) The syntactic device provided
in PAL to meet this need Is the punctuation rec. In a definition

such as

rec f x = E

the Intent Is that any f appearing in £ be the f being deflned.

Recursive Definitions L, 4/F - 1
Eormulae:

{recursive definition> ::= rec jﬁefinition>

m F«C‘(?}

Recurslive Definitlons 4.4/S - 1

Semantics:

The effect of a recursive definltion Is as If the following

were performed:

Step 1: The <definition> to the right of the rec 1is

replaced by a simple definition.
Step 2: The effect of step 1 Is a definltion of the form
rec (Nl, coee » Nk = E)

(where k may be 1.) The expression E is evaluated as if the
Ni had already been defined by this equation, and the N] are
then created and assocliated with the components of E as

described Iin section 4.1.

The discussion of step 2 is not a particularly satisfactory one,
since It Is not at all clear how the stated effect can be
achieved. It Is beyond the scope of this manual to explain
further the semantics of a recursive definition, since a detaliled
understanding of the evaluating mechanism of PAL 1Is required.
However, It Is worth while to observe that the next step iIn the
processing of the form exhibited in step 2 [Is to replace' that

form by
N1, ..., Nk = yy [11(N1, ..., Nk) . E]

Here yy can only be thought of as a magic operator that does all
of the right things. (yy Is not avallable directly to the PAL

programmer -- only indirectly as above through the use of rec.)

-

Recursive Definitions 4.4/S - 2

The reader should not feel that this discussion enhances
understanding of the semantlics of a recursive definitlon. It |Is
included here only to show how a recursive definition Is replaced

by a simple definlitlion. This toplc 1Is dilscussed further in

appendix 1.4,

Recurslive Definitions 4,4/E - 1
Examples:
The factorial function may be defined as

rec Factorial n = (n = 0) -> 1 | n*Factorial(n-1)
Of course, the equivalent definition
rec Factorfal = 11 n.[(n =0) => 1 | n+Factorial(n-1)]
could also be used.

We give now a function Sum which may be applied to a tuple

each of whose components is an Integer and which will return the

sum of those Integers. We might write

Sum T =
f(1, 0, Order T)
where rec f(1, s, n) =

(I >n) => s | f(i+l, s + T i, n)

The three parameters to f represent the count through the tuple,
the sum so far and the order of the tuple, respectively. (The
order of a tuple Is the number of components It has at the top
level. For a more preclse definition, see the definition of

"Order" in appendix 3.3.) The reader should satisfy himself that

“"Sum nil" denotes zero, as it presumably should.

"Within' Definitions 4,571 - 1

dntroduction: (This section was last modified on 02/04/68 at
14:48 by Evans.)

It Is on occaslion desireable that a function be able to
maintain within itself a record of values calculated on previous
calls. The within clause provides the linguistic facility that

meets this need. For example, the function Next defined by

let

n =0 within

Next () (n :=n +1; $ n)

is a function of no arguments that returns L on Its first call, 2
on Its second, etc. The unsharing functor "$" protects the n of

Next from being updated from outside.

"Within" Definitions 4,5/F - 1

Formulae:

<within definltion> ::= <definition> within <{definlition>

"Within" Definitions 4,5/ - 1

Semantics:

A completely satisfactory explanation of the semantics of a
within definition is beyond the scope of this primer, since such
an explanation requires reference to PAL's evaluating mechanism.
Instead, two alternate explanations are provided: one expressed
informally in English prose and the other a precise discussion
showing the equivalent lambda expression. The former suffers
from being Inadequately precise, and the 1latter suffers from

being so excesslvely precise as to be rather incomprehensible.

An informal approach to within, Consider a definition of

the form
a==>bt within fL = E

When such a definition is processed by the PAL evaluator, the
definition "a = b" Is processed (In the usual way) but so that
the scope of a3 Is limited to E. Then whenever f Is applied, the
evaluation of E takes place with a properly defined. The value

of a is maintained from one call of f to the next.

Upon reentry to the block in which the above definition
appears, the definition will agaln be processed by the PAL
evaluator. It therefore follows that such reentry will create a

new a.

A more formal approach to within, Consider again the

definition given above. It is equivalent to the definitlon

"Within'" Deflnitions

f = (11 a. 11 L. E) b

The reader should satisfy himself that, other than
within, there is no convenient way to write the above

without using lambda.

b.5/5 - 2

by using
definition

~ ———

"Within" Deflinlitions 4,5/E - 1

¢

Examples:

One example may be found In the introduction to thls

sectlion.

Consider a definition in which Pl is used frequently, and in

which the programmer does not want to write the value very many

times. Writing

Pl = 3,1415926536 within f x = E

defines the varliable Pl with the indicated value and with scope

limited to E. (Presumably E is some expresslopn involving, at

least, Pl and x.)

A more involved example using gﬂihln Is given In appendix
4.2,

Ap 3.1 - 1

features JVependent on the Current Implementation

The term PAL refers to two different entities: the language
defined in this manual and the implementation of that language on
a particular computer. To use the latter, it is not adequate
that one just understand the former -- additional information s
needed. There are two aspects to this "additional information'":

. The mechanics of wusing the PAL implementation must be
understood., This includes issues of obtaining access to the
computer, preparation of source text, invoking the compiler,

etc.

. The language of the implementation differs in some ways from
the language as described in the manual.

The first point is not covered at all in this manual, The
remainder of this section addresses itself to the second point.
This section was last modified on 02/13/68 at 10:20 by Evans.

For convenience in what follows, we use the term PALI to
refer to the language as it is actually implemented., A piece of
text in PALI, suitable for input to the computer, obeys the

following syntax:

<PAL! program> :
{ def <definition> }. | <expression>

(Here <(definition> and <(expression)> are as described elsewhere in
this manual.) The usual way to use PAL is to prepare several PAL
programs, all but the last being the definition type. Then the

programs are loaded sequentially, The definitions are processed
in order, and then the expression does the useful work.

Certain languages issues are relevant here, Because some
characters of PAL's alphabet are not available on some consoles,
the current implementation permits the user to do without them.

The characters at issue are less than, arezter than and vertic

bar, The following correspondences exisi:

Imblementation_Oependent fFeatures Ap 3.1 ~ 2

- gr
< 1s -
- - 5y /@
| logor
& logand
(logand is not really needed, but it is provided for symmetry,)

Whenever a word of the left column is required, the corresponding
word in the right column may be substituted, Note that "-gr' may
not be used for "->" but that "-=*' must be used instead.

A final set of implementation issues has to do with the Tact
that precisions and ranges are limited.

(ntegers are limited in magnitude to 2%, That is, any
integer i in PALI satisfies

35 35

-2 < i < 2

Any computation in which the result or any partial result is out
of this range will produce an incorrect answer, There will be no
run time diagnostic. i@Q

Reals are approximated by vrational quantities of 1limited
precision and 1limited magnitude. The approximate magnitude
limits are #10°%, Complete details can be found in a reference

manual for the (BM 7094, (The representation of PAL's reals is
that used by the floating point hardware on the 709%4.)

String constants are limited to be no 1longer than 511
characters. Strings produced during computation are not limited.

other than by the limited memory size,

Memory size is a limitation in two different ways: There is
a maximum length of PAL program that can be compiled, and there
is a limitation on data space available to the running program.
Neither limitation should affect 6.231 students doing assigned

problems.

Appendix 3,3 - 1

(Last modified on 02/12/68 at 14:19 by 4620.)

Library functions

Introduction

A number of variables in this implementation of PAL have
been given pre-defined meanings. This section 1lists those
variables, and gives their semantics.

Some of these pre-defined variables are functions which make
certain checks on their arguments. The lergal arguments of such
functions will be listed here. When these functions are applied
to other arguments, they print a message beginning "Run time

" and call an internal error function with an error

error:
argument, The error value for each such function will also be
listed here. The internal error function will be described at

the end of this section,

Unless otherwise specified, the value of each of these
library functions does not share with any other object in the

environment.

The pre-defined variables are listed below in alphabetical
order, along with the section of this appendix in which they are

described.

Library Functions

Atom

Conc

Cy
Isboolean
Isinteger
Isfunction
Islabel
Isprogramclosure
Isreal
Istuple
Isstring

| toR
LookupinJ
Null

Order

Pr

Print
Readch
Rtol

Share
Stem

Stern

Stol

Swing
SYSTEMERROR
Tuple
Write

Appendix 3.3 - 2

. L]
* L] * * . L] . -

L]
*

L3
3

G G W W N E NN R NN NN NN NYU e W
.

e o 6 e e .
N N N W WU RN N FE VWA 00N W W N
« o e * » e .

L 4
[

W W & v & = =W s
o o .
« e

Three pre-defined variables are provided for manipulating

strings:

1.1, Stem

Legal Arguments: All strings of length greater than zero,

Error Value:
Value:

Examples:

That string of length one which contains the

first character of the argument,

The value of Stem 'abe' is 'a'.

Library functions Appendix 3.3 - 3

The value of Stem '4' is '4',
The application of Stem to 76 is an error.
The application of Stem to '' is an error.

1,2, Stern

Legal Arguments: All strings of length greater than zero.
Error Value: '
Value: That string which is obtained by deleting the
first character of the argument.
Examples: The value of Stern 'abc' is 'be'.
The value of Stern 'u4' js '!
The application of Stern to 76 is én error,

The application of Stern to '' is an error.
1.3, Conc

Legal arguments: Any 2-tuple both of whose elements are strings,

Error Value: '

Value: That string obtained by concatenating the first
component of the argument onto the left end of
the second component of the argument.

Examples: The value of Conc('ab','c') is ‘'abc'.

The value of Conc('4','') is '4°',

The value of Conc('','why?') is 'why?',

The value of Conc('','') is ''.

The application of Conc to (7,'6') is an error,
The application of Conc to ('a','b','c') is an

error.

Because a PAL variable may have as its value an object of
any of a large number of data types, eight functions which test
the type of their argument have been pre-defined.

2.1, Isboolean

Legal Arguments: Any object.
Value: "true" if and only if the value of the argument
is either "true'" or "false".

2.2, lsinteger

Library Functions

Legal Arguments:
Value:

2,3. Isreal

Lezal Arguments:
Value:

2.4, lIsstring

Legal Arguments:

Value:

2,5, Istuple

Legal Arguments:
Value:

2.6, Isfunction

Legal Arguments:
Value:

2,7.

Legal Arguments:
Value:

2,8, (slabel

Legal Arguments:
Value:

Three additional

Appendix 3.5 - 4

Any object.

“"true" if and only if the value of the argument
is an integer,

Any object,

"true'" if and only if the value of the argument
is a real number,

Any object,

"true" if and only if the value of the argument
is a string,

Any object.

"true" if and only if the value of the argument
is a tuple, including the 0O-tuple,

Any object.

"true" if and only if the value of the argument
is a closure, a basic function (e.g., these

library routines), or the result of evaluating

Ji-

Isprogramclosure

Any object.

“"true" if and only if the value of the argument

is a programclosure,

Any object.

"true" if and only if the value of the argument

is a label.
HtrUeH

functions which always have either

or "false" as their value have been pre-defined,

Library Functions

3.1. Null

Legal Arguments:
Value:

3.2, Atom

Legal Arguments:
Value:

3.3. Share

Legal Arguments:
tError Value:
Value:

Three functi
type to another.

4,1. Stol

Legal Arguments:
Error Value:
Value:

4.2, ftoR

Legal Arguments:
fFrror Value:

Value:

Appendix 3.3 - 5§
Any object.
"true" if and only if its argument is the
U=-tuple,.
Any object,
"true" if and only if its argument is '"true",
"false", an integer, a real number, or a string.
Note that these are the same obiects to which
"= c3n be applied.
Any 2-tuple,
false
“"true" if and only if the elements of the
2-tuple share,
ons are provided for converting data from one
Any string of length greater than zero.
0
ff the string consists of digits (e.g.,
'12345'), the value is an integer whose decimal
representation consists of those dicits (e.g.,
12345), |If the string contains characters which
are not digits, or if the integer represented

exceeds the capacity of the machine on which PAL

is implemented, the value is an integer which
depends upon the implementation,

Any integer.

0.0

That real number which has the same '"numeric"
value as the argument, to within the accuracy

Library Functions

4.3. Rtol

Legal Arguments:

Error Value:
Value:

Two function
5.1, Order

Legal Arguments:
Error Value:
Value:

5.2, Swing

¢

Legal Arguments:

Error Value:
Value:

Example:

Appendix 3.3 - 6

obtainable from the implementation's
rapresentation of real numbers.

A1l real numbers of magnitude less than or equal
to the largest integer which can be represented
by the implementation.

0

That integer which has the same "numeric'" value
as the integral part of the argument,

s are provided for use with tuples.

Any tuple.

0

The largest integer to which the tuple may be
applied.

All 3~tuples satisfying the following

conditions: 1. the first component is a tuple;
2, the second component is an integer; 3. the
first component may be applied to the second
component.

nil

Let the first component of the argument be A,
the second component of the argument be N, and
the third component of the argument be B, The
value is a tuple identical to A except that its
Nth component is B, Note that, although the
value of Swing does not share with any object on
the environment, the components of the value of
Swing may share with other objects,

The tuples A, B, and Swing(A, 3, B) are
diagrammed below,

Library Functions Appendix 3.3 - 6Ba

Library functions

Appendix 3.3 - 7

Three functions for console input-output have been

pre~-defined.
6.1. Print

Legal Arguments: Any object.
Value: The value of '"dummy"

Side Effects: Print has the side effect

of printing a

representation of its argument on the console.

These representations are:

OBJECT REPRESENTATI(ON
true true
false false
integers one to eleven decimal digits
real numbers ~d.dddddE+dd

where d stands for a digit from 0 to 9. The
minus sign will be replaced by a blank for

positive numbers. The

plus sign will be

replaced by a minus sign for numbers whose

magnitude is less than 1.0,

strings zero or more characters,

The string will not be placed in quotation

marks. The application
string of length zero

effect.
tuples a left parenthesis will
element of the tuple,

of Print to the
therefore has no

preceed the first

right parenthesis

will follow the last element. Elements of

tuples of length greater than one will be

separated by a comma followed by a space.

Each element will be printed in a format

determined by its type, as described in this
section., The application of Print to a
re-entrant tuple, that is, a tuple one of
whose components is itself, will cause the
evaluator to loop. As a special case, the
representation of the 0-tuple is

Library Ffunctions Appendix 3.3 - 8

nil
closure closure
basic function basic function
program closure program closure
the result of
evaluating jj JJ

all other objects $$%

Note that Print does not automatically insert
spaces or carriage returns, Thus the sequence:
Print 47;
Print 19;
Print '#n'
will cause the following line to be printed on
the console:
4719

Note also that no printing is actually done

until a new-line character is printed out. A

new-line character is automatically put out in

three cases:

1, When the 1length of a 1line exceeds 69
characters;

2, Refore an error messasge;

3, At the end of the program, before the
"gxecution finished" message.

6,2, Pr

Pr is an alternate name for the function Print. It is exactly
defined by the PAL program

Pr = Print
6.3. Readch

Legal Arguments: Any object.

Value: A string of length one, consisting of the next
character in the input stream,

Side Effects: When a program berins execution, the input
stream is empty. Characters are added to the
input stream by typing them at the console, No

Library Functions Appendix 3.3 - 9

characters are actually added until a new-line
character is typed. Readch removes characters,
including the new-line character, from the input
stream in the order in which they were typed.
If Readch finds the input stream empty, it
causes the execution of the program to pause
until some characters are added.

The erase character, "#", will remove the last
character added to the input stream, unless that
character was a new-line, in which <case the
erase character will have no effect. The kill
character, "@", will remove from the input
stream any and all characters added after the
last new-line.

One function has been pre-defined to convert a string into
the value of the name which is the string with its quotation
marks removed.

7.1. LookupinJ

Legal Arguments: Any 2-tuple satisfying the following
constraints:

1. the first element is a string;

2, the second element is the result of
evaluating jj;

3. the name obtained by removing the quotation
marks f rom the string is defined in the
environment in which the jj was evaluated.

Error Value: nil

Value: The object whose name in the environment in
which the jj was evaluated 1is obtained by
removing the quotation marks from the string.
This value will share with other objects in the

environment,
8.1, SYSTEMERROR

This function is called indirectly when a library function s
applied to an illegal argument; it may also be called directly by

%w’

Library Functions Appendix 3.3 - 10

applying SYSTEMERROR to any arsument, Whenever SYSTEMERROR s
called, it prints the following message:

Jo you wish to continue?

Unless the user types

yes

evaluation is terminated. If the user types
ves

the evaluator continues, returning, as the value of SYSTEMERROR,
the argument. That is, SYSTEMERROR is the identity function.

Some variables have been pre-defined by PAL programs,
9.1, Write

Write imay be applied to any object, The value of Write is the
value of “dummy.” If the argument is not a tuple of length greater
than zero, the side effect of Write is identical to that of
Print. Otherwise, the side effect of Write is to type out the
element(s) of the tuple which s its argument without the
parentheses and commas which would be inserted for this tuple by

Print. For example,

Write('H', 'e', "1', 'p', '*n'")
causes the message

Help

to be printed, while

Print('H', 'e', "1', 'p', '#n')
results in the printing of

(H, e, 1, p,
)

Write((1, 2), ! ', (3, 4), 's*n')
results in the printing of

(1, 2) (3, &)

Library Functions \ppendix 3.3 - 11

Write is exactly defined by the PAL program

Write x = Istuple x => W(1, Length x) !
Print x
where rec W(i, n) = n=0 -> Print nil !

I > n <> dummy !
(Print(x i);
W(i+l, n))

9.2. Tuple

The argument of Tuple must be an integer. tf this inteser is
less than or equal to zero, the value of Tuple is the u-tuple,
If this integer is n, n greater than 0, the value of Tuple is a
Curried function of n arguments, The value of the application of
this function to its n arguments is an n-tuple, Neither this
n-tuple, nor the value of Tuple applied to an integer, nor any of
the functions produced as Tuple is applied to its arguments share
with any other object in the environment, The elements of the
n-tuple produced may share with other objects however.

The value of

Tuple 3 'a' 4 17.2

is the same as the value of
('a', 4, 17.2)

The value of

Tuple 0O

is the same as the value of
nil

Tuple is exactly described by the PAL program

rec Extpl n x =n <1 -> x 1
1YV v . Extpl (n-1) (x aug vy)

within Tuple N = N <1 => nil !
11 z . Extpl (N=1) (nil aug 2)

Library Ffunctions : Appendix 3,3 - 12
9.3. Cy

Cy may be applied to any object. The value of Cy is an object
which is a duplicate of the argument. Neither the value of <Cy
nor any of the components of Cy (assuming that the argument is a
tuple) share with the argument or with any of the components of
the argument.

Cy is exactly described by the PAL program
Cy § = let List = nil in Copy S

where Lookup Nde =
let rec Lkp L = Null L ->
(let NewN = nil in
List := ((Nde, NewN), $ List);

(false, MewN)) !
Share(Nde, L 1 1) => (true, L 1 2) ¢
Lkp(L 2)

in Lkp List

within rec Copy Node

let Fnd, CpyN Lookup Node

in Fnd => CpyN !
not Istuple Node =>
(CpyN := Node;

CpyN) !

let j, Size = 1, Order Node
in
Copyloop: j > Size ~> CpyN !
(CpyN := CpyN aug Copy(Node j);
] = J + 1
goto Copyloop)

Ap 4.,i -1

Some txamples of PAL

In this section there is a rather simple correctly written
example of PAL programming. In the next sections of this
appendix are some more complex programs., This section was last
modified on 02/11/68 at 12:45 by Evans.

fFor our example, we write a PAL program which prints, for

numbers from zero to ten, the number and its square root, The
main part of the program will be the following:

let i =0
in
L:
Write (i, '*t', Sqrt (ItoR i), '*n'");
i := i+ 1;
i ¢ 11
->
goto L

Write '*nAll done.*n'

This little program creates an integer counter i, which counts

from zero to 10, The statement in this program that does all the

useful work is
Write (i, "+t', Sqrt (i1toR i), '*n")

The effect of executing this statement is to print the value of

"new line"

i, a "tab" character, the square root of i, and a
character. Since the function Sgrt requires an argument of type
real, the built in function JtoR is invoked to do the necessary

type conversion,

This program will not run as it is, since PAL's designers
have provided no square root function in the library, Thus we
must provide our own such function. A method used frequently s
that shown in the accompanying flow chart.

Some Examples of PAL Ap 4.1 - 2

start
t = x/2
S 12 = x| <_—E>
(— no yes

t

| L
t := (t *,X/t) / 2 ' answer is
L __J the

Flow Chart for Square Root

We choose to implement this flow chart with the followine PAL
definition:

let Sqrt x =
f(x/2.0)
where rec f t =
Abs(t*t - x) < 0,005
-> t
!

f (0.5+(t + x/t))

Here f is a recursive function of one argument, |(f that argument
is close enough to the square root of x, it is returned as the

value of the function; while otherwise f calls itself with the

next approximation as argument. All that $Sgrt does is to call f

with the first approximation as argument.

One more thing is needed: PAL's library does not include an

absolute value function Abs, so we need
let Abs x = x < 0,0 => =-x | x

The last page of this appendix shows the entire program, along

with a run of it on the computer,

print sqrty pal
W

SQRTY PAL 02/11/68 1151.8

// Sample PAL program for the PAL Manual.
// This program was written by A. Evans on 11 Feb 68.
// It was last modified on 02/11/68 at 11:50 by Evans.,

let Abs x = // compute absolute value of argument
// works for reals only - not integers
x < 0.0 => =-x ! x
in
let Sqrt x = // compute square root of x (reals only)
f(x/2.0) // initial approximation is x/2
where rec f t = // a recursive function for Newton's method
Abs(t*t - x) < 0,005 // is t close enouch?
=-> t // Yes, sO return t as result.
! // No, so keep trying...
f (0.5%(t + x/t))
in
jet i =0 [/ a counter, to have its sgquare root taken.
in

L: // the main loop of this rather simple little progranm..

Write (i, '+t', Sgrt (lItoR i), '"*n');

i =0 + 1;

i <11 // did we just do 10?

-> // not yet, so keep going
goto L

! // A1l done, so say so and go home,
Write '+*nAll done.*n'

R

pal sqrty

W

Pal compiler entered
Pal loader entered
Execution

v V.U0000UE+Q0
1 1.00030E+00
2 1.41422E+00
3 1.73214E+00
b 2.00000E+00
5 2.23b11E+00
6 2.45000E+00
7 2.64575E+00
8 2.82843E+00
9 3,00002E+00
10 3.16232E+00
All done.

Execution finished
R

6.231 Programming Linguistics
(Last modified on 02/12/68 at 12:50 by 4620.,)
The Abstract Syntax Tree

One step in the evaluation of a PAL program involves
determining which operands go with which operators. For example,

before executing the program of fig. 1, it is necessary to decide
that the addition is done before the function application.

Print(t + 5)

Fig. 1

The result of this analysis may be expressed in a tree
format., The tree for the program of fig. 1 is shown in Fig. 2,
The tree indicates that "Print'" is being applied to the sum of 4

d 5.
an APPLY

PLus

Print
4 s

Fig., 2

The time-sharing consoles available at M.I.T, are poorly
adapted for drawing trees such as that of Fig. 2. Therefore we
have chosen an alternate representation, which is exemplified by
Fig. 3. This representation is derived from that of Fig. 2 in
the following way:

1. The node at the top of the tree structure of Fig. 2 is printed
at the left margin of Fig. 3;

2. A node n levels from the top of the tree in Fig. 2 s
preceeded by n dots in the representation of Fig, 3;

3. The left-to-right ordering of nodes in Fig. 2 is converted to
a top-to-bottom ordering in Fig., 3.

APPLY

. * Namel2345 Print
. PLUS

« + * Number b

e o * Number 5

Fig. 3

This representation is called an '"abstract'" syntax tree
because the labels on each node need not be the same as the
corresponding symbols in the PAL language. For example, we use
the label "PLUS" to correspond to the functor "+", and the label
"APPLY" to correspond to the operation denoted by juxtaposition
in PAL. We have also added the tags '"* Name" and "+ Number" in

‘the abstract representation. The digits after the "* Name' tag,
by the way, tell something about the internal representation of

the name "Print" in the machine. They are of no importance to
the user,

In the example above, the abstract syntax was reasonably
close to the concrete syntax of the PAL program, The user should
be aware that this is not always the case, as illustrated by the
programs of Fig. 4. These two programs both have the same
abstract syntax tree, which is shown in Fig., 5. Both programs

have the same abstract syntax because the 'where' construction in
PAL is not really a new idea, but is simply an alternate concrete

representation for the idea behind the let.,..in construction,

let vy = f 4 Print(y + vy)
in Print(y + y) where y = f 4

Fig. &4

LET

« VALDEF

« « * Namel2345 vy

. « APPLY

« « . * Name234s6 f
¢+ « « * Number 4

. APPLY

. o * Name34567 Print
.« « « PLUS

e « « o * Namel234s5 vy
e e o o * Namel2345

Fige 5

The abstract syntax tree is often useful for checking PAL's
interpretation of a program. Consider the seement of program
shown in Fig, 6. Someone reading this program would probably
assume that it meant that either the assiznment to b or the
assignments to ¢ and d should be executed, depending upon the
value of a, However, the abstract syntax tree for this program,
shown in Fig. 7, indicates that PAL interprets this segment as
meaning that either the assignment to b or the assignment to ¢
should be executed, followed in any case by the assignment to d.
Incidently, this segment is a good example of the fact that the

PAL compiler is not influenced by indentation or spacing. For
the benefit of the humans involved, the author probably should

have typed the segment &s shown in Fig, 8.

a <100 => b := 90 !
c := 80;
d := 170

Fig. 6

. « » * Namel2345 a
e o «» * Number 100

. + « * Name23456 b
e « o * Number 90

« « «» * Name34567 ¢
« » o« * Number 80

. ASS ‘

« « * Namel5678 d

« « * Number 70

Fige 7

a <100 => b := 90 !
c := 80

e

d := 70

Fig. 8

~To limit the amount of printed output obtained when the
/tree/ op;ion is used, PAL has been designed to print only five
levels of the abstract syntax tree. Therefore, the program of
Fig, 9 would give rise to the printing of Fig, 10, In general,
if the user is interested in seeing the abstract syntax tree for
a segment more than five levels down in the tree for the complete
program, he can submit just this segment to the PAL compiler.
The result may not be a cohplete program, so that it may not
compile or run successfully; nevertheless; the compiler will

print a tree for it,

fQC gl h(u(vl wx))))

Fig. 9

APPLY

. * Namel2345 f

. APPLY

. « * Name23456 g .
« « APPLY

e « o * Name34567 h

+ + o APPLY

o« « o * Namel5678 u

« + « » APPLY

e + +» o« o« * Name56789 v

+ o« « o o APPLY

e » o o+ o o« * Nameb7890 w

- - . » . . Etc

10

T
]
.

Ap 1.5 - 1

-Sharing

An important idea in PAL is that two variables may ‘“share
the same storage location". In this section that idea is
explained. This section was last modified on 02/19/68 at 11:14
by Evans. '

lontroduction

One of the simplest statements that one can make about
sharing in PAL Is the following:

Two variables are said to gshare if updating either of
them causes the other to be updated also,

As an example of sharing, consider the following PAL program:

let a =1 in // create a new g with value 1
Write a; // write it

let b = a in // create new b, sharing with a
Write b; // write it

a := 3; // update a

Write b; . // b will now be 3 also

b := L; // update b

Write a // a will be &

The effect of executing this program is to print '"1134",

Unfortunately, sharing is a more complex issue than this
example indicates. For example, if I denotes a tuple, then

let a =72 in
results in g sharing with the second component of I. Similarly,

let U=a, b, T1 in

results in g sharing with U 1, bwith Yy 2 and I 1 with Y 3, so
that executing

Uuz2 := §

Ap 1.5 = 2 Sharing

will change h. However, executing

T := 7, 8, 9, 10

changes I but does not change U,

Lvyalues and Rvalues

Each variable in PAL is associated with a g¢ell in the
computer's memory, the association being made at the time the
variable is defined (by a definition). This storage cell s
called the Lvalue of the variable, An Lvalue in PAL has the
following three properties:

« An Lvalue contains a value, called an Rvalue. (That is, the
memory cell which is the Lvalue has a contents which we call

an Rvalue.)

. The Rvalue contained can be vreplaced, but only by an
assignmnent that updates the cell.

. An Lvalue remains in existence as long as there is a

reference to it.

Before proceeding, it is perhaps worth while to mention the
source of the terms Lvalue and Rvalue, In an assignment

statement such as

it should be clear that the x on the left side occupies a vrole
essentially different from the x on the right., On the right, it
is the value associated with x that we are concerned with, while
on the left we are concerned with the leocation in the computer
where we are to store a new value. Thus on the right side of the
assignnent statement we are concerned with the Rvalue associated
with X and on the left side of the assignment statement we are

concerned with x's Lvalue.

Mode of kvaluation
Any expression in PAL can be evaluated in either jfmoude, to

yield an Lvalue, or in Rmpde to yield an Rvalue. In the

Sharing Ap 1.5 - 3

assignnent statement shown above, the x on the right is evaluated

in Rmode and its Rvalue i{s added to 1. The x on the left s
evaluated in Lnode to vyield x's Lvalue, so that the Rvalue

associated with that Lvalue can be updated to hold the Rvalue
computed on the right. In the next part of this appendix we

provide detailed rules so that the reader can work out for
himself modes of evaluation and sharing. There are three points

to make: First, the context of an expression indicates what mode
it must be made to yield. For example, an expression to be an

operand of "+'" inust yield an Rvalue. Second, the form of an
expression determines what mode it will actually yield., Thus any

expression of the form "g+t" always yields an Rvalue, Finally,
transfer functions are provided to convert between modes when the

wrong one is available.

The Mode Context Table

The mode of evaluation of any particular expression
appearing in a PAL program is determined by the syntactic context
of the expression. For example, the two operands of the functor
"+" are always evaluated in Rmode, since addition takes place on
Rvalues. Table 1 below defines the mode of evaluation for every
context in PAL., The symbols E, L and R are used in this table as

follows:

L denotes a left-hand context, one in which the evaluation
is in Lnode yielding an Lvalue.

R denotes a right-hand context, one in which evaluation is
in Rmode yielding an Rvalue.

E denotes a context in which the mode of evaluation is the
same as that of the expression of which the context is a

part,

As an example of £ context, 1let us consider the arms of a
conditional, The evaluation scheme for a conditional is

R->E!EL

indicating that the Rvalue of the boolean is needed but that the
mode of evaluation of the armns is dependent on where the

Ap 1.5 - 4 Sharing
conditional expression is used., For example, in
(x >y => x | vy) := S
the arms of the conditional would be evaluated in Lmode, while in
1 + (x >y => x t vy)
they would be evaluated in Rmode.

We now give the table. Here « stands for any one of the

marks

and g8 for any of

The notation <bv part> is short for <bound variable part> as
defined in section 4,2/F.

Table 1: The Mode Context Table

Ra R 8 R $ R R % <variable> R
R aug L L{,L]}”

R L

R->EIEL
goto R R; E L := R !
E where <{definition> let <definition> in E
val L res L

(E) |
11 <bv part> , L :
<variable> { , <variable>}. =1L %
{variable> <bv part> = L J

The last two lines of this table refer to definitions,

Sharing Ap 1.5 - 5

Ihe Functions £ and €
The functions 4 and C are of supreme importance in

understanding PAL, even though they are not available directly to
the PAL programmer. 4 takes an Rvalue as argument and yields an
Lvalue containing the Rvalue as its result, the Lvalue thus
supplied being distlinct from all Lvalues previously in existence.
it is an important feature of PAL that Lvalues can be created

only by applying this ignggignL tt is this fact that is crucial

to the present discussion of sharing.

L is the inverse function: Taking an Lvalue as argument it

returns the corresponding Rvalue as result,

R-Type Expressions and L-Type Expressions

The expressions shown in Table 2 are called Rtype
expressions in that they always yield Rvalues when they are
evaluated. Here f stands for any expression, and x and g8 are as

above,

. B

Table 2: R-Type Expressions

{quotation> {numeric> {literal>
$ E ExE g E $ E
E{ ., E" E aug E
. 11 <bv part> , E
E :=t

If such an expression appears in a left hand context, then PAL
automatically invokes the function J to supply the needed Lvalue.
Thus the evaluation of one of these expressions in an Lmode
context will produce an Lvalue guaranteed not to share with

anything else.

The expressions shown in Table 3 are called Ltype
expressions, always yielding an Lvalue when evaluated:

Ap 1,5 - v Sharing

Table 3: L-Type Expressions

E E {variable>
E %2 <variable> E val E

The function € is automatically invoked i{if such an expression

appears in a right hand context,

Sharing

We are now able to give an accurate definition of sharing:

Two components are said to share if they have the same

Lvalue,
Here a component is either a variable or an element of a tuple.
We also imake one further observation: A tuple is a set of

Lvalues, and the result of applying a tuple to an integer (within
the proper range) will always be the relevant Lvalue, When the
programmner writes a listing (i.e., the representation of a tuple
written with comnas), it is the Lvalues of the elements that are

put together to make the tuple.

The unsharing operator "$" causes its operand to be
evaluated in Rmnode., |f the expression appears in a left hand

context, PAL then applies 4§ to get a new Lvalue that shares with
nothing. Note that "$" is only useful if its insertion causes

the application of both £ and 4.

X es

The reader now has all the information needed to understand
sharing. We present now a few examples to illustrate how to use
that information, Let us examine the line

let b = a in

Here we have an instance of a definition. On the right we have a
{variable>, and we find <variable> in Table 3 of Ltype

expressions, That means that the evaluation of a variable

Sharing Ap 1.5 - 7

produces an Lvalue, (n Table 1, we find that the right side of a
definition is a left hand context. Thus the Lvalue supplied s
what is wanted, and neither 4 nor C is needed., The effect of the
definition is to establish a new variable named b, with the same
Lvalue as that of ag. Thus g and b share, having the same Lvalue.

4

Had the definition been
let b = 2 in

2, a <numeric>, is an Rtype expression. Since
it appears in a left hand context, the function J is invoked
automatically by the PAL system to return an Lvalue guaranteed to
be distinct from all other existing Lvalues. b is then created

we would note that 2

with this Lvalue, resulting in a b that shares with nothing.

—

Now we consider
let U =a, b, T1 in

aand b are Ltype expressions, as is T. 1l is an Rtype
expression. [In Table 1 we find the scheme "R L", so we must
apply L to I and £ to 1 and then apply the first result to the
second., The result is an Ltype expression, Table 1 shows that
elements of a listing are to be evaluated in Lmode, so the proper
mode exists here, The listing itself is an Rwode expression, so
4 is invoked to create a new Lvalue., U is then created with this
Lvalue, Thus U shares with nothing, but the three components of

U share as indicated.
As another example, let us consider again
X 1= x +1

The operands of "+" are to be evaluated in Rmode. 1 is already
an Rvalue and we apply £ to the Lvalue of x to obtain the Rvalue.
The summ is an Rtype expression according to the Table 2. The Xx
on the left is evaluated in Lmode, and the Rvalue determined on
the right is then assigned to be the new Rvalue associated with

the Lvalue of x.

Finally, we can now see why statements such as

Ap 1.5 - 8 Sharing

1 := 2
are nugatory, as suggested in section 3.2/N. The 1 on the left %Q
slde Is an Rtype expression appearing In an Lmode context, so
is invoked as a transfer function to produce a new Lvalue. |t is

the Rvalue assoclated with this Lvalue that is changed to 2.

Functional Application 2.171 -1

Introduction: (Th:s section was last modifled on 02/04/68 at

U3:30 by Evans.)

In this section, we are concerned wlith the application of a
function to arguments, In the simplest case, both the function

and jts argument are given. For example, the expression
Sqrt 8

denotes the result of applying Sgart to 8. Either the function or
the argument may be the result of arbitrarily complex

calculations. Thus the expression
(x y) (z w)

denotes the result of applying (the result of applying x to y) to

(the result of abplying Z to w).

Note that PAL differs from conventional notation 1In not
requiring parentheses to surround arguments: Juxtaposition s

adequate to indicate appllication. Thus we permit either

or
x(y)

rather than require the latter.

[
!

Functlonal Application

Formulae:

{combination> ::= <expression> <expression>

{combination?> <expression>

2.1/F - 1

	Introduction and Acknowledgements
	Forward to the Student
	Table of Contents
	0. Introduction
	1. The Basic Elements of PAL
	2. The Simple Applicative Subset of Pal
	3. The Imperative Subset of PAL
	4.0 Definitions
	5.0 Other Topics
	Appendices
	3.3. Library Functions
	4.1. Some Examples of PAL
	1.5. Sharing
	2.1. Functional Application

