
-
P A L

~edagoglc Algorithmic ~anguage

A Reference Manual and A Primer

Arthur Evans, Jr.

Department of Electrical Engtneerlng

Massachusetts Institute of Technology

February 1968

'
·:,

' c/

Introduction and Acknowledgements

PAL -- _fedago~~lc Algorithmic .!:.anguage is
progrrnnm f ng 1 anguar:e that has been deve 1 oped as

vehicle In connection with the subject ti.231,

a compu te·r
a teaching

Programmin~
Linguistics, In the E:lectrlcal E:ngineering· iJepartment at the
Massachusetts Institute of Technology. 6.231 is d~signed to br
taught to second term sophomores who have a i rer1dy tc1kc, '"

introduct'ory subject in computer programming arid \<Jho intend L)

take further subjects in Compu_ter Science. The present dccumpnt

is both a primer and a 1 so a reference manua 1 for the Pl\ I.

language.

PAL Is currently lmpJemented in CTSS, a general purpose timA
sharing system running on a modified IBM 70911 computer at the r-:1T

Information Processing Service Center, and is used interactively
by students. A major part of 6.231 is a set of homework

exerci~es to b~ carried out on the computer.

PAL is itself written in BCPL, a general purpose programming

language. Since BCPL has been designed to bootstrap itself

easily onto other computers, it should be possible to irnplement

PAL on a new computer without excessivP. difficulty (as thP.se

things go).

PAL fs a product of the effort of many people.
Intellectually, PAL is ti direct descendant of ISWIN, a language
developed by Peter J. Landin. {See "The next 700 progrn111min~

languages", bY P. J.' Landin, Comm. ACM 9, 3 (March l~Gu),

157-164.) The i·nitial implementation of PAL w;is by Landin and

James H. Morris, Jr., in LISP. The PAL langua~e described in
the present document has been designed by the joint efforts of

Thomas J. Barkalow, Arthur ~vans, Jr., Robert M. Graham, Morris,
Martin Richards, and John M. Wozencraft. The implementation is

the work of Barkalow and Richards. The lanRua~e BCPL is the work
of Richa~ds. The present document is by Evans, with critical
assistance from the rest of the tecllil. B;irkolow wrote ap:>Pndix
3.3, ,rnd ;ippendix 2.1 is the \\fork of i~ich,]rd~ i1n(1 l•l•.>rris.

Forward to the Student

This document is your principle source of information about
the PAL lanp;uage. l•Jhen it has been supplemertP.d with cL-,ss
handouts on the mechanics of using the computer, you wi 11 h~ve

all of the inforrna·ion you need to write pro~r,ms in PAL tn:·
carry them through execution on the computer.

A s ho r t g 1 an c e a t t h i s man u a 1 w i 1 I rev ea l t ha t i t i s no 1. v e ,

complete, there being sections referred to in the table of

contents that do not yet exist. Some of the 111is::.ing section~

will be passed out in class during the semester.

Undoubtedly typographic and other errors will be found in

this 111anual. The 6.231 staff will be grateful for all su,.::h
errors reported.

fn your initiul approach to this manual, che follo\/ing may

be found useful. Read first the Introductory sections to the J
four main chapters: sections 1.0, 2.0, 3.U and 4.u. uoing so

will give you an overall introduction to what is in PAL. (WAre
section 0.3 written It would serve this purpose.) Next read

sections U.l and 0.2, which explain the format of the manual and
many of the conventions used. After that .:i 1 l there is to do i [,

to read chapters 1 to 4 in order.

Before attempting to write a PAL progr~m, study section 0.4

and appendix 3. You \'lill also need some mc3teric1l µc1ssed out in
class.

The worked examples in appendix 4 will undoubtedly be found

useful. i\nother source of correct PAL programuling
you is the PAL library, accessible on the computer.

some examples of well written PAL text.

Good luck!

ava i lab 1 e to
It contains

Table of Contents

Chapter O: Int roduct I on
1. Conventions Used In this Manual

the plan of the manual
page numbering conventions
underlining and quoting conventions

2. Syntactic Description
formalism used for syntax
syntactic ambiguity

3. Overview of the PAL Language
4. Canonic PAL vs Implementation PAL

Chapter
o.
1.

2.
3.
4.

Chapter
o.
1.
2.
3.
4.
s.
6.
7.
s.

Chapter
o.
1.
2.

3.

4.

1: PAL's Alphabet and Vocabulary
Introduction
Characters: PAL's Alphabet

composite tokens
comment conventions
blank - tab - newline
string constants

Functors
Punctuation
Identifiers

constants
variables
literals

2: The Simple Applicative Subset of PAL
Introduction
Functional application
Tuples
Infix and prefix functors
Built-In functions
Conditional expressions
Lambda expressions
"Let" expressions
"Where" expressions

3: Imperatives
Introduction
Sequences
Assignment

simple
simultaneous
to a tuple

Transfer of control
labels
local goto
non-local goto

Conditionals In sequences

ff I

--

_,...

Table of Contents

4: Definitions
Introduction

Chapter
o.
1.
2.
3.
4.
s.

Simple definitions
Function form definitions
Simultaneous definitions
Recursive definitions
Within definitions

Chapter
1.
2.
3.
4.

s.

5: Other Topics
Paths
Lists
The functor"%"
The operator 'J'

LookuplnJ
lil and LU.

Appendix 1: Language Topics
1. Data types
2. The principle of conformallty
3. Scope rules
4. Recursion
s. Sharing

Appendix 2: The Complete Syntax of PAL
1. The complete BNF syntax
2. The syntax as a parsing algorithm

Appendix 3: Implementation Topics
1. Features dependent on the current Implementation
2. Typing conventions for various consoles
3. Library routines

Appendix 4: Examples of the Use of PAL

The Table of Contents was last modified on 02/04/68 at 16:22 by
Evans.

Iv

~'

Conventions used In this Manual 0.1 - 1

(This section was last modified on 02/03/68 at 23:10 by Ev~ns.)

This document Is designed to serve two purposes In that ft

is to be both a primer and also a reference manual for thP.

language PAL. There SP.ems to he ample evidence in the computer

profession that these two goals are fnco~patible in ~ sin~l~

document. To the extent this Is true, then, this document SPPrns

to be more successful as a reference manual than as ~ orlrner.

Nonetheless, the newcomer to PAL should find it adeouate.

~ .eJ.an .Qf .t.b.e. Man u a J

Fol lowing this introduction, there are five ch~pters

describing the PAL language and then sevP.ral appendicP.s on

various topics. The first four chapters, which make up the hulk

of the manual, are divided Into sections each describine some

aspect of PAL. Each section Is subdivided Into (up to) six

parts, as follows:

lntroduction

f.ormulae

Notes

iemantics

fxamples

Advice

The first letter of each of these words Identifies the

subsection. Thus a reference to section 1.2/N refers to the

Notes In part l of chapter 1. Chapter 5 is on miscellaneous

Conventions used In this Manual 0.1 - 2

language topics anrl Is organized less formally.

A few more words about the six subdivisions are in order.

In some sections, one or more of the subdivisions will bP.

missing, since they would serve no useful purpose. \'Jhen thP

sections are present, they describe a new concept as follows:

•

.Lntroduction: lnfonnal introductory comment about the new

concept is given. If the concept requires understanrlin~ of

some aspect of PAL which appears later in the manual, a fpw

words are given here about the missing ideas.

Eormulae: The syntax of those aspects of the lanr,uar;P

relevant to the new concept ls given. The notation used ts

described in section 0.2.

Notes: Frequently, further notes and descriptive material

are necessary concerning the syntax. Sometimes this ts

because the syntax equations do not tell the whole story,

and it is necessary to give more Information.

~emantlcs: In this subdlvlsfon, we give the meaning of PAL

program elements the user might write using the new concept.

The discussion here Is Informal, assumlng the existence of a

11 fr I end 1 y" reader.

.Examples: Examples are given of PAL program elements using

the new concept.

Advice: Frequently there are issues of convP.nfenc~ or

running efficiency related to the new conc~pt of which thP.

Conventions used in this Manual 0.1 - 3

user should be aware but which find no home elsewhere .

.f.a&Jt Numbering Conventions:

The pages of this manual are numbered to Indicate their

section, and are not numbered consecutively as usu~l. Thus the

first page of the present section is numhered 110.1 - I". The

first page in the Notes part of section 3 of chapter 2 woulrl be

numbered 11 2. 3/N - 1". Page numbers in

\'Ii th II Ap", so the f I rs t page of

"Ap 1.1 - 111
•

undeclloiog .arul Quoting Conventions

appendices

Append Ix 1. 1

are

is

prefixerl

numbered

In a rnanua 1 such as th Is one, It is frequent 1 y necessary to

~- refer in text to constructs of the language. To distinguish them

from the English text that is the manual, such constructs will

usually be surrounded by the double-quote m~rk 11
• On occasion

where no ambiguity may result, such constructs will b~

underlined. These conventions apply only to in-1 ine text and do

not apply to text displayed on a line by itself (usu~lly

centered). For example, we miRht be discussing the PAL

expression

and refer in text to the functor"+" or to the variable 1S. or to

the punctuation "where".

Conventions used In this M~nual 0.1 - 1,

.lb.e. words "Interpret" .aru:L "nenote"

Certain words will always be used In this manual In a

technical sense only.

Syntactic Description 0.2 - 1

(This section was last modified on 02/03/68 at 23:14 by Evans.)

Introduction

In specifying a computer language, there are two problems to

solve: It is first necessary to specify exactly which strtn~s of

characters (out of all possible such strings) are legal sentences

in the language; and It Is next necessary to specify exactly what

Is the meaning of each such legal sentence. The first problem

has to do with the svntax of the language, and thP. second has to

do with semantics. In this section the technique used in this

manual for the specification of syntax will be discussed.

~ Formal Ism~ .fru:. Syntax

The term "syntax" has to do with specifying those strin~s of

characters that are legal Instances of a particular closs. It

has been found that specifying syntax is done most conveniently

with the use of a formalism. That is, a particular notation is

used that gives an exact definition of what are thP. legal

strings. Since the strings being defined are the strings of the

language, we use the term "meta .. llnguistic" to refer to marks

used in the definition.

Six meta-1 lngulstic marks are used In our formalism:

< > .. -.. - }

The first t\'IO of these marks are "meta-1 lnguistlc brrtckets", userl

to enclose the name of a construct. The third mark is " sin~lP.

Syntactic nescrlption 0.2 - 2

entity: "colon-colon-equal". I t can best he rec1d ns II f S rfeffnerf

to be". The fourth mark Is best read "or". The last two marks

serve as parentheses at the meta-linguistic 1 eve 1 • These marks

are used in the fonnal description of the syntax, and It is

assumed that identical marks are not used in PAL. (In section

1.1 we will see that special provision is needed to talk about

the fact that each of these symbols other than"::=" Is Actur1lly

used in PAL.) The use of this notation will now he expl~in~d.

A definition such as

<letter> ::= a I b I c I d I e I f I P.:

rnay be read as, "An element of the meta-linguistic class <letter>

is defined to be either "a" or "b" or "c" or 11rl 11 or "e" or "f" or

"g". Thus the definition specifies that each of the first six

characters of the alphabet, lower case, Is a member of the

syntactic category <letter>.

wr rte

Having this rleflnition, we may

<string> ::= <letter> I <string> <letter>

This can be read, "The class <string> is defined to be either a

<letter> or a <string> fo 1 lowed by a <letter>. II NotP that

<string> is defined in terms of Itself. \fo w i 11 no\'1 show that

"abc" is a <string> In terms of the above definition. It Is not

a <letter>, so we ask tf t t ts a <string> fo 11 owed by a <letter>.

Since "c" is a letter, the answer Is yes r>rovirfing that we r.an

sh0\·1 that "ab" is a <string>. Si111ilarly, we cr1n deduce that 11r1b11

-

-J .

is a <string> if we can shO\"I that "a" is onP, since? "b" Is ~ vii

Syntactic Description 0.2 - 3

<letter>. But "a" Is a <string> because ft ts a <letter>, anrl we

~ conclude that 11abc 11 1 s a string.

An English sentence equivalent to the above rl~ffnitton of

the class <string> might be, 11A <string> ts a sequence of any

length of items from the class <letter>." Althoup;h it.is P.asy to

give an English sentence equivalent to the syntax equation just

given, we shall see many syntax equations that are sufficiently

complicated that an equivalent English description would he

awkward.

Let us continue this example further.

define

<LETTER> ::= A

<digit> : : = 0

B

1

C

2

D

3

E

4

F

5

Suppose that we

G

6 I 7 I 8 I 9

In PAL, the programmer may use as names identifiers made up out

of arbitrarily long strings of <letter>s, <LETTER>s nnd <diP.ft>s.

(Of course, the entire alpha~et is available to the PAL usP.r

instead of just the first six letters, but the present

explanation is more easily given this way.)

propose defining <name> by

Thus we might

<char> ::= <letter> I <LETTER> I <digit>

<name> ::= <char> <name> <char>

As it happens, however, there are two restrictions that we wish

to have in PAL: First, if the name consists entirety of df.P:lts,

it is Interpreted as an Integer and not as a pro~ramrner's name;

Syntactic Description 0.2 - 4

and second, a name two or more characters long consisting

entirely of lower case letters Is Interpreted as a "system word" ,....)

built Into PAL with a predefined meaning, and is not available to

the progn~mmer for his use as an Identifier. He will nO\·J

provide, as our example of the syntax notation to he userl, a

complete description of a class <variable> which does not inclurle

integers or system words.

Before doing so, we will expand the notation. The syntax

equation given above for <name> has a form that appears quite

often In this sort of work. It defines onP. Item as c1 strin~ of

arbitrary length of Instances of some other item. Because this

is common, it is expedient to Introduce a notr1tion. '.le \•1rite

<na111P.> ::= <char>';"'

to Indicate that a <name> consists of one to arbitrarily many

instances of <char>. Note that the mark 110011 as used herP me.ans

"arbitrarily many", or "rts many as desired", neither of which is

quite the same as "Infinity".

Actually, we do not need the definition of <char>, since we

can write

<name> ::= { <letter> I <LETTF.R> I <digit>/~

The intent of this notation Is that It define the same class of

strings as that defined hy the previous notation.

instances of the class name Include the followin~:

Possible

Syntactic Description 0.2 - 5

a A 4 aAf3g lab 9o00 r.ilb2c3d4

With this notation, the classes <integer> and <system worrl>

mentioned earlier can be defined by the e~uatlons

<integer> ::= <digit>~

<system word> ::= <letter>7

Here a system word consists of two or more <letter>s, accorrlJng

to the definition. Similarly, a class consistln~ of two or more

<name>s separated by plus signs could be defined by

<summation> ::= <name> l + <name> f

In a language like Fortran where symbols are no more than six

characters long and must start with a letter, we might have

<symbol> .. -.. - l \or <LETTER> <LETTER> I <digit> 1

(Remember that only upper case letters are available in Fortran.)

We now provide the definition of <variable> promised

earlier. Assuming that the classes <digit>, <letter> and

<LETTER> are already defined, we have

<symbol head> ::= <digit>,! <letter> I <LETTF.R>J

<letter>: l <LETTF.R> I <digit>}

<LETTER>

<variable> ::= <letter>

I <symbol head> f <letter> I <LFTTFR> I <di~it> l:

Syntactic Description 0.2 - G

The reader should satisfy himself that <variable> as defined here

has all the properties asked for.

Syntactic Ambiguity

It ts quite easy to write syntax with the property that

certain strings are defined by the syntax In more than one way.

In such a case, we say that the syntax ts ambt~uous. Consider

<sheep noise> .. -.. - baa I <sheep noise> <sheep noise>

This definition Is ambiguous, since the phrase

baa baa baa

can be a <sheep noise> In more than one way. The difficulty is

that we do not know whether the .!lita. in the middle should be

associated with the first or third baa to make a <sheep noise>,

and there is nothing In the definition to tell us which.

Alternatively, we could have

<sheep noise 1> ::= baa <sheep noise 1> baa

<sheep noise 2> ::= baa baa <sheep noise 2>

It should be clear that each of these two definitions is

unambiguous, the first associating .w_s to the left and the

second associating them to the right. Further, each of the three

definitions defines the same class of strings.

In a language such as PAL, it ts usually posstbl~ to writP.

syntax definitions unambiguously. The definition of <variahlP.)

Syntactic Description 0.2 - 7

above was somewhat complex because of the desire to mak~ it

'-., unambiguous. (The reader should satisfy himself that it is,

indeed, unarnblguous.) However, we shall frequently choose to

give amblguuous syntax, ,nalnly because removinfl the arnbiRuity

from the formulae seems to introduce more prohlems thnn it

solves. (Of course, we must remove the a111bi~ufty so1111:?where if WP.

are no have a reasonable definition of a langua~e. Usually thP

Notes section will address this Issue.) Consider the case of

arithmetic expressions on Integers. We might have

<oper;itor>

<expression>

.. -.. -

: : =

+ I - I * I /

<integer> I (<expression>)

I <expression> <operator> <expression>

(Here <integer> Is as above.) This syntax is ambiguous, since

phrases like

can be interpreted in 111ore than one way. It should be clcr1r that

this problem Is serious, since one interpretation gives ll as ;in

answer and the other gives 1.Q..

vJ e f i rs t sh ow th a t I t f s po s s f b 1 e, i n def I n i t i on s such as

this, to produce an unambiRuous syntax.

above, we define

<primary> ::= <Integer> I C <expression 1>)

·Syntactic Description 0.2 - 8

<term> ::= <primary> I <term> { * I /} <primary>

<expression l> ::= <term>

I <expression l> l + I - 1 <term>

The reader should satisfy himself that the same strings that are

<expresslon>s are also <expression l>s, but that <expression l>s

are unambiguous.

Now that we have shown that It Is possible {at least In this

case) to write unambiguous syntax, we explain why we frequently

choose not to. The definition of <expression> Is simpler anrl

more straightforward than that of <expression l>. It is clear at

a glance what st r I ngs are <expression>s, but deduc in.~ what

strings are <expression l>s takes a bit more study. Thus from

the point of v I e,"' of the 1 earner, It seems preferable In such

cases as this one to choose the ambfRuous syntrix for the

formulae.

Of course, there ts still a problem to solve: The purpose

of a manual such as this one Is to convey, accurately and

unambiguously, Just what ts the meaning of each sentence in the

language. This ts done In the present manual by appending to the

formal syntax In the Formulae section such English description as

seems appropriate, and It ls this latter that goes into the Notes

section. In a definition such as the above of <expression>, the

followln~ discussion would be provided:

The definition of <expression> is ambi~uous. To deduce thP.

meant r,g of amb I gl'.ous phrases, note the r,recP.r:fence tah 1 r -J

given below.

Syntactic Description

Operator

+

*
I

Precedence

1

1

2

2

0.2 - CJ

Here each operator Is ass I gned a precedencP.. In cases whP. r~

a particular subexpression may h~ associated with the

operator on either Its left or its right, lt will be

associated with whichever operator has higher precedencP..

In cases of equal precedence, the operator on the left will

be used.

The reader should satisfy himself that the Informal discussion

just given will have the same effect as the formal definition of

<expression 1>.

Canonic PAL vs Implementation PAL

(This section was last modified on 02/04/68 at 16:37 by

'-., Evans.)

-

The term "the PAL language" ts actually somewhat

since there are several different possibilities as to

ambiguous,

what It

means. The problem has to do with the ~vatlable character set.

Ideally, we could write programs In canonic .eAL, a version of PAL

which assumes the existence of an arbltratlly large character

set. In pr act Ice, we are concerned In th Is manua 1 wt th the

Implementation of PAL as It exists (In the spring of 1968) on

CTSS on the IBM 7094 at MIT. In addition, unfortunately, we are

also concerned with problems arising from the fact that some

console devices attached to CTSS differ from others, and

different characters are available on different consoles.

~ The present section of the manual concerns Itself with the

distinction between canonic PAL and the PAL Implemented on CTSS.

The problems of differing console devices are discussed In

Appendix 3.2.

It Is convenient for PAL's designers to assume the existence

of a very large character set. For example, It would be pleasant

to use the marks 11
A

11 and "v" for the Boolean connectives "and"

and "or", respectively, since these are the marks usually used In

logic. Unfortunately these marks are not available on typewriter

devices attached to the computer to which we have access. Thus

the writer of a manual such as this one faces a problem: Should

he use""", or should he replace that mark by something that can

be Input to the computer?

Canonic PAL vs Implementation PAL 0.4 - 2

In the present manual, we opt for the latter choice. The

purpose of this manual Is to assist a new user of PAL to

understand PAL. Since the reader's objective Is to be able to

use PAL on a computer, ft seems most useful to describe PAL In a

manner as close as Is convenient to the notation actually used on
•

the computer. Thus this manual describes an lmolementatJJ:m of

PAL -- Indeed, a particular Implementation on a particular

computer at a particular time.

On the other hand, the main part of this manual ignores the

problem (mentioned above) of dffferlng consoles. ~or example,

the relation of a being greater than h Is expressed In this

manual as

a > b

even though there are some consoles not equipped to type the

''greater than" mark. From such consoles one might type

a gr b

(as explained In detail In Appendix 3.2).

___;

1.0 - 1

Chapter 1:

The Basic Elements of PAL

(This section was last modified on 02/02/68 at 11:55 by

Evans.)

In defining a conventional language, we start with an

alphabet. Using this we make up first words and then larger

constructs such as sentences and paragraphs.

Is used In defining the PAL language.

A similar technique

PAL1 s alphabet is

(roughly) the set of characters that can be typed on the devices

available. CA complete description of PAL~s alphabet is found in

-- sect ion 1.1.)

PAL's alphabet Is used to make up words. There are several

ways to organize PAL's words Into hierarchical classes, one of

which rs the following:

Identifier

variable

constant

quotat ton

numeric

literal

functor

punctua~lon

Introduction to Chapter 1 1.0 - 2

The classes just shown are based on the purpose to which their

members are put In PAL. Another way to categorize PAL's words is ~

snyntactlcally, but that Is less useful for the present purposes.

We consider first the meaning of each of the above classes, and

defer till later In this section the syntactic categorization.

ldentlffecs are words available to the programmer to denote

the values which he wishes to manipulate in the course of a

computation. Certain identifiers, such as "2", always denote the

s~ne value -- a value which can be deduced from the form of the

identifier. Such Identifiers are called coast.an.ts, and come in

three forms: quotations, which denote strings; numerics, which

denote numeric values; and 1 jterals, which denote certain

"but 1 t-i n" values. C\-Je see later that there rs a further

breakdown of numerics into those that denote jnteger values and

those that denote .a:.a..l values.)

Identifiers other than constants are variables. These

denote values of the programmer's choosing -- frequently denoting

different values during the course of a computation.

Identifiers, both variable and constant, are discussed tn

section 1.4.

A functot is a word whose effect, when the program is

evuluated, is the execution of an operation. For example, the

functor 11+ 11 indicates addition, and the functor "aug" Indicates

the operation of augmenting a t11ple. Functors are discussed in

section 1.2.

Introduction to Chapter 1 1.0 - 3

The ·rerna In I r,g words In PAL's vocabulary are called

840ctuattons. These Include "let", "and", 1111 11 and others.

Punctuations are discussed in section 1.3.

As suggested above, an alternate way to categorize PAL's

words ts syntactically, or by the .uu:m rather than by the meaning

of the word. We might then have the following classes:

variable

quotation

numer I c

reserved word

special

Here the first three classes are as above. A reserved ~ Is

one made up of two or more lower case letters. This class

includes "true" Ca literal in the first categorization), "aug" Ca

functor), and "let" Ca punctuation). The class soecla) then

includes 11+" Ca functor) and"•" Ca punctuation). It is always

possible to te 11 by looking at a word which syntactic class It is

a member of, but the first categor i zat I on does not have that

property. (The only way to te 11 that "let" serves as a

punctuation is to look at a 1 is t. On the other hand, it ts

clearly a reserved word, by its form.)

All of this discussion is best summarized by the following

table. Note that each of PAL's words Cother than variables,

quotations and numerics) Is shown exactly once In this table,

with the exception of"=" which Is shown twice. (This symbol is

Introduction to Chapter 1

used as both a functor and also as a punctuation.)

1 I teral

functor

punctuation •

reserved word

true false nil dumm~

not aug val res JJ

let in where within

rec and 11 goto

special

+ - *I** & I

< = > % $

< > I J f f =

-> I ; := .
• I

1.0 - 4

.

Characters: PAL's Alphabet 1.1/1 - 1

Introduction: (This section was last modified on 02/02/68 at

12:28 by Evans.)

As mentioned In section 1.0, text in PAL language Is

written using a particular alphabet which Is made up of

characters. This section contains a listing of PAL's character

alphabet, along with certain other information relevant to

creating PAL text.

The alphabet chosen for PAL Is the so-called ASCII alphabet.

ASCII -- the word ts acronymlc for American itandard ~ode for

Lnformatton Lnterchange -- represents a standard character set

which (hopefully) will some day be available on all computers and

all console devices. Because of ASCll's growing acceptance In

the computer world In general and at MIT in particular, PAL's

\..,., designers have chosen It for the Implementation language of PAL.

The full ASCII character set, as defined by USASI (the United

States of America Standards Institute), consists of 128

characters. Of these, 94 are printable graphics; some others are

format effectors such as space, backspace, tabulate, new-1 tne,

etc.; and the rest are control characters of no interest to the

present discussion. PAL's alphabet Includes the graphics and a

selection from the format effectors. (The interested reader may

learn more about ASCII by consulting Communications of the ACM,

volume 8, Number 4 (April 1965), pages 207-214.)

In this less than perfect world, many console devices are

deficient in that they do not provide for direct input of all of

the character set. Appendix 3.2 contains the information needed

Characters: PAL's Alphabet 1. 1/1 - 2

to use PAL from the various devices which are actually available.

In this primer, the entire ASCII set ts assumed to be available,

since it is possible (albeit somewhat awkward) to input or print

any character with any device.

A PAL program should be regarded as one continuous character

stream rather than as a sequence of lines or card Images, In th~t

the transition from one line to the next has no significance fn

the language. (There are two exceptions to this rule: The

newline character Is treated as a space, so a construct such as

an identifier which may not have embedded spaces may not be

continued from one line to the next. Also, newline terminates

the comment convention.) In the program text, the actual

transition from one line to the next is indfcated by the

character "newline", the character produced when the "carriage

return" key Is typed.

--

..J

Characters: PAL's Alphabet 1. 1/F - 1

Formulae:

<upper case letter> ::=

AIBICIDIEIFIGIHI I IJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

<lower case letter> ::=

alblcldlelflglhl I IJ lkl 1 lmlnlolplqf rl sf ti ulvlwl xi YI z

<letter> ::a <upper case letter> I <lower case letter>

<digit> ::a o I 1 I 2 I 3 I 4 I s I 6 7 I 8 I 9

<alphanumeric> ::= <letter> <digit>

<special character> ::a

+1,1-1.111

I II

. ,

II I $ % I &

<less than> =

I I (I) I * I

<greater than>

? ~ I [I \ I J I " I _ I ' I <left brace> I <bar> I

<right brace> I ~

<format effector> ::= <space> I <tab> I <newline> I <backspace>

I <black ribbon shift> I <red ribbon shift>

<character> ::= <alphanumeric> I <special character>

<composite token> ::= II I:= I-> I**

<quotation> : : = 1 <any character other than

<reserved word> ::= <lower case letter>~

.-

Characters: PAL1s Alphabet

SoecJal Peftnftions:

<less than> ::a

<greater than>

<bar> ::=

.. -.. -

<left brace> ::•

<right brace> ::=

<space>

<tab>

: : =

.. -.. -
<newl I ne> .. -.. -
(backspace> ::=

<black ribbon shift>

<red ribbon shift>

: : =

.. -. . -

1. 1/F - 2

Characters: PAL's Alphabet 1.1/N - 1

Notes:

1. Omission .Q.f Spaces. In PAL as In English,

absence of spaces can affect the meaning of

"DIGIT" and "DIG IT" have different meanings.

the presence or

what Is written:

On the other hand,

there are many places In PAL where the user may Insert spacP.s as

he chooses to Improve the readability of the text. (See appendix

4 for some very readable examples of PAL.) The following rules

specify where spaces are optional In PAL. In these rules (and

only In these rules), the word "namer" Is used to stand for a

variable, a quotation, a numeric or a reserved word.

the word "space" stands for any arbitrary concatenation

more characters long) of the characters space, tab and

In preparing PAL text, proceed as follows:

Further,

Cone or

newline.

1. Provide space on each side of each word. (Here~ Is

used In the sense of section 1.0.)

2. Place arbitrary space between any two characters,

providing they are not both part of the same namer and that

they do not make up a composite token.

3. Eliminate space at will, providing only that the effect

Is not to cause two alphanumerics that were previously

separated by space to become adjacent.

The above three rules are to be obeyed In order. Note that

following rule 3 can result In the elimination of space required

by rule 1. Since alphanumerics are used In PAL only in namers,

the effect of these three rules may be seen to be the followin~:

Characters: PAL's Alphabet 1. 1/N - 2

Space Is required between namers that would otherwise be

adjacent, and space is optional at all places except In the ~

,nlddle of a namer or a composite token.

2. Specla] definitions. The 94 ASCII

Included In the class <character>. In

printable graphics are

addition, the following

format effector classes will be used whenever they are

although typographic problems make It awkward to define

the usual way.

<space>

<tab>

<newline>

<backspace>

<black ribbon shift>

<red ribbon shift>

needed,

them in

In addition, the following five classes represent characters that

are used in the syntax definitions of this manual. For this

reason, these characters cannot appear In syntactic equations.

<less than>

<greater than>

<bar>

<left brace>

<right brace>

Each above class consists of the single character represented hy

its name.

~

Characters: PAL's Alphabet 1. llN - 3

One other sort of syntactic class is left undefined. For

example, the class

<any string not Including "newl lne">

is used in the next paragraph but never defined, since the

membershfp of the class fs obvfous from the name of the class.

3. ~omment convention~. The user may insert certain arbftrary

sequences of characters Into his programs to Improve the

self-documentation of what he wrttes. The presence of the

sequence

II <any string not including "newline"> <newline>

will not affect a program. That Is, a double-slash and all

characters to its right will be Ignored on any 1 i ne.

4. Quotations. As will be seen In more detail In section 1.4,

one of the basic data types the programmer may manipulate ls

strings of characters. A string Is an ordered sequence of

characters from PAL's alphabet. A quotation ts (roughly) any

sequence of characters not including the single quote mark ,

surrounded by quotes. Inside of a quotatton, and only In a

quotation, the characters space, tab and newline have meaning.

In other words, the newline character may be quoted. However,

because doing so Is awkward, PAL recognizes certain special

conventions inside of quotations, as described in detail In

section 1.4. Because of the existence of these conventions, the

syntax shown is not completely correct. (Correct syntax appears

Characters: PAL's Alphabet 1. 1/N - 4

In section 1.4.)

s. Interaction between comment .arul quotation conventfons. Two

rules have been given for special processing of text by PAL:

between the composite token "II" and the next succeeding newline,

and between successive Instances of the single quote. These

rules interact in the following way: a "character reading"

program that is part of the PAL translator examines text tn the

same order that ft ts written, from left to right on each line

and from top to bottom of the page. Whenever processing of

either of these rules begins, the other rule Is Ignored until the

end of the effect of the first rule. Thus// in a quotation does

not signify a comment, and single quotes need not be paired In

comments.

6. Composlte Jokens. A composite token Is made up

special characters from the basic alphabet which have a

meaning when used together. They must be typed In

positions on the paper, with no Intervening space or

The composite tokens are now listed.

// comment convention. See Note 3 above.

:= the assignment operator. See section 3.2.

-> the conditional. See sections 2.5 and 3.4.

of two

special

adjacent

newl I ne.

** the infixed exponentiation operator. See section 1.2/S.

7. unused characters, The observant reader will have noticed

that the class <special character> Includes the followln?.

Characters: PAL's Alphabet 1. 1/N - 5

characters that are not (apparently) used fn PAL:

"IJ?@ '" '---

These characters are available for programmer use 1n quotations.

I

Functors 1.2/1 - 1

Introduction: (This section was last modffled on 02/04/68 at

16:47 by Evans.)

Functors are those words fn PAL's vocabulary whose effect,

when the program of which they are a part Is evaluated, Is the

execu'tfon of an operation. For example, the "+" In the

expression

3 + 4

fs a functor Indicating addition. Even assuming that Add denotes

a function of two arguments that returns their sum, there Is an

fmportant difference between the previous expression and

Add(3, 4)

Functors may be Infix operators; I.e., they may appear between

their operands. Thus there Is a syntactic Issue fn deducfng that

the left operand of"+" In

ts the product of i and 1 and Is not Just 1. There fs no such

problem In an expression such as

Add(Mult(3, 4), S)

Functors

Formulae:

<functor> ::a

<infix arithmetic functor>

<prefix arithmetic functor>

<infix logical functor>

<prefix logical functor>

<arithmetic relational functor>

<equality relational functor>

<tuple-making functor>

<jumping functor>

<operator defining functor>

<unsharlng functor>

<infix arithmetic functor> ::= + I - I * I / I **

(prefix arithmetic functor> ::= + I -

<lnft-x logical functor> ::= & I <vertical bar>

<prefix logical functor> ::= not

<arithmetic relational functor> .. -.. -
<less than> I <greater than>

<equality relational functor> ::= =

<tuple-making functor> ::= aug

<jumping functor> ::= JJ I val I res

1.2/F - 1

Functors

<operator defining functor> ::= %

<unsharlng functor> ::= $

<Infix functor> ::=

<Infix arithmetic functor>

<infix logical functor>

<arithmetic relational functor>

<equality relational functor>

<tuple-making functor>

<prefix functor> ::=

<prefix arithmetic functor>

<prefix logical functor>

<unsharing functor>

1.2/F - 2

Functors 1. 2/N - 1

Notes:

Note that the Infix logical functors are "&" (read "and")

and "I" (read "or"). The reserved wor:-d .s!Wi is also used in PAL,

but for a completely different purpose. Cit is used as a

conj~nction between the components of a simultaneous definition.

See section 4.3.)

The mark"=" is used both as a functor and as a punctuation.

PAL's syntax is such that Its purpose can never be confused.

The classes <infix functor> and <prefix functor> are not

used elsewhere. in this section, but they are used in other

of the manual. Their definitions are presented here for

convenience.

parts

later

Functors 1.2/S - 1

Semantics:

A short description fs now given of each of the functors.

The functors are described In this section In the same order that

they appear tn 1.2/F.

lofJx Artthmettc functors

+ Indicates addition, either between two Integers or between

two reals.

Indicates subtraction, either between two integers or

between two reals.

* Indicates multiplication, either between two Integers or

between two reals.

/ indicates division, either between two Integers or between

two reals.

** Indicates exponentiation, In that "a••b" In PAL ts the same

as "ab" in conventional mathematical notation. The left

operand may be Integer or real, and the right operand must

be Integer. The value Is the same type as the left operand.

Prefix Arithmetic Functors

+ leaves unchanged any numeric operand, and ts undefined for

non-numeric operands.

Functors 1. 2/S - 2

changes the sign of any numeric operand.

Infix Logical Functors

& The expression "p & q" Is defined If both .Q and .9. denote

logical values. It denotes the value~ If both .Q and _g

do, and denotes false otherwise.

The expression "p I q" ts defined If both .Q and _g denote

logical values. It denotes .t.r.Y,e. If either .Q or .Q. do, and

denotes false otherwise.

Prefix Logical Functor

not Changes the sense of a logical operand, fn that "not true"

ts "false" and "not false" Is "true".

Arithmetic Relational functor

< less than

> greater than

Each of the relational functors Is defined If Its two operands

are either both Integer or both real. The expression "a relat b"

(where re]at Is one of the two relational functors Just listed)

will be denote .t..r.w:. If the value denoted by a stands In relation

re]at to that denoted by R•

Functors 1.2/S - 3

Equality Relational Functor

= This Infix binary functor Is defined ff Its operands are

Integers, reals, truth values or strfngs. If both operands

are of the same type and have the same value, the relation

is~, while otherwise ft Is false. Note that the result

is deffned (and false) ff the two operands are of different

type.

Tuple-Making Functors

aug If I denotes an n-tuple and ~ denotes any value, the

expressfon "T aug E" denotes an Jl:tl•tuple whose first n

elements have the same values as (and share with) the

corresponding elements of I and whose n:t.1-st element shares

with~. For further detafls on tuples, see section 2.2.

For more on sharing, see Appendix 1.5.

Jumping Functors

val see section 5.5

res see section s.s

Jj see section 5.4

Operator Dgflntng Functor

% Suppose thats and fare any expressions and j Is a name.

Then the expression "E %NF" denotes the same value as does

Functors 1.2/S - 4

the expression "N(E, F)". In other words, 1 permits writing

a prefix binary function In Infix form.

unshartng Functor

$ This prefix unary functor may be applied to any object

whatsoever. The result of the application denotes the same

value as does the argument, but the result does not share

with any other object. (Of course, components of the result

may share. See appendix 1.5 on sharing.)

Comment

Throughout the previous discussion, the Issue of Identifying

the left and right operand of the various Infix functors has been

Ignored. That Is, this section does not specify what

interpretation ts to be placed on an expression such as

p & q I r

Is the left operand of "I" to be ,SL or Is It to be 11p & q"?

Similarly, we do not know the Interpretation of

a+ b %f c

These Issues are discussed In section 2.3 on Infix operators and

In section 5.3 on 1.

Punctuation 1.3/1 - 1

Introduction: (This section was last modified on 02/04/68 at

16:49 by Evans.)

Those words of PAL1s vocabulary that are neither Identifiers

nor functors are called punctuations. This last Is a sort of

catch all set that Includes all of those constructs that seem to

find no home elsewhere.

formuJae:

<punctuation> ::•

<bracket>

Punctuation

<definitional punctuation>

<conditional punctuation>

<lambda-expression punctuation>

<Imperative punctuation>

<label defining punctuation>

<tuple punctuation>

<bracket> : : • C I) I [I] I J I }

1.3/F - 1

<definitional punctuation> ::= let I In I where I within I rec

I and I =

<conditional punctuation> ::= -> I

<lambda-expression punctuation> ::= 11 I •

<Imperative punctuation> : : C

<label defining punctuation>

<tuple punctuation> ::= ,

• , goto I : =

Punctuation 1.3/N - 1

Notes:

It should be noted that''•" Is both a punctuation and a

functor. PAL's syntax Is such that It Is always possible to tell

at any occurrence which class It belongs to.

All three types of brackets may be used, and they are

equivalent In effect. The only proviso Is that they must be

matched. (For example, the expression

(x+l)/[x-1)

ts not correct.) In the syntax formulae used hereafrer only

round brackets will be used, but the reader should understand any

pair may be used.

Identifiers 1.4/1 - 1

Introduction: (This section was last modiflP.d on 02/03/68 at

24:10 by Evans.}

Identifiers permit the programmer to Identify ~nd to

reference the various values which enter into a computation.

Identifiers are either variables or constants. A VMrlable ts an

identifier selected by the programmer, which he may use to d~note

any value produced during the course of a computation. Thus

variables are of the programmer's choosing and will, in Reneral,

denote different values during the course of a computation. A

constant Identifier, on the other hand, has the propP.rty that the

value ft denotes is "obvious" from the form of the inentifier,

and further that this value cannot change during the course of M

computation. For example, the constant i~entffier l always

denotes the second positive integer.

Certain variable identifiers are predefined when the us~r

begins to use PAL, In that they denote values providerl hy the PAL

system desir;ners. For the most part, these valuP.s are functions

that the user could not write himself. They ~re listP.d in

section 2.4.

Formulae:

<identifier> .. -.. -

ldentlfters

<variable> I <constant>

<variable> ::= <lower case letter>

I <variable hAad> <alph~numertc>;

<variable hearl> . ' -.. -
<digit>7 <letter>

1. 4/F - 1

<lower case letter>~ I <upper case letter> I <digit> J
<upper case letter>

<constant> .. -.. - <quotation> I <numeric> I <1 iteral>

<quotation element> .. -.. -
<any character other than* or 1 >

*S I ** I * I I •k

<quotation> ::= 1 <quotation element>~ '

<numeric> ::= <Integer numeric> I <real numeric>

<integer numeric> ::= <digit>~

<real numeric> ::= <digit>~. <digit>~

<literal> .. -.. - true I false I nf 1 I dummy

Identifiers 1.4/N - 1

Notes:

In general, the Intent is that any sequence of one or more

alphanumerics may he used as an identiflPr. However, som~ such

sequences have special meanings. An identifier conslstin~

entirely of digits is a constant rlenotin~ an Integer.

Identifiers two or more characters long consisting entirely of

lower case letters are not available for arbitrary use by the

user but are instead specified by the designer of tlie PAL system.

Some such Identifiers are literals, denoting built-In values.

Others are functors (see section 1.2) or punctuations (see

section 1.3). The rather complex syntax for variahle exclurles

both classes. It also provides an unambiguous definition, as

explained In section 0.2.

Note that both 111. 11 and 11 .1 11 are not members of the clr1ss

<real numeric> according to the syntax, since at least on~ digit

is n-1quired on each side of the decimal point. They would have

to be written as "l.0 11 and 110.1 11
, respectively.

Identifiers 1.lJ/S - 1

Semantics:

The value denoted by a variable depends on the evaluation of

the program of which It ls a part.

A constant denotes a value that can be deduced from the form

of the constant. Constants In PAL have the property that thPY

never share with anything. (Thus, for example, a constant cannot

be updated. See 3.2/N for further discussion of this nolnt.) WP

now discuss how the value denoted by a constant ls determin~d.

A quotation denotes a string whose characters arP. the

characters appearing between the quote marks. In ~ quotation

(and nowhere else) the characters space, tab and newline ~ave

meaning. In addition, the character 11*11 has special meanlnr; in ,1

quotation. The"*" and the character Immediately follo\1inr, the

11 *" are rep 1 aced by a s J ng 1 e character, according to thP

following table:

*n newl I ne

*t tab

*b backspace

•s space

*'

*k black ribbon shift

•r red ribbon shift

If"*" Is followed by any character other than one listed In this

table, the effect Is undefined. In any particular implementation

of PAL, there will be some upper limit on the ffi;)Ximurn len.~th

Identifiers 1. 4/S - 2

string permitted. See appendix 3.1 for current details.

~ An Integer nurnerlc denotes that integer represented by the

digits which make up the Identifier. In any particular

implementation, there will be limits on the range of possible

values that can be denoted. For example, there wf 11 be ~n unner

1 i1nlt on the magnitude of the Integers that can be represented.

The effect of using an Integer numeric that denotes a value too

large for the implementation Is not defined. (See appendlx 3.1

for details.)

A real numeric denotes that rational number represented by

the digits that make up the identifier. In any particular

implementation, the largest posslble value, the smallest positive

value and the precision will be limited. The effect of exceerlinR

these limits ls not defined. (See appendix 3.1 for details.)

The literal ..tnut denotes the abstract object truth, anrl

false denotes falsehood. (Each occurrence of .tr.Y.e. could be

replaced by the expression "(OaO)" and each occurrence of false

by "(0=1) 11
.) The literal n.U denotes the zero-tuple. The

literal gummy denotes the same value denoted by an assignment

statement. See section 3.1 for further details.

' \..,

2.0 - 1

Chclpter 2:

The Simple Applicative Subset of PAL

(This section was last modified on 02/04/68 at 03:20 hy

Evans.)

The simple appl lcatlve subset of PAL consists of thos~

aspects of the language which permit new values to be r-,xpressed

In terms of (perhaps complex) operations on existing values.

Starting with the set of constants provided hy the desi~ners of

PAL and with a built In set of operations (such as 11+ 11
,

II_ II , "*",
etc.) for expressing new values in terms of ~xistin:; onrs, the

programmer can write expressions such as

2 + 3

or

(7 * (8 + 9))/ 5

~,e are concerned In this chapter with such PXpressions. To

rcstnte our concern in terms of 1 an~ua.~es such as Fortr;m, WC" ri rf'

concerned with the sort of construction that can appear on thP

right sirlc of an assignment statement. We defer till thf' next

chapter a discussion of assignment statements themselves.

In the first three sections of this chapter, we will discuss

the application of a function to arguments. F i r s t \ 1c \•Ii 1 1

consirler the c~s~ wharl"' the application is r--xpl felt. Th.it is,

Introduction to Chapter 2 2.0 - 2

the programmer wrl1es both the function and Its ~r~umPnt(s) In

the usual form. For example, writing

Add(2, 3)

means the application of the function .8.ru1 to the ar:;um~nts 2 anrl

i_. (Ass uine for the moment that M.d, denotes a function thn t does

add i t i on.) Ne x t we \t f 1 1 d i s cuss I n f i x ope r c1 t I on s that the

programmer may \-Jrite. (An infix operator is one that nppears

between Its arguments, rather than before them as rllrl Ad~ in thr.

previous example. The latter case ts so~etimes rPferre~ to ns

prefix.) The programmer may write

2 + 3

instead of the previous expression. C 1 ea r 1 y, \•,r I t l n p.:

2 + 3 * 4

is much more convenient than writing

Add(2, Mult(3, 4))

but there are problems with the simpler notation. It is only by

convention that the example is Interpreted as shown and not as

Mult(Add(2,3), 4)

In other words, the interpretation of the prefix form is

unambiguous, but the Infix form pennfts ambiguity unless suitc1hl~

rules are supplied. These rules are elven in sectlnn 2.3.

Introduction to Chapter 2 2.0 - 3

The examples given above use Integers as the argum~nts to

the functions. In many of the latP.r exaMnles given In this

chapter, expressions such as

X + y

will be used. Clearly, such expressions are meanln~ful only If

Ca) .ti and y_ have values, and (b) the values are such thr1t 11+ 11 can

be applied to them (i.e., the values are numbers). \·le will

assume in the examples given in this chapter that si~il~r su~h

conditions hold. In sections 2.6 and 2.7 we will see how

variables "are created", with the fl nal detal ls bein~ suppl lerl in

chapter 4. In section 3.2 we see how a varl~ble, once cr~~ted,

may have its value changed.

Functional Appl fcatfon 2.1/1 - 1

Introduction: (Th'.s section was last modified on 02/04/68 at

03:30 by Evans.)

In thfs section, we are concerned with the ~ppllcatfon of a

function to arguments. In the simplest case, both the function

and Its argument are given. For example, the P.x~ression

Sqrt 8

denotes the result of applying~ to~. Either the function or

the argument may be the result of arbltr~rlly complex

calculations. Thus the expression

(x y) (z w)

denotes the result of applying (the result of applying~ to~) to

(the result of applying L to~).

Note that PAL differs from conventional notation Jn not

requiring parentheses to surround arguments: Juxtaposition Is

adequate to Indicate appl Jcatlon. Thus we permit either

X y

or

x(y)

rather than require the latter.

Functional Application

Formulae:

<combination> ::= <expression> <expression>

I <comb i n a t i on> < ex 1> res s i on>

2.1/F - 1

. ·11
-~

Functional Application 2.1/N - 1

Notes:

The intent •>f the syntax is to show that .function~ 1

application associates .t..Q the J..e.f.t.. That is, the expression

X Y Z

is to be interpretP.d as

(X Y) Z

rather than as

X (Y Z)

As usual, parentheses may be used to indicate any grouping that

the programmer wishes.

Functional Application 2.1/S - 1

Semantics:

,Je ~,i 11 use tl1e terms rator and LilllQ to strind for the

funct f on and f ts argument, respective 1 y. C The te r111s are short

for "operator" and "operand".) The rneanin~ of a function

evaluation fs to perform the following:

Evaluate both the rand and the rator.

Apply the (value of) the rator to the (valuP of) the ranrl.

The value of the functional appl (cation is the value

produced. The order of evaluation of the rand and the rator

lli2..t, specified in this manual: The user should not make

assumptions based on the order of evaluation of the rand and

rator.

In many cases, a func t l on needs more than one n r Rumen t.

example, AQ.Q. needs t\'IO numbers. By convention In PAL,

functions ~ exact] Y -™ argument. Thus in applications

as

Add(2, 3)

thus

l s

any

the

For

.all

suc:h

It ls to be understood that M,g_ is applied to the 2-tuplc denoterl

by 1.,.1. It should not be inferred that the r<1nrl of A.-fri riust hP.

an explicit 2-tuplc. All that is necessary Is that the rand be

any expression which denotes a 2-tuple of intc~ers.

Part of the def!nition of a function is the specification of

the nu1i1ber of components of l ts r.1 rgumen t. Hhen the function is

~ .

Functional Application 2.1/S - 2

appl fed, the ar,gum•mt must have th f s sam~ number of components or

~-
th~ effect of the 1ppl teat ion 's undefined. This condition i s

called the princir>le of conformal tty, and it is discussC?d . 1n

further de ta i 1 in ;:,ippendix 1.2.

If the function being applied is one definP.d by thP.

pro~rammer, the semantics of the application are founrf in SP.ction

2.6.

Tuples 2.2/1 - 1

Introduction: (This section was last modfftrd on 02/04/68 at

10:17 by Evans.)

Just as a pair is an ordered collection of two objP.cts ;ind n

triple is an ordered collection of three objects, so we use the

teri:1 n-tupl,c, for an ordered collP.ction of n objPcts. Thus

2-tuple is another \\ll)rd for pair. ~Je will frequently usP. th<'

worJ tuple to stand for an n-tuple of unspcclfipd size.

The pro:,;rmrnrier's usual \'lay to write a tunle is \·dth ~on:~;,s,

so that

11, 12, 13, 14

cJenute::; that 4-tuple \'Jhose ele1,1ents are as shmm. The rdernP.ntr.

of a tuµle 1,iay be accesseJ by applying the tuple to nn intP"'<?r.
~

~ Thus if S Jenotes the 4-tuplc just given, then

S 2

cJ en o t es ~. I n o the r \\IO rd s , a tu P l e a c t s as a f u n c t i on o v c r

positive inte.~ers.

The tuple is the only construct avr1il~hlc to the PAL

progra1,11:1er to sp<!cify objects hith structure. Sin~a ;:in pJr-:iif"nt

of a tuple 1i1ay its~lf bn a tuple, It shoulrf bP clear thc1t

arbitrarily co1.1plex objects can be specified.

,Je wi 11 use phrases such as "a tupl ~ of numbers" or ";i

nu.,1ber tuple" to refer to a tuple each of \'Jhose elements is a

nu,11ber. Clearly, a number tuple bears stronz rese:nhlance to a

Tuples 2.2/1 - 2

one-dimensional array in languages such as Fortr.-m. Simil;irly,

a11 m-tuple of n-tui>les of nuinbers is similar to .:in rn by n array. (.,J

Tuples

For1nu 1 ae:

<0-tuplc> ::= nil

<b• I l i l , 1g tuple> ::= <express on> , <exprP.ss on> 1

.. -.. - <O-tuple> I <big tuple>

2.2/F - 1

Tuples 2.2/N - l

Notes:

A tuple? Is an ordered collection of zero or rnore itp1·1s, ec1C"l'­

of \1hlch can uP an:; object at al 1. The 0-tuplP is rlf'notrd '1y thP

word n.il· The comn;i may we 11 be thought of ;is ;:in inf i Xf\d,

non-associative tuple-maker. There is no simple rrprcs"nt~tion

for a 1-tuµle.

I t sh o u 1 d be c 1 ea r to the re c1 de r that i t i s t h <' co: !l'.11 a r c1 t h P. r

than the parentheses that indicatP.s ;i tuple. The p;HP.nthPsr>s c1r<"

needed only If PAL's grr.1mmatical rules \'lould otherwise indicatP

an alternate zrouµinc. The fact that conna Is non-~ssocir1tivr

(as sug 6 ested by thP. last sentence of the prP.ceedin~ par;Jr,r;ioh)

is quite inportant. Note that each of

1, 2, 3

and

(1, 2), 3

and

1, (2, 3)

each denotes a different object. The first denotes a 3-turle,

anJ the next two each denote a (different) 2-tuple. If cor:r1a

were associative, one or the other of the last two would rlenote

the same object as the first.

The tuple-makin:~ functor .fil!&, mentioned in section 1.2, ls

an tnfixcd operator whose left operand mr1y he c1 tuple anrl whose

Tuples 2.2/N - 2

right operand may be any expression. Let I he any n-tuple and £

be any expression. Then

Tau~ E

denotes that .D.:!:.l-tuple \-Jhose first n elements are the sama as thP

eler,1ents of I {although they do not share) an<.1 whosp n+l-st

clc1:1ent i5 thP. value denoted by.&.· (See anpendix 1.2 for further

discussion of sharing.)

There is an important distinction het\-Jeen :-i I-tuple i"lnrl thP

object that is the single element of the 1-tuple: The form0r can

be applied to 1 to get the latter. Probably the ~ost conveniPnt

way to indicate a I-tuple whose value is that denoted hy .E. is hy

the expression

nil aug E

Note that

n i 1 , E

would not do, since this latter denotes a 2-tuple whoso first

ele,nent is n.ll. and \'/hose second element is .&.•

Tuples 2.2/S - 1

semantics:

A tuple denotP.s a bundle of information. HPre the 11bundln 11

consists of then Ple111ents of the tuple, in order. ThP.n~ rtrP t,-m

es sent i r111 y di ff erfrn t ways such a bund 1 e 171;-iy be lJS C?d: /\s ;m

object inanipulatal>le by the programmer, it ,nay bP r1ssi"':nc>d ti> .,

variable or used any,-1here in an expn~ssion wher(' ., turlr is

µer .. 1i tterf. In addition, there Is another \v.:iy to USP t1mlf's.

Clearly, it must be possible to extract the elP.ncnts of ;i tuplf'

fro,.1 the tuple. This is done by applying the tuple {;:is ;i

function) to an argu1:1ent \.vhose value is the inte:~<ir 1., thus

yielding the _k-th element of the tuple. The ;ippl icntion t~

undefined, of course, If It ts not the cc1sc that

1 .£ k ~ n

\/here !l is the order (i.e.,

tuple.

the numher of elenents) of th('

In ~ection 5.1 a notation is given applying a path to ~

tuple. Here it is assumed that the tuplP. 1 s clcrrH~nts ,,r(>

thenselves tuples, etc., and the path Is <l s01P.ctor that ricks

its way throu.;h the structure. In section 5.2 the idea of lf5ts

r~ introduced. Al ist is either n..Ll or a 2-tuple whose seconrf

e 1 e111en t is a 1 is t.

Note carefully the effect of sharing.

denotes the tuple denoted by

a, b, c

If, for example, I

Tuples 2.2/S - 2

then .e shares uith .L.l, b wfth .L.1. and .c. wfth Li,.

Exa11101 es:

Suppose that

Tuples

rl denotes nil aug 1

r2 denotes 1, 2

r3 denotes 1, 2, 3

r4 denotes 1, 2, 3, 4

2.2/F. - 1

Thus \'le have four tuples, each of whose elements is an intpger.

Then the expre5sion

denotes the value ,l. Here the tuple r4 ts being appl iC'd to the

integer 1 to produce the third elernent of the tuple.

then, the expression

r3 (rli 2)

Similarly,

denotes the value 2. (r4 ts appl led to 1., yielding 2, nnd r3 is

applied to that.) Now suppose that~ denotes the object rlenoted

by

r 1 , r 2 , r 3 , r l~

The 4-tuple denoted by A is something like ~ lcwcr-trinnzuular

array. Ignoring sharing, the value denoted by A could he written

as

(nil aug 1), (1, 2), (1, 2, 3), (1, 2, 3, 4)

Tuples 2.2/J:. - 2

The result of applying~ to an inte8er will be a tuple, so th~t

L, the expression

s 3 2

denote:. the second element of the third element of~. That is,

it \·,ill be the second element of tl, or l,. {l1e1acmber thcJt thP.

ru 1 es of PAL requ(re that the prececdini cxprP.ssion he

interpreted as

(s 3) 2

rather than as

s (3 2)

\-.hich \,oulJ hrJve no meaning, slncran lnte~cr c.annot h~ arpliP·i.)

For the final example, suppose that Add, Suh, llilJ..t c1nrl l"'liv

denote functions that do addit(on, subtraction, ,,111ltfr,l icr1tion

and division, respectively. Suppose further that A denotPs thP

value denoted by

Add, Sub, Mult, Div

Thus x denotes a 4-tuple each of whose elements is .1 function.

Then the expression

X 2 (2, 3)

denotes the value .:.l. (Ji Is applied to 2., YIP.lding Suh, anrl 1

11ii nu:i .l Is .::J..) N0\•1 suppose that :t. denotes that va 1 ue denoted by

the expression

Tuples -2.2/E - 3

(1, 2), (3, 4), cs, 6)

That is, x denotes~ 3-tuple each of whose elements ls a 2-tupl~.

Then the expression

X (y 2 1) (y 3)

denotes the value .lQ.. (Evaluating y 2 1 involves applyin~ x to 1

and the result to .i. Appl icatlon of X to 1 yields the 2-tur>le

3 , 4 , and a pp 1 y t n g th a t to .l y I e 1 d s .,l. A then i s a,-, p 1 i e d to .l,

y i e 1 ding JiYll· The r-and of M.Yll is .L.1, or ~, and i ti mes Ji ts

30.)

Infix and Prefix Functors 2.3/1 - 1

lotrodyctton: (This section was last modified on 02/04/68 at

17:18 by Evans.)

In section 2.1, we saw that we can Indicate the application

of a function to arguments In the usual mathematical way: fW.
denotes the application off to A• Here the rator (function) Is

written before the rand (argument), so this form ts called prefix

form. Conventional mathematics also permits Infix operators,

such as"+" or 11/ 11, which are written between their operands; and

so PAL permits Infix forms also. In this section we discuss such

Infix operators. Also discussed are certain prefix operators.

PAL uses the term functor to refer to the Infix and prefix

operators that are part of the language.

formulae:

<expression> ::=

<Identifier>

Infix and Prefix Functors

<expression> <Infix functor> <expression>

<prefix functor> <expression>

<expression>% <variable> <expression>

(<expression>)

2.3/F - 1

Infix and Prefix Functors 2.3/N - 1

Notes:

1. It Is not convenient to extract from the complete syntax of

PAL exactly that part which pertains to Infix functors, so the

syntax given on the preceedlng page Is only an approximation.

Functional application (see section 2.1) and conditional

expressions (see section 2.5) interact strongly, nnd in a real

sense everything else In PAL Interacts weakly. Nonetheless, the

present section attempts to explain the use of infix functors.

To the extent that they are used In constructions not Involving

other syntactic forms, the present discussion Is correct. (The

complete syntax of PAL Is given In appendix 2.)

2. The classes <prefix functor> and <Infix functor> used in the

syntax are defined in section 1.2.

3. Since the syntax given above for <expresslon>s is ambiguous,

we must provide additional information to specify whether the

construction

X + Y * Z

Is to be treated as

X + (y * z)

or as

Cx + y) * z

Infix and Prefix Functors 2.3/N - 2

To deduce the meaning of such ambiguous phrases, note the

following precedence table:

Functor

aug

&

not

=

>

<
+

*

I

**

$

Precedence

5

7

10

15

17

20

20

20

25

25

30

30

35

40

Here each Infix functor Is associated with a numerical value,

called Its precedence. In cases where a particular subexpression

may be associated with the functor on either Its left or Its

right, ft will be associated with that one which has higher

precedence. In cases of equal precedence, the functor on the

left wt 11 be used. "%" Is special in that It Is ternary functor

(i.e., It has three operands). The above rule may be followed

ff the"%" and the variable Immediately to Its right are taken as

a single functor, with precedence 5.

~

~ .

Infix and Preffx Functors 2.3/N - 3

In the ambfguous example shown above, the ~ can go with

either the"+" on Its left or the"•" on Its right. Since the

precedence of times (30) fs higher than that of plus (25), ~ Is

seen to be an operand of times, and the first Interpretation

shown above is used. (This Is fortunate, since that

Interpretation ts the "usual" one. Of course, ft Is not Just

fortuitous.)

Careful attentfon to the rule given for the

of equal precedence Is particularly Important

Involving multiplication and division. In

Interpretation of

X / Y / Z

Interpretation

In sftuations

choosing an

we are concerned with y. Since the functor on its left has the

same precedence as that on Its right, our rule dictates

associating y with the functor on Its left. Thus the preceedlng

expression Is Interpreted as ff It were written

Cx / y) / z

which ts mathematically equivalent to

x I (y • z)

Of course, the programmer may Indicate any grouping he likes by

Judicious placement of parentheses.

4. Expressions such as

0

Infix and Prefix Functors 2.3/N - 4

f X + Y

are also ambiguous but are not covered by the previous rule. A

convenient way to think about the Interaction of functional

application and Infix functors Is to assume that there Is an

(Invisible) functor between the rator and the rand which

Indicates functional application. Then let the invisible functor

have precedence 45, and the previous rule holds. In the present

example, the functor "functional application" to the left of .25.

has precedence 45, higher than the precedence of"+", so that .25.

Is the operand off (I.e., the right operand of "functional

application") rather than the left operand of 11+ 11 • Thus the

example is equivalent to

Cf x) + y

rather than to

f Cx + y)

This rule covers not only the interaction between functional

application and infix functors, but also cases such as

f X Y

As explained In section 2.1/N, functional appl lcation associates

to the left, so this example is equivalent to

(f X) Y

~

Infix and Prefix Functors

Semantics:

An expression Involving Infix or prefix functors

value, and this section describes how that value may be

Proceed as follows:

2.3/S - 1

denotes a

deduced.

Step 1: Associate with each Infix functor Its left and

right operands, using the rules of the previous part of this

section. Similarly, associate with each prefix functor Its

operand, which ls the expression Immediately to its right.

Step 2: If the entire expression has been evaluated,

then quit; otherwise, continue wlth either step 3 or step 4.

Step 3: Replace an Identifier by the value which ft

denotes. Continue at step 2.

Step 4: Select an Infix functor both of whose operands

have been evaluated, or a prefix functor whose operand has

been evaluated, and replace the functor and operand(s) by

that value which Is the result of applying the functor to

the operand(s). Continue at step 2.

Several points should be noted.

1. No order of evaluation Is to be inferred from this

description, In In that step 2 may be followed by either step 3

or step 4. The programmer Is cautioned not to write a program

whose successful evaluation depends on a particular order of

evaluation of expressions.

the order written, and the

(Of course, sequences are executed In

programmer may be quite confidant

Infix and Prefix Functors 2.3/S - 2

about certain aspects of the order of evaluation of conditionals,

etc.)

2. The evaluation of step 3 Is described In section 1.4/S.

In general, the value denoted by a variable depends on the

program of which It Is a part.

3. Step 4 Involves the semantics of the various functors of

PAL. These are explained In section 1.2/S.

Infix and Prefix Functors 2.3/E - 1

Examples:

Each example gives, on successive lines, a PAL expression

Involving Infix functors and an equivalent PAL expression without

Infix functors. For the purpose of these examples, assume that

the functions Ad.st,~, .MY.Lt. and .lli.'l. correspond to the functors

"+", "-","*"and "I", respectively. (That ts, 11/\dd(x, y)"

denotes the same value as does "x + y", etc.)

1. An arithmetic expression:

X + y * (z - w) / t

Add(x, Dlv(Mult(y, Sub C z, w)), t))

Note how parentheses are used In the first line to

Interpretation PAL would otherwise give.

2. Another one:

Div(Add(Negate b, Sqrt(Sub(Mult(b, b),

Mult(Mult(4, a), c)))), Mult(2, a))

override the

Here Negate is the function that does unary minus. This example

should convince anyone not previously convinced that Infix form

has advantages for people.

Infix and Prefix Functors 2.3/A - 1

Adytce:

The alert programmer who Is well versed on the precedence

values of the operators can often reduce the use of parentheses

In complex expressions to a minimum. While there Is nothing

wrong with doing so, It should be realized that the Insertion of

redundant parentheses In PAL expressions never affects the

computation. Frequently, Inserting such redendant parentheses

will Improve considerably the readabll lty of the resulting text,

with at least three adavantages:

•

•

•

It ts less likely that the programmer will make mistakes .

The alert programmer referred to In the first sentence may

happen to remember Incorrectly the relative precedence of,

say, 11&11 and 11111 •

The programmer will find it easier later to modify what he

has written, since he is more easily able to tell later what

he originally Intended. Since In the nature of things every

program will be modified several times during its lifetime,

this Is an important consideration.

Anyone else reading the program will be able to tell more

easily what was Intended. Since most PAL programs wilt be

turned In as homework, making them easter to read by a

grader has definite advantages.

The programmer should take these points seriously, as they

represent a philosophy of programming practice that has been

found, over the years, to pay off.

Built In Functions

Introduction: (This section was last modified on 02/04/68 ~t

~ 10:58 hy Evans.)

The designers of PAL have provided for the user cPrt~fn

"built in" functions that are available. in PAL with· no snccic1l

effort on the user's part. For the most part, these ar~

functions that the user could not himself write in PAL. (Some of

them could be so written, but only awkwardly.)

are listed and described In this section.

Thcse functions

Built In Functions 2.4/S - 1

The functions that are built in to PAL are now listed. Thry

fal 1 into four catc~ortes: type-checkinr.; prndlcates, strinr.

1;1anipulatin~

miscellaneous.

func t tons,

Type-checkin~ Predicates:

type conversion functions :rntl

Each of th a f o 11 O\"l I n It fun ct ions t s a pre d i cat e \'J hos P. do, n n i n I s

a 1 1 obj e c t s . I t s v a 1 u e \"l i 1 1 b c ..t..c.Y.!! i f (;i n d on 1 y i f) i t i s

apµl led to an object of the type that is part of Its namo.

lsboolcan

lsstrin~

I sfunct ion

lsprogrnmclosure

lslnbel

lstuple

Isreal

ls integer

If~ denotes any object whatsoever, then the expression

(lsboolean x) I (lsstrin~ x) I (lsfunction x)

(lsprograr.1closure x) I (lslabel x) I (lsturle x)

I (Isreal x) I (lsinteger x)

is always defined and is always true. (Remember that "I" is thP

infix logical functor "or".) In other words, if \.,,P. conslrlcr for

each predicrite sho\m the set of objects for which the prcrficatP.

is ..trJ:!..e, then the union of these sets is all possihle obJf'\cts.

Built In Functions 2.4/S - 2

Further, there is no object that Is In more than one of thpse

sets.

Strfng-1;1anipulating Functions

The follO\·lin:: three functions ilre used for in;:inipul.itln~ ~trin.i,:s.

For further details ~bout these functions (includin~ thr ~ffect

of their appl I cation to improper arguments), sec /lppcnrlix 3. '3.

Stem Thi::; function is to be app 1 i ed to a string of 10no:th

one or 1110 re. The value of the function is the first

character of the string.

Stern This function is to be applied to a strin,~ of 1 P-n'~th

one or more. The value of the function is th,H S <1:,1('

string with its first character removed.

Cone This function is to he R~pliP.d to two strin~s, of ~ny

len~ths. Its value is that strin~ obt~inPd hy

conc~tcn~ting the second strln~ to the P.nd of thP.

f i rs t.

~ Conversion Functions

For further <..lctalls about these functions, SCP. Appendix 3.3.

ltuR This function, applied to an Integer, returns ~ re~l

number with the same value.

Rtol This function, appl i0.d to a renl, r£'turns thr~ lnr;.:rst

possihle lntc~er which is less than P.q:.tal to thf'!

Stu I

Ruilt In Functions 2.L;/S - 3

a r gui,1en t.

I f t h i s i u n c t i on i s a pp 1 i e d to o s t r i n :: ea c h o f 1•1 hos ,.,

characters is a digit, the vulue of the function is

that intczer represented by the string.

/.ijscellancous Functions

LookupinJ This function is useful f o r de t 0 r 111 i n i n ;~ the v iJ 1 u 1:

assuciateJ 1-1ith a particular lr.lentifirr, ~ivr.n the r.;i•'H'

of the identifier as a strln~.

section 5.4.

Its usP. is .". i vrn in

Order This function, appl icd to a tuple, rr.turns thf' nu,·1ber

of P.lemcnts of the tuple at the top lf'VPl. llnrf'

precisely, it returns the lar;;Pst lnte;-;Pr .k s11c-h tt'<"t

the apf)l ication of the tuple to .!s. is df'fined. SPe

appendix 3.3.

P r i ri t Th i s f u n c t I o n ma y b e a p r> 1 i e d t o a n y o b j e c t \·1 h a t s o f' v P r .

Its effect is to print the value of the objrct, in ;:i

s u i tab 1 e form. See appendix 3.3.

Readch This function may be used to read characlers froin .::in

A tor.,

input device. See appendix 3.3.

This predicate is appl I cable to any

~ if its argument is an inte~er,

object. It returns
Ab~)

a rer1l 0r a strinr;.~•
I\.

(ffote thc1t these are precisely the sa1np objects to

v,h ich "=" 1:iay be appl led.)

Built In Functions

Null This predicate rs applicable to any object. I t returns

L., ~ if t:he argument is the zero-tuple.

Share This function may be applied to any two objects. Its

value i s .t..r.!.J1! Jf the two objects share.

Conditional Expressions 2.5/1 - 1

introduction: (This section was last modified on 02/01/68 at

21:SY by Evans.)

One of the principle sources of power in computing languages

rs the ability to express evaluations such that the course of the

evaluation Is dependent on values previously calculated. The

conditional expression, whose value ts one of two expressions

depend Ing on whether or not a gl ven ex press I on is true, ts the

J ingufsttc feature aval lab le In PAL (as wel 1 as in many other

programming languages) to accomplish this need. Thus the

expression

Cx > 0) -> x ! C-x)

denotes the absolute value of A· The first parenthesized

expression denotes either .tLY.e. or false, depending on whether K

is or Is not greater than zero. If .t.r.Y.e., the value denoted by

the entire expression ts that denoted by A the expression

between the 11->11 and the"!" -- while If false the value of the

entire expression ts that denoted by "C-x)" -- the expression to

the right of the"!''• (Neither set of parentheses Is needed In

this expression.)

Conditional Expressions

Formulae:

<conditional expression> ::=

<expression>-> <expression> <expression>

2.5/F - 1

Conditional Expressions 2.5/N - 1

.tiotes:

The mark"->" Is a composite token In PAL, r1nd must be typed

with no space betwuen the"-" and the ">". (See Note 6 in

section 1.1/N.)

The conditional expression as shown provides for

two-way branch. In the case where a many-way branch ts

the usual technique Is that the expression to the right

11 ! 11 also be a conditional expression.

shown below.

An example of

only a

needed,

of the

this is

Conditional Expressions 2.5/S - 1

$emantlcs:

Consider a conditional expression of the form

B -> El ! E2

The value denoted by such an expression Is determined as follows:

Step 1: The value denoted by! Is determined. If this

value is other than .t.r:.Y.ft, or false, the value of the entire

conditional expression Is undefined.

Step 2: If the value denoted by! Is .t.a!.c., then the value

denoted by the conditional expression Is the value denoted

by il, while otherwise the value denoted by the conditional

expression is the value denoted by .f.l.

Several points should be noted:

1. The value denoted by! Is determined befor~ either il or ll

Is evaluated.

2. Only one of il or il ts evaluated. The programmer may rest

confidant that the expression "selected" by the evaluation of Ji

is the only one evaluated.

Conditional Expressions 2.5/E - 1

Examples:
We wish to write an expression dependent on the value of &

such that the value denoted by the expression Is one when & Is

between zero and ten, inclusive, and ls zero otherwise. A

possible such expression Is

Cx < 0) -> O Cx > 10) -> O 1

(The parentheses shown are not needed.) An alternate expression

with the same value Is

X (0 X} 10 -> 0 1

The first example shows a conditional expression with (in effect)

a three-way branch.

The expression

X = 0 -} 0 1/X

illustrates the Importance of evaluating only that one of the

expressions that is "selected", since it would clearly be wrong

to evaluate 111/x" In the case that & denoted zero.

Lambda Expressions 7..6/1 - 1

lotcodyctJon: (This section was last modified on 02/04/68 nt

11:02 by Evans.)

In conventional mathematics, writing

f (X) = X + 1

indicates the definition of a function f of one nr~urnent. It

seems clear that writing

f(y) = y + 1

defines the same function. Hhat \'IC are concerned with is the

essential nature of the value off. That is, f seems to he

that function of z. that "x+l" is

and we require a notation for that lrlea. Thc lambda not~tion

provides an nnswer to this need. The object which can hP wrltt~n

as

AX.X + 1

ls precisely the dP.slred object, and the definition

f = Ax.x + 1

has precisely thc sa1-1e meaning as the two previous definitions.

Similarly, the lambda expression

A(x, y) • X + y

is

Lambda Expressions 2.6/1 - 2

that function of .2t and y_ that "x+y" is

so that

Add = .AC X, y) • X + y

and

Add(x, y) = x + y

have precisely the same meaning.

Now consider the definition

f = Ax. (Ay. X + y)

Al though it is some\-Jhat hard to express in English, th(' careful

reader should be able to see that "f is that functinn of 2S.. that

'that function of y_ that~ is' is".

for;il for this definition is

f = Ax y. x + y

An alternate synt~ctic

The character 11A11 Is not part of the PAL alphabet Cit ts not

listed In section 1.1) so the punctuation 1111 11 is us~d inste;id.

The la1:1bdn notation \\las first proposerl hy th" r:1athP.1:1r1tir.icln

AlonLo Church, and it is frequently referred to as ~hurch's

lambda cr1lculus. For those so interested, the orirdnr1l

de~criptfon of laMbda notation may be found in ??????????? *

Another paper possibly worth consulting is ??????????? *

~

Formulae:

< 1 a;i1hdr1 expression>

Lambda Expressions

.. -.. -
11 <bound variable part>= <expression>

<bound variable part> .. -.. -
<bo,.md variable clement>~

<bound vari~ble element> ::= <variable> I (}

(<variable) l , <variable> r:)

2.6/F - 1

La~bda Expressions 2.6/S - 1

semantics:

A larnbda expr,~ssion denotes n function. Thn hound varinhl"

part indicates those names \Jhich are to be "substitut~d for" in

the lamb<la body by the arguments to which the function is

appl led. Thus

11 x.x+l

denotes a function of one argument. Applying this function to an

argument such as 1 implies the substitution of 1 for x In the

lambda body, resulting In

2 + 1

A function such as that denoted by

11 (X, Y) • X + y

must be appl led to a 2-tuple of integers (or of reals), so that

applying it to

(2, 3)

rcscJlts in

2 + 3

On the other hnnd, a function such as thi=lt dr>notC'd hy

11 X. 11 y. X + Y

i~ Jifferent. Applyin~ It to 2 produces

Lamhda Expresslons

11 y. 2 + y

and applying this ~o ~ producas '2 + 3'. That is,

(11 X. 11 y. X + y) 2 3

= Cl 1 y. 2 + y) 3

= 2 + 3

The la1,1bda expression just explalned may be \·:rittcn illtcrnativl"'!)y

11 X Y • x+y

This latter (note the syntax) has a bound variable part with two

bound variahlc ele1;1ents, white the former is a lambdr1 exprr--ssion

whose body happens also to ba a lambda expression. The

transfori.1ational propertias of the objects d0.note,.I rcsp0.ctlv~ly

by these two lamhd;:i expressions are indlstin~uishr1ble.

Rather compllcated bound variable parts are possihte. The

function denoted by the lambda expression

11 (x, y) z.. E

(Hhere .E. is so.ne expression presumably involvin~ K, y_ and z)

shoul<l be applied to a 2-tuple, and the result is c1 function to

be applied to a single argument.

The appearance of empty parentheses 11
()

11 in a hound varic1hlr>

part <lefinc5 il function that may only be applic>J (in tlvit

argument position) to a 0-tuple. Thus

Lambda Expressions 2.6/S - 3

1 1 () • E

is a lambda expres~.ion which, when appl fed to a ~cro-tuplc, \·:i 11 ..J
produce the value k• Applying ft to any othP.r valuP. results in ;i

detected run-time error.

Consider now all variables that occur in the <expression>

part of a lambda expression. Those that are listed in the <h01mri

variable p.1rt> are called the bound yrtrinhles of thf" lrir1h~lr1

expression, and any other variables a1111earin~ in thP. <exrression>

are~ variables of the lambda expression.

\-le consider now the semantics of the rtppl icr1tion to

ariuments of a 1;:irnbda expression.

fol lo'l-dne ste11s were performed:

The effect is ;1s if thP

Step 1: The actual arguments to 'l1hich the lambdrt exprc-ssion

is being applied are compared \-Jith the <bound varirthle nart>

of the lambda expression, to insure that the principle of

conformallty is met. (This concept is explainerl in apnendfx

1.2.) If ft is not met, the effect of the appl !cation Is

not defined.

Step 2: Each bound variable is associated with th~ actu~l

argument which occupies the same position In the ;irgu~Pnt

11st. (The success of step 1 insures that this can be

done.)

!.itep 3: The <expression> is evaluated. F.ach hounrl vr1ri.:1hlf'>

in the <expression> Is treated as if it h;id h0.e~n rr>nl,,cr,rl hy

Lambda Expressions 2 • 6/ S - Ii

its associated actual parameter, the associntlon beinn that

described in step 2. Free variables are ~v~luated as usual.

Step 4: The value determined in step 3 rs the value nf the

application.

"Let" Expressions 2.7/1 - 1

Introduction: (This section was last modified on 02/04/68 at

13:34 by Evans.)

In what has gone so far, we have assumed that variables

existed and have felt free to use as examples such expressions as

X + 1

without explaining how~ came to denote an Integer. PAL provides

two syntactic forms to permit the user to ttcreate" new variables:

the .1J:.t expression, defined In this section, and the where
expression, defined In the next section. Each of these uses the

Idea of a definition, as defined in Chapter 4.

Consider the PAL expression

let x a 1 and y = 2

In

let z = 3•x + 4•y

In

X * Y * Z

In evaluating this expression, is. and :t. are first "created" as new

variables, with values i and l respectively. Next L Is created

with value J.l. The value of the entire expression ts determined

to bell•

"Let" Expressions 2.7/F - 1

EocmuJae:

<let expression> ::• let <definition> fn <expression>

"Let" Expressions 2.7/N - 1

Notes:

The class <definition> used in the syntax Is defined In

Chapter 4. Section 4.0 contains a summary of Its definition, and

the rest of chapter 4 contains the details needed. In the

simplest case, a <definition> Is of the form

Nl, N2, • • • , Nk = Exp

where k, the number of variables on the left, may be one or more.

(Chapter 4 explains In detail how the various syntactic forms

possible for definitions may be recast Into this form.)

"Let" Expressions 2.7/S - 1

semantics:

An expression of the form

1 et Nl, N2, ... , Nk == Expl t n Exp2

Is evaluated as If It had been written

[11 (Nl, N2, ... , Nk) . Exp2] Expl

The semantics of such an application of a lambda expression to

arguments Is explained In section 2.6/S. Briefly, the effect Is

as If the lil are created with the Indicated Initial values and

then .f2LQl ts evaluated. On completion of the evaluation, the fil

just created go out of existence. (More precisely, they revert

to what ever value -- ff any -- they had before the Indicated

expression wa~ encountered.) In other words, the "scope of the

definition" of the variables fil Is confined to the expression

"Let" Expressions

Examples:

Consider the expression

There are

expression.

let x = 5 In [(x+l)•Cx-1) J

two ways to explain the evaluation of

Taking the less formal way first, we have

2.7/E - 1

such an

l. A new variable A Is created denoting 2• The expression

Is square brackets is then evaluated.

2. The expression shown Is replaced by the lambda

expression

[11 x. Cx+l)tr(x-1) J 5

which Is then evaluated.

The reader should be sure to understand the second explanation,

reviewing section 2.6/S as much as necessary.

Consider now the expression shown In 2.7/1, here rewritten

with added parentheses:

let t. Cx•l) and (y=2)]

In

{ let z = (3•x + 4*y)

In

}

"Let" Express Ions 2.7/E - 2

The expression In braces Is evaluated with ll and~ denoting i and

i, respectively. The first part of the evaluation Is to create~

denoting ll, and the value denoted by the entire expression Is

.u_. The reader should take the trouble to satisfy himself that

this expression Is equivalent to

f11Cx, y). (11 z. x•y•z> (3•x + 4•y)] Cl, 2)

All of the parentheses and brackets shown here are needed.

For the final example, consider the expression

let x = 2 In

let y = 3 In

X + y

+ (let y = X + 10 In X + y)

+ (let x = 2 * y In x t, y)

+ X + y

This expression denotes

2 + 3 + (2 + 13) + (6 • 3) + 2 + 3

or ll• Note carefully the scope of the definitions In the two

parenthesized 1.1.1-expresslons.

'-'

"Where" Expressions 2.8/1 - 1

Introduction: (This section was last modified on 02/04/68 at

\..., 13:47 by Evans.)

As suggested In

devices available In

section 2.7/1, there are two

PAL for defining variables:

syntactic

the ltl

expression and the where expression. The former Is described In

section 2.7 and the latter In this section.

"Where" Expressions

Formu1ae:

<where expression> ::m <expression> where <definition>

2.8/F - 1

. 21
~

"Where" Expressions 2.8/N - 1

Notes:

The class <definition> referred to In the syntax Is defined

in chapter 4. Section 4.0 contains a summary of Its syntax, and

the rest of the chapter contains the necessary details.

The syntax shown Is Inadequate, since ft does not provide

enough Information for parsing. In particular, consider

let Defl In Exp where Def2

The syntax does not specify whether this expression ts equivalent

to

(let Defl tn Exp) where Def2

or to

let Defl In (Exp where Def2)

In fact, the latter parsing Is correct. A safe rule to remember

Is this:

The effect of a lll extends as far to the right as possible.

The effect of a where extends as little to the left as

possible.

The reader sho4ld satisfy himself that this parsing Issue Is

Important. Suppose that the variable A denotes 1. Then the

expression

"Where" Expressions 2.8/N - 2

(let x = a In x + a) where a= 1

denotes Z, since the definition following the where Is In effect

during the evaluation of the entire expression in parentheses.

(The outer definition of a Is hidden.) A Is defined to denote i

also, and the sum Is l.:!:,l. On the other hand, the expression

let x = a In (x + a where a= 1)

denotes~, since here the effect of the definition after the

where Is limited to the parentheses. Thus A Is defined to denote

the outside a, or l, and the sum Is ~. Removing the

parentheses from each of these two expressions would cause the

first to be the same as the second and would leave the second

unchanged.

3.0 - 1

Chapter 3:

The Imperative Subset of PAL

(This section was last modified on 02/04/68 at 02:26 by

Evans.)

In chapter 2, we were concerned with those aspects of PAL in

which certain values are expressed tn terms of other values. The

only calculating tool available was functional application.

In the present chapter, we will Introduce into PAL cert;:iln

additional linguistic constructs which the user has seen in other

languages, such as Fortran or PL/I. In section 3.1, we examine

how such constructs may be executed sequentially, just as

statements are executed sequentially in other languages. Then In

section 3.2, we will consider PAL's assignment statements, the

linguistic construct that permits the value denoted by a variahle

to be changed. In section 3.3, we will examine transfer of

control ("goto" statements) and the related topic of lahcls.

Finally in section 3.4 we consider sequences lnvolvin~

condltto11als.

L

Sequences 3.1/1 - 1

Introduction: (This section was last modified on 02/04/68 at

17:46 by Evans.)

In languages such as Fortran or PL/I, there Is the notion of

the sequential execution of one statement after another.

Similarly In PAL, sequential execution ts an Important Idea. The

term "sequence" means a set of actions to be executed Ctn

general) in the order written by the programmer. Section 3.3

shows how this order may be altered by the programmer with the

"goto" statement. The present section discusses sequences.

Sequences 3.1/F - 1

Formulae:

<sequence> ::= <sequence element> { ; <sequence element> J:

<sequence element> ::=

<assignment statement>

<goto statement>

<conditional sequence element>

<expression>

(<sequence>)

<label> <sequence element>

dummy

<label> ::= <variable> :

Sequences 3.1/N - 1

Notes:

Assignment stJtements are discussed In section 3.2, goto

statements and labels In section 3.3, and conditional statements

In section 3.4.

The literal dummy may stand alone as a sequence element,

denoting the same value as does an an assignment statement. Its

purpose ts similar to that of the CONTINUE statement In Fortran,

providing a place not otherwise available to place a label.

The syntax shown ts ambiguous, since the class <expression>

includes <sequence>s. Nonetheless, it Is suggestive of the truth

of the situation.

Note that according to the syntax a label may be placed on

'-1., any element of a sequence. This fact Is true, although the

syntax shown slightly misrepresents PAL's actual syntax.

Assignment Statements 3.2/1 - 1

Introduction: (This section was last modified on 02/04/68 at

~ 02:32 by Evans.)

In PAL as In most conventional programming languages, the

purpose of an assignment statement ts to make it possible to

alter the value denoted by a variable.

executing

X . -. - E

Thus for example,

causes A to denote the value denoted by ~, regardless of what

value A denoted previously. Indeed, x may previously have

denoted a string and~ a label, or any other types.

A second example of assignment ts

f X : = 1

Here the result of applying f to .x. is (rouehly) the location lnto

which to store the value i. For example, suppose that f rlcnotes

a 3-tuple and that x denotes 1. Then the effect of the above

assi~nment statement is to assign the value l to the seconrl

component off.

A third type of assignment is lllustrated by

(x > y -> x I y) := O

Here the effect ts that whichever of x or~ denotes the larger

value is to be assigned the value i.

Assignment Statements 3.2/1 - 2

A final type of assignment ls illustrnted by

x, y, z : = 4, 5, 6

The intent here ts the simultaneous assignment of the three

values on the right to the three variables on tha left.

Formulae:

<assignment statemP.nt>

Assignment Statements

.. -.. -

3.2/F - l

<left ela~ent> {, <left element> 1: := <expression>

<left element> .. -.. -
<variable> I <combination> I <conditional expression>

Assignment Statements 3.2/N - 1

Notes:

Strictly speaking, the syntax of assignment statements Is

<expression> := <expression>

since statements with this syntax are acce~tprl by the PAL

translator. This syntax admits statements such as

1 := 2

or

1 + 2 := 8

The effect of either of these statements Is nugatory: In hoth

cases, a new cel 1 is created which does not share wl th ilnythln!':

else. (In the first case, this cel 1 \'1111 contain .l. nnd In the

second case it will contain 1.> Then the contents of thrit CP.11

will be altered. That ts, there will be no detectable effect

from the execution of either of these statements.

executing a statement such as

Sqrt 8 : = 55

Similrirly,

(where "Sqrt" is the square root function) also ls nu.«?atory. A

new cell is created to hold the square root of ei~ht, and this

cel 1 Is then updated to hold .22•

Assignment Statements 3.2/S - 1

semantfcs:

If the left side of an assignment statement is a variahle,

the Intent is that the value denoted by that variable Is to be

changed. If the left side rs a combination, the result of its

evaluation is taken to desJgnate a location and the contents of

that location is to be changed. Similarly, a conditional on the

left side Is evaluated to select the location to be chan~cd. If

the left side Is a tuple, the value denoted hy the exnresslon on

the right must be a tuple of the same lenRth. The pffect Js the

simultaneous assignment of the values on the right to the

elements named on the left. It Is Important to re.il lze th~t

"simultaneous" is the key word in the preceeding sentencf'. The

next part of this section contains several examples to emphasize

this point.

The effect of sharing becomes of Interest solely In the

assignment statement. If variables x and~ share, the effect of

assl~ning to either of them Is to change the value denoted by

both of them. This subject Is discussed further in the Examples

and Advice parts of this section. Sharln~ is discussed at lenr,th

In appendix 1.5.

Asslgnment Statements

Examples:

The effect of the statement

x, y := 3, 4

is the same as that of the two st2tements

X := 3; Y := 4

in that in each case~ ls set to 2 and~ Is set to~­

the assignment statement

X, Y : = y, X

3.2/F. - 1

is rnore complex, since It Is the Intent thr1t both r1ssip;n•nF?nts bf"

done slmultaneously. In other words, the values dP.noted by~ "nd

~ are interchanged.

Now suppose that l denotes 1 and that f denotes a 5-tuple.

Then executing

I, f := I + 1, 37

changes the second element off ton and changes l to}. Since

the two assi~nr.icnts are simultaneous, It ls the "old" v<tlue of l

that is used on the left.

Assume that the following examples have heen preceeded by

suitable definitions such that~ denotes l, h denotP.s 1 and ~

denotes 2. Assume further that

..J

r

I

r

Assignment Statements

x denotes 1, 2, 3

y denote the object denoted by a, b, c

z denotes 4, 5, 6

Then the execution of

)(1 :11 4

will result In _g, d~notfng the value

4, 2, 3

3.2/E - 2

H~re the left side Is a comblnatlbn which denotes the first

element of the 3-tuple A, and It Is this element that Is changed.

Executing

a, b, c : = 7, 8, 9

will cause new values to be assigned to a,~ and~, so that the

value denoted by~ will be

1, a, g

This Is because the elements of~ share withs., hand ,c.. Note

however that executing

y := 11, 12, 13

will have no effect on a, ~ or .c. but will change only ~­

Finally, executing

z 1, z 3 := z 3, z 1

AssTgnment Sta:temen·ts

wi 11 resu:1 t in ~ .denot!J.ng 1:he 3-tuple

6, s, 4

;.-.._

Assignment Statements 3.2/A - 1

Advice:

One of the mo:; t common errors in PAL is to ner;l P.C t the

effect of sharing. Consider the following:

lat i = 1 in

let t = 1, 2, t, '• In

Print t;

i . - 4; . -
Print t

Tha effect of the first "Print" ls to print

(1, 2, 1, 4)

and that of the second ts

(1, 2, 4, 4)

since l shares with ..t.....1.

Transfer of Control 3.3/1 - 1

Introduction: (This section was last nodified on 02/04/6P ~t

02:31~ by Evans.)

The conc~pt of executing one statemAnt after another is ~n

important one in PAL, Just as it is in other lan~u~p,es. As in

many languaces, execution normally proceeds from one statement to

the next in the order written, but this order may he r1lt~rP.rl by

the programmer as he desires. Two notions are needed: the

II .K2.t.Q II statement, execution of which effP.cts "transfer of

control''; and the]abet, which marks a point in th~ pro~ram ~s ~

possible canrfldate for being the "target" of a ,";Oto stater1ent.

Transfer of Control 3.3/F - l

Formulae:

<goto statement> ::= goto <expression>

<label> ::= <variable> :

Transfer of Control 3.3/N - 1

Notes:

The syntax on the preceedlng page Is not particularly

helpful, In that it gives no clue as to where in a PAL progra~ a

label may be placed. This topfc will be discussed in more rletail

in section 3.1 above, on sequences. For the purpos~s of thP

present discussion, it suffices to say that labels may be plnr.Prl

in- a program at points to which control may meaningfully he

transferred. For a complete discussion, see appendix 2.

In a goto statement, the expression must he one which

denotes a label.

Transfer of Control 3.3/S - 1

semantics:

The effect of labelling a state~ent is to rleffne a new

variable whose name fs that of the label and which denotes ''that

point fn the progr~m where the label stands". Such a value may

(in the last analysts) only be used as the "operand" of a ir,oto,

although It may be assigned, passed as an arRum~nt, incornorated

Into a tuple, etc., beforehand. The scope of a label is the

smallest enclosing block fn which It exists. (See appendix 3.1

for a discussion of scope.)

The effect of executing a .&Q.t.Q. statement is to "transfer

control" to that statement labeled by the value of the

<expression>.

Note that the Identifier used as a label Is a variahle ~nd

not a constant, so that it possible to update it with an

assignment. An example below Illustrates this point.

For a compl~te description of the scope of a label, see

Appendix 1.3. For a description of .&Q!.Q.1 s In terms of the

operator jj_, see section 5.4.

),

Transfer of Control 3.3/E - 1

Examples:

.Consider the following segment of PAL code:

L: Print l;

goto M;

M: Print 2. (

M := N;

goto L;

N: Print 3

The effect of executing this segment will be to print 11121311•

Note that M ts a variable (not a constant} that initially ts

associated with. the "Print 211 statement but which later (as a

result of assignment) becomes associated with the "Print 311

statement.

Condftfonals in Sequences

lntroductlon: (Thfs section was last modiffed on 02/04/68 at

02:35 by Evans.)

Just as the course of evaluation of Rn expression mRY be

made dependent on the truth value of some proposition, so also

may the sequential execution of a sequence be made dependent on a

proposition.

Conditionals In Sequences 3.4/F - 1

Formulae:

<copdltfonal sequence element> .. -.. -
<expression>•> <sequence element>

t ~IV\.,tA f­
<sequence>

A

wJ

Conditionals In Sequences

Semantics:

A conditional sequence element is evaluated by evaluntln~

first the <expression>. If It denotes .t..c.Y.e., the value is thi!!t

denoted by the el~~ent between the "->" and the "'"· . , If It

denotes false. the value Is that denoted by the element to the

right of the"!"; and otherwise the value is undefined.

Introduction to Chapter 4 4.0 - 1

(This section was last modified on 02/04/68 at 14:12 by Evans.)

In sections

mentioned, In

where-expressions.

2.7 and 2.8 the Idea of definitions was

connection with let-expressions and

In this chapter we describe such definitions,

through the use of which the programmer may Introduce names of

his own choosing Into his program, at the same time associating

"Initial values" with those names. Section 4.2 discusses

function form definitions, which permit the programmer to define

his own functions. Section 4.3 Is on simultaneous definitions,

section 4.4 on recursive definitions, and section 4.5 on wJthln

definitions.

For convenience, the complete syntax of <deftnitlon>s Is now

given:

<definition> ::g

<simple definition> l and <simple definition> 3_:°

rec <simple definition>

<simple definition> within <definition)

<simple definition> ::=

<variable> , <variable> (= <expression>

<variable> <bound variable part> = <expression>

(<definition>)

Simple Definitions 4.1/1 - 1

Introduction: (This sec~ton was last modified on 02/04/68 at

14:17 by Evans.)

The simplest possible type of definition Is of the form

Var= Exp

where~ is a variable and fuu2 Is any expression.

the creation of~, Initialized to denote the vA1ue

ll.12.• A more complex definition Is one of the form

Nl, N2, ... , Nk = Expression

The effect Is

denoted by

In this case Expression must denote a k-tuple, and each of the .til

Is associated with the corresponding element of that k-tuple.

This section contains a discussion of both types of definition.

Simple Definitions 4.1/F - 1

Formulae:

<sl~ple deffnltlon> ::= -<variable> { , <variable> t = <expression>

Simple Deftntttons 4.1/S • 1

semantics:

The evaluation of a definition Involves the creatfon of one

or more new varfables, Initialized to denote certain values. A

<simple deftnttton> as described In the syntax part of this

section ts processed as follows:

Step 1: Evaluate the expression to the right of the equal

sign.

Step 2: Let k be the number of names to

equal sign. If k is one, go to step

continue at step 3.

the left of the

5 while otherwise

Step 3: The value determined In step 1 must be a k-tuple.

If not, the effect of the definition ts undefined.

Step 4: Each of the k names to the left of the equal sign

ts created as a new variable, tnttlaltzed to denote the

value of the corresponding component of the k-tuple denoted

by the right side. The new names share with the

corresponding component. The processing of the definition

is complete.

Step 5: The name to ~he left of the equal sign ts created

as a new variable, Initialized to denote the value denoted

by the right side. The new name shares with the right side.

It follows from this description that the entire right side Is

evaluated before any new variables are created. Thus ft Is not

possible for the expression on the right to refer to any of the

Simple Definitions 4.1/S - 2

variables being defined. (Section 4.4 discusses recursive

definitions,

restrict ton.)

the facility that permits circumventing this

Simple Definitions 4.1/E - 1

Examples:

The effect of the definition

X = 3

Is the creation of the new variable A Initialized to denote ~­

Because l Is a constant, A does not share with anything.

Suppose that I denotes a tuple of order three or more. Then

the definition

z = T 3

creates the new variable~ which shares with the third component

of I.

The definition

X = X + 1

creates a new Instance of a variable A, Initialized to be one

greater than the A In the block In which this definition appears.

(See appendix 1.3 on scope rules.)

Suppose that U denotes a 2-tuple. Then the definition

x, y = u

creates new A and Y., sharing with the first and second components

of U respectively. The effect ts undefined tf It ts not the case

that Y denotes a 2-tuple.

Function Form Definitions 4.2/1 - 1

Introduction: (This section was last modified on 02/04/68 at

14:18 by Evans.)

In section 2.6/1, It was suggested that (mathematically) the

definition

f(x) = X + 1

and

f = Ax.x + 1

are equivalent. Since a lambda-expression Is an expression, It

is clear that the second line Is an acceptable Instance of a

<definition> In PAL (providing of course that the ".\ 11 ts replaced

by "11"). Because the first form Is convenient for people, It

has also been provided by PAL's designers. Such a definition ts

called a function f.oJ:m definition,

Function Form Definitions

Formulae:

<function form definition> ::=

<variable> <bound variable part>= <expression>

<bound variable part> : : = < bound var I ab 1 e e 1 emen t >='
I

<bound variable element> ::= <variable> ()

(<variable> ~, <variable> f-)
0

4.2/F - 1

Function Form Definitions 4.2/N - 1

Notes:

The definitions of <bound variable part> and <bound variable

element> just given are Identical to

section 2.6 In connection with

the definitions given in

lambda-expressions. (The

definitions are repeated here for convenience.)

Function Form Definitions 4.2/S - 1

semantics:

A function form definition can most easily be described by

showing the simple definition to which It ts equivalent. The

definition

<variable> <bound variable part>= <expression>

may be replaced by the definition

<variable>= 11 <bound variable part> . <expression>

The object to the right of the equal sign Is a lambda expression

(the syntax of <bound variable part> In this section and in

section 2.6/F Is Identical), so this definition ts tn the form of

a simple definition and explained by the discussion in section

4.1.

The application to arguments of a function defined by a

function form definition Is explained In section 2.6.

Function Form Definitions 4.2/E - 1

Examples:

The definition

f X = 1 + X

defines a function L whose value Is one greater than Its

argument. The bound variable of this definition ts~, and there

are no free variables. The value of "f 4" is determined by

replacing .K by 1l In the expression "1 + x", yielding 111 + 411 or

.2,.

The definition

Add X y = X + y

Is equivalent to the definition

Add = 11 x y,x + y

and therefore to

Add = 11 x. (11 y. x + y)

The function denoted by Aslsl. ts to be applied to a number,

yielding a function which upon application to a second number

yields their sum. For example, having defined Aruf. this way, the

function i defined above c9uld alternatively have been defined as

f = Add 1

A definition with equivalent effect Is

Function Form Definitions 4.2/E - 2

f y = Add 1 y

More examples of function form definitions can be found In

appendix 4.

Simultaneous Definitions 4.3/1 - 1

Introduction: (This section was last modified on 02/04/68 at

14:23 by Evans.)

It Is frequently convenient to be able to define several

variables simultaneously rather than to define them sequentially.

For example, suppose It Is desired to Interchange the roles of A

and~ In a block. Either the simultaneous definition

x = y and y = x

or the simple definition

x, y = y, X

could be used, with equivalent effect. In each case,

side Is evaluated completely before new variables x
created.

the right

and ~ are

Simultaneous Definitions

Formulae:

<simultaneous definition> ::=

<simple definition> { and <simple definition> }',o
9

4.3/F - 1

Simultaneous Definitions 4.3/S - 1

semantics:

The effect of a simultaneous definition Is the followfng:

Step 1: Replace each Individual definition by an equivalent

simple definition as follows: If the deflnftlon Is a

function form definition, replace it as described in section

4.2. If the definition Is a recursive definition, replace

It as described In section 4.4. If the definition Is a

within definition, replace It as described In section ,. . 5.

Step 2: The definition Is now In the form

Nl = El and N2 = E2 and ••• and Nk = Ek

where each of the lil Is a variable. Now replace It by the

form

Nl, N2, . . . , Nk = El, E2, • • • , Ek

Step 3: The definition Is now In the form described In

section 4.1, and the explanation of 4.1/S may be followed.

Note that the evaluation Is recursive, since some one of the

<basic deflnltlon>s In one of the alternates may lts~lf be a

<definition> In parentheses.

Simultaneous Def.fnfttons 4.3/E - 1

ExamoJes:

Recursive Definitions 4. 4/ I ·• 1

Introduction: (This section was last modified on 02/04/68 at

14:33 by Evans.)

In evaluating a definition, the right side Is evaluated

before the name on the left side Is created, so that any instance

of that same name which appears on the right ts evaluated as It

would be In the block In whtch the definition appears.

Equivalently, the body of a definition may not refer to ·the

variable being defined. Although this situation is usually the

one desired, there are sometimes cases In which It Is Important

that it be possible to refer to the variable being defined. The

usual such case ts the recursive function, In which the function

being defined Is used as part of Its own definition. (Many of

the syntax equations of this manual are recursive, In that the

class betng defined ts used as part of Its own definition.) The

usual example given of a recursive function ts factorial.

English, we might say

In

The factorial of n Is deffned to be l If n ts Q and ls

defined to be n times the factorial of .n:.l., otherwise.

It should be clear that this definition will work If n Is a

non-negative Integer, and that ft will "loop forever" If .n ts a

non-Integer or ts negative.

The naive programmer might attempt to express the above

deffnltlon In PAL somewhat as follows:

Factorial n = Cn = 0) -> 1 n * Factortal(n - 1)

I

Recursive Definitions 4.4/1 - 2

Of course this will not work, since the Instance of "Factorial"

on the right ts .w2.t. the function being defined but some

"Factorial" defined In an outer block. CI f, as might be

expected, there ts no "Factorial" In any outer block, the effect

of the definition ts undefined.) The syntactic device provided

in PAL to meet this need Is the punctuation~- In a definition

such as

rec f x = E

the Intent ts that any L appearing In~ be the L being defined.

Recursive Definitions 4.4/F - 1

Formulae:

<recursive definition> : : :z rec)fefinltlon>

~\j\<.f(?J

Recursive Definitions 4.4/S - 1

semantics:

The effect of a recursive definition Is as If the following

were performed:

Step 1: The <definition> to the right of the L.e.G ts

replaced by a simple definition.

Step 2: The effect of step 1 Is a definition of the form

rec (N 1, • • • , N k = E)

(where K may be i.> The expression f ts evaluated as tf the

.til had already been defined by this equation, and the 1il are

then created and associated with the components of f as

described In section 4.1.

The discussion of step 2 Is not a partlcul~rly satisfactory one, -J
since It Is not at all clear how the stated effect can be

achieved. It Is beyond the scope of this manual to explain

further the semantics of a recursive definition, since a detailed

understanding of the evaluating mechanism of PAL Is required.

However, It Is worth while to observe that the next step tn the

processing of the form exhibited In step 2 ts to replace that

form by

Nl, ••• , Nk C yy[ll(Nl, ••• , Nk). E]

Here :c,_ can only be thought of as a magic operator that does all

of the right things. Cn Is not available directly to the PAL

programmer -- only Indirectly as above through the use of .a:.s:,.)

Recursive Definitions 4.4/S - 2

The reader should not feel that this discussion enhances

understanding of the semantics of a recursive definition. It Is

Included here only to show how a recursive definition Is replaced

by a simple definition. This topic ts discussed further In

append Ix 1. 4.

Recursive Definitions 4.4/E - 1

Examples:

The factorial function may be defined as

rec Factorial n = (n = 0) -> 1 I n•Factorlal(n-1)

Of course, the equivalent definition

rec Factorial • 11 n.[(n = 0) •> 1 n•Factorlal(n-1)]

could also be used.

We give now a function~ which may be applied to a tuple

each of whose components Is an Integer and which will return the

sum of those Integers. We might write

Sum T =

f(l, O, Order T)

where rec f(I, s, n) =

Cl > n) -> s fCl+l, s + T I, n)

The three parameters to f represent the count through the tuple,

the sum so far and the order of the tuple, respectively. (The

order of a tuple ts the number of components It has at the top

level. For a more precise definition, see the definition of

"Order" In appendix 3.3.) The reader should satisfy himself that

"Sum nil" denotes zero, as It presumably should.

"Within" Definitions r,.5/1 - 1

Introduction: (This section was last modified on 02/04/68 at

14:48 by Evans.)

It Is on occasion deslreable that a function be able to

maintain within Itself a record of values calculated on previous

calls. The wtthtn clause provides the linguistic facility that

meets this need. For example, the function 1fil.t defined by

let

n = 0 within

Next () = (n : = n + 1; $ n)

is a function of no arguments that returns ion its first call, l

on Its second, etc. The unsharlng functor 11$11 protects the .n of

JiwLt from being updated from outside.

"Within" Definitions 4.5/F - l

formulae:

<within definition> ::= <definition> within <definition>

"Within" Definitions 4.5/S - 1

semantics:

A completely satisfactory explanation of the semantics of a

within definition ts beyond the scope of this primer, since such

an explanation requires reference to PAL's evaluating

Instead, two alternate explanations are provided: one

informally In English prose and the other a precise

mechanism.

expressed

discussion

showing the equivalent lambda expression. The former suffers

from being Inadequately precise, and the latter suffers from

being so excessively precise as to be rather Incomprehensible.

An Informal approach !Q. within, Consider a definition of

the form

a = b within f L = E

~ 1 Whe~ such a definition ts processed by the PAL evaluator, the

definition "a= b" Is processed (In the usual way) but so that

the scope of a ts limited to~. Then whenever f is appl fed, the

evaluation of stakes place with a properly defined. The value

of .a is maintained from one call off to the next.

Upon reentry to the block In which the above definition

appears, the definition will again be processed by the PAL

evaluator. It therefore follows that such reentry will create a

new a•

Arn formal approach .t.Q. within. Consider again the

definition given above. It Is equivalent to the definition

"Within" Definitions 4.5/S - 2

f = (11 a. 11 L. E) b

The reader should satisfy himself that, other than by using

wtthfn, there Is no convenient way to write the above definition

without using lambda.

-
~l,

"Within" Definitions 4.5/E - 1

I

Examples:

One example may be found In the Introduction to this

section.

Consider a definition in which .fl ts used frequently, and in

which the programmer does not want to write the value very many

t l mes . W r i t i ng

Pl = 3.1415926536 within f x = E

defines the variable .fl with the Indicated value and with scope

limited to~- (Presumably~ Is some expression involving, at

least, .eJ_ and A•)

A more Involved example using within Is given In appendix

I

Ap 3.1 - 1

Features Jependent on the Current Implementation

The term PAL refers to two different entities: the language

defined in this manual and the implementation of that language on
a particular computer. To use the latter, it is not adequate
that one just understand the former -- additional information is
needed. There are two aspects to this "additional inforrn~ticn":

The mechanics of using the PAL implementation must be

understood. This includes issues of obtaining access to the
computer, preparation of source text, invoking the compiler,

etc.

The language of the Implementation differs in some ways from
the language as described in the manual.

The first point is not covered at all in this manual. The
remainder of this section addresses itself to the second point.

This section was last modified on 02/13/68 at 10:20 by ~vans.

For convenience In what follows, we use the term PALI to
refer to the language as it is actually Implemented. A piece of

text in PALI, suitable for input to the computer, obeys the

following syntax:

<PALI program> ::=

l def <definition> }7 I <expression>

(Here <definition> and <expression> are as described elsewhere in

this manual.) The usual way to use PAL is to prepare several PAL
programs, all but the last being the definition type. Then the

programs are loaded sequentially. The definitions are processed
in order, and then the expression does the useful work.

Certain languages issues are relevant here. Because some
characters of PAL's alphabet are not available on some consoles,

the current implementation permits the user to do without them.
Tbe cbaracte,s at issue are less than, gre2t 1c:r than and vert i c • 1.

bar, The fol lovdng ~:orrespondences e;<ist:

Implementation _uependent Features Ap 3,1 - 2
·.• ·:_-

> gr

< 1 s
-> -'l"l \)

logor
& logand

(logand is not really needed, but it is provided for symmetry.)
Whenever a word of the left column is required, the corresponding
word in the right column may be substituted. Note that 11-grn may

not be used for 11
- > 11 but that "-* 16 must be used instead.

A final set of implementation issues has to do with the fact
that precisions and ranges are limited.

Integer~ are limited in magnitude to
integer.Lin PALI satisfies

3,
2 . That any

Any computation in which the result or any partial result is out

of this range will produce an incorrect answer. There will be no

run time diagnostico
~

Reals are approximated by rational quantities of
precision ~nd limited magnitude. The approximate
limits are ~10 3

'~ Complete details can be found in a
manual for.the· IBM 7094. (The representation of PAL8 s
that used by the floating point hardware on the 7094.)

11 m I ted·

magnitude
reference
reals is

String constants are limited to be no l9nger than 511
characters. Strings produced during computation are not limitedr

other than by the limited memory sfze.

Memorv ~ is a limitation In two different ways:
a maximum length of PAL program that can be compiled,
Is a limitation on data space available to the running
Neither li~itation should affect 60231 students doing

problems.

There is

and there
program.
assigned

Ar,pendix 3.3 - 1

(L~st modified on 02/12/68 at 14:19 by 4620.)

Library Functions

Introduction

A number of variables in this implement~tion of PAL have
been given pre-defined meanings. This section 1 ists those

variables, and gives their semantics.

Some of these pre-defined variables are functions which make
certain checks on their arguments. The le,al arguments of such

functions will be listed here. When these functions are applied
to other arguments, they print a message beginning "Run timP
error:" and call an Internal error function with an error

argument. The error value for each such function will also be
listed here. The internal error function will be described at

the end of this section.

Unless otherwise specified, the value of each of these

1 lbrary functions does not share with any other object in the

env i ronmen t.

The pre-defined variables are listed below in alphabetical
order, along with the section of this appendix in which they are

described.

Library Functions Appendix 3.3 - 2

Atom 3.2.
Cone 1.3.
Cy 9.3.
lsboolean 2.1.
ls integer 2. 2.
I sfunct ion 2.6.

lslabet 2.8.
lsprogramclosure 2.7.
Isreal 2.3.
fstuple 2.5.
lsstring 2.4.

ltoR 4.2.
LookupinJ 7.1.
Nu 11 3 .1.
Order 5 .1.

Pr 6. 2.
Print 6.1.
Readch 6.3.
Rtol 4.3.
Share 3.3.
Stem 1.1.
Stern 1.2.

Stol 4.1.

Swing 5.2.
SYSTtMl:RROR 8.1.
Tuple 9.2.
Write 9.1.

Three pre-defined variables are provided for manipulating
strings:

1.1. Stem

Legal Arguments: All strings of length greater than zero.
trror Value:
Value:

E:.xarnp 1 es:

I I

That string of length one which contains the
first character of the argument.
The value of Stem 1 abc' is 'a'.

Library Functions

1.2. Stern

Appendix 3.3 - 3

The va 1 ue of Stern '4' is '4' .
The application of Stem to 76 is an error.
The appl I cation of Stem to '' is an error.

Legal Arguments: All strings of length greater than zero.
E.rror Value:
Value:

tXamples:

1.3. Cone

I I

That string which is obtained by deleting the

first character of the argument.
The value of Stern 1 abc 1 is 'be'.

The value of Stern 1 4 1 is 11

The application of Stern to 76 is on error.

The appl icatlon of Stern to '' is an error.

Legal arguments: Any 2-tuple both of whose elPments are strin~s.
E.rror Value:

Value:

txamples:

' '
That strin~ obtained by concatenatinr. the first
component of the argument onto the left end of

the second component of the n rgurnPn t.

The value of Cone ('ab', 'c') i 5 'abc'.

The value of Cone C ' 4 1 ,
1 1

) is '4 ' .

The value of Conc('','why?') i 5 'why?'.

The value of Cone (1
' , ' ') i s I I .

The application of Cone to (7,'G') is an error.
The appl icatlon of Cone to C'a','b','c') is an

error.

Because a PAL variable may have as its value nn object of

any of a large number of data types, eight functions which test
the type of their argument have been pre-defined.

2 . 1 . I s boo 1 ea n

Legal Arguments: Any object.

Value:

2.2. lsinteP,er

"true" If anrl only if the value of the argument

is either "true" or "false".

Library functions l\ppendix 3.3 - 4

Le~al Arguments: Any ohject.
Value: "true" i f and only i f the value of the a r ~w:ien t

i s an integer.

2.3. Isreal

Lega 1 Arguments: Any object.
Value: "true" if and only if tt,e value of the c1rr.uri1ent

is a real number.

2. 4. I s st r i n17.

Legal Arguments: Any object.

Value: "true" if and only if the value of the ar.e;ument

is a string,

2.5. lstuple

Legal Arguments: Any object.

Value: "true" if and only if the value of the argument
is a tuple, including the 0-tuple.

2.6. lsfunction

Legal Arguments: Any object.
Value: "true" if and only if the value of the argument

is a closure, a basic function

library routines), or the result

j j .

2.7. lsprogramclosure

Legal Arguments: Any object.

(e.g., these

of evaluating

Value: "true" if and only if the value of the argument

is a programclosure.

2.8. fslabel

Legal Ar~uments: Any object.
Value: "true" If and only if the value of the t1rgument

is a 1 a be 1 •

Three additional functions which always h;we either "true"

or "false" as their value have been pre-definP.rf.

library Functions Appendix 3.3 - 5

3. 1. Nu 11

legal Arguments: Any object.
\/al ue:

3. 2. A tom

"true" if and only if its ;1rp,urnent is the

ll-tuple.

legal Arguments: Any object.

Value:

3.3. Share

"true" if and only if its argument is "true",

"false", an integer, a real number, or a string.

Note that these arP the samP obiects to which
"=" can be appJ ied.

legal Arguments: Any 2-tuple.

~rror Value: false
Value: "true" if and only if the elements of the

2-tuple share.

Three functions are provided for convertin~ data from one

type to another.

4. 1. Sto I

legal Arguments: Any string of length greater than zero.

~rror Value: 0

Value: If the string consists of digits (e.g.,
'12345'), the value is an integer whose dPcimaJ

representation consists of those di~its (e.p,.,
12345). If the string contains characters which

are not diRits, or if the integer rppresented
exceeds the capacity of the machine on which PAL

is implemented, the value is an integer which
depends upon the implementation.

4.2. ltoR

legal Arguments: Any integer.

F:rror Value:

Value:

l). 0

That rea 1 number which has the same "numeric"

value as the argument, to within the accuracy

Library Functions Appendix 3.3 - 6

obtainable from the implementation's
representation of real numbers.

4. 3. R to f

Legal Arguments: A~l real numbers of magnitude lPSS than or equal
to the largest integer which can bp represented
by the implementation.

E:rror Value:

Value:

0

That integer which has the same "numeric" value

as the integral part of the argument.

Two functions are provided for use with tuples.

5.1. Order

Legal Arguments: Any tuple.

Error Value: 0

Value: The largest integer to which the tuple may be
applied.

5.2. Swing

Legal Arguments: All 3-tuples satisfying the f o 11 owing

E:rror Value:
Value:

Example:

conditions: 1. the first component is a

2. the second component
first component may be

component.

n i 1

is an integer;
applied to the

tuple;

3. the
second

Let the first component of the argument be A,

the second component of the argument be N, and

the third component of the arP,ument be R. The
value {s a tuple identical to A except that its
Nth component is B. Note that, although the
value of Swing does not share with any object on

the environment, the components of the value of
Swing may share with other objects.

The tuples A, B, and Swing(A, 3, 8)
diagrammed below.

are

Library Functions Appendix 3.3 - 6a

Library Functions

Three
pre-defined.

functions for console

Appendix 3.3 - 7

input-output have been

6.1. Print

Legal Arguments: Any object.
Value:
Side Effects:

OBJtCT

true
false
integers
real numbers

strings

tuples

The value of "dummy"
Print has the side effect of
representation of its argument on

These representations are:

RtPRESENTATION

true
false
one to eleven decimal digits
-d.dddddt+dd

printing a

the console.

where d stands for a digit from 0 to 9. The
minus sign will be replaced by a blank for

positive numbers. The plus sign will be
replaced by a minus sign for numbers whose
magnitude is less than 1.0.

zero or more characters.

The string will not be placed in Quotation
marks. The application of Print to the

string of length zero therefore h~s no
effect.
a left parenthesis will preceed the first

element of the tuple. A right parenthesis

will follow the last element. Elements of

tuples of lenp:th greater than one wi 11 be

separated by a comma followed by a space.
Each element will be printed in a format
determined by its type, as described in this

section. The application of Print to a

re-entrant tuple, that is, a tuple one of

whose components is itself, will cause the

evalu~tor to loop. As a special case, the
representation of the 0-tuple is

library Functions

closure
basic function

n i 1

closure

basic function

Appendix 3.3 - 8

program closure program closure
the result of

evaluating jj jj
all other objects $$$

o.2. Pr

Note that Print does not

spaces or carriage returns.

Print 47;

Print 19;

Print '*n'

autom~tically insert
Thus thP sequence:

will cause the following 1 inr to be printed on

the console:

4 719

Note also that no printing is actu~lly done

until a new-line character is printed out. A

new-line character is automatically put out in
three cases:

1. When the length of a 1 lne exceeds 69

characters;

2. Before an error message;
3. At the end of the program, before the

"f.xecution finished" rness;ige.

Pr is an alternate name for the function Print.

defined by the PAL program
It is f'XactlY

Pr= Print

6.3. Readch

Leial Arguments: Any object.

Value:

Side t:ffects:

A string of length one, consisting of thP. next

character in the input streaM.
\'/hen a proP. ram he~ ins execution, the

stream Is empty. CharactP.rs ~r0 added

input

to the
input stream by typing them at the console. No

Library Functions Appendix 3.3 - 9

characters are actually added until a new-line
character is typed. Readch removes characters,
including the new-1 ine character, from the input
stream in the order in which they were typed.

If Readch finds the Input stream empty, it
causes the execution of the orogram to pause
until some characters are added.

The erase character, "II", will remove the
character added to the input stream, unless

case
The

1 ;is t

that

the
k i 11

character was a new-tine, in \-Jhich

erase character will have no effect.
character, 11@11

, w i 1 1 remove from
stream any and all characters added
last new-line.

the input
after the

One function has been pre-defined to convert a string into
the value of the name which is the string with its quotation

marks removed.

7. 1. Lookup i nJ

Legal Arguments: Any 2-tuple satisfying the followinr;

E:rror Value:

Value:

8.1. SYSTE:ME:RROR

constraints:
1. the first element is a string;

2. the second element is the result of

evaluating jj;

3. the name obtained by removing the quotation

marks from the string is defin~d in the
environment in which the jj was evaluated.

n i 1

The object whose name in the environment in
which the jj was evaluated is obtained hy
removing the quotation marks from the string.
This value will share with other objects in the
environment.

This function is called indirectly when a library function is
applied to an illegal argument; it may also be called directly by

Library Functions

applying SYST~M~RROR to any arnument.

called, it prints the following message:
Jo you wish to continue?
Unless the user types
yes

Appendix 3.3 - 10

Whenever SYST~M~RROR is

evaluation is terminated. If the user types

yes

the evaluator continues, returnin~, as the value of SYST~M~RROR,

the argument. That is, SYST~M~RROR Is the identity function.

Some variables have been pre-deflnerl by PAL programs.

9.1. Write

Write may be appl led to any object. The value of Write is the
value ofudummy." If the argument is not a tuple of lenRth greater

than z e r o, the s i de e f f e c t of ~~ r i t e i s i den t i ca 1 to th a t of
Print. Otherwise, the side effect of Write is to type out the

element(s) of the tuple which is its argument without the
parentheses and commas which would be inserted for this tuple hy

Print. For example,

Wrlte(1 H1
,

1 e 1
,

1 1 1
, 'p', '*n')

causes the messa~e

Help

to be printed, while

Print('H', 'e', 1 1 1
, 'p', '*n')

results In the printing of

CH, e, 1, P,

)

\•J r i t e ((1 , 2) , ' , (3, 4), '*n')

results in the printing of

(1, 2) (3, 4)

Library Functions

Write is exactly defined by the PAL program

Write x = lstuple x -> W(l, Length x) !

Print x

\ppendix 3.3 - 11

where rec WCI, n) = n=O -> Print nil

9.2. Tuple

f > n -> dummy
(Print(x i);

W(i+l, n))

The argument of Tuple must be an integer. If this inter:er is
less than or equal to zero, the value of Tuple is the u-tuple.
If this integer is n, n greater than O, the value of Tuple is a

Curried function of n arguments. The value of the application of
this function to its n arguments is an n-tuple. Neither this

n-tuple, nor the value of Tuple applied to an integer, nor any of
the functions produced as Tuple is applied to its ar~uments share
with any other object in the environment. The elements of the

n-tuple produced may share with other objects however.

The value of

Tuple 3 'a' 4 17.2

Is the same as the value of

('a', 4, 17.2)

The value of

Tuple O

is the same as the value of

n I 1

Tuple fs exactly described by the PAL program

rec E.xtpl n x = n < 1 -> x
11 y. E.xtpl (n-1) (x aug y)

~ within Tuple N = N < 1 -> nil
11 z . E.xtpl {N-1) (nil au~ z)

Library Functions Appendix 3.3 - 12

9. 3. Cy

Cy may be applied to a~y object. The value of Cy is an object
which is a duplicate of the argument. Neither the value of Cy

nor any of the components of Cy (assuming that the arflument is a
tuple) share with the argument or with any of the components of
the argument.

Cy is exactly described by the PAL program

Cy S = let list = nil in Copy S

where lookup Nde =
let rec Lkp L = Null L ->

(1 et Ne\'1/N = n i 1 in
list:= ((Nde, NewN), $ list)t
(false, NewN))

Share(Nde, L 1 1) -> (true, L 1 2) 1·

Lkp(L 2)

in lkp List

within rec Copy Node=
let Fnd, CpyN = lookup Node
in Fnd -> CpyN

not lstuple Node ->
(CpyN . -. - Node;

CP¥N)

let j, Size = 1, Order

in
Copyloop: j >Size-> CpvN !

Node

(CpyN := CpyN aug Copy(Node J);

j := J + 1

goto Copyloop)

Ap 4.1 - 1

Some ~xampJes of PAL

In this section there is a rather simple correctly written
example of PAL programming. fn the next sections of this

appendix are some more complex programs. This section was last
modified on 02/11/68 at 12:45 by ~vans.

For our example, we write a PAL program which prints, for

numbers from zero to ten, the number and its square root. The
main part of the program wi 11 be the fol lowing:

let i = O

i n

L:

\fr i t e (i , 1 * t 1
, S q r t (f to R i) , ' * n ') ;

:= i + 1;

i < 11
->

goto L

Write '•nA11 done.•n'

This little program creates an integer counter l, which counts

from zero to 10. The statement in this program that does all the

useful work is

Write Ci, '•t 1
, Sqrt CltoR i), '•n')

The effect of executing this statement is to print the value of

j_, a "tab" character, the square root of j_, and a "new 1 ine"

character. Since the function .§.9.Cl. requires an argument of type
J:.lli, the built In function J...tQJl is invoked to do the necessary

type conversion.

This program will not run as it is, since PAL's
have provided no square root function in the library,

designers
Thus we

must provide our own such function. A method used frequently is
that shown in the accompanying flow chart.

Some ~xamples of PAL

start

t := x/2

E== ct+ x/t) , 2 answer is .t

done

Flow Chart for Square Root

Ap 4.1 - 2

We choose to implement this flow chart with the followin~ PAL
definition:

1 et Sqrt X =

f{x/2.0)

\'/here rec f t =

Abs(t•t - X) < o.oos
-> t

Here 1 is a recursive function of one argument. If that argument
is c I ose enough to the square root of x, it is returned a!:> the

value of the function; while otherwise£ calls itself with the
next approxi111ation as argument. All that .§..9.U do<?5-is to call i
with the first approximation as argument.

One more thing is needed: PAL1s library does not include an

absolute value function~, so we need

let Abs x = x < o.o -> -x x

The last page of this appendix shows the entire program, along

with a run of it on the computer.

Ap 4.1 - 3
print sqrty pal .,,

sQHTY PAL 02/11/68 1151.8

// Sample PAL Program for the PAL Manual.
// This program was written by A. Evans on 11 Feb 68.
// It was last modified on 02/11168 at 11:50 by Evans.

let Abs x = // compute absolute value of argument

in

let

in

II works for reals only - not integers
X (U.0 -) -x X

Sqrt X =
f(x/2.0)
where rec

Abs(
->

II compute square root of x (reals only)
// initial approximation is x/2
ft= II a recursive function for Newton's
t*t - x) < 0.005 II is t close enoul!;h?
t /I Yes, so return t as result.

II No, so keep trying ...
f c o.S*Ct + xlt> >

Jct i = U // a counter, to have its square root taken.
in

methorf

L: // the main loop of this rather simple little pro~ram ..
1·1rite Ci, '*t', Sqrt (ltoR i), '*n');
i := i + 1;
i < 11 II did we just do 10?
-> II not yet, so keep going

goto L
! JI All done, so say so and go home.
Write '*nAll done.*n'

R

pal sqrty
I~

Pal compiler entered
Pal loader entered
Execution
lJ
1
l
3
4
5
6
7
8
9
10

A 1 1 donP..

O.OOOOUE+OO
1. 00030E+OO
1. 41422E+OO
1. 73214E+OO
2.00000E+OO
2.23bllE+OO
2.45000E+OO
2.64575E+OO
2.82843E+OO
3.00002E+OO
3.16232E+OO

Execution finished ,~

6.231 Programming Lin~uistics

(Last modified on 02/12/68 at 12:50 by 4620.)

The Abstract Syntax Tree

One step in the evaluation of a PAL program involves
deterrnining which operands go with which operators. For example,

before executing the program of Fig. 1, it is necessary to decide
that the addition Is done before the function application.

Prlnt(4 + 5)

Fig. 1

The result of this analysis may be expressed in a tree

format. The tree for the program of Fig. 1 is shown in FiR. 2.

The tree indicates that "Print" is being applied to the sum of 4

and 5.

p,,.,,,t

Fig. 2

The time-sharing consoles available at M.I .T. are poorly

adapted for drawing trees such as that of Fig. 2. Therefore \'le

have chosen an alternate representation, which is exemplified hy

Fig. 3. This representation is derived from that of Fig. 2 in
the following way:

1. The node at the top of the tree structure of Fig. 2 is printed

at the left margin of Fig. 3;

2. A node n levels from the top of the tree in Fig. 2 is

preceeded by n dots in the representation of Fig. 3;

3. The left-to-right ordering of nodes in Fi~. 2 is converted to
a top-to-bottom ordering in FiR. 3.

APPLY
. * Namel2345 Print

. PLUS

. . * Number 4

. . * Nurnbe r 5

This representation is called an "abstract" syntax tree
because the labels on each node need not be the same as the
corresponding symbols in the PAL languagP.. For example, we use
the label "PLUS" to correspond to the functor 11+11

, and the lnbel

"APPLY" to correspond to the operation denoted by juxtaposition
In PAL. We have also added the tags 11* Name" ;rnd 11* Number" in

the abstract representation. The digits after the "* Name" tag,
by the way, tell something about the internal representation of

the name "Print" in the machine. They are of no importnnce to
the user.

In the example above, the abstract synt;:ix

close to the concrete syntax of the PAL program.

was rE"ason;:ibly

The user should

be aware that this Is not always the case, as illustrated by the

programs of Fig. 4. These two programs both have the same
abstract syntax tree, which Is shown in Fig. 5. Both progrnms

have the same abstract syntax because the "where" construction in
PAL is not really a new idea, but is simply an alternate concrpte

representation for the idea behind thP. let ... in construction.

let y = f 4
in Print(y + y)

Print(y + y)

where y = f 4

Fig. 4

LE.T
. VAL1H:F

. . * Name 12 3 4 5 y

. . APPLY

* Name23456

* Number 4
. APPLY

f

. . * Name34567 Print

... PLUS

. . . . * Name12345

. . * Nar1e12345

y

y

Fig. 5

The abstract syntax tree is often useful for checking PAL's

interpretation of a program. Consider the SP~ment of pro~ram

shown in Fig. 6. Someone rearling this program would probably

assume that it 1neant that either the assi'!nmcnt tn b or the

assignments to c and d should be executed, depending upon thP
value of a. However, the abstract syntax tree for this program,

shown in Fig. 7, indicates that PAL interprets this spgment as
meaning that either the assignment to b or the assignment to c

should be executed, followed in any case by the assignment to d.
tncidently, this segment is a good example of the fact that the

PAL compiler is not influenced by indentation or spacing. For
the benefit of the humans involved, the author probahly should

have typed the segment ~s shown in FiR. 8.

a< 100 -> b := 90 !

C := 80;

d : = 70

Fig. 6

• • LS

• • . * Namel2345

. . . * Number 100

• •

ASS

. * Name23456

. * Number 90

• • ASS

* Name34567

. . . * Number 80

• . L\SS

• • * Name45678

• • * Number 70

d

a

b

C

a< 100 -> b := 90

Fig. 7

C : = 80 ;

d : = 70

Fig. 8

To limit the amount of printed output obtained wh~n the

/tree/ option Is used, PAL has been desir,ned to print only five
levels of the abstract syntax tree. Therefore, the pro~ram of
Fig. ~ would ~ive rise to the printing of Fig. 10. In r.eneral,
if the user. is interested in seeing the abstract syntax tree for

a sep;rnent more than five levels down in the tree for the cornpl@te
program, he can submit just this segment to the PAL compiler.
The result may not ~ea complete program, so that It may not
compile or run successfully; nevertheless; the compiler will

print a tree for it.

~ -
f(g(

APPLY
. * Name12345 f

. APPLY

• • * Name23456 g

• . APPLY
. . • * Name34567 h

. . . APPLY
• ... * Name45G78 u

• ■ •• APPLY
..... * Name56789 v

..... APPLY

h(

• • • • •
.

. * Name67890 w
• l:tc

u(v(W X)))) }

Fig. 9

Fi P,. 10

Ap 1.5 - 1

• Shar Ing

An Important IJea In PAL Is that t\-10 variables may "share
the same storage location". In this section that Idea Is
explained. This section was last modified on 02/19/68 at 11:14
by Evans.

lotroduction

One of the simplest statements that one can make about
sharing in PAL Is the following:

Two variables are said to share If updating either of
them causes the other to be updated also.

As an example of sharing, consider the following PAL program:

let a = 1 In II create a new a with value 1
L~r I te a; II write it
let b C a In II create new !?., sharing with a
Write b; II write I t
a := 3; II update A

Hrlte b; II l?, wl 11 now be 3 also
b := 4; II update .!2.
\'Jr I te ~ II a. will be 4

The effect of executing this program Is to print 111134 11
,

Unfortunately, sharing Is a more complex issue than this
example Indicates. For example, If I denotes a tuple, then

let a = T 2 in

results In a sharing with the second component of T. Similarly,

let U = a, b, T 1 In

results in~ sharing with Q 1, l?, with Y 2 and T 1 with Y l, so
that executing

U 2 : = 4

Ap 1.~ • l Sharing

will change~. However, executing

T := 7, 8, 9, 10

changes I but does not change!!,

Lvalues am! Ryalues

Each variable In PAL Is associated with a .£.tll. in the
computer's memory, the association being made
variable is defined (by a definition). This
called the Lva)ue of the variable. An Lvalue
following three properties:

at the
storage
In PAL

time
ce 11

has

the
h,

the

• An Lvalue contains a value, called an Ryalue. (That is, the
memory cell which Is the Lvalue has a contents which \'le call
an Rvalue.}

The B~a]u~ contained can be replaced, but only by an
assignment that updates the cell.

• An Lvalue remains in existence as long as there i 5 a
reference to I t.

Before proceeding, i t Is perhaps worth wh I 1 e to mention the

source of the te r111s Lvalue and Rvalue. In an assignment
~taternent such as

X := X + l

it should be clear that the .a, on the left side occupies a role
essentially different frrn~ the A on the right. On the right, it
is the value associated with 4 that we are concerned with, while
on the left we are concerned with the location in the computer
where we are to store a new value. Thus on the Light side of the
assignment statement we are concerned with the Rvalue associated
with A and on the left side of the assignment statement we are
concerned with .a,'s Lvalue.

Mode of ~valuation

Any expre~~iun in Pi\L can be evaluated in either L111uJe, to

yield an Lvalue, or in ~node to yield an Rvalue. In the

Sharing Ap 1.5 - 3

assignment statement shown above, the A on the right is evaluated
in Rmode and its Rvalue Is added to i. The A on the left i~

evaluated in ~node to yield A's Lvalue, so that the Rvalue

associated with that Lvalue can be updated to hold the Rvalue
computed on the right. In the next part of this appendix we

provide detailed rules so that the reader can work out for
himself modes of evaluation and sharing. There are three points

to make: First, the context of an expression indicates \-1hat mode
it must be rnade to yield. For example, an e>.presslon to be an

operand of "+" must yield an Rvalue. Second, the fQ.cm of an
expression detenoines what mode it will actually yield. Thu~ any

expression of the form "E+E11 always yields an Rvalue. Finally,
transfer functions are provided to convert between moJes when the
wrong one is available.

~~Context Table

The mode of evaluation of any particular expression
appearing in a PAL program Is determined bY the syntactic context

of the expression. For example, the two operands of the functor
"+" are always_ evaluated in Rmode, since addition takes place on
Rvalues. Table 1 below defines the mode of evaluation for every
context in PAL. The s~nbols ~,~and i are used in this table as
f O l h.>WS:

L denotes a left-hand context, one in which the evaluation

is in Lmode yielding an Lvalue.

R denotes a right-hand context, one In which evaluation is
in Rmode yielding an Rvalue.

E denotes a context In which the mode of evaluation is the
sa1ne as that of the expression of which the context is a

part.

As an example of .E. context, let us consider the arms of a

conditional. The evaluation scheme for a conditional Is

R -> f:. l:

indicating that the Rvalue of the boolean is needecJ but that the

mode of evaluation of the anns is dependent on where the

Ap 1. 5 - 4 Sharing

conditional expression 1~ u~ed. For example, In

(x) Y -) X y) . -. - 5

the arms of the conditional would be evaluated in Lmode, while in

1 + (X) y -) X y)

they would be evaluated in Rmode.

We now give the table. Here~ stands for any one of the
marks

+ * I ** & < = >

and [J. for any of

+ not

The notation <bv part> Is short for <bound variable part> as
defined in section 4.2/F.

Table 1: The Mode Context Table

R o< R ~ R $ R R % <variable> R

R aug L L { , L !~
R L

R -> E I E:

goto R R . E L := R ,
E where· <definition> let <definition> in E

val L res L

C E)
11 < bv part? • L

<variable> { , <variable>}:"'
<variable> <bv part>= L

::: L i

·-----__ _j
The last two lines of this table refer to definitions.

Sharing Ap 1.5 - 5

.Ih,g, Functions~ .a.w!. ~

The func t Ions ,J and ~ are of supreme importance in
understanding PAL, even though they are not available directly to
the PAL progra1mner. J takes an Rvalue as argument and yields an
Lvalue containing the Rvalue as Its result, the Lvalue thus
supplied being distinct fr~n all Lvalues previously in existence.
It is an important feature of PAL that Lvalues can be created
~ il app)ying .tbJ..§. functj~.n,._ ft is this fact that is crucial
to the present discussion of sharing.

f is the inverse function: Taking an Lvalue as argument it

returns the corresponding Rvalue as result.

R-Type Exoressjons aD.Q. L-Type Expressions

The expressions shown in Table 2 are called Rtype
expressions in that they always yield Rvalues when they are

evaluated. Here l stands for any expression, and~ and fare as
above.

Table 2:

<quotation>

$ E

R-Type Expr:s~~::·---· -1
<numeric> <literal>

E 0(E ~ E $ E

E \-, I E aug E
11 <bv part>. E

E : = t;

If such an expression appears In a left hand context, then PAL
automatically lnvok~s the function~ to supply t~~ needed Lvalue.
Thus the evaluation of one of these expressions in an Lmode
context will produce an Lvalue guaranteed not to share with

anything else.

The expressions shown In Table 3 are called Ltype

expressions, always yielding an Lvalue when evaluated:

Ap 1. 5 - u Sharing

Table 3: L-Type Expressions

EE <variable>
E % <variable> E val E

-------··----------------

The function~ is automatically invoked if such an expression
appears in a right hand context.

Sharing

We are now able to give an accurate definition of sharing:

Two components are said to share if they have the same

Lvalue.

Here a component is either a variable or an element of a tuple.

We also rnake one further observation: A tuple is a set of

Lvalues, and the result of applying a tuple to an integer (witt1in
the proper range) will always be the relevant Lvalue. When the

programmer writes a li::iting (I.e., the representation of a tuple
\'1rltten with cornrnas), It is the Lvalues of the elements that are

put together to make the tuple.

The unsharing

evaluated in ~node.

operator "$" causes Its

If the expression appears
operand to be

in a left hand

context, PAL then applies .J. to get a new Lvalue that shares with
nothing. Note that 11$ 11 is only useful if Its Insertion causes
the application of both~ and J.

Examples

The reader now has all the information needed to understand
sharing. We present now a few examples to illustrate how to use
that Information. Let us examine the line

let b = a in

Here we have an ins ta nee of a definition. On the right \'IC have a
<variable>, and we find <variable> fn Table 3 of Ltype

expressions, That means that the evaluation of a variable

Sharing Ap 1.5 - 7

produces an Lvalue. In Table 1, we find that the right side of a
definition is a left hand context. Thus the Lvalue supplied is
what is wanted, and neither~ nor~ is needed. The effect of the
definition is to establish a new variable named!?., with the same
Lvalue as that of il• Thuss and b share, having the same Lvalue.

Had the definition been

let b = 2 in

we would note that 1, a <numeric>, is an Rtype expression. Since
it appears in a left hand context, the function .,J is invoked
automatically bY the PAL system to return an Lvalue guaranteed to

be distinct fro111 al 1 other existing Lvalues . .Q. i~ then createJ

with this Lialue, resulting in a!?. that shares with nothing.

Now we consider

let U = a, b, T 1 in

.a and b are
expression.

Ltype expressions, as
fn Table 1 we find the

is T.
scheme

l
"R I II

- .b. ,

i s

so
an
we

Rtype
must

apply C to I and d to 1 and then apply the first result to the
second. The result is an Ltype expression. Table 1 shows that
elements of a listing are to be evaluated in Lmode, so the proper
mode exists here. The listing itself Is an ~~ode expression, so

~ ls invoked to create a new Lvalue. U is then created with this
Lvalue. Thus U shares with nothing, but the three c~nponents of
Q share as indicated.

As another example, let us consider again

X := X + 1

The operands of 11+" are to be evaluated in Rmode. 1 is already
an Rvalue and we apply~ to the Lvalue of~ to obtain the Rvalue.
The swn Is an Rtype expression according to the Table 2. The A
on the left is evaluated in Lmode, and the Rvalue determined on
the right is then assigned to be the new Rvalue associated with
the Lvalue of~.

Finally, we can now see why statements such as

Ap 1.5 - 8 Sharing

1 : = 2

are nugatory, as suggested in section 3.2/N. The l. on the left
side Is an Rtype expression appearing In an Lmode context, so J
Is ln~oked as a transfer function to produce i new Lvalue. It Is
the Rvalue associated with this Lvalue that is changed to 1.

Functional Application 2.1/1 - 1

Introduction: (Th:s section was last modified on 02/04/68 at

lJ3:30 by Evans.)

In this section, we are concerned with the nppltcatfon of a

function to arguments. In the simplest case, both the function

and Its argument are given. For example, the ~xrresslnn

Sqrt 8

denotes the result of applying~ to _a. Either the function or

the argument may be the result of arbftr<1rlly complex

calculations. Thus the expression

(x y) (z w)

denotes the result of applying (the result of applyin~ K toy) to

(the result of applying~ to~).

Note that PAL differs from conventional notation in not

requiring parentheses to surround arguments: Juxt.;posltion Is

adequate to indicate appl lcatlon. Thus we permit either

X y

or

x(y)

rather than require the latter.

Functional Application

Formulae:

p·
I

<combination> ::= <expression> <expression>

I <combination> <ex1>ression>

2.1/F - l

	Introduction and Acknowledgements
	Forward to the Student
	Table of Contents
	0. Introduction
	1. The Basic Elements of PAL
	2. The Simple Applicative Subset of Pal
	3. The Imperative Subset of PAL
	4.0 Definitions
	5.0 Other Topics
	Appendices
	3.3. Library Functions
	4.1. Some Examples of PAL
	1.5. Sharing
	2.1. Functional Application

