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In this chapter we will describe in some detail an extendable language developed 
by the author and his colleagues at the Courant Institute. This is somewhat less 
ambitious than ALGOL 68, and has somewhat different aims. First of all, it attempts to 
provide the programmer with more extensive control over the translation of his 
program than is provided in ALGOL 68. Although the facilities of ALGOL 68 are powerful, 
in some cases it is necessary to permit the programmer to have access to the translator 
itself, so that he can make more fundamental modifications to its operation. For this 
reason we felt that the translator should be made sufficiently simple to permit the 
experienced user to understand its operation without undue effort. This required 
sacrifices in efficiency in a number of ways, but we felt that in a number of cases this 
would not be too much of a restriction. A listing of a version of the system, written 
in BALM, is given in Appendix B. 

SYSTEM ORGANIZATION 

In the BALM system the user is given control over the operation of the translator 
by making it one of the utility routines which form the basis of the system. The linkage 
to these routines is flexible, so that the user can replace the standard version of the 
translator, or any other utility routines, with his own. The system thus consists 
initially of a set of procedures, including translator and I/0 routines and an executive 
routin1:J, to which the user adds his own by executing commands which define pro
cedures. These new procedures may be part of the users program, or they may be an 
addition to or a modification of the translator. Thus there is no real distinction between 
the users' program and the translator-both are written in BALM. The overall organiza
tion is illustrated below in Figure 19.1. A BALM program consists of a sequence of 
commands each one of which is translated and executed before the next one is read, 
thus permitting the execution to modify the translator. 

In order to permit the user strong control over the translation process, while not 
requiring him to get too deeply into representations of his program in machinelike 
languages, an intermediate language is used in the BALM system. This is a well-defined 
simple but powerful language with a very simple syntax, which makes it easy to 
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process when necessary. Thus the user who wanted to, say, print out the new value 
assigned to selected variables would be able to add a routine to the compiler to process 
the intermediate form of the language to make the necessary modifications to the code. 
The intermediate language is a slightly modified form of LISP, which we call XLISP. 

The system has been implemented in several different ways. In the original 
implementation the executor was a slightly modified version of the standard LISP 

interpreter. In subsequent implementations a compiler was added to the executor. 
However, language extensions are normally done to the part of the translator which 
translates from BALM into XLISP with the executor usually being kept fixed. Below we 
will concentrate mainly on the extendable part of the translator. 

The version of BALM given in Appendix B is a compiler-based implementation 
with the compiler producing code for a hypothetical machine which we call the MBALM. 

The MBALM machine can be realized by microprogramming on machines such as the 
IBM 360 and the Standard 9000, or by simulation. MBALM simulators are available for 
the CDC 6600, IBM 360, Univac 1108, and other machines. 

DATA-STRUCTURES 

Our objective in choosing data-structures was to include the minimum number 
which would permit the logical implementation of most common data-objects without 
too much inefficiency. To simplify garbage collection all data-structures are flagged 
with their type, so can be traced without requiring elaborate mapping information. A 
uniform format for a data-structure, or item, is used to permit handling all types simi
larly. This has the effect of permitting any variable in the language to have any item 
as its value, as in SNOBOL and LISP. The format chosen has two fields, a type field, and 
a pointer field, and in some implementations a third flag field for the user's use is also 
provided. In the case of some primitive items such as integers or logical quantities the 
pointer field is used to contain the information directly, but in the case of more elab
orate data-structures the pointer field contains a pointer to other information. 

The two main data-structures chosen were the vector and the pair. The first permits 
the ·use of arrays and indexing operations, while the second is essentially the basic 
data-structure of LISP and permits the construction of arbitrary branching structures. 
The elements of a vector or a pair can be arbitrary items, including other vectors and 
pairs, of course. From the logical point of view we could dispense with the pair and use 
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a vector of length two, but in practice this would use up a little more space, and we felt 
that a distinction between vectors and lists (constructed from pairs) would more often 
than not be useful to the programmer. For the sake of economy of memory space we 
also provide a string of characters as a separate data-structure, stored sequentially in 
memory. Procedures represented as machine code are stored in a fourth data-structure 
called a code block. Vectors, strings, and code blocks may be of arbitrary size, but once 
allocated their length is fixed and stored in memory so that the programmer can deter
mine the length if he requires. 

To permit the user to manipulate programs, identifiers are also provided as a type 
of item. These can be thought of as represented by a pointer into a symbol table, in 
which is stored the name of the identifier, its current value, and another entry which we 
refer to as its property-list. These correspond very closely to the nonnumeric atoms of 
LISP, and similar operations are provided to manipulate them. In a similar way, there 
is a type of item called a label, which can be manipulated by a program to permit 
programmed switching of control. 

OUTLINE OF THE BALM LANGUAGE 

As we have pointed out, BALM is an extendable language, so it is not possible to 
give a complete definition of it. However, the system, if not modified by the user, defines 
a "standard" BALM language which permits a fairly convenient use of most of the basic 
features of XLISP. It is this "standard" BALM which we will describe below. The reader 
should note that nearly all features of the "standard" language are translated according 
to three lists which guide the translator, and which can thus be changed if necessary. 

A BALM program consists of a sequence of commands separated by semicolons. 
Each command is read, translated, and executed before the next one is read. The 
program can be submitted either as a deck of cards, or typed in directly from a teletype 
terminal. In the first case, the card images will be printed, and will be followed by any 
printed output requested by the command. In the case of teletype input, only printed 
output will be typed. Note that a semicolon will always terminate a command, even 
if it occurs within parentheses or brackets (though not if it occurs as part of a string), 
so it acts as a sort of insurance that syntactic errors will not continue into the next 
command. 

Commands in BALM include the usual type of assignment, written with an "equals" 
sign as in other languages. Thus 

A= 12.3; 

will assign to the variable A the value 12.3, while 

B = C; 

will assign to B whatever is currently the value of C. The right hand side of an assign
ment can be any expression, which can be written using infix notation and the usual 
functional notation for procedure applications. The usual arithmetic operators are 
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available, and will accept numerical arguments of arbitrary type, doing execution-time 
conversion when necessary. 

A command is just an expression which is evaluated, and whose value is ignored. 
An assignment command is simply an expression whose evaluation has the side effect 
of assigning the value of the right-hand side to the variable on the left, and as such it 
has a value, which in this case is the value of the right-hand side. Thus the command 

A= B = 1.2; 

will be executed as though it had been written: 

A = (B = 1.2); 

Here the right-hand side is an assignment, whose value is 1.2, which will thus be as
signed to A as well as B. We will use the term "command" for such expressions merely 
to indicate this type of usage, rather than to imply some nonexistent distinction. 
Expressions such as assignments and transfers will usually though not always occur 
as commands, while those whose evaluation will produce no effect other than to cal
culate a value will not. 

One use of commands will be as main components of a program as described above. 
However, they will also be used as the main constituent in programmer-defined func
tions, as we will see below. Expressions often used as commands include assignment, 
transfer, conditional, procedure invocations, and pattern matching and repetitive or 
looping operations. 

A vector of n elements, but whose values are undetermined, can be written 

MAKVECTOR(n) 

This will dynamically allocate space for the vector, which will be collected automati
c!\lly by the garbage collector when no longer accessible to the program. If the values 
of the vector are known, VECTOR can be used, so that the expression 

VECTOR(l,2,3,4) 

would represent a vector of length 4 whose elements were 1, 2, 3, and 4. 
Indexing can be used to refer to the elements of a vector in the usual way, so that 

v[i] 

will refer to the i-th element of vector v, and 

v[j] = X 

will change the value of the j-th element of the vector v to x. Here v can be an arbi
trary expression whose value is a vector, and i and j can be arbitrary expressions 
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whose values are integers of appropriate size. This means that a two-dimensional array 
M represented as a vector of vectors can have its elements referred to as 

M[i][j] 

and so on. The length of a vector vis written SIZE v, and the expression VECTQ ( x) 
will have the value TRUE if x is a vector and NIL otherwise. 

The vector which is obtained by concatenating the two vectors x and y can be 
written 

CONCATV(x,y) 

A vector which has as its elements the j elements of the vector v starting at the i-th 
can be written 

SUBV( v, i,j) 

while these elements can be changed to the first j elements of the vector w by 

SUBV(v,i,J°) = w 

A string can be converted to a vector whose elements are integers which are the internal 
representations of the characters in the string, and vice versa, by the operations 

VFROMS(s) SFROMV(v) 

The operations on pairs are essentially those provided in LISP for manipulating 
lists. A pair whose first component is x and whose second component is y is written 
x: y, and if pis a pair the first component is HD p and the second component is TL p. 
A list whose elements are the numbers 1, 2, 3, 4, for example, could be written 

( 1: ( 2: ( 3: ( 4: NIL) ) ) ) 

or, since the precedence of the colon is arranged appropriately, as 

1:2:3:4:NIL 

Here NIL is the logical item used to represent false, and by convention is used to 
terminate a list. This list could also be written as 

LIST(l,2,3,4) 

Components of a pair p may be changed by commands of the form 

HD p = X TL p = y 
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but these should be used with caution, since the pair could be an element of other 
data-objects. The expression PAIRQ ( x) will have the value TRUE if x is a pair, and 
NIL otherwise, and is the operation usually used for detecting the end of a list. 

An identifier whose name is n is written as 

"n 

as long as n has the appropriate syntax for a name. In the current system names are 
sequences of letters and digits starting with a letter, or single special characters (with 
certain exceptions mentioned below). Note that "n does not refer to the value of the 
identifier named n, but to the data-structure which contains a pointer into the symbol 
table. If id is an identifier, the expression 

VALUE(id) 

gives the value of id, and 

VALUE( id) = x 

resets this value to x. Similarly 

PROPL( id) 

refers to the property-list of id, and 

PROPL(id) = x 

changes this property-list to x. The name of id is written 

SFROMID (id) 

which returns a string. If s is a string, then 

IDFROMS(s) 

refers to the identifier whose name is the characters of the string. 
The quote can also be used for specifying constant vectors and lists. The notation 

used is essentially that of LISP. VECTOR ( 1 , 2, 3, 4) , for example, could be written as 

"[l 2 3 4] 

while LIST ( 1 , 2, 3, 4) could be written 

"(l 2 3 4) 
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Nesting is permitted, so expressions such as 

11 [[l 2] 3 [ABC $] (ZZZ)] 

are also permitted. Note that such expressions do not have memory allocated during 
execution time, but during translation time, so if assigned to a variable and then 
modified, the "constant" will also be modified. 

The above notation is also the one used by the utility I/0 routines READ, WRITE 
and PRINT. PRINT ( x) will examine x and print it on the standard output medium' 

' without the leading quote. READ (f) will read from file f the next complete item in 
the above notation, continuing reading until brackets and parentheses are balanced. 

A whole vector or list can be assigned from one variable to another variable in a 
single statement, of course, but then any operation which changes a component of one 
will change a component of the other. If this is not desired, the vector or list should 
be copied, and the copy assigned. 

A list or vector can be broken up into its constituent parts by the procedure 
BREAKUP. This takes two arguments, an item whose elements are constants or vari
ables, and an item to be broken up. Parts of the second structure corresponding to 
variables are assigned as the values of those variables, while constants must match. If 
the structures cannot be matched, the BREAKUP procedure is terminated and gives the 
value NIL. Otherwise it has the value TRUE. For example 

BREAKUP ( 11 ( A B ) , 11 ( ( C C ) ( D D) ) ) ; 

will have the value TRUE and will assign ( D D) to A and ( D D) to B. Either structure 
can involve vectors, and constants in the first structure are specified by preceding 
them with the quote mark 11 • Thus 

BREAKUP( 11 [A 11B CJ, 11 [[X X] B [Y Y]]); 

will have the value TRUE and will assign [X X J to A and [Y Y J to C. The converse 
of BREAKUP is CONSTRUCT, which is given a single structure whose elements are 
variables, and which will construct the same structure but with variables replaced by 
their values. Thus 

X = II ( A B) ; Y= 11 [C DJ; PRINT ( CONSTRUCT ( II ( X y) ) ) ; 

will print ( ( A B) [C D]). 

A procedure in BALM is simply another kind of item which can be assigned as the 
value of a variable. The variable can then be used to invoke the procedure in the usual 
way. The statement 

SUMSQ = PROC(X,Y),X*2+Y*2 END; 

1 
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assigns a procedure which returns as its value the sum of the squares of its two argu
ments. The translator translates the PROC . .. END part into the appropriate internal 
form, which is assigned to SUMSQ. The procedure can subsequently be applied in the 
usual way, so 

PRINT(5 + SUMSQ(2,3) + 0.5); 

would print 

18.5 

Instead of assigning a procedure as the value of a variable, we can simply apply it, 
so that 

X = 5 + PROC(X,Y), X*2+Y*2 END(2,3) + 0.5; 

would assign 5 + 13 + 0.5 = 18.5 as the value of X. Note that a procedure can accept 
any data-object as an argument, and can produce any data-object as its result, includ
ing vectors, lists, strings, and procedures. Procedures can be recursive, of course. 

A procedure is simply an expression with certain variables specified as arguments. 
The most useful expression for procedure definitions is the block, which permits the 
declaration of local variables, and which is similar to that used in ALGOL but can have 
a value. Thus 

REVERSE= PROC(L), 
BEGIN(X), 
COMMENT 'FIRST TEST FOR ATOMIC ARGUMENT' 
IF -,PAIRQ(L) THEN RETURN(L), 
COMMENT 'OTHERWISE ENTER REVERSING LOOP' 
X = NIL, 
COMMENT 'EACH TIME ROUND REMOVE ELEMENT 

FROM L, REVERSE IT, AND PUT AT BEGINNING OF X' 
NXT, IF NULL(L) THEN RETURN (X), 

X = REVERSE(HD L):, 
L = TL L, GO NXT 
END END; 

shows the use of a block delimited by BEGIN and END in defining a procedure REVERSE 
which reverses a list at all levels. The X following BEGIN indicates that X should be 
considered local to the block, while NXT is a label. The COMMENT operator can follow 
any infix operator, and will cause the following item to be ignored. 

As well as an IF ... THEN. . . statement there is an IF ... THEN ... ELSE ... 
as well as an IF ... THEN ... ELSEIF ... THEN ... , etc. Looping statements include 



a FOR ... REPEAT ... as well as a WHILE ... REPEAT .... A compound statement 
without local variables or transfers can be written DO .. , .. , .. END. Of course any 
of these statements can be used as an expression, giving the appropriate value. 

USER-DEFINED LANGUAGE EXTENSIONS 

The TRANSLATE procedure used by BALM to translate statements into XLISP is 
particularly simple, consisting of a precedence analysis pass followed by a macroex
pansion pass. Built-in syntax is provided only for parenthesized subexpressions, com
ments, the quote operator, the unary operator NOOP, procedure calls, and indexing. 
All other syntax information is provided in the form of three lists which are the values 
of the variables UNARYLIST, INFIXLIST, and MACROLIST. The user can manipulate 
these lists as he wishes by adding, deleting, or changing operators or macros. 

Operators are categorized as unary, bracket, or infix, and have precedence values 
and a procedure (or macro) associated with them. Examples of unary operators are 
- (minus), HD, and IF, while infix operators include +, THEN, and ELSE. Bracket 
operators are similar to unary operators but require a terminating infix operator which 
is ignored. Examples of bracket operators are BEGIN and PROC, which both can be 
terminated by the infix operator END. 

New operators can be defined by the procedures UNARY, BRACKET, or INFIX. 
These add appropriate entries onto UNARYLIST or INFIXLIST. For example the 
statement 

UNARY("PR,150, "PRINT}; 

would establish the unary operator PR with priority 150 as being the same as the 
procedure PRINT. Thus we could subsequently write PR A instead of PRINT (A). 
Similarly we could define an infix operator by 

INFIX("AP,49,50,"APPEND); 

to allow an infix append operation. The numbers 49 and 50 are the precedences of the 
operator when it is considered as a left-hand and right-hand operator respectively, 
so that an expression such as A AP B AP C will be analyzed as though it were A AP 
(B AP C). 

The output of the precedence analysis is a tree expressed as a list in which the 
first element of each list or sublist is an operator or macro. For example, the statement 

SQ=PROC(X},X*X END; 

would be input as the list 

(SQ= PROC (X) , X * X END) 
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and would be analyzed into: 

(SETQ SQ (PROC (COMMA X (TIMES XX)))) 

This would then be expanded by the macro-expander, giving 

(SETQ SQ (QUOTE (LAMBDA (X) (TIMES XX)))) 

the appropriate internal form. This would then be evaluated, having the same effect 
as the statement 

SQ = "(LAMBDA(X) (TIMES X X)), 

which would in fact be translated into the same thing. 
The macro-expander is a function, EXPAND, which is given the syntax tree as its 

argument. If the top-level operator of the syntax tree has a macro associated with it, 
the macro is applied to the whole tree. Otherwise EXPAND is applied to each of the 
subtrees recursively. Most operators will not require macros because the output of 
the precedence analysis is in the correct form. However, operators such as IF, THEN, 
FOR, PROC ... etc., require their arguments to be put in the correct form for 
execution. For instance, the IF macro, MIF, uses recursive calls to EXPAND to trans
form subtrees in the appropriate way. The statement 

MACRO ( "IF, MIF) ; 

would associate the macro MIF with the operator IF. 
One particularly useful outcome of this expansion procedure is the ability to 

write expressions on the left-hand side of assignment statements. These can be 
handled by a macro associated with the assignment operator, which tests for particular 
expressions on the left-hand side and makes appropriate modifications. For instance, 
the HD operator used on the left allows 

HD X = Y; 

to be written instead of 

RPLACA(X, Y); 

which the SETQ macro will in effect produce. Similarly, we can write 

MACRO(IF) = PROC(IF) ... ; 

as a more concise way of defining the IF macro, as long as the SETQ macro were pre
pared for this left-hand side form. 
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To provide this flexibility, the macro for the assignment operator, MSETQ, looks 
up top-level operators on the left-hand side on the list LMACROLIST, which can be 
extended by the user. The statement 

LMACRO(NAME,LMAC); 

adds macros to LMACROLIST in a way analogous to MACRO. 

THE TRANSLATOR 

The BALM-to-XLISP translator is very simple and uses the technique known as 
precedence analysis. The BALM language is designed in such a way that it consists of 
"phrases" and "operators," and each phrase is preceded and followed by an operator. 
In theory this imposes certain limitations on the language, but we feel that in practice 
these are not serious, and in fact are insignificant compared with the ease of the 
translation. 

To give an example, the expression 

IF A= B+C THEN GO L 

contains the operators IF, =, +, THEN, GO, and the phrases A, B, C, L. The analysis 
determines for each triple consisting of an operator, a phrase, and an operator, which 
operator has precedence. Thus in the expression 

A = B + C 

the + has higher precedence than the =, so the expression should be analyzed as 

A= (B + C) 

The bracketed version of the above statement would be 

(IF ((A= (B + C)) THEN (GO L))) 

from which we see that the operators =, +, THEN require two arguments, and the IF 
and GO require a single argument. For consistency we will change the order of the 
bracketed elements whenever necessary so that the operator always comes first. Thus 
the final version of the above statement would be 

(IF (THEN(= A(+ BC)) (GO L))) 

We will refer to operators like THEN and + as infix, and to operators like IF and GO 
as unary. 

A slight extension of this scheme is necessary to allow the use of functional nota-
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tion such as 

A= B + FF(C, D-E) + G 

where FF is a function. In this case ( can be regarded as an infix operator, but ) does 
not fall into either the infix or unary class. Other similar examples are BEGIN and its 
associated END. 

In the BALM version given in Appendix B, the parentheses will already have been 
removed by the BALM input routine, which will have made a sublist out of the inter
vening elements. The program will recognize such sublists and treat them accordingly. 
Note that if a simplified input routine which does not recognize parentheses is used, 
then only slight modifications need to be made to the program. 

The function FNOTN which does this syntax analysis takes as its argument a 
list which is the program to be translated, and has as its value the tree structure which 
represents its syntax. The routine recognizes three types of operators, infix, unary, 
and bracket, and for each element on the list determines if it is such an operator. 
Associated with each operator is a list which gives appropriate information about it. 
Thus associated with the operator + is the list 

( INFIX PLUS lpr rpr) 

with PLUS being the atom which will be used in the tree structure, and lpr and rpr 
being the precedence of + when used as the left hand and right hand of two operators 
respectively. 

The following input 

LNGTH = PROC (X), 
BEGIN(U, V), 
U = 0, V = X, 

LOOP, IF NULL(V) THEN RETURN(U), 
U = U+l, V = CDR(V), GO LOOP 
END 
END; 

will be translated into 

(SETQ LNGTH (LAMBDA(, X 
( PROG ( , ( , U V ) 

(, (SETQ U O) 
(, (SETQ V X) 
(, (LOOP 
(, (IF (THEN (NULL V) (RETURN U))) 
(, (SETQ U (PLUS U 1)) 
( , ( SETQ V ( CDR V) ) ( GO LOOP) ) ) ) ) ) ) ) ) ) ) ) 

which is easily translated into XLISP during macro-expansion. 
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AN XLISP INTERPRETER 

An XLISP interpreter can easily be written in BALM. It is a little different from the 
standard LISP interpreter. The main difference arises from the fact that only one form 
of binding is used. Rather than binding values of variables on an association list, and 
functions on the property list, all bindings are made in a cell associated with the 
variable called the value cell. This is more efficient than the association-list method, 
since access to the value cell for removal or insertion of bindings is immediate, and does 
not require any searching. When a procedure is entered, the current contents of the 
value-cells of local variables are saved and the new values inserted; the old values are 
restored on exit from the procedure. 

A second difference is the fact that a machine-coded procedure in BALM is refer
enced by a recognizable data-type. This consists of a pointer to the first instruction 
of the procedure, together with flags to indicate what types of procedure it is. A func
tion can be bound to a name simply by posting this data-object in the value cell, where 
it is accessible to the interpreter. Because of this uniform binding, the interpreter EVAL 
can look up the function bound to a name by simply evaluating it. This is conveniently 
generalized, so that when EVAL is given an argument of the form: 

(FN ARGl ARG2 ... ) 

the expression FN is evaluated, and the result, which should be either an entry point 
or a list structure representing a procedure such as a LAMBDA-expression applied to the 
arguments. This allows arbitrary expressions to be used as functions in an expression, 
but there are no tests for particular names in this position. Thus the form 

( ( LAMBDA . . . ) . . . ) 

is not legal since the ( LAMBDA ... ) expression will not evaluate correctly. Instead 
the form 

( ( QUOTE ( LAMBDA ... ) ) ... ) 

should be used. 
After evaiuating the functional part of an expression the interpreter expects 

· either a code block, which can be simply transferred to after processing the argument 
list, or an expression such as ( LAMBDA ... ) or ( LABEL ... ) . These are conveniently 
evaluated by assuming them all to be of the form 

(le1e2) 

where l evaluates to a function which expects e1, e2 and the arguments list as its 
arguments. Thus the evaluation of 

((QUOTE (LL AL EX)) ARGl ARG2 ... ))) 



will be the same as 

(LL AL EX (QUOTE (ARGl ARG2 ... ))) 

This permits the user to provide his own versions of LAMBDA. 
Three types of code block are used. These are called SUBR, FSUBR, and NSUBR 

and can be distinguished by the setting of bits in the flag field. A SUBR, as in standard 
LISP, expects its arguments to be evaluated, and is the p~eferred type. An FSUBR 
expects a single argument which is the list of expressions supplied as arguments to the 
procedure, and, like LISP, is used to implement ;nonstandard operations such as SETQ, 
COND, and PROG. An NSUBR expects a single argument which is a list of the evaluated 
expressions supplied to the procedure as arguments. This is used, for procedures which 
are standard except for the fact that they can have an arbitrary number of arguments, 
such as PLUS, LIST, VECTOR and PROGN. This last is a generalization of the LISP 

PROG2 procedure, and is used to implement the 

DO ... END 

type of compound expression. In fact PROGN is simply a procedure which returns the 
last element of a list. 

The EVAL function takes a single argument which is the expression to be evaluated. 
It could be coded in BALM as follows: 

EVAL = PROC(X) 
BEGIN(FN,ARGS), 
IF IDQ(X) THEN RETURN VALUE(X), 
IF -,PAIRQ(X) THEN RETURN(X), 
FN=EVAL(HD X), ARGS=TL X, 
IF SUBRP(FN) THEN RETURN (XEQ(FN,EVLIS(ARGS))), 
IF FSUBRP(FN) THEN RETURN(XEQ(FN,ARGS:NIL)) 
IF NSUBRP(FN) THEN RETURN(XEQ(FN,EVLIS(ARGS):NIL)), 
IF -, PAIRQ ( FN) THEN ERROR ( FN : " ( IS NOT A FUNCTION) ) , 
RETURN(XEQ(EVAL(HD FN),HD TL FN:HD TL TL FN:ARGS:NIL)) 
END END; 

Here XEQ executes the machine-coded function specified by the code block given as its 
first argument, with the elements of the list given as its second argument as arguments. 
Note that the version of EVAL given above can be generalized by changing the last 
command from: 

RETURN(XEQ(EVAL(HD FN):HD TL FN:HD TL TL FN:ARGS:NIL)) 

to: 

RETURN(EVAL(HD FN:HD TL FN:HD TL TL FN:ARGS:NIL)) 
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which would permit a LAMBDA-like function to be written as a LAMBDA-expression. 
The procedure LAMBDA can be written in BALM as follows: 

LAMBDA= PROC(VL,X,ARGL), 
BEGIN(PREVALS,RESULT), 
PREVALS=EVLIS(VL), 
BREAKUP(VL,EVLIS(ARGS)), 
RESULT=EVAL ( X) , 
BREAKUP(VL,PREVALS), 
RETURN(RESULT) 
END END; 

Here we are using BREAKUP to do multiple assignment. The procedure EVLIS is the 
usual one defined as: 

EVLIS=PROC(L),MAPX(L,EVAL)END; 

EXAMPLES 

As an example of the extendibility facilities provided in BALM, we give below a 
set of routines which permits a convenient form for introducing new expressions or 
commands. The aim is to permit the user to specify the meaning of theseforms without 
needing to know the characteristics of the intermediate language. This is done by ac
cepting a definition in terms of BALM itself, in the form 

x MEANS y 

where x and y are expressions in BALM. For example, the ALGOL 68 form of conditional 
could be defined as 

Xl I X2 I X3 MEANS IF Xl THEN X2 ELSE X3; 

The method requires that all operators in the new expression be declared as such 
before the MEANS definition. Xl, X2, X3 can be any valid expressions as long as the 
precedence of the operators is higher than that of the operator. As usual, parentheses 
can be inserted to ensure the appropriate parsing. Other examples include the following 

STEP Xl MEANS Xl=Xl+l; 
FOR Xl = X2 STEP X3 UNTIL X4 DO X5 MEANS 

FOR Xl = (X2,X3,X4) REPEAT X5; 

These would require the previous definition of the precedences of the operators 
STEP (unary), STEP (infix), UNTIL (infix), and DO (infix). 

The technique used to implement MEANS uses the fact that the parse tree of a 
command of the form x MEANS y, where MEANS is an infix operator of very low pre-
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cedence, contains the parse trees which will result from the expressions x and y. If, 
therefore, a macro is associated with MEANS, it can examine these trees and construct 
a macro which will transform any subtree which matches x into the equivalent tree of 
the form y. This macro will be associated with the top-level operator in the tree of x. 
The code to define MEANS is given below. The procedure SUBST, not given, is assumed 
to substitute its first argument for occurrences of its second in its third. Note that the 
code is written to permit multiple macros to be associated with the same operator. 

MMEANS = PROC(L}, 

BEGIN(LS,RS,M,OP,PREVM}, 
LS= HD TL L, RS= HD TL TL L, 
M=SUBST (LS, "L, TMAC) , 
M=SUBST(RS, "R,M), 
OP= HD LS, 
PREVM = LOOKUP(OP,MACROLIST), 
IF PREVM=NIL THEN 

M = SUBST("EXLIS,"E,M) 
ELSE M = SUBST(PREVM, "E,M), 
MACRO(OP,TRANSLATE(M)), 
RETURN NIL 
END END; 

TMAC=" ( PROC ( S) , 
BEGIN(Xl,X2,X3,X4,X5,X6), 
IF MATCH("L,S) THEN 

RETURN BUILD ( "R) 
ELSE RETURN E(S) 
END END); 

MATCH=PROC(L,S), 
IF PAIRQ(L) THEN 

(IF PAIRQ(S) THEN 
(IF MATCH(HD L,HD S) THEN 

MATCH(TL L,TL S) 
ELSE FALSE) 

ELSE FALSE) 
ELSEIF L="Xl OR L="X2 OR L="X3 

OR L="X4 OR L="X5 OR L="X6 
THEN DO VALUE(L)=S,RETURN TRUE 

END 
ELSEIF L=S THEN TRUE 
ELSE FALSE 
END; 

define procedure with argu-
ment L 

define local variables 
extract qperands of MEANS 
substitute for Land 

R in TMAC 
extract top operator 
retrieve any previous macro 

and substitute it or EXLIS 
for E in the modified TMAC 

associate new macro with op
erator, and return 

define untranslated procedure 
to process tree S 

if tree matches L then rebuild 
according to R 

otherwise process as before 

define procedure to match 
trees 

return false if trees don't 
match 

Xl ... X6 are assigned the 
value of any corresponding 
subtree 



BUILD=PROC ( R) , 
IF PAIRQ(R) THEN 

BUILD(HD R);BUILD(TL R) 
ELSEIF R="Xl OR R="X2 OR R="X3 

OR R="X4 OR R="X5 OR R="X6 
THEN VALUE(R) 

ELSER 
END; 

INFIX ( "MEANS, 0, 0, "MEANS) ; 
MACRO ( "MEANS, MMEANS) ; 
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define procedure to rebuild 
tree 

replace Xl ... X6 with their 
current values 

define MEANS as infix operator 
define macro for MEANS 

! 
I 




