
LITTLE Newsletter # 28

An Intermediate Language for the LITTLE Compiler.

S. Brown
October 12, 1973

This newsletter is intended to describe an intermediate

language which will be used as input to the LITTLE compiler.

For certain applications such as generating LITTLE from the BALM

compiler it is desirable to bypass the LITTLE lexical scanner

and parser. Presumably correct LITTLE is generated and a syntax

check is unnecessary. Ideally an intermediate language should

be general enough so that it is not affected by internal changes

to the compiler. However, it should also be specific enough so

that it can easily be processed.

For the LITTLE compiler output from the parser is in the

form of entries into internal tables used by the assembler to

generate machine language. The parser calls generator routines

to make entries into the tables. It communicates with the generator

routines via a stack. The intermediate language is made up of

directives to place variables and constants on the stack and action

directives which generally correspond to generator routine calls.

The intermediate language hereinafter refered to as LIL,

(LITTLE Intermediate Language) will consist of a stream of

tokens which arc interpreted as action directives and arguments.

The following table presents a list of these actions.

'rhis table is presented in bvo parts. Part A consists of

directives to make entries in a symbol table which i::::; more or

less the counterpart of the LJ.TTLE table HA.

Part A

ACTION

1. Add Name
to symbol
table

2. Add String
to symbol
table

3. Add integer
to symbol table

ARGUMENT 1 ARGUMENT 2

of Characters Value

of bits Value

of bits Value

Part B consists of actions which reflect LITTLE language

capabilities. The arguments for these actions reference entries

in the table constructed by the Part A directives.

2

Part B

ACTION

1. Push onto
stack

2. Subroutine

3. Function

4. Label

5. G¢ T¢

6. G¢ BY

7. Argument

8. IF

9. Call

10. Return

11. Size

12. Dimn

13. Assignment

14. Binary
operator

ARGUMENT 1

Symbol table
reference

Symbol table
reference

Symbol table
reference

Symbol table
reference

Symbol table
reference

of Labels

Symbol table
reference

Symbol table
reference

of Args

Symbol table
reference

Symbol table
reference

Type
1. simple
2. Indexed
3. Field extract
4. Field extract

Indexed

Type
1. +
2.
3. .GT.
4. .LT.
5. .GE.
6. .LE.
7. .Eq.
8. .NE.
9. *

10. I
11. .OR.
12. .c.
13. .nm.
14. .EX.

3

ARGUMENT 2

integer

integer

4

ACTION ARGUMENT 1 ARGUMENT 2 ARGUMENT 3

15. Function # of
call Arguments

16. Monadic Type
operator 1. .NB.

2. . FB .
3. . Not.

17. Field
extract

18. READB # of elements
in IO list

19. Read # of elements
in list

20. WriteB # of elements
in list

I 21. Write # of elements
in list

22. Endfile integer

23. Rewind integer

Directives from part A and part B may be intermixed in

a file of LIL as long as the name or constant is added to the

table before it is referenced.

LIL is essentially parsed LITTLE. In some cases the actual

operand for a LITTLE expression is included as an argument

following the action. For example:

G¢ T¢ LBLi

is expressed as

G¢T¢ LBL

In other cases operands are pushed onto the stack before the

action. For example:

If (X .EQ. Y) G¢ T¢ LI;

is expressed as

Name 1 X

Name 1 y

Name 2 Ll

PUSH 1 (X)

PUSH 2 (Y)

BINARY op .EQ.

IF 3 (Ll)

5

The only exception is for SUBRand FNCT definitions .where

the arguments are specified in LIL following the definition action.

For example:

SUBR ABC(X,Y);

is expressed as

Name 3 ABC

SUBR 1 (1J3C)

Name 1 X

J~rgument 2 (X)

Name 1 y

Argument -; (Y) .J

It is assumed that the generator routines will pop the

stack appropriately, replacing their arguments with their result.

Thus pop instructions are not part of LIL. For example:

A= B * C + 1;

is expressed in LIL as follows:

Name 1

Name 1

Name 1

Integer 60

Push 1

Push 2

Push 3

Binary op *
Push 4

Binary op +

Assignment Simple

A

B

C

00000 01

(A)

(B)

(C)

(1)

The most convenient representation of LIL is as a binary file

where each action is an integer code taking a field word. A coded

file of fixed field format would be easy to handle also. Since

the particular representation requires changing only the WRITE

routine in the program which produces LIL and the READ routine

which will be added to the LITTLE compiler, its exact form may

be determined later.

6

