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1. Introduction. 

This newsletter distills a series of reflections on BALM, 

and proposes a similar, but possibly more powerful and more 

easily learned, semantic environment. 

BALM extracts very considerable semantic power from a very 

lean set of sources. Moreover, it attains quite a decent level 

of efficiency when compiled. For these ·reasons, it repays 

study. We see the following bases for its success. 

i. It incorporates a garbage collector. 

ii. Peephole-optimized, translation of BALM-machine code 

proves to yield reasonably efficient target machine code. 

iii. BALM' s recursive semantics makes it easy to manipulate 

parse trees and hence to express the BALM compiler in BALM. 

iv. Simple precedence parsing meshes quite nicely with 

the 'MEANS' tree-·macro scheme, to attain a surprisingly high 

degree of syntactic extensibility. 

Against these indisputable advantages we may set a number 

of disadvantages: 

a. The BALM-machine operations are somewhat too far front 

physical machine operations and too lean for it to be possible 

to create highly efficient target code using BALM. Thus it is 

not reasonable to use BALM 'to write either its own garbage 
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collector, a BALM interpreter, or an interpreter for another 

language. Part of the problem here is that the very dynamic 

nature of BALM makes global optimization difficult; at any 

rate, no global optimizer is part of the present BALM system. 

b. Too much detail concerning internal syntax-tree forms 

must be learned in making BALM extensions, especially the case 

of languages involving high degrees of syntactic transformation 

(consider, for example, the case of a language incorporating a 

rich system of declarations). 

Other, less central criticisms of BALM will be implicit in 

some of the detailed proposals to follow. The semantic environ­

ment to be proposed will preserve feature (b) of BALM, and will 

permit peephole-optimized translation (of a very wide variety 

of source languages, into LITTLE; the use of LITTLE makes 

available globally optimized final translation down to machine 

level.) We will abandon the BALM machine, the use of a fixed 

system of recursion and parameter passing (BALM feature (iii}), 

and the particular style of precedence parsing used in BALM 

(feature (iv)). In justification of abandoning feature (iii}, 

we note that nearly all the BALM machine operations are quite trivial. 

The creation of. an interpreter for the BALM machine or any other. 

pseudo-machine opcode system of similar functional level is 

routine, or at any rate no more difficult than the translation 

of the pseudo-ops of such a machine into BALM-machine operation 

sequences. Note also that we shall outline a scheme which 

makes it relatively easy to define a compiler for a pseudo-machine 

opcode system once an interpreter for the pseudo-ops is available. 

In justification of abandoning (iv), note that pure precedence 

parsing imposes a cramped syntactic style, deficient especialiy 

in the level of its diagnostics. It may therefore be argued 

that a more flexible parsing system, as for example advancing 

top-down parsing, should be used; in a supportive semantic 

environment, it will certainly not be hard to write parsers 

of this style for a variety of languages. 
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2. 1 Heap 1
- and 1 Stack 1 -related Semantics; Atomic Types. 

We proceed to propose a semantic environment as a follow-on 

to BALM. Oversimplifying,we may define this semantic environment 

by the phrase, 'LITTLE, plus a stack, a heap, and garbage collec­

tion. 1 The stack can be represented in LIT'I'LE by two global 

variables STACK (an array, of indefinite length), STACKTOP (a pointer 

to the current top of STACK) and a function RESERVE (which ensures 

that a specified part of the stack is protected against over-write 

by the competing heap). 

The semantics proposed for the heap-related functions are 

essentially those implemented by Hank Warren's SRTL garbage 

collector. Specifically, heap blocks of specified size can be 

allocated; once allocated, a block is referenced by a variable 

of type pointer (a 'TACK'ed variable, in the current SRTL notation). 

A heap block contains both an initial pointer-free portion and a 

terminal part containing pointers, each word of the terminal part 

containing 1,2, or 3 pointers plus a field indicating the 

number of pointers present. A polished 'extended LITTLE' 

syntax would allow pointers to be declared directly, perhaps in 

the syntactic form 

POINTER P(INITIALPARTSIZE); 

Following such a declaration, one could allocate a new heap block 

to P, perhaps using the syntax 

P = ALLOCATE(INITIALPARTLENGTH,TERMINALPARTLENGTH); 

He.re, the parameter INITIALPARTSIZE g-ives the normal word size 

into which the initial pointer-free portion of the block allocated 

to P will be divided. The syntactic form P(I) could be used, 

sinister or dexter, to reference the I-th word of the initial 

part of the allocated block; the syntactic form P[I] could be used 

to reference the I-th word of the block's terminal portion. 

The word P[I] can hold a number of pointers (in the SRTL garbage 

collector, up to 3). It is reasonable to provide several standard 
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field names (such as APOINTER, BPOINTER, CPOINTER) to reference 

these fields, and an associated special fieldname NUMPOINTERS 

to reference the 'flag' field within P[I] which states the 

number of pointers contained in P[I]. Finally, one will wish 

to provide special field names which extract the initial part 

length and the final part length 

of the block allocated to P. 

Syntactically much less polished but semantically almost 

equivalent facilities can be provided in the present LITTLE 

system by using macros. It is necessary to represent a 

pointer P by two associated names, which we shall call P and 

PPTR. The first is a macro, the second a variable which can 

hold an index referencing the start of a block allocated out 

of the heap. The following LITTLE macro makes available a 

kind of 'declaration' which can be used to create additional 

pointers. 

+* POINTER(P,PPTR) = TACK(PPTR); 

MACDEF(P(I) = HEAP(I+PPTR)) ** 

(See SETL Newsletter 73 for a description of the macros TACK 

and MACDEF used here). 

Most of the subfield extractors mentioned above are provided 

by macros already available in the SRTL library. 

ALLOCATE can be made available as a subroutine. Note that 

the POINTER macro given above does not allow the construction 

P[I] to be used; instead, one must write P(I+OFFSET), where 

the variable OFFSET locates the rst word of the second part 

of the block allocated to P. 

It is appropriate to provide a number of important atomic 

data types in our extended LITTLE. Real numbers, always of 

some fixed machine-dependent size REALSIZE are desirable, as are 

signed integers involving the usual machine dependencies 
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(sum of positive integers may be negative, and sum of 

negative integers may be positive, in the 'overflow' case; 

the bit format of a negative integer is inscrutable). 

A possible form of declaration for such quantities is: 

SIZE A(REAL), I(INTEGER); 

A few conversion functions are naturally associated with 

signed integer and real quantities. 

SIGNAB (I) 

•converts a quantity of declared type INTEGER to a LITTLE 

bit-string representing the same quantity in sign-magnitude 

form, and vice-versa. This same function yields the sign and 

magnitude of the mantissa of a quantity declared as type 

REAL; the function 

ESIGNAB (R) 

yields the sign and magnitude of the exponent of a REAL quantity 

R. The function 

MAKREAL {E ,M) 

forms a real quantity R from two bit-strings E and M, which 

respectively give the exponent and the mantissa of R in sign­

magnitude form. 

Lexical forms for real and signed-integer constants must 

of course be provided. 

Since even the most elementary language-processing applications 

are apt to require it, and since it is easy to do so, we propose 

to provide SETL atoms of type ~ong, heap-stored)string as part of 

our expanded LITTLE. Because it is equally easy, and to head off 

the creation of SETL-nonstandard bit-string types, we also propose 

to provide SETL atoms of type (long) bitstring. In our expanded 

LITTLE, these objects (which are stored in the heap area) will 

be of declared type pointer. With strings and bitstrings, the 

operations extract, insert, catenate, and copy should be provided; 
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each of these operators yielding an object of the same (SETL 

heap) type as the object to which it is applied. Modified 

extract and insert operators, which obtain or insert a LITTLE 

character or bit string from (or to) a SETL character or 

bit string are desirable also. Boolean operators applying 

to long bit-strings are appropriate, as are equality and 

inequality functions for ~ong character and bit strings. 

Finally, since it is easy and probably useful to do so, we 

may wish to provide standard hash functions applying to all 

the types of atoms which have been mentioned; this will 

facilitate and standardize the use of hashed searches. 

Of course our extended LITTLE will, like standard LITTLE, 

include a full complement, of I/0 primitives. 

3. Parsing, Interpretation, Compilation. 

We propose to use a parsing scheme built on the type of 

advancing top-down parser already used for parsing LITTLE. 

{A detailed description of this type of parser found in 

Stephanie Brown's Top-Down Metaparser User's Guide.) 

However, we suggest a few variations in overall approach which 

should further improve the case of use of this parsing scheme. 

a. All the parsers will use a fixed parse interpreter. 

The parse interpreter (written in LITTLE) will be called as 

a subroutine from a parse controller. This controller routine 

will normally incorporate all the 1 rpak 1 generator code of 

our present approach; in addition, it will transmit all required 

arguments to the parse interpreter, call the lexical scanner and 

pass· tokens to tl1e parse interpreter, and 'own' the parse 

interpreter stack, thus making a fixed parse interpreter useable 

with several separate input languages. The parse controller 

will build a body of interpretable text or pseudo-code and pass it 

to an interpreter-compiler either for interpretation or for 

compilation. (Note, however, that this interpretable text 

could also be passed to a high-level program analyzer-optimizer, 
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allowing high-level optimization to be performed prior to 

either interpretation or low-level compilation-optimization.) 

A pseudo-code interpreter normally examines the pseudo­

operation field of each pseudo-code item submitted to it, does 

an indexed transfer to the particular code sequence which 

interprets this item, an~ on completing the interpretation of 

the item, loops back to examine the next pseudo-code item in 

turn. To convert an interpreter to a compiler, the following 

scheme, which treats ordinary (i.e., non-transfer) pseudo-code 

items one way, and transfer items in a more complex way, 

can be used: 

a. Instead of interpreting an ordinary pseudo-op item, 

emit (into an output code file) the code which would otherwise 

interpret it. 

b. To handle a pseudo-code item of transfer type, 

emit code which will cause an execution-time 

transfer having a target label corresponding exactly to th~ 

point from interpretation would continue were the pseudo-code 

being interpreted. Note that for this to be convenient it 

may be necessary to include explicit 'label' pseudo-items in 

all pseudo-code text. 

c. Pseudo-code items of procedure-call type raise more 

serious semantic problems, which we approach as follows. 

In order not to impose the detailed LITTLE call semantics 

(in particular, its argument-transmission features) on other 

languages compiled via the system we are describing, we 

will often prefer to compile pseudo-operations of call type 

as LITTLE "GO-TO"s rather than as LITTLE "CALL"s. For this 

to be possible, we must be able to assign labels (in 

particular, return labels) to variables. Thu~ the.extended LITTLE 

language must include an instruction which transfers 

control to the value of a variable. Similarly we will normally 

wish to avoid having the LI'rTLE rules governing actual parameter 

to formal parameter size correspondence. influence the other 
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languages compiled via the system we are describing. E'or 

this reason we will often demand that all data objects 

appearing in emitted code be global and of one of a few 

allowed sizes. This means that argument transmission 

patterns, as well as the manner in which the variously 

structured data objects of the pseudo code being compiled 

are represented in terms of much more highly standardized. 

LITTLE objects, will be shown explicitly in the LITTLE code 

which we emit. 

To facilitate the writing, in LITTLE, of pseudo-code 

compilers of the kind just described, and to make easy the 

transition between interpreters and compilers for the same 

type of pseudo-code, we propose the following syntactic and 

semantic extensions, which seem quite adequate though they 

do not support dynamic definability to the same extent as 

do more standard interpretive macroprocessors: 

A line L of LITTLE code prefixed by the symbol•~• will 

be emitted rather than compiled. Other lines will be executed 

in the normal way. Emission will be governed by the following 

conventions. 

a. Names N appearing in L but not declared in the LITTLE 

subprocedure P containing L will be emitted literally,as strings. 

b. If a name N appears in L and is declared in P its value 

V will be converted to a string and emitted in place of the 

name. The manner in which Vis converted will depend on the 

manner in which N has been declared. If N is declared using 

an ordinary SIZE statement, then its value will be converted 

to .a positive integer in decimal representation. The values 

of names declared as signed integers (resp. real quantities) 

will be emitted in signed decimal (resp. approximate scientific 

decimal) form. 

c. An auxiliary declaration calling for Hollerith string 

conversion will be provided. This allows names to be passed 

to Pas parameters. Note that our conventions also allow new 

tokens to be formed by concatenation. 
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To convert an interpreter to a compiler, one will in the 

simplest cases have little more to do than to prefix some of the 

the lines of the interpreter with the sign 1 -+ 1 thereby causing 

them to be emitted rather than executed. 

Emission-compilation has several advantages (in regard to 

efficiency) over interpretation. Compilation draws together, 

into physical sequence, operations which will be performed · 

seri.ally. More significantly, it makes manifest the distinc­

tion between calculations which need only be performed once 

(at 'compile time') and calculations which will have to be 

performed repeatedly (during 'execution time'). Normally 

an interpreter cannot spend a great deal of time examining 

the context in which an .operation is to be interpreted so as to 

find an efficient manner of interpretation. An emitter-compiler 

can do just this, since a single instruction emitted by it may 

be executed repeatedly. Thus a good deal of peephole 

optimization can be associated with a compiler-emitter. 

Moreover, the code which is emitted can be subjected to global 

optimization before being converted to machine code. 

'Local' or 'peephole' optimization can easily be perfonned 

by an emitter-compiler program. To provide this type of 

optimization, one adds to the emitter-compiler code which looks 

for special, efficiently compilable local sequences in the 

pseudo code sequence being processed, and emits modified target 

code for these sequences. It is natural in doing this to 

employ a small amount of 'lookahead', i.e., to examine pseudo­

instructions following a few places behind that for which code 

is next to be emitted. An emitter-compiler may also incorporate 

some appropriately designed finite-state automaton, which 

can keep track of the changing context (determined by 

pseudo-operations already processed and code already emitted) 

in which code is to be emitted. 

'I'he occurrence of a label in the pseudo-code stream, and 

eipecially the occurrence of a label which is the target of a 

backward branch, creates problems for a 
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peephold optimizer, which may be forced to make severely 

restrictive 'worst case 1 assumptions about the situation 

prevailing immediately after a label has been passed. This 

difficulty can be remedied if a global optimizer is made 

available. We may regard the global optimizer as a program 

which attaches auxiliary information to each label. This informa­

tion permits the peephole optimizer to make more favorable.assump-

tions than would otherwise be possible concerning the context 

prevailing immediately after a label has been passed; in many 

cases, this greatly improves the quality of code that can 

be generated. 

The type of code fragment which a post-emitter optimization 

process OPT will find it easiest to deal with is the 

straight-line fragment containing no imbedded loops or sub­

routine calls (forward branches are not so problematical as 

loops). On the other hand, it is relatively less important 

to compile (rather than to interpret) code containing loops than 

to compile straight line code, since all that is obtained is an 

'outer loop' rather than an 'inner loop' benefit. It is important, 

however,to transmit to OPT all information defining the 

variables used, modified, etc. in an interpreted loop. 

This suggests the following approach 

to the transformation of interpretable text into compilable code: 

a. Handle simple, straight-line interpreter sequences and 

short interpreter sequences not containing loops by emitting 

equivalent code. 

b. Handle complex interpreter sequences, especially those 

containing embedded subroutine calls or loops, by emitting calls 

to interpretive subroutines. In emitting such calls, also emit 

any additional data necessary to give the global optimizer OPT 

which will process the emitted code) whatever information needs 

concerning the effect of the calls. 
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4. Name Protection; File and Overlay Semantics. 

The incremental compilation of subroutines containing ever­

new variable names creates the danger of accidental name colli­

sions, to prevent which a system of name protection is 

required. ~he BALM name protection mechanism is limited and 

not fully satisfactory, and we shall now propose a scheme 

which it is hoped will be more adequate. This name protection 

scheme will function within a larger semantic framework in 

which file and program overlay facilities will also be supported. 

These latter facilities are sufficient to make our extended 

LITTLE system relatively independent of external file cataloging 

and loader programs. 

In the scheme now to be described, names will be known only 

within single overlays; the overlay will also define the 

framework within which names are protected. For this reason, the 

next few paragraphs of discussion assume some single overlay 0 

as their underlying logical frame of reference. Blocks of code 

can be added to Oby incremental comHilation. Immediately 

prior to such an addition, O will contain the code produced by 

earlier compilations. Within 0, certain permanent name groups will be 

open. Only the 'permanent names' in these groups will be accessible 

during the compilation of additional code. During a single 

compilation, a group of several subprocedures, plus one main 

program, can be added to 0. In accordance with the latest LITTLE 

namescoping conventions, all names global to more than one of 

these procedures must be declared and dimensioned within one 

of several NAMESET groups prefixed to the subroutine. To allow 

these names to be identified with names global within prior 

compilations, we allow names declared within a NAMESET group 

to be identified with names belonging to some permanent name 

group of O. 

Specific conventions might be as follows. A nameset N, with 

defining text opened by 

NAMESET <name>; 



LITTLE 29-12 

might be allowed to contain declarations of the form 

ACCESS <name1 >, ... , <namek>; 

which lists various permanent name groups and makes them available 

within the nameset. Identifying dectarations having the form 

<name1 > = <name2>_<permanent_group_name>; 

would also be allowed within the defining text of N. Such a 

declaration identifies the name name 1 of N with the narr.e name 2 
of the permanent name group P indicated in the declaration. 

Where name 2 is unambiguous even 

shorter form 

could be permitted. 

Pis not mentioned, the 

Note that names declared equivalent to previously existing 

permanent names should not be either SIZE'd, dimensioned,or 

equivalenced in the namesets in which they appear, since they will 

inherit their semantic characteristics from preceding declarations. 

All the code presented for compilation during one single 

pass of the proposed incremental compiler will optimized 

at once by a global process which operates across subroutine 

boundaries. This global optimization process can, of course, 

make use of information concerning previously compiled subroutines 

if the LITTLE system keeps such information available. Subroutines 

compiled in later compilation passes can call upon subroutines 

compiled in early passes, but not vice-versa. 

Note that we propose to compile and place subroutines in the 

static manner presently characteristic of LITTLE rather than 

in the dynamic BALM manner. Static compilation is somewhat 

preferable to dynamic from the point of view of efficiency, but 

yields a substantially less flexible semantic environment. 

In particular, static compilation permits neither the redefini­

tion of previously compiled code blocks nor the software-controlled 

paging out of inactive subroutines. We propose to obtain semantic 

effects this type, to the limited extent that they are ordinarily 

necessary, by use of an overlay feature, to be described below. 

However, it must be admitted that this design decision deserves review. 
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Following the body of code to be compiled during a single 

phase of incremental compilation, we place a series of 

declarations which modify the permanent name set information 

to be held with O, deleting some names and namesets, and 

adding others. Proposed forms for these declarations, together 

with brief explanations of their intended effects, are as 

follows: 

A. Purge. 

PURGE <permanent_nameset_name>; 

removes a nameset from the list of permanent namesets, making 

all names referenced from within this nameset inaccessible 

subsequently. 

PURGE <permanent_nameset_name> (<name_list>); 

where <name_list> is a list of names belonging to the 

indicated permanent nameset PNS, keeps PNS in existence, but 

removes the listed names from PNS, making them inaccessible 

subsequently. Similarly, 

PURGE <permanent_nameset_name>(-<name_list>); 

removes all names but those listed from PNS, making them 

inaccessible subsequently. 

To establish new permanent namesets, we provide a 

composite declaration whose first line is 

PERMANENT <permanent_nameset_name>; 

This can then be followed by declarations of the form 

ACCESS <name1 >, ... , <name 2 >; 

which list various global namesets and make them available 

within the permanent nameset PNS. Identifying declarations 

having the form 

<name1 > = <name 2>_<nameset_name>; 

would also be permitted within the defining text of PNS. 
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Such a declaration identifies the name name
1 

of PNS with the 

name name
8 

of the nameset indicated in the declaration. 

We propose the following semantic conventions and primitives 

for file manipulation. 

A. At any moment, some particular collection of file names 

will be known to the extended LITTLE system. Writing onto a 

file of unknown name will.create a file with this name, initially 

rewound and empty. 

An·attempt to read from a file of unknown name will be 

treated as an error; however, a primitive allowing LITTLE to 

REQUEST the operating system to supply a file and give it a 

specified name will be provided. 

B. The primitive 

DROP F; 

makes the file name F unknown. 

COPY (F,F') 

copies F to F' and leaves both files rewound. 

APPEND (FI F') 

appends F to F'. (More flexible serial file primitives, providing 

record marks of various levels, and alling records to be copied, 

are probably desirable.) 

Some files cataloged in the LITTLE system will be flagged as 

overlays. Such files have a special structure; in particular, 

control can be transferred to them. For transfer of control 

between overlays, we propose the following conventions and 

primitives. 

a. At any moment, an overlay O contains a certain family 

of compiled code blocks. Moreover, the variables owned by, and 

accessible to, those code blocks have certain values. In addi­

tion, the common recursion STACK used by the code blocks in O 

makes available certain information. Note that the information 

available within an overlay falls into three classes: STATIC 

information, stored in variables and arrays declared within 

indi vi.dual subroutines; information stored on the common 
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recursion STACK; and information stored in the common HEAP, 

and accessed through variables declared as POINTER. One of 

the code blocks contained in O is O's main program; the 

other code blocks are subprocedures. 

b. A block of code compiled to O (either by O itself 

or by some other overlay O') consists of a main program 

(possibly null) and a group of subprocedures. The subprocedures 

are added to the total coilection of subprocedures available 

within O;STATIC variables referenced within these new procedures 

and declared(via the 'permanent names' mechanism discussed 

above) to be identical with variables in previously existing 

procedures are identified in appropriate fashion with previous 

variables. 

A newly compiled main program replaces the previous main 

program. 

c. A special variable, of type pointer, with the permanent 

name OPARAMETER, is available in every overlay O. This is used 

tor transmitting parameters to O during overlay aall (see below). 

Note that when control passes out of the end of the main program 

of whatever overlay O is executing, an attempt is made to read 

additional instructions from the current 'code source' file. 

Execution terminates if this file is found to be empty (this 

last convention is the same as that of BALM.) 

d. Several overlay call primitives are provided. 

i. OVERLAY O (p) 

sets the overlay parameter of Oto point to a heap item which is 

a copy of the heap item p, and returns control to O. Note that 

this type of control transfer is semantically similar to a coroutine 

call. 

ii. OVERCALL O(f,p1 , ... ,pn) 

Here f must be a string of the form 

PERMANENTNAMESETNAffil FUNCTIONNAME. 

This string.must identify a subroutine entry accessible (through 

the abcve·· described permanent names mechanism) within O. When 
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executed from within an overlay O' this overlay primitive 

replaces the main program of Oby a program equivalent to 

POINTER P; 

P = FUNCTIONAME (p1 , ••• ,pn); 

OVERLAY O' (P) 

and transfers control to the newly constructed main routine of O. 

The primitive 

SAVEALL(S) 

has a string S as its argument. This string names a file 

known to the operating system within which our extended LITTLE 

system is supported. When SAVEALL is executed, a copy of 

the entire state of the LITTLE system is written to the file S, 

and execution terminates. When the operating system is ordered 

to re-initiate the extended LITTLE system, this file is passed 

to a RESUMEALL primitive, the system is restored, and execution 

proceeds exactly as if the SAVEALL primitive had never been 

executed. When it is restarted, the LITTLE system accepts a 

number of files from the operating systelt\, substituting these 

for a like number of files internal to itself. The 'control card' 

for re-initiation might have a form something like the 

following: 

The primitive 

SAVE(FILENAME,O) 

where O means a~ overlay, writes into the named file a body of 

information saving the whole momentary state of the LITTLE 

system, except that the main program of O is reduced to null, 

and O is made the entry overlay for a subsequent resumption. 

Then, by saving FILENA1'1E (within the external operating system) 

we make available a file which allows LITTLE to be returned in 

a known configuration and. with control at o. 
A le created by copying an existing overlay, or by compiling 
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code into an initially empty file, is flagged as an overlay. 

Note in this connection that we allow one overlay to compile 

code into another. This is done by executing a statement 

COMPILETO <name>; 

before invoking the system compiler. Here, name designates 

a variable, whose value must be a strings; s names the overlay 

to which code produced by incremental compilation will then be 

directed. Ifs is the null string, code produced by compilation 

will be directed at the currently executing ove·rlay. 

We propose the following approach to the management of central 

memory during incremental compilation. Code blocks, with all 

their associated STATIC data areas, will be accumulated into 

low core. At the end of the section of core occupied by 

routines and STATIC data areas the heap will follow; the system 

STACK will be placed at the top of the available core area, 

and will grow toward low core. To gain space for the placement 

of more code {and STATIC data .areas) one can then use 

something very like an ordinary garbage-collector pass. 

It may be desirable to define a form in which standard 

infonnation, of a type useful to an optimizer, can be kept as part 

of an overlay 0. In such an auxiliary information block one 

could, for example, indicate the effect of compiled subroutines 

on data objects named in the permanent names groups associated 

with o. This would allow more precise optimization of subsequent 

increments of code. Of course, if such information is kept, it 

would have to be updated each time an increment of code was 

added to O. 

Simple utilities enabling a program to obtain a copy of the 

current file catalog, or a list of the permanent namesets and 

permanent names currently present in any overlay, are bound to 

be useful. 
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5. Syntax Macros. 

The BALM type of parse-tree oriented syntax macro combines 

simplicity and power in an attractive way. Macro schemes of 

this sort can be associated with any parsing scheme which 

uses tables generated manually and not involving· a great 

deal of delicate 'grammar balancing' .; and 

provided that complete parse trees for a section of source 

text are built before any pseudo-code is generated from this 

section of source text. Thus we may expect to be able to 

associate such macro schemes either with simple procedence 

parsers, nodal span parsers, or almost advancing top-down 

parsers driven directly by a context free grammar unsupplemented 

by programmed parse-time actions. In such a scheme, we define 

a macro by establishing an association between. two well-formed 

phrases P1 and P2 . Then, whenever a node matching P1 is 

encountered in a parse tree, it is replaced by a corresponding 

node matching P2 • For P1 to be a well fanned single clause 

(or, in a simple precedence grammar, for P1 to be recognized 

as a single phrase) it may be necessary to extend the grammar 

of the language being parsed (or, in a simple precedence parse, 

to extend the set of known operators and precedences). 

A syntax macro system of this type intended to be used with a 

parser based on a context-free grammar will require 

the following primitives: 

a) A pseudostatement adding productions to the grammar 

being used . 

. b) A pseudostatement of some such form as 

PHRASE <string1 > HASMEANING <string2 > END_, 

in which string
1 

and string 2 are both sequences of intermixed 

(but distinguishably flagged and individually distinguished) 

clause type names and literal tokens. This pseudostatement 

establishes a new syntax macro. To establish this macro, 



LITTLE 29-19 

string 1 and string2 are parsed using the context free grammar 

as it currently stands; each of these strings must be uniquely 

recognizable as a clause, so that two treelets treelet
1 

and 

treelet 2 result from parsing these two strings. 

c) Subsequently, whenever the structure treelet 1 is found 

in a parse tree, the structure treelet2 is substituted for it. 

d) A primitive which drops a macro is bound to be useful. 

A syntax macro system '(like that of BALM) intended for use 

with a simple precedence parse is very similar, except that 

(a) a pseudostatement defining new operators and precedences 

is used instead of one defining new grammatical product, and 

(b) individually distinguishable symbols designating subclauses 

(which of course have no types) are used instead of clause 

type names in string1 and string2 . 

If instead of the generating top-down parse interpreter 

proposed at the start of section 3, one elects to use a 

parser of simple precedence, nodal span, or tree-building 

top-down type, syntax macros of the BALM type can be made 

available as a direct part of the parser. In the contrary 

case, this type of syntax macro can be made available by 

interposing a precedence-driven preprocesser between whatever 

parser is used and the lexical scru1ner feeding it. 

6. A Concluding Remark. 

A scheme like that which has been proposed seems to me to 

express much of what is central to the semantic level to which 

it is addressed, at which level we face the problems of syntactic 

and semantic definition of monoprocess languages, and of the reali­

zation of these languages with a fair degree of efficiency. 

Of course, the problems connected with optimization are 

inexhaustible. Moreover, for certain areas of application 
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and certain levels of language, the use of appropriate optimi­

zation techniques can improve efficiency very greatly. 

Moreover, one will continually wish to search for algebras of 

objects and transoformations useful in connection with particular 

application areas, the more general, the better; and to seek 

syntactic forms well adapted to a vareity of application areas. 

It appears to me that in ·this, and in optimization studies, we 

have the truly interesting directions of future monoprocess 

language work. Note in this connection that SETL derives its 

interest from the generality and power of the set-theoretic 

operations which it embodies. 

The inclusion of semantic facilities fundamentally different 

from those customarily provided by monoprocess languages raises 

other issues; though perhaps in some cases these facilities 

could be added to the semantic framework described above 

without straining this framework over-much. The most distinctly 

different semantic facilities would be those connected with 

parallel processing, interrupt handling and condition monitoring, 

process protection and error recovery, and non-deterministic 

execution. However, non-deterministic execution appears to be 

a specialized technique useful largely in connection with 

backtrack algorithms and certain particular kinds of artificial .intelli­

gence applications, while the other semantic facilities which 

have just been mentioned are probably most useful in connection 

with the creation of operating and real time control systems 

and possibly also in connection with discrete simulation 

languages). For this reason, it is probably well to undertake 

the actual implementation of these semantic facilities only in 

connection with fairly extensive operating-system studies, and 

possibly only in connection with an operating system implementation 

project. 

In a practical vein, it may be remarked that the inclusion into 

extended LITTLE of generalized left-hand sides (possibly without 

nesting) and the 'flow' (or 'tree') form of conditional would 

enhance tre language to a noticeable degree. 




