
1l
I _!
i I ~-
! j '

LIT'l!LE Newsletter 29

A Mediuin-·Level Semantic Environment

Based on LITTLE

Table of Contents

1. Introduction

September 1, 1973

J. Schwartz

2. 'Heap' and 'Stack' Related Semantics; Atomic Types.

3. Parsing, Interpretation, Compilation

4. Name Protection; File and Overlay Semantics.

5. Syntax Macros.

6. A Concluding Remark.

1. Introduction.

This newsletter distills a series of reflections on BALM,

and proposes a similar, but possibly more powerful and more

easily learned, semantic environment.

BALM extracts very considerable semantic power from a very

lean set of sources. Moreover, it attains quite a decent level

of efficiency when compiled. For these ·reasons, it repays

study. We see the following bases for its success.

i. It incorporates a garbage collector.

ii. Peephole-optimized, translation of BALM-machine code

proves to yield reasonably efficient target machine code.

iii. BALM' s recursive semantics makes it easy to manipulate

parse trees and hence to express the BALM compiler in BALM.

iv. Simple precedence parsing meshes quite nicely with

the 'MEANS' tree-·macro scheme, to attain a surprisingly high

degree of syntactic extensibility.

Against these indisputable advantages we may set a number

of disadvantages:

a. The BALM-machine operations are somewhat too far front

physical machine operations and too lean for it to be possible

to create highly efficient target code using BALM. Thus it is

not reasonable to use BALM 'to write either its own garbage

LITTLE 29-2

collector, a BALM interpreter, or an interpreter for another

language. Part of the problem here is that the very dynamic

nature of BALM makes global optimization difficult; at any

rate, no global optimizer is part of the present BALM system.

b. Too much detail concerning internal syntax-tree forms

must be learned in making BALM extensions, especially the case

of languages involving high degrees of syntactic transformation

(consider, for example, the case of a language incorporating a

rich system of declarations).

Other, less central criticisms of BALM will be implicit in

some of the detailed proposals to follow. The semantic environ­

ment to be proposed will preserve feature (b) of BALM, and will

permit peephole-optimized translation (of a very wide variety

of source languages, into LITTLE; the use of LITTLE makes

available globally optimized final translation down to machine

level.) We will abandon the BALM machine, the use of a fixed

system of recursion and parameter passing (BALM feature (iii}),

and the particular style of precedence parsing used in BALM

(feature (iv)). In justification of abandoning feature (iii},

we note that nearly all the BALM machine operations are quite trivial.

The creation of. an interpreter for the BALM machine or any other.

pseudo-machine opcode system of similar functional level is

routine, or at any rate no more difficult than the translation

of the pseudo-ops of such a machine into BALM-machine operation

sequences. Note also that we shall outline a scheme which

makes it relatively easy to define a compiler for a pseudo-machine

opcode system once an interpreter for the pseudo-ops is available.

In justification of abandoning (iv), note that pure precedence

parsing imposes a cramped syntactic style, deficient especialiy

in the level of its diagnostics. It may therefore be argued

that a more flexible parsing system, as for example advancing

top-down parsing, should be used; in a supportive semantic

environment, it will certainly not be hard to write parsers

of this style for a variety of languages.

LI'rTLE 29-3

2. 1 Heap 1
- and 1 Stack 1 -related Semantics; Atomic Types.

We proceed to propose a semantic environment as a follow-on

to BALM. Oversimplifying,we may define this semantic environment

by the phrase, 'LITTLE, plus a stack, a heap, and garbage collec­

tion. 1 The stack can be represented in LIT'I'LE by two global

variables STACK (an array, of indefinite length), STACKTOP (a pointer

to the current top of STACK) and a function RESERVE (which ensures

that a specified part of the stack is protected against over-write

by the competing heap).

The semantics proposed for the heap-related functions are

essentially those implemented by Hank Warren's SRTL garbage

collector. Specifically, heap blocks of specified size can be

allocated; once allocated, a block is referenced by a variable

of type pointer (a 'TACK'ed variable, in the current SRTL notation).

A heap block contains both an initial pointer-free portion and a

terminal part containing pointers, each word of the terminal part

containing 1,2, or 3 pointers plus a field indicating the

number of pointers present. A polished 'extended LITTLE'

syntax would allow pointers to be declared directly, perhaps in

the syntactic form

POINTER P(INITIALPARTSIZE);

Following such a declaration, one could allocate a new heap block

to P, perhaps using the syntax

P = ALLOCATE(INITIALPARTLENGTH,TERMINALPARTLENGTH);

He.re, the parameter INITIALPARTSIZE g-ives the normal word size

into which the initial pointer-free portion of the block allocated

to P will be divided. The syntactic form P(I) could be used,

sinister or dexter, to reference the I-th word of the initial

part of the allocated block; the syntactic form P[I] could be used

to reference the I-th word of the block's terminal portion.

The word P[I] can hold a number of pointers (in the SRTL garbage

collector, up to 3). It is reasonable to provide several standard

LITTLE29-4

field names (such as APOINTER, BPOINTER, CPOINTER) to reference

these fields, and an associated special fieldname NUMPOINTERS

to reference the 'flag' field within P[I] which states the

number of pointers contained in P[I]. Finally, one will wish

to provide special field names which extract the initial part

length and the final part length

of the block allocated to P.

Syntactically much less polished but semantically almost

equivalent facilities can be provided in the present LITTLE

system by using macros. It is necessary to represent a

pointer P by two associated names, which we shall call P and

PPTR. The first is a macro, the second a variable which can

hold an index referencing the start of a block allocated out

of the heap. The following LITTLE macro makes available a

kind of 'declaration' which can be used to create additional

pointers.

+* POINTER(P,PPTR) = TACK(PPTR);

MACDEF(P(I) = HEAP(I+PPTR)) **

(See SETL Newsletter 73 for a description of the macros TACK

and MACDEF used here).

Most of the subfield extractors mentioned above are provided

by macros already available in the SRTL library.

ALLOCATE can be made available as a subroutine. Note that

the POINTER macro given above does not allow the construction

P[I] to be used; instead, one must write P(I+OFFSET), where

the variable OFFSET locates the rst word of the second part

of the block allocated to P.

It is appropriate to provide a number of important atomic

data types in our extended LITTLE. Real numbers, always of

some fixed machine-dependent size REALSIZE are desirable, as are

signed integers involving the usual machine dependencies

LITTLE 29-5

(sum of positive integers may be negative, and sum of

negative integers may be positive, in the 'overflow' case;

the bit format of a negative integer is inscrutable).

A possible form of declaration for such quantities is:

SIZE A(REAL), I(INTEGER);

A few conversion functions are naturally associated with

signed integer and real quantities.

SIGNAB (I)

•converts a quantity of declared type INTEGER to a LITTLE

bit-string representing the same quantity in sign-magnitude

form, and vice-versa. This same function yields the sign and

magnitude of the mantissa of a quantity declared as type

REAL; the function

ESIGNAB (R)

yields the sign and magnitude of the exponent of a REAL quantity

R. The function

MAKREAL {E ,M)

forms a real quantity R from two bit-strings E and M, which

respectively give the exponent and the mantissa of R in sign­

magnitude form.

Lexical forms for real and signed-integer constants must

of course be provided.

Since even the most elementary language-processing applications

are apt to require it, and since it is easy to do so, we propose

to provide SETL atoms of type ~ong, heap-stored)string as part of

our expanded LITTLE. Because it is equally easy, and to head off

the creation of SETL-nonstandard bit-string types, we also propose

to provide SETL atoms of type (long) bitstring. In our expanded

LITTLE, these objects (which are stored in the heap area) will

be of declared type pointer. With strings and bitstrings, the

operations extract, insert, catenate, and copy should be provided;

LITTLE 29-6

each of these operators yielding an object of the same (SETL

heap) type as the object to which it is applied. Modified

extract and insert operators, which obtain or insert a LITTLE

character or bit string from (or to) a SETL character or

bit string are desirable also. Boolean operators applying

to long bit-strings are appropriate, as are equality and

inequality functions for ~ong character and bit strings.

Finally, since it is easy and probably useful to do so, we

may wish to provide standard hash functions applying to all

the types of atoms which have been mentioned; this will

facilitate and standardize the use of hashed searches.

Of course our extended LITTLE will, like standard LITTLE,

include a full complement, of I/0 primitives.

3. Parsing, Interpretation, Compilation.

We propose to use a parsing scheme built on the type of

advancing top-down parser already used for parsing LITTLE.

{A detailed description of this type of parser found in

Stephanie Brown's Top-Down Metaparser User's Guide.)

However, we suggest a few variations in overall approach which

should further improve the case of use of this parsing scheme.

a. All the parsers will use a fixed parse interpreter.

The parse interpreter (written in LITTLE) will be called as

a subroutine from a parse controller. This controller routine

will normally incorporate all the 1 rpak 1 generator code of

our present approach; in addition, it will transmit all required

arguments to the parse interpreter, call the lexical scanner and

pass· tokens to tl1e parse interpreter, and 'own' the parse

interpreter stack, thus making a fixed parse interpreter useable

with several separate input languages. The parse controller

will build a body of interpretable text or pseudo-code and pass it

to an interpreter-compiler either for interpretation or for

compilation. (Note, however, that this interpretable text

could also be passed to a high-level program analyzer-optimizer,

LITTLE 29-7

allowing high-level optimization to be performed prior to

either interpretation or low-level compilation-optimization.)

A pseudo-code interpreter normally examines the pseudo­

operation field of each pseudo-code item submitted to it, does

an indexed transfer to the particular code sequence which

interprets this item, an~ on completing the interpretation of

the item, loops back to examine the next pseudo-code item in

turn. To convert an interpreter to a compiler, the following

scheme, which treats ordinary (i.e., non-transfer) pseudo-code

items one way, and transfer items in a more complex way,

can be used:

a. Instead of interpreting an ordinary pseudo-op item,

emit (into an output code file) the code which would otherwise

interpret it.

b. To handle a pseudo-code item of transfer type,

emit code which will cause an execution-time

transfer having a target label corresponding exactly to th~

point from interpretation would continue were the pseudo-code

being interpreted. Note that for this to be convenient it

may be necessary to include explicit 'label' pseudo-items in

all pseudo-code text.

c. Pseudo-code items of procedure-call type raise more

serious semantic problems, which we approach as follows.

In order not to impose the detailed LITTLE call semantics

(in particular, its argument-transmission features) on other

languages compiled via the system we are describing, we

will often prefer to compile pseudo-operations of call type

as LITTLE "GO-TO"s rather than as LITTLE "CALL"s. For this

to be possible, we must be able to assign labels (in

particular, return labels) to variables. Thu~ the.extended LITTLE

language must include an instruction which transfers

control to the value of a variable. Similarly we will normally

wish to avoid having the LI'rTLE rules governing actual parameter

to formal parameter size correspondence. influence the other

:i:.,ITTLE 29-8

languages compiled via the system we are describing. E'or

this reason we will often demand that all data objects

appearing in emitted code be global and of one of a few

allowed sizes. This means that argument transmission

patterns, as well as the manner in which the variously

structured data objects of the pseudo code being compiled

are represented in terms of much more highly standardized.

LITTLE objects, will be shown explicitly in the LITTLE code

which we emit.

To facilitate the writing, in LITTLE, of pseudo-code

compilers of the kind just described, and to make easy the

transition between interpreters and compilers for the same

type of pseudo-code, we propose the following syntactic and

semantic extensions, which seem quite adequate though they

do not support dynamic definability to the same extent as

do more standard interpretive macroprocessors:

A line L of LITTLE code prefixed by the symbol•~• will

be emitted rather than compiled. Other lines will be executed

in the normal way. Emission will be governed by the following

conventions.

a. Names N appearing in L but not declared in the LITTLE

subprocedure P containing L will be emitted literally,as strings.

b. If a name N appears in L and is declared in P its value

V will be converted to a string and emitted in place of the

name. The manner in which Vis converted will depend on the

manner in which N has been declared. If N is declared using

an ordinary SIZE statement, then its value will be converted

to .a positive integer in decimal representation. The values

of names declared as signed integers (resp. real quantities)

will be emitted in signed decimal (resp. approximate scientific

decimal) form.

c. An auxiliary declaration calling for Hollerith string

conversion will be provided. This allows names to be passed

to Pas parameters. Note that our conventions also allow new

tokens to be formed by concatenation.

LITTLE 29-9

To convert an interpreter to a compiler, one will in the

simplest cases have little more to do than to prefix some of the

the lines of the interpreter with the sign 1 -+ 1 thereby causing

them to be emitted rather than executed.

Emission-compilation has several advantages (in regard to

efficiency) over interpretation. Compilation draws together,

into physical sequence, operations which will be performed ·

seri.ally. More significantly, it makes manifest the distinc­

tion between calculations which need only be performed once

(at 'compile time') and calculations which will have to be

performed repeatedly (during 'execution time'). Normally

an interpreter cannot spend a great deal of time examining

the context in which an .operation is to be interpreted so as to

find an efficient manner of interpretation. An emitter-compiler

can do just this, since a single instruction emitted by it may

be executed repeatedly. Thus a good deal of peephole

optimization can be associated with a compiler-emitter.

Moreover, the code which is emitted can be subjected to global

optimization before being converted to machine code.

'Local' or 'peephole' optimization can easily be perfonned

by an emitter-compiler program. To provide this type of

optimization, one adds to the emitter-compiler code which looks

for special, efficiently compilable local sequences in the

pseudo code sequence being processed, and emits modified target

code for these sequences. It is natural in doing this to

employ a small amount of 'lookahead', i.e., to examine pseudo­

instructions following a few places behind that for which code

is next to be emitted. An emitter-compiler may also incorporate

some appropriately designed finite-state automaton, which

can keep track of the changing context (determined by

pseudo-operations already processed and code already emitted)

in which code is to be emitted.

'I'he occurrence of a label in the pseudo-code stream, and

eipecially the occurrence of a label which is the target of a

backward branch, creates problems for a

LITTLE 29-10

peephold optimizer, which may be forced to make severely

restrictive 'worst case 1 assumptions about the situation

prevailing immediately after a label has been passed. This

difficulty can be remedied if a global optimizer is made

available. We may regard the global optimizer as a program

which attaches auxiliary information to each label. This informa­

tion permits the peephole optimizer to make more favorable.assump-

tions than would otherwise be possible concerning the context

prevailing immediately after a label has been passed; in many

cases, this greatly improves the quality of code that can

be generated.

The type of code fragment which a post-emitter optimization

process OPT will find it easiest to deal with is the

straight-line fragment containing no imbedded loops or sub­

routine calls (forward branches are not so problematical as

loops). On the other hand, it is relatively less important

to compile (rather than to interpret) code containing loops than

to compile straight line code, since all that is obtained is an

'outer loop' rather than an 'inner loop' benefit. It is important,

however,to transmit to OPT all information defining the

variables used, modified, etc. in an interpreted loop.

This suggests the following approach

to the transformation of interpretable text into compilable code:

a. Handle simple, straight-line interpreter sequences and

short interpreter sequences not containing loops by emitting

equivalent code.

b. Handle complex interpreter sequences, especially those

containing embedded subroutine calls or loops, by emitting calls

to interpretive subroutines. In emitting such calls, also emit

any additional data necessary to give the global optimizer OPT

which will process the emitted code) whatever information needs

concerning the effect of the calls.

LITTLE 29-11

4. Name Protection; File and Overlay Semantics.

The incremental compilation of subroutines containing ever­

new variable names creates the danger of accidental name colli­

sions, to prevent which a system of name protection is

required. ~he BALM name protection mechanism is limited and

not fully satisfactory, and we shall now propose a scheme

which it is hoped will be more adequate. This name protection

scheme will function within a larger semantic framework in

which file and program overlay facilities will also be supported.

These latter facilities are sufficient to make our extended

LITTLE system relatively independent of external file cataloging

and loader programs.

In the scheme now to be described, names will be known only

within single overlays; the overlay will also define the

framework within which names are protected. For this reason, the

next few paragraphs of discussion assume some single overlay 0

as their underlying logical frame of reference. Blocks of code

can be added to Oby incremental comHilation. Immediately

prior to such an addition, O will contain the code produced by

earlier compilations. Within 0, certain permanent name groups will be

open. Only the 'permanent names' in these groups will be accessible

during the compilation of additional code. During a single

compilation, a group of several subprocedures, plus one main

program, can be added to 0. In accordance with the latest LITTLE

namescoping conventions, all names global to more than one of

these procedures must be declared and dimensioned within one

of several NAMESET groups prefixed to the subroutine. To allow

these names to be identified with names global within prior

compilations, we allow names declared within a NAMESET group

to be identified with names belonging to some permanent name

group of O.

Specific conventions might be as follows. A nameset N, with

defining text opened by

NAMESET <name>;

LITTLE 29-12

might be allowed to contain declarations of the form

ACCESS <name1 >, ... , <namek>;

which lists various permanent name groups and makes them available

within the nameset. Identifying dectarations having the form

<name1 > = <name2>_<permanent_group_name>;

would also be allowed within the defining text of N. Such a

declaration identifies the name name 1 of N with the narr.e name 2
of the permanent name group P indicated in the declaration.

Where name 2 is unambiguous even

shorter form

could be permitted.

Pis not mentioned, the

Note that names declared equivalent to previously existing

permanent names should not be either SIZE'd, dimensioned,or

equivalenced in the namesets in which they appear, since they will

inherit their semantic characteristics from preceding declarations.

All the code presented for compilation during one single

pass of the proposed incremental compiler will optimized

at once by a global process which operates across subroutine

boundaries. This global optimization process can, of course,

make use of information concerning previously compiled subroutines

if the LITTLE system keeps such information available. Subroutines

compiled in later compilation passes can call upon subroutines

compiled in early passes, but not vice-versa.

Note that we propose to compile and place subroutines in the

static manner presently characteristic of LITTLE rather than

in the dynamic BALM manner. Static compilation is somewhat

preferable to dynamic from the point of view of efficiency, but

yields a substantially less flexible semantic environment.

In particular, static compilation permits neither the redefini­

tion of previously compiled code blocks nor the software-controlled

paging out of inactive subroutines. We propose to obtain semantic

effects this type, to the limited extent that they are ordinarily

necessary, by use of an overlay feature, to be described below.

However, it must be admitted that this design decision deserves review.

LITTLE 29-13

Following the body of code to be compiled during a single

phase of incremental compilation, we place a series of

declarations which modify the permanent name set information

to be held with O, deleting some names and namesets, and

adding others. Proposed forms for these declarations, together

with brief explanations of their intended effects, are as

follows:

A. Purge.

PURGE <permanent_nameset_name>;

removes a nameset from the list of permanent namesets, making

all names referenced from within this nameset inaccessible

subsequently.

PURGE <permanent_nameset_name> (<name_list>);

where <name_list> is a list of names belonging to the

indicated permanent nameset PNS, keeps PNS in existence, but

removes the listed names from PNS, making them inaccessible

subsequently. Similarly,

PURGE <permanent_nameset_name>(-<name_list>);

removes all names but those listed from PNS, making them

inaccessible subsequently.

To establish new permanent namesets, we provide a

composite declaration whose first line is

PERMANENT <permanent_nameset_name>;

This can then be followed by declarations of the form

ACCESS <name1 >, ... , <name 2 >;

which list various global namesets and make them available

within the permanent nameset PNS. Identifying declarations

having the form

<name1 > = <name 2>_<nameset_name>;

would also be permitted within the defining text of PNS.

LITTLE 29-14

Such a declaration identifies the name name
1

of PNS with the

name name
8

of the nameset indicated in the declaration.

We propose the following semantic conventions and primitives

for file manipulation.

A. At any moment, some particular collection of file names

will be known to the extended LITTLE system. Writing onto a

file of unknown name will.create a file with this name, initially

rewound and empty.

An·attempt to read from a file of unknown name will be

treated as an error; however, a primitive allowing LITTLE to

REQUEST the operating system to supply a file and give it a

specified name will be provided.

B. The primitive

DROP F;

makes the file name F unknown.

COPY (F,F')

copies F to F' and leaves both files rewound.

APPEND (FI F')

appends F to F'. (More flexible serial file primitives, providing

record marks of various levels, and alling records to be copied,

are probably desirable.)

Some files cataloged in the LITTLE system will be flagged as

overlays. Such files have a special structure; in particular,

control can be transferred to them. For transfer of control

between overlays, we propose the following conventions and

primitives.

a. At any moment, an overlay O contains a certain family

of compiled code blocks. Moreover, the variables owned by, and

accessible to, those code blocks have certain values. In addi­

tion, the common recursion STACK used by the code blocks in O

makes available certain information. Note that the information

available within an overlay falls into three classes: STATIC

information, stored in variables and arrays declared within

indi vi.dual subroutines; information stored on the common

LITTLE 29-15

recursion STACK; and information stored in the common HEAP,

and accessed through variables declared as POINTER. One of

the code blocks contained in O is O's main program; the

other code blocks are subprocedures.

b. A block of code compiled to O (either by O itself

or by some other overlay O') consists of a main program

(possibly null) and a group of subprocedures. The subprocedures

are added to the total coilection of subprocedures available

within O;STATIC variables referenced within these new procedures

and declared(via the 'permanent names' mechanism discussed

above) to be identical with variables in previously existing

procedures are identified in appropriate fashion with previous

variables.

A newly compiled main program replaces the previous main

program.

c. A special variable, of type pointer, with the permanent

name OPARAMETER, is available in every overlay O. This is used

tor transmitting parameters to O during overlay aall (see below).

Note that when control passes out of the end of the main program

of whatever overlay O is executing, an attempt is made to read

additional instructions from the current 'code source' file.

Execution terminates if this file is found to be empty (this

last convention is the same as that of BALM.)

d. Several overlay call primitives are provided.

i. OVERLAY O (p)

sets the overlay parameter of Oto point to a heap item which is

a copy of the heap item p, and returns control to O. Note that

this type of control transfer is semantically similar to a coroutine

call.

ii. OVERCALL O(f,p1 , ... ,pn)

Here f must be a string of the form

PERMANENTNAMESETNAffil FUNCTIONNAME.

This string.must identify a subroutine entry accessible (through

the abcve·· described permanent names mechanism) within O. When

LI'.PTLE 29-16

executed from within an overlay O' this overlay primitive

replaces the main program of Oby a program equivalent to

POINTER P;

P = FUNCTIONAME (p1 , ••• ,pn);

OVERLAY O' (P)

and transfers control to the newly constructed main routine of O.

The primitive

SAVEALL(S)

has a string S as its argument. This string names a file

known to the operating system within which our extended LITTLE

system is supported. When SAVEALL is executed, a copy of

the entire state of the LITTLE system is written to the file S,

and execution terminates. When the operating system is ordered

to re-initiate the extended LITTLE system, this file is passed

to a RESUMEALL primitive, the system is restored, and execution

proceeds exactly as if the SAVEALL primitive had never been

executed. When it is restarted, the LITTLE system accepts a

number of files from the operating systelt\, substituting these

for a like number of files internal to itself. The 'control card'

for re-initiation might have a form something like the

following:

The primitive

SAVE(FILENAME,O)

where O means a~ overlay, writes into the named file a body of

information saving the whole momentary state of the LITTLE

system, except that the main program of O is reduced to null,

and O is made the entry overlay for a subsequent resumption.

Then, by saving FILENA1'1E (within the external operating system)

we make available a file which allows LITTLE to be returned in

a known configuration and. with control at o.
A le created by copying an existing overlay, or by compiling

LITTLE 29-17

code into an initially empty file, is flagged as an overlay.

Note in this connection that we allow one overlay to compile

code into another. This is done by executing a statement

COMPILETO <name>;

before invoking the system compiler. Here, name designates

a variable, whose value must be a strings; s names the overlay

to which code produced by incremental compilation will then be

directed. Ifs is the null string, code produced by compilation

will be directed at the currently executing ove·rlay.

We propose the following approach to the management of central

memory during incremental compilation. Code blocks, with all

their associated STATIC data areas, will be accumulated into

low core. At the end of the section of core occupied by

routines and STATIC data areas the heap will follow; the system

STACK will be placed at the top of the available core area,

and will grow toward low core. To gain space for the placement

of more code {and STATIC data .areas) one can then use

something very like an ordinary garbage-collector pass.

It may be desirable to define a form in which standard

infonnation, of a type useful to an optimizer, can be kept as part

of an overlay 0. In such an auxiliary information block one

could, for example, indicate the effect of compiled subroutines

on data objects named in the permanent names groups associated

with o. This would allow more precise optimization of subsequent

increments of code. Of course, if such information is kept, it

would have to be updated each time an increment of code was

added to O.

Simple utilities enabling a program to obtain a copy of the

current file catalog, or a list of the permanent namesets and

permanent names currently present in any overlay, are bound to

be useful.

LITTLE 29-18

5. Syntax Macros.

The BALM type of parse-tree oriented syntax macro combines

simplicity and power in an attractive way. Macro schemes of

this sort can be associated with any parsing scheme which

uses tables generated manually and not involving· a great

deal of delicate 'grammar balancing' .; and

provided that complete parse trees for a section of source

text are built before any pseudo-code is generated from this

section of source text. Thus we may expect to be able to

associate such macro schemes either with simple procedence

parsers, nodal span parsers, or almost advancing top-down

parsers driven directly by a context free grammar unsupplemented

by programmed parse-time actions. In such a scheme, we define

a macro by establishing an association between. two well-formed

phrases P1 and P2 . Then, whenever a node matching P1 is

encountered in a parse tree, it is replaced by a corresponding

node matching P2 • For P1 to be a well fanned single clause

(or, in a simple precedence grammar, for P1 to be recognized

as a single phrase) it may be necessary to extend the grammar

of the language being parsed (or, in a simple precedence parse,

to extend the set of known operators and precedences).

A syntax macro system of this type intended to be used with a

parser based on a context-free grammar will require

the following primitives:

a) A pseudostatement adding productions to the grammar

being used .

. b) A pseudostatement of some such form as

PHRASE <string1 > HASMEANING <string2 > END_,

in which string
1

and string 2 are both sequences of intermixed

(but distinguishably flagged and individually distinguished)

clause type names and literal tokens. This pseudostatement

establishes a new syntax macro. To establish this macro,

LITTLE 29-19

string 1 and string2 are parsed using the context free grammar

as it currently stands; each of these strings must be uniquely

recognizable as a clause, so that two treelets treelet
1

and

treelet 2 result from parsing these two strings.

c) Subsequently, whenever the structure treelet 1 is found

in a parse tree, the structure treelet2 is substituted for it.

d) A primitive which drops a macro is bound to be useful.

A syntax macro system '(like that of BALM) intended for use

with a simple precedence parse is very similar, except that

(a) a pseudostatement defining new operators and precedences

is used instead of one defining new grammatical product, and

(b) individually distinguishable symbols designating subclauses

(which of course have no types) are used instead of clause

type names in string1 and string2 .

If instead of the generating top-down parse interpreter

proposed at the start of section 3, one elects to use a

parser of simple precedence, nodal span, or tree-building

top-down type, syntax macros of the BALM type can be made

available as a direct part of the parser. In the contrary

case, this type of syntax macro can be made available by

interposing a precedence-driven preprocesser between whatever

parser is used and the lexical scru1ner feeding it.

6. A Concluding Remark.

A scheme like that which has been proposed seems to me to

express much of what is central to the semantic level to which

it is addressed, at which level we face the problems of syntactic

and semantic definition of monoprocess languages, and of the reali­

zation of these languages with a fair degree of efficiency.

Of course, the problems connected with optimization are

inexhaustible. Moreover, for certain areas of application

LITTLE 29-20

and certain levels of language, the use of appropriate optimi­

zation techniques can improve efficiency very greatly.

Moreover, one will continually wish to search for algebras of

objects and transoformations useful in connection with particular

application areas, the more general, the better; and to seek

syntactic forms well adapted to a vareity of application areas.

It appears to me that in ·this, and in optimization studies, we

have the truly interesting directions of future monoprocess

language work. Note in this connection that SETL derives its

interest from the generality and power of the set-theoretic

operations which it embodies.

The inclusion of semantic facilities fundamentally different

from those customarily provided by monoprocess languages raises

other issues; though perhaps in some cases these facilities

could be added to the semantic framework described above

without straining this framework over-much. The most distinctly

different semantic facilities would be those connected with

parallel processing, interrupt handling and condition monitoring,

process protection and error recovery, and non-deterministic

execution. However, non-deterministic execution appears to be

a specialized technique useful largely in connection with

backtrack algorithms and certain particular kinds of artificial .intelli­

gence applications, while the other semantic facilities which

have just been mentioned are probably most useful in connection

with the creation of operating and real time control systems

and possibly also in connection with discrete simulation

languages). For this reason, it is probably well to undertake

the actual implementation of these semantic facilities only in

connection with fairly extensive operating-system studies, and

possibly only in connection with an operating system implementation

project.

In a practical vein, it may be remarked that the inclusion into

extended LITTLE of generalized left-hand sides (possibly without

nesting) and the 'flow' (or 'tree') form of conditional would

enhance tre language to a noticeable degree.

