
tJ SE..TL

Qyeral.l Im.pact of the Programaing PrC?bl•

l. ~ost (to users) of pro9ra-in9,

2. APAR coat.

3. Delay in i,•ple111entin9 application.,

•· Unpredictability ot larg~ projects.

Difficulty of er9Sra-ing is the main obstacle to the

application of computers.

An obvious technolo~ical iffitalance:

We are rapidly approaching a situation in which

•th generation hardware will be available -- but

progra.ung techniques are only 2nd generation.

Conclusion•

Substantial improvem,.,nts in all these r .. pecta

are attainable

••• Improved project predictability

2'. Debugging methods reducing APAR fix c011t

l '., 3' • Reduced progra=ing costJI

(Higher level language systeu1

hardware support to be worked out).

i ·
'

l
•

I

J I
•

•

Response to this problem:

'Modularization'

-- combat all pressures which lead to

interrelatedness of elements.
. '

use small number of powerful elements governed

by uniform simple conventions.

'Language of maximum expressivity'.

However:

Systematic modularization leads to diminished efficiency.

Expressivity-efficiency tradeoff.

Time,
memory

requirements

of
run

I
I
l
\

---before
~ optimization

with
~.,..;.::::...::--- optimization

Complexity (of program) ►

a: :s:::x,_ -.Lr ~------- --------- ------- ---·------

i ' ''
I

....

2 \
'

•

Sources of difficulty in programming

Programming is a construction process

Elements E1, ••. ,En successively chosen

Local context of element E.:
)

all aspects of other E's affecting choice of Ej.

'complexity'of local context of

Difficulty rises steeply with

D{c)

C

E. --- c (E.) •
))

I
I
I

' I
I
I
I

Total difficulty of completing program

Inefficient but highly c>;<pressive language

can be useful as prototyping too~

Two-stage programming technique.

Stage 1: Develop, debug algorithm using highly

expressive algorithm-oriented language

Stage 2: Transcribe algorithm to production

language, using higher level version

as 'developr,,ent matrix•.

Advantages

FUnction known in advance.

Able to test function adequacy.

Customer exposure to function.

Design known to be consistent.

Greatly .improved implementation predictability.

•

B. Uses in Universit~ or Laboratory Environment

Non-production experimental programs

Algorithm modeling and measure111ent

Programs used for bootstrapping

Documentation of algorithms for instruction .

•

Possible Mode of Application.

The 'programming test stand':

SO million inst/ sec micromachine with

16 million memory bytes

would appear as

computer of 7094 class with l million bytes of storage

on which

programming was speeded up by factor of 10

.
Successful data structure elaborations would

give practical programming tool for commercial

programming.range.

Sources of /\modularity and ~esponses

Problem l: 'All at once' design of function, logical structure,
efficient encoding:

Response: 'decision postponement':

break development into orderly stages:

solve initial parts of problem without foreclosing
possible approaches to remaining parts,

postpone choice of·encoding until logical structure
is worked out.

Problem 2: common relationship of many processes to a smaller
number of data structures.

Rigidity and specificity of code which reflects
data structure details.

Response~ Use logically powerful family of default data

structures which enable many others to be
modeled •.

Develop declaratory approach to details of data
structuring.

Allow functional treatment of storage sequences

corresponding to presently available functional
treatment of access sequences.

Allow declaratory specification of a v~riety of data

objects to which operators apply in an
object-dependent manner.

• - u $ \ ----......

l

1/ I
1

Problem 3: Present techniques require code to be written in

order of eventual execution, rat.her th~n in

logically most transparent arrangement.

1lesoo11se: Bre.uc with linear coding style, and allow:

'footnoted style'

'remote code' dictions

Study 'whenever• dictions

'non-deterministic branch' diction•

Problem ◄: Repetition of detail, with obligatory small variations,
because of lan9uage-problem mismatch.

Response: Develop extension mechanisms, especially to allow,
extensions of semantic object classes
available declarations

global, rather than merely local, transformations

of source text

0ev.,1op mechanisms for reference resolution

•

Problem :>:

Response:

25

Insufficiency of presently available

debugging tools.

Develop disciplined approach to statement

of pr09rammer assumptions.

Develop program-event oriented debugging language

Use high-level language to debug

lower-level production programs .

•

•

•

Attainable ~radcoffs:

FORTRAN - PL/1 Standard

Data expansion 1/l

Execution slowdown 1/l

Programming effort 1/1

High-Level Algor i thin Oriented Language

A. Without 'data strategy' elaborations

or hardware enhancement

Data expansion 8/1

Execution slowdown 30/1

Prograll1Tling speedup 10/1

B. With 'data strategy' elaborations, but

no hard1<are enhancement

c.

Data expansion 1/1

Execution slowdown S/1

Programming speedup 5/1

With elaborations and hardware

Data expansion 1/l

&xecution slowdown l.S/1

Programming speedup 5/1

enhancement

t

I
I

l

Basic objects; Sets and atoms. Sets •a~ have atoms or sets

as. members.

Atoms may be; Integer, real, bitstring, charstring, label,

subroutine, function

or: Blank. newat is blank atom creator.

Special undefined n

All standard operations provided for atoms

Qperations for

X C a . . .
a !9..b

au b

pow (a)

Tuples:

t (i)

Set former:

sets. {x} • {x,y,z), etc.

nt 'ill a

a ne b a incs

a u · {x} = a with X

a - . {x} -

•

hd t = t (1)

tuple x

{x C a C(x)}

·{e(x), x ca

a less X

tt t •

pair x

C (x)}

fa

b • etc.

·{e(x,y), x ca, y

·{e(n), • .!: n < llllD

Functional applic3tion:

c b(x) C(x,y)), etc.

I C(n)l

f(x} •·{tt x, x cf I pair xl

{ ,,) • if ff{x} .£!l 1 then ~f{x} else fl

l

Coo,pound operator:

[£P_: x c a) c(x)

Example: (+: x c a) e{x) - I e(x)
xca

Quan ti fie rs:

3x c a I C (x)

3[x] c a I C(x)

Yx c a I C (x)

Algol 60 conditional express i.ons.

111 < 3n .5 111111 I C (n)

• .5 3[n] < 11111 I C(n)

Statement forms: statements punctuated with semicolons.

a• ~xpn; <a,b> • expn;

f(a) • expn;

means: remove all tuples with first component a

from set f; then re-insert <a,expn>

Algol 60 if-then-else

go to <label>;

'

iteration headers:

(while<cond>) <block>;

or (while<cond>) <block> end while;

(Yx C a I C (x)) <block>;

(m ~ Yn < mm! C(n)) <block>;

(mm;: Yn > m C(n)) <block>; -
quit Yx · • continue Vx;

. j.
"'} ,• , ., . .,_

2

•

counting sort:

place c nt; (Vx c set) place(x) • l{y c set I f(y) .i.e f(x)};

en4 'fx;

Huffman encode:

huffcode ,. [+: 1 < n < ~cstring] hufc(cstring(n));

Huffman decode:

dehuf • nulc; node• top;

(1 ~ \In < fbstring)

newnode • if bstring(n) ~ I then .i.(11ode) else .r(node);

if newnode ~ n then

dehuf s dehuf + node; nodes top;

else node ~ newnode; end if; end \In;

Huffman tree:

work•chars; wfreq= freq; .t=nt _, r=nt;

(while twork &! 1)

cl • getmin work; c2 C getmin work;

nd -newat; .i. {nd) = cl· ' r(nd) • cZ·
'

wfreq(nd) • wfreq(cl) + wfreq(cZ);

work c work with nd;

end while;

top c)work; •

define£ getmin set; external wfreq;

minfreq • [min: x c set) wfreq(x);

xmin • j{x c set I wfreq(x) ~ minfreq};

set• set less xmin; return xmin; end getmin;

4

!
I

!
I .

TOPOLOCICAL SORT

Problem

Suppose we are gi•en & set Sol arbitrary objects together with a
p&rtia.l ordering P on S. Suppose P is given a-is a. aet of .pair• ~. b> with
a, b • S.

Arr&nse the members of S into a tuple T tuch that if a = T(i) and
b = TUI, and <a, b> t P (meaning a, b), then i ~;:

Solution

I. We select .>n arbitrary member x of S which has no predecessor,
• and append that to T CT ia initia1ly null).

z. Having successfully placed x in T, we delete x from S and alto
delete all pa.ir• beginning with x from P (if any exist).

3. We contioue this process until Sis null.

SETL Code

T = nult; -(while S ne nl)
x = a(y"';"sJ .!:!2!(Jpair •PI pair(Z) .tl y)};
T(IIT+l) = x;
S = S leas x;
P = P - {pair.i Pl pair(l) =x};
end while;

All order~d irec is a de~cendent (unction dcse(node, j) defined

!or j in some {i1,itc (possibly null) range.

A binary tr~c is a pair of descendent {unctions L and R (left and

right dcscendento).

The o~dered and binary trees stand in an interetti_ng 1-1 .relationship

tbat i• illustrated below.

Ordered Tree Binary Tree
,

B D

D<.:acendcnt FunctiOn De,cendent Functions

A I B L R

A 2 C A B B C

A 3 D B E C D

B I E D G E F"

B 2 F £ H
•

D I Ci

E I H

OTB:

BEGIN:

Ordered To Binary Tree Transforma,tion
'

define OTB(d~""• L, ll); '
L = {<x(I), x(3J>, x £ dcsc f x(Z) ~ i}·;
Rs (<x(3), y(3J>, x t desc, y i des~I x(l) £g_ y(l) and

(x(Z) + I) £9. y(2.)};
return;
end OTB;

PROCEDURE(DESC, L, IL, R, 1/R);
DECLARE I DESC(*},

2·0F.$Cl CHAR(SO} VARYING,
2 DESCZ FIXED BL'iAR Y,
2 D};SC3 CHAf{(SOl,;VAR YING;

DECLARE I L(•)) CONTROLLED,
2. (LI, L2} CHAR(50) VARYING;

DECLARE I R(•~) CONTROLLED,
"· 2. (RI, RZ) CHAR.(50) VARYING;

DECLARE (/;L, 1/R) FIXED BINARY;

ALLOCATE L(Ol}.l(DESC 1, 1));
ALLOCATE ll(DI:\-l(Dr:sc l. l));
DO l = I TO 011\-i(DJ•:sc I, 1 };

·Ll, L2 = 11 ;

Rl, ll2 = 11 ;

fL = O;

IR= O;

IF DESCZ'(l) = J THEN DO; i/L=/fL+J;
Ll(I/L) = DESCl(l);
LZ(I/L) = DESC3(I};
END;

DO J = I TO DIM(DESCl, l);
IF DESCl(J} = DESCJ(l) & DESCZ(J) = DESCZ(I) + I

THEN DO; i/R = ltR + I;
Rl(/iRl = DESC3(1);
RZ(#.R) = DESC3(J);
GO TO BUMP_!;
END;

END /* DO J •!;
BUt.-!P_l; END f* DO 1 */;

END OTB;

I'

I
I
Ii

	196_48
	196_49
	196_50
	196_51
	196_52
	196_53
	196_54
	196_55
	196_56
	196_57
	196_58
	196_59
	196_60
	196_61
	196_62

