- o Eeer) & .

__]. ;:.ﬁu Bl e

. :j s lf-f'r@' Se I--m,- =‘.:|_'t-"—}_ :’F;E-/ 2 y/',—/'rp

Overall Impact of the Programsing Problem

1.
2.
3.
4.

Cost (to users) of programming.
APER cost.

Delay in iaplementing applications.
Unpredictability of large projects.

Difficulty of programming is the main obstacle to the

application of computers.

An obvious technological imbalance: -~

We are rapidly approaching a situation in which

4th generation hardware will be available -~ but

pregramming techniques are only 2nd generation.

Conclusions

Substantial improvements in all these respects

are

4',
- 2%

attainahble

Improved project predictability

Debugging methods reducing APAR fix cost

1',3'. Reduced programming costs

(Higher level language systems;

hardware support to be worked out).

LS

A7

P 4

Response to this problem:

'Modularization®

== combat all pressures which lead to
interrelatedness of elements.

Use small number of powerful elements governed
by uniform simple conventions.

'‘Language of maximum expressivity’'.

However:

Systematic modularization leads to diminished efficiency.

Expressivity-efficiency tradeocff.

Time,

memory \
requirements

of \\

run

before
é//'l npt_{mi?.atiﬂn

with
optimization

Complexity (of program) —4—+

P

i

Sources of difficulty in programming

Frogramming is a construction process

Elements E ""'En successively chosen

|

Local context of element Ej:
all aspects of other E's affecting choice of Ej'

'‘Complexity' of local context of E:j - n{Ej}.

Difficulty rises steeply with c[Ej].

|
]
|
!
D{c) l
l
|
i
|

Total difficulty of completing program

DIOT = I]{:IIE_LH SR ‘D{cl’.EnH

Inefficient but highly expressive language

can be useful as prototyping tool

Two-stage programming technique.

Stage 1: Develop, debug algorithm using highly

expressive algorithm-oriented language

Stage 2: Transcribe algorithm to production
| language, using higher level version

as 'development matrix'.

Advantages

Function known in advance.

Able to test function adequacy.

Customer exposure to function.
Design known to be consistent.

Greatly improved implementation predictability.

T E—

79t

B. Uses in University or Laboratory Envircnment

Non-production experimental programs
Algorithm modeling and measurement

Programs used for bootstrapping

Pocumentation of algorithms for instruction.

Possible Mode of Application.

The 'programming test stand':

50 million inst / sec micromachine with
16 million memory bytes
would appear as

computer of 7094 class with 1 million bytes of storage

on which

Programming was speeded up by factor of 10

Successful data structure elaborations would

give practical pru'graming toel for commercial

programming range.

i

Sources of dmodularity and Responses

Problem 1:

Response:

Problem 2:

Response

'All at once' design of function, logical etructure,
efficient encoding;

'decision postponement':
break development into orderly stages:

solve initial parts of problem without foreclosing
possible approaches to remaining parts,

postpone choice of encoding until logical structure
is worked out.

Common relationship of many processes to a smal ler
number of data structures.

Rigidity and specificity of code which reflects
data structure details.

Use logically powerful family of default data
Etructures which enable many others to be
modeled,.

Develop declaratory approach to details of data
structuring,

Allow functional treatment of ﬁtarage Eeguences
corresponding to presently available functional
treatment of access secuences.

Allow declaratory specification of a viriety of data
objects to which operators apply in an

object-dependent manner.,

W it e

FProblem 3:

Response:

Problem 4:

Responsge:

Sy _ﬁ}f

Present techniques require code to be written in
order of eventual execution, rather th-n in
logically most transparent arrangement.

Break with linear coding style, and allow:
'footnoted style!
‘remote code' dictions

Study ‘'whenever' dictions
"‘non=-deterministic branch' dictions

Repetition of detail, with obligatory small variations,
because of language-problem mismatch.

Develop extension mechanisms, especially to allow:
extensions of semantic cobject classes
available declarations
global, rather than merely local, transformations
of source text
Develop mechanisms for reference resolution

e

frublam D

HespOnse :

o —

7Y, st L

Insufficiency of presently available

debugging tools.

Develop disciplined approach to statement

of programmer assumptions.
Develop program-event oriented debugging language
Use high-iavel language to debug

lower-level production programs.

- ke

Attainable tradcoffs:

FORTRAN - PL/1 Standard

Data expansion 1/1
Execution slowdown 1/1
Programming effort 1/1

Hich-Level Algorithm Oriented Language

A.

Without 'data strategy' elaborations

or hardware enhancement

Data expansion 8/1
Execution slowdown 30/1

Programming speedup 10/1

With 'data strategy' elaborations, but

no hardware enhancement

Data expansion 1/1
Execution slowdown 5/1

Programming speedup 5/1

With elaborations and hardware enhancement

Data expansion 1/1
Execution slowdown 1.5/1

Programming speedup 5/1

Basic objects:

FEE - 5

Sets and atoms, Sets may have atoms or sets

Atoms may be:

Oor.

as members.

Integer, real, bitstring, charstring, label,
subroutine, function

Blank. newat is blank atom creator.

Special undefined R

All standard operations provided for atoms

Operations for sets. {x), {x,r,z}, etc.

X € a nk 3a fa
a éﬂ'b aneb a incs b , etc
aub au {x} = awith x
B - {x} za less x
pow(a)
Tuples: 4K ,¥Y 2> g {Il,...,xn}
t(i) hd t = t(1) tit.

Set former:

tuple x pair x

i Ew LB}
“felx); x ¢ 2] C(x)}
Hle(x,y), x e a, y e b(x) | C(x,y}}, etc.

{en), m <n <m | C(n)}

Functional applicaiion:

fix} = {t2 x, x ¢ £ [pair x]
<) = if #f{x} eq 1 then 3f{x} else O

Sy

Compound operator:

[op: x € a) e(x)

Example: [+: x ¢ a) e(x) = [e(x)

XEa
Quantifiers:
Ix € a2 | C(x) m < 3n <mm | C(n)
i[x] e a | C(x) m <3[n] <mm | C(n)

¥Yx € a | C(x)

Alpol 60 conditivnal expressions.

Statement forms: sStatements punctuated with semicolons.

a = expn; a,b> = expn;
f{a) = expn;

means: rTemove all tuples with first component a

from set f£; then re-insert <a,expn>

Algol 60 if-then-else °

go to <label>;

iteration headers:

(while<cond>) <block>;

or (while<cond>) <block> end while;
(¥x € a | C(x)) <block>:
(m < ¥n € mm| C(n)) <hlock>;
(mm> ¥n > m | C(n)) <block>;

quit ¥x; continue ¥x,

counting sort:

place = n&; (¥x € set) place(x) = #{y € set | £f(y) Le f(x)};

end ¥x;

Huffman encode:

huffcode = [+: 1 < n < fcstring] hufc(cstring(n));

Huffman decode:

dehuf = nulc; node = top;
(1 <¥n < fbstring)
newnode = if bstring(n) eq 1 then L(node) else r(node);
if newnode eq 0 then
. dehuf = dehuf + node; node = top;

else node = newnode; end 1f; end ¥n;

Huffman tree.

work=chars; wfreq=freq; 4=nf, r=nt;
(while #work gt 1) r

¢l = getmin work; <cZ = getmin work;
nd = newat; £&(nd) = cl; r(nd) = cZ;
wfreq(nd) = wfreq(cl) + wfreq(cl);

work = work with nd;

end while;

top = 3work;

definef petmin set; external wfreq;
minfreq = [min: x e set] wfreq(x);

amin = 3(x € set | wfreq(x) eq minfreql;

set = set less xmin; return xmin; end getmin;

e

LUE L0

TOPOLOGICAL SORT

Problem

Suppose we are given a set S of arbitrary objects t-&gcthcr with a
partial ordering P on 5. Suppose P is given &s a set of pairs <, b> with
a be 5.

Arrange the members of 5 into & tuple T such that if a = T(i) and
b =T{j). and <a,b>e P (meaning a ¢b), theni gj,

Solution

1. We select an arbitrary member x of 5 which has no predecessor,
and append that to T (T is initially null).

2. Having successfully placed x in T, we delete x from 5 and also
delete all pairs beginning with x from P (if any exist).

3. We continue this process until S is null,

SETL Code

T = nult;

{while S ne E!.J
x=3{yve S| not(Jpairs P | pair(2) eq vi}:
T(#T4+1) = x; e S
S =Sl_ﬂ.§_x;
P =P - [paire P| pair(l) = x);

end while;

7

An ordered tree is a descendent [unction desc(node, j) defined

for j in some firite (possibly null) range.

A binary tree is a pair of descendent functions L and R (left and

right descendents).

2

L=

The ordered and binary trees stand in an interesting 1-1 relationship

that is illustrated below.

Ordered Tree

Doescendent Function

Al

A 2

B

C

H

Binary Tree

Descendent Functions

;;r,?

OTB:

BEGIN:

BUMP_1;

Ordered To Binary Tree Transformation

define OTH({dese, L, R);

L = {<x(1), x{3P>, x& desc| x(2) eq 1};

R = [<x(3), v(3, x¢ desc, y & descl x(1) eq yvi{l) and
(x(2) + 1) eq y(2)};

return;

end OTB;

PROCEDURE(DESC, L, #L, R, #R);
DECLARE 1 DESC{#),

2 DESC] CHAR(50) VARYING,

2 DESCZ FIXLD BINARY,

2 DESC3 CHAR(50) VARYING;
DECLARE 1 L{*) CONTROLLED, 3

2 (L1, L2) CHAR([50) VARYING;
DECLARE 1 R{#) CONTROLLED,

2 (R1, R2) CHAR{50) VARYING;

DECLARE (#L, #R) FIXED BINARY;

ALLOCATE L{DIM(DESCLY, 1) *Li1, L2=": {#L = 0;
ALLOCATE R(DIM(DESC1, 1)); R1, R2="; R =0;
DO I=1TO DIMDMSCL, 1)
IF DESC2(I} = 1 THEN DO; #L = #L +1;
L1(#L) = DESCIL(I};
L2{(#L) = DESCI{1):;
_ END;
PO J =1 TO DIM(DESCI, 1)

IF DESCI({(J) = DESC1{1} & DESCZ(J)= DESCZ{I) + 1

THEN DO; #R = #R + 1;
RI{4RY = DESC3(I);
R2(4R) = DESC3{J):
GO TO BUMP_I;
END;
END /= DO J %/:
END [# DO I #/;
END OTE;

	196_48
	196_49
	196_50
	196_51
	196_52
	196_53
	196_54
	196_55
	196_56
	196_57
	196_58
	196_59
	196_60
	196_61
	196_62

