
,')

The Denotational Semantics of SE'rL

1. Introduction

Michael N. Condict
Courant Inst., New York University

June 9, 1983

We give here a denotational definition oC a large subset of the SETL programming language as
defined in Ill. It is not intended to be an introduction to SETL for the casual reader - it is much too
concise and has too little redundancy of expression to serve that purpose. It should instead be used as
a precise supplement to Ill, to resolve the ambiguities, inconsistencies and gaps that are bound to
occur in a large, nonmathematical description. The definition is given in the language of standard set
theory augmented by typed >.-calculus (and other) notation. As is usual with such definitions, induc­
tion on the context-free syntax of programs is used to define a meaning function, which maps SETL
program fragments to the functions they denote. It should be noted that some liberties have been
taken with the syntax rules as given in llJ, although the language is the same. Specifically, replace­
ment of right-hand-side nonterminals by their definitions was used where convenient, leaving the
grammar smaller (but less abstract).

2. Math~matlcal Primitives

Before getting started with the definition it is helpful to make it quite clear what portion of
mathematics is being taken for granted. This is done not only to clarify the distinction between the
meta-la.nguage (mathematics) and the object-language (SETL) but to ant.icipate those detractors who
feel that the best definition of a programming language is one that consists of a translation to an
abstract machine and a description of how to execute that machine. The belief seems to be that
mathematics is such a large and complicated language that no clarity is gained by giving a definition
that amounts to no more than an interpreter for the language, but which happens to be written in
mathematics instead of some simpler "programming language".

Well, it would be foolish (and useless) to deny that a denotational definition is anything more
than an interpreter program, but it is not at all clear that mathematics as a programming language is
as complicated as many of the machines and formal systems that have been introduced as semantic
tools, at least not the small portion of mathematics employed in most denotational definitions. And it
is clear that (classical) mathematics is more widely understood, and has a larger body of facts known
about it than most of these newer machines, which are often defined by resorting to mathematics any­
way.

The mathematical language used in this definition is ordinary Zermelo-Franckel set theory, aug­
mented with notational "abbreviations" (not all of which are shorter than the expressions they
denote). For a very short, but complete, definition of this language, the reader is referred to an intro­
ductory logic text such as 121, giving a set of proof rules for first-order logic together with the axioms
of ZF set theory (including the axiom of choice, which we need). We mention such a proof system
not because it is a practical way to learn the language of set theory, but to anticipate and counter the
argument that mathematics is not precisely defined or "executable." To execute a set theoretic
expression, thus discovering the value it denotes, one need only implement a theorem prover and then
supply it with the axioms of set theory and an axiom describing the expression of interest. Of course,
such a method is not guaranteed to terminate for all expressions, but this is true of any interpreter
executing programs in a sufficiently powerful language.

Although the only truly primitive operations of set theory are those of first-order logic, together
with E (set membership), we will use many more than these without defining them: It is a straightfor­
ward (and entertaining) task to give definitions of all such operations in terms of the truly primitive
ones, but we do not bother to do so here.

1

'·

THE DENOTATIONAL SEl\,lANTICS OF SETL 2

All that we will give is a list of the mathematical notations, operations and sets that are used
without definition. The only deviation from the standard meaning of these terms is that all the prim­
itive sets are assumed, for convenience, to be mutually disjoint, so that, for instance, one can tell the
difference between the natural number 3, the integer 3 and the rational 3.0. One can assume, if
desired, that all the elements of these sets are paired with a "type-symbol", allowing such distinctions
to be made. In the same manner, we later assume that the sets and n-tuples formed from these basic
sets are all distinct from one another; that is, no integer is a set, an n-tuple is distinguishable from a
set, and so on. Again, assume that type-symbols are used to keep track of such distinctions.

Sets:

Bool={! alse, true}
w={0,1,2, · · · }

Int= { · · · ,-2,-1,0,1,2, · · · }
Real= (a subset of the rational numbers)

Set Ops: eES, S<_;T, {e 1, ... ,e,d, {elxJlxES and blxl}, SuT, SnT, S-T, Power(S), ISi,

Logic: a and /3, a or /3, -,a, a implies /3, :Jx:a!xJ, Vx:a!xJ, a iff /3, x=y.

Functions: /(e), f(ei, ... , ek), (>-xeS.e[xl), S-+T, Domain f, Range f,

I e1!xJ, if b1[xJ,

! (x)= · · ·
etlxl, if b.dzJ.

Numeric: x+ y, x-y, x•y, x/y, min(x,y), max{x,y), lxl, sin x, cos x, tan :c, exp x, · · ·

Sequences: {n-tuples)
< e1, ... , et>, 8 ·t (concatenation), s; (selection), S' (repetition).

Note: Throughout the definition, function application is often written without parentheses,
except for grouping, so, i.e., fx denotes / applied to x. The precedence of function application is
taken to be higher than any other mathematical operator in the definition, so that / x+ gy denotes
(Ix)+ (gy), not f(x+ (gy)). Also, (I x1 x2 • • • X,t) should be parenthesized as
(· · · ((! x1) x2) • · • xd, and can usually be viewed as the {Curried) application of f to arguments
Xi, ... , Xt rather than as the application of a k th order functional.

Other notation used above that might need explanation includes Power(S), which is usually
written with a script P and denote1:1 the set of all subsets of S, and >.xES.e!xJ (where S is a set and
e!xJ represents an expression possibly containing references to z), which denotes the function that,
given any x in S, produces e!zJ. Every occurrence of x within e!zJ that is not within an inner
>. x · · · expression, or other expression that binds x, is a reference to the argument of the function,
and is said to be a bound va1·iable occurrence {in the same manner that x is bound in the formula V
z:rp).

From now on, when we are making a definition, we will write:

new notation =dt old notation

where new notation is the notation or variable being given meaning, and old notation is its definition.
We use =dt to avoid confusion with the equality symbol =, which will often appear as part of the
definition. Even though the new notation may be shown surrounded by parentheses() for clarity, the
parentheges will sometimes be omitted in later usages of the notation, where ambiguity would not
result.

When we arc defining a notation that gives a binding to one or more variables, as is the case
· with the>. notation, above, we will emphasize this by writing e[xJ {or e!x 1, ... ,xtl) instead of just e for
each constituent expression or the new notation within which x is bound. The bracketed x is part of
the meta-language in which the definition is being made and will not appear in subsequent uses of the
notation. The only l'eal semantics associated with the use of lxJ is that if we introduce an expression
as ejx], then e[tJ means "the expression e with every free occurrence of x replaced by the expression
t, in the usual manner."

M. Condict June 9, 1983 Bin: 1242

• r

.. THE DENOTATIONAL SEMANTICS OF SETL 3

3. Domain Definitions

Now that we have laid the meta-language on the table, we can begin to define new sets and
other useful objects. We will start by giving, in this section, the domains that will be most important
in the SETL definition. These are the sets whose elements represent SETL data objects and the
meaning of SETL constructs.

To be more specific, Obj represents the set of values that SETL variables can take on; St is the
set of possible states during the execut.ion of a SETL program and is nothing more than a mapping
from addresses (locations in Loe) to SETL values (elements of Obj); Cont fa the set of continuations,
functions from states to states that a,re used soley to define goto 's. A continuation is passed as an
argument to the meaning of some SETL constructs, representing the state transition that needs to be
done after the execution of the construct in order to finish executing the program in which the con­
struct is embedded (see the definition of labels and goto).

The special location val does not refer to any explictly named SETL object, but is used to hold
the value resulting from executing expressions. That is, rather than opecifying the meaning of an
expression as both a function from states to states and as a function from states to a value, we need
only give the former. The value of the expression is taken from the val field or the state produced by
executing the expression. One can think of the val location as an accumulator (or RO, for those fami­
liar with certain machine languages). The other special locations (ones that are not SETL identifiers)
are used for various purposes documented later.

13.lj CharOrd =dt <ev ... , e11>

l3.2J Char

13.3] Str

where each c; is a symbol called a "character"

=dt {cl~i:CharOrd;=c}

=dt Char'

[3.4] Atom =dt (a countable set disjoint from Str join Bool join Int join Real)

l3.5J A- 1B =dt {/EA-B !Domain/ is finite}

13.6] Power1S =dt {x~S]z finite}

l3.7J D0 =dt BoolulntuRealuStruAtom

l3,8J D;+1

13.9] Obj

=dt D;U(w- 1D,)uPowe,·1 D;

=dt {om} U lJD;
IEW

[3.10] Loe

[3.11] St

[3.12] Cont

=dt { val ,yield_cont, return_cont }U (the set of non-reserved SETL identifiers)

=dt Loe-Obj

=dt st-st

The special object om, above, which represents the SETL value om , is some value that is dis­
joint from all of the D1 • It is also used to indicate error conditions when rules of SETL are violated.

It may surprise some readers to see that the set or locations, Loe, is defined as the set of SETL
identifiers (variable names). This can be done because SETL is a pure value language, with no
pointers or ca,ll-by-address. Hence, there is no need for both an environment, mapping variable names
to locations, and a store, mapping locations to values. Instead we use just a mapping from variable
names (which are locations, for us) to values, and call each such mapping a state. In the interest of
abstractness we keep the rest of this document ignorant of the fact that the locations are SETL
identifiers, except where the information is necessary in the manipulation of declarations.

In the definition of Obj, above, D0 represents the set of SETL "scalar" objects, D 1, the scalars,
sets of scalars, and tuples of scalars and, in general, D, contains all SETL objects whose nesting depth
(of sets/tuples within sets/tuples) is between 0 and i. Note that, while a SETL set is represented as a
mathematical set, it would not be appropriate to use n-tuples as the representation of SETL tuples,
which can have positions vacant in the beginning or middle of t,he sequence. Instead they are
represented more naturally as finite functions whose domain is a subset of w, the natural numbers. So,

M. Condict June 9, 1983 Bin: 1242

. ,
THE DENOTATIONAL SEMANTICS OF SETL 4

if T is such a finite function, T(i) represents the i th element of tbe SETL tuple represented by T.

Now, all that remains is to define the highest level domain, the one that contains the denota­
tions of SETL program fragments. This is the set Mng, but before we can define it we have to talk
about the handling of functions. In SETL, functions share the same name scope with global variables
(there are no nested functions). It is thus appropriate to have a domain that maps identifiers to
either function denotations (to be defined) or value denotations (members of Obj). This would
automatically enforce the restriction that a function may not have the same name as a global vari­
able. Such a domain could also map label identifiers, the third category of named SETL entity, to
continuations (members of Cont), indicating the state transformation to be performed upon branching
to that label. We define this domain, Env, below and call it the set of "environments."

What are the denotations of functions? We have arranged to have them be the same as denota­
tiomi of any other SETL program fragments, by the following scheme. We assume that, when a func­
tion is called, the val field of the environment contains the tuple of its actual arguments and that,
when it returns, the val field contains the result value. In this way, there is nothing more to a func­
tion than a mapping from states to states, which explains the definition of Fune, the set of function
denotations.

Now we can define Mng as a function from environments to environments in the absence of
goto 's, and as a function from continuation/environment pairs to environments otherwise.

13.13] Fune =dt St-+St

13.14] Env =dt Loe-+(FuncuContuObj)

l3.15J Mng =dt (Env-+Env)u(Cont-+(Env-+Env))

The portion of an environment that maps identifers to continuations or functions is completely
static in SETL. That is, there is no whole SETL construct (at least according to the way we have
broken SETL into constructs) the execution of which can change this environment. This is because
SETL does not allow functions to be treated as objects, even to the extent of being allowed as param­
eters, and does not have label variables. The result of this staticness is that we can get away with
representing the meaning of a SETL function as a mapping from states to states (St-► St) rather than
a mapping from environments to environments (Env-+Env). To convert it from the former to the
latter we simply extend it with the appropriate portion of the identity function on environments. So,
if we have a particular environment e within which we wish to execute a function whose meaning is
/ESt-+St we first augment/ to obtain the following / 1EEnv-+Env. Let e I Obj denote the largest
restriction or e that bas a range that is a subset of Obj (that is, the portion of the environment e
that is a state) and define

[
/ (e I Obj)(z), if e(z)EObj,

/'(e) =ctr '>.xELoe. e(z), otherwise.

Now we can apply / 1 to e to produce the environment e I that can differ from e only on those loca­
tions that were mapped to objects by e. In the section where we describe function application (and
the goto statement) we introduce a concise notation for this conversion.

4. Preliminary Definitions and Abbreviations

Before any of the syntactic abbreviations we introduce a very important semantic one. In order
to make the meta-language look more natural, to say nothing of conciseness, it is crucial to avoid
repetitive references to a environment variable s (recall that SETL programs are viewed as functions
from environments to environments) when it is obvious which environment we are talking about and
all that is being done is to apply it to some location z. For xELoc and oEEnv we write z instead of
s (z) when possible subject to the following rule of interpretation: wherever an expression e with
value in Loe is used where only an expression with value in Obj makes sense (is in the domain of the
function to which e is an argument), replace it by e(e) where e is the parameter of the innermost sur­
rounding lambda expression of the form '>.seEnv.g(e,s). However, this replacement is to be done only
after all other abbreviations have been expanded, so that all lambda variables have been made expli­
cit. In order to allow us to give a meaningful example of this rule let us first introduce the following

M. Condict June 9, 1983 Bin: 1242

. '
THE DENOTATIONAL SEMANTICS OF SETL

useful definition. For any /EA-+B, xEA, ee.B, let

(
e if x=y,

14.ll /Ix/el =df the function/' s.t.f'(y)= f'y, o.w.

Now we can write, say, the function that adds 1 to the integer at location x as:

Increment =dt >.seEnv.slx/x+ lJ
which by the previous rule, is an abbreviation for

>.seEnv.slx/(s x)+ 1]

5

Most of the rest of the abbreviations will be introduced where they are first used, so that their
motivation is clear, but the following are important enough to deserve special mention (Though they
are shown surrounded by parentheses, these abbreviations will usually be used with parentheses omit­
ted. Also, the syntax will sometimes be informal and allowed to spill over into the surrounding text -
the meaning, we trust, will be clear).

The first of these have to do with >.. notation. Although for rea.sons of simplicity we prefer to
allow only unary functions as a primitive notion, we obtain the effect of having multiple argument
functions by an abbreviation called Currying:

>.x1ES1, ... , xkESt.elxv ... , ek) =dt >.x1ESi-(>.x21 •.• ,xkESt.elxi, ... , ek))
for k~2. As an example of this mechanism, if we want a function that takes two arguments, one
Crom A and the other from B, and produces something in C we represent it as

>.xeA.>.yeB.e(x ,YI
which is denoted by

>.xeA ,yeB.elx,yl

and is a function of type A-+(B-+ C).

Now some abbreviations familiar to applicative programmers:

[
ei, if b is a true condition,

14.2] (if b then e1 else e2) =dt e2, o.w.

where T, the range of/ above, contains { el/ ,x] I xES}. The least fixed point (l.C.p.) of a functional
HE((S-+T)-+-(S-+T)) is defined as follows:

f O =df H(JJ, where J_ is {}, the totally undefined function.
/i+l =c1t H(f,),
l.f.p. (H) =dt U/,

IEW

For those not familiar with the notion of least fixed point of recursive functionals and how they
relate to recursive function definitions see, e.g., 13]. Readers who wish to take our word for it may
simply be informed that

l.f .p. (>.JES-+ T.>.xeS.e I/ ,xi)
is the function that we understand informally to be defined by:

M. Condict June 9, 1983 Bln: 1242

TIIE DENOTATIONAL SEMANTICS OF SETL 6

f(x) '=dt ej/ ,zj
although the former has meaning even when the recursive use or f appears to be circular, in that its
argument is not always omaller (or simpler by some linear measure) than x itself. The point or using
least fixed points is just that property: they allow us to define the meaning or, say, a whlle loop as a
recursive function which "calls" itself endlessly precisely in those cases where the while loop does
not terminate.

The previous definitions were all of a general enough nature that they can be said to have noth­
ing to do with the semantics of SETL - they are general-purpose tools. It is now time to give away a
little more detail about the "internals" of the SETL definition. Each SETL statement or expression
is mapped by the definitio11 to a function / EMng, which is either a function from environments to
environments or a £unction which given a continuation and a environment produces a environment.
The idea is that simple constructs, ones that cannot execute jumps out of themselves, will be mapped
to (Env-~Env), while ones that can cause the disruption of normal sequential execution will be
mapped to (Cont-.(Env-.Env)) and passed a continuation consisting of the portion of the program
following the statement. This is so that they can choose to ignore the continuation passed to them
when they wish to execute a jump. The point of saying all this is that it is time to show how such
functions should be composed to get sequential execution, say, when two statements follow each other
in a statement list. The notation used, as is the case with much of the other notation, will mimic
standard procedural programming language syntax. Thus, we will use / 1; / 2 to mean the composition
(in the manner to be specified) of the meaning function f 1 with the meaning function f 2. The func­
tions / 1, f 2 will usually, but not always, have been derived as the meaning of SETL program frag­
ments. (Note: In the definition of ; , below, it was convenient to extend what is really a binary opera­
tor to arbitrary, possibly empty, lists of of meaning functions.) Let k;?:O, with f i, ••• , /,;EMng and
define:

where, for/, gEMng,

(>-.seEnv.s),
/i,
!1°!2,
f 1; (f 2;

if k=O,
if k=l,
if k=2,

; h), if k;?:3

>-.sEEnv.(g (Is)), if f, gEEnv-.Env,
>-.ceCont,seEnv.(g c (Is)) if /EEnv-.Env, geCont-t(Env-.Env),
>-.ceCont,seEnv.(f (cog) s), if JeCont-.(Env-.Env), gEEnv-.Env,
>-.ceCont,seEnv.(f (g c) e), if/, gECont-.(Env-.Env)

Notice that we are defining the meaning of / o g in a way such that it has its standard meaning or
function composition when / and g are both in Env-. Env, but has a more complicated definition
when continuations are involved.

Since SETL is a procedural language, assignment (state change) is clearly an important notion.
We have decided to use a familiar notation for it. For zeLoc, veObj,

j4.8j (z:=v) =dt >-.seEnv.sjz/vl
Note that x must be a location and v an expression in Obj. Hence, by the rule for abbreviating e(z)
to x,

(x:=z+ 1) = (>-.seEnv.sjx/x+ 11)
= (>-.seEnv.sjx/(s x)+ 11)

It will often be convenient to construct a function that, given a environment, applies one of
several different functions to it, depending on the value of that environment, or even depending on
the value of previous environments. This could be written as, say:

M. Condict June 9, 1983 Bin: 1242

THE DENOTATIONAL SEMANTICS OF SETL 7

'XsEEnv.Fls,! ,gJ
where FI s ,f, g J is an expression that tests 8 and then either applies / to it or applies u to it (see,
e.g., the semantics of the lf statement). However it is better to make this more concise by using what
could be called labeled environments:

(
'XsEEnv. (/ leJ s), if f EEnv-+Env,

14-91 (e:f!el) =di 'XcECont,seEnv.(flsJ cs), if /E(Cont-+(Env-+Env))

The above notation is useful only when / is defined with 8 as a free variable, otherwise, (s:/)=/.
Much obfuscating parenthesization can be avoided by integrating this notation with the ; notation:

j4.10J (/ 1; · · · ; ft; s:u1; · · ·; Un) =di /i; · · · ; /,;; (s:g1; · · ·; Un)

Another notion that occurs repeatedly in the definition is that of executing several SETL pro­
gram fragments in unspecified order, and then using all the results. For example, in the expression
e1+ e2 the two sub-expressions e1,e2 are evaluated this way, then the two results are added together.
The following definition provides a convenient way to specify this notion. It composes a list or mean­
ing functions into one that, in addition to executing all the component functions, leaves in the special
location val, the sequence of values produced by each of the functions (see explanation of val, above).
For k>2, with/ 1, .•. ,/tEMnu,

14.llJ
do <> =di (val:=<>),
do </ 1> =df (/ 1; val:=<val>),
do < / 1, .•• , ft> =

if Vpermutations <iv ... , ik> of <I, ... ,k>,
(/jlj • • • ; /,t)=(/ l; .. • ; ft)

then
/ 1; s1: Ii, · · · sk-1:ft;

B!;: val:=<s 1 val, ... ,Bk val>
else val:= om

We will need, in various places, the notion of picking an arbitrary member of a set (specifically,
in the definition of the arb function). In SETL this notion is completely nondeterministic - not only
is the member chosen not a pure function of the set, but it is not even necessarily repeatable from one
execution of the program to the next. We use an oracle function arb that is a function of the set to
model this behavior, for now, but it is not general enough.

l4,12J arbitrary S =di arb(S)

In order to allow SETL tuples to be defined in a natural looking manner, while remaining con­
sistent with the desired SETL semantics, we alter the meaning of 'X terms that are denotations of
SETL tuples as follows. For any finite S~w-{O},

(
e!YI, if yES,

l4.13J 'XxES.elxJ =di/' where /(y)= om, otherwise.

Now we invoke the right reserved earlier to keep all the primitive sets and the sets and tuples
formed from them disjoint, and define some type testing operations. For any v, v1, v2EObjUFunc,

l4.14J v is a set =di :Jiew:vePower1(D,)

l4,15J vis a tuple =di :FEw:vEw-+/Di

l4.16J v is a string =di veChar •

j4.17J v is a pair =di vis a tuple and Domain v={l,2}

l4.18J v is a map =di v is a set and Vxev:(z is a pair)

M. Condict June 9, 1983 Bin: 1242

THE DENOTATIONAL SEI\-IANTICS OF SETL

14.10] v is a singl1Halued map =t1r vis a map and Vx,yev:x(l)::..--=y(l) implies x=y

!4.20J v is a function =<If vEFunc

Finally, a f'ew useful functions dealing with SETL objects. For v,v1,t1:if=Obj and ceChar:

l4.21J Pair(v 1,v2} ===c.1t >.xe{l,2}.if' x=l then v1 else v2

l4.22j null tuple =dt >.xe{}.om

l4.23J tuple length of v =dt if v is a tuple then max (Domain v) else om

l4.24J Ord(c) =dt the i such that c= CharOrd;

5. The Meanlng Function

8

The meaning of most SETL constructs will be defined to be a function from environments to
environments (Eno-.Env), namely the function that describes the environment that results from exe­
cuting the fragment in any initial environment. The meaning of program construct u will be written
ll u !, so it is always the case that ff u IlEMng. Occurrences of variables within u are meta-variables
that denote arbitrary SETL variables, or arbit,rary members or other classes of SETL constructs, as
noted.

Now we finally get to the definition of the SETL meaning function. The definition is made by
induction on the syntax of SETL constructs. Consequently, we can claim that the domain of the
function defines also the syntax or SETL programs, as long as we understand the vocabulary or
tokens, and we do not need to give a separate syntactic definition. (For convenient reference, how­
ever, the Appendix contains a summary of the syntax of SETL.) This differs from most other denota­
t,io11al definitions, which are usually defined on the abstract syntax of a language, requiring a separate
definition of the concrete syntax.

Each case in the inductive definition hi labeled by the name or the SETL construct the meaning
of which is being defined. The simplest constructs are presented first, that is, the definition proceeds
from the lowest level nonterminab in the SETL grammar to the nonterminal "SETL_program" at the
highest level (w~ do not deal with modules and libraries).

6.1. primary

The SETL primaries are the bottom level expressions, at least with respect to operator pre­
cedence. They include the numeric and string literals, array subscripts and function calls (both hav­
ing the same synta.x), ~nd the set and tuple formers.

6.1.1. literal (int __ tok, real_tok, string)

For any int_tok n, let nval be the integer represented by n in the standard manner. Then

15,lJ Il»J =dt (val:=nval)
For any real_tok r, let rval = the real number represented by r in the standard manner. Then

l5,2J llr) =dt (val:=rval)

For any string I c1 · · · c1; 1
, where c1EChar,

6.1.2. selection

For a primary (not a lhs) consisting or a variable or function identifer z, and selectors
81, •.. , St, k20,

l5AJ llx 111 • • • s1;J =dt

do <~es 11, ... ,ffeB1;ll>;
8: get ts1 ' • ' ts1; of 8 X

M. Condict June 9, 1983 Bin: 1242

THE DENOTATIONAL SEMANTiCS OF SE'fL 0

The expression cs, is simply the expression inside the brackets of the selector Bi, while ts; is the pair
of brackets. We also take care here of the rule that says a list or expressions in a selector is the same
as putting a tuple as the selector (transparently to the user, we allow this rule to apply to SETL func­
tions as well as SETL tuples and maps, to obtain the simplicity that all SETL functions may be
treated as though they were unary).

It remains to define the notation: get ts1 · · · tsk of s z, which denotes a certain function from
environments to environments. Its purpose (when k >O) is to access the value denoted by a sequence
of selector expressions applied to the value e z. When it is applied to a environment s, there had
better be a tuple of at least k values in s 11al, because it will use these values as indices or arguments.
In the usage of get · · · , above, the tuple of values was put in the val field by the "do · · · " func­
tion.

First, the base case; when there are no selectors we already have the value, unless it is a func­
tion, in which case we call it. For veObjuFunc,

j5.5j get o(v =dr s :if v is a function then call funct v(< >)
else val:=z

For k~l,tJEObjuFunc,

get ts1 · • · tsk of v =df

where

s: get ts1 • • • ts.t-i of v;
s 1:val:= getl lsk, (s val)t of (s' val)

[

val:=---= v i,
val :=the unique y s.t. Pair(:i ,Y)Ev,

call funct v(i),

if v is a tuple,

if v is a map,

if v is a function.

[

val:= om, if v is a tuple,

getl{},iofv=df va{:={ylpair(i,y)Ev}, ifvisamap,
val:=om, if vis a function.

As can be seen, we have defined get recursively. To get a value from v using k selectors, we get a
value from v using the first k-1 selectors, then we use getl to apply the k th selector to the result.

In order to complete the definition of getl, we have to give the most important part of its
definition (or at least, the most interesting), namely "call funct". For vESt-+St and iEObj

j5.6J call funct v(i) =<lr val:=i; (v I St/Env)

where (v I St/ Env) converts a function on states to a function on environments as follows. For any
vESt-St and sEEnv,

j5.7] s I Obj =df the largest restriction of s that has its range in Obj

(
v (s I Obj)(x), if s(z)EObj,

j5.8J (v I St/Env)(s) =df >.xELoc. s(x), otherwise.

Informally, the difference between v and (v I St/Env) is just that the latter, when given an environ­
ment that is not a state, applies v to the "state" portion of the environment and leaves the rest of

M. Condict June 9, 1983 Bin: 1242

THE DENOTATIONAL SEMANTICS OF SETL

the environment (the portion mapping locations to non-objects) unchanged.

5.1.3. iterated set, tuple

For any expressions ei, e2, c3,

[5.9j ll{ e1 .. e2H =ctr
do <lle1Ue2)>;
val:= { xelnt I min (val 1, val2):5 x :5 max(val 1, val2)}

[5.lOj ll{e1,e2 .. cs}Il =dt

do <lle1fl,lle2J.lleaJ>;
val:={xElnt l::lnElnt s.t.

x=va/ 1+ n-t(valz-va/1) and
min (vali, Vl!l 3):5 x :5 max(val1,val8)}

[5.11j ff[e1,,ed) =df

do <lle1D,ff e2)>;
val:=(>-iE{l, ... , I ualz-vali[+ 1}.

va/1+ (i-l)*sgn(valz-val 1)),

[5.12j lllei,e2 .. eaU =dt

do <ll e1Il,ll e2U e11) >;
e: (let incr = valz-vo.l 1,

n=if ir1cr=0 then O else
1+ I floor((val:,val 1)/incr) [

in
val:=(>.ie{l, . .. , n }.val1+ (i-1)-itincr)),

1
1, if n >O

where sgn (n)= 0, if n =0
-1, if n <O

For any expression e and iterator i,

[5.13j lll e :illl =dt iterate over i producing ff e J;

1s.HJ ll { e :i H =c1t

10

iternte over i producing ll e Il;
val :=Range oa/ (Convert the tuple produced to a set)

where, for any left-hand sides x ,Y ,xi, · · · , expressions e, ei, · · · , simple iterators ei ,ei1, · · · ,
Boolean expression b and / EMng, "iterate over ... " is defined as:

[5.15j iterate over z in e I b producing / =dt

n e);
e :ii' s val is a set then val:= a tuple containing the elts of val

else skip;
e:1Jal:=<s va/,1,null tuple,1>;
letrec loop=e 0:x:=(s 0 val)i (s0 va/)2;

M. Condict

s:if 8 x~om then llvr else val:=Jalse;
e :if e val and s xf om then

J;
s:val:=<(s 0 val)i,(s0 va/)2,

(s0 va/)3U{ <(s 0 va/)4,s val> },(e0 va/)4+ 1>;
else skip

June 9, 1983 Bln: 1242

THE DENOTATIONAL SEMANTICS OF SETL

s:val:=<(s val)i,(s valh+ 1,(s val)3,(s val)4>;
o:if (s val)2~ tuple length of (s val)1 then loop else skip

in loop
[work here -- discuss above def.j

!5,16j iterate over y=e(x) I b producing/ =dt
8: iterate over Ix ,Y J in ll e) I b producing /

[5.17j iterate over y=e{x} I b producing/ =dt
[work hereJ

[5.18J iterate over si1, ••• , si.t I b producing f =dt
iterate over si1 producing

iterate over si 2, ••• , sik I b producing f;
val:=let k=(length of val) in val1• • • • •valk

[5.19J iterate over siv ... , sik producing J =dt
iterate over si 1, ••• , sik I true producing f

6.1.4. enumerated set, tuple

For any expressions ev ... , et, k~O,

[5.20J n { e !, , • • 1 et}) =d(

6,1.G. from_expr

do <lle1Il, • • • ,ffek)>;
val:={ val 1, .•• , valt}

For any two variable identifiers x and y,

[5.22J Ux from Yil =<ll' llY less :=(x:=arb y)); val:=x

[5.23J Ux t'romb vll =c1t s:let i=min(Domain (s y))E
y:=y-{<i,z> I <i,z>Es y};
x:=s y (i);
val:=x;

l5.24J Ux frome Y! =df llx:=y(#y)J; s:lly(#y):= om Il; val:=s val

For any two lhs's x X81, ..• , xsk and y V81, ..• , YSn,

[5.25J Ux xs1, ••• , XBt from y vs1, ... , ysn) =dt ???

[5.26J llx xsv ... , xsk fromb y ysi, ... , ysn) =dt ???

[5.27J llx xsi, ... , xsk f'rome y ysi, ... , ysnll =c1t ???
[work hereJ

6.1.6. case_expr

For expressions e, v1, ... , Vt and constant lists cl 1, •.. , clt,

M. Condict June 9, 1983

11

Bln: 1242

[5.28J
[case e of

THE DENOTATIONAL SEMANTICS OF SETL

(cl 1): vi, ... , (cit}: Vt

else Vt+i

end Il =df

llexpr case e of
(cl 1):yleld v1; · · · (clt):yleld Vt;

else yield vk+ 1;

end case;
end Il

For Boolean expression lists el1, ••. , el,. and expressions v1, •.. , Vt,

[5.29J
llcase of

(el1): Vi, ... , (el,d: Vt

else V.t-+1
end D =df

llexpr case of
(el1

1):yleld v1; · · · (el/):yleld Vt;

else yield vk+1;
end case;

end)

where, for any Boolean expression list el= ei, ... , en,
el 1 = e 1 or · · · or en

5.1.7. if_expr

For expressions b,e 1 and e21

12

[5.30J llif' b then e1 efoe e2 end D =c1t llexpr If b then yield e1; else yield e2; end It; end)

5.1.8. prog expr

For statements Bi, ... , Bt,

[5.31J llexpr s1 · · · Btend) =d!

>.cECant,sEEnv.(with temp env <yield_cont-+c> do lls1 · • • Btfl) cs
(see EnvfronmentManipulation, below for def. or with-temp-env)

where yield_cont, like val, is a special field or the environment that is not the address or any expli­
citly named SETL object. It indicates what action should be done after a yield statement. We exe­
cute the statement list of the expr in a modified environment that maps yield_cont to the continua­
tion of the expr itseir.

5.1.0. sys_vals

The first three of these are just predefined constants, while the last, ncwat, is a nullary function
that returns a value that is not only guaranteed to be different from any SETL object obtainable any
other way, but is also different from the value returned by any previous call to newat. It is analo­
gous to the LISP gensym function.

[5.32J lltrueD =df val:= true

[5.33J llf'alse) =elf val:=f alse

[5.34J ll om Il =c1t val:=om

[5.35J llnewat) =c1t val :=arbitrary x EA tom; used_ats :=used_atsu{ x}

M. Condict June O, 1083 Bin: 1242

THE DENOTATIONAL SEMANTICS OF SETL 13

5,2. term

The terms of SETL are either primaries or unary operations, such as arb z, sin x and so on,
including the (one argument) reductions or binary operators(+ /e). We have already defined the
meaning or primaries, so we need only take care of the last two here.

In order to give a concise semantic definition for the unary operators we first define the
mathematical function corresponding to each SETL unary operator. For those operators that are
overloaded, we give the correspondence for each type or operand, using the convention that x ,Y ,z are
operands of any type, m,n are numeric operands (real or integer), c,c 1, • • • are characters, e,t are
character strings, A ,B are sets, S, T are tuples and a,fj are Boolean operands.

Another implicit (but important) assumption is that all or these functions are extended to arbi­
trary xEObj outside their normal domain, and they return om when supplied with such an "illegal"
X.

SETL Operator
#T
+n
-n
abs n
abs s
acos n
arbA
aaln n
atan n
cetl n
char n
COS ll

domain A
even n
exp n
fix n
float n
floor n
ls_atom x
b_boolean x
isjnteger x
ls_,map x
ls_real x
lsJet x
ls_strlng x
ls_tuple x
log n
not a
odd n
pow A
random A
range A
sign n
sin ti

sqrt n
str z
tan n
tanh n
type X

M. Condict

Corresponding Mathematical Function
if T is a tuple then tuple length or T else om
n (identity)
--n (negation)
Ill I
if I e 1 =1 then Ord(e 1) else om
acos n
arbitrary 'A' (see def. of roman arbitrary , above)
sin n
atan n

rnl
if n ~ I CharOrd I then CharOrdn else om
cos n
if A is a map then { x I Pair(x ,Y)EA} else om
n is an even number
c 11

(the mathematical constant e)
if nEReal then the 11

1Elnt s.t. LnJ=n' else om
iC n Elnt then the n I ER eal s.t. n = n I else om
LiJ
if xEAtom then true else/ alse
if xEBool then true else/ alee
if x Elnt then true else / alse
iC x is a map then true else / alse
if xEReal then true else/ alse •
if x is a set then true else / alse
if x is a string then true else/ alse
if x is a tuple then true else / alse
log n
-,a (logical negation)
n is an odd number
Power(A)
7
if A is a map then {y I Pair(x,y)EA} else om
sign n
sin n
7
any string of characters s s. t. [e I=(val:= x)
tan n
tanh n
if xEAtom then "ATOM" else
if xEBool then "BOOLEAN" else

June 9, 1983 Bin: 1242

THE DENOTATIONAL SEMANTICS OF SETL

if zEfnt then "INTEGER" else
if zeReal then "REAL" else
if z is a set then "SET" else
if z is a string then "STRING" else
if z is a tuple then "TUPLE"

14

Now we can refer to the above chart in giving the semantics of expressiong that contain unary
operators. In the following definitions, let d, e be terms, op be a unary operator and / op be the func­
tion corresponding to op (with the operand type taken into account at each use of /). Then, for any
expreggion e,

[5.36J fiop ell =c1t llell; val:=/op(val)

[5.37J ll op/ e) =c1t

ll e Il;
e:if -,val is a tuple then t1ai:=om

else val:=(letrec reduce=>.new.

5.3. expression

if n =0 then v else
/ 0p(reduce(n-l), s val(n))

in reduce(tuple length of val),
where v=if s val (1)ElntuReal then 0

else if s val (1) is a set then {}
else if s val (1) is a tuple then null tuple
else if s val (1) is a string then < >)

Expressions consist either or a binary operntor between two terms (d + e), the assigning form of
a binary operator (z+ := e), the two argument form of reduction (d + / e), or a quantifier
(exists x I b).

Ati with the unary operators we first define the mathematical function corresponding to each
SETL binal'y operator, again using the convention that z,y,z are operands of any type, m,n are
numeric operands (real or integer), c, ci, · · · are characters, s ,t are character strings, A ,B are sets,
S, T are tuples and a,/3 are Boolean operands.

SETL Operator
m+n
s+ t
S+ T

A+B
m-n
A-B
mtn
n*S
B*n
n:t:T

T:t:n
m/n
m**n
m<n
s<t

M. Condict

Corresponding Mathematical Function
m + n (addition)
s •t (concatenation)
>.ie{l..(tuple length of S + tuple length or T)}.

if i~ tuple length or S then S(i)
else T(i- tuple length of S)

AuB
m-n (numeric subtraction)
A-B (set subtraction)
m •n (multiplication)
s" (n repetitions or s)
(same as n*s)
if n <O then om else if n=O then null tuple
else (same as T+ (n-1):t:T)

(same as n*T)
m/n (division)
m" (power)
m < n (numeric comparison)
:liew:Ord(si)< Ord(ti) (lexicographic comparison)

June 9, 1983 Bin: 1242

..

m::;;n
8::;; t
x=y
m2n
s2t
m>n
s>t
z/=y
z?y
a e.nd f3
m atan2 n
m div n
a Imp! /3
A In B
C 1n 8

x in T
A Ines B
A less x
A lessf B
m max n
m min n
m mod n
z notln y
n npow A
A npow n
a or f3
A subset B
A with x

THE DENOTATIONAL SEMANTICS OF SETL

m::;; n (numeric comparison)
s=t or :JiEw:Ord(sd< Ord(td (lexicographic comparison)
x=y (equality)
m ~ n (numeric comparison)
s=t or :JiEw:Ord(s;)> Ord{ti) (lexicographic comparison)
m>n (numeric comparison)
::liEw:Ord(si)> Ord(td (lexicographic comparison)
x / = y (inequality)
(ifz=fom then x else y)
a and /3 (logical disjunction)
if n f 0 then arc tan m / n else sign rrMr / 2
lm/nJ
a implies f3
AEB
3iEw:c=s;
:JiEcv:x=T(i)
A~B
A-{x}
A-{Pair(y,z)I yEB}
max(m,n)
min(m,n)
m mod n
(same meaning as not x In y)
{ x ~A I I x I = n}
(same meaning as n npow A)
a or f3 (logical conjunction)
A~B
Au{x}

15

In the following definitions, let d, e be terms, op be a binary operator and / op be the function
corresponding to op (with the operand type taken into account at each use of /). Then

l5.38J lld op e) =c1t do <d,e>; val:=/ 0p(val1,val2)

For any variable or function identifier x and expression e,

l5.39J Ux op:= e) =c1t lle); x:=/op(x,val)

For any variable or function identifier z, expression e and selectors Bi, ••• , Bt, k 21,

l5.40J llx Bi, ••• , 81; op:= efl =df

do <lles1t ... , lleskll,lle)>;
s: get ts1 • • • ts1; of s x;
val:=/ op (val ,s va{H 1);
set ts 1 · • · ts1; of z,

l5.41J ~d op/ efl =ctr

do <lldUeil>;
s:if -,val2 is a tuple then val:=om
else val:=(letrec reduce=AnEw.

if n =0 then s val1 else
f op(reduce(n-1), s valJn))

in reduce(tuple length or va/2))

5.3.1. assignment_expr

For variable identifier z and expression e,

l5.42J ~x:=eJ=llet x:=val

M. Condict June D, 1083 Binz 1242

,i
. '

THE DENOTATIONAL SEMANTICS OF SETL

For variable identifier x, selectors Bi, ••. , Bt and expression e,

[5.43] llx s 1 · · • St:=e)=
do <lles1), ... ,ffes1;~,fiefi>;
set ts 1 · · · ts}; of X,

where
set ts1 · · · tsk of z =dt

where

s: get ts1 ' ' ' ts,._1 or x;
setl tst, (s t1al}i; of val to (s valh+ 1)
val:=<(s val)1, ... , (s val),._1,val>
set ts1 · · · tek-1 of z;

val:=vli/el, if vis a tuple and e-:j:om,
val:=v-{ <i,x> I iEDomain v }, if vis a tuple and e=om,

16

setl (), i of v to e =dt val:=v-{Pair(i,z)I Pair(i,z)Ev}u{Pair(i,aOr; is a single-valued map and e-:j:orn
val:=v-{Pair(i,x)[Pair(i,z)Ev}, if vis a single-valued map and m:

(
val:=om, if v is a tuple,

setl {}, i of v to e =ell t1ol := 'i"1?, if v is a map.

[work here - finish definition of setlj

It is probably necessary to talk a little about the definition of "set" and "setl", above. Informally,
the meaning of "set" ts1 • • • tsr. of x =dt is "set the portion or z selected by the first k components
of the val tuple to the k+ 1th component of the val tuple. That is, "set" expects the val field to con­
tain a k+ 1-tuple of values, t.he first k being selector values, and the last being the value that is to be
assigned. It fetches a structured value by using the first k-1 selectors on x. Then it modifies an ele­
ment of this value using the k th selector. Finally it sets the portion of x just fetched to the modified
value. For left-hand sides x1, ••• , Xt and expression e,

[5.44] lllz1, ... , Zt]:=e~ =dt

[To be supplied]

6.4. stmt body

6.4.1. assignment, from_expr, proc_call

(These constructs are also expressions and have the same meaning as their expression forms.
See primary, above, for the definitions.)

5.4.2. goto_statement

Here is where continuations become meaningful. To execute a goto, we look up the continua­
tion associated with the label identifier, map this continuation into an environment-transition function
f with (... [St/ Env) and produce the function that, given a continuation and an environment, ignores
the continuation and applies / to the environment. For label identifier l,

[5.45] footo lll =df >-cECont,seEnv.((s l)[St/Env) e

6.4.3. yield_statement

In executing the surrounding prog_expr, we mapped the special location yield_cont to the con­
tinuation of the prog_expr, so we just obtain this function, and use it instead of the continuation or
the yield statement. For expression e,

[5.46] ll:rleld e~ =df >.ceCont,seEnv.(lle);
((s yield_cont)I St/Env)) e

M. Condict June D, 1083 Bin: 1242

THE DENOTATIONAL SEMANTICS OF SETL

5.4.4. if_statement

For Boolean expression b and statement lists sl1,sl2,

5.4.6. case_statement

5.4.6. loop_statement

17

We will describe all the loops except the for loop in terms of a complete loop statement. First,
we define the meaning of a loop with some of its optional clauses left out. Let Is be a (non for) loop
statement with, possibly, some optional clauses, such as doing stmts, missing. Let ls I be the com­
plete loop statement obtained from ls by filling in the missing clauses with the corresponding clauses
in this list (most of which have a reserved word followed by a null statement list):

lnit
doing
while true
step
untll false
term

Then we define:

[lsil =elf Uts'J
It remains to define the semantics of a complete loop statement. Let sl1, ••• , slk be statement lists
and b1,b2 be Boolean expressions.

15.48]
llloop lnlt sl 1

doing sl2

while b1
step sl3

until b2

term sl4
do

e/6

end loop Il =dt

ll sl 11;
letrec l=ff sl2Il; llb1!;

if val then
ITslz); Usl5~llb2Il;
if val then I else skip

else skip
in l

[sl 4~;

Now we define the loop for statement. Let sl be a statement list and i be an iterator.

l5.19J llloop for i do st end loop D =c1t

iterate over i producing ll sill;

M. Condict June 9, 1983 Bln: 1242

THE DENOTATIONAL SEMANTICS OF SETL 18

5.5. Environment Manipulation

Before going on with the semantic definition, we will introduce and discuss some abbreviations
involving manipulation of the environment. They will be useful both in the definition of lists of
labeled statments (see smts below) where we need to introduce labels into the environment (mapped
to continuations) and in the definition of a Body, where we need to introduce variables, functions and
constants into the environment.

We will use two abbreviations, "with temp env" and "with rec temp env', which are analogous
to let and letrec, respectively. The first is fairly simple. For v1, ... , vkELoc, f EMng and
ei, ... , ekELocuFuncuCont,

l5.50J with temp env vi-~ei, ... , V,t-+e.t do/ =di'
s:v 1:=e1; · · ·; V,t:=e1-;
f;
V1:=(s Vi); ' ' '; V,t:=(s Vt)

It just assigns several values to the locations vi, executes the function / then restores the original
values of the vi.

Now we will need an extension of the / I z / e J notation to allow the modification of / at more
than one point. For partial functions/ ,gEA-+B,

l5.51J update / with g =df >.zeA.if zEDomain g then g z else / z

So /lz/eJ= update/ with {<z,e>}.

Now the hard part. Informally, we want
!work here - more discussion!
For vi, ... , v1ELoc and e, ei, ... , e1;EMng, k ~ 1,

1s.s2J
with rec temp env

V1-+ ei, ... , Vt-+ ek
do e =df

s 1 : letrec / 1=>.seSt. ((with temp env v1-+ / 1, ... , Vt-+ h
do e1)

(update s I using s) I Obj)

f 1=>-seSt. ((with temp env v1-+ / i, ... , Vt-+ It
do e1)

(update s 1 using s)I Obj)
in with temp env v1-+ / i, ... , V.t ft

doe

!More discussion of above sorely needed.J

6.6. stmts (statement lists)

The semantics of labels and, hence, goto are partially defined here as well. We have limited
the scope of a label to the statement it labels, together with all the statements in the list of state­
ments immediately containing the labeled statement. Thus the reach of a goto statement gs is lim­
ited to statements containing gs (directly or indirectly) and statements that are side-by-side in a
statement list with a statement containing gs. Another way to say this is that transfer of control
may only go, first, from more deeply nested to surrounding statements, followed optionally by a jump
from one statement in a statement list to another.

For k ~ 1, let sl0, ••• , slk be lists of semicolon-terminated statement bodies (unlabeled state­
ments), and Iv ... , l.t be identifiers.

l5.53J ffsl0 l1:sl 1 l,t:slk) =dt

with rec temp env l1=Usl1 s12 sl1J,
l2=ff sl2 sis slk),

M. Condlct June 9, 1983 Bin: 1242

. (

THE DENOTATIONAL SE?v1ANTICS OF SETL

lk=llsld
do llslo s/1 · · · slkll

where, for statement bodies Bi, ... , Sn,

5.7. program/procedure body

19

Here we give the core or the environment manipulation in SETL. There are only two levels of
scope in SETL (at least in our subset), consisting or the global variables that remain allocated
throughout the execution or the program, and local variables that are allocated and released in con­
junction with function calls. Both cases are handled with the same definition here. Note that for
convenience we assume all constants are declared before all variables and that no variables are used
without being declared. We could, of course, describe syntactic transformations that would map any
program/procedure body not in this form to one that is, observing the rule that undeclared variables
are taken to be local, not global (unless they occur in the body or the main program).

In this section it is convenient to introduce a construct that is not in the SETL grammar as
such, although it is a piece or a SETL program. Let "refined statement list" refer to a list of state­
ments followed by zero or more refinements:

Rcfined_stmt_list -+ Stmts ldentifier::Stmts · · ·

Let Ci, ... , Ct, Vi, ... , vn be identifiers, ce1 , ••• , ce,. be constants and sl be a refined statement
list. Then we define

j5.54J
ficonat c1=cei, ... , Ct=Ce.t;
var Vi, ... , Vn;
stll =elf

do <llce1ll, ... , ffce,.J>;
with temp env c1-+vali, ... , c1;-+val,.,v1-+om, ... , Vn-+om
do Usl)

To handle the case where initial values are specified using the lntt clause, we simple transform such
clauses into assignment statements that are performed before the statement list is executed. Let
Ci, .. .', Ct,Vi, ... , Vn be identifiers, ce1 , .•. , ce,. be constants, ve1, •.. , ve, be constants and sl be
a refined statement list. Also, let { v11, ••• , vi, h;;; { Vi, ... , Vn} a,nd define

[5.55J
~conot c1=cei, ... ,c1;=ce1;;
var Vi, ... ,vn;
lnlt v1 :=ve 1, ••• , vi :=ve,; 1 ,

sill =elf

llconst c1=cei, ... , c,.=ce,;
var Vi, ... , Vn;
llj

1
:=ve 1; · • ·; v1,:=ve 1 ;

sl~

The next section gives the meaning of a refined statement list, completing the semantic definition of
program/proc bodies.

5.8. refined stmt list

Refinements in SETL are nothing but identifiers that abbreviate statement lists. Their meaning
could be defined syntactically, as if they were macros, but with the semantic weapons we already have
deployed, it is just as easy to define them semantically, as parameterless procedures. For identifiers
r 1, ••. , rk and statement lists s/0, ••• ,sl1;, k~l:

M. Condict June 9, 1983 Bin: 1242

THE DENOTATIONAL SEMANTICS OF SETL

15.56] [s/ 0 r 1::sl 1 • • • rk::slk) =df

with rec temp env ri-~fisl 1Il

do lls·l0)

20

Our definition is meaningrul even when refinements refer recursively to themselves, whereas the macro
definition would not be (and SETL does not a.llow such references, perhaps Cor this reason).

5.9. SETL program

A SETL program consists or some global declarations and global statements (bP, below) followed
by function declarations. The st,rategy we use to define its meaning is straightfm·ward. We define the
meaning or a program with n function declarations in terms of a program with n-1. The semantics
or a program with no function declarations is then defined trivially from the semantics of its body.

For any identifiers p ,f i, ••• , f" and bodies bP, bi, ... , b", n;?: 1,

l5.57J
[program p;

bp
proc f 1(xv ... , xt);

bi
end proc / 1;

proc f n(Zi, ... , Zp);

b"
end proc / 11;

end program p ;) =df

with rec temp env
/ i-+(with temp env xi--+vali, ... , :ck-val,

dofib1ll)

/n-(with temp env z 1-+vali, ... , zp-valp
do llbnll)

do llpro{tram p;
bp

end program p ;Il
Finally, the base case; when there are no function declarations,

6. Summary

The language described above is not just a subset or SETL, but were it not that the syntax
rules do not allow it, the definition gives meaning to many useful program fragments that are in an
extended SETL -- one that is much closer to being an expression language. For instance, note that
the definition of the for loop is such that if a for loop were allowed as an expression, it would have
a value consisting or the tuple or values produced by each iteration. These values, in turn are well
defined, even though the body of a for loop is a list ot' statements, not an expression.

!More to be supplied. End of document, tor now.J

7. References

(1) Dewar, H. K., Schonberg, E. & Schwartz, J. T., Higher Level Programming, Computer Science
Dept., Courant Inst., New York, 1981.

M. Condict June 9, 1Q83 Bin: 1242

THE DENOTATIONAL SEMANTICS OF SETL 21

(2) BcU, J. & Machover M., A Course in Mathematical Logic, North-Holland, Amsterdam, 1977.

(3) Stoy, J. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory, MlT Press, Cambridge, Ma.'!s., 1977.

M. Condict ,lune 9, 1983 Bin: 1242

