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We give here a denotational definition oC a large subset of the SETL programming language as 
defined in Ill. It is not intended to be an introduction to SETL for the casual reader - it is much too 
concise and has too little redundancy of expression to serve that purpose. It should instead be used as 
a precise supplement to Ill, to resolve the ambiguities, inconsistencies and gaps that are bound to 
occur in a large, nonmathematical description. The definition is given in the language of standard set 
theory augmented by typed >.-calculus (and other) notation. As is usual with such definitions, induc­
tion on the context-free syntax of programs is used to define a meaning function, which maps SETL 
program fragments to the functions they denote. It should be noted that some liberties have been 
taken with the syntax rules as given in llJ, although the language is the same. Specifically, replace­
ment of right-hand-side nonterminals by their definitions was used where convenient, leaving the 
grammar smaller (but less abstract). 

2. Math~matlcal Primitives 

Before getting started with the definition it is helpful to make it quite clear what portion of 
mathematics is being taken for granted. This is done not only to clarify the distinction between the 
meta-la.nguage (mathematics) and the object-language (SETL) but to ant.icipate those detractors who 
feel that the best definition of a programming language is one that consists of a translation to an 
abstract machine and a description of how to execute that machine. The belief seems to be that 
mathematics is such a large and complicated language that no clarity is gained by giving a definition 
that amounts to no more than an interpreter for the language, but which happens to be written in 
mathematics instead of some simpler "programming language". 

Well, it would be foolish (and useless) to deny that a denotational definition is anything more 
than an interpreter program, but it is not at all clear that mathematics as a programming language is 
as complicated as many of the machines and formal systems that have been introduced as semantic 
tools, at least not the small portion of mathematics employed in most denotational definitions. And it 
is clear that (classical) mathematics is more widely understood, and has a larger body of facts known 
about it than most of these newer machines, which are often defined by resorting to mathematics any­
way. 

The mathematical language used in this definition is ordinary Zermelo-Franckel set theory, aug­
mented with notational "abbreviations" (not all of which are shorter than the expressions they 
denote). For a very short, but complete, definition of this language, the reader is referred to an intro­
ductory logic text such as 121, giving a set of proof rules for first-order logic together with the axioms 
of ZF set theory (including the axiom of choice, which we need). We mention such a proof system 
not because it is a practical way to learn the language of set theory, but to anticipate and counter the 
argument that mathematics is not precisely defined or "executable." To execute a set theoretic 
expression, thus discovering the value it denotes, one need only implement a theorem prover and then 
supply it with the axioms of set theory and an axiom describing the expression of interest. Of course, 
such a method is not guaranteed to terminate for all expressions, but this is true of any interpreter 
executing programs in a sufficiently powerful language. 

Although the only truly primitive operations of set theory are those of first-order logic, together 
with E (set membership), we will use many more than these without defining them: It is a straightfor­
ward (and entertaining) task to give definitions of all such operations in terms of the truly primitive 
ones, but we do not bother to do so here. 
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All that we will give is a list of the mathematical notations, operations and sets that are used 
without definition. The only deviation from the standard meaning of these terms is that all the prim­
itive sets are assumed, for convenience, to be mutually disjoint, so that, for instance, one can tell the 
difference between the natural number 3, the integer 3 and the rational 3.0. One can assume, if 
desired, that all the elements of these sets are paired with a "type-symbol", allowing such distinctions 
to be made. In the same manner, we later assume that the sets and n-tuples formed from these basic 
sets are all distinct from one another; that is, no integer is a set, an n-tuple is distinguishable from a 
set, and so on. Again, assume that type-symbols are used to keep track of such distinctions. 

Sets: 

Bool={! alse, true} 
w={0,1,2, · · · } 

Int= { · · · ,-2,-1,0,1,2, · · · } 
Real= (a subset of the rational numbers) 

Set Ops: eES, S<_;T, {e 1, ... ,e,d, {elxJlxES and blxl}, SuT, SnT, S-T, Power(S), ISi, 

Logic: a and /3, a or /3, -,a, a implies /3, :Jx:a!xJ, Vx:a!xJ, a iff /3, x=y. 

Functions: /(e), f(ei, ... , ek), (>-xeS.e[xl), S-+T, Domain f, Range f, 

I e1!xJ, if b1[xJ, 

! (x )= · · · 
etlxl, if b.dzJ. 

Numeric: x+ y, x-y, x•y, x/y, min(x,y), max{x,y), lxl, sin x, cos x, tan :c, exp x, · · · 

Sequences: {n-tuples) 
< e1, ... , et>, 8 ·t (concatenation), s; (selection), S' (repetition). 

Note: Throughout the definition, function application is often written without parentheses, 
except for grouping, so, i.e., fx denotes / applied to x. The precedence of function application is 
taken to be higher than any other mathematical operator in the definition, so that / x+ gy denotes 
(Ix)+ (gy), not f(x+ (gy)). Also, (I x1 x2 • • • X,t) should be parenthesized as 
( · · · ((! x1) x2) • · • xd, and can usually be viewed as the {Curried) application of f to arguments 
Xi, ... , Xt rather than as the application of a k th order functional. 

Other notation used above that might need explanation includes Power(S), which is usually 
written with a script P and denote1:1 the set of all subsets of S, and >.xES.e!xJ (where S is a set and 
e!xJ represents an expression possibly containing references to z), which denotes the function that, 
given any x in S, produces e!zJ. Every occurrence of x within e!zJ that is not within an inner 
>. x · · · expression, or other expression that binds x, is a reference to the argument of the function, 
and is said to be a bound va1·iable occurrence {in the same manner that x is bound in the formula V 
z:rp). 

From now on, when we are making a definition, we will write: 

new notation =dt old notation 

where new notation is the notation or variable being given meaning, and old notation is its definition. 
We use =dt to avoid confusion with the equality symbol =, which will often appear as part of the 
definition. Even though the new notation may be shown surrounded by parentheses() for clarity, the 
parentheges will sometimes be omitted in later usages of the notation, where ambiguity would not 
result. 

When we arc defining a notation that gives a binding to one or more variables, as is the case 
· with the>. notation, above, we will emphasize this by writing e[xJ {or e!x 1, ... ,xtl) instead of just e for 
each constituent expression or the new notation within which x is bound. The bracketed x is part of 
the meta-language in which the definition is being made and will not appear in subsequent uses of the 
notation. The only l'eal semantics associated with the use of lxJ is that if we introduce an expression 
as ejx], then e[tJ means "the expression e with every free occurrence of x replaced by the expression 
t, in the usual manner." 
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3. Domain Definitions 

Now that we have laid the meta-language on the table, we can begin to define new sets and 
other useful objects. We will start by giving, in this section, the domains that will be most important 
in the SETL definition. These are the sets whose elements represent SETL data objects and the 
meaning of SETL constructs. 

To be more specific, Obj represents the set of values that SETL variables can take on; St is the 
set of possible states during the execut.ion of a SETL program and is nothing more than a mapping 
from addresses (locations in Loe) to SETL values (elements of Obj); Cont fa the set of continuations, 
functions from states to states that a,re used soley to define goto 's. A continuation is passed as an 
argument to the meaning of some SETL constructs, representing the state transition that needs to be 
done after the execution of the construct in order to finish executing the program in which the con­
struct is embedded (see the definition of labels and goto ). 

The special location val does not refer to any explictly named SETL object, but is used to hold 
the value resulting from executing expressions. That is, rather than opecifying the meaning of an 
expression as both a function from states to states and as a function from states to a value, we need 
only give the former. The value of the expression is taken from the val field or the state produced by 
executing the expression. One can think of the val location as an accumulator (or RO, for those fami­
liar with certain machine languages). The other special locations (ones that are not SETL identifiers) 
are used for various purposes documented later. 

13.lj CharOrd =dt <ev ... , e11> 

l3.2J Char 

13.3] Str 

where each c; is a symbol called a "character" 

=dt {cl~i:CharOrd;=c} 

=dt Char' 

[3.4] Atom =dt (a countable set disjoint from Str join Bool join Int join Real) 

l3.5J A- 1B =dt {/EA-B !Domain/ is finite} 

13.6] Power1S =dt {x~S]z finite} 

l3.7J D0 =dt BoolulntuRealuStruAtom 

l3,8J D;+1 

13.9] Obj 

=dt D;U(w- 1D, )uPowe,·1 D; 

=dt {om} U lJD; 
IEW 

[3.10] Loe 

[3.11] St 

[3.12] Cont 

=dt { val ,yield_cont, return_cont }U ( the set of non-reserved SETL identifiers) 

=dt Loe-Obj 

=dt st-st 

The special object om, above, which represents the SETL value om , is some value that is dis­
joint from all of the D1 • It is also used to indicate error conditions when rules of SETL are violated. 

It may surprise some readers to see that the set or locations, Loe, is defined as the set of SETL 
identifiers (variable names). This can be done because SETL is a pure value language, with no 
pointers or ca,ll-by-address. Hence, there is no need for both an environment, mapping variable names 
to locations, and a store, mapping locations to values. Instead we use just a mapping from variable 
names (which are locations, for us) to values, and call each such mapping a state. In the interest of 
abstractness we keep the rest of this document ignorant of the fact that the locations are SETL 
identifiers, except where the information is necessary in the manipulation of declarations. 

In the definition of Obj, above, D0 represents the set of SETL "scalar" objects, D 1, the scalars, 
sets of scalars, and tuples of scalars and, in general, D, contains all SETL objects whose nesting depth 
(of sets/tuples within sets/tuples) is between 0 and i. Note that, while a SETL set is represented as a 
mathematical set, it would not be appropriate to use n-tuples as the representation of SETL tuples, 
which can have positions vacant in the beginning or middle of t,he sequence. Instead they are 
represented more naturally as finite functions whose domain is a subset of w, the natural numbers. So, 
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if T is such a finite function, T(i) represents the i th element of tbe SETL tuple represented by T. 

Now, all that remains is to define the highest level domain, the one that contains the denota­
tions of SETL program fragments. This is the set Mng, but before we can define it we have to talk 
about the handling of functions. In SETL, functions share the same name scope with global variables 
(there are no nested functions). It is thus appropriate to have a domain that maps identifiers to 
either function denotations (to be defined) or value denotations (members of Obj). This would 
automatically enforce the restriction that a function may not have the same name as a global vari­
able. Such a domain could also map label identifiers, the third category of named SETL entity, to 
continuations (members of Cont), indicating the state transformation to be performed upon branching 
to that label. We define this domain, Env, below and call it the set of "environments." 

What are the denotations of functions? We have arranged to have them be the same as denota­
tiomi of any other SETL program fragments, by the following scheme. We assume that, when a func­
tion is called, the val field of the environment contains the tuple of its actual arguments and that, 
when it returns, the val field contains the result value. In this way, there is nothing more to a func­
tion than a mapping from states to states, which explains the definition of Fune, the set of function 
denotations. 

Now we can define Mng as a function from environments to environments in the absence of 
goto 's, and as a function from continuation/environment pairs to environments otherwise. 

13.13] Fune =dt St-+St 

13.14] Env =dt Loe-+(FuncuContuObj) 

l3.15J Mng =dt (Env-+Env)u(Cont-+(Env-+Env)) 

The portion of an environment that maps identifers to continuations or functions is completely 
static in SETL. That is, there is no whole SETL construct (at least according to the way we have 
broken SETL into constructs) the execution of which can change this environment. This is because 
SETL does not allow functions to be treated as objects, even to the extent of being allowed as param­
eters, and does not have label variables. The result of this staticness is that we can get away with 
representing the meaning of a SETL function as a mapping from states to states (St-► St) rather than 
a mapping from environments to environments (Env-+Env). To convert it from the former to the 
latter we simply extend it with the appropriate portion of the identity function on environments. So, 
if we have a particular environment e within which we wish to execute a function whose meaning is 
/ESt-+St we first augment/ to obtain the following / 1EEnv-+Env. Let e I Obj denote the largest 
restriction or e that bas a range that is a subset of Obj (that is, the portion of the environment e 
that is a state) and define 

[
/ (e I Obj)(z), if e(z)EObj, 

/'(e) =ctr '>.xELoe. e(z), otherwise. 

Now we can apply / 1 to e to produce the environment e I that can differ from e only on those loca­
tions that were mapped to objects by e. In the section where we describe function application (and 
the goto statement) we introduce a concise notation for this conversion. 

4. Preliminary Definitions and Abbreviations 

Before any of the syntactic abbreviations we introduce a very important semantic one. In order 
to make the meta-language look more natural, to say nothing of conciseness, it is crucial to avoid 
repetitive references to a environment variable s (recall that SETL programs are viewed as functions 
from environments to environments) when it is obvious which environment we are talking about and 
all that is being done is to apply it to some location z. For xELoc and oEEnv we write z instead of 
s ( z) when possible subject to the following rule of interpretation: wherever an expression e with 
value in Loe is used where only an expression with value in Obj makes sense (is in the domain of the 
function to which e is an argument), replace it by e( e) where e is the parameter of the innermost sur­
rounding lambda expression of the form '>.seEnv.g(e,s). However, this replacement is to be done only 
after all other abbreviations have been expanded, so that all lambda variables have been made expli­
cit. In order to allow us to give a meaningful example of this rule let us first introduce the following 
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useful definition. For any /EA-+B, xEA, ee.B, let 

(
e if x=y, 

14.ll /Ix/el =df the function/' s.t.f'(y)= f'y, o.w. 

Now we can write, say, the function that adds 1 to the integer at location x as: 

Increment =dt >.seEnv.slx/x+ lJ 
which by the previous rule, is an abbreviation for 

>.seEnv.slx/(s x)+ 1] 

5 

Most of the rest of the abbreviations will be introduced where they are first used, so that their 
motivation is clear, but the following are important enough to deserve special mention (Though they 
are shown surrounded by parentheses, these abbreviations will usually be used with parentheses omit­
ted. Also, the syntax will sometimes be informal and allowed to spill over into the surrounding text -
the meaning, we trust, will be clear). 

The first of these have to do with >.. notation. Although for rea.sons of simplicity we prefer to 
allow only unary functions as a primitive notion, we obtain the effect of having multiple argument 
functions by an abbreviation called Currying: 

>.x1ES1, ... , xkESt.elxv ... , ek) =dt >.x1ESi-(>.x21 •.• ,xkESt.elxi, ... , ek)) 
for k~2. As an example of this mechanism, if we want a function that takes two arguments, one 
Crom A and the other from B, and produces something in C we represent it as 

>.xeA.>.yeB.e(x ,YI 
which is denoted by 

>.xeA ,yeB.elx,yl 

and is a function of type A-+(B-+ C). 

Now some abbreviations familiar to applicative programmers: 

[
ei, if b is a true condition, 

14.2] (if b then e1 else e2) =dt e2, o.w. 

where T, the range of/ above, contains { el/ ,x] I xES}. The least fixed point (l.C.p.) of a functional 
HE((S-+T)-+-(S-+T)) is defined as follows: 

f O =df H(JJ, where J_ is {}, the totally undefined function. 
/i+l =c1t H(f,), 
l.f.p. (H) =dt U/, 

IEW 

For those not familiar with the notion of least fixed point of recursive functionals and how they 
relate to recursive function definitions see, e.g., 13]. Readers who wish to take our word for it may 
simply be informed that 

l.f .p. (>.JES-+ T.>.xeS.e I/ ,xi) 
is the function that we understand informally to be defined by: 
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f(x) '=dt ej/ ,zj 
although the former has meaning even when the recursive use or f appears to be circular, in that its 
argument is not always omaller (or simpler by some linear measure) than x itself. The point or using 
least fixed points is just that property: they allow us to define the meaning or, say, a whlle loop as a 
recursive function which "calls" itself endlessly precisely in those cases where the while loop does 
not terminate. 

The previous definitions were all of a general enough nature that they can be said to have noth­
ing to do with the semantics of SETL - they are general-purpose tools. It is now time to give away a 
little more detail about the "internals" of the SETL definition. Each SETL statement or expression 
is mapped by the definitio11 to a function / EMng, which is either a function from environments to 
environments or a £unction which given a continuation and a environment produces a environment. 
The idea is that simple constructs, ones that cannot execute jumps out of themselves, will be mapped 
to (Env-~Env), while ones that can cause the disruption of normal sequential execution will be 
mapped to ( Cont-.(Env-.Env)) and passed a continuation consisting of the portion of the program 
following the statement. This is so that they can choose to ignore the continuation passed to them 
when they wish to execute a jump. The point of saying all this is that it is time to show how such 
functions should be composed to get sequential execution, say, when two statements follow each other 
in a statement list. The notation used, as is the case with much of the other notation, will mimic 
standard procedural programming language syntax. Thus, we will use / 1; / 2 to mean the composition 
(in the manner to be specified) of the meaning function f 1 with the meaning function f 2. The func­
tions / 1, f 2 will usually, but not always, have been derived as the meaning of SETL program frag­
ments. (Note: In the definition of ; , below, it was convenient to extend what is really a binary opera­
tor to arbitrary, possibly empty, lists of of meaning functions.) Let k;?:O, with f i, ••• , /,;EMng and 
define: 

where, for/, gEMng, 

(>-.seEnv.s), 
/i, 
!1°!2, 
f 1; (f 2; 

if k=O, 
if k=l, 
if k=2, 

; h), if k;?:3 

>-.sEEnv.(g (Is)), if f, gEEnv-.Env, 
>-.ceCont,seEnv.(g c (Is)) if /EEnv-.Env, geCont-t(Env-.Env), 
>-.ceCont,seEnv.(f (cog) s), if JeCont-.(Env-.Env), gEEnv-.Env, 
>-.ceCont,seEnv.(f (g c) e), if/, gECont-.(Env-.Env) 

Notice that we are defining the meaning of / o g in a way such that it has its standard meaning or 
function composition when / and g are both in Env-. Env, but has a more complicated definition 
when continuations are involved. 

Since SETL is a procedural language, assignment (state change) is clearly an important notion. 
We have decided to use a familiar notation for it. For zeLoc, veObj, 

j4.8j (z:=v) =dt >-.seEnv.sjz/vl 
Note that x must be a location and v an expression in Obj. Hence, by the rule for abbreviating e(z) 
to x, 

(x:=z+ 1) = (>-.seEnv.sjx/x+ 11) 
= (>-.seEnv.sjx/(s x)+ 11) 

It will often be convenient to construct a function that, given a environment, applies one of 
several different functions to it, depending on the value of that environment, or even depending on 
the value of previous environments. This could be written as, say: 
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'XsEEnv.Fls,! ,gJ 
where FI s ,f, g J is an expression that tests 8 and then either applies / to it or applies u to it (see, 
e.g., the semantics of the lf statement). However it is better to make this more concise by using what 
could be called labeled environments: 

( 
'XsEEnv. (/ leJ s ), if f EEnv-+Env, 

14-91 (e:f!el) =di 'XcECont,seEnv.(flsJ cs), if /E(Cont-+(Env-+Env)) 

The above notation is useful only when / is defined with 8 as a free variable, otherwise, (s:/)=/. 
Much obfuscating parenthesization can be avoided by integrating this notation with the ; notation: 

j4.10J (/ 1; · · · ; ft; s:u1; · · ·; Un) =di /i; · · · ; /,;; (s:g1; · · ·; Un) 

Another notion that occurs repeatedly in the definition is that of executing several SETL pro­
gram fragments in unspecified order, and then using all the results. For example, in the expression 
e1+ e2 the two sub-expressions e1,e2 are evaluated this way, then the two results are added together. 
The following definition provides a convenient way to specify this notion. It composes a list or mean­
ing functions into one that, in addition to executing all the component functions, leaves in the special 
location val, the sequence of values produced by each of the functions (see explanation of val, above). 
For k>2, with/ 1, .•. ,/tEMnu, 

14.llJ 
do <> =di (val:=<>), 
do </ 1> =df (/ 1; val:=<val>), 
do < / 1, .•• , ft> = 

if Vpermutations <iv ... , ik> of <I, ... ,k>, 
(/jlj • • • ; /,t)=(/ l; .. • ; ft) 

then 
/ 1; s1: Ii, · · · sk-1:ft; 

B!;: val:=<s 1 val, ... ,Bk val> 
else val:= om 

We will need, in various places, the notion of picking an arbitrary member of a set (specifically, 
in the definition of the arb function). In SETL this notion is completely nondeterministic - not only 
is the member chosen not a pure function of the set, but it is not even necessarily repeatable from one 
execution of the program to the next. We use an oracle function arb that is a function of the set to 
model this behavior, for now, but it is not general enough. 

l4,12J arbitrary S =di arb(S) 

In order to allow SETL tuples to be defined in a natural looking manner, while remaining con­
sistent with the desired SETL semantics, we alter the meaning of 'X terms that are denotations of 
SETL tuples as follows. For any finite S~w-{O}, 

( 
e!YI, if yES, 

l4.13J 'XxES.elxJ =di/' where /(y)= om, otherwise. 

Now we invoke the right reserved earlier to keep all the primitive sets and the sets and tuples 
formed from them disjoint, and define some type testing operations. For any v, v1, v2EObjUFunc, 

l4.14J v is a set =di :Jiew:vePower1(D,) 

l4,15J vis a tuple =di :FEw:vEw-+/Di 

l4.16J v is a string =di veChar • 

j4.17J v is a pair =di vis a tuple and Domain v={l,2} 

l4.18J v is a map =di v is a set and Vxev:(z is a pair) 
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14.10] v is a singl1Halued map =t1r vis a map and Vx,yev:x(l)::..--=y(l) implies x=y 

!4.20J v is a function =<If vEFunc 

Finally, a f'ew useful functions dealing with SETL objects. For v,v1,t1:if=Obj and ceChar: 

l4.21J Pair(v 1,v2} ===c.1t >.xe{l,2}.if' x=l then v1 else v2 

l4.22j null tuple =dt >.xe{}.om 

l4.23J tuple length of v =dt if v is a tuple then max (Domain v) else om 

l4.24J Ord( c) =dt the i such that c= CharOrd; 

5. The Meanlng Function 

8 

The meaning of most SETL constructs will be defined to be a function from environments to 
environments (Eno-.Env), namely the function that describes the environment that results from exe­
cuting the fragment in any initial environment. The meaning of program construct u will be written 
ll u !, so it is always the case that ff u IlEMng. Occurrences of variables within u are meta-variables 
that denote arbitrary SETL variables, or arbit,rary members or other classes of SETL constructs, as 
noted. 

Now we finally get to the definition of the SETL meaning function. The definition is made by 
induction on the syntax of SETL constructs. Consequently, we can claim that the domain of the 
function defines also the syntax or SETL programs, as long as we understand the vocabulary or 
tokens, and we do not need to give a separate syntactic definition. (For convenient reference, how­
ever, the Appendix contains a summary of the syntax of SETL.) This differs from most other denota­
t,io11al definitions, which are usually defined on the abstract syntax of a language, requiring a separate 
definition of the concrete syntax. 

Each case in the inductive definition hi labeled by the name or the SETL construct the meaning 
of which is being defined. The simplest constructs are presented first, that is, the definition proceeds 
from the lowest level nonterminab in the SETL grammar to the nonterminal "SETL_program" at the 
highest level (w~ do not deal with modules and libraries). 

6.1. primary 

The SETL primaries are the bottom level expressions, at least with respect to operator pre­
cedence. They include the numeric and string literals, array subscripts and function calls (both hav­
ing the same synta.x), ~nd the set and tuple formers. 

6.1.1. literal (int __ tok, real_tok, string) 

For any int_tok n, let nval be the integer represented by n in the standard manner. Then 

15,lJ Il»J =dt (val:=nval) 
For any real_tok r, let rval = the real number represented by r in the standard manner. Then 

l5,2J llr) =dt (val:=rval) 

For any string I c1 · · · c1; 1
, where c1EChar, 

6.1.2. selection 

For a primary (not a lhs) consisting or a variable or function identifer z, and selectors 
81, •.. , St, k20, 

l5AJ llx 111 • • • s1;J =dt 

do <~es 11, ... ,ffeB1;ll>; 
8: get ts1 ' • ' ts1; of 8 X 
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The expression cs, is simply the expression inside the brackets of the selector Bi, while ts; is the pair 
of brackets. We also take care here of the rule that says a list or expressions in a selector is the same 
as putting a tuple as the selector (transparently to the user, we allow this rule to apply to SETL func­
tions as well as SETL tuples and maps, to obtain the simplicity that all SETL functions may be 
treated as though they were unary). 

It remains to define the notation: get ts1 · · · tsk of s z, which denotes a certain function from 
environments to environments. Its purpose (when k >O) is to access the value denoted by a sequence 
of selector expressions applied to the value e z. When it is applied to a environment s, there had 
better be a tuple of at least k values in s 11al, because it will use these values as indices or arguments. 
In the usage of get · · · , above, the tuple of values was put in the val field by the "do · · · " func­
tion. 

First, the base case; when there are no selectors we already have the value, unless it is a func­
tion, in which case we call it. For veObjuFunc, 

j5.5j get o( v =dr s :if v is a function then call funct v( < >) 
else val:=z 

For k~l,tJEObjuFunc, 

get ts1 · • · tsk of v =df 

where 

s: get ts1 • • • ts.t-i of v; 
s 1:val:= getl lsk, (s val)t of (s' val) 

[ 

val:=---= v i, 
val :=the unique y s.t. Pair( :i ,Y )Ev, 

call funct v(i), 

if v is a tuple, 

if v is a map, 

if v is a function. 

[ 

val:= om, if v is a tuple, 

getl{},iofv=df va{:={ylpair(i,y)Ev}, ifvisamap, 
val:=om, if vis a function. 

As can be seen, we have defined get recursively. To get a value from v using k selectors, we get a 
value from v using the first k-1 selectors, then we use getl to apply the k th selector to the result. 

In order to complete the definition of getl, we have to give the most important part of its 
definition (or at least, the most interesting), namely "call funct". For vESt-+St and iEObj 

j5.6J call funct v(i) =<lr val:=i; (v I St/Env) 

where ( v I St/ Env) converts a function on states to a function on environments as follows. For any 
vESt-St and sEEnv, 

j5.7] s I Obj =df the largest restriction of s that has its range in Obj 

( 
v (s I Obj)(x), if s(z)EObj, 

j5.8J (v I St/Env)(s) =df >.xELoc. s(x), otherwise. 

Informally, the difference between v and (v I St/Env) is just that the latter, when given an environ­
ment that is not a state, applies v to the "state" portion of the environment and leaves the rest of 
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the environment (the portion mapping locations to non-objects) unchanged. 

5.1.3. iterated set, tuple 

For any expressions ei, e2, c3, 

[5.9j ll{ e1 .. e2H =ctr 
do <lle1Ue2)>; 
val:= { xelnt I min ( val 1, val2):5 x :5 max( val 1, val2)} 

[5.lOj ll{e1,e2 .. cs}Il =dt 

do <lle1fl,lle2J.lleaJ>; 
val:={xElnt l::lnElnt s.t. 

x=va/ 1+ n-t(valz-va/1) and 
min ( vali, Vl!l 3):5 x :5 max( val1,val8)} 

[5.11j ff[e1,,ed) =df 

do <lle1D,ff e2)>; 
val:=(>-iE{l, ... , I ualz-vali[ + 1}. 

va/1+ (i-l)*sgn(valz-val 1)), 

[5.12j lllei,e2 .. eaU =dt 

do <ll e1Il,ll e2U e11) >; 
e: (let incr = valz-vo.l 1, 

n=if ir1cr=0 then O else 
1+ I floor((val:,val 1)/incr) [ 

in 
val:=(>.ie{l, . .. , n }.val1+ (i-1)-itincr)), 

1
1, if n >O 

where sgn ( n )= 0, if n =0 
-1, if n <O 

For any expression e and iterator i, 

[5.13j lll e :illl =dt iterate over i producing ff e J; 

1s.HJ ll { e :i H =c1t 

10 

iternte over i producing ll e Il; 
val :=Range oa/ (Convert the tuple produced to a set) 

where, for any left-hand sides x ,Y ,xi, · · · , expressions e, ei, · · · , simple iterators ei ,ei1, · · · , 
Boolean expression b and / EMng, "iterate over ... " is defined as: 

[5.15j iterate over z in e I b producing / =dt 

n e ); 
e :ii' s val is a set then val:= a tuple containing the elts of val 

else skip; 
e:1Jal:=<s va/,1,null tuple,1>; 
letrec loop=e 0:x:=(s 0 val)i (s0 va/)2; 

M. Condict 

s:if 8 x~om then llvr else val:=Jalse; 
e :if e val and s xf om then 

J; 
s:val:=<(s 0 val)i,(s0 va/)2, 

(s0 va/)3U{ <(s 0 va/)4,s val> },(e0 va/)4+ 1>; 
else skip 
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s:val:=<(s val)i,(s valh+ 1,(s val)3,(s val)4>; 
o:if (s val)2~ tuple length of (s val)1 then loop else skip 

in loop 
[work here -- discuss above def.j 

!5,16j iterate over y=e(x) I b producing/ =dt 
8: iterate over Ix ,Y J in ll e) I b producing / 

[5.17j iterate over y=e{x} I b producing/ =dt 
[work hereJ 

[5.18J iterate over si1, ••• , si.t I b producing f =dt 
iterate over si1 producing 

iterate over si 2, ••• , sik I b producing f; 
val:=let k=(length of val) in val1• • • • •valk 

[5.19J iterate over siv ... , sik producing J =dt 
iterate over si 1, ••• , sik I true producing f 

6.1.4. enumerated set, tuple 

For any expressions ev ... , et, k~O, 

[5.20J n { e !, , • • 1 et}) =d( 

6,1.G. from_expr 

do <lle1Il, • • • ,ffek)>; 
val:={ val 1, .•• , valt} 

For any two variable identifiers x and y, 

[5.22J Ux from Yil =<ll' llY less :=(x:=arb y)); val:=x 

[5.23J Ux t'romb vll =c1t s:let i=min(Domain (s y))E 
y:=y-{<i,z> I <i,z>Es y}; 
x:=s y (i); 
val:=x; 

l5.24J Ux frome Y! =df llx:=y(#y)J; s:lly(#y):= om Il; val:=s val 

For any two lhs's x X81, ..• , xsk and y V81, ..• , YSn, 

[5.25J Ux xs1, ••• , XBt from y vs1, ... , ysn) =dt ??? 

[5.26J llx xsv ... , xsk fromb y ysi, ... , ysn) =dt ??? 

[5.27J llx xsi, ... , xsk f'rome y ysi, ... , ysnll =c1t ??? 
[work hereJ 

6.1.6. case_expr 

For expressions e, v1, ... , Vt and constant lists cl 1, •.. , clt, 

M. Condict June 9, 1983 
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(cl 1): vi, ... , (cit}: Vt 

else Vt+i 

end Il =df 

llexpr case e of 
( cl 1):yleld v1; · · · ( clt):yleld Vt; 

else yield vk+ 1; 

end case; 
end Il 

For Boolean expression lists el1, ••. , el,. and expressions v1, •.. , Vt, 

[5.29J 
llcase of 

( el1): Vi, ... , ( el,d: Vt 

else V.t-+1 
end D =df 

llexpr case of 
(el1

1):yleld v1; · · · (el/):yleld Vt; 

else yield vk+1; 
end case; 

end) 

where, for any Boolean expression list el= ei, ... , en, 
el 1 = e 1 or · · · or en 

5.1.7. if_expr 

For expressions b,e 1 and e21 

12 

[5.30J llif' b then e1 efoe e2 end D =c1t llexpr If b then yield e1; else yield e2; end It; end ) 

5.1.8. prog expr 

For statements Bi, ... , Bt, 

[5.31J llexpr s1 · · · Btend ) =d! 

>.cECant,sEEnv.(with temp env <yield_cont-+c> do lls1 · • • Btfl) cs 
(see EnvfronmentManipulation, below for def. or with-temp-env) 

where yield_cont, like val, is a special field or the environment that is not the address or any expli­
citly named SETL object. It indicates what action should be done after a yield statement. We exe­
cute the statement list of the expr in a modified environment that maps yield_cont to the continua­
tion of the expr itseir. 

5.1.0. sys_vals 

The first three of these are just predefined constants, while the last, ncwat, is a nullary function 
that returns a value that is not only guaranteed to be different from any SETL object obtainable any 
other way, but is also different from the value returned by any previous call to newat. It is analo­
gous to the LISP gensym function. 

[5.32J lltrueD =df val:= true 

[5.33J llf'alse) =elf val:=f alse 

[5.34J ll om Il =c1t val:=om 

[5.35J llnewat) =c1t val :=arbitrary x EA tom; used_ats :=used_atsu{ x} 
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5,2. term 

The terms of SETL are either primaries or unary operations, such as arb z, sin x and so on, 
including the (one argument) reductions or binary operators(+ /e). We have already defined the 
meaning or primaries, so we need only take care of the last two here. 

In order to give a concise semantic definition for the unary operators we first define the 
mathematical function corresponding to each SETL unary operator. For those operators that are 
overloaded, we give the correspondence for each type or operand, using the convention that x ,Y ,z are 
operands of any type, m,n are numeric operands (real or integer), c,c 1, • • • are characters, e,t are 
character strings, A ,B are sets, S, T are tuples and a,fj are Boolean operands. 

Another implicit (but important) assumption is that all or these functions are extended to arbi­
trary xEObj outside their normal domain, and they return om when supplied with such an "illegal" 
X. 

SETL Operator 
#T 
+n 
-n 
abs n 
abs s 
acos n 
arbA 
aaln n 
atan n 
cetl n 
char n 
COS ll 

domain A 
even n 
exp n 
fix n 
float n 
floor n 
ls_atom x 
b_boolean x 
isjnteger x 
ls_,map x 
ls_real x 
lsJet x 
ls_strlng x 
ls_tuple x 
log n 
not a 
odd n 
pow A 
random A 
range A 
sign n 
sin ti 

sqrt n 
str z 
tan n 
tanh n 
type X 

M. Condict 

Corresponding Mathematical Function 
if T is a tuple then tuple length or T else om 
n (identity) 
--n (negation) 
Ill I 
if I e 1 =1 then Ord(e 1) else om 
acos n 
arbitrary 'A' (see def. of roman arbitrary , above) 
sin n 
atan n 

rnl 
if n ~ I CharOrd I then CharOrdn else om 
cos n 
if A is a map then { x I Pair(x ,Y )EA} else om 
n is an even number 
c 11 

( the mathematical constant e) 
if nEReal then the 11

1Elnt s.t. LnJ=n' else om 
iC n Elnt then the n I ER eal s.t. n = n I else om 
LiJ 
if xEAtom then true else/ alse 
if xEBool then true else/ alee 
if x Elnt then true else / alse 
iC x is a map then true else / alse 
if xEReal then true else/ alse • 
if x is a set then true else / alse 
if x is a string then true else/ alse 
if x is a tuple then true else / alse 
log n 
-,a (logical negation) 
n is an odd number 
Power(A) 
7 
if A is a map then {y I Pair(x,y)EA} else om 
sign n 
sin n 
7 
any string of characters s s. t. [ e I=( val:= x) 
tan n 
tanh n 
if xEAtom then "ATOM" else 
if xEBool then "BOOLEAN" else 
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if zEfnt then "INTEGER" else 
if zeReal then "REAL" else 
if z is a set then "SET" else 
if z is a string then "STRING" else 
if z is a tuple then "TUPLE" 

14 

Now we can refer to the above chart in giving the semantics of expressiong that contain unary 
operators. In the following definitions, let d, e be terms, op be a unary operator and / op be the func­
tion corresponding to op (with the operand type taken into account at each use of / ). Then, for any 
expreggion e, 

[5.36J fiop ell =c1t llell; val:=/op(val) 

[5.37J ll op/ e) =c1t 

ll e Il; 
e:if -,val is a tuple then t1ai:=om 

else val:=(letrec reduce=>.new. 

5.3. expression 

if n =0 then v else 
/ 0p(reduce(n-l), s val(n)) 

in reduce(tuple length of val), 
where v=if s val (1)ElntuReal then 0 

else if s val ( 1) is a set then {} 
else if s val (1) is a tuple then null tuple 
else if s val (1) is a string then < >) 

Expressions consist either or a binary operntor between two terms ( d + e ), the assigning form of 
a binary operator ( z+ := e ), the two argument form of reduction ( d + / e ), or a quantifier 
(exists x I b ). 

Ati with the unary operators we first define the mathematical function corresponding to each 
SETL binal'y operator, again using the convention that z,y,z are operands of any type, m,n are 
numeric operands (real or integer), c, ci, · · · are characters, s ,t are character strings, A ,B are sets, 
S, T are tuples and a,/3 are Boolean operands. 

SETL Operator 
m+n 
s+ t 
S+ T 

A+B 
m-n 
A-B 
mtn 
n*S 
B*n 
n:t:T 

T:t:n 
m/n 
m**n 
m<n 
s<t 

M. Condict 

Corresponding Mathematical Function 
m + n (addition) 
s •t (concatenation) 
>.ie{l..(tuple length of S + tuple length or T)}. 

if i~ tuple length or S then S(i) 
else T(i- tuple length of S) 

AuB 
m-n (numeric subtraction) 
A-B (set subtraction) 
m •n (multiplication) 
s" ( n repetitions or s) 
(same as n*s) 
if n <O then om else if n=O then null tuple 
else (same as T+ (n-1):t:T) 

(same as n*T) 
m/n (division) 
m" (power) 
m < n (numeric comparison) 
:liew:Ord(si)< Ord(ti) (lexicographic comparison) 
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m::;;n 
8::;; t 
x=y 
m2n 
s2t 
m>n 
s>t 
z/=y 
z?y 
a e.nd f3 
m atan2 n 
m div n 
a Imp! /3 
A In B 
C 1n 8 

x in T 
A Ines B 
A less x 
A lessf B 
m max n 
m min n 
m mod n 
z notln y 
n npow A 
A npow n 
a or f3 
A subset B 
A with x 

THE DENOTATIONAL SEMANTICS OF SETL 

m::;; n (numeric comparison) 
s=t or :JiEw:Ord(sd< Ord(td (lexicographic comparison) 
x=y (equality) 
m ~ n (numeric comparison) 
s=t or :JiEw:Ord(s;)> Ord{ti) (lexicographic comparison) 
m>n (numeric comparison) 
::liEw:Ord(si)> Ord(td (lexicographic comparison) 
x / = y (inequality) 
(ifz=fom then x else y) 
a and /3 (logical disjunction) 
if n f 0 then arc tan m / n else sign rrMr / 2 
lm/nJ 
a implies f3 
AEB 
3iEw:c=s; 
:JiEcv:x=T(i) 
A~B 
A-{x} 
A-{Pair(y,z)I yEB} 
max(m,n) 
min(m,n) 
m mod n 
(same meaning as not x In y) 
{ x ~A I I x I = n} 
(same meaning as n npow A) 
a or f3 (logical conjunction) 
A~B 
Au{x} 
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In the following definitions, let d, e be terms, op be a binary operator and / op be the function 
corresponding to op (with the operand type taken into account at each use of / ). Then 

l5.38J lld op e) =c1t do <d,e>; val:=/ 0p(val1,val2) 

For any variable or function identifier x and expression e, 

l5.39J Ux op:= e) =c1t lle); x:=/op(x,val) 

For any variable or function identifier z, expression e and selectors Bi, ••• , Bt, k 21, 

l5.40J llx Bi, ••• , 81; op:= efl =df 

do <lles1t ... , lleskll,lle)>; 
s: get ts1 • • • ts1; of s x; 
val:=/ op ( val ,s va{H 1); 
set ts 1 · • · ts1; of z, 

l5.41J ~d op/ efl =ctr 

do <lldUeil>; 
s:if -,val2 is a tuple then val:=om 
else val:=(letrec reduce=AnEw. 

if n =0 then s val1 else 
f op(reduce(n-1), s valJn )) 

in reduce(tuple length or va/2)) 

5.3.1. assignment_expr 

For variable identifier z and expression e, 

l5.42J ~x:=eJ=llet x:=val 
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For variable identifier x, selectors Bi, ••. , Bt and expression e, 

[5.43] llx s 1 · · • St:=e)= 
do <lles1), ... ,ffes1;~,fiefi>; 
set ts 1 · · · ts}; of X, 

where 
set ts1 · · · tsk of z =dt 

where 

s: get ts1 ' ' ' ts,._1 or x; 
setl tst, (s t1al}i; of val to (s valh+ 1) 
val:=<(s val)1, ... , (s val),._1,val> 
set ts1 · · · tek-1 of z; 

val:=vli/el, if vis a tuple and e-:j:om, 
val:=v-{ <i,x> I iEDomain v }, if vis a tuple and e=om, 

16 

setl (), i of v to e =dt val:=v-{Pair(i,z)I Pair(i,z)Ev}u{Pair(i,aOr; is a single-valued map and e-:j:orn 
val:=v-{Pair(i,x)[Pair(i,z)Ev}, if vis a single-valued map and m: 

( 
val:=om, if v is a tuple, 

setl {}, i of v to e =ell t1ol := 'i"1?, if v is a map. 

[work here - finish definition of setlj 

It is probably necessary to talk a little about the definition of "set" and "setl", above. Informally, 
the meaning of "set" ts1 • • • tsr. of x =dt is "set the portion or z selected by the first k components 
of the val tuple to the k+ 1th component of the val tuple. That is, "set" expects the val field to con­
tain a k+ 1-tuple of values, t.he first k being selector values, and the last being the value that is to be 
assigned. It fetches a structured value by using the first k-1 selectors on x. Then it modifies an ele­
ment of this value using the k th selector. Finally it sets the portion of x just fetched to the modified 
value. For left-hand sides x1, ••• , Xt and expression e, 

[5.44] lllz1, ... , Zt]:=e~ =dt 

[To be supplied] 

6.4. stmt body 

6.4.1. assignment, from_expr, proc_call 

(These constructs are also expressions and have the same meaning as their expression forms. 
See primary, above, for the definitions.) 

5.4.2. goto_statement 

Here is where continuations become meaningful. To execute a goto, we look up the continua­
tion associated with the label identifier, map this continuation into an environment-transition function 
f with ( ... [St/ Env) and produce the function that, given a continuation and an environment, ignores 
the continuation and applies / to the environment. For label identifier l, 

[5.45] footo lll =df >-cECont,seEnv.((s l)[ St/Env) e 

6.4.3. yield_statement 

In executing the surrounding prog_expr, we mapped the special location yield_cont to the con­
tinuation of the prog_expr, so we just obtain this function, and use it instead of the continuation or 
the yield statement. For expression e, 

[5.46] ll:rleld e~ =df >.ceCont,seEnv.(lle); 
((s yield_cont)I St/Env)) e 
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5.4.4. if_statement 

For Boolean expression b and statement lists sl1,sl2, 

5.4.6. case_statement 

5.4.6. loop_statement 

17 

We will describe all the loops except the for loop in terms of a complete loop statement. First, 
we define the meaning of a loop with some of its optional clauses left out. Let Is be a (non for ) loop 
statement with, possibly, some optional clauses, such as doing stmts, missing. Let ls I be the com­
plete loop statement obtained from ls by filling in the missing clauses with the corresponding clauses 
in this list (most of which have a reserved word followed by a null statement list): 

lnit 
doing 
while true 
step 
untll false 
term 

Then we define: 

[lsil =elf Uts'J 
It remains to define the semantics of a complete loop statement. Let sl1, ••• , slk be statement lists 
and b1,b2 be Boolean expressions. 

15.48] 
llloop lnlt sl 1 

doing sl2 

while b1 
step sl3 

until b2 

term sl4 
do 

e/6 

end loop Il =dt 

ll sl 11; 
letrec l=ff sl2Il; llb1!; 

if val then 
ITslz); Usl5~llb2Il; 
if val then I else skip 

else skip 
in l 

[sl 4~; 

Now we define the loop for statement. Let sl be a statement list and i be an iterator. 

l5.19J llloop for i do st end loop D =c1t 

iterate over i producing ll sill; 
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5.5. Environment Manipulation 

Before going on with the semantic definition, we will introduce and discuss some abbreviations 
involving manipulation of the environment. They will be useful both in the definition of lists of 
labeled statments (see smts below) where we need to introduce labels into the environment (mapped 
to continuations) and in the definition of a Body, where we need to introduce variables, functions and 
constants into the environment. 

We will use two abbreviations, "with temp env" and "with rec temp env', which are analogous 
to let and letrec, respectively. The first is fairly simple. For v1, ... , vkELoc, f EMng and 
ei, ... , ekELocuFuncuCont, 

l5.50J with temp env vi-~ei, ... , V,t-+e.t do/ =di' 
s:v 1:=e1; · · ·; V,t:=e1-; 
f; 
V1:=(s Vi); ' ' '; V,t:=(s Vt) 

It just assigns several values to the locations vi, executes the function / then restores the original 
values of the vi. 

Now we will need an extension of the / I z / e J notation to allow the modification of / at more 
than one point. For partial functions/ ,gEA-+B, 

l5.51J update / with g =df >.zeA.if zEDomain g then g z else / z 

So /lz/eJ= update/ with {<z,e>}. 

Now the hard part. Informally, we want 
!work here - more discussion! 
For vi, ... , v1ELoc and e, ei, ... , e1;EMng, k ~ 1, 

1s.s2J 
with rec temp env 

V1-+ ei, ... , Vt-+ ek 
do e =df 

s 1 : letrec / 1=>.seSt. ((with temp env v1-+ / 1, ... , Vt-+ h 
do e1) 

(update s I using s) I Obj) 

f 1=>-seSt. ((with temp env v1-+ / i, ... , Vt-+ It 
do e1) 

(update s 1 using s)I Obj) 
in with temp env v1-+ / i, ... , V.t .... ft 

doe 

!More discussion of above sorely needed.J 

6.6. stmts (statement lists) 

The semantics of labels and, hence, goto are partially defined here as well. We have limited 
the scope of a label to the statement it labels, together with all the statements in the list of state­
ments immediately containing the labeled statement. Thus the reach of a goto statement gs is lim­
ited to statements containing gs (directly or indirectly) and statements that are side-by-side in a 
statement list with a statement containing gs. Another way to say this is that transfer of control 
may only go, first, from more deeply nested to surrounding statements, followed optionally by a jump 
from one statement in a statement list to another. 

For k ~ 1, let sl0, ••• , slk be lists of semicolon-terminated statement bodies (unlabeled state­
ments), and Iv ... , l.t be identifiers. 

l5.53J ffsl0 l1:sl 1 l,t:slk) =dt 

with rec temp env l1=Usl1 s12 sl1J, 
l2=ff sl2 sis slk), 
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lk=llsld 
do llslo s/1 · · · slkll 

where, for statement bodies Bi, ... , Sn, 

5.7. program/procedure body 

19 

Here we give the core or the environment manipulation in SETL. There are only two levels of 
scope in SETL (at least in our subset), consisting or the global variables that remain allocated 
throughout the execution or the program, and local variables that are allocated and released in con­
junction with function calls. Both cases are handled with the same definition here. Note that for 
convenience we assume all constants are declared before all variables and that no variables are used 
without being declared. We could, of course, describe syntactic transformations that would map any 
program/procedure body not in this form to one that is, observing the rule that undeclared variables 
are taken to be local, not global (unless they occur in the body or the main program). 

In this section it is convenient to introduce a construct that is not in the SETL grammar as 
such, although it is a piece or a SETL program. Let "refined statement list" refer to a list of state­
ments followed by zero or more refinements: 

Rcfined_stmt_list -+ Stmts ldentifier::Stmts · · · 

Let Ci, ... , Ct, Vi, ... , vn be identifiers, ce1 , ••• , ce,. be constants and sl be a refined statement 
list. Then we define 

j5.54J 
ficonat c1=cei, ... , Ct=Ce.t; 
var Vi, ... , Vn; 
stll =elf 

do <llce1ll, ... , ffce,.J>; 
with temp env c1-+vali, ... , c1;-+val,.,v1-+om, ... , Vn-+om 
do Usl) 

To handle the case where initial values are specified using the lntt clause, we simple transform such 
clauses into assignment statements that are performed before the statement list is executed. Let 
Ci, .. .', Ct,Vi, ... , Vn be identifiers, ce1 , .•. , ce,. be constants, ve1, •.. , ve, be constants and sl be 
a refined statement list. Also, let { v11, ••• , vi, h;;; { Vi, ... , Vn} a,nd define 

[5.55J 
~conot c1=cei, ... ,c1;=ce1;; 
var Vi, ... ,vn; 
lnlt v1 :=ve 1, ••• , vi :=ve,; 1 , 

sill =elf 

llconst c1=cei, ... , c,.=ce,; 
var Vi, ... , Vn; 
llj

1
:=ve 1; · • ·; v1,:=ve 1 ; 

sl~ 

The next section gives the meaning of a refined statement list, completing the semantic definition of 
program/proc bodies. 

5.8. refined stmt list 

Refinements in SETL are nothing but identifiers that abbreviate statement lists. Their meaning 
could be defined syntactically, as if they were macros, but with the semantic weapons we already have 
deployed, it is just as easy to define them semantically, as parameterless procedures. For identifiers 
r 1, ••. , rk and statement lists s/0, ••• ,sl1;, k~l: 
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15.56] [s/ 0 r 1::sl 1 • • • rk::slk) =df 

with rec temp env ri-~fisl 1Il 

do lls·l0) 

20 

Our definition is meaningrul even when refinements refer recursively to themselves, whereas the macro 
definition would not be (and SETL does not a.llow such references, perhaps Cor this reason). 

5.9. SETL program 

A SETL program consists or some global declarations and global statements ( bP, below) followed 
by function declarations. The st,rategy we use to define its meaning is straightfm·ward. We define the 
meaning or a program with n function declarations in terms of a program with n-1. The semantics 
or a program with no function declarations is then defined trivially from the semantics of its body. 

For any identifiers p ,f i, ••• , f" and bodies bP, bi, ... , b", n;?: 1, 

l5.57J 
[program p; 

bp 
proc f 1(xv ... , xt); 

bi 
end proc / 1; 

proc f n(Zi, ... , Zp ); 

b" 
end proc / 11; 

end program p ;) =df 

with rec temp env 
/ i-+(with temp env xi--+vali, ... , :ck-val, 

dofib1ll) 

/n-(with temp env z 1-+vali, ... , zp-valp 
do llbnll) 

do llpro{tram p; 
bp 

end program p ;Il 
Finally, the base case; when there are no function declarations, 

6. Summary 

The language described above is not just a subset or SETL, but were it not that the syntax 
rules do not allow it, the definition gives meaning to many useful program fragments that are in an 
extended SETL -- one that is much closer to being an expression language. For instance, note that 
the definition of the for loop is such that if a for loop were allowed as an expression, it would have 
a value consisting or the tuple or values produced by each iteration. These values, in turn are well 
defined, even though the body of a for loop is a list ot' statements, not an expression. 

!More to be supplied. End of document, tor now.J 
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