
COO-3077-157

Courant Mathematics and

Computing Laboratory

U.S. Department of Energy

The Structure of the Puma Computer System

Overview and the Central Processor

Ralph Grishman

U.S. Department of Energy Report

Prepared under Contract EY-76-C-02-3077
with the Office of Energy Research

Mathematics and Computing
November 1978

New York University

UNCLASSIFIED

Courant Mathematics and Computing Laboratory

New York University

Mathematics and Computing COO-3077-157

THE STRUCTURE OF THE PUMA COMPUTER SYSTEM

Overview and the Central Processor

Ralph Grishman

November 19 7 8

U. S. Department of Energy

Contract EY-76-C-02-3077

UNCLASSIFIED

CONTENTS

© Copyright 1978, Ralph Grishman

Page

1. Project objectives 1

2. A chronology 3

3

.

System structure 5

4

.

Central processor structure 7

5. Microprogramming the PUMA 29

6. The microprogram for CDC 6600 emulation 46

111

1 . Project objectives

Because of the rapidly decreasing cost of digital

electronics, it has become possible in the last few years

to assemble substantial digital computing elements at a

modest component cost. In 1974, in response to these con-

tinuing hardware developments, we considered several possible

digital design projects; we felt that such a project could

develop a valuable expertise at the Courant Computing Lab-

oratory and produce a useful product. We selected as our

project an emulator for the Control Data 6600 central

processor.

This choice was based on several considerations.

Emulation of an existing machine would make a large amount

of software immediately available. The CDC 6600, in addition

to being available at the Laboratory, has a simple instruction

set which is therefore easy to emulate. Finally, the pro-

jected materials cost for the project was relatively low.

For a machine with perhaps half the computing power of a 6600,

the estimated cost (exclusive of peripherals) was roughly

$100,000 — about 2 or 3% of the original price of a 6600.

Because of further decreases in component prices since then,

the total cost for components and wiring of circuit boards

proved to be somewhat lower (in the vicinity of $65,000 for

a machine with one million bytes of memory)

.

Low component costs are not very helpful unless man-

power expenditures can be kept comparably low. This can

be done only through a highly automated system for design,

assembly, and testing. A large part of the project effort

has been invested in developing such a system. Using this

system, all circuits are thoroughly simulated prior to

assembly; wiring lists are prepared by machine and circuit

boards are wired automatically; assembled boards are tested

by comparison with a simulated circuit. This system is

described in detail in a separate report.

The system we have built has been dubbed the PUMA

Computer System. Officially, PUMA is an acronym for Proces-

sing Unit with Microprogrammed Arithmetic, but the name is

also intended to convey the grace of its design and the power

of the system. As of the issuance of this report (Nov. 1978)

,

PUMA serial number 1 has been running programs on a limited

production basis for about four months and construction has

begun on serial number 2. A briefy chronology of the PUMA

project is given in Chapter 2.

This report focusses primarily on the structure of the

PUMA system at the register and microprogram level. Chapter

3 briefly describes the overall system structure, while

Chapter 4 goes into much greater detail regarding the central

processor. Chapter 5 describes the microprogramming language

of the PUMA, and can serve as an introduction for the micro-

programmer. Finally, Chapter 6 presents the microprogram for

emulation of the Control Data 6600.

2. A Chronology

1974

July 1

Oct. 14

Nov . 8

brief initial proposal circulated

more detailed proposal, with some microcode

sequences, prepared

proposal presented at Computer Science Seminar

1975

through May microprogram revised and completed

4-bit ECL slice, used as decimal counter, wired

J. Fisher joins project

chip-level design of arithmetic unit (AU)

circuit simulator coded and tested

ECL slice tested at 30 MHz

testing of AU design with simulator begins

debugging of AU design and microprogram

chip placement for AU

design of board testing system

level-converter board for test system sent

for wiring

June

July

Fall

Nov. 2 4

1976

Jan. 23

Spring

May 19

June-Sept

.

Aug. 3

Fall

1977

Jan. 17

Feb. -March

testing of AU design and microprogram completed

AU board sent for wiring; chips ordered

software for board-testing system developed

(Genera le)

board testing system tested

last chips for AU received

AU tested

instruction unit sent for wiring

slow control unit designed

memory and memory switch designed (Bianchini)

slow control unit sent for wiring

software for testing processor ("PUMA utility")

developed on H-316 (Generale)

April

Summer

October

Dec. 15

1978

January

February

March

May

small memory (16 K words max) and memory

switch built (Bianchini et al.)

system integrated

initial, very low speed processor tests

microprogram debugged

POS (Puma Operating System) installed on H-316

(Kenner)

large memory (131 K words) operational

(Bianchini)

fast control unit simulation begins

(Grad)

fast control unit sent for wiring

PDP-11/34 installed

PUMA Utility written on PDP-11

PROMs for fast control unit programmed

(Grad)

PUMA running with fast control unit

Puma Operating System installed on PDP-11

(Kenner)

3. System structure

In our system, as in the Control Data 6600, separate

processors have been provided for executing user programs

and managing peripherals. We are keeping open the option

of duplicating the 6600 architecture, with its set of ten
*

peripheral processors. However, our initial approach has

been to use a single commercially available minicomputer

for controlling the peripherals.

This approach has a number of disadvantages. The

largest is that all operating system functions currently

performed by peripheral processors will have to be redesigned

and receded to run on the minicomputer or the central processor.

Another possible problem is that a single minicomputer of

modest price (about the same cost as the central processor

we have built) may not be able to transmit data at a rate

sufficient to keep the central processor busy.

There are several countervailing advantages to our

approach. Most obviously, it means that we have to design

and build less in order to obtain a working computer system.

Moreover, the motivation — in purely hardware terms — is

less strong for building peripheral processors than for

building a central processor. High-speed, large word size

scientific processors are still quite expensive, so the

potential saving from a new, simple design is large. The

slower, small-word-size machines suitable as peripheral proces-

sors, on the other hand, are now being mass-produced and have

become quite inexpensive; the potential saving there is much

smaller. Furthermore, the market for minicomputer-compatible

peripheral controllers is very competitive, and consequently

these controllers have become quite inexpensive. (In contrast,

controllers compatible with Control Data peripheral processors

are single-sourced and in some cases would be as expensive

as the central processor and memory.)
*
Work on a set of compatible peripheral processors is currently
underway at Brookhaven National Laboratories.

The gross structure of our computer system is shown in

Figure 1. A central processor (PUMA) and a peripheral-

managing minicomputer (MINI) can each address all of a large

central memory (CM) . All data transfers to and from peripherals

go through the minicomputer into central memory.

References to central memory go through a memory switch

(MS) . The memory itself has 60 data bits plus 4 parity bits

per word. The path to PUMA is 60 bits wide, to the mini-

computer 16 bits wide; the memory switch includes registers

for assembling four 16-bit words into a 60-bit word when

writing memory, and correspondingly disassembling words when

reading. In addition, the memory switch provides direct data

paths between PUMA and the minicomputer; these can be used by

the minicomputer to control PUMA (start it, stop it, or switch

tasks) and to run diagnostic tests of PUMA.

peripherals

Figure 1. Gross Structure of the PUMA Computer System

6

4 . Central processor structure

As we noted earlier, this project was prompted by develop-

ments in digital integrated circuit technology. The specific

family of circuits we have used in our central processor is

10,000 series ECL (emitter-coupled logic). This family possesses

two characteristics essential to our project: low gate propa-

gation delay and availability of medium-scale integration

chips

.

The propagation delay of discrete gates in this series

is 1.5 - 2.5 ns; gates included in larger functions have

effective delay times closer to 1 ns . This represents a three-

or four-fold increase in speed over the CDC 6600. Although

somewhat faster logic families are available (with delay times

for discrete gates below 1 ns) they provide a smaller variety

of functions and are more difficult to interconnect (because

of the high signal frequency)

.

The ECL 10,000 series includes a number of logic functions

in 4-bit wide slices. Among the chips available are: a 4-bit

shift register, a 4-bit counter, a 4-bit arithmetic-logic

unit, and a 4-bit, 16-word register file. This level of inte-

gration makes it possible, for exam.ple, to build a 60-bit

carry- look-ahead adder from 20 integrated circuit chips.

Because of the faster circuitry, we believed that we

could build a machine nearly as fast as the 6600 using a very

simple design with a minimum of parallelism. The design we

have adopted, requiring fewer than 700 chips for the entire

central processor, is described below.

The PUMA central processor is composed of three units:

an arithmetic unit, an instruction unit, and a control unit

(Figure 2) . The arithmetic unit contains all the user program-

mable registers (A, B, and X registers), a number of registers

for holding intermediate results in instruction interpretation,

and the hardware for performing addition, subtraction, and

Boolean operations on data. The instruction unit contains

Figure 2. Units and main data paths of the PUMA central processor.

the logic for decoding instructions. In addition, it contains

the P register (program counter) , and a register for holding

the next instruction word, which is fetched while the current

instruction word is being executed. The control unit, of

horizontal microprogrammed design, generates all control

signals for the arithmetic and instruction units.

Figure 2 also shows the main data paths of PUMA. Data

from memory (a 60-bit path) comes to the instruction unit.

If it represents an instruction to be executed, it is held

in the instruction unit; if it represents data to be loaded

into an arithmetic register, it is sent through the instruc-

tion unit to the arithmetic unit. (Although this does add a

few nanoseconds to the register load time, it avoids the

need for a separate path from memory to the arithmetic unit.

Because of the wide data path (60 bits) , minimizing the number

of such paths has been an important design consideration.)

Data to be stored in memory originates only in the arithmetic

unit, so the data path goes from the arithmetic unit to memory.

Memory addresses may be generated either in the arithmetic unit

(for register loads and stores) or in the instruction unit

(for instruction fetches) , so the address path goes from the

arithmetic unit to the instruction unit and from the instruction

unit to the memory. Instruction fields are transmitted from

the instruction unit to the arithmetic unit (over the 60-bit

data path) and to the control unit.

4.1 The Arithmetic Unit

The arithmetic unit is divided into two sections, a main

arithmetic unit and an exponent arithmetic unit. The main unit

is 60 bits wide, the exponent unit 12 bits wide. The exponent

unit is used for counting and, as its name indicates, for expon-

ent calculations in floating-point instructions.

Figure 3 shows the stucture of the main arithmetic unit.

In the narrative which follows we shall slowly work our way

from left to right in the figure.

TO
vo

Near the left of the figure are the A, B, X, and Y

registers. Each is a set of eight registers, named AO through

A7, BO through B7, XO through X7, and YO through Y7. The

A and B registers are 20 bits wide, the X and Y registers 60

bits. The A, B, and X registers correspond to the user-

programmable registers of the same names on the CDC 6600;

the Y registers hold intermediate results during instruction

interpretation. (The particular register configuration was

dictated in part by the 16 word X 4 bit size of the ECL

register chip. Thus, compatability with the 6600 required

A and B registers of only 18 bits, but the 19 and 20

bits were "free". Similarly, we probably could have managed

with just eight 60-bit registers, but eight more were avail-

able, so we wrote the microprogram to make good use of them.)

The output of the register array is fed to the unpack

logic. The unpack logic is a hardware implementation of the

6600 unpack instruction, which separates a 6600-format float-

ing point number into a coefficient (sign-extended to a 60-bit

number) and an exponent. The exponent is sent to the exponent

arithmetic unit. Operation of the unpack logic is controlled

by a signal from the control unit — if not selected, the

output of the registers passes through unchanged.

The output of the unpack logic goes to a 6 0-bit buffer

register BUF. The presence of a buffer register between the

register array and the arithmetic and shifting logic permits

a limited degree of parallelism in the main arithmetic unit:

an arithmetic operation can be performed on one operand while

the next operand is being fetched from the register array or

the previous result is being stored in the register array.

(If the buffer register were not present, a number could be

read out of the register array and used as an operand in an

arithmetic operation in a single clock cycle. This would

mean that certain sequences of operations could be performed

in fewer clock cycles. However, each cycle would have to

be considerably longer, since it would have to allow for both

11

register array access time and arithmetic operation time.

In consequence, the effective speed of the machj.ne would

probably be significantly reduced.)

The box labeled ALU in the figure is a row of fifteen

ALU (arithmetic and logic unit) chips, each four bits wide.

One operand of the ALU comes from the BUF register, the other

from the AC register. The ALU can perform addition, subtrac-

tion, and all sixteen Boolean operations.

For addition and subtraction, the ALU acts as a subtractive

adder. A subtractive adder may best be though of as a circuit

which first complements both operands, then adds them in the

way in which you are familiar, and then complements the result.

For two's complement arithmetic, a subtractive adder works

just like a normal adder; for one's complement arithmetic, it

has the feature tnat the sum of a number and its complement

is plus zero (rather than minus zero for a normal adder)

.

It is important to keep in mind, however, that when carry in,

carry out, group generate, and group propagate are discussed,

they are with respect to an addition being performed on the

complements of the operands.

Several variations are possible on the addition and

subtraction operations. The normal mode of addition is one's

complement addition (carry out of the high-order bit is propa-

gated end-around) . One variant (the "no propagate" option)

,

disables the end-around carry, so there is no carry into the

low-order bit (this has the effect of a normal two's comple-

ment adder with a carry forced into the low-order bit) . Another

variant (the "generate" option) , disables the end-around carry

but forces a carry into the low-order bit (this has the effect

of a normal two's complement adder without a carry into the

low-order bit) . A third variant is designed to facilitate

120-bit one's complement addition. Whenever an addition or

subtraction is performed, the 60-bit group generate and

propagate values can be saved in two flip-flops SAVEP and SAVEG.

These flip-flops can then be used to control the end-around

carry in a subsequent arithmetic operation, as follows:

12

let C^„ be the carry out of the high order bit; then, under
b U

this variant, the carry brought around to the low-order bit

will be

(C,_ f^ SAVEP) V SAVEG
bU

So, to compute the low-order half of a 120-bit sum, one first

saves the P and G values for the high-order halves of the

operands and then adds the low-order halves using the saved

P and G to control the end-around carry. The high-order half

of the sum is similarly obtained.

One further variant performs 18-bit arithmetic. In this

mode, the low 18 bits of AC and BUF are added (or subtracted)

in what is effectively an 18-bit adder, and the sign bit of

the result is extended to the high 42 bits. This mode matches

the "increment unit" arithmetic of the 6600.

The output of the ALU is wire-ored with data coming

from the instruction unit and from register EG of the

exponent arithmetic unit. These signals, together with the

output of 60-bit register MQ, are fed into a 120-bit shifter.

This is a combinatorial shifter made out of 4-way multiplexers.

It can send the data straight through (no shift) or shift it

to the right by 4 , 16, or 60 bits. The 4 and 16-bit shifts

can be either circular or arithmetic (high bit of ALU output

extended to fill vacated positions) ; the 60-bit shift is

always circular (interchanges ALU and MQ outputs) . (Consider-

able thought during machine design was given to the selection

of the best combination of shifts. An increase in the number

of different shifts would have considerably speeded up the

machine but was deemed too great an increase in the processor

size. For example, a shifter which could shift any number of

positions from to 63 would have increased the size of the

shifter from 60 to 180 chips, nearly a 20% increase in total

processor size.)

The ojatput of the shifter feeds a pair of 60-bit registers,

AC and MQ. Each of these registers is itself a parallel entry

shift register, so each, in addition to loading the output of

13

the shifter, can shift its data one bit to the left or right.

On a one-bit left shift, the low bit of the AC receives the

high bit of the MQ; the low bit of the MQ receives either the

high bit of the AC or a constant or 1, depending on select

lines from the control unit. On a one-bit right shift, the

high bit of the AC receives either the low bit of the MQ

(circular shift) or remains unchanged (arithmetic shift) ; the

high bit of the MQ receives the low bit of the AC.

The AC is the central register of the processing unit.

The output of the AC is directly connected by cables to the

memory switch; data to be written into memory is first loaded

into the AC. By appropriately setting the memory switch, the

minicomputer can read these signals and hence read the AC.

This feature makes it easy to trace the processor during

single-stepped execution. The low 20 bits of the AC are also

routed to the instruction unit and are used to transmit the

memory address for register loads and stores. Finally, the

AC feeds the register array, so data to be stored in the

register array must first go into the AC. On the path from

the AC to the register array is the pack logic. This performs

the inverse function from the unpack logic: it combines a

coefficient in AC and a signed exponent in register EO into

a floating point number. This operation is performed only if

selected by the control unit (using the same select line which

controls the unpack logic)

.

Figure 4 shows the structure of the exponent arithmetic

unit. The unit contains three 12-bit registers, EO, El, E2.

Register EO has a preferred status, inasmuch as it feeds the

pack logic and is the only exponent register which can be loaded

directly into AC or MQ.

At the center of the figure is a 12-bit one's complement

adder/subtracter. Like the one in the main arithmetic unit,

it is a subtractive adder. Even though this adder (like the

one in the main unit) uses carry look-ahead, one clock cycle

is not sufficient time to perform an add and gate the results

14

n

into an E register — two cycles must be allotted. As a

result, a fast addition mode is also provided. In hardware

terms, the adder consists of three 4-bit ALU chips and the

fast mode disables the carry into each chip. In net effect,

this means that bits 0-3, 4-7, and 8-11 are added independent-

ly by two's complement adders with a carry forced into each

low bit (bits 0, 4, and 8) . The fast mode is useful in a

number of situations, such as when a count smaller than 16

is being decremented.

One of the operands of the adder can be any of the E

registers or a constant sent from the control unit. The

other operand can be any E register or

the low 12 bits of the AC

a count of the number of 1 bits in the

low 4 bits of the AC

the low 4 bits of the MQ in bits 0-3 and

the complement thereof in bits 4-7

the jk field (6 bits) of the current instruction

minus zero (all 1 bits)

The output of the adder and the output of the unpack logic in

the main arithmetic unit are sent to a multiplexer which trans-

mits one of these two signals to the E register inputs.

4.2 The Instruction Unit

Figure 5 shows the structure of the instruction unit.

This unit holds the current instruction and the next instruc-

tion in sequence. It also contains the P register (program

counter) and MA register, which holds the address for

memory references

.

The data path from memory is connected to the input of

the NIW (next instruction word) register. While one instruc-

tion word is executing, the next word is requested from memory.

When the word is delivered by the memory, the NIW is clocked

to load it. When execution of the current instruction word is

16

o
•H
-P
Q) O

•H

n5

CD

O

4-

o

CO
-r-t

complete, the next instruction word is transferred from the

NIW to the CIW (current instruction word) register.

Lines from CIW transmit the high 15 bits (f,m,i,j, and k

fields of the first instruction) to the arithmetic and control

units. In addition, bits 30 to 47 (the K field of the first

instruction) can be routed to the arithmetic unit and or-ed

with the low 18 bits of the ALU output. The CIW is wired to

perform 15-bit left shifts. After a short instruction (15

bits) is executed, one shift is performed; after a long

instruction (30 bits) , two shifts.

Controlling the data sent to the arithmetic unit (or-ed

with the ALU) is a 4-way multiplexer. One input, as we just

mentioned, is the K field of the current instruction. The

second is the data sent from memory, the third is the P

register, and the fourth is zero.

On the right side of the figure is the address path.

Although the 6600 design only has 18 bits for addresses, the

PUMA address path has been made 20 bits throughout to accommo-

date a million words of memory (this involved almost no extra

cost, since all the chips involved are 4-bit slices) . The P

register is a counter — it can be incremented, decremented,

or set from the low 20 bits of the AC register. The P regis-

ter can be directly read by the minicomputer. The MA register

holds the address for memory references. It can be loaded

from the output of the P register or from the low 20 bits

of AC.

For PUMA serial number 2, some additional logic was

included in the address path. This logic is controlled from

the memory switch and so is invisible at the PUMA micro-

program level. Two registers have been added for relocation

and memory protection: a reference address (RA) register and

a field length (FL) register. The output of the MA register

is continuously compared to FL; an address out of range signal

is sent to the memory switch if MA ^ FL. The output of MA is

added to RA to obtain the absolute memory address, which is

sent to the memory switch. Both RA and FL can be set only by

18

the minicomputer through the memory switch. Finally, to reduce

the number of data paths leaving the PUMA, the absolute memory

address, P, RA, and FL registers are multiplexed onto a single

20-bit data path under control of the memory switch.

4.3 The Control Unit

The control unit generates the signals which control the

arithmetic and instruction units. It must generate these

signals in the proper sequence to interpret and emulate

CDC 6600 instructions.

The control unit of the PUMA is microprogrammed — all

information about the sequencing of control signals is stored

in a microprogram memory. The microprogram consists of a

series of miaroinstruations . Each microinstruction specifies

the values of the control signals during a single clock cycle

and contains sequencing information which determines the

microinstruction to be used in the following cycle. This

sequencing information consists of

a condition number, which selects one of

48 conditions to test

the address of the microinstruction to be

executed next if the condition is true

the address of the microinstruction to be

executed next if the condition is false

Including a conditional branch in every microinstruction

requires a much wider microinstruction than would having

separate operation and branch microinstructions. However,

because of the highly branched nature of the microprogram,

including the conditional branch in each microinstruction

makes the microprogram much shorter and hence much faster.

Since speed is paramount in this design, this approach has

been selected.

19

We have designed two versions of the control unit. One

version incorporates a 1024-word wviteahle microprogram memory.

This version has been used to debug the microcode for 6600

emulation, and will probably be used in the future to test

experimental microprograms. This version has the disadvantage

of being relatively slow — the clock period is 250 ns . In

the second version of the control unit, the microprogram is

stored in a programmable read-only memory. This memory is

smaller (512 words) and, of course, cannot be changed once

programmed, but makes for a much faster control unit — a clock

period of about 50 ns . We shall refer to these two versions

as the slow and fast control units, respectively.

The microinstructions are of a horizontal or decoded form.

That is, there is (with a few exceptions) a one-to-one corres-

pondence between bits in the microinstruction and signals coming

out of the control unit. We may also note here that the entire

processor uses a single (one-phase) clock, and that control

signals remain constant during a clock period.

We shall now proceed to a detailed description of the

control units — first the slow version, and then the fast.

The gross structure of the slow control unit is shown

in Figure 6. At this heart is a microprogram memory of 1024

85-bit words (the memory is built from 1024-bit static RAM

chips with a 70 ns maximiom access time) . The memory and the

microinstruction sequencing logic are all TTL rather than ECL,

because of the low cost and ready availability of the TTL RAMs

(low-cost ECL 1024-bit RAMs were just becoming available when

the slow unit was built)

.

Each 85-bit microinstruction has two parts: a 28-bit

group (consisting of a condition field and two branch addresses)

which determines the next microinstruction address, and a 57-bit

group which determines the value of all control lines during a

cycle. These control lines go to the arithmetic and instruc-

tion units and a few circuits on the control unit, to be

described later. Since the other units require ECL-level

control lines, the output of these bits of the microprogram

20

control lines

-^ TTL --> ECL
~7^

S
opcode
from X

CI¥ ^

micro-

instruction

sequencer

memory

address>

microprogram memory

condition
&

branch
address
fields

operation

fields

^28^ 57-

RAM

1024 words
X

85 bits

70 ns max
access time

Fi<^ure 6, Gross structure of slow control unit.

21

memory must go through TTL to ECL level converters.

Writing of the microprogram memory is under the control

of the minicomputer. The minicomputer has three 12-bit

paths to the control unit: a path for data into the control

unit, a path for data out of the control unit, and a path

for function signals (to start the clock or write a micro-

instruction) . The minicomputer can write a word of the micro-

program memory by sending eight 12-bit data words, together

with the appropriate function signals.

Figure 7 shows the details of the next microinstruction

sequencing logic. As is our usual habit, we shall work our way

through this diagram from left to right. Coming in on the left

is the 28-bit group from the current microinstruction. This

group is composed of three fields:

a 6-bit condition field

an 11-bit true-branch-address field

an 11-bit false-branch-address field

The high-order bit of each branch address has a special

function: if it is set, the low 6 bits of that branch address

are to be replaced by the opcode of the instruction currently

being interpreted (the high 6 bits of register CIW) . This

feature permits a rapid transfer to the appropriate microcode

sequence for each new instruction.

The condition field selects the signal to be tested by

the current microinstruction. There are 47 conditions in

PUMA: 31 test lines on the arithmetic unit; 16 test signals

generated on the control unit. These 47 signals are fed

into a giant multiplexer circuit (actually distributed between

the arithmetic and control units), whose output is the signal

to be tested. This signal in turn feeds a multiplexer which

selects between the true-branch-address and the false-branch-

address. The output of this multiplexer is the address of

the next microinstruction to be executed. This address is

gated into the microinstruction address register (MAR) and is

also available to be read by the minicomputer.

22

condition lines

r

m
i

c

r

o

i

n
s

t

r
u

condition number

t rue
branclTN
address

bUi O-
->

t<
1

o

n

f
i

e

1

d

s

false
branchy
address

^

l>Cti OS

opcode

/v

(from CI¥)
-^

ID

r<

^-9

N/

L ->

selected
condition

^He

r ->

(^-9

L

"\ ->

->-

opcode
branch

multiplexers

M

A

R

V
to minicomputer

->

^

micro-
program

""Memory-
address

L^

Ext. MAR
7R

from minicomputer

Figure 7. Microinstruction sequencer,

23

A final multiplexer selects between the microinstruc-

tion address register and the external microstore address

register (Ext. MAR) . The external address register can be

set by the minicomputer, and the select line of this

multiplexer is under minicomputer control. The external

address register is selected when the microprogram memory

is being written, and for the first cycle when the processor

is being started. When the processor is running, the micro-

instruction address register is selected. The output of

this multiplexer finally feeds the address lines of the

microprogram memory.

There are a few exceptions to the rule that each control

line is directly controlled by one microinstruction bit. These

exceptions are detailed in Figure 8.

One exception is the set of "special functions". These

are control signals which are changed relatively infrequently

in the microprogram. They are: the lines controlling the NIW,

P, and MA registers; the lines controlling memory requests;

and the line to the "save PG" flip-flops in the main arith-

metic unit. To save some space in the microinstruction word,

the bits of the microinstruction which are used as the constant

in the exponent arithmetic unit also control the special func-

tion lines. The circuit works as follows: the microinstruction

includes a special function bit. If this bit is 0, the

special function lines are all forced to 1 (which causes all

the registers to hold their previous contents) . If this bit

is 1, the special function lines are controlled by bits of the

constant field. Thus the only constraint imposed by this

scheme is that the constant field cannot be used in the same

cycle as a special function (unless the constant required

just happens to be that produced by the pattern of special

functions)

.

The other irregularity concerns the lines which control

the register number in the main arithmetic unit. The micro-

instruction can specify this number by a constant in the

24

other

operation

fields

constant

special
function bit

p

H

o
H
Eh

Oh
O

>H

o

register no.
select

register
number
constant

ILATCH bit

o
K
P-.

o
o

CH'HCUrH'DCD (jh^hOS OHiS

Figure S, Details of microprogram memory output logic

25

microinstruction, or it can specify that the i, j , or k

field of the current instruction (bits 51-53, 48-50, or 45-47

of CIW) be used as the register niomber . Accordingly, there

is a 3-bit, 4-to-l multiplexer feeding the register number.

Note also the 3-bit register ILATCH, which is loaded with

the i field of the current instruction (bits 51-53 of CIW)

.

ILATCH makes it possible to retain the i field of the current

instruction while rotating CIW in preparation for executing

the next instruction. (The j and k fields are not similarly

latched because the i field is frequently used at the end of

the microcode sequences for instruction interpretation,

whereas the j and k fields are most often used at the begin-

ning of such sequences .

)

The fast control unit has been designed to minimize the

machine cycle time. One way in which this was done was to use

a very fast chip in the microprogram memory. The chip we have

chosen is a 256 word x 4 bit PROM (programmable read-only mem-

ory) with a maximum access time of 25 ns. Another way in

which we speeded up the control unit was to overlap operations

in the arithmetic unit with the fetch of the next microinstruc-

tion. This is a bit tricky, since the next microinstruction

selected may be determined by a condition which depends on

the result of an arithmetic operation. What we were forced

to do was fetch both possible successor microinstructions

and then, near the end of the clock cycle (when the value of

the condition was known) select one of the two as the actual

successor

.

The circuit which achieves this overlap in the fast

control unit is shown in Figure 9. The microprogram memory

is divided into two banks which can be accessed concurrently.

We require that the false-branch-address always be in bank

and the true-branch-address always be in bank 1. In this way

the two possible successors of a microinstruction can always

be fetched concurrently. (This means that microinstructions

which occur as the false-branch-address of one microinstruc-

tion and the true-branch-address of another microinstruction

26

(D

•H
H

O
o

CQ

CD

-a

a

(D

US

m
(U

x:
CJ

-Q

CQ

4- 4

0)

S
:^

o
•H
4-1

•H
TD

O
O

(1)

P
CQ

•H

bD

-p

H
O

o

•H

^

<-

'Hi 11. I I nil

condition lines

address

m

will have to appear twice in microprogram memory, once in

each bank. In practice, however, the number of microinstruc-

tions which must be thus duplicated is quite small.) The

multiplexer which permits branching on the current opcode

is included only in bank 0.

During the first 35 ns or so of a clock cycle, the

arithmetic operation is performed and both potential succes-

sor microinstructions are fetched. The specified condition

is then selected by the condition multiplexer. The output

of this multiplexer is used as the select input of a 2-way,

81-bit multiplexer to select the next microinstruction,

which is then gated into the microinstruction register.

This takes about 15 ns, for a total cycle time of about

50 ns.

In contrast to the slow control unit, this design does

not provide a multiplexer for introducing an external micro-

program address. Instead, the minicomputer can disable the

microprogram memory and write the microinstruction register

directly. Thus, to start the machine the minicomputer would

load the first microinstruction into the microinstruction

register and then start the clock running. This facility

for writing the microinstruction register makes it possible

to try microinstructions not in the microprogram memory;

this may be useful for diagnostic purposes.

28

5 . Microprogramming the PUMA

For convenience in microprogramming the PUMA, we have

provided a microassembly language similar in style to a

register transfer language or algebraic programming language.

In this chapter we shall describe the PUMA micro-operation

repertoire in terms of this microassembly language. An

appendix to this chapter describes the structure of the

assembler microinstructions, explaining the significance

of each bit.

The microassembly language is processed by a micro-

assembler. The microassembler was originally written in

SNOBOL 4; the current version was coded in CIMS PL/I by

Erdwin Chua. The output of the microassembler may be fed

to one of two postprocessors. One postprocessor, for the

slow control unit, has the task of permuting the microinstruc-

tions so that the first microinstruction in the sequence which

interprets opcode n (n==0 , . . . , 77_) is placed at location n

of the microprogram memory. The other postprocessor, for

the fast control unit, has the additional task of assigning

microinstructions to one or both banks of the control store,

based on an analysis of branching in the microprogram.

To summarize the data register complement of the PUMA

central processor: the PUMA provides 16 60-bit registers

numbered XO-7, YO-7; 16 20-bit registers numbered AO-7, BO-7;

a 60-bit transfer register BUF; a 120-bit AC:MQ register pair

consisting of the two separately usable halves AC and MQ,

and 3 12-bit registers used for exponent arithmetic and

miscellaneous counting operations, which are numbered

EO, El, and E2. Within an n-bit register, the least-significant

bit is labeled bit and the most-significant bit is labeled

bit n-1. The micro-operations of the PUMA are as follows:

(a) Write to register :

{A|B|x|y} {r |I
I

J|K|M|n} = AC
or

= EO:AC (pack option)

Here and below, r is a digit between and 7; I, J, and K

29

designate the 3-bit I, J, and K fields of the current instruc-

tion; whereas M and N use bits from the El register, with

some encoding, in the following special way (designed for the

multiply routines)

:

M: if bit 7 of El is on, select register using bits

0-2 of El, otherwise no register store takes place

N: if bit 3 of El is on, select register using bits

4-6 of El, otherwise no register store tackes place.

For a pack option write to register, bits 0-47 and 59 of EO:AC

are set from AC, and bits 48-58 from EO, with bit 58 being

complemented. In addition, if bit 59 of AC is on, the expon-

ent bits 48-58 are complemented before the write. This option

stores in the register the 6600 floating-point representation

of the number whose integer coefficient is in AC and exponent

is in EO.

(b) Read from register :

These operations have BUF as their target; register read

and write operations cannot both be performed on the same cycle.

Microcode forms are

BUF = {a|B|x|Y} {r|l|j|K|M|N}
or

Ei:BUF = {a|b|x|Y} {r
|

I
|

J | K | M | N} (unpack option) i=0,l or 2

Here r,I,J,K,M,N are as above; in the M (resp. N) case

will be loaded into BUF if bit 7 (resp. bit 3) of El is off.

In the case of a read from an A or B register, bits 20-59

of BUF will be set to 0.

On the unpack option, the sign of the quantity being

read is extended to fill bits 48-58 of BUF, while Ei is set

as follows: Ei(0-9) = source (48-57) /source (59) ; Ei (10) =Ei (11)

= net (source (58) /source (59)) , where "/" indicates exclusive-or

.

This option separates a number in 6600 floating-point repre-

sentation into its integer coefficient (BUF) and exponent (Ei)

.

(c) Set AC and MQ ;

A 60-bit arithmetic-logical unit can compute any of

several functions of AC and BUF. The output of the arithmetic-

logical unit, together with the output of the MQ register,

30

is fed to a 120-bit-wide shift unit capable of shifting 60,

16, 4 or bit positions. The two halves of the AC:MQ regis-

ter are separately setable from the output of the shift

unit.

Several inputs besides the functions of AC and BUF can

be fed to the shift unit. In addition, AC:MQ can act by itself

as a shift register, shifting one bit at a time in either

direction. Any of these operations can be performed in

parallel with a BUF load or register-write operation.

Logical operations can be performed in one cycle; arithmetic

operations, however, require two cycles.

The microcode forms for these operations are:

{AC|MQ|AC:MQ| (AC) } = f

or
= SHIFT (f:MQ, longsh)

or
= MQ

or
= SHIFT (AC :MQ, shortsh)

The left side of the assignment indicates which of AC and MQ

will be loaded on this cycle; "(AC)" indicates that a function

should be computed by the arithmetic-logical unit, but not

loaded into either register half on this cycle. This is neces-

sary for arithmetic functions, which take two cycles to compute,

For example, to add BUF to AC the two-cycle microinstruction

sequence

(AC) = AC + BUF

AC = AC + BUF

is required; the sim is not loaded into the AC until the end

of the second cycle.

"f" may be any Boolean function of AC and BUF; mnemonics

are currently provided in the microassembler for the following:

31

AC

BUF

AC A BUF

AC V BUF

AC / BUF (exclusive or)

AC A n BUF

n AC

n BUF

- (all ones)

II 4r IIf" may also be one of the following arithmetic operations.

AC + BUF

AC - BUF

AC +

AC -

Addition is normally done in 60-bit one's complement arithmetic

using a subtractive adder; that is, the sum is effectively

computed by complementing both operands, performing an

addition with end-around carry, and complementing the result.

This scheme, which is also used on the 6600, yields +0 when

adding a number and its complement. Several arithmetic options

are available and are indicated by appending one or more of

the following microcode suffices to the operation.

[18] perform 18-bit I's complement arithmetic,

with the sign of the result extended to the

high-order 42 bits

[NOP] suppress end-around carry ("no propagate")

[G] force carry into low bit ("generate")

[SAVEPG] save 60-bit carry generate and propagate bits

(does not affect result of current operation)

[USEPG] make end-around carry conditional on values

of P and G saved by SAVEPG:

carry into low bit = (carry out of high bit ^ p)vG

(SAVEPG and USEPG are provided to perform 120-bit

one's complement addition efficiently.)

32

Finally, "f" can be one of the following.

K 18-bit K field of instruction in bits 0-17,

with bits 18-59 zero

P contents of P register (address of current

instruction word + 1) in bits 0-19 with

bits 20-59 zero

EO contents of EO in bits 0-11, with sign bit

extended into bits 12-17 and zeroes in bits

18-59

CMRD word of data read from central memory

"longsh" may indicate one of the following four shifts to be

performed by the shift unit.

R4 right circular shift 4 bits

R16 right circular shift 16 bits

A4 arithmetic right shift 4 bits (the sign bit,

AC bit 59, is extended to fill vacated bit

positions)

A16 arithmetic right shift 16 bits

The shift unit can also perform a 60-bit circular shift,

directing the output of the arithmetic-logical unit to the

MQ and the output of the MQ to the AC. This shift is selected

by the microinstructions

AC = MQ
and

MQ = f

which may be executed simultaneously.

AC:MQ can also act as a 120-bit shift register, performing

a one-bit shift on each cycle. In one-bit shifts, data does

not pass through the arithmetic-logical and shift units,

"shortsh" may select one of the following one-bit shifts.

Rl right circular shift 1 bit

Al right arithmetic shift 1 bit

LI left circular shift 1 bit

Zl left shift 1 bit, zero fill

01 left shift 1 bit, one fill

33

(d) Exponent unit operations :

The exponent unit performs addition and subtraction of

12-bit quantities using a one's complement subtractive adder.

Exponent unit operations may proceed in parallel with register

and AC:MQ operations, with one exception: because only one

exponent register may be loaded in any cycle, a BUF load

with unpack option excludes a simultaneous exponent unit

assignment.

The form of an exponent unit operation is

or
[Ei] = {Ej|const} ± {Ek |AC

I

JK| -0 |mm|BC}

[Ei] = {E. |const|AC| JK|MM|bc}, i,j,k=0,l or 2

Here,

const is a 12-bit octal constant

(the microassembler interprets -const

as the one's complement)

AC bits 0-11 of AC

JK 6-bit jk field of current instruction in

bits 0-5; zeros in bits 6-11

-0 all one bits

MM in bits 0-3, MQ bits 0-3; in bits 4-7,

complement of MQ bits 0-3; in bits 8-11, zeros

EC bit count of low 4 bits of AC

(The operand -0 is not explicitly available to the microassembly

language programmer. However, the single-operand assignments

E. = {E.
I

const}

are assembled as

E. = {E .

I

const} + (-0)

since -0 = 1111 ^ is the additive identity. Similarly,

E. = {AC| JK|mm|BC}

is assembled as

E^ = 7777 + {AC
I

JK|MM|BC} .)

As in the case of the main arithmetic-logical unit, addition

and subtraction require two cycles. An empty left-hand side

34

indicates that the arithmetic operation is to begin but no

result is to be stored on this cycle; thus a two-cycle add

might be

= AC + 1

EO = AC + 1

A "fast add" option, indicated by [F] after the operation, is

also provided; a fast add can be performed in one cycle. In

a fast add, the carry into bit position 0, 4, and 8 is blocked

(set to 0) , so the 12-bit adder acts like three separate

4-bit adders.

(e) Tests and transfers in the microcode :

A test can be used during any PUMA microinstruction cycle

to select one of two microcode successor addresses for a given

instruction. The general test form is IF t THEN Ll ELSE L2

,

where Ll and L2 are the labels fof two microinstructions.

The following 48 tests are provided:

NULL

EALU(ll)

EALU(O) V EALU(l)

EALU(2) V EALU(3)

EALU(4) V EALU(5)

EALU(0-3)

EALUPOUT

EALUPOUT A EXOP2.10

EALUPOUT A nEXOP2.10

FOFL

XFOFL

REG(59)

REG(17)

BUF(59)

false

EALU highbit on

EALU lowbits not zero

EALU bits 2-3 not both zero

EALU bits 4-5 not both zero

EALU bits 0-3 not all zero

carry propagate bit for EALU on

EALU carry propagate and EALU 2nd op,

bit 10

EALU carry propagate and not EALU

2nd op bit 10

floating overflow: EALU output

outside valid range of + 2000o

extreme floating overflow; EALU

output outside range + 3000g

sign bit on in selected register

bit 17 on in selected register

sign bit on in BUF

35

REG{59)/BUF{59)

AC(59)

AC (49)

AC(47)

AC (46)

MQ(59)

MQ(50)

MQ (4 9

)

ALU (59)

ALU (49)

ALU (47)

ALU(59)/ALU(47)

ALU (59) /ALU (48)

POUT

G

M

M > 8

AC << BUF A nMQ(50)

OPCODE (0)

OPCODE (1)

OPCODE (2)

1(0)

Id)
1(2)

1 =

I > 5

J =

MODE 2

MODE 4

CMDONE

NIWEMPTY

LASTPARCEL

ICHECK
EXTINT

sign bit of selected register

7^ sign bit of BUF

AC sign bit on

AC bit 49 on

AC bit 47 on

AC bit 46 on

MQ sign on

MQ bit 50 on

MQ bit 4 9 on

ALU sign bit on

ALU bit 49 on

ALU bit 4 7 on

ALU sign different from ALU bit 4 7

ALU sign different from ALU bit 4 8

propagate output on in ALU

generate output on in ALU

low 4 bits of MQ exceed 7

(used in multiply routine)

low 4 bits of MQ exceed 8

(used in multiply routine

)

weird condition used in divide

routine, see divide documentation

low bit of opcode on

bit 1 of opcode on

bit 2 of opcode on

low bit of I field on

bit 1 of I field on

bit 2 of I field on

I field

I field exceeds 5

J field

external line (set by PP)

external line (set by PP)

memory operation complete

next instruction word buffer empty (see
below)

last parcel of instruction word

LASTPARCEL V (NIWEMPTY A CMDONE)
external line (set by PP)

36

The propagate outputs of the arithmetic-logical unit

and the exponent unit adder are very useful in performing

selective bit tests. The propagate output when adding A

and B is

(Aq V Bq) A (A-^ V B-j^) A A (A V B^)
n n

(the A and B bits are complemented because this is a subtrac-

tive adder) , while for subtracting A - B it is

(Aq V Bq) A (A^ V B^: A (A^ V B^:
n n

Thus, to test that certain bits in B are all 1, we set the

corresponding bits in A to 1, compute A - B and test the

propagate output.

Similarly, to test that certain bits in B are all 0,

we set the corresponding bits in A to 1 , compute A + B and

test the propagate output. A number of conditions which are

tested in this way and used in the microcode have been assigned

separate mnemonics; these include

AC =

INDEF(Ei)

INF(Ei)

ILL(Ei)

ZERO(Ei)

E0(6-10) =

E2(7-ll) =

E2(6-ll) =

E2 =

all bits of AC =

Ei has the value 7777
8

(- -0, the "indefinite" exponent)

Ei has the value 1111^ or 5777g

(the exponent for floating-point

infinity)

INF(Ei) V INDEF(Ei)

Ei has the value 2000g or 6000g

(the exponent for floating-point zero)

bits 6 through 10 of EO are off

bits 7 through 11 of E2 are off

bits 6 through 11 of E2 are off

all bits of E2 are off

Note that the first of these conditions requires the use of the

arithmetic-logical unit and the remainder the use of the

exponent unit.

37

In addition to the basic form

IF t THEN LI ELSE L2

the assembler allows the form

IF nt THEN L3 ELSE L4

which is assembled as

IF t THEN L4 ELSE L3

,

and the form

IF t THEN L5

which is assembled as

IF t THEN L5 ELSE next instruction.

Finally, the form

GO L6

is allowed to indicate unconditional transfer.

A microinstruction transfer to the special label

OPCODEBRANCH is detected by the hardware and causes a branch

to microinstruction 0~77o, as determined by the opcode field
o

of the current instruction.

(f) Central memory communication :

A central memory operation is initiated by passing the

relevant memory address from AC into the memory address

register MA, and then setting one of the memory control

flip-flops READ/FF, WRITE/FF to signal the operation desired,

for which the two micro operations READ and WRITE are provided.

On a WRITE operation, the data written is taken from the AC,

which should be set from BUF no later than the cycle on which

the WRITE operation is executed; AC must then remain unchanged

until the memory unit signals completion of the write operation,

The normal initiation of write and read respectively is there-

fore

(write) MA = AC; AC = BUF; WRITE

(read) MA = AC; READ

38

The memory unit signals the availability of a read

result or the acceptance of write-data by raising a CMDONE

flipflop. In the case of a read operation, the microprogram

must load the data from memory by executing AC = CMRD

.

The microprogram then acknowledges to the memory its receipt

of the CMDONE signal by clearing the READ and WRITE FFs with

the CLEAR micro-operation. The memory concludes the cycle

and signals its availability by dropping the CMDONE signal.

The basic microprogram sequence for a read, beginning

with the address in AC and ending with the data in AC, is

LOWAITl IF CMDONE THEN LOWAITl

MA = AC; READ

L0WAIT2 IF nCMDONE THEN L0WAIT2

AC = CMRD; CLEAR

For a write the sequence, beginning with the address in AC and

the data in BUF , is

STRWAITl IF CMDONE THEN STRWAITl

MA = AC; AC = BUF; WRITE

STRWAIT2 IF HCMDONE THEN STRWAIT2

CLEAR

Address relocation and address-out-of -range detection is the

responsibility of the memory unit, not the microprogram.

(g) Instruction fetch logic :

In PUMA, instructions are read out of a 60 bit CIW

(current instruction word) register which is addressed in

15 bit parcels by a parcel counter. A 60 bit backup register

NIW ("next instruction word") is also provided. A 20 bit P

register contains the address of the current instruction + 1.

Operations available at the microprogram level are

NEWPARCEL (shift CIW left 15, decrement parcel counter

by 1)

CIW = NIW (move instruction backup word to CIW;

set NIW empty and parcel counter = 4)

NIW = CMRD (fill instruction backup word, set NIW full)

39

P = P + 1 (increment instruction counter)

P = AC (set instruction counter from AC, i.e. branch)

MA = P (set memory address register from P)

LATCH I (load I -field latch)

The opcode and J and K fields of the current instruction are

read directly from the CIW register. References to the I-field,

however (in register reads and writes and in conditions)

,

actually use the contents of the I latch. The I latch is loaded

from the I field of the current instruction by the LATCH I

micro-operation. This latch was included in PUMA because it

was desirable in the microcode to reference the I field of

the current instruction after the CIW had been rotated to the

next instruction by a NEWPARCEL operation.

Testable conditions involving the instruction unit are

LASTPARCEL parcel counter =

NIWEMPTY NIW empty (CIW = NIW was done with no concur-

rent or subsequent NIW - CMRD)

ICHECK LASTPARCEL V (NIWEMPTY A CMDONE)

The utility of condition ICHECK is discussed in the next

chapter

.

Microassembler input format

A microinstruction is a set of one or more micro-

operations to be performed in a single clock cycle. The form

of a microinstruction is

[label] micro-operation [; micro-operation] ...

A microinstruction must be punched starting on a new card.

If the instruction has a label, the label must begin in column 1

and must be separated from the first micro-operation by one or

more blanks. If there is no label, column 1 must be blank,

and the first micro-operation may start in or after column 2.

40

Except for these restrictions, input is free-format within

columns 1 to 80 and blanks may be freely used to improve

readability; blanks may not appear, however, within labels,

keywords, or register names. An instruction which does not

fit on one card may be continued by placing a '+' in column

1 of the following card and continuing the instruction in or

after column 2, Anything following an * on a card is treated

as a comment.

The two-digit labels 00 through 11 n have a special signi-

ficance: the instruction labeled ij should be the first

microinstruction in the sequence for processing the machine

language instruction with opcode i j ; this microinstruction

will be placed in location ij of the microprogram memory.

41

PUMA
APPtNOlX

MlCRUlNSTKUCTiUN FIELDS
THt FltLO NAMtS LiST£D ARE T.V. NAMtS DF THc CORRESPONDING CONTROL LINE NAMES
IN PUMA SER. NO. 1. TH: bIT POiiTlONS GIVEN ARE THOSE FOR THE SLOW
CONTROL UNIT; ThOSE FOR THt FAiT CONTKOL UNIT OlFFtR IN HAVING 8-BIT BRANCH
ADORbSStS (FIELDS BkAGbKO AND tJRADOf<l) AND NU OPCuBRl FIELD.

FltLO (WIDTH IN BITS) SIGNIFICANCE BIT POSITION

MAIN AU

*SAVETP- (1)

LTOACTP (i)
bHJFTcR

SrtSTP (2)

LSHSTP

AC + MU
ACFTP

hUFTP
hXPONLNT 4U

bAU UbDih
OPiSTP

fcSUBTP
bFASTTP

(£)

(2)

(2)

(2)

0P2STP (3)

(1)
(1)

EXPQNtNT REGISTERS
tOCLKTP (1)
[ICLKIP (1)
E2CLK7P (1)

CONSTANT
CQNTP

lU
DATSTP

(12)

(2)

1 r» PRUPAGATl CARRr cND-AROUNO
2 r» GtNLRATt CARRY INTO LOW BIT [Q]
3 I* USt SAVEb P ANO G [USEPG3

0(»HOLD LAST SAVhO GENERATE AND PROPAGATE VALUES
lf»SAVt HcA GLNLrATl ANO PROPAGATE VALUES FROM ALU
it»GATt cQ QNTU LUW 12 bXTS OF ALU OUTPUT BUS

DtTcKMINti AhOLNT OF SHIFT:
f» NU SHIFT

i <* SHIFT 't BITS RIGHT
2 .* SHIFT 16 BITS RIGHT
3 r» SrilfT 00 BITS

FOR RIGHT SHIFTS* SELECTS TYPE OF SH1FT«
0* 1 Ok 2 r» KIGHT CIRCULAR SHIFT CR]
3 r» RIGHT ARITHMETIC SHIFT tA]

FDR 1-bIT LEFT iHIFTS* DONE IN ACiMQ* DETERMINES
diT TO Fill luv< bit of na:

& FILL WITH 1 BIT CO]
1 OR 3 r» FILL WITH BIT CZ]
2 I* FILL WITH VALUE OF AC. 59 CLJ

AC FUNCTIJN:
I* LOAD

1 r* LEFT SHIFT 1 BIT
2 r» RIGHT SHIFT 1 BIT
3 & HOLD

MQ FUNCTION (SAME CODES AS ACFTP)

StLuCTS FIRST OP£RAND OF EXPONENT ADDER
r» CONSTANT FIELD OF MICROINSTRUCTION

1 r» £0
2 i» £1
3 i» E2

SELECTi ScCOND OPtRANO OF EXPONENT ADDER
t* ALL ONES

1 r* EO
2 r» ci
i «» c2
^ r» LOW 12 BITS OF AC
i> r» JK FIELD OF CURRENT INSTRUCTION
6 (BIT COUNT OF LOW 4 BITS OF AC
7 r» MM

EXPONENT ADOLR FUNCTION: Of»ADD# lr»SUBTRACT

77

61

51

67

47

49

57

53

Gr»NOKMAL ADD* ir*

BITS 0> <»» AND
FAST add:
OF ADDER

SUPPRESS CARRIES INTO

Or»STURt
Of»STORE
Or»STORE

IN
IN
IN

60;
tli
l2;

lr»DON»«T

lr»DaN»«T

lr»DON>«T

STORE IN EO
STORE IN El
STORE IN E2

12-61T CONSTANT FOR EXPOMENT ADDER

CONTROLS DATA FED TO AU (DATA IS OREO WITH

59
60

82
B3
84

69

40

^3

NIWCLKTP-(I)
CIWSTP (2)

OUTPUT OF
r»

i r»

L r*

3 &
Cr»HOLO*
CIW

ALU):
DATA FROM
ALL ZfcROS
Itf-BIT K FIELD
P RtGISTER

hEMO-^Y CCMRO]

OF CUKkENT INSTRUCTION

*MAOSTP (1)
MADCLKTP-(l)
PRGSTP- (2)

CMFCN

LATCHI

MICROPROGRAM
CNDSTP

(2)

(1)

ADDRESS
(6)

1

3

SELECTS
Or»HOLD#
P

i

2

3

CENTRAL

i

2

3

Or»LOAL) :

lr»HOLD
CONTROL

ScLfcCTS

NiM
(LEFT

lr»LGAD
FUNCTION:

I* LOAD FROM
& NEWPARCtL
& HOLD
INPUT TO Ma:
ir»LOAD MA

RcGIiTER FLNCTIONi
& HOLD
I* INCRtMENT
t* DECRcMENT
I* LOAD FROM AC
MEMORY FUNCTIONS
f» HOLD
« CLLAH REQUEST
I* ISSUE READ RtOOEST
I* issut vjRiTt Request
LATCH WITH i FIcLD OF

SHIFT 15)

C.+ LOW BITS OF AC# it»P REG.

78
38

74
73
75

79

CURRENT INSTRUCTION 27

TO BE TcSTLD

i

2

3

6

7

10
il
12
13
14
It)

16
17
20
21
ZZ
23
24
25
26
27
30
31
32
;>3

CONDITION
I* FALSE
t* EXPONENT ALU PROPAGATE OUTPUT
r» EALU P OUTPUT " -> cALU OPERAND
& EALU P OUTPUT V tALU OPERAND 2

r» EXPONENT ALU BIT 11
f» EXPONENT ALU 3IT ^ BIT 1

& EXPONENT ALU 3iT 2 '^ S IT 3

r* EXPONENT ALU BIT 4 '^ BIT 5

28

2 BIT 10
BIT 10

EXPONENT
EXPONENT
EXPONENT

<* FOFL
(XFUFL
!* M (LOW 4 BITS OF MQ)
I* M (LJW 4 BITS OF MQ)
f» tALU BITS THROUGH
r» KLblSTEK OUTPUT BIT
r» REGISTER OUTPUT BIT
& BUF blT 59
r* AC BIT 59
& AC BIT 49
. AC BIT 47
. AC BIT 46
<* ALU OUTPUT BIT 59 Jt

r» ALU PROPAGATE OUTPUT
I* MO BIT 59
I* MQ BIT 50
r» MQ BIT 49
& ALU OUTPUT
I* ALU OUTPUT
t* BUF BIT 59

> 7
> 8

3 NOT
59
17

ALL

BIT 47

BIT 59
BIT 48 t^ BIT 59
* REGISTER OUTPUT BIT 59

44

BRADDRO
OPCDBRO

8RAD0R1
OPCDBRl

(10)
(1)

(10)
(1)

SPCLFCN (1)

3^
35
36
37
^0
41
42
43
44
45
4b
47
30
51
52
33
54
55
56
57

rtRANCri AUO
li^RtPLACt
CURKtNT IN
SkANCH ADO
it»RtPLACc
CUKRtNT IN
lr»tNAtJLc S

ALU
ALU
ALU
AC<<
OPCO
OPtO
QPCO
1 LA

GLNtRA
UUTPUT
OUTPUT
BUF A

Dc BIT
Dt BIT
OE BIT
TCH Bi

LA
LA
LA
LA

CUR(<

MODt
MODt
CMCO
LAST
NUt
ICHb
cXTl

RtSS
LOW 6

STRUC
RESS
LOW 6

STkUC
PECIA

Bl
81

IN

TCH
TCH
TCH
TCH
lNT
(L (cXT
4 (cX7
Nh (St
PAkCtL
hPTY
CK
NT (EX
IF CQn
BITS

tiqn
IF CON
BITS

TiON
L FUNC

Tt
B

B
•^

1

2

T

T

T

5

ST
£R

ER

T

OUTPUT
IT 49
IT 47
M (4 9)

RJCTION J FIELD » (

NALLr SET FLAG)
NALLY SET FLAG)
Bf CENTRAL MEMORY)

TERi^lALLY SET FLAG)
DlTION is FALSE
OF BkADDRO BY OPCODE OF

DITION IS TRUE
OF 3RAD0R1 BY OPCODE OF

TIONS (SEE FOOTNOTE)

11
21

11

81

NOTE* A MICROINSTRUCTION CGNTAlMS t5 BITS* NUMBERED TO 84. EACH
FIELD OCCUPItS A CONSECUTIVE GROUP OF bITS iiM A MlCROlNSTRUCTIOi^;
THE BIT POSITION COLUMN SPECIFIES THE NUMBER OF THE LOWEST-NUMBERED
BIT IN THE GROUP.

* FIELDS MARKED WITH AN * ARc SPECIAL FIELDS. THE EFFECTIVE VALUc OF A

SPECIAL FIELD IS OBTAINED BY ANDING ITS BITS IN THE MICROINSTRUCTION WITH THE
SPECIAL FUNCTION FIELD* -SPCLFCN-. THE SPECIAL FIELDS OCCUPY BIT POSITIONS
ALSO USED BY THE CONSTANT FlcLD OF THE EXPONENT AU. IF A CONSTANT IS NEEDED IN
A MICROINSTRUCTION* SPCLFCN ii SET TO At>(D ALL SPECIAL FIELDS ARE EFFECTIVELY
0. IF A NON-ZERO SPECIAL FIELD IS REQUIRED IN A MICROINSTRUCTION* SPCLFCN IS
SET TO 1 AND THE SPECIAL FIELDS ARE StT TG THEIR REQUIRED VALUES; PRESUMABLY
IN THIS CIRCUMSTANCE THE FIELD wiLL NOT SIMULTANEOUSLY BE USED AS A CONSTANT
BY THE EXPONENT AU* SINCE IT IS MOST UNLIKELY THAT THE BIT PATTERN PRODUCED
BY COMBINING THE SPECIAL FIELDS WILL BE A USEFUL CONSTANT.

45

6 . The microprogram for CDC 6600 emulation

Presented below is the complete PUMA microprogram for

emulation of the Control Data 6600 central processor, con-

sisting of 454 microinstructions. This microcode was origi-

nally developed by the author concurrently with the design

of the PUI4A, and was subsequently improved by R. Kenner and

annotated by A. Czerniakiewicz

.

Although the microcode is extensively commented, at

least one point deserves separate mention here. When the

instructions in one word have been executed, CIW = NIVJ will

be performed to bring the next instruction word into CIVJ.

The microprogram will then immediately issue a read request

for the following word to fill NIW, which is now empty. This

read operation will proceed concurrently with the execution

of the first instructions in the instruction word. The con-

dition NIIVEMPTY A CMDONE indicates that memory is ready with

data which is to be loaded into NIW. This condition will

be checked at the end of the microprogram sequence defining

each 6600 operation. Thus the last instruction of each such

sequence will include the test

IF ICHECK THEN ICHECK ELSE OPCODEBRANCH

where ICHECK serves both as the mnemonic for the condition

LASTPARCEL V (NIWEMPTY A CMDONE) and the label for the code

handling the condition. This code sequence appears on the

third page of the microcode. If LASTPARCEL is not true (have

not executed last instruction in a word) , the microprogram

will load the next instruction word into NIW and then continue

with execution of the current instruction word.

Because the fetch of data for NIW occurs concurrently

with instruction execution, every microcode sequence which

involves a memory access must check whether this fetch is

still going on (whether NIWEMPTY) . If it is, the microcode

must complete this fetch before beginning the next memory

operation. The sequences which perform this check are:

the branch sequence (executed whenever a branch is taken)

;

46

the return jump (opcode 01) ; and register load/store

(opcodes 50 to 57).

This emulator differs functionally from the CDC 6600

in a few minor respects

:

1. Rounded floating-point instructions produce their

results by post-rounding (adding 1/2 to the final coefficient)

.

In some circumstances this may produce a more accurate result

than the 6600, which uses pre-rounding

.

2. Floating-point runs are computed using an effective

110-bit accumulator, whereas the 6600 uses a 98-bit accumulator.

In consequence, double-precision sums may differ from their

6600 counterparts by 1 in the low-order bit.

47

f^^^,^^^^:^;^^4******** *************************************** *************1f*4**^*t^i

EXCHAN&t JUMP

THROUGH AN fcXCHANGt JUMP StQUENCt* THE PtRlPHERAL PRQCtSSOR
CAN CAUSE THE CENTRAL PROCESSOR TO EXCHANGE THE CURRENT VALUES
OF THE Pf X, A, AND tt REGISTERS WITH VALUES STORED IN MEMORY.
THIS OPERATION IS NORMALLY PERFORMED WHEN SWITCHING THE CONTROL
OF THE CENTRAL PROCESSOR FROM ONE USER-S JOB TO ANOTHER.
THE VALUES IN MEMORY ARE STORED IN A 16-WORO BLOCK, AS FOLLOWS*

WORD O: IN BITS 36 TO 53p P

IN BITS 18 TO 35, AO
IN BITS TO lit BO •

IN WORD I, 1»1 TO 7 IN BITS 16 TO 35, A(I)
IN BITS TO 17, Bd)

IN WORL I, 1=« TO 15 X(l-6)

THE SEQUENCE OF OPcRATlONS INVOLVED IN AN EXCHANGE JUMP ARE:
1) THE PP RAISES THE EXTERNAL INTERRUPT (EXTINT) LINE
2) THfc CP STOPS EXECUTING INSTRUCTIONS AT THE END OF THE

CURRENT iNSTRUCTiUN WORD, AND SETS P»-0 AS A SIGNAL
TO THE PP

3) THb PP PUTS THE ADDRESS OF THE EXCHANGE PACKAGE ONTO
THE CMRD LINES. ON MACHINES WITH AN RA AND FL, THE PP
WILL ALSO RESET THtSE REGISTERS (SINCE THE EXCHANGE
PACKAGE WILL NORMALLY BE OUTSIDE THE USER-S FIELD
LENGTH).

4) THt PP LO»<ERS THE EXTlNT LINE, SIGNALLING THE CP TO
BEGIN THc REGISTER EXCHANGE

5) THE CP SETS P»0 TO SIGNAL THE COMPLETION OF THE REGISTER
EXCHANGE.

6) THE PP NOW RESETS RA AND FL TO THE REFERENCt ADDRESS
AND FIELD LENGTH OF THE NEW USER PROGRAM, AND THEN
RAISES AND DROPS LlNb EXTINT ONCE MORE TO SIGNAL TO
THE CP TU STAKT INSTRUCTION EXECUTION

WHEN THE CP IS PQWcRED UP, MICROPROGRAM EXECUTION WILL NORMALLY
BE INITIATtD STARTING WITH MICkQINSTRUCT ION -WAIT-.
El IS SET TO ACCtSS REGISTER NUMBER ZERO (A, B)

<AIT AC'CMRO; £1»270; IF EXTINT THcN WAIT ELSE XJPl * PICK UP CMRD.
XJP AC—O; IF -"CMDDNE THEN XJP

MQ=PJ P«AC; CLEAR; GO WAIT
XJPl MA«AC; P-AC; AC?.MQ«SHIFT(AC>.MQ,01); CLEAR
XJP2 IF CMDONE THEN XJPii
* POINT TO START OF PACKAGE. NUW BUILJ lb BITS MASK FOR
* LATER USE IN EXTRACTING KEtlSTERS FR3M PACKAGE.

READ; AC«MQ»ShIFT(ACiMu,Ri) * RECREATc MQ.
AC = SHIFT(AC".MO,Ai); iUF = AGi E0 = i2

XJPSL AC»SHIFT(AC7.M0,A4); EO = EO-lCf]; IF EALU(0-3) THtN XJPSL
* NOW SAVE MASK ANL OLD P-REGISTER VALUt.

YO=AC; AC=MQ
Yl«ACi MQ»0; GO XJPEnT

48

*

*

XJPLl

XJPENT

XJPwTl

XJPWT2

*

XJPKT3

XJPWTL

*

XJtXTP

XJPCON
XJPLOOP^
XJPWT6

XJPWT7

XJPWT8

THi:>

LOOP
PACK

AC>,MO»
AC?.MQ«
AC?oMQ =

AC?oMQ«
AC?.MQ»
AC?oMO»
AC?oMQ =

AC?.MO«
AC?cMQ»
ac-mq;
l10 = CMk
I^ CMD
WRITE

^0W
IF -'CM

CLcAft;
Y2«AC;
t3M = AC;
aUF«Y2
AC=SHX
AC-SHI
AC=SHI
Y2«AC;

StT
Al1»AC;

£1=E1+
aUF«6M
yi=AC;
»ti; I

IS THc FIKST LOOP OF THE EXCHANGE JUMP CODE. THIS
INStt^TS TH£ A ANJ & REtlSTtkS INTO THE NEW EXCHANGE

AGt AND tXTRACTS THtM FROM THE OLD PACKAGE,
SHIFT(bUF7.Mu>i<i6)
SHlFT(AC^.Mi)>ki)
SHIFT(AC7.MQ»K1) ; 3UF = AM
SHlFT(BUF?.MQ,Ri6)
SHIFT {At/eMU*kl)
SHiFT(AC^.MQ*ki) ; aUF-Yl GET OLD P.
SHIFT(bLr?.MQ,t<i6)
SHIFT (AC^.MQfK't)

SHlFT(AC^.MQ»k^)
IF --CMOUNt T'itN XJPWTI

0} CLtAk
JNt THcN XJPwT2

WAIT FGk WRITc ACCEPT.
DONt THEN XJPWT3
AC = f1Qj 3UF = Y0
AC'AC'^-BUF
h u «

GET MASK.

STOkS 6 REGISTER.

FT (lJUF;iMu*Rlfc)

FTCAC^'.MU^kl)
FT(AC?,MO,l<i); dUF-YO
AC»AC'>—6bF; P»P + 1

-A- kcGlbTck ANi) Stt IF MUST EXTRACT
»7+fci; IF EALUPOUT- THEN XJEXTP

7760LF]; AC«t/ iNCkEMENT NUMBER
; IF CMOUNt TriuN XJPWT<» * WAIT FOR
MA=P; KlAU

F cALU(G-3) THcN XJPLl tLSt XJPCGN

P.

AND CLEAR
MEMORY.

AC

NOW W

WE HA
kfcGIS
SAy/EO

tJUF»Y2;
AC=SHIF
AC=SHIF
AC-SHIF
AC-AC'^-
Y4=AC;

VALUE OF
cXCHANGE

THE P

PACKAGE.

t HAVd THc J'APPLNDAGfcS*' FOR THt AbOVE ROUTINE.
Vfc THc COOL TJ cXTkACT THb NEU
TER FROM THE FIRST WORD OF THE
IN
El

T(BU
1 (AC
T(AC
BUF
aC=u

He COOL TJ EXTRACT THE
FROM THE FIRST WORD OF
Y^.
'tl+77bGlFJ
iF/cha^kib)
:/oMu>Ri)

(--U XJPWTL

IT IS

GET MASK.

NGrt CONTINUt wiTn THc MAIN CODE. NOW GET THc X REGISTERS.
£1 = 270; BO = AC * CLcAR bO; kc:>ET REGISTER NUMBER.
3UF«XM; MQ = CMhu; It- --CMDONt THEN XJPLaGP2
AC=BUF; CLLARi IF CMOGNE ThlN XJPWT6
WRITE; P=P+1
IF --CMODNc THcN XJFrtT7
MA«p; ac»mq; buf=y^; CLcAR
XM = AC; AC=0; ti = El + 7760CF]; IF -<cALU{0-3) THEN XJPOONE
IF CMDJNE THLN XJPwTJ

<t*i

READ; GO XJPL00P2
XJPDONE P»AC; IF --fXTlNT ThcN XJPDDNi
WAITl AC»aUF; IF fcXTiNT HiN ^AiTl t LSh BR2

*

1CH = CK SEQUtiMCc?. dKANCrl HLI<£ wHcM ALL INSTRUCTIONS IN AN
lNSTi<UCT10N aOkD HAVc BcLN lXECUTcO* DK wHEN NEXT INSTRUC- *

TION WORD iS AVAlLAdLh TO LbAO INTG ^Miw. *

*

**********************'¥********************* ********************44 4* ****itt4**i^*if*

*

ICHtCK IF LASTPARCLL THcN AUVANCtP
NIWEMPTY * CMDONE IS TRUE i FlTCh N£XT INSTRUCTION WORD
AND GO TO NEXT INSTRUCTION

N1W = CMR0; CLEAk; LATCH l; GO uPCODctJR ANCH
CURRENT iNSTkbCTION wJRD IS CUnPLETt
HAS NEXT iNSTRUCliJN .pJUKD bLtN ecTCH!:0>

ADVANCkP P»P + l; IF NIWEMPTY THtN kMwAIT
YES* PUT NEXT INSTRUCTluh r,URU IKTC Clv«

LOADCIW CLEAR; CIW»NU; IF CMDUNt THIN LQADCIw
INITIATE READ OF NcXT iNSTkLCTiON xORD AND tjRANCH TO
EXECUTE FIRST lNST(<UCTluh- OF CURkENT WOkD

RNI MA«P; READ; LATCH i; if -•tXTINT THEN JFCOOEBRANCH
£XTt-<NAL INTtRKUHT HaS BE LN RAIScD* REStT P TO ADDRESS OF NEXT
INSTRUCTION TO Bt EXcCUTLD WHEN EXECUTlJiM OF THIS PROGRAM RESUMES*
AND cNTtR EXCHANGE JUf^P SEUUlNCE.

P-P-l; GO XJP
RNIWAIT NIW=CMRD; IF -CMDONt THEN KNl^AlT ELSE LOADCIW

*********** ***************************^********if********************* ***********
*

BRANCH StQUENCE *

*
4^i********r^l*l^*:l^**:t^l^*>^fJ^L*4il^44^^:^^^^4^^t^,i^ll^4*t^^^^^^^^J^^:^l^^^^^4^l^,^^,^^f^^:tf^Li^^^^^^J^^^^^^4^^^^^f^4^L^

*

COMPLlTl fetch OF NLXT INSTRUCTION IN SEQUENCE
BRANCH IF --NltJEMPTY THEN tikZ

BRWAITI NIWCMKO; IF -•C«uu.>ic THcN bl-^AiTl
EMPTY NIw* RtSET P> *JAiT Fuk CMDUNE TO GO LOW

BR2 CLEAR; ClW«Nlw; P = aC; It --CMDONt THEN Bk3
BRWAIT2 IF CMDONE TritN BKwAiTZ
BR3 MA«P; READ; P=P+1; GJ RNiwAlT
*

)t'***************4******-tf******.>tf****4** ************************* ***********
*

ERROR STOP: STORE MODc AND AQDRcSS DF CURRENT INSTRUCTION +1 *

IN WORD C AND JUMP TO 0.
MODE BIT + 2000 SHOULD bt IN EO OS tNTRY

*

MOOESt 0« PROGRAM STOP *

2» INFINITE OPcRAND
^» INDEFINITE OPEkAND *

*

50

LkRGR AC«P; t2«3ti
Ma = 0; IF -"NlWcMPTY THtS tkkUKLP

LPfiVjT IF --CMOUiML THtw c(<R»,r*
P (ADORtSS OF CUKkENT i^i>TRuCT10N 1) IS SHIFTED LEFT 30 BITS

» A,^D THEN PACKlD WlTri lU, PaCK OPcRATiON STRIPS THE 2000 BIT
FtiUfi lO, leaving MJDt BIT AND P lA iO,

**
ERRDRLP YO = b;0/.AC; AC =i)rilFT (AC/.MU* LI) ; =E2-1

E2-E2-ij IF -'LALU(ii) iHcN tkRDKLP
EKkSTOkt CLcAR; dUF=YC.; AC«Oi if CMCDNE THEN E-^RSTORE

.1A = AC; AC'nUf-; wRlTc
tRRGrWLP IF --CMDONc THt N ERkURWLP

SlT P = AND LGUH WAITING FOR tXTINT (EXTERNAL INTERRUPT)*
AC«0

HALT P»AC; IF LXTI^T THEN XJP tLSfc HAlT

^ « * ^ :(c * I^ 4: :^ 4c 4l :^ :^

SPECIAL FLOATING PJIiNT kLSULTS

:4c « :» « 4: :^ 4t :t: 4^ * « « *

» FLKtSFLj: EXPUiNcNT UVL k/UNDt RF LC^ - ON ENTRY* EXPONENT IN EO.
* tO<G: UND-RFLUw* STJke IN XI

EO>0: OVEkFLGw* STGRE INFINITY IN XI
* (FLkSFLON — SAMt PLUS OG NE^PARCEL)
»*

FLkSFLON «ECJ NcWPARCtLi IF cALu(ll) THEN /JXIZEi<0 ELSE WXIINF
FLKhSFLU =ECJ IF EALu(ll) THcN wXIZLFQ ELSE WXIINF

**
WXlZcKO: ZERO RtSULT*

WXIZLRGN AC«0; NEWPARCll; 6G wxi
WXiZERO AC=0
WXI XI«AC; LATCH 1; IF iCHECK ThtN iCHECK ELSE OPCQDEBRANCH

**
WXllNOtF: iNDEFlNirc ktSULT. I.E. EXPONENT OF XI EQUAL 1777.

kiXlINDEF aC = 0; tO = 7777
wXIFLOaT XI«EO?.Ai,; LATCH 1; iF ICHLCK THlN ICHcCK ELSE OPCODEBRANCH

**
* WXIINF : INFINITE RESULT. SIGN DETERMINED BY SIGN OF AC.

* TEST AC{59) ChECKS SIGN OF AC ON ENTRY*
* IF AC(S9)-0 (I.E. PUS.)*WHEN PACKlNGlAC" iEO-1777

GIVES EXP. 3777 « PLUS INFINITY.
IF AC(;>9)-1 (i,E, NE6.)»WHEN PACKING* AC--0 iE0»1777

GIVES cXP, AOOO » MINUS INFINITY

51

4i ***
WXIINFN NEWPARCEL; AC^O; MQ = SH1FT (ACXKQ* QDi £0 = i777i

IF AC(&9) THbN WXIhiiNt- LLSt WXlf-LuAl
WXIINF AC»0; MO«SHIFT(AC^hQ* 01); fcC»1777i

IF AC(59) THEN WXIhlINf tLSt WXIFLGAT
WXIMIINF AC'SHIFKACiiLMQ, kl); GO WXI

INDEFOPJ INDEFINITE OPtt<AND ; ONt (OR BOTH) OF Trifc EXPONENTS IN

El AND E2 ARE INDEFINITE
**

INDEFOPN EO-2004; NEWPARCELi IF M00t4 THEN ERROR ELSt INDEF0P2
INDEFOP E0«200^; IF hODE^ THEN ERROR
INDEF0P2 IF INFCEl) THEN iNFJPTOO

IF -"INFtEZ) THEN WXIiNOEF
INFOPTOO E0«2002i IF MQDE2 THEN ERROR ELSE WXilNDEF

NEWINSLO NEWPARCEL; IF ICHECK THEN IChECK
NEWINSTR LATCH I; IF ICHfcCK THEN ICHtCK tuSc DPCODEdRANCH
*

*

PS. OP 00 . PROGRAM STOP,
4<

00 E0«2000; 60 ERROR * STORES MODE « IN EO.

RJ K 1 RETURN JUMP. OP 01 .

*

WHEN A RETURN JUMP OCCURS AT LOCATION <HtRt:> TO LOCATION <THERE> THE
FOLLOWING HAPPENS:

*

STEP l: AT LOCATION <THdRL> IS STORED A JUMP TO <HtRt + 1 > (I.E.
0^00 P) AND

STEP 2: CONTROL TRANSFtRi TU <THtRt: + 1>
4>

01 MQ»P; E0«2^00
SHIFT P INTO HlGh 30 dlTi OF AC

AC?.MQ = SHlFT(0?oMQ*Rlo)
AC?.MQ»SHlFT(AC;'.MQ»Kib)
AC?.MQ»SHlFT(AC/oMa*Li)
AC?.M0«SH1FT(AC7.MQ,L1)

STORE 0400 P TErtPORARILY 1 iN iO
YO«EO^AC; IF -"NIWEMPTY THtN OlSTuRE

OIWT IF --CMOONE THEN OiwT
OlSTORE BUF»YO; AC«K; ClcAR; IF CMDUNl THcN OlSTORE

P=AC; MA=AC; AC=bbF; WRITE
OIWAIT IF --CMDONE THEN ulwAlT

P=P+i; CIW»NIU; CLLAR; go bRhAIT2

bZ

* JP Bl+K I JUMP TO BI+K- OP oZ- VALUk bl+K ^ILL tit COMPOTED IN aC.

02 BUF«flI; AC»Ki IF l^o HdN bh ANCri

=AC*dUF[18]
AC«AC + 3UF[ie]; IF iNlIWcMPTY THlN dkWAlTl ttSt iJk2

* CC XJ*K (CC»ZK*NZ*PL*rN&* IR* Jk>aF,iU) . OP O3C-037 *

*

*

*

*

*

*

*

*

* *

* THUTH TABLc: T = TRUt = i/ F = FAL.SL=0

* ID DF OR iK NG PL NZ LR *

* DP 037 036 03t. 03^ 033 032 C31 030
* *

* 1(2) TTTTFFFF
* *

* 1(1) TTFFTTFF *

* *

* 1(0) TFTFTFTF
03 AC»Ki IF 1(2) THcN FLOATBk *bKANCH DCCUkS FOR GP 034-037
* *iN ANY CASc AC« K

BUF»XJ; Mu=AC; IF 1(1) THlN PGSNlGBR 1(1) TRUt MEANS OP 032 AND 031,
* IN ANY CASE 6UF» XJ t MQ- K.

AC»BUF; NEWPAFCEL; if KO) then 031

* 030« ZR XJ,K .BRANCH WHEN EITHER XJ «+0 OR XJ » -0.

CONDITION coots: wHcN XJ SaIISFIlS SPECIFIED COND.* CONTROL TRANSFERS
TO K,

ZR:C0NTR3L TRANSFERS TU K IF Xj IS ZcRO (BOTH PLUS ZERO AND MINUS
ZERO SATISFY CONDITION).

NZiBkANCH *iHEN XJ CONTAINS ANYTHING JThEK THAN PLUS AND MINUS ZERO
PL:TRANSFck TO K IF XJ IS POSITIVE (i.c.blT b'i IS ZERO)
NGJBRANCH IF XJ IS NlGaTiVi (I.E. BIT b'i IS 1).

*

ILLEGAL EXPONENTS:
1R:JUMP TO K IF XJ IS IN R^iNbL (x.c. 12 HIGH ctlTS OF XJ ARE NOT

3777 OK 'tUOO.

OR:JUhP TO K IF XJ li OUT OF RANGE (i.L. 12 HIGH BITS OF XJ ARE 3777^
OR 'OCC.

DF:JUMP TO K IF XJ IS DtFlMTt (I.e. 12 HIGH dlTS OF XJ ARE NOT
1777 OR 6000.

1D:JUMP to K IF XJ 1:, iNltFiNlTE (l.E.i2 HIGH BITS OF XJ ARE 1777
Ok bOGO.

CONDITIONS 1 (X)*X«0*i*^*iiLLOW*RcFER TO I FIELD (BITS 21-23) OF OP#AND
WHEN SET WILL INDICATE WHICH OF GP 030-037 IS INOiCATtD

THUTH table: T=TRUE=i/ F=FALSL=0

ID DF OR iK NG PL NZ L'li

DP 037 036 03t. 034 033 032 C31 030

NEWPARCEL; if AC=0 then MQbkANCH
41

4> MQBRAnCH: when ADDRESS HAS BEEN KcPT WAITING IN MQ# AND IT HAS TO

bi

*

*

*

*

* Br. IKANbFERfcD FIRST TO AC.
* IF AC ^ +C* CHtCK FOR -C

.

AC=-AC
IF AC«0 THfcN M08RANCH tLSE NEWiNSTR

* BUTH +0 AND -0 iAVc BLtN CHECKED AND 8RANCH DOES NOT OCCUR.

* 031: N2 XJ/K .BRANCH writN flGTri XJ f *Q AND XJ * -0.
*

:«<>»%:« t * t' * 4^ ** 4 * *

031 NEWPARCtLj IF AC = THfcN Ntt.iNSTR
AC--AC
IF AC»0 THLN NtWlNSTK cLSt MOBRANCri

* **
» PaSNtoBK: CURKciPUNDS TO OP 032 AMD 033.
* * ON dKTKY: bUF «= XJ * MQ - K .

P0SNEG8K AC«6UFj NEwPAkC£L; IP 1(C) THtN 033******
*

* C32: PL XJ»K . BRANCH Li- XJ IS POSITlVh.

^ 4 :f >(| :^ 1^ « Ijc <. ;jl :4l >(. 4i ^

AC'MQi NfirtPARCtL; IF -•AC(t;<i) THEN BRANCH ELSE NEWlNSTR
»bRANCHiNb OCCURS WHEN AC - XJ IS NON NEGATIVE
*AODRtSS OF BRANCH IS PASSED FROM MQ.

* 033: NO XJ*K . BRANCH IF XJ IS NEGATIVE
*

033 AC = naj NlWPARCuL; if AC{t:9) THl;N BRANCH ELSE NEWlNSTR
**

* * FLDATSR: op CUDiiS FOR ILLEGAL OPERANDS* I.E. INFINITE AND
INDtFiNiTc OFtRANDS.

* **
FLUAT3R E0:BUF = XJ; Ir Id) THEM INOLFBR 1(1) TRUE MEANS GP 036 AND 037

NEWPARCEL; if Ko) THEN 03^

03^: IK XJ*K .IN RANGE BRANCH. l.L. BRANCH WHcN 12 BITS OF XJ ARE
* NOT 3777 OR 4000.
*

NEwPARCLL; if -•iNF(tJ) THcN tjRANCH ELSc NEWlNSTR
i«i :« J»i :(< « 4 * >«< 4 * >tE ^ * *

035: Ok XJ,K . OUT OF RANGt BRANCH. I.E. BRANCH »JHEN 12 HIGH BITS OF XJ
ARE 3777 OR 4^00.

b^

03b N£WPAKCtL; IF iNF{i-0) HtN ttl<ANCri tLSc NtWlNSTR
INDEf-BR NEwPAi^ClL; IF 1(0) TdfcN 037

* C3t)» t^f XJ*K DbFlNITt dKA.iCH — bKANCH *.HtN II HIGH BITS OF XJ
ARt, NCT i77 7 lIk tOOO

\-:*.Pb.tiZtl; It- -•iNDur(t.O) ThcN BRAr^CH cLSt NEWINSTR

* C37: lu XJ,K INDcFlNlT. d^ANCH — bRANCH wH£N 12 HIGH BITS OF XJ
* ARL 1777 GK oOOO
*

0:)7 Niv^PAKCiL; IF i N c F (.) IntU BkANCH LLSt NtWiNSTR

» lQ 6l>ttJ^K - OF 04- bkANCh AH:;t>) dl=eJ (d REGISTtRS HAVE ONLY 18 BITS).
* SlNCr: THc CAi.t UF cU X iS SO COMMON* WE WILL TEST FOR IT TO
* SAVb 2 (OF IHc 4) v^YCLci.

OA 6UF»Bi; MU»K; it J = u TH^M O'tCJZtKL)

AC = 3UF; 3UF=tio; \twPAKCEL
AC«AC/iUF *tXCLUiivt Jk, I.L. AC»0 OiUY »iHtN 61 AND BJ COINCIDE

* *
* * ATTHlbPUii\TMJ = K,
* ***
u^TiST AC = MOJ NLwPfK'CLLi ir Ac=0 THLN ttRANCH ELSE NEWlNSTR
* * Trie TtbT AC « REFERS TO PREVIOUS CONTENTS
* * OF AC# l.t. BI/6J.
* * IN AC=Ma* AC IS GlVcN ADDRESS OF BRANCH.
O'tbJZbRU AC^BOFi NbwPAFCbL; xr i»0 THLN MUBRANCH ELSE 04TEST

* Nt 61*ej*K -OP Ob, BKANCH WrlcN B1?dJ.

Oi> S0F«8I; MQ»K; IF J = THEN OiBJZERO
AC=6UF; BUF=bJ; NEWPAkCEL
AC=AC/6UF

Oi^TtST AC = MQi NEwPARCtL; ir --AC-O THEN BRANCH ELSE NEWINSTR
Oi)6JZf-kO AC«BUF; NEWPAkCEl; if I«0 THEN NEWlNSLG ELSE 05TEST

*

* GE BI*BJ,K -0? 06- BRANCH ^HEN 81 IS GREATER THAN OR EQUAL TO BJ.

4:t1^it:^ 4*^ ******
06 8UF«6I; MQ«KJ IF KcGCi?) THEN U6BINEG
* * RcGd?) TRUE MEANS BKONLY 18 BITS) IS NEGATIVE.

AC»=BUF; dUF^tJ; NEwPAKCEL; if REG(17) THEN MQBRANCH
* BRANCHING OCCURS BECAUSE BJ IS NEGATIVE* BI IS

* POSITIVE* HENCE BI > BJ.

t>b

IT iS MQBRANCH 6ECAUSt WE NEED ADDRESS OF BRANCH
FROM MQ.*

AT THIS POINT:aC= B1 * 6UF= BJ » MQ» K .

06SUBTR IS DONc WritN EITHER BOTH ARE POSITIVE OR BOTH ARE NEGATIVE*
06SUBTR -AC-BUFtlB]; NcWPARCtLj IF MWfcMPTY HEN 06EMPTY

AC«MQi «AC-BUF[i63; IF ALU(69) THEN hltWlNSTR ELSE BR2
06EMPTY AC-MQ; «AC-BUF[183; IF ALU(59) THEN NfcWlNSTR tLSE BRWAITl

* ALU(5<y} TkUc MEANS BJ > bl.

* AT THIS POINT: BUF « Bl > MQ« K .

* 06BINEG : WE GET HERE WHcN Bl IS NEGATIVE.

06BINEG AC*BUF; BUF'BJi NEWPARCEL; IF kEG(17) THEN 06SUBTR ELSE NEWINSLO
* WHEN BJ < 0* Sli^JCE Bl <0 p SUBTRACT THEM* ELSE
* WHEN BJ > 0, BRANCH DOES NOT OCCUR.

*

IT BI*BJ#K - OP 07 - INSTRUCTIONS ARE SIMIlAR TO OP 06.

07 8UF=BI; MQ=KJ IF RcG(17) THLN 07BINEG
AC«BUF; BUF«BJ; NtwPARCEL; IF --RtGd?) THEN 07SUBTR ELSE NEWInSLO

07SUBTR "AC-BUFI18]; NtWPARCtL; IF MwcMPTY THEN 07EMPTY
AC"MQ; "AC-BUFCieii IF ALU(i?9) THEN 6RZ ELSE NEWINSTR

07EMPTY AC-MQ; -AC-BUFCISJ; IF ALb(t9) ThEN -JRwAITi ELSE NEWINSTR
07BINEG AC-BUF; BUF«BJ; NEwPARCELj IF --REGd/) THEN MQBRANCH ELSE 07SUBTR

MQBRANCH AC = MQ; IF MWEflPTY THEN BRWAlTl ELSE BR2

4i^i^*^t:^*^^^filftt ************************ **************** **********'¥ ****i^*^*******
*

BOOLEAN INSTRUCTIONS

OP 10- axl XJ - TRANSFER A 60-BIT WJRD FROM XJ TO XI.
UP 11- 8X1 XJ+XK - LUolCAL PRODUCT OF XJ AND XK iS PASSED TO Xl-{BIT

IN XI iS 1 WHtN COKRcSPONDlNG BITS IN BOTH XJ AND
XK ARE 1).

OP 12- BXl XJ+XK - LOGICAL SUh OF XJ AND XK TO Xi-(BIT IN XI IS 1 WHEN
COKRtSPONDlNG BIT IN EITHER XJ OR XK IS 1).

OP 13- BXI XJ-XK - LOGICAL DUFcRLNCE (EXCLUSIVE OR) OF XJ AND XK TO XI
(BIT IN XI IS i WHEN CORRESPONDING BITS IN XJ AND
XK ARE UNLIKE)

OP 14- BXI -XK - TRANSMIT THE COMPLEMENT OF XK TO XI-
OP 15- BXI -XK*XJ THE LOGICAL PRODUCT OF XJ AND THE COMPLEMENT OF

XK IS PASStD TQ XI
OP 16- 3X1 -XK+XJ THE LOGICAL SUM OF XJ AND THE COMPLEMENT OF XK IS

PA:)ScD TO XI.
OP 17- 3X1 -XK-XJ Tfit LOGICAL DIFFERENCE OF XJ AND THE COMPLEMENT OF

XK TO XI.
*

******************** ******7^********l^*^^*:<^*********l^^^^:^:**^***^**4^^^^i4^^^^^**********
*

56

BXl XJ (3 CYCLcS)
10 BUF-XJ
WXIBUF AC»BUF; NFWPAKCtL; GO WXI

BXl XJ+XK (h CYCLcS)
11 BUF-XK

aC'BUF; buF'XJ
AND AC«AC^BUF; NLWPARCELJ GO WXl

6X1 XJ+XK (4 CYCLtS)
12 6UF«XK

AC«BUF; BUF=XJ
OR AC=AC>'BUF; Nfc^PARCtt; GO wXl

BXl XJ-XK (4 CYCLtS)
13 BUF'XK

AC=BUF; BUF=XJ
EXOR AC«AC/BUF; NL*.PARCcL; GO wXl

BXl -XK (3 CYCLtS)
l<t 8UF=XK

AC«-BUFi NtwPAkCtL; GG wXl
BXl -XK*XJ Ci CYCLfcS)

lb BUF=XK
AC«-8UF; BUF^XJi GJ AND

BXl -XK+XJ (^ CYCLtS)
16 BUF=XK

ac«-buf; 6UF«=xj; oj or
BXl -XK-Xj (<t lYCLcS)

17 BUF=XK
AC»-BUFi BOF=XJ; GO cXOR

*

LXI JX - UP 20 - LtFT CIRCULAR SHIFT Xi* JK PLACES.

- -SINCc ONLY BIG kloHT CIKCLiLAk SHIFTS ARc PERJ*ORMED BY THE MACHINE*
JK-LEFT IS FIkST Tr<ANSFOkMtD INTO A 1 7<» (OCTAL)-JK)-RIGriT SHIFT»OR»
WHEN JK>60 INTO (1^0 - JK)-kIGriT SHIFT. £0 CARRIES THE RIGHT SHIFT
COUNT.

-hiQ AND AC WILL bUTH CONTAIN XI.
-SHIFTING (U UNITS) IS DOM AT THt SAME TIME THAT THE EXPONENT IS
BEING RtOUCeD (BY U UNITS)* THuRE FORt*

C

ALL ING N THE NUMBER OF RIGHT
SHIFTS NttDtD* N WiLL BE kLDUCtO BY 16* 4 OR 1 UNTIL IT BECOMES ZERO
ACCOKDlNb TC THE FJLLOwlNG ALGORITHM:

IF (N < 16) GO TO TRY't

SHiFTlb IN = N - 16
SnIFT RIGHT lo
IF (N > 16) GO TO SHiFTlb

TRY^ IF (N < 4) GO TO TRYl
SHIFTS N = N - ^

SHIFT RIGmT 4

IF (N > ^) GO TO SHIFT'r
TRYl IF N =0 GO TO WRlTfcXI
SHIFTl N « N - 1

SHIFT RIGHT 1

IF (N >) GO TO SHlFTl

WRITEXI END

*

20 BUF-Xl; «7^-0K
AC«BUF; E0=7^-JKi NEwPAKCtLi iF EALU(ll) THEN BIGSHIFT

*1F EALLdl) IS ScT^ NUMBEk DF SHIFTS wAS BIGGER
*T.HAN 6C HLNCfc WE WILL SHIFT RIGHT (120 - JK).

* AT THIS PJlNT AC = Xl> t.b ' OO-JK* AND WE ARE READY
* TO START Tri£ SHIFT.

« ***
LSHIFT MQ»AC; «E0; if ->

(c4LU (*) vt A Lu (1/)) THcN 20TRY'»
* TRUE MtANj LALUCtl'EALUC^J-Ofl.E.OiEO < 16

20SH16 AC?.MQ«SHlFT(AlUiQ»t-io); E0«t0-2otF]; IF t ALU (^) vt ALU (5) THEN 20SH16
* I.E. IF EiTHtK cALU(4)«l OR EALU(:?)»1> EO > 16

AND Wt CAN STILL RcDUCE BY 16 » 20 (OCTAL).
20TRY4 -EO; IF •'(t ALU (2) vuALU (3)) THEN 20TRYi

*lFBUTHt. ALU(2)«LALU(3)«0#0<£D<<t
20SH4 AC7oMQ«SHIFT(AC?oMQf R4); tu = EC-^[F]; if u ALU (2) vE ALU (3) THcN 20SH<.

* GJ ON SHIFTING dY 4 WHENtVER EALU(2)»1 OR
LALU(3)»1* I.E. 't < EO < 16 .

20TRY1 -EC; IF -(

t

ALU (0 I vt ALU{ 1)) THlN ^XI
IF bUTH tALu(0)=EALu(i)«G> N»0 AND riE ARE DONE,

20SH1 AC2MQ«SHlFT(ACS^Ma,Ki);cJ=»LC-lLF];IF t ALU () vE ALU (1) THcN 20SH1 ELSE WXI

BIGSHIFT: WHEN JK>60* StT tO»12C- JK

BIGSHIFT »E0 + 74; MQ>=AC

E0«E0 + 7<«i IF -•(bALU(^)vcALL(:i)) THEN ZJTkY^ ELit 20SH16

4i^i;^^^^^,:^^^,^^t^t^^^^,^^i:^:^4*^i^Lif;^:^:f.^,^^^^^^L^^:^,|f^^i:^:^^i4^4^:t'****'^•^* *************** **********
*

AXI JK - OP 21 - ARITHMETIC SHIFT RIGHT Xi, JK PLACES. (I.E. WITH SIGN EXT.)
*

-PROCEDURE IS SIMILAR TJ UP 20* BUT SirlPtER BECAUSE £0 JK NOW
GIVES RIGHT SHIFTS.

-CONTENTS OF Mj NUw DG ;S0T MaTTeR BECAJSt THE SHIFT IS RIGHT WITH
SIGN EXTENSION.

1^

*

21 BUF»XI; E0«=JK; NEWPaKCEL
RSHIFT AC«BUF; «E0; IF - (c ALU ('r) vE ALU(5)) THEN 21TRY4
21SH16 AC5KMQ«SHIFT(AC/.MQ,Alo)i EG-E0-20CFJ; IF EALU (4) vE ALU(5) THEN 21SH16
21TRY4 «E0; IF -(EALU(2)vtALU{3)) THEN 21TRYi
21SH4 ACr.MQ-SHlFT(AC?.MQ,A't) j E0«EC-^CF]; IF EALU(2) ^E ALU(3) THEN 21SH4
21TRY1 »EOi IF '(EALU(O)vEALU(l)) THEN WXI
21SH1 ACXMQ«SHIFT(AC?oMU>Ai);tO«EC-ltF3iIF E ALU (0) vE ALU (1) THEN 21SH1 ELSE WXI
*

**
*

LXI BJ/XK - OP 22 - LlFT CIRCULAR SHIFT XK NurllNALLY BJ PLACES TO XI. *

;>8

* AXI BJiXK -OP 23- AklTHMiTiC RIGHT i.Hi(-T XK NOMINALLY BJ PLACES TO XI.

* -IF SJ IS PQSiTlVL TriuSt INSTkUCTIONS ACT JUST LIKE THE SHIFTS OF
* OP 20 AND 21/ WITH THE LOw SIX BITS OF bJ TAKEN AS SHIFT COUNT,
* -IF ANY OF THL blTS a THKQUGh 10 OF BJ ARc NON-ZERO* THE NOMINAL
* RIGHT SHIFT kl LL* iNSTc AO OF PtRFJkMiNG THc SHIFT* SET XK TO ZERO.
* -IF BJ iS NcGATlVc* cACH INSTKUCTION ACTS AS THt OTHER WOULD WITH
* The CUMPLcMtNT OF dJ.

*

********** LXi BJ*XK
22 BUF=BJ; BO'??; IF KcuCl?) TH:N 22R1GHT
* * WHEN BJ <C* IT IS A RIGHT SHIFT
* * ?7(GCTal) forms a mask in EO THAT WILL GUARANTEE
* * THAT AC CONTAIN EXACTLY 6 LOW BITS OF BJ.

AC-EO
AC'AC'^aUF

22LSHIFT =>74-AC; 6UF«XK; IF AC»0 ThLN wXiBuF
E0 = 7<»-ACi aC = BUF; MtwPAKCELj IF EALU(li) THEN BIGSHIFT ELSE LSHIFT

* ***
* fiT THIS FOInT BoF = BJ IS NEGATIVE
* ***

22RIGHT AC=-3UF
22kSHlFT cO = AC; bOF=XK; iF aC=0 THtN wXltsUF

AC = Q; NcwPAFCfcLi if- t.J(o-iC)«=C; THtN RSHIFT ELSE WXI
* * SINCt BJ <0 * cJ« -8J . IF ANY OF BITS 6-10
* » OF LO AkE NONZERO* THIS BEING A RIGHT SHIFT*
* , * IT kETLKNS ZERO.
*

********** AXI BJ*XK
*

23 8UF«8J; L0«77; IF KfcGd?) TricN 23LEFT
AC«3UF; GO 22f<SriiFT

* **
* AT THIS POINT BUI- » BJ < * EO - 77{QCTAL) CONTAINS A MASK
* *
23LEFT AC*£0

ACsAC'^-BUFj 60 22L3HIFT

*^,^**^****^***4************************
*

* NXI BJ*XK . OP 2^ . NORMALIZE XK INTO XI AND SJ.
*

* -XK IS SHIFTED LEFT BIT BY BIT UNTIL THE MOST SIGNIFICANT
* BIT IS IN BIT <»7 .POSITIONS VACATED ON THE RIGHT ARE FILLED
* WITH ZLRQS (BINARY ONES IF THE NUMBER IS NEGATIVE).
* -FOR EACH BIT THAT THE COEFFICIENT IS SHIFTED»THE EXPONENT
* IS DtCPLMtNTED BY ONE.
* -THt NOkMALlZcO NU^"BER IS PUT IN THE XI REGISTER* AND THE
* NUMBER OF SHIFTS REQUIRED FOR NORMALIZATION IS LEFT IN BJ

* NORMALIZING A ZERO COEFFICIENT ENDS WITH A SHIFT COUNT
* 8J = ^6(DECIMAL)* AND XI CLEARED TO ZERO.

59

ZXI BJ*XK - QP 25 -ROUND ANO NJkMALiZt XK INTO XI AND dJ.

-BEFORE NORMALIZING* THIS INSTRUCTION ATTACrifcS A 1 BIT
TO THE RIGHT OF THt BINARY POINT.

*
^i^^^^t******************* ************************** ****************************
*

24 E0X8UF-XK; MQ = C; iF REG(i<y) THtN NGRrtNbG
IF RtG(59)«i* XK < 0.

AC-BUF; IF iLL(tO) THcM 241LL tLSt NORMZT
iLL(EO) MLANS INFINiTt OR INOEFlNlTfc EXPONENT

NORMNEG AC«-8UF; IF iLL(tO) THEN 241LL tLb£ NJRMZT

*

*

NORMZT
*

*

*

*
*

*

*

AT THIS POINT AC • ASS (XK) * fcO » EXP(XK) *BUF» XK # MQ «

NORMZT CHcCKS WHtTHtR XK = U.

E2«60; IF AC»C THEN NORMwXlZ
**

NGSHTEST CHECKS wHETHLR XK iS ALREADY NORMALIZED
IF NOT* c2 STARTS SHIFT COUNT.

NORMLOOP WILL KEEP SHIFTING i LcFf UNTIL ACC-^bJ'l : TEST CHECKS
WHETHcR NJMBlR WILL BE NORMALIZED (I.E. AC(47)«1) AFTER

* thl pr-ScNT shift
*

NOSHTEST E2«0; if AC(47) THcN 2tSHFTDN
NORMLOOP AC?.MQ = SHIFT(AC:'oMU,L1) J ^bZ*c; IF AC(^6) THEN 24PLUS1
* * IF aC(^o)»1 4i. STILL NEED TO INCREASE E2 BY 1

ACXMQ-SHIFT (AC/^Mu*Li.); t2=t2*2j if- -'t^Zk'ib) THEN NORMLOOP
* * SHIFT COUNT IS INCR:ASEO BY 2.
* ***
* * 2'»SHFTDN : Wt HAVE FIMSHbD
* ***
24SHFTDN «E0-E2i IF BUF(39) THcN 24kEC0MP

PKOCtDURt NORMALIZES ABS(XK) - SINCE 6UF » XK *

* WHtN NEGATIVE* At NEED TO COMPLEMENT THE RESULT
E0»E0-E2; IF FOFL THEN NORMUFLO EO REPktSENTS NEW EXPONENT

* FOFL CHECKS WHETHER NfcW EXPONENT
* IS GUT OF RANGE.

NOkMWXl tSHlFT IS FlNlShlD AND ^x. STORE THE RESULT

WHtN J=0* BJ = BG = U ALWAYS -

WHEN JJ'O Wt LtAVh NUMBER OF SHIFTS IN BJ.
**

*

*

*

*

*

*

*

*

*

NORMWXI XI«£O^AC; IF J-0 THcN NEWlNSLO
24WBJ £0»E2
24WBJ2 AC-EO

BJ = AC; NEWPARCtLi GO NEWlfsSTR

NEXT INSTRUCTlJ.MS REPRLScNT SPECIAL TtSTS

* 24REC0MP :USi:Li WHEN XK < A^JD wc ARE DONE NORMALIZING ABS(XK).

60

2<»RhCDMP AC»-ACi E0-t0-t2j iF FOFL THtN NORMUFLO ELSE NORMWXI

NOhMUFLO : USED »<HEN ThtkE IS AN EXPONENT UNDERFLOW
vJHLN SUdTRACTING £0-t2 . LEAVES XI-0.

»**
NORMUFLO AC"0
N0RMWXI2 £0»E2; X1»AC; IF J«0 THtN NLWiNSLO ELSE 24WBJ2
4>

*

*

*

24PLUS1

*

*

*

*

*

********** 2X1

* *

* 2^PLUS1 : UScD WHEN THE FINAL NUMBER OF SHIFTS IS ODD*BECAUSE THE
* NOkhALlZd LOOP INCREASES SHIFT COUNT BY 2.

«t:2 + l

E2»E2*l; 60 2<»SHFTDN

* 241LL :UScD vghiN tXPCXK) IS iLLtGAL-
FIRST AC =iiUF = XK IS RESET* SO INSTRUCTION CAN BE USED
dOTH FbA POSiTlWfc AND NEGATIVE XK.

-SHIFT COUNT IS SET TO 0* AND XK# UNTOUCHEO/IS LEFT IN XI

AC»BUF; E2«0J GU NORMWXl

BJ,XK

FaLLGv.lNt 2 INSTRUCTIONS SET HIGH BIT OF MQ
**

25 MQ«0; E0«10
MJ»SHlFT(tO?oMG>R^)i EU'.uUF «=XK; IF REG(59) THEN ZNORMNEG
AC = BUFi IF XLL(t:0) THcN 2^lLL uLSc NGSHTEST

ZNORMNEG AC=-BUF; IF ILL(cO) THEN 24UL ELSE NOSHTEST

************************** ***Pi****** ****************** ************************^
*

* UXI BJ*XK - OP 26 - UNPACK XK TU Xi ANU BJ
* -COEFFlCicNT OF XI iS LEFT IN XK (k«ITH SIGN EXTENSION) AND
* THE UNbiASED EXPONENT IN BJ.
*

* PXI BJ*XK - OP 27 - PACK Xi FROM XK AND 3J-
* -INSTRUCTiUN IS THt CONVERSE OF OP 26.

******************** *****Jf^^*:t.***4.**** ******** **************^,^^f*^*4^^^f^^^l^^^^^^
*

********** (jXI dJ*XK
2b tO?.BUF=XK; IF J = C TiEN wXIBLF

AC = EO
BJ»AC; AC=6UF; NtwPARCEL; GO WXl

*»** PXI BJ»XK
*

27 BUF«3J
AC«6UF; dUF=XK; NLt^PARCtL
cO=AC; AC»dUF; GU rtXlFLGAT

************************************** ********************************^:^^^^lmf*i^^
*

61

A FLOATING PUIInT Aul) OF TwG tU ttiT NUi^ltkS INVOLVED THfc FOLLOWING:

STfcP l: THE NU^IBcK WlTri Tut SMALLtK cXPQNtNT IS CHANGED BY
SHIFTING 1T» SU THAT BUTH NUM3£kS rIAVE THE SAMt tXPuNENT.

AFTER SHIFIxnG, THE SMAH.c« AuJhND IS A 96 BIT NuMbER.

STEP2 : COcFFlClENlS AKE AUDcD* GlVINo A RtSULT WITH DOUtJLE
PRECISION ACCURACY

STEP3 : NOKMALJZc IHu KtSuLT iF UVERFLJW.

-BOTH FLUAT1N3 SLh cHO DIFFc^cNCc GiVc THE MOST SIGNIFICANT
46 SITS Or THc KLiULT.

FLOA-TING POINT ADDITION AND SUdTK/,ClAUN
*

*

*

*

*

*

*

FXI XJ + XK - OP 30 - FLOATiiMo SUM uF XJ aNu XK TU XI.
*

FXI XJ-XK - OP 31 - FLOATING DIFFtKL^CE OF XJ AND XK Tu XI,

*

*

*

OXI XJ+XK - OP 32 - FLOATlNb uOUbLL PKLCISION SUM OF XJ AND XK TO XI

DXI XJ-XK - OP 33 - FLOATING DJUtJLt PKtClSION DiFFtRtNCE OF XJ AND XK TO XI

*

RXl XJ + XK -OP 34 - ROUNiJ FLOATING SOM OF XJ A.SD XK TO XI.

RXl XJ-XK -OP 35 - ROUND FLOATING DlFFtRcNCE OF XJ AND XK TO XI

*

*t*********^***************^*******if'i^:t:<f*'^t-** ****************** ***1f*** **********
*

*

****** FXI XJ+XK
30
30A

30B

-DOUbLt PkcCISIGN SLM AND DIFFtRcNCE GIVE THE LOx ORDER
4b BITS OF kcSULT. tXKONcNT HAS TO bE REDUCED BY 48
FROM EXPONENT FOK FLOATING SUM/DlFF EkENC £

.

-GIVES The MOST SIGNIFICANT 4b BITS UF THE RcSULT*
AFTtK ROUNDING

*

*

*

*

*

*

EOf,BUF«XK
AC«BUF; E1?.BLF«XJ; IF iLL(EG) THtN 301LLEXP

* iLL(LC) TKUt ME4NS £XP(XK) IS ILLtGAL.
MQ«BUF; YO»ACj IF ILudi) THcN 30ILLcXP

* ILL(LC) TRUE f^EANS cXP<XJ) IS ILLtGAL.
AC=MQ; MQ=ACi =EC-ul

AT THIS POINT YJ=MQ=BOF« XK , AC» Xj, tO «EXP(XK), tl «EXP(XJ).
NEXT INSTRUCTlUiS COMPARtS THE EXPONENTS AND * IF NECESSARY (I.E.
GOING TO 3OXKS1IAL) INTtRCHANGtS XK AND XJ SO THAT BEFORE BEGINNING
30L0ADBUF* YO A.^ID Mil CONTAIN NUMbiK WITH HIGHER EXPONENT AND
AC CONTAINS NUMBER WITH SMALLER EXPONENT

E2«E0-El; IF tALU(ii) TrttN 30XKSMAL

62

tiJF = YO; f1Q»0; IP />C(2V) THLN 3UNEGAC
* ^lUHbtK WITH SMALLcR tXPONENT NAY BE NEGATIVE.*

* t2 CONTAINS THl D 1 FI-lK' i: NCi tiEl^ccH tXPONENTS#SO IT COUNTS THE
NUMBER Gf- briif-T^) kfcCiOlkLD TO ALl&N THE COEFFICIENTS.

* TINYTlST: --u^CZ-xD-U hcANS E2 > 128 . IN THIS CASE THE
DIFrcNfcfiCt IN EXPUNtNTS IS TOO BIG FOR BOTH FLOATING
AND UPoJi^ SO NUMBER WITH SMALLER EXPONENT IS LIKE 0.

* TrIL Six IisSThoCTiuNS PDLLUWiNt, TINYTtST PERFORM THE SHIFT. THEY
AKt T.it SAMc UScD IN OP 21 SINCE AC:MQ CONTAIN THE
NUMbtK TG tst. SHIFTED ANO L2 CONTAINS THE SHIFT COUNT.

TINYTlST IF -'E2 (6-li) =«C THt N iOAOOShL
30SH1FT «fc2; il- -•LALb(^)vtALU(p) THLN BOTRY'i
30SHlb AC/.i^Q«SHIFT(AC^MC*Aio)i c2 »t2-20 t F J; IF E ALU(^ J vt ALU(5) THEN 30SH16
30Tf'r4 -£2i IF ->L ALL (2)vLALU(3) TritN BUTRYi
30SH^ AC/.MQ-ShlFTtAC-fMU^A^); c2»L2-^[FJ; IF t ALU (2) vE ALU(3) THEN SOSH'r
30TKY1 =E2i IF -"tALUiOvtftLUd) THlN 30SHFT0M
3i:£Hl AC:^rMO=SHlFT(AC^MQ,Al) ; t2=t^-l[F]; IF E ALU () vE ALU (1) THEN 30SH1*AT TH]S PuJnT* THt SMALLlR ADDEND IS IN AC:MQ, PROPERLY SHIFTED

AND tJUF CjNTAliNi THE blGbiR ADDEND.
SINCu A. Ak. AJJlrnG lv,a 120-dlTS NUMBERS* wL NEED TO SET THE
PG TO TH: PkLPAbATc ANu CARRY VALUES OP THE LOWER SUM (I.E. OF
MO + L »,huN iOr > #(jK OF ilQ-0 wHcN BUF IS NEGATIVE) .THIS IS

» DQNc BY iNSTKUCTiiJNS THKOUGri 30ADJ, WHICH SET PG BUT DO NOT
CHANGt TMt kLGl:jTcRS.

30SHPTUN AC=Maj MQ=AC; IP dUFCiV) THtN 30NE6BUF ELSE 3OP0SBUF
30NCGBUP (AC)»AC-u[SAVl PO]; ^U iOAUD
30PQSBUP (AC)»AC+0[SAVLPb]
30ADD ACxMQ; Ku=«aC; IP UPCU0t(2) THEN 30DP2

* JPCaDL(2)=l GIVES OP 34 THROUGH 37
WE NOw COMPUTE THE HIGHtK SUM USING THt P ANO 6 VALUES JUST SAVED

«AC*BUPLUStPG]; IF JPCGDc(i) THLN 30DP
OPCLDfc(i)=i GIVES OP 32 AND 33

NEwPARCEl; AC«aC + 6UF[USEPG]; «fcu + ij IF -ALU(59)/ALU(48) THEN WXIFLOAT
AFTLR ADDITION ALU(4b)»« ALU(59) (I.E.

* ALU(t<9)/ALU(46)«l) IF AND ONLY IF OVERFLOW HAS
HAPPENED.

300FL0 : THERE HAS BttN AN UVERFLJW FROM COEFFICIENT TO EXPONENT

AND Wt NEED TO SHIFT RESULT 1 RIGHT (WITH SIGN EXTENSION)
* AND CaRRtCT VALUE OF EXPONENT.

WXIFLGAT: STORtj FLOATING RESULT IN XI.*
AC = SHIPT(aC?«M0*A1); tO»EO + l; 60 WXIFLOAT

AT THIS POINT* c2 CUnTAINS THE OIFFtRENCt OF EXPONENTS*
WHICH AS BttN DPTckMINED TO dE >« 64. AC HAS NUMBER
WITH SMALLfcP EXPCNbU. Me iS FILLED WITH SIGN BIT OF AC.

30ADDSML MU = AC; AC=MQ; IF -«t2(7-il) » THEN 30ADDZR0
127 >' E2 >= 64i SHIFT COEFFICIENT RIGHT 64 AND THEN CONTINUE
IN MAIN SHIFT StOU^jNCt.

MQ = SHIFT(AC?,MO* A4)J = E2; IF EALU (4) v£ALU (5) THEN 30SH16 ELSE 30TRY4

63

30ADDZR0
*

*

30NEGAC

30XKSMAL

*

*

4>

41

41

*

*

301LLEXP

4>

*

30DP2
30DP
41

*

£2 >» 128
MQ-AC; IF 6

30NEGA

MQ«-0; IF E

**

30XKSM
*

*

YO-ACJ AC«
E0*E1J bUF«

4<4"^

301LLE
*

*
41

*

*

*

*

*

*

*

*

*

E2»E0
IF INOEF(fcO
MQ»aUF; IF

A

*

NEWPAftCELi
AC=MQ; MQ=
AC«MQJ MQ"
-ac/buf; I

follow
96 BIT

* ON ENT

»AC+BUF[USfc
MQ«AC+8UF[b

i FILL AC AND MQ WITH SIGN dlT.
UF(59) THEN 30NtGfaLF ELSE 30PUS8UF

C : USED WHEN SMALLER ADDEND IS NEGATIVE
WHEN tZ{7~il)*0t THE SMALLER ADDEND IS LIKE -O.SET AC»-0

2(6-li)«0 THEN 30SHIFT ELSE 3UADDSML

all: XK iS SflALLEk ADDEND Afib WE iNTERCHANGt OPERANDS.
ON tNTKf YO*hQ« XK* AC=XJ* EG ' EXP (XK)* El- EXP(XJ)

t2 « tXP(XK) - EXP(XJ) <

MQi MQ»AC; E2=7777-h2CF]
YO; MU»Oi IF AC(^9) THEN 30.vlEGAC ELSE TINYTEST

XP : WHEN ONE OR BOTH EXPONENTS ARE ILLEGAL
. ON EimTKY: AC« XK * BUF= XJ* EG « EXP(XK)* Ei- EXP(XJ).

WHEN EXIT OCCURS StCAUSE OF AN INFINITE RESULT* AC(59)
CONTAINS THE SIGN OF RcSULT (PLUS OR MINUS INFINITY).

ALGORITHM

If
IF

IF
E

IF

(XK =

(XJ «

i? WE
(XK It

if- WE
(XJ ^

UDLF) bJ TO INDEFOP
INDtF) bO TO INDEFOP
GET hERl either XK OR XJ(OR BOTH) ARE INFINITY
INF) GO TO WXIINF
GLT HtRt XK 15 INFINITY

INF) GO TO WXIINF
if

LcT Ai

IF AC
GO TO

Wc GET HERE oOTH XJ
; = SIGN (XK / XJ)

« i GO TO INDEFOP
WXIINF.

AND XK ARE INFINITY
EXCLUSIVE OR

COEF(XK)
COEF(XJ)

IN
IN

AC
tJUF AND MQ

) THEN INDEFOPN
INDEF(hl) THEN INDEFOPn

T THIS POINT* EXP(XK) IS IN fcO*

tXP(XJ) IS IN Ei*
IF M0D£2 THcN INFOPTuO
ACi IF -»iNf(EO) THEN WXIINF
ACJ IF -•iNF(Ei) Th^N WXll.SF
F ALU(59) THEN ^-XIlNULF ELSE WXlINF

ING CODE USED FOR DP AND ROJNDEJ SUM TO COMPUTE FULL
SUM.

RY AC:MQ = SMALLER ADDEND* SHI F TED J BUF = BIbGER ADDEND
EG « cXP OF SLM ;PG SeT TO VALUES OF LOWER SUM.

PGI
SEPGDLSAVEPbJ; AC^MQJ IF 8JF(;)9) THEN 30NEGBF2

* AT THIS PuInT AC« LOw BYTE OF SMALLtR ADDEND*
* MQ = HIGH BYTc JF SUM i PG SET TO VALUES OF
* UPPER SUM.

(AO-AC+OCUSEPGI

64

Ma«AC+OCUStPG]; AC«rtQi GQ 30TUFL02
**
* 30ISEG6F2 : iS THE EQUIVALENT OF THE PREVIOUS 2 INSTRUCTIONS

^riLN 8UF IS NEGATIVE.

30NEGBF2 (AC) «AC-0 CUSc FGJ
MQ«AC-0[USLPG]; AC = »1Q

* 30TOFLQ2 : SUM iS DONE* CHECK FOR OVERFLOW

30T0FL02 =£0 + 1; (AC)=AC; iF-«ALU (i>9) / ALU(46) THEN 30N0GFL0
AC?cMQ»SHIFT(AC?MO*Ai); E0«EU*1

AC:MQ NOW CdNTAiNS THE 96 BIT SUM

30N00FLU NEWPARCtLj ii- uPCGDc(2) THEN 30RN0

EPILOG FGk OOUdLt PRECISION AGO: SHIFT LOWER SUM RI&HT+12 tilTS* KEDUCt EXPONENT BY 60(OCTAL).

**
AC»=MQ; MQ«Oi IF -"ACliJ^) THEN 30SUMPaS
nH'-Q * USED WHtN SUM IS NEGATIVE.

30SUMPaS AC«SHIFT(AC/.M0>R4); »E0-6C
AC = SHIFT(AC?oMC,K4); L0 = fc0-60i IF FOFL THEN FLRESFLQ
AC«SHIFT(AC?oMQ,R4); GU WXIFLOAT
**
* EPILOG FOR kOUNDEO ADD.
* 30kNUFLa .-THIS INSTRUCTION WILL BE REACHED FROM THE FOLLOWING
» INSTkUCTiGNS WricN GVtKFLOW OCCURS.»

30RNDFL0 ACS; KQ = SH1 FT (ALIM J, Ai) ; EO=bC*l; GO WXIFLOAT
* CAN OVtkFLOW OCCUR MORE THAN ONCE ><IF SOp MUST
* TEST FOk tXPONEivlT OUT OF RANGE HERE.

3QRND IF AC(::.9) TriLN 3jRNuNcw
(AC)»AC + 0[NUP]; Xl«=tU/.ACi IF -•rtQ(59) THEN NEWINSTR
AC = AC+OlNaP]; =tO + i; IF ALU{i!9) /ALU(46) THEN 30RN0FL0 ELSE WXIFLOAT*

* 30kNDN£b: IN r^jUNUlNG A NtGATlVE SUM, 1 IS SUBTRACTED FROM
* AC wrtiN iiU(i>9)«0.

30RNDNLG (AC)=AC-0[G]; Xl = EO/.aC; IF MQ(5)9) THEN NEWINSTR
AC«AC-OCG]; »£C+lj it ALL(59)/ALU(4d) THEN 30RNDFL0 ELSE WXIFLOAT

*

*

FXI XJ-XK - OP 31
*

31 E0;^.8UF = XK
31A AC=-BUF; El%bUF=Xj; IF ILLCEO) THEN 301LLEXP ELSE 30B
*

*

0X1 XJ+XK - OP 32

65

32 EO?.BUF»XKi GO SUA

*

DXI XJ-XK - OP 33
*

33 EO%BUF«XKi GO 31A
4<

RXI XJ+XK - OP 3^

*

3^ EO?.BUF«XKJ GO 2CA
4>

*

RXI XJ-XK - OP 35

35 eoy,BUF«XK; GO 31A

*

IXI XJ + XK - OP 36- IMtGEk jUM UF XJ AND XK TJ Xi.
(5 CYCLES)

36 BUF«XK
AC-BUFi BUF»XJ

LONGADD «AC*BUFj NEWPAj^CcL
AC-AC+8UF; 60 WXl

*

*

IXI XJ-XK - OP 37- INTEGEk DIFFcRtNCu OF XJ AMD XK TO XI.
(5 CYCLES)

37 BUF»XK
AC—BUF; BUF«XJ; GO LONGADD

^^^^^,^^i^iI^,^^L^^^L^:^L^:^il^^c^Lt* ********************************** **************************

FLOATING POINT MULTIPLICATION OF XJ AND XK

66

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

MULTIPLiCATluN (OF PLJ:5iTH/c NUMBlKS) IS Pti<FQRMED BY FIRST COMPUTING
XJ* Z*XJ#...> 7*XJ* f*XJ* jTUKiNb THLM IN Yl* >IZ»,»,» Y7 AND YO* RESPECTIVELY*
AND TricN PROCtSSIKG ^ blTS UF XK AT A TiMt.

WHtN Tht PSOC-SSUv, BEblHS AC:^^Q « OiXK , AND AFTER EACH CYCLE* AC t MQ WILL
CONTAIN dUTH Thl PARTIAL KuSULT UF THE MULTIPLICATION IN THE UPPER BITS * AND
WHAT ii. LIFT TO PkOCtSS OF XK IN 1 HF LOwER flITS.

Wfc LEFlNc M AS Trie RIGHMUST ^ bITS dJT OF MQ* I.E. < H < 15.

IN uACH CYCLc* AC:M0 ii SHIFTED ^ < AKlTriMETIC) RIGHT* SO WHEN ADDING TO
THl AC THt PkJPEK MULTIPll JF XJ (IN BUF)* ADDITIUN IS PROPERLY ALIGNED.

BASICALLY Trit: ALGUKlTrih iS AS FOLLOWS:
If < A < b *ONE AJDS aUr « i1 (Xj) TU AC.

IF '5 < M < 15* ONE SLdTRALTS dUF =(16 - M)*(XJ) FROM AC AND ADDS AN EXTRA
XJ IN TrlL NiXT CYCLE (WHICH IS EQUIVALENT TO ADDING 16*(XJ)).

THt ACTUAL COMPUTATION ^AS TO TAKl INTO ACCOUNT WHETHER THE PREVIOUS
CYCLE WAS AN ADD OR A SUbIKaCT. THE NOTATION ^OA* ^OS* ^OAA, ETC.* REPRESENTS
THt DIFFERENT POSlSiLlTlES ACCORDING TO AN AOJ OR A SUBTRACT CYCLE. FOR
tXAMPL£:^CAS INDICATES PRtViJUS CYCLE IS ADD AND PRESENT CYCLE SUBTRACT.

TABLE FOR THE StLtCTiUN FUNCTION

PREVIOUS
CYCLE

ADD

SU8TR

VaLuL Ji-

M

< M < t>*
6 < M < 15

< M < 7* 7 < M < l<i

SET BUF =

(Yh OR YN)

M*(XJ)

(16-H)*(XJ)

(M+i)*(XJ)

(16-(M+1))*(XJ)

PRESENT
CYCLE

ADD

SUBTR

ADD

SUBTR

SUBTR

THE SELECTION OF bUF» YM OK YN IS DONE FRJi E REGISTER AS FOLLOWSi
. MM ARE 6 BITS FORMED BY SETTING BITS 0-3 EQUAL TO M

BITS 4-7 EQUAL TO THE 1 COMPLEMENT OF H

. YM MEANS: IF El(7) IS SET FETCH Y REGISTER WHOSE NUMBER IS GIVEN BY

BITS 0-2 OF El* ELSE FETCH
. YN means: IF El(3) IS SeT FETCH Y REGISTER WHOSE NUMBER IS GIVEN BY

BITS 4-0 OF cl* ELSE FETCH
. [F] iNLlCATtS THAT THE ADDITION IN El IS DONE AS IF El CONSISTED OF 3

SEPARATt WORDS JF 4 BiTi EACH WITH NO CARRY AND NO PROPAGATE.

ADDITION AC+BUF[b] OK SUBTRACTION AC-BUFtNQPJ IS DONE IN 2-COMPLEMENT
PEPPkSLNTATlON TO AVLiD The PkJBLLM UF THE END AROUND CARRY.

67

THE
FLOATl

FXI XJ
*

^OXJPOS
'lOXJNEG

*

*

*

40F0RMMP

RE ARE THREE
NG AND 00U8L

TYPES GF FLOATING MULTIPLICATION, FLOATING, ROUND
E PRECISiJN FLOATING.

4>

***^^**

*XK -OP 40 -FLOATING PRODUCT OF XJ AND XK TO Xi.

40XKNEG
40B

40INTMUL
*

*

*

*

*

*

*

*

*

*

40S
40AA

El^BU
AC*BU
AC--B

*

*

*

Y1«AC
Y2«AC
BUF«Y
BUF = Y

Y4«AC
YO«AC
BUF»Y
Y7 = AC
AC«AC
Y5«AC
AC«AC
Y3«AC
Y6«AC
**
*

*

*

*

»

*

*

AC?MQ
AC7.MQ
AC:'cMQ

-AC + B

AC?.MQ

40AS

f

40SA

+

40SS

F«XJ;
Pi E2
uf; e

AT THI
AND WE
YO - 8

MQ»Oj IF RtG(i/9) THEN 4GXJNEG ELSE 40XJP0S
?.BUF = XKi IF iLL(fcl) THtN ^OILLEXP ELSE <»OFQRMMP
2?.&UF«XK; if ILL(tl) THEN 401LLEXP

S POINT AC=AdS(XJ),dUF«XK, cl=
PkOCthD TO SET Yl = ABS (X J)

,

r2»
*AES(XJ).

tXP(XJ), E2«EXP(XK).
2*ABS{XJ),..., Y7« 7*ABS(XJ),

>

i

>

2;

AC«
AC»
MQ
MQ

AC»
«AC
AC

; *AC
-buf;
; »AC
-BUF;
; AC =

; AC»

AT THI
ABS(XJ
E2 « 1

CYCLES

SHIF
SHIF
»BUF
= -bU
SHIF
-BLF
-AC-
-BUF
IF

-BLF
*ti

SHIF
Oj

IF 1LL(E2) THEN 40ILLEXP
IF BUF(59) THEN 40XKNEG

T(AC/.rtU>Ll)i
T(AC?.liU,Ll)i
i GO 40B
F

T(AC^.MU,L1)

BUF

ZtRQ(tl) THEN '.OXJZtRO
; IF ZtR0(E2) THEN WXiZERON
c2

T(AC^(ia,Li)i EQ = tl + c2; if XFOFL THEN FLRSFLON
E2«i!j

S POINT, Y RcGISTLkS CONTAIN APPROPRIATE MULTIPLES OF
)> MCI = ABS(XK), AC» , EO • EXPONENT OF THE PRODUCT.
i (OCTAL) HAS BEEN iNiTIALIZEO TU COUNT THE NUMBER OF
RcQUlKtO TO PRGCiSS XK.

START MAIN MULTIPLY LOOP.

S

-SHIFT
"SHIFT
"SHIFT
UFCGI;
"SHIFT

«AC+BUF[G]i
ACXMQ-SHIFT

TART MAIN MULTIPLY LOUP
(AC/tMQ,A4); E1"MM-H7LF]; IF M>b
(AC:^,MQ,A4);BJF*YMU1*MM+ 17[F];iF
(AC:?MQ,At);ilJF»YN;t.i»MM + 30J[F];IF
L2«t2-1LFJ; IF --EALUCO-a) THcN

{AC + BUr;'c.1g,A4)[G]; BuF = Y-"1i

£i"MM+ 17CF]; IF M>d THEN 40AS ELSE
t2 = L2-i[F]; IF -'LALU(C)-3) THEN <tOAOON£

(AC + BUF?.Mu,A4)LG]j BuF»Yn;

THEN 40S
M>6 THEN
M>7 Then
40AD0NE

40AS
40SS

ELSE
ELSE

40AA
40SA

40AA

Li»MM-f3c.CLFJi
]; t2"L2-ltFJ
(AC-BUFXMJ,A4)tN0P];

;i»MM+ i7tF];
AC-BUFINOPJJ £2=L2-1[FJ

IF A>1 THEN <»OSS ELSE 40SA
•AC-BUFLNOP
ACXMQ=SHIFT 80F=YM;

IF M>B THEN 40AS ELSE <>UAA

68

AC?.MQ»SHIFT(AC-6UF4MJ,A^)[NUP]; BUF»YN;
* tl»MM + 36CCFJ; IF fi>7 THEN ^OSS ELSE 'tOSA

* ^OAOQNE: multiplication OF COEFFICIENTS IS COMPLETED ON THIS
* CYCLl. product is in LGW-OkDER 48 BITS OF AC AND
* HlGM-GROEk 4fa biTS OF MQ.
* .IF ALU(4?)'=i PRODUCT IS ALREADY NORMALIZED*
* GO TO 4CNJSHFT
* .IF ALUliiryj'O PRODUCT IS NOT NORMALIZED. IT SHOULD
* B£ NORMALlZtO (BY A 1 BIT LEFT SHIFT)
* ONLY IF dJTri OPtRANOS WERE NORMALIZED.
* **
40AD0Nh AC«AC*BUF[G3; aUF=Xu> IF ALU(47) Tri=N 40N0SHFT

3UF«XK; »£}UF; if --ALU (i?9) /ALU (47) THiN 40N0SHFT
* -(ALU(&9)/ALU(47)) CHECKS WHETHER BUF -XJ
* * IS NORMALIZED.

«3UF; =eO-l; IF -•ALU{p9)/ALU(47) THE(^ 40N0SHFT
* -•(ALU(i)9)/ALU(4n) CHECKS WHETHER BUF XK IS
* * NOKMALlZeu.

AC/cMQ = ShiFT(AC/.MQ*Li) ; fcO*£C.-i; IF OPCODE(l) THEN 40DP
40N0SHFT IF OPCGDt(l) THEN 40DP; »E0+60

IF DPCOue(O) THEN 4UKGUNDJ L0=E0+60; 3UF»XJ
* ***
* * 40 SETSG^: NcXT TwJ INSTRUCTIONS SET AC TO SIGNED PRODUCT.
* * ON ENTRY : fc UF (b9) -S IGN { X J

)

* At« ABS{PKGDUCT).

40SkTSGN 8JF = XK; IF ""^ uG (3S) /ouF (f39) THtN 40wXi
4USt.TNtt AC«-AC; NtWPA(«CtLj Lf F3FL(fcC) THEN FLRESFLO ELSE WXIFLOAT
40wXi Xi»ciO:^oACj NEWPARCcL; IF FiJFLitO) THtN FLRESFLQ ELSE NEWINSTR
* ***
* FOR DP ANl) ROUND MULTIPLY
* **
40R0UND (AC)«AC + 0[NGP3; IF --MuCSg) TMtN 40iETSGN
* * IF MQ(59)=1,T0 ROUND THE RESULT WE ADD 1 TO AC

AC=AC+0[NaP]; =tO + ii If -'ALb(59)/ALU(46) THtN 40SETSGN
AC^SHIFTCACi'.MCAi) i uU = tO + li 6uF»XK;

* IF RtG(i,9)/BUF {:;9) THtN ^OSlTKlG ELSE 40v^Xi

* * 40DP: INSTKOCTidNi ARt SlfllLAK 10 THOSE OF DP ADD.
* A**
40DP Ma«0; AC«MQ

AC:'cMQ»ShIFT(AC^cM0»R4)
AC?<,MQ«SHiFT(AC>;M0*K4) ; BUF»Xo
AC?cMQ = SHiFT(AC'.MU*k4) ; tJUF = XKi

+ IF Rcb(59)/BUF{29) THtN 40^tTNLG ELSE 4CWXi
*

* * SPLCIAL RESULTS FuR ZtRG AND ILLEGAL EXPONhNTS.
* ON LNTRY cl= tXP(XJ), lZ« lXP(XK).
» * ALGURITrim:
* *

* * it (XJ = iNOEF) GU TG INDEFGP
* IF (XK = INDtF) GO TO INDEFGP
* IF WE vjcT HtRt tlTMcR XJ GR XK (OR BOTH) ARE INFINITE

69

IF (XJ = iNF) GO TG XJIMF
CHECK FOK ZfckO StCAuSL XK li iNFlNITY

IF (XJ ») GO TO wXiAiSuEF
AC = SiGN(XK/XJ)
GO TQ WXllNF

XJINF IF (XK ») GO TO wXilNDtF
AC = SiGN(XK/XJ)
60 TO wXil.MF *Xi«ii\FlNlTr* SIGN GlVcN BY AC.

**
OILLEXP BUF=XJj IF INDEF(Ll) THEN IKUcFOPN

AC«BUFi t>UF«XK; IF iNOcFCfc^) THEN IN^EFUPN
AC»AC/aUF; EC»£OG£; ir t^LblZ TriEN tKi^QK

IF INF(tl) TriLN 4'jXJiNr
NEKPARCtLj IF ZERO(bi) THEN wXllNOtF ELSE WXUNF

40XJINF NEwPAkCELi IF ZER0(l2) Tritt. wXUNDtF tLSt WXllNF
<iOXJZtRG Yi-ACj «AC-8UFi IF -•ZcKG(t^) THiN if,XiZckJN

AC-AC-8UF; IF -"QPCODcd) THEN »*XIZER0n
Y3»AC; AC = SHil-T(AC/..ia*Li) J Lu = 6000; GO ^OINTMUL

*

RXI XJ*XK - OP ^l-ROUND FLOATING PkUDUCT UF XJ Ai^D XK TO XI

41 E1XBUF«XJ; MC«0; IF KEG(tSi) THEN ACXJNtG ELSE 40XJP0S

DXI XJ*XK - QP 42. FLOATING DOJttLt FRECiSiGN PkUOUCT GF XJ AND XK TQ XI
*

42 E1?BUF«XJ; MC»C; If KEG(t^9) THEN 4CXJNEG ELSE ^OXJPQS
*

4<

MXI JK - DP 4i - FORh MASK IN Xi* JK ilTi
-INSTkUCTiGN SlTS hlfcH OkDcR JK BITS OF XI TO 0N£.
-FIRST THREE INSTRUCTIONS SET HIGH QRDck BIT OF AC AND SO*
AN AKlTHMETlC RiGMT SHiFT (OP 21) JK-1 PLACES*
GIVES THE DtSlRcD ktSULT.

43 AC«0; »0-JK
AC?.MQ«SHlFT(AC?.MQ*Ox); tO = C)-JK; NtwPARCcL; IF -EALGdi) THEN WXIZERO
ACr,MQ»SHIFT(AC;.hQ*Ki) J «77?6-EQ
E0 = 7776-E0J IF EALU (+)

v£ ALL (t) ThEN 2iSHi6 ELSE 21TRY4
*

FLOATING POINT DIVISION

TO DIVIDE XJ BY XK (BOTH POSITIVE NGMBcRS) FIRST XJ IS PLACED IN AC AND

70

XK IN \Ht dUF. THE: 50 OiT UUJTIENT WILL APPEAR IN hQ.
*

IH idt CcNGTc Kr ftt(HiGh) A.NO 6UF{Hit,ri) BITS 45-^6 OF AC AND dUF* RESPEC-
TlViLY* THE DlVlUr ;iLGQl^lTH.^ FGLLOWS*

AC « XJ
BUF= XK

MO « * CARkltS QUOTIENT
SHC- C » INITIALIZES SHIFT COUNT

LGLPl AC = AC ^

MQ = nt 2

LJ0P12 SHC» ihC 1

IF (SHC « 1.0) Gj to LiUNt

IF (AC(HiGri) < aUF(HiGH)) GO TJ LOJPI
AC = il - 8UF
IF (AC <) GJ Tu ktADO » AC »rfAS SMALLER THAN dUF AND

* SUdTRACTlON MAS NOT INDICATED
AC = AC 2

.10 *{^0 Z) 1 RcCOROS QUOTIENT
60 TG LDGPia
AC = AC + bUF
GO TJ LOOPl
iND

RiAOO

DONE

*

*

*

*

*

*

*

*

* FXI XJ/XK - OP ^'i- FLOATING DIVIDt XJ BY XK TO XI

4i 4< 4- * * « 4< % * 4< 41 « >» *

* ScT Y0» ABS(XK), SlGN(Yi)- SIGN OF RESULT* AC- ABSCXJ).
*

^t^ EZJ'cdUF'XK; IF RtGC!?^) THEN ^<»XKNEG
^<»XKPaS AC = 6UF; tl7otJbF = XJ; IF lLL(t2) THEN ^-^ILLEXP

YO»AC; AC«BUfi IF ILLitl) THEN 44ILLEXP ELSE ^<tA
* ***

TG iMPLcMENl THIS ALGGklTHrt IN THh MACHiNd Wt PROCEED AS FOLLOwS*
I.AC ^(AC 2) ANO fiG = (ilQ +2) IS UGNt dY AC « «0«SrilFT (AC J MQ* 21

)

2. AC «(AC 2) ANO MO « (f1Q 2) + i iS DONE Sf AC » MQ« SHI FT (AC • MQ* 01

)

3. NO KILL CAKkY aOTri, THc wUGTifcNT ANO THE SHIFT COUNT* NAMELY* BEFORE
STARTING DiVlSlUN PkGCti:)* A 1 BIT IS FGkCtD INTO BIT OF MQ* SO THAT
SHC « SO IS EQUIVALlNT Tu M0(4y)»l.

4.THt TtST AC << bUF CGMPAKtS BITS 4^-47 OF AC AGAINST BITS 45-46 OF BUF
StCAUSt TcST IS CHlCKXNo A CGNClTlGN EXISTING PRIOR TO SHIFTING

t;.LO WILL CAi^KY TriL cXPON^NT OF TmL QUOTIENT* I.E. THE DIFFERENCE OF THE
EXPONENTS MINUS 60(0CTAL) (BECAUSE MINUEND WAS SHIFTED 48 BITS LEFT).

71

*

*

44XKNtG

*

*

*

*

*

<t<tLOQP

*

*

*

4-

*

*

^^XJZrRD

*

'r^iLLfrXP

* 4^XKNt:G! WHEN XK <0*StTTlNG AC«Y1= -XJ MAKES Yl HAVE SIGN
* OF RtjUn.

AC=-BUFi tl?oDOf«XJ; iF ILL<t2) THcN ^^ILLEXP
YO = ACi AC = -BUF; IF iLL(fl) THEN <i^ILLtXP
Yl = ACi MQ=C; IF i^KUci) TntN H'rXJZt^O
BJF=YOi IF ZKOlc-i) THEN i^XliNFN

IF ZtR0(fc2) IS TRUE* XJ IS FINITE* XK-0#
* QUQTILNT iS INFINITE.

= El-c2; IF AC(t'y) THEN ^4C0nP
60 = 1:1-^2; IF XFGhL FHtN FLKSFLON ELSE ^^8
E0«tl-E2j AC=-ACi iF XFOFL THEN FLKSFLDN
»£u-50; AC>.ht = SHlFT{AC^,MQ, Ai)» '

* N;XT Two INSTkUCTiGNS FOkCfc A 1 tJlT IN ZERO BIT OF MQ TO START
* SHIFT CUL;\T.

cO = t:0-bu; AC?.,•lO = SHiFT{AC?.^a>Oi);
IF AC<<bUF'^-'KG('»9) THtN ^tLUGP tLSfc ^'tSL.dTii

AC^.MQ«SHiFT(AC/.MQ*Zi); IF At <<8UF''->Ma (<»9) THEN 4^L00P
»AC-3UFi IF MQ(5C) THEN ^^DOht
AC = AC-i3L.F; iF ALU{i;9) THcN ^^KtftOO
AC/.MQ = SHlFT(AC/cMQ*ui) ; i h AC<<t3UF A-.fio (^9) THEN 44L00P ELSE ^<tSUBTR
=AC+SUF
AC = AC + oOFi OJ H'tLJuP

AT THIS PJiNT «U(0-'t9) HAVE A 50-BIT QUOTIENT* MQ(51)-1
AC«MQ; aUF=ni IF MQ(^9) ThlN ^<tSHiFT
{ AC)=AC + 0[NJP] j il- JPCJDciO) THcN 44RJUND

* "t^NGRNa: wt GlT HlKc IF h(49)=0, iHlFT ARITHMETIC 1 RIGHT
* 'oL\lc^ JULlTlcNT.

NiWPAkCtL; AC = ihiFT(AC;^.rtQ*Al) ; IF SLF(;)9) THEN 44NEGRES
XI = EO:;';aC; if FOFLC-U) TritN FLktSFLO ELSE NEwlNSTR
AC=-AC; if FbFL(t'C) ThLN FLkLSFLG ELSE kJXlFLOAT

* ^'ijHIFT: rtH, N MJ('«9)=i*SiNCt; MQ CONTAINS A 50 BIT QUOTIENT*
* 2 brilFTS RIGHT Ai<E RtQUi^tU TO OBTAIN ANSWtR.
* **

= cC + l; AC = SHir-T(AC/..1U* Ai)

(AC)=AC+0[NGP]i eo=LU+i; IF OPCaDE(O) THEN 44R0UND ELSE ^^NORND
**
* ^^kOUiNj: aOl) i TO Luwtk biT AND CHECK FOR OVERFLOW.
* »*

AC = AC + OtN,OP]; GJ 't'^xOKMD

* ^^XJZt.KO: CGMci FkJ,"! lINl 44A WHcN NUMEkATOR IS ZERO.
**

NiiwPAKCLL; IF ZtKG(.2) THtN VXIlNOcF ELSt WXIZERO
**

AT THIS PulNT 0,nE Ok bOTri cl ANG =2 ARE INFINITE.*
3JF=XJ; If INJtrdi) THlN INDtFUPN
AC=3UFi BUF=Xk; NlwPAkCEL; iF iN0EF(£2) THEN INDEFOP

72

AC=AC/BUF;
IF -'iNf(hi)
IF IiNF(c2)

n=20«..£; IF huDt l: TdEN tRKOK
TH:.N WXiZtKj

THrN rtXiii\uwF lLSl WXiiNF

RXI XJ/XK . OP ^5.

^5 E2?9UF=XK;

*

NO , QF ^fc . NO G
*

46 NE»«PARCtL;
*
4i t ******* >t< <"«' >f *

» CXI XK - CP 47 - C

*

*

*

47 ajF»XK; Mw*
AC»aUF; to«=

47L00P »EC+3C; IF
cO«to+BC; A

47tND AC«tO; GO W

47XKNEG AC=-5UF; EC
47NL00P =E0-8Cj IF

tO»EO-bC; A

*

SAX GkuUP -OP 50 -

bi -

52 -

53 -

54 -

55 -

56 -

57 -

INSTRUCTiO
SETTING Al

LOCA

kGJNU FlJaTIimG biViO_ XJ ai XK TO XI,

IF RL<o(-J-i) THuK 44XKNcto cLSc 44XKPUS

PtH ATitjK

IF iCrltCK, TriiN iCHtCK ELiit .HtwX^STt*

OUM UF THl .WOilbtF QF 1 6lJ i iN XK TO XI
tJC COUNT j TriL iNb^.sl.K uF i JiTi IN THE LOW 4 diTi OF AC
IF XK i:^ ?Li:>lU\itf LOAD XK iMG AC ANU ACCUMutATc IN EO
A COLNT Jr T.HL 1 EiTS IN AC
IF XK ii> NcGATIvl, LuAJ -XK IMJ AC ANG ACCUMULATE IN EO
60 - COUNT jF 1 diTi iH AC = OU - CJUNT OF Bil^j IN XI
* CJUNT Or 1 diTi iN XI

O; NEWPARCcl; if kLo(:;9) TH£N 47XKNi:G

AC=0 then 47cN0
C»SHIFT(a»:/.i1J*K4)i GU 47L0JP
Xi
= 74
AC = J ThliM 4yEND
C»i-iIFT(a:7,i1vJ,k;4); GO 47NLl1JP
«*** +•***«*» +¥************
SAi AJ+K ScT Al TJ AJ+K
;sAi SO + K i^T AI Tj bJ*K
SAi XJ+K ScT Ai Tj XJ+K
SAi XJ + iiK SlT Ai TJ XJ + 3K

SAi AJ+^K icT Al TJ AJ+3K
SAi AJ-iK SET Al TJ AJ-dK
SAi 6J + :iK SET Al TO dJ + BK
SAI dJ-dK S:T AI TJ oJ-dK

NS SlT Ai TJ THt SPhClFlED ADDKcSS-
THPOUbh a5 rO AN aDDkESS lJADS CONTtNTS OF THAT

TIGn INTu ASSJClATtO X kEGIiTck.

73

SETTING A6 Ok A7 STGRlS CONTtNTS OF THE X KEGISTER AT THE SPECIFIED
LOCATION

SETTING AO CAUSbS NO McMQfcY RhFti^LNCE

*********** ****'^*^**>¥^4-**'^*************4-'¥********^**'^*i^4* 4-********** **********!

50 BUf'AJ; AC'Ki Nc^PAKCEL
SAAOD »AC + 8UF[i6]; NEWPaRCEL; IF 1»0 THEN .'>)OLGAD

AC«AC-»-8UFtl8]i IF --NlrtuMPTY THEN TtSTi
IF RNI IS NOT CDMPLtTc* WAIT FUR CMOONt AND THEN LOAD NIW

DWAITl NIW=CMRD; IF ->CMjQNc THEN LUWAlTi
ESTI CLEAR; Al-ACi IF i>i) TdcN STORE

LOAD SEQUENCE/.
WAIT FOR CMOUNt Tu OROP

OAD IF CMDONE THEN LOAD
ISSUE READ RtOjcST

MA = AC; READ; IF LA5TPARCEL Trti:N LDLASTP
WAIT FOR CM FlTCH TO COhPLETc

DWAIT2 AC«CMRD; IF --CMijONl THEN LUWA1T2
STORE FETCHED DaTA IN Xi

XI»AC; CLEAR; LATCH 1; GO OPCODE BRANCH
DLASTP AC = CMRl); IF --CMDaNt THEN LDLASTP

xi«AC; CLEAR; p«p+i; go loadliw
STORc SEQUENCE?.

GET WORD TO STOkE (XI); »yAiT FOk CMDONE TO DROP
TORE BUF»Xi; IF ChDONt THEn STORE

ISSUt WRITE RcQjcST
ac-buf; ma»ac; wRiTE; a lastpakCcl then STLASTP

WAIT FOR CM Tl accept DATA
STWAIT IF --CMOONE THtN STwAlT

CLEAR; LATCH 1; GO JPCODEbt- AnCH
STLASTP IF -•CMDONE THEN STLAiTP

CLEAR; P»P+i; GO LOAUClW
* 1=0 CASE^. NO LOAD \}<< STORE
NOLOAD AC»AC+aUF[lc J

AI«AC; LATC-I l; U iCdL-CK THtN iChECK clSE OPCuDEBRANCH
51 BIT-BJ; AC=K; Ntf^PARCEL; GO iAACD
52 8UF = xj; ac=k; Nci^parcel; go SAADD
53 BUF«BK

AC'flUF; BLF=XJ; GJ SaADD
54 BUF»BK

AC=6UF; bGF=Aj; bJ saaDD
55 6UF«3K

AC=-aUF; bUF«AJ; GJ S4AL)D
56 6UF»BK

AC=8UF; buf=bj; go saado
57 BLJF«BK

AC«-8UF; BUF«bJ; GO SAAJl

*******************l^:^**^^^f4.4^^,^^^^^^^l^^4.4^^^^4.^^4 4^4:^^^,:^^,^,^^,^:^^^:^^^L^^^^^^^^,^^^^^^^^

Sbl GROUP -OP CC - St* Aj+K SiT cl TJ Aj+K
fcl - SdI bJ + K. SiT Bl TO aj + K

62 - btl XJ + K, Scl bl TO XJ + K

T't

b3

75

76

77

*

AC-BUF; BUF-AJ; GO SXAOD
BUF-BK
AC«-BUFi BUF«AJ; 60 SXAOD
BUF-BK
AC«BUF; BUF«BJ; 60 SXAOD
BUF-BK
AC«-BUF; BUF=BJJ 60 SXAOD

76

This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:

A. Makes any warranty or representation,
express or Implied, with respect to the
accuracy, completeness, or usefulness of
the Information contained In this report,
or that the use of any Information,
apparatus, method, or process disclosed
in this report may not Infringe privately
owned rights; or

B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report

.

As used in the above, "person acting on behalf
of the Administration" Includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.

77

This book may be kept
^ _ n ^%

FOURTEEN DAYS*
A fine will be charged for each day the book is kept overtime.

NYU coo-3077-157 c.l

Grlshman
The structure of the PUMA comp
systems

.

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012

1

I

