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AbstractIn the last ten years declaration-free programming languages with a polymorphic typing discipline (ML,B) have been developed to approximate the 
exibility and conciseness of dynamically typed languages(LISP, SETL) while retaining the safety and execution e�ciency of conventional statically typed languages(Algol68, Pascal). These polymorphic languages can be type checked at compile time, yet allow functionswhose arguments range over a variety of types.We investigate several polymorphic type systems, the most powerful of which, termed Milner-MycroftCalculus, extends the so-called let-polymorphism found in, e.g., ML with a polymorphic typing rulefor recursive de�nitions. We show that semi-uni�cation, the problem of solving inequalities over �rst-order terms, characterizes type checking in the Milner-Mycroft Calculus to polynomial time, even inthe restricted case where nested de�nitions are disallowed. This permits us to extend some infeasibilityresults for related combinatorial problems to type inference and to correct several claims and statementsin the literature.We prove the existence of unique most general solutions of term inequalities, called most generalsemi-uni�ers, and present an algorithm for computing them that terminates for all known inputs due toa novel \extended occurs check". We conjecture this algorithm to be uniformly terminating even though,at present, general semi-uni�cation is not known to be decidable. We prove termination of our algorithmfor a restricted case of semi-uni�cation that is of independent interest.Finally, we o�er an explanation for the apparent practicality of polymorphic type inference in the faceof theoretical intractability results.



Chapter 1Introduction1.1 Problem BackgroundMost programming languages provide the notion of types as their most fundamental abstraction fromthe unstructured universe of basic computer structures. While some languages perform type checking {checking for type consistent usage of program objects { at run-time (e.g., LISP, PROLOG, APL), othersdo it at compile-time (Pascal, Ada, ML, etc.). Doing it at compile time has the advantage that typeerrors, a common form of errors, are detected before the program is run. This usually comes at theprice of cumbersome explicit type, variable and other declarations. Recently languages such as ML [32]have been designed that try to combine the safety of compile-time type checking with the 
exibility ofdeclaration-less programming by inferring type information from the program rather than insisting onextensive declarations. ML's type discipline allows for de�nition and use of (parametric) polymorphicfunctions; that is, functions that operate uniformly on arguments that may range over a variety of types.A peculiarity in ML is that occurrences of a recursively de�ned function inside its de�nition body canonly be used monomorphically (all of them have to have identically typed arguments and their resultsare typed identically), whereas occurrences outside its body can be used polymorphically (with argumentsof di�erent types). This thesis studies the computational implications for type inference in an extensionof ML's typing system, which we primarily attribute to Mycroft [85], that treats recursively de�nedfunctions equally and uniformly inside and outside their bodies.Although the motivation for studying Mycroft's extension to ML's typing discipline may seem ratheresoteric and of purely theoretical interest, it stems from practical considerations. In ML many typingproblems attributable to the monomorphic recursive de�nition constraint can be avoided by appropri-ately nesting function de�nitions inside the scopes of previous de�nitions. Since ML provides a formof polymorphic de�nition called let-polymorphism in most cases nesting de�nitions is, indeed, a work-able scheme. Some languages, however, do not provide scoped nesting, but only top-level de�nition offunctions. Consequently, all these de�nitions have to be considered, in general, as a single, mutuallyrecursive de�nition. For example, B, SETL, and Prolog do not provide nested scopes. Adopting ML'smonomorphic typing rule for recursive de�nitions in these languages would preclude polymorphic usageof any de�ned function inside any de�nition. In particular, since logic programs, as observed in [86],can be viewed as massive mutually recursive de�nitions, using an ML-style type system would eliminatepolymorphism from strongly typed logic programming languages almost completely. Mycroft's extension,on the other hand, permits polymorphic usage in such a language setting.In many cases it is possible to investigate the dependency graph (\call graph") of mutually recursivede�nitions and process its maximal strong components in topological order thus simulating polymorphi-1



cally typed, nested let-de�nitions, but this is undesirable for several reasons:1. The resulting typing discipline cannot be explained in a syntax-directed fashion, but is ratherreminiscent of data-
ow oriented reasoning. This runs contrary to structured programming andprogram understanding. For example, �nding the source(s) of typing errors in the program text ismade even more di�cult than the already problematical attribution of type errors to source codein ML-like languages [51,119].2. The topological processing does not completely capture the polymorphic typing rule. Mycroftreports on a mutually recursive de�nition he encountered in a \real life" programming project thatcould not be typed in ML, but could be typed by using the extended polymorphic typing rule forrecursive de�nitions [85, section 8].1.2 An ExampleAs an illustration of the monomorphic typing rule for recursive de�nitions consider the following standardde�nition of map and squarelist in Standard ML, taken directly from [85].fun map f l = if null l then nil else f (hd l) :: map f (tl l)andsquarelist l = map (fn x: int => x * x) l;As it is written, this is a simultaneous de�nition of map and squarelist even though squarelist is not usedin the de�nition of map. An ML-style type checker would produce the typesmap: (int! int)! (int list! int list)squarelist: int list! int listeven though we would expect the type of map to bemap: 8�:8�:(�! �)! (�list! �list);which is the type produced by de�ning | sequentially | �rst map and then squarelist.If we were to use map in another line of the same mutually recursive de�nition with an argumenttype di�erent from int list we would even get a type error. This peculiarity comes from the fact thatthe Milner Calculus permits recursively de�ned functions to be used monomorphically only inside theirbodies whereas they may still be used polymorphically | with arguments of di�erent types | outsidetheir bodies.1.3 Outline of thesisAt the core of this thesis is a study of the type inference problem of ML's type system extended witha polymorphic typing rule, termed Milner-Mycroft Calculus here, and some of its relatives. Motivatedby the well-known reduction of simple type inference to �rst-order uni�cation we relate type inferencecalculi to uni�cation-like problems that distill the combinatorial essence from the presentation of thetyping problems. In particular, we show that semi-uni�cation is at the heart of Milner-Mycroft-styletype inference. Because of this central role, we study the algebraic and algorithmic aspects of semi-uni�cation. Although semi-uni�cation appears worthy of study on the merit of its fundamental character2



alone, we show that most of the results on semi-uni�cation translate back to type inference and thusyield new results and new proofs of known results.1.3.1 Simple type inference and uni�cationWe expand on some work by Kanellakis and Mitchell [53] and give, in detail, a log-space reduction of �rst-order uni�cation to simple type inference. This shows that simple type inference is log-space equivalent touni�cation; in particular, it is P-complete under log-space reductions. The encoding of �rst-order termsby �-expressions is useful in later reductions.1.3.2 Polymorphic type inference and semi-uni�cationSemi-uni�cation is the problem of solving term inequalities, M � N , where � is interpreted as thesubsumption preordering on terms: M � N , there is a substitution � such that �(M ) = N . We presenttwo polynomial-time reductions: from type inference in the Milner-Mycroft Calculus (and the MilnerCalculus) to semi-uni�cation, and from semi-uni�cation to type inference in the Flat Milner-MycroftCalculus, which is a (minimal) programming language with only top-level polymorphically typed recursivede�nitions. As corollaries we obtain that1. semi-uni�cation characterizes type inference in the Milner-Mycroft Calculus up to polynomial-timeequivalence;2. type inference in the Milner-Mycroft Calculus can be e�ciently reduced to the case with only asingle recursive de�nition and no other de�nitions (Flat Milner-Mycroft Calculus); this contradictsMycroft's conjecture that the complexity of type inference depends exponentially on the degree ofnesting of recursive de�nitions [85, p. 228];3. Kanellakis and Mitchell's seminal result of PSPACE-hardness for the Milner Calculus [53] extendsto the Flat Milner-Mycroft Calculus, solving a question posed by Kanellakis;4. type inference in the programming language B [75] is no simpler than semi-uni�cation and typeinference in the Milner-Mycroft Calculus, and Meertens' uniformly terminating type inference al-gorithm [74] is incomplete in the sense that it indicates type errors for some typable B programs.1.3.3 Algebraic structure of semi-uni�cationWe show that strong equivalence, the standard formalization of \renaming of variables", does not ade-quately capture the structure of the solutions of semi-uni�cation problems, thus correcting a statementby Chou [15]. A slightly weaker notion | weak equivalence | permits us to show that the set of so-lutions of any semi-uni�cation problem form a complete lattice; in particular, there is always a mostgeneral solution (semi-uni�er) unique up to weak equivalence if there exists a semi-uni�er at all. As acorollary, the connection of polymorphic type inference and semi-uni�cation yields a simultaneous proofof the principal typing property for the type systems we investigate.1.3.4 Speci�cation of most general semi-uni�ersMost general semi-uni�ers exist and are unique modulo weak equivalence; we present a nondeterministicalgorithm for computing the most general semi-uni�er of any semi-uni�cation problem. It contains an\extended occurs check" that eliminates all known cases that lead Mycroft's [85, section 6] and Meertens'[74, algorithm AA] type inference algorithms to nontermination. We conjecture that our algorithm3



terminates uniformly, thus implying decidability of the Milner-Mycroft Calculus and semi-uni�cation, acurrently open problem. This basic algorithm is described in three paradigmatic forms: as a functional,a rewriting, and a graph-theoretic program speci�cation. All three are proved partially correct.1.3.5 E�cient algorithm for uniform semi-uni�cationWe study a space-e�cient algorithm for uniform semi-uni�cation, a provably decidable subclass of general(nonuniform) semi-uni�cation. Kapur et al. have an elegant algorithm for deciding semi-uni�ability inpolynomial time. We present our own, independently devised, somewhat more complicated algorithm; itis less e�cient, but computes a most general semi-uni�er, in contrast to their decision algorithm.1.3.6 Decidability | elementary approachesWe present some basic combinatorial properties of the graph-theoretic version of our basic semi-uni�cationalgorithm in the hope that some deeper investigation will eventually lead to estab lishing its uniformtermination property. This seems appropriate to us since the \nonlocal" nature of the extended occurscheck in our speci�cations suggests that combinatorial properties are stated most easily in a graph-theoretic setting.1.3.7 Implications for practical programming languagesBeginning with the PSPACE-hardness result for the Milner Calculus there has been a gap between thetheoretical infeasibility of polymorphic type inference and its observed practical success. This discrepancyappears even more pronounced in the Milner-Mycroft Calculus. We o�er a tentative explanation ofthis gap in terms of resource-bounded typings, justi�ed by the intent of typings as computational andconceptual abstractions of the computations of a program. If we impose the | as we think | reasonablerestriction that the inferred type information must not be super-polynomially bigger than the size ofthe underlying programs, we can show that polymorphic type inference in the style of the Milner andMilner-Mycroft calculi are both practically and theoretically tractable.
4



Chapter 2Implicitly Typed Lambda CalculiThe aim of our work is to study the principal aspects of type checking and type inference in program-ming languages, especially as they relate to parametric polymorphic features. To do this we shall usea language that contains only the features we are interested in so as to understand them independentlyof their possible interactions with other language features. This is not to say that other features areirrelevant or of less interest. In fact, operator overloading [52,118], implicit and explicit type coercions[103,78,27], abstract and dependent types [82,69,34], recursive types [110,70,77] and especially inclusionpolymorphism [10,11,112,50,98,121,122]), a type-theoretic view of the behavior of object-oriented pro-gramming languages, are signi�cant in the typing disciplines of modern strongly typed programminglanguages (e.g., [99,12]). But we cannot hope to combine several features and study their interactions,before we understand them individually. We refer the reader to [100] and [13] for an introduction andexposition of types and type checking in programming languages.2.1 Untyped Lambda CalculusWe start with a simple functional language �, the extended �-calculus [90], also called Exp in [23,85]. Ithas function abstraction, application, de�nition, and �xed point computation. We shall refer to it as the(untyped) �-calculus even though the (pure) �-calculus classically contains only function abstraction andapplication [3].2.1.1 SyntaxThe set � of �-expressions (expressions) is de�ned by the following abstract syntax.e ::= x j � x.e j (ee0) jlet x = e0 in e j�x x.ewhere x ranges over a countably in�nite set V of variables. In these productions �, let, and �x bind x ine; let does not bind x in e0, and application, denoted by juxtaposition, does not bind anything at all. Avariable or variable occurrence in an expression e that is bound by � is a �-bound variable, respectivelyvariable occurrence; same for let and �x. If a variable occurrence is not bound, it is free. A variable isfree in a �-expression e if it has a free occurrence in e. The convention for omitting parentheses is thatapplication associates to the left, and application has higher precedence than any other construction.We may abbreviate �x1:�x2: . . .�xk:e to �x1x2 . . .xk:e or �~x:e if ~x denotes the sequence x1x2 . . .xk.5



�-expressions will usually be denoted by the letter e and primed or subscripted versions of e; variablesby x; y along with their sub- and superscripted variants.2.1.2 Operational SemanticsInstead of encoding renaming of �-bound variables by an explicit axiom of �-conversion (see, e.g., [42,de�nition 1.16]) we follow Barendregt [3] and write e � e0 if e0 is identical to e except that it may have some�-bound variables systematically renamed. Every �-expression is then understood as a representative ofits �-equivalent expressions, and all operations on �-expressions are always de�ned on �-equivalenceclasses. For e; e0 2 �; x 2 V , e[e0=x] denotes the simultaneous replacement of all free occurrences of x ine by e0; as usual we assume that bound variables in e are renamed appropriately to avoid \capturing"free variables in e0. This is an acceptable convention with the proviso just made [3, p. 26].The operational semantics of �-expressions is de�ned as the re
exive, transitive, compatible1 closure,�!, of the union of the following notions of reduction (see [3, chapter 3]).(� x:e)e0 !� e[e0=x]let x = e0 in e !let e[e0=x]�x x:e !�x let x = (�x x:e) in eIn our examples we may sometimes add \constants" such as natural numbers with some arithmeticoperators and the Boolean values with some logical operators to our �-calculus. Whenever suitable weshall use in�x notation for constant operations instead of pre�x. We may tacitly assume the existence ofsuitable reduction relations, summarily called �-reductions, that implement the usual semantics on thoseconstants. Our theory is developed only for the \pure" �-calculus, although | or because | it can easilybe extended to include constants.As an example of an expression with constants,�x f:�x:if x = 0 then 1 else x � f(x � 1)denotes the factorial function, andlet fact =�x f:�x:if x = 0 then 1 else x � f(x � 1) infact 5reduces to 120 via �!.Equality (�-equality), =, is the congruence relation generated by �!. As is well-known, for the untyped�-calculus we could have dispensed with let and �x since they are both de�nable by abstraction andapplication alone: let x = e0 in e = (�x:e)e0�x x:e = Y (�x:e)where Y = �f:WW and W = �x:f(xx) or Y = W 0W 0 and W 0 = �x:�y:y(xxy). For the second de�nitionof W we also have Y (�x:M ) �! (�x:M )(Y (�x:M )).Nonetheless we shall keep let and �x forms since there are typed versions of the �-calculus in whichthe above replacements are not possible since the right-hand sides may not necessarily satisfy the typingrules, which is to say that the sort of typing we shall consider is in general not closed w.r.t. equality).1A relation R is compatible if it is closed under taking contexts; that is, (e1; e2) 2 R implies (C[e1]; C[e2]) 2 R for anycontext C[] surrounding e1 , respectively e2. 6



2.2 Type Inference SystemsIt is not easy to �nd a modern set-theoretic interpretation of the �-calculus in which application ismodeled by (set-theoretic) function application, and �-abstraction is interpreted as the de�nition of a(set-theoretic) function. This is mainly due to the possibility of unbridled self-application, as in xx. Also,concerns over representation independence and type integrity in the design of programming languageslead to the introduction of typing disciplines that restrict the class of �-expression that are consideredacceptable (well-typed). We shall brie
y present the mechanism for specifying various related typingdisciplines.2.2.1 Notational PrerequisitesThe notational conventions used here are fairly standard. The reader familiar with [23] and [85] or anynumber of logically speci�ed polymorphic type systems is encouraged to skip this subsection.Type ExpressionsThe type expressions (types) are formed according to the following productions.� ::= � j � j � ! �� ::= � j 8�:�where � ranges over an in�nite set TV of type variables disjoint from V , and � ranges over given primitivetypes, such as integer, Boolean, etc, and 8 is a (type) variable binding operator. The distinction betweenfree and bound variables (variable occurrences) in type expressions is as expected: all occurrences of 8-bound variables are bound, all other occurrences are free. The type expressions M derivable from � arethe monotypes;2 the type expressions � derivable from � are called polytypes.For ~� = �1�2 . . . �k we may write 8�1�2 . . .�k:� 0 or 8~� :� 0 for 8�1:8�2: . . .8�k:� 0. The function type con-structor, !, is right-associative; that is, �1 ! �2 ! �3 should be parsed as �1 ! (�2 ! �3). For any typeexpression � we write �[�1=�1; . . . ; �k=�k] to denote the type expression resulting from simultaneouslysubstituting �i for all free occurrences of �i; 1 � i � k; in �.Note that the 8-quanti�ers in polytypes can only appear as pre�xes of type expressions, which is thecritical di�erence from the Second Order �-calculus [29,101].The Greek letter � always indicates a monotype, while the Greek letter � signals a polytype, andletters from the beginning of the Greek alphabet stand for type variables. This is the same conventionas in [23] and [85].Type AssignmentsA type assignment (or type environment) A is a mapping from a �nite subset of V (variables) to �(polytypes). Type assignments are mostly used to formulate assumptions about the types of variablesoccurring free in some expression under consideration. This is necessary since the type of an expressione depends, in general, on the types of variables occurring free in e. For given A we de�neAfx : �g(y) = � A(y); y 6= x�; y = x;that is, the value of Afx : �g at x is �, and at any other value it is identical to A. We say a type variable� occurs free in A if it occurs free in A(x) for some x in the domain of A.The capital letter A henceforth always denotes a type assignment.2Note that, in contrast to [76] and [85] our monotypes can contain (necessarily free) occurrences of type variables.7



Full name Abbreviation AcronymCurry-Hindley Calculus Hindley Calculus CHDamas-Milner Calculus Milner Calculus DMMilner-Mycroft Calculus Mycroft Calculus MMFlat Milner-Mycroft Calculus Flat Mycroft Calculus FMMFigure 2.1: Names and abbreviations of typing calculiTypingsTypings are the well-formed formulae (judgments) of our type calculi. A typing consists of three parts:a type assignment A, an expression e, and a type expression �, written as A � e : �. It should be readas \In the type environment A, the expression e has type �". Of course, not all typings are acceptable.Acceptability is de�ned statically by derivability in inference systems.2.2.2 The Hindley, Milner, Mycroft, and Flat Mycroft CalculiWe shall study four type inference systems: the Curry-Hindley Calculus, the Damas-Milner Calculus,the Milner-Mycroft Calculus, and the Flat Milner-Mycroft Calculus. Instead of using their full nameswe shall abbreviate them throughout by using only the second component of their compound names inrunning text or their acronym in derivations, tables, etc. (see Figure 2.1).With the exception of the Flat Mycroft Calculus all typing calculi under consideration here share thefact that they are de�ned over the same class of programs (�-expressions) and the same set of judgments(typings). Their only di�erences are that they do not have the same inference rules. Since they shareseveral of their axiom and rule schemes, though, a list of all axioms and rules is given in Table 2.1. Table2.2 shows which of the axioms and rules are present in which calculus, and which ones are not.Let X = CH, DM, MM, FMM. We write X ` A � e : � if A � e : � is derivable in the Hindley Calculus(X = CH), the Milner Calculus (X = DM), the Milner-Mycroft Calculus (X = MM), or the Flat Milner-Mycroft Calculus (X = FMM). If X is clear from the context, we may simply write A � e : � to indicatethat this typing is derivable in X. Let e be a �-expression, and let X = CH, DM, MM, or FMM. We saye is well-typed or typable in X (or simply well-typed/typable, if it is clear with respect to which typedcalculus) if there is a type environment A and a type expression � such that A � e : � is derivable in X.The typability problem for X is the problem of deciding the set of all well-typed expressions in the X. Wemay often abbreviate \the typability problem for the X Calculus" to simply \the X Calculus" as in \TheHindley Calculus is log-space equivalent to uni�cation". As we shall see below, every expression e typablein the X Calculus has a unique (modulo some simple equivalence) \principal" type expression, given atype assumption A, no matter what choice of X. The functional problem of computing the principal typeor outputting an indication of untypability for given e; A will be called the type inference problem for theX Calculus.The Hindley Calculus corresponds to a language without mandatory variable or parameter typedeclarations; yet every variable has exactly one monotype. This is in the spirit of conventional staticallytyped languages such as Pascal where every program variable and every procedure has a unique type.That type has to be declared within the program itself, in contrast to the Hindley Calculus.The Milner Calculus encodes the polymorphism that results from the ability in languages such as ML[31,32], SPS [120], Miranda [117] to give let-bound variables x a parameterized type that is automaticallyand implicitly instantiated at all applied occurrences of x. Note that in the rule (FIX-M) the type8



Let A range over type environments; x over variables; e; e0 over �-expressions; � over type variables; �; � 0over monotypes; �; �0 over polytypes. The following are type inference axiom and rule schemes.Name Axiom/rule(TAUT) Afx : �g � x : �(GEN) A � e : �(� not free in A)A � e : 8�:�(INST) A � e : 8�:�A � e : �[�=�](ABS) Afx : � 0g � e : �A � �x:e : � 0 ! �(APPL) A � e : � 0 ! �A � e0 : � 0A � (ee0) : �(LET-M) A � e : �Afx : �g � e0 : �0A � let x = ein e0 : �0(LET-P) A � e : �Afx : �g � e0 : �0A � let x = ein e0 : �0(FIX-M) Afx : �g � e : �A � �x x:e : �(FIX-P) Afx : �g � e : �A � �x x:e : �Table 2.1: Type inference axioms and rules9



Axiom/rule CH DM MM FMMTAUT p p p pGEN p p p pINST p p p pABS p p p pAPPL p p p pLET-M pLET-P p pFIX-M p pFIX-P p pThe markp indicates the corresponding axiom/rule is present in the calculus in whose column it appears;blank space means it is not included. The Flat Mycroft Calculus is restricted to �-expressions with nolet-operator and with only one occurrence of a �x-operator, which must occur at top-level.Table 2.2: The Hindley, Milner, Mycroft, and Flat Mycroft type inference calculiassociated with the (presumably) recursively de�ned x is a monotype.3 This implies that, intuitively, alloccurrences of x in a recursive de�nition �xx:e are monomorphic; that is, they have the same monotype.The Mycroft Calculus models a language such as Hope [8] that permits �x-bound variables (i.e., for themost part recursively de�ned functions) to have parameterized types that can be instantiated arbitrarilyinside the scope of their de�nition. Hope will admit such polymorphically typed recursive de�nitions onlyat the top-level and requires explicit type declarations, whereas our Milner-Mycroft Calculus permits evennested polymorphically typed recursive de�nitions and does not require explicit declarations.The Flat Mycroft Calculus has only �-expressions of the form �x f:e where e contains only variables,�-abstractions, and applications, but no let- or �x-constructs. It adopts the polymorphic typing rule fromthe Mycroft Calculus for its sole recursive de�nition. We call it \
at" since no nesting of polymorphicallytyped de�nitions | as in the Milner Calculus (let-rule (LET-P)) and in the Mycroft Calculus (let-rule (LET-P) and �x-rule (FIX-P)) | is permitted. This essentially models polymorphic programminglanguages with only top-level de�nitions that are automatically mutually recursive, as in (Polymorphic)Prolog [86], B [75], or (Polymorphic) SETL [36].In our calculi we have deliberately excluded programming language features that have a strong bearingon type checking, such as coercion, overloading, inclusion polymorphism, union types, dependent types;not to mention assignment, references, exceptions. Note also that the typing disciplines are implicit:there is no mention of types in the programs (�-expressions) themselves, only in the typing statementsabout them. This is to say, ours is the \Curry viewpoint": types are properties of (untyped) programs.This is in contrast to the \Church viewpoint": types occur in programs and are instrumental in thede�nition of what constitutes the notion of (typed) program in the �rst place. More importantly, though,the programming language considered here has a �xed point constructor and is thus universal, similar toLCF, yet very much in contrast to many typed calculi that are of interest for the very absence of a general�xed point operator. This is the main reason why we do not refer to what we call the Hindley Calculusas Church's Typed �-calculus. What we call Milner Calculus is called ML (by Kfoury et al. [58]), ormore loosely let-polymorphism or Milner-style polymorphism. Since it is well-known that side-e�ectsand pointers have an e�ect on the soundness of polymorphic typing disciplines [22,68,116], we prefer notto call this typing calculus ML, a concrete programming language with side-e�ects, pointers and several3Remember that � always stands for a monotype. 10



other features. For similar reasons Kfoury et al.'s ML+ is our Mycroft Calculus.4 The general rationalefor our choice of names is that the calculi are named after researchers that are prominently associatedwith investigating their properties.2.2.3 Properties of Typed CalculiIt is quite clear that the Milner-Mycroft Calculus is more powerful than the Milner Calculus, which inturn is more powerful than the Hindley Calculus; that is to say, every �-expression typable in the HindleyCalculus is typable in the Milner Calculus, and every �-expression typable in the Milner Calculus istypable in the Mycroft Calculus. Even stronger, the sets of derivable typings in each of these calculiare in a containment relation along the same lines. These inclusions of typable expressions are proper.Consider, for example, the expressions e0 � let x = �y:y in (xx) and e1 � �x f:�x:(ff). The expressione0 is typable in the Milner Calculus due to the rule (LET-P), but not in the Hindley Calculus; e1 istypable in the (Flat) Mycroft Calculus due to rule (FIX-P), but not in the Milner Calculus. For example,DM ` fg � letx = �y:y in (xx) : 8�:�! �MM ` fg � �x f:�x:(ff) : 8�:8�:�! �This shows that, indeed, the Hindley Calculus, the Milner Calculus, and the Mycroft Calculus form ahierarchy of properly more powerful typing disciplines. For completeness' sake we shall brie
y touch uponresults that show that the type systems we consider here are not just syntactic in nature, but interactwith the semantics of �-expressions in an orderly fashion.SoundnessMilner [76] presents a formal denotational semantics for expressions and types that allows speci�cationof a semantic notion of validity. A type system is said to be sound (with respect to Milner's semantics)if all typings derivable are also semantically valid. We present only the following theorem and refer thereader to [76], [23], [85] or [70] for an exposition of semantic issues only alluded to here.Theorem 1 1. The Milner Calculus is sound (with respect to Milner's semantics).2. The Milner-Mycroft Calculus is sound (with respect to Milner's semantics).Proof:1. See [23].2. See [85].It may be noted that the soundness of the Milner Calculus also follows immediately from the soundnessof the Milner-Mycroft Calculus and the fact that the Milner-Mycroft Calculus subsumes the MilnerCalculus.Subject ReductionNone of our typing disciplines are semantically complete since the property of typability is not invariantunder �-equality. For example, for K � �x:�y:x; I � �x:x the expression (KI)(�x:(xx)) is not typable inany of the typing disciplines under consideration here, yet (KI)(�x:(xx)) = I, and I is clearly typable. Adynamically typed language is a programming language with a nontrivial typing discipline that is invariant4Compounding the potential for confusion is that Jategaonkar and Mitchell are investigatingan object-oriented extensionto ML, called ML++. They call their initial design in this direction ML+.11



under equality. Examples are LISP (but not the pure �-calculus), APL, and SETL. Every dynamicallytyped (universal) language has a necessarily undecidable typability problem in view of Scott's version ofRice's theorem [3, chapter 6.6]. This in fact necessitates run-time type checking, hence motivating callingit \dynamically typed" in the �rst place.Even though our static typing disciplines are not invariant under equality, a slightly weaker, yet verydesirable property holds.Theorem 2 (Subject reduction property)Let X = CH, DM, or MM. If X ` A � e : � and e �! e0, then X ` A � e0 : �.Proof: See Curry and Feys [21] for X = CH. The proofs for DM and MM are simplegeneralizations of Curry and Feys's original proof.This theorem expresses that once a �-expression has been been found to have some type, reducingthe expression will preserve that type. In particular, it is never possible to encounter an untypableintermediate result when evaluating (reducing) any typable expression.Principal TypingsNote that there may be many di�erent typings for a single expression. In this subsection we brie
y sum-marize for our type systems what has been called the principal typing property: Given a type assignmentA every expression that has a type under A has a unique most general type under A.The generic instance preordering v between types is given by8�1 . . .�n:� v 8�1 . . .�m:� [�1=�1; . . . ; �n=�n]for any monotypes �1; . . . ; �n whenever every �i(1 � i � m) is not free in 8�1 . . .�n:� . The equivalenceinduced by v is simply renaming of 8-bound type variables and is denoted by �.Let X = CH, DM, MM, or FMM Calculus. We say � is a principal type for e under A in X ifX ` A � e : �and for any type �0 such that X ` A � e : �0we have � v �0. Clearly, principal types are unique modulo �. If for every A and every e, e has aprincipal type under A (or has no type under A), then we say the whole calculus X has the principaltyping property.Theorem 3 (Principal typing property)Let X = CH, DM, MM, or FMM Calculus. X has the principal typing property.Proof: For CH, see [41,20]; for DM, [23]; for MM and FMM, [85].It is easy to see that if a closed �-expression e (a �-expression without free variables) has a type �under any type assignment A then it has type � under the empty assignment fg, and vice versa. For thisreason we can speak of the principal type of e (independent of any type assignment).The type inference problem is the (functional) problem of computing a principal type for given A and eor 
agging untypability. Of course, the (decision) problem of typability is trivially solvable once the typeinference problem has been solved. The converse, though, is not necessarily true even though essentially all12



current type checking algorithms for our typing disciplines also compute, directly or indirectly, principaltypes.5Note that even though all type systems under consideration here have the principal typing property,it may be that the principal type for an expression e in one calculus is di�erent from the principal type inanother (for �xed A). Consider, for example, the Standard ML de�nition of \map" and \squarelist" inthe program example in chapter 1. In the Milner Calculus the principal type of \map" is the monotype(int! int)! int list! int list whereas in the Mycroft Calculus it is 8�:8�:(�! �)! �list! �list.Of course, this presumes an encoding of the mutually recursive de�nition of \map" and \squarelist" andof the SML type constructor list into the �-calculus and the language of our type expressions. This isdi�cult since lists are a recursive data type, but a simpler \pure" example illustrating the di�erence isfun Ix = x andJ = Iy0under the type assignment A0 = fy0 : intg. There are standard ways for encoding tuples and mutuallyrecursive de�nitions by single recursive de�nitions in the �-calculus. The above SML program can thusbe transformed into a single recursive de�nition e0 in the �-calculus,�x f:�g:g(�x:x)(f(�x:�y:x)y0):This expression, e0, is typable under A0 both in the Milner Calculus and in the Mycroft Calculus.The principal types, however, are ((int ! int) ! int ! int) ! int in the Milner Calculus and8�:8�:((�! �)! int! �)! � in the Mycroft Calculus.2.3 BackgroundThe calculi we consider have appeared in the literature before, with some variations. Curry, Hindleyand others investigated the properties of \functionality" of combinatory logic [21,84,20,41,4], which isessentially what we call the Hindley Calculus. The Milner Calculus, in its logical form as a typed �-calculus, was investigated by Damas and Milner [23,22] on the basis of earlier work by Milner [76].As early as in the late 70s Wadsworth reportedly worked on extending the well-known type inferencealgorithm W for the Milner Calculus [76] to capture the more general typing rule (FIX-P) in (what wecall) the Mycroft Calculus, but apparently did not publish his work [67]. The polymorphic programminglanguage B, [75] has an extended rule for typing recursive de�nitions analogous to Mycroft's. Meertens[74], who designed it unaware of ML's polymorphic type system, presents a uniformly terminating typeinference algorithm for B. Since B has neither higher-order functions nor nested declarations, Meertensraised the question of whether type inference in what we call the Mycroft Calculus is decidable.6 Exploringstatic typing for logic programming [86], Mycroft [85] investigated the properties of ML with an extendedrule for recursive de�nitions that allows for polymorphically typed occurrences of the de�ned function inits body. He was able to show that the resulting calculus, which we have called the Mycroft Calculus,is sound with respect to Milner's [76] semantics and that the principal typing property of the MilnerCalculus is preserved. The standard uni�cation-based type inference algorithm is not complete for theextended calculus, though. Mycroft provided a semi-algorithm for computing principal typings, but he5The fact that the uniform semi-uni�ability algorithm of Kapur et al. [54] does not compute most general uniformsemi-uni�ers | the equivalent of principal types | can be viewed as a remarkable exception.6In chapter 4 we shall see that Mycroft-style type inference is not greatly a�ected by the absence or presence of higher-order functions and nested de�nitions. Meertens' uniformly terminating type inference algorithm is syntactically incompletein that it signals a type error for some programs that are type correct with respect to the typing rules for B (or, equivalently,with respect to his semi-algorithm AA). 13



left the computability of that question and the decidability of the calculus open. Lei�[64] gave an alternatetype inference system for the Mycroft Calculus (along with an extension of polymorphic type inferenceto record-based subtyping) based on term inequalities with context conditions. The decidability of theMycroft Calculus was speci�cally addressed by Kfoury et al. [58]. They showed that typability in theMycroft Calculus can be reduced to a \Generalized Uni�cation Problem (GUP)" [56], which is similarto Lei�'s formulation of inequalities with context conditions, and embarked on showing that, if a GUPinstance has a solution, it has a solution whose size can be bounded recursively as a function of the sizeof the input. The authors have reported a 
aw in their proof, and the general decidability of the MycroftCalculus remains open. Once proven this would give an essentially nonalgorithmic proof of decidabilityfor the Mycroft Calculus.Whereas the Milner-Mycroft Calculus only admits polytypes with universal quanti�ers in pre�x posi-tion only on the top level, the Second Order �-calculus [101] relaxes this constraint and permits polytypeswith nested quanti�ers. In such a system the let-construct is unnecessary since the equivalent descrip-tion of a let-expression in the pure �-calculus is typable if and only if the let-expression itself is typable.B�ohm [6] showed that partial type inference in the Second Order �-calculus is undecidable whereas,interestingly, the decidability of full type inference for the same type system is has been open [65,28]since the inception of the Second Order �-calculus. Girard's system F! [29] generalizes the 2nd Order�-calculus to type expressions of arbitrary �nite order. Pfenning [91] re�ned B�ohm's result by showingthat type inference in the n-th Order �-calculus, Fn, is equivalent to n-th order uni�cation [46,30]. Thetypable �-expressions in the conjunction type discipline of [18] (see also [106,83]) are exactly the stronglynormalizing (untyped) �-expressions, which implies that type inference is undecidable. Nonetheless, theSecond Order �-calculus and the conjunction type discipline have had a direct in
uence on programminglanguage design. The language LEAP employs is directly based on F! and employs partial type inferencewith satisfactory practical performance [92]. Reynolds' language Forsythe [99] makes use of a conjunctiontype discipline.There are manymore very powerful type systems whose immediate application is in proof theory. Theyexploit and extend the \types-as-propositions" (and \expressions-as-proofs") analogy [44] to formulateconstructive proof systems. A sample of such systems is AUTOMATH [24], Martin-L�of type theory [73],the Calculus of Constructions [19], and LF [33].
14



Chapter 3Semi-Uni�cation: Basic Notionsand ResultsSemi-uni�cation is the problem of solving sets of inequalities of the form M1 � M2 in the subsumptionlattice of free �rst-order terms. The special case of solving single inequalities has found applications inproving nontermination of term rewriting systems [54] while the general case characterizes type inferencein the Mycroft Calculus (see chapter 4). Since this problem does not seem to have attracted broadattention in computer science, in this chapter and chapter 5, we give a comprehensive treatment of itsbasic algebraic properties and contrast it with uni�cation, the problem of solving term equations.Uni�cation and semi-uni�cation deal with related problems. Uni�cation addresses solving equationsbetween free �rst-order terms while semi-uni�cation tackles the more general question of solving systemsof equations and inequalities1 (SEI's) where inequalities, M1 � M2, between terms M1 and M2 refer tothe subsumption preordering � on terms.In this chapter we introduce the basic machinery of semi-uni�cation. In particular, section 3.1 de-scribes terms and substitutions and their basic algebraic structure, and section 3.2 contains de�nitions ofsystems of equations and inequalities and their solutions, semi-uni�ers, as well as some basic results. Inchapter 4 we shall show why semi-uni�cation is relevant to type inference, and in chapter 5 we investigatethe algebraic structure of semi-uni�ers, which in turn has reverberations on the structure of typings.Algorithms for computing most general semi-uni�ers can be found in chapter 6, and some combinatorialproperties of our basic semi-uni�cation algorithm are in chapter 7.3.1 The Algebraic Structure of Terms and SubstitutionsIn this section we de�ne the objects of our universe of discourse, terms and substitutions, and investigateelementary aspects of their algebraic structure. The material is mostly extracted from [45], [26], and [63];much of the material dates back to [93], [94], [102], and [46]. Some de�nitions and results appear to benew. Though simple re�nements of standard concepts and results, they are useful in later sections.1We �nd the prevalent terminology somewhat unfortunate. While there is a distinction between \equation" (somethingthat is to be solved) and \equality" (something that holds), there is no corresponding distinction with \inequality" since theterm \inequation" is not commonly used in the English language. Even worse, \inequality"gives no indication as to whether� (less-than-or-equal-to) or 6= (not-equal-to) is meant, and there is no standard linguistic mechanism for distinguishingbetween these two. The term \inequation" has popped up in the literature, but, since it is still uncommon, we willuse \inequality" throughout. This also makes it possible, admittedly somewhat arti�cially, to distinguish our systems ofequations and inequalities from the related, but di�erent, systems of equations and inequations in [17] and [63].15



3.1.1 Basic De�nitionsDe�nition 1 (Ranked alphabet, functors, constants, variables, terms)A (ranked) alphabet A is a pair (F; a) where F is a nonempty, denumerable set whose elements arecalled functors and a : F ! N maps every functor f to its arity a(f). Functors with arity 0 are calledconstants. A is linear if all its functors have arity at most 1, nonlinear otherwise.A set of variables V for A = (F; a) is an in�nite denumerable set disjoint from F .The set of proper (�rst-order) terms T (A; V ) (or simply T whenever A and V are understood), whereV is a set of variables for A, consists of all strings derivable from M in the grammarM ::= xjf(M; . . . ;M| {z }ktimes )where f is a functor from A with arity k, and x is any variable from V . The set of (�rst-order) termsT
(A; V ) (or simply T
) is T (A; V ) with an additional distinguished element 
 called the unde�nedterm.2Variables are usually denoted by u; v; x; y; z, constants by c; d, nonconstant functors by f; g; h, andterms by M;N , as well as by their respective subscripted and superscripted versions. To indicate thearity k of a functor f we may write f (k). With these conventions in place we shall omit the parenthesesfollowing constants appearing in terms since this cannot lead to any confusion.Two termsM1;M2 2 T are equal, denotedM1 =M2, if and only ifM1 andM2 are identical as strings;e. g., f(x; y) = f(x; y), but f(x; y) 6= f(u; v). The special term 
 is equal to itself and no other term.The distinction between linear and nonlinear alphabets is crucial since terms over a linear alphabetcan have at most one variable whereas terms over a nonlinear alphabet can contain any number ofvariables. In a nonlinear alphabet it is always possible to \emulate" a functor of arbitrary arity. Forexample, g(4)(M;N;N;N ) can be viewed as a term f (2)(M;N ) with a �ctitious binary functor f (2),and h(2)(h(2)(M1;M2);M3) can be interpreted as a term f (3)(M1;M2;M3) with an \emulated" ternaryfunctor f (3). In this sense we are justi�ed in stipulating the existence of a functor f with any arity k � 1without loss of generality in a nonlinear alphabet. Note that this is, of course, not possible with linearalphabets.De�nition 2 (Substitutions)A proper (�rst-order) substitution is a mapping from V to T (A; V ) that is the identity on all but a�nite subset of V . Every substitution � : V ! T (A; V ) can be extended uniquely to �� : T
(A; V ) !T
(A; V ) by the equations ��(x) = �(x); if x 2 V��(
) = 
��(f (k)(M1; . . . ;Mk)) = f (k)(��(M1); . . . ; ��(Mk)):The domain dom � of � : V ! T (A; V ) is fx 2 V j �(x) 6= xg. The canonical representation of � withdom � = fx1; . . . ; xng is fx1 7! �(x1); . . . ; xn 7! �(xn)g.The mapping !A;V , which maps all terms M 2 T
(A; V ) to 
, is called the unde�ned substitution.The set of all proper substitutions is denoted by S(A; V ) (or simply S whenever A, and V are understoodfrom the context). The set of (�rst-order) substitutions S!(A; V ) consists of S(A; V ) with the additionalmapping !A;V .2Of course we make the standard assumption here that neither A nor V contain 
 or any of the symbols `(', `)', or `,'.16



We shall omit the subscript from !T (A;V ) below whenever A, V , and thus T (A; V ) are clear fromthe context. Similarly, we will identify, as is usual, every substitution � with its extension ��. In thischapter and chapter 5 substitutions are ranged over by �; �; �; � along with their sub- and superscriptedvariations. To avoid confusion with type expressions, in the other chapters they may also be denoted byletters R;S; U .A substitution speci�es the simultaneous replacement of some set of variables by speci�c terms. Forexample, for �0 = fx 7! u; y 7! v; u 7! y; v 7! xg we have �0(f(x; y)) = f(u; v). The unde�nedsubstitution maps everything to the unde�ned term; e. g., !(f(x; y)) = 
 and !(
) = 
.For � 2 S, we will write � jW for the substitution de�ned by� jW (x) = � �(x); x 2Wx; x 62WFurthermore, ! jW= !.Clearly substitutions, if understood as acting on terms, are closed with respect to functional compo-sition. The unde�ned term 
 and the unde�ned substitution ! are useful in providing a meaning forthe dynamic notion of \failure" in uni�cation and other applications. They also lead to a very satisfyingalgebraic structure of terms and substitutions (see theorems 4 and 16) in chapter 5.3.1.2 Term SubsumptionLet A be an arbitrary, but �xed alphabet in this section, and let V be a set of variables for A.De�nition 3 (Subsumption, �-congruence)The preordering � of subsumption3 on T
 is de�ned byM1 �M2 , (9� 2 S!) �(M1) =M2for any M1;M2 2 T
.The congruence relation �= of �-congruence on T
 is de�ned byM1 �= M2 ,M1 �M2 ^M2 �M1for all M1;M2 2 T
. We write M1 < M2 if M1 � M2, but M1 6�= M2. For any M 2 T
, [M ] denotesthe equivalence class of M in T
.IfM1 �M2 we sayM1 subsumesM2; e. g., f(x; y) subsumes f(g(y); z) since for �1 = fx 7! g(y); y 7!zg the equality �1(f(x; y)) = f(g(y); z) holds. If M1 �= M2 we say M2 is an �-variant of M1 and viceversa; e. g., f(x; y) is an �-variant of f(u; v).Recall that a partial order (L;�) is a (complete) lower semi-lattice if it has a greatest lower bound forevery �nite (�nite or in�nite) subset of L. It is a (complete) upper semi-lattice if it has a least upper boundfor every �nite (�nite or in�nite) subset of L. It is a (complete) lattice if it is both a (complete) lowersemi-lattice and a (complete) upper semi-lattice [66]. Recall also that a partial ordering is Noetherianif it has no in�nite descending chains M1 > M2 > . . . [45]. It is well-known that any Noetherian lowersemi-lattice is a complete lower semi-lattice, and any complete (lower or upper) semi-lattice is already acomplete lattice.The preordering � on T
 induces a partial order on the quotient set T
=�= = f[M ] jM 2 T
g, whichwe will also denote by �. The structure of terms with respect to subsumption is captured in the followingtheorem.3Note that this de�nition follows [45] and [26], but is dual to the de�nition in [63].17



Theorem 4 1. (T
=�=;�) is Noetherian.2. (T
=�=;�) is a complete lattice.Proof: See [45].The least upper bound of a set of terms is called its most general common instance; its greatest lowerbound is called its most speci�c common anti-instance. The theorem expresses that both most generalcommon instance and most speci�c common anti-instance are unique modulo �-congruence. Finding themost general common instance of a pair of terms is a special case of the uni�cation problem (disjointvariable case). Finding the most speci�c common anti-instance of a pair is the anti-uni�cation problem[46,63]. A most general common instance of ff(x; g(y)); f(g(y); z)g is f(g(y); g(z)), but also f(g(u); g(v));a most speci�c common anti-instance is f(s; t). Clearly, [x] = V (x any variable) is the least element and[
] = f
g is the greatest element in T
=�=.The subsumption preorder can be extended to substitutions, but not in a unique fashion. Di�erentnotions and their implications are studied in chapter 5.3.2 Systems of Equations and Inequalities and Semi-Uni�ersIn this section we present basic de�nitions and properties of inequalities over the subsumption preorderingof terms and their solutions.De�nition 4 (System of equations and inequalities, nonuniform/uniform semi-uni�er, uni�er)A system of equations and inequalities (SEI) is a pair S = (E; I) where I = (I1; . . . ; Ik) for somek 2 N and E; I1; . . . ; Ik each consist of a set of pairs of terms from T , usually written in the form48>><>>: M11 = M12M21 = M22. . .Mm1 = Mm2 9>>=>>; E8>><>>: N111 � N112N121 � N122. . .N1n11 � N1n12 9>>=>>; I1. . .8>><>>: Nk11 � Nk12Nk21 � Nk22. . .Nknk1 � Nknk2 9>>=>>; IkA substitution � for which there exist quotient substitutions5 �1; . . . ; �n such that64Note that \=" and \�" are only formal here.5It is actually irrelevant whether ! is permitted amongst the �i or not.6Here the symbols = and � denote their logical meanings.18



�(M11) = �(M12)�(M21) = �(M22). . .�(Mm1) = �(Mm2) (E)�1(�(N111)) = �(N112)�1(�(N121)) = �(N122). . .�1(�(N1n11)) = �(N1n12) (I1). . .�k(�(Nk11)) = �(Nk12)�k(�(Nk21)) = �(Nk22). . .�k(�(Nknk1)) = �(Nknk2) (Ik)hold simultaneously7 is called a (nonuniform) semi-uni�er of S. If �1 = �2 = . . . = �n = � for some �,then � is called a uniform semi-uni�er, and if furthermore � = �, the identity substitution, then � is calleda uni�er.S is solvable if it has a semi-uni�er other than !. SU(S) is the set of semi-uni�ers of S, USU(S)the set of its uniform semi-uni�ers, and U(S) is the set of its uni�ers.The special symbol 2 is an additional SEI that has only ! for a uni�er and for a (non)uniform semi-uni�er; we call 2 the (only) improper SEI.8 The set of all proper systems of equations and inequalitiesover alphabet A and variables V is denoted by �(A; V ) (or simply � whenever A and V are understoodfrom the context). �(A; V ) with the additional improper SEI 2 is denoted by �2(A; V ).Semi-uni�ability is the decision problem of determining if a given SEI is solvable (has a proper semi-uni�er). As we shall see in chapter 5, every solvable SEI has a most general semi-uni�er that is uniqueup to an appropriate equivalence relation on substitutions. The term semi-uni�cation refers to the(functional) problem of computing a most general semi-uni�er of a given SEI or 
agging non-semi-uni�ability. Similarly, uniform semi-uni�ability and uniform semi-uni�cation as well as uni�ability anduni�cation are the decision, respectively, functional problems that correspond to �nding uniform (proper)semi-uni�ers and (proper) uni�ers. Often we will be sloppy and use the term for the functional problemto also denote the decision problem.A semi-uni�er, in other words, is a solution to a given set of equations and inequalities where theinequalities are split into groups that \share" the same quotient substitution, but the quotient substitu-tions across di�erent groups of inequalities can be di�erent. A uniform semi-uni�er additionally solvesthe inequalities in a \uniform" fashion9, and a uni�er solves the inequalities by making both sides equal.By de�nition, if an SEI has a uni�er it has a uniform semi-uni�er, and if it has a uniform semi-uni�er ithas a semi-uni�er.Clearly, for uni�ers there is no need to distinguish between equations and inequalities, and we canview, in this case, an SEI S = (E ; I) as a system of equations alone made up of E [SI.It is well-known that a set of equations can be expressed by a single equation in the sense that the setof its solutions (uni�ers) is identical to the set of solutions of the original set of equations. An analogous7Here \=" denotes term equality.8Note that there are proper SEI's that have only the improper ! as their sole semi-uni�er.9Note that (;;ffx � c1g;fx � c2gg) has a semi-uni�er | the identity substitution � | but no uniform semi-uni�er.19



result, with the same simple proof, holds for uniform semi-uni�ers, but apparently not for nonuniformsemi-uni�ers.Proposition 1 The following statements are equivalent.1. A is nonlinear.2. fU(S) : S 2 �(A; V )g = fU(S) : S 2 �(A; V ); S = (E ; I); jEj � 1; jIj = 0g3. fUSU(S) : S 2 �(A; V )g = fUSU(S) : S 2 �(A; V ); S = (E ; I); jEj � 1; jIj � 1; (8I 2 I) jIj = 1g4. fSU(S) : S 2 �(A; V )g = fSU(S) : S 2 �(A; V ); S = (E ; I); jEj � 1; (8I 2 I) jIj = 1gProof:Statements 2, 3, and 4 follow from 1 by \tupling". For given SEI S form term M1 bytupling all the left-hand sides of S, and M2 by tupling all the right-hand sides. De�neS0 = (fM1 = M2g; ;); this proves 2. For 3 and 4 proceed similarly by tupling both sides ofequations and all inequalities separately, respectively by tupling equations and the groups ofinequalities separately.Each of 2, 3, and 4 individually imply 1, which indicates that the ability to \tuple" is in-strumental in embedding the theories of semi-uni�ers and uni�ers in the above subclasses ofsystems of equations and inequalities. We only prove 3) 1, the other implications being verysimilar.Assume fUSU(S) : S 2 �(A; V )g and fUSU(S) : S 2 �(A; V ); S = (E ; I); jEj � 1; jIj �1; (8I 2 I) jIj = 1g are identical. Consider the SEI S1 = (;; ffy0 � x1; y0 � x2gg) for pairwisedistinct y0; x1; x2. Clearly �1 = fx1  x2g is a semi-uni�er of S1, but � is not. If we assumethat no functor in A has arity greater than 1, we already know that all terms in T (A; V )have at most one variable occurrence. Thus if an inequalityM � N has a solution at all thenthere must be subterms M 0 and N 0 of M and N , respectively, such that M 0 � N 0 has thesame set of semi-uni�ers as M � N and either M 0 is a variable or N 0 is a variable or none ofM;M 0; N;N 0 contains a variable. IfM 0 is a variable then the identity substitution � = fg is asemi-uni�er, and if it is not, then �1 is not a semi-uni�er of M 0 � N 0, and, �nally, if M 0 andN 0 contain no variable then either all substitutions are semi-uni�ers of M 0 � N 0 (including�) or none are (excluding �1). This holds also in the presence of an additional term equation.Consequently there is no SEI with at most one equation and one inequality with the same setof semi-uni�ers as S1 under the assumption that A has no functor with arity greater than 1,and we can conclude that A must be nonlinear.In view of this proposition, whenever working with nonlinear alphabets we could have de�ned systemsof equations and inequalities to consist of at most one equation and a set of inequalities instead of sets ofequations and sets of sets of inequalities . We have chosen the present formulation because it permits aslightly more natural reduction of type inference to semi-uni�cation. Furthermore, we can give a simplespeci�cation for computing most general semi-uni�ers by rewritings over our systems of equations andinequalities, but not so easily if we adopted the simpler de�nition.Nonetheless, when investigating the structure of semi-uni�ers over a nonlinear alphabet | as we shalldo almost exclusively | we shall often make use of the possibility of \contracting" sets of equations andgroups of inequalities into single equations and single inequalities. In this vein, we may often omit theset brackets for singleton sets; e. g., (fM = Ng; ffM1 � N1g; fM2 � N2gg) may be written simply(M = N; fM1 � N1;M2 � N2g) or even (M = N;M1 � N1;M2 � N2).20



3.3 Previous Work on Uni�cation and Semi-Uni�cationUni�cation is the problem (and informally also the process) of �nding solutions to term equations of theform �1 = �2 where �1; �2 2 T . A solution of �1 = �2 is a substitution � such that �(�1) = �(�2).Although Herbrand [39] and Prawitz [95] had already used uni�cation algorithms, the utility of andinterest in uni�cation was essentially initiated by Robinson's novel resolution principle in theorem proving[105] at the heart of which was a uni�cation algorithm.Since then papers on uni�cation as well as applications of uni�cation have abounded. While Robinson'soriginal algorithm took exponential time to compute the solutions, new representations and algorithmshave been found (see, e. g., [89] and [72]) that achieve linear bounds on the computation time, andthe uni�cation problem has been found to be P -complete [112]. Uni�cation is also investigated in termalgebras that are subject to equational [109] or conditional-equational [48] laws such as associativity,commutativity, and idempotence. Several uni�cation algorithms (e. g., [114], [7], or see [109]) for suchterm algebras have been presented. Kapur and Narendran [55] showed that most of these uni�cationproblems are NP-hard. Huet [47,46] investigated third- and higher-order uni�cation and proved that itis recursively undecidable. Goldfarb [30] showed that second-order uni�cation is also undecidable.Uni�cation has permeated the �eld of resolution-based and even non-resolution-based theorem proving[5]. With the identi�cation of a subset of First Order Logic that is especially amenable to resolutiontheorem proving (Horn Clause Logic, c. f. [60]) uni�cation plays an eminent role in logic programminglanguages such as Planner [40] and PROLOG [123,113].A concise and clean treatment of the algebraic aspects of uni�cation can be found in [63] or in [26].A recent survey on uni�cation is [59].Semi-uni�cation addresses the problem of solving inequalities of the form �1 � �2 where �1; �2 2 T . Asubstitution � is a solution to �1 � �2 if there exists � 2 S such that �(�(�1)) = �(�2).Whereas classical uni�cation has numerous well-known uses and applications, semi-uni�cation andrelated problems have apparently only recently received attention. The question of �nding proofs witha minimum number of proof steps in some classical logical systems can be reduced to uni�cation-likeproblems, in particular also to semi-uni�cation. This sort of question has been addressed by Parikh andStatman in the early 70's [111] and, recently, by Krajicek, Pudl�ak [96,61] and other proof theoreticians.Kapur et al. [54] observe that solvability of a single term inequality yields a su�cient condition forshowing nontermination in term rewriting systems, and they trace the history of this connection back to[62]. Semi-uni�cation [15,38,57], has been shown to be at the heart of type checking in implicitly typedpolymorphic programming languages. Term inequalities have also been explored as a partial order theoryfor constraint logic programming [49,88] and, in general, as a form of \partial order programming" [87].The decidability of uniform semi-uni�cation (see chapter 3) is proved independently in [96], [54], and[38] (see also section 6.4). Another special case of semi-uni�cation, in which any identi�er may occur atmost once in left-hand sides of term inequalities, is shown decidable in [57]. The decidability of generalsemi-uni�cation is currently open.
21



Chapter 4Equivalence of Mycroft Calculusand Semi-Uni�cationThis chapter is divided into two main sections and one minor section. In the �rst section we show thatthe type inference problems in the Milner and the Mycroft Calculi can be reduced e�ciently to semi-uni�cation, the problem of solving systems of equations and inequalities over the subsumption preorderingof �rst-order terms. As a by-product we also obtain the well-known reduction of the Hindley Calculusto uni�cation. The main achievement of this reduction lies in showing that the pre�x-quanti�ed theoryof type correctness in the Milner and Mycroft Calculi can be completely embedded in semi-uni�cation, astrictly �rst-order concept. Similar reductions to some sort of inequality constraints have been found byKfoury et al. [58] and by Leiss [64]. Their inequalities, however, carry context conditions that stem fromtype quanti�cation, whereas our reduction is to inequalities that are completely \�rst-order": there are noimplicit or explicit constraints on variables in equations and inequalities. This makes semi-uni�cation aninstance of the \Generalized Uni�cation Problem" [56] in that all instances have trivial context conditions,namely none.In the second section, we present the converse reduction. In fact we show that semi-uni�cation canbe e�ciently reduced to the Flat Mycroft Calculus, a small subclass of the general Mycroft Calculus thatadmits at most one occurrence of the polymorphically typed �x-operator and no let-operator. This canbe interpreted as follows:The di�culty of type inference is completely subsumed in a single polymorphically typedrecursive de�nition. Neither (polymorphic) let-bindings nor nested let- and �x-bindings addanything to this problem (in contrast to a statement by Mycroft [85]).This shows that the Mycroft Calculus, the Flat Mycroft Calculus, and semi-uni�cation are polynomial-time equivalent. This equivalence has several consequences. It answers in the a�rmative a question raisedby Kanellakis whether the PSPACE-hardness result for the Milner Calculus [53] can be extended to theFlat Mycroft Calculus. Also, we obtain a log-space reduction of uni�cation to typability in the HindleyCalculus, and as a consequence this shows that the Hindley Calculus is P-complete under log-spacereductions. Furthermore, we feel justi�ed in claiming that semi-uni�cation is the \right" combinatorialproblem to look at when investigating the algorithmic properties of Mycroft-style polymorphic typeinference since it comes with minimalmachinery (no quanti�cation, no \syntax", no scoping), yet capturesthe Mycroft Calculus up to polynomial time.Characterizations of type inference by inequality constraints involving quanti�ed types in the SecondOrder �-calculus have been given in [79,28]. The characterization of polymorphic type inference by semi-22



uni�cation in this chapter has also been proved, independently, by Kfoury et al. [57]; in fact, they haveextended it to include the Second Order �-calculus limited to \rank 2"-derivations [65].All reductions mentioned here refer to Karp-reductions; i.e., input transformations. Our reductionsfrom type inference to semi-uni�cation preserve not only the basic decision problem (typability), but alsomap the structure of typings to semi-uni�ers. This connection is exploited in chapter 5 to transfer resultsabout the structure of semi-uni�ers back to typings. In particular, proof of existence of most generalsemi-uni�ers can be interpreted as a simultaneous \algebraic" proof of the principal typing property forall of CH, DM, MM, and FMM.
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4.1 Reduction of Typability to Semi-Uni�cationThe reduction from the Mycroft Calculus to semi-uni�cation has already been described in [38]. Wepresent here a detailed presentation of that reduction with all details supplied that were omitted in [38].We also correct two minor errors in [38].4.1.1 Syntax Trees and Variable OccurrencesThe �rst step of the reduction consists of labeling the nodes in the syntax trees of �-expressions withmonotypes. For this purpose we have to introduce some notions to formalize the concept of syntaxtree, binding, free and bound occurrences, and so on. The machinery necessary to do this unfortunatelyencumbers the overall exposition of the material with heavy notation and a multitude of de�nitions. Thisis mostly due to the fact that the intuitively quite clear concept of an (variable or term) occurrence inan expression is di�cult to formalize. Huet [45] de�nes occurrences in expressions by terms and integersequences that specify a \path" from the \root" of that term to a subterm. We use a di�erent presentationthat makes the connection with the graph-theoretic image inherent in the term \syntax tree" precise.De�nition 5 (Term graph)Let A = (F; a) be a ranked alphabet and let V be a set of variables for A. A term graph G over Aand V is a quadruple (N;NF ; E; L) where N is a set, NF � N , E : NF ! N�, L : N ! F [ V , and thefollowing conditions hold.1. L(NF ) � F and (8n 2 NF ; f 2 F )LF (n) = f ) jE(n)j = a(f);2. L(N �NF ) � V .The induced (directed) graph of a term graph G = (N;NF ; E; L) is de�ned as GI = (N (G); E(G))where N (G) = N;E(G) = f(n; n0) : n 2 NF ; n0 2 N j E(n) = (. . . ; n0; . . .)g.The term graph G is acyclic if its induced graph GI is acyclic.The elements of N are called nodes. A node n is a functor node if n 2 NF , and it is a variable node ifn 2 N �NF . The mapping E is called an edge map, and if E(n) = (n1; . . . ; nk) then n is a parent of allni; 1 � i � k, and the ni are the children of n. For n 2 N , L(n) is the label of n; L is called a labeling.Term graphs are graphical representations of terms that encode the term/subterm structure explicitlyin their edge maps. Their de�nition is necessarily complicated since their nodes are labeled and theout-edges of every node are ordered. The digraph induced by a term graph is just the information left ifwe ignore this particular \additional" structure.In an acyclic term graph G = (N;NF ; L;E) over A and V every node represents a unique term. Thisrepresentation is given by the following mapping [:] : N ! T (A; V ).1[n] = � x; n 2 N �NF ; L(n) = xf([n1]; . . . ; [nk]); n 2 NF ; L(n) = f;E(n) = (n1; . . . ; nk):Let A� = (f�;@; let;�xg; f� 7! 2;@ 7! 2; let 7! 3;�x 7! 2g). Clearly, A� is an appropriate alphabetfor representing �-expressions as �rst-order terms. We can now de�ne what a syntax tree for a �-expression is: a special kind of term graph over A�. Since �-expressions have variable-binding operatorswe also de�ne some concepts we shall need later.1Note that [:] is implicitly parameterized by G. 24



De�nition 6 (Syntax tree, free variable occurrences, bound variable occurrence map)We de�ne the notions of syntax tree, its bindings and scopes, and its free variable occurrences (FVO)and bound variable occurrence map (BVOM) by simultaneous induction on the structure of �-expressionse.e = x (variable): Any one-node term graph T with N = fng and L(n) = x is a syntax tree for e withroot n. FVOT = fng;BVOMT = fg;n is not a binding.e = �x:e0: If T 0 is a syntax tree for e0 with root n0 and Tx is a vertex-disjoint syntax tree for x with rootnx (and no other node) then the term graph T that is the union of Tx and T 0 with an additionalnode n and L(n) = �;E(n) = (nx; n0) is a syntax tree for e with root n.FVOT = FVOT 0 � fn0 2 FVOT 0 j L(n0) = xg;BVOMT = BVOMT 0 [ fnx 7! fn0 2 FVOT 0 j L(n0) = xgg;nx is a �-binding; its scope is N (T 0) (the nodes in T 0).e = e0e00: If T 0; T 00 are vertex disjoint syntax trees for (e0; e00) and with roots (n0; n00), respectively, then theterm graph T that is the union of T 0 and T 00 with an additional node n and L(n) = @; E(n) = (n0; n00)is a syntax tree for e with root n.FVOT = FVOT 0 [ FVOT 00 ;BVOMT = BVOMT 0 [ BVOMT 00 :e = let x = e0 in e00: If Tx; T 0; T 00 are vertex disjoint syntax trees for (x; e0; e00) and with roots (nx; n0; n00),respectively, then the term graph T that is the union of Tx, T 0 and T 00 with an additional node nand L(n) = let; E(n) = (nx; n0; n00) is a syntax tree for e with root n.FVOT = FVOT 0 [ (FVOT 00 � fn00 2 FVOT 00 j L(n00) = xg);BVOMT = BVOMT 0 [ BVOMT 00 [fnx 7! fn00 2 FVOT 00 j L(n00) = xgg;nx is a let-binding; its scope is N (T 00).e = �x x:e0: If Tx; T 0 are vertex disjoint syntax trees for x; e0 and with roots nx; n0, respectively, then theterm graph T that is the union of Tx and T 0 with an additional node n and L(n) = �x; E(n) =(nx; n0) is a syntax tree for e with root n.FVOT = FVOT 0 � fn0 2 FVOT 0 j L(n0) = xg;BVOMT = BVOMT 0 [ fnx 7! fn0 2 FVOT 0 j L(n0) = xgg;nx is a �x-binding; its scope is N (T 0).BVOM is a �nite (single-valued) mapping from nodes to �nite sets of nodes, and thus it is treatednotationally as a �nite set of pairs n 7! fn1; :::; nkg. Since all syntax-trees for a �-expression e areisomorphic (i.e., there is a bijection between nodes that transforms any one syntax tree for e into anyother syntax tree for e) we shall denote by T (e) a canonical syntax tree for e and by N (e) the (variableand functor) nodes in T (e).It is easy to see that our syntax trees are indeed trees: The induced digraph T I(e) is acyclic, andevery node has at most one inedge, and exactly one node | the root | has no inedge.25



4.1.2 Syntax-Oriented Type Inference SystemsThe inference systems that describe our typing calculi are not syntax-oriented. This means that for agiven expression e there may be several proof steps in a derivation that are not compositional in termsof the syntax of �-expressions. This is solely due to the rules (INST) and (GEN) (see Figure 2.1 inchapter 2) since proof steps involving any one of these rules do not change the expression in a typing. Ina syntax-oriented system a derivation for expression e has essentially the same tree structure as a syntaxtree for e. The advantage of a syntax-oriented inference system is that we can think of a derivation for eas an attribution of the syntax tree T (e).In this subsection we present equivalent syntax-oriented type inference systems for CH, DM, MM, andFMM. In the next subsection we show how every derivation in these syntax-oriented inference systemscan be translated into an attribution of T (e) that satis�es certain properties, and vice versa.The syntax-oriented versions of CH, DM, MM, FMM will be denoted by a \prime": CH', DM', MM',FMM'. In general if X is any one of CH, DM, MM, FMM, then X' is the corresponding syntax-orientedversion of X. The list of all axiom and rule schemes that occur in the syntax-oriented inference systems isgiven in Figure 4.1. Table 4.2 shows which of the axioms and rules are present in which syntax-orientedcalculus, and which ones are not.For completeness we have included those rules that are unchanged from the original inference systems.Changed axioms and rules are marked with a \prime" (0). We have taken some liberties in our notation;in particular the sequence ~� = �1 . . .�n may also be regarded as a set.Note that the syntax-oriented inference systems do not contain either (INST) or (GEN). The abilityto instantiate polytypes to monotypes has been included into the new axiom, (TAUT'), for variables;and the ability of (GEN) to form polytypes is localized in applications of the polymorphic typing rules(LET-P') and (FIX-P'). An additional bene�t of the syntax-oriented versions is that derivable typingsare exclusively of the form A � e : � where � is a monotype. This is one step in the direction ofeliminating constraints involving quanti�ed types. Somewhat paradoxically this corresponds to traversingchronologically backwards the evolution of the Milner Calculus from the type system with explicitlyquanti�ed type expressions [23] to Milner's original \implicit" distinction of generic and nongeneric typevariables [76].We shall now prove that the new inference systems are indeed no weaker (or stronger) than the originalsystems. First we will need a technical proposition, though.Proposition 2 Let X be CH, DM, MM, or FMM. For any type environment A, �-expression e, typeexpressions �; �0, and type variables ~� = �1 . . .�k; ~�0 = �01 . . .�0k we have1. X ` A � e : 8~�:� , X ` A � e : 8~�0:�[~�0=~�]2. X ` Afx : 8~�:�g � e : �0 , X ` Afx : 8~�0:�[~�0=~�]g � e : �0Theorem 5 Let X = CH, DM, MM, or FMM. For any type environment A, �-expression e, type variables~� = �1 . . .�k not free in A, and monotypes � we haveX ` A � e : 8~�:� , X 0 ` A � e : �Corollary 3 For any e 2 �, e is typable in X if and only if it is typable in X'.For X = DM this theorem is similar to theorem 2.1 in [16]; and for X = MM it is almost identical toproposition 2.1 in [58]. Note, however, that it is technically a little bit stronger since it states that thetype of e is literally identical in its quanti�er-free part, without necessitating a renaming of type variables.Similar proofs, localizing applications of the INST rule at the leaves (variables) of �-expressions can befound in [80] and [9]. 26



Let A range over type environments; x over variables; e; e0 over �-expressions; ~� over sequences of typevariables; �; � 0 over monotypes, and ~� over sequences of monotypes. The following are type inferenceaxiom and rule schemes for CH', DH', MM', FMM'.Name Axiom/rule(TAUT') Afx : 8~�:�g � x : � [~�=~�](ABS) Afx : � 0g � e : �A � �x:e : � 0 ! �(APPL) A � e : � 0 ! �A � e0 : � 0A � (ee0) : �(LET-M) A � e : �Afx : �g � e0 : � 0A � letx = eine0 : � 0(LET-P') A � e : �Afx : 8~�:�g � e0 : � 0(~� not free in A)A � letx = eine0 : � 0(FIX-M) Afx : �g � e : �A � �xx:e : �(FIX-P') Afx : 8~�:�g � e : �(~� not free in A)A � �xx:e : � [~�=~�]Table 4.1: Syntax-oriented axioms and rulesAxiom/rule CH' DM' MM' FMM'TAUT' p p p pAPPL p p p pABS p p p pLET-M pLET-P' p pFIX-M p pFIX-P' p pThe markp indicates the corresponding axiom/rule is present in the calculus in whose column it appears;blank space means it is not included. The Flat Mycroft Calculus is restricted to �-expressions with nolet-operator and with only one occurrence of a �x-operator, which must occur at top-level.Table 4.2: The syntax-oriented versions of the Hindley, Milner, Mycroft, and Flat Mycroft type inferencecalculi 27



Somewhat unsurprisingly, the theorem is a consequence of a stronger lemma that can be shown bystructural induction on derivations.Lemma 4 Let X = CH, DM, MM, or FMM. For any type environment A, �-expression e, type variables~� = �1 . . .�k, ~� not free in A, and monotypes � we haveX ` A � e : 8~�:� , (8~� 2Mk)X 0 ` A � e : � [~�=~�]Proof:): We proceed by structural induction on MM-derivations. The other cases, CH and DM,are simpli�cations of this proof; FMM is a subcase of MM.(TAUT) If we have a trivial derivation involving only (TAUT) in MM,Afx : 8~�:�g � x : 8~�:�then, by (TAUT') in MM' we haveAfx : 8~�:�g � x : � [~�=~�](ABSTR), (APPL) Trivial.(INST) If A � e : 8�2 . . .�k:� [�1=�1] is proved in MM invoking the (INST) rule,A � e : 8~�:�A � e : 8�2 . . .�k:� [�1=�1]then, since we may assume by proposition 2 that �1 is free in A we have, by theinduction hypothesis, that the conclusionA � e : � [�1=�1][�2=�2; . . . ; �k=�k]is derivable in MM', for any �2; . . . ; �k since� [�1=�1][�2=�2; . . . ; �k=�k] = � [� 01=�1; . . . ; � 0k=�k]for some � 01; . . . ; � 0k.(GEN)If A � e : 8~�:� is proved in MM with the (GEN) rule,A � e : 8�2 . . .�k:�(�1 not free in A)A � e : 8~�:�then, since ~� is not free in A by assumption, we have that A � e : � [~�=~�] is provablein MM', by the induction hypothesis.(LET-P) Assume A � let x = e in e0 : 8~�0:� 0 is proved with the (LET) rule; i.e.,A � e : 8~�:�Afx : 8~�:�g � e0 : 8~�0:� 0A � let x = e in e0 : 8~�0:� 0In view of proposition 2 we may assume, w.l.o.g., that ~�0 is not free in A andAfx : 8~�:�g. By induction assumption we have, for any ~� 0, that A � e : � andAfx : 8~�:�g � e0 : � 0[~� 0=~�0] are derivable in MM'. Consequently,A � e : �Afx : 8~�:�g � e0 : � 0[~� 0=~�0](since ~� not free in A)A � let x = e in e0 : � 0[~� 0=~�0] (LET-P')28



(FIX-P)Assume that A � �xx:e : 8~�:� is derivable in MM by the (FIX-P) rule; that is,Afx : 8~�:�g � e : 8~�:�A � �xx:e : 8~�:�W.l.o.g. (proposition 2) we may assume that ~� is not free in A and Afx : 8~�:�g.By the induction hypothesis we know that Afx : 8~�:�g � e : � is derivable in MM',and consequently we getAfx : 8~�:�g � e : �(since ~� is not free in A)A � �xx:e : � [~�=~�] (FIX-P')(: It is su�cient to show X 0 ` A � e : � ) X ` A � e : 8~�:� . We shall prove that everyaxiom and rule in MM' is derivable in MM. The proof for X = DM and CH is similar.Note that it is easy (but not completely trivial) to show that(INSTk) A � e : 8~�:�A � e : � [~�=~�]and(GEN)k A � e : �(~� not free in A)A � e : 8~�:�are derivable rule schemes in MM.(TAUT') Let MM 0 ` Afx : 8~�:�g � x : � [~�=~�]. We have the following proof tree inMM:Afx : 8~�:�g � x : 8~�:� (TAUT)Afx : 8~�:�g � x : � [~�=~�] (INSTk)(APPL), (ABS) Trivial.(LET-P') In MM' we haveA � e : �Afx : 8~�:�g � e0 : � 0(~� not free in A)A � let x = e in e0 : � 0and in MMA � e : �(~� not free in A)A � e : 8~�:� (GENk) Afx : 8~�:�g � e0 : � 0A � let x = e in e0 : � 0 (LET-P)(FIX-P') In MM' we have the ruleAfx : 8~�:�g � e : �(~� not free in A)A � �xx:e : � [~�=~�]and in MMAfx : 8~�:�g � e : �(~� not free in A)Afx : 8~�:�g � e : 8~�:� (GENk)A � �xx:e : 8~�:� (FIX-P)A � �xx:e : � [~�=~�] (INSTk)Proof: (Proof of theorem)Immediate from Lemma 4. 29



4.1.3 Consistently Labeled Syntax TreesIn this section we de�ne (type) labeled syntax-trees and a notion of consistency of such labelings. Weshall prove that consistently labeled syntax-trees and derivations in the syntax-oriented versions of ourtype inference systems are in a one-to-one relation.De�nition 7 (Typed syntax tree, generic/nongeneric type variable occurrences, well-typed syntax tree)A typed syntax tree T � is a syntax tree T with a function � : N (T )!M , called a type labeling.For a given type environment A, expression e with syntax tree T = T (e), and type labeling � for T , wesay a type variable � is nongeneric at node n00 in T if n00 is in the scope of a �-binding n, E(n) = (nx; n0),and � occurs (free) in � (nx); or if � occurs free in A. If � is not nongeneric at n00, it is generic at n00.NGTV (n00) denotes the set of all nongeneric type variables at n00, and GTV (n00) is TV �NGTV (n00).2For �xed syntax-tree T = (N;NF ; E; L) of �-expression e and type labeling � the labeled syntax treeT � is (MM-)consistently labeled under type assignment A if it satis�es the following properties.1. (Local conditions)For all n 2 NF ,(a) L(n) = �;E(n) = (n0; n00)) � (n) = � (n0)! � (n00)(b) L(n) = @; E(n) = (n0; n00)) � (n0) = � (n00)! � (n)(c) L(n) = let; E(n) = (n0; n00; n000)) � (n0) = � (n00) ^ � (n000) = � (n)(d) L(n) = �x; E(n) = (n0; n00)) � (n0) = � (n00) ^ (9R) RjGTV (n)(� (n00)) = � (n)2. (Scoping conditions)For all n 2 N ,(a) if n is a �-binding then(8n0 2 BVOMT (n) � (n) = � (n0)(b) if n is a let-binding then(8n0 2 BVOMT (n))(9R) RjGTV (n)(� (n)) = � (n0)(c) if n is a �x-binding then(8n0 2 BVOMT (n))(9R) RjGTV (n)(� (n)) = � (n0)3. (Context condition)For all n 2 FVOT , if L(n) = x and A(x) = 8~�:� 0 then (9R)Rj~�(� 0) = � (n).The labeled tree T � is DM-consistently labeled if it is MM-consistently labeled and the conditionsFor all n 2 N ,� L(n) = �x; E(n) = (n0; n00)) � (n0) = � (n00) = � (n)� if n is a �x-binding then(8n0 2 BVOMT (n)) � (n) = � (n0)are satis�ed. T � is CH-consistently labeled if it is DM-consistently labeled and additionally the followingconstraint is satis�ed.For all n 2 N ,� if n is a let-binding then(8n0 2 BVOMT (n)) � (n) = � (n0)2Of course, NGTV (n00) and GTV (n00) are parameterized over A, T (e), and � .30
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x @Figure 4.1: A consistently labeled syntax treeLet X = CH, DM, or MM. An expression e is X-consistently labelable if there is a type labeling � forsyntax tree T = T (e) such that T � is X-consistently labeled.Consider the �-expression g(�x f:�x:ff) in the type environment fg : 8�:(� ! �) ! �g. A consis-tently labeled syntax tree, T , for e is presented in Figure 4.1.The syntax tree in the example has nine nodes, n1; . . . ; n9. Its only free variable occurrence isthe node n2; that is, FVOT = fn2g. The node n4 is a �x-binding, and n5 is a �-binding. The boundvariable occurrence map associates with each one of these bindings the set of all their applied occurrences:BV OMT = fn4 7! fn8; n9g; n5 7! ;g. Since A contains no free type variable, all type variables aregeneric at nodes n1; n2; n3; n4; n5; and n6. Since a occurs in the type labeling of n6, a is nongeneric atnodesn7; n8; and n9; all other type variables are generic at n7; n8; n9. Note that T is consistently labeledsince all the conditions in de�nition 7 are satis�ed; in particular, the types at the applied occurrences off n8 and n9 are substitution instances of the type at the �x-binding of f , node n4, and a; b are generictype variables at n4.The following theorem shows that derivations in the syntax-oriented type inference systems are char-acterized by corresponding consistently labeled syntax trees and vice versa.Theorem 6 Let X = CH, DM, MM. For A; e; � 0, X 0 ` A � e : � 0 , (9� ) T (e)� is an X-consistentlylabeled syntax tree for e with root n, and � (n) = � 0.Proof:We shall only give the proof for X = MM. The modi�cations for the other typing disciplinesare trivial.()) Let A0; e0 be �xed. Let T0 = T (e0) be a syntax tree for e0 with root n0, as usual. LetP0 be an MM'-proof tree for A0 � e0 : � 00. Since MM' is syntax-directed, P0 and T0 areisomorphic, and consequently we can de�ne a mapping �0 : N (T0)!M by31



�0(n;A � e : � ) =case e =x (variable): fn 7! �g�x:e00: for E(n) = (n0; n00), andAfx : � 0g � e00 : � 00A � e : �in the proof tree P0,fn 7! �; n0 7! � 0g [ �0(n00; Afx : � 0g � e00 : � 00)e0e00: for E(n) = (n0; n00), andA � e0 : � 0A � e00 : � 00A � (e0e00) : �in the proof tree P0,fn 7! �g [ �0(n0; A � e0 : � 0) [ �0(n00; A � e00 : � 00)let x = e00 in e000: for E(n) = (n0; n00; n000), andA � e00 : � 00Afx : 8~�:� 00g � e000 : �A � let x = e00 in e000 : �in the proof tree P0,fn 7! �; n0 7! � 00g [ �0(n00; A � e00 : � 00)[ �0(n000; Afx : 8~�:� 00g � e000 : � )�x x:e00: for E(n) = (n0; n00), andAfx : 8~�:� 00g � e : � 00A � �x x:e : �in the proof tree P0,fn 7! �; n0 7! � 00g [ �0(n00; Afx : 8~�:� 00g � e : � 00)and, furthermore, �0(n0; A0 � e0 : � 00) = � 00.Now, it is easy to check that T �00 is an MM-consistently labeled syntax tree with root n0and �0(n0) = � 00.(() Let A0; e0 be �xed. Let T �00 be an MM-consistently labeled syntax tree for e0 withroot n0. There is an assignment A from N (T0) to type environments that satis�es thefollowing properties.A(n0) = A0 and for all n 2 N (T0),� if L(n) = �;E(n) = (n0; n00), thenA(n0) = A(n00) = A(n)fL(n0) : �0(n0)g� if L(n) = @; E(n) = (n0; n00), thenA(n0) = A(n00) = A(n)� if L(n) = let; E(n) = (n0; n00; n000), thenA(n0) = A(n000) = A(n)fL(n0) : 8~�(n0):�0(n0)g32



� if L(n) = �x; E(n) = (n0; n00), thenA(n0) = A(n00) = A(n)fL(n0) : 8~�(n0):�0(n0)gwhere ~�(n0) consists of all the generic variables at node n0 that occur in �0(n0).Now it is straightforward, by induction on the syntax of e0, to show thatMM 0 ` A(n) �[n] : �0(n) for all n 2 N (T0).The proof shows that actually something even stronger is true. We can start with a consistentlylabeled syntax tree for e, construct a proof tree for e from it via the encoding A, and then generate aconsistent labeling for e again via �0 from the proof tree. This labeling turns out to be the same one westarted out with.4.1.4 Extraction of Equations and InequalitiesIn this section we make the connection between the consistent tree labeling characterization and solvinga system of equations and inequalities (SEI) precise.The tree labeling characterization gives us a di�erent (yet in principle familiar) formulation of typeinference problems. If we initially associate a distinct type variable �n with every node n in Te thenthe tree characterization gives us a collection of simultaneous constraints of equational form, such as�n = �n0 ! �n00 and, essentially, of inequational form �n00 � �n. A connection between consistentlabelings and semi-uni�cation seems close at hand. We have to be a little bit careful, though, since thequotient substitutions in the inequational constraints of consistent labelings carry context conditions:Their domains are restricted to generic type variables, the collection of which in turn is a function ofthe position of the node in the syntax tree where the constraint has to hold. We could always keeptrack of such context conditions in the form of conditional inequalities (GTV (n))�n00 � �n | this isessentially the \Generalized Uni�cation Problem" of [57] | but this is not necessary. As we shall see inthis subsection, the context conditions can be encoded e�ciently in terms of additional (unconditional)inequalities the speci�c nature of which captures precisely the fact that the set of generic type variablesis generally di�erent from node to node in the same syntax tree. This will indeed lead us to a reductionof consistent labeling to semi-uni�cation.We shall consider a small, but instructive example due to Kfoury to see that it would be wrong in DMand MM to naively label a syntax tree with distinct type variables and then to collect equations fromequality constraints in the consistent labeling de�nition and inequalities of the form �n00 � �n when theconsistent labeling constraint reads, say, RjGTV (n)(� (n00)) = � (n) (see constraint 1d).Let e0 � �y:let f = �x:(xy) in (ff). A syntax tree T0 = T (e0) with nodes n1; . . . ; n12 is givenin Figure 4.2. By proceeding in the naive manner outlined above we associate distinct type variables�n1; . . . ; �n12 with each node and collect constraints for an MM-consistent (or DM-consistent) labeling.The equations and inequalities thus constructed are displayed in Table 4.3.This SEI is solvable. For example, the substitutionS = f�n1 7! (�n2! �n9); �n3 7! ((�n2! �n7)! �n7);�n4 7! (�n2! �n7); �n5 7! (�n2! �n7);�n6 7! �n2; �n8 7! ((�n2 ! �n7)! �n7);�n10 7! (((�1 ! �n9)! �n9)! �n9);�n11 7! ((�1 ! �n9)! �n9); �n12 7! �n9gwhere �1 is a \new" type variable not occurring anywhere in the original constraints is a semi-uni�er, infact the most general in a sense to be made precise in chapter 5. Unfortunately, however, e0 is untypable.This can be seen by looking at the quotient substitutions for the solution S. The quotient substitutionfor the �rst inequality is R1 = f�n2 ! (�1 ! �n9); �n7 ! �n9g and for the second inequality it is33
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Figure 4.2: An untypable expression�n1 = �n2! �n9�n9 = �n12�n3 = �n8�n8 = �n4! �n7�n5 = �n6! �n7�n10 = �n11! �n12 �n2 = �n6�n4 = �n5�n3 � �n10�n3 � �n11Table 4.3: Incorrect SEI for untypable example34



R2 = f�n2 ! �1; �n7 ! �n9g. Since �n2 is the type of the left node of the �-binding n1, the typevariable �n2 is nongeneric at nodes n10 and n11 and consequently our quotient substitutions violate thestipulation that their domain may only include generic type variables. Because of the two occurrences of�1 there is no way of simply \making"�n2 equal to both R1(�n2) and R2(�n2). Since every other solutionof the above constraints must be a substitution re�nement of S (the technical details are in chapter 5)there is also no way of doing this for any other substitution. The expression e0 is not consistentlylabelable, and consequently it is untypable (in the Mycroft Calculus and thus, trivially, in the Hindleyand Milner Calculi).If we can somehow encode with equations and inequalities the context constraint that certain typevariables (the nongeneric ones) may not be instantiated to other variables or terms by quotient substitu-tions of candidate solutions then a consistent labeling can still be reduced to pure semi-uni�cation. Thisis indeed possible and actually quite simple3 Consider an inequality �1 � �2 containing variable �. Noticethat the quotient substitution R of any uniform semi-uni�er S of f�1 � �2; � � �g will not instantiateany of the type variables occurring in S(�). This device makes it possible for a solution to instantiatethe variable �, but it \protects" the resulting term from being instantiated any further by a quotientsubstitution.With this insight we can now adjoin the inequality �n2 � �n2 with each of our two inequalityconstraints in Table 4.3, thus forming small groups of inequalities that have to share the same quotientsubstitution.4 The resulting SEI is indeed unsolvable, in correspondence to the fact that e0 is notconsistently labelable. The technical details showing correctness of the transformation that1. collects equational and inequality constraints in a \naive" manner (in accordance with the consistentlabeling requirements), and2. adjoins inequalities of the form � � � for every \naively" collected inequality that arises from anode that is in the scope of a �-binding,is presented below.De�nition 8 Let T0 = T (e0) be a syntax tree for e0 with root n0, and let t : N (T0) ! TV be aninjective mapping from the nodes in T0 to the set of type variables. The canonical system of equationsand inequalities SEIt(e0) = SEIMMt (e0) is (E ; I) whereE = ft(n) = t(n0)! t(n00) : n; n0; n00 2 N (T0) j L(n) = �;E(n) = (n0; n00)g[ ft(n0) = t(n00)! t(n) : n; n0; n00 2 N (T0) j L(n) = @; E(n) = (n0; n00)g[ ft(n0) = t(n00); t(n000) = t(n) : n; n0; n00; n000 2 N (T0) j L(n) = let;E(n) = (n0; n00; n000)g[ ft(n0) = t(n00) : n; n0; n00 2 N (T0) j L(n) = �x; E(n) = (n0; n00)g[ ft(n0) = t(n00) : n0�-binding; n00 2 BVOMT0(n0)gfor every let- or �x-binding n, n0 2 BVOMT0(n), we de�neIn;n0 = ft(n) � t(n0)g [ ft00 � t00 : t00 2 NGTV (n)g;for n; n0; n00 2 N (T0) such that L(n) = �x and E(n) = (n0; n00),I�xn;n00 = ft(n00) � t(n)g [ ft00 � t00 : t00 2 NGTV (n)g;3But it has been overlooked by others approaching the same problem (see [58]).4This is the reason why we opted to introduce SEI's with groups of inequalities instead of simple inequalities.35



and �nally,I = fIn;n0 : (n; n0) 2 BVOMT (e0)g [ fI�xn;n00 : n; n0; n00 2 N (T0)jL(n) = �x; E(n) = (n0; n00)g:We shall usually drop the subscript from SEIMMt (e) and simply write SEIMM (e) since the speci�cnature of t is obviously irrelevant. In a similar fashion we can de�ne SEIX (e) for X = CH, DM.Theorem 7 Let X = CH, DM, or MM; let T0 = T (e0) be a syntax-tree for e0 with root n0; let t :N (T0)! TV be an arbitrary injective map; and let � be an arbitrary monotype.There is an X-consistent type labeling �0 for T0, with �0(n0) = � , if and only if there is a solution Sof SEIXt (e) such that S(t(n0)) = � .Proof:As always we shall only consider the case X = MM.()) Assume T �00 is a well-typed syntax tree for e0 such that �0(n0) = � . Let SEIt(e0) = (E ; I)as de�ned above. De�ne S = ft(n) 7! �0(n) : n 2 N (T0)g. By assumption, S(t(n0)) = � .Furthermore it is easy to see, by checking all four major cases, that all equations inE are satis�ed. Now consider In;n0 where n is a let- or �x-binding and n0 is a boundoccurrence of n. We haveS(In;n0 ) = fS(t(n)) � S(t(n0))g [ fS(t00) � S(t00) : t00 2 NGTV (n)g= f�0(n) � �0(n0)g [ f�0(n00) � �0(n00) :FV (�0(n00)) � NGTV (n)gSince T �00 is consistently labeled there is a substitution Rn;n0 such thatRn;n0jGTV (n)(�0(n)) = �0(n0).This implies that Rn;n0jGTV (n)(�0(n00)) = �0(n00) for all n00 such that FV (�0(n00)) �NGTV (n). A similar analysis can be performed for every I�xn;n00 . This shows that S is a(proper, nonuniform) semi-uni�er of SEIt(e0).(() Assume S is a solution of SEIt(e0) such that S(t(n0)) = � . Let T0 be a syntax treefor e0 with root n0 as always. De�ne �0(n) = S(t(n)); n 2 N (T0). Clearly, �0(n0) = �by assumption. We shall show that T (e0)�0 is a well-typed syntax tree. Since S is asolution of SEIt(e0) = (E ; I) all equalities in S(E) are satis�ed and it is easy to see thatall equational constraints hold for T (e0)�0 to be well-typed. Observe that, by de�nitionof NGTV, the set of non-generic type variables at a node n in T �00 is exactly the set oftype variables occurring in any �0(n0) where n0 is a �-binding whose scope contains n.We also know that for any In;n0 2 I there is a quotient substitution Rn;n0 such thatRn;n0(S(t(n))) = S(t(n0))Rn;n0(S(t00)) = S(t00); t00 2 NGTV (n):This impliesRn;n0(�0(n)) = �0(n0)Rn;n0(�0(n00)) = �0(n00); n00is a �-binding whose scope contains n:By the observation above we can conclude that Rn;n0 is the identity on NGTV (n), whichshows that Rn;n0 = Rn;n0jGTV (n) and thus Rn;n0jGTV (n)(�0(n)) = �0(n0). A similarargument holds for I�xn;n00 2 I. 36



It is obvious that analogous transformations, only with \more" equational constraints and fewerinequality constraints, can be performed that give reductions from DM-consistent labeling, respectivelyCH-consistent labeling, to semi-uni�cation. Actually, in the Hindley Calculus there is no problem withcontext conditions on inequalities in labeled syntax trees since there are no inequational constraints in the�rst place: all constraints are equational. Consequently the resulting SEI contains only equations, andclassical uni�cation produces the most general uni�er rapidly for an appropriate representation of typeexpressions (namely term graphs) and substitutions (\downward closed" equivalences on term graphs).This establishes the connection of type inference with uni�cation (e. g., see [90]). More speci�cally, it iseasy to see that for an expression e of size n we can generate in linear or almost-linear time on a RAM(depending on the encoding of variables) a set E of monotype equations of size O(n) such that e is typableif and only if E is uni�able. E can be checked for uni�ability in linear [89,72] or almost-linear time [43].This leads to a linear or almost-linear upper bound for the time complexity of deciding typability inthe Hindley Calculus. Since the additional inequational constraints in the Milner Calculus seem ratherinnocuous at �rst sight, this may have led researchers to incorrectly claim linear or quadratic bounds ontype inference for the whole Milner Calculus [65,81].Theorem 8 Let X = CH, DM, MM, or FMM. Typability in X is polynomial-time reducible to semi-uni�ability.Proof:Note that constructing SEI(e) for X can easily be done in polynomial-time. By the threeprevious theorems SEI(e) is solvable if and only if e is typable in X.Corollary 5 Semi-uni�ability is PSPACE-hard (for polynomial-time reductions).Proof:Kanellakis and Mitchell show that the Milner-Calculus is PSPACE-hard [53]. The resultfollows by theorem 8.
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4.2 Reduction of Semi-Uni�cation to the Flat Mycroft Calcu-lusSemi-uni�cation is a problem without nesting, scoping, context conditions on inequalities, or quanti�ca-tion of (type) variables. These play an eminent role in the de�nition of typability in the Mycroft Calculus.Nonetheless, as we have seen, the Mycroft Calculus can be e�ciently reduced to semi-uni�cation. TheFlat Mycroft Calculus is a typing discipline without nesting of polymorphically typed language constructs.Since semi-uni�cation is a basically \
at" problem | scoping and nesting do not enter into its de�nition| it should not come as a surprise that semi-uni�cation cannot only be reduced to the Mycroft Calculus,but in fact to the Flat Mycroft Calculus. Reductions from uni�cation-like problems to typing problemshave grown in importance since they allow us to prove lower bounds on the combinatorially simpleruni�cation-like problems and then extend them to their \corresponding" typing problems. Kanellakisand Mitchell proved a combinatorial problem they called polymorphic uni�cation to be PSPACE-hardand extended this lower bound via a polynomial-time reduction to the Milner Calculus [53]. We providelog-space reductions from uni�ability to typability in the Hindley Calculus, and from semi-uni�ability totypability in the Flat Mycroft Calculus. This shows that1. typability in the Hindley Calculus is P-complete,2. the Milner Calculus can be reduced to the Flat Mycroft Calculus thus extending the PSPACE-hardness result for the Milner Calculus to the Flat Mycroft Calculus and thereby answering aquestion raised by Kanellakis, and3. the Mycroft Calculus, the Flat Mycroft Calculus, and semi-uni�cation are polynomial-time equiv-alent.4.2.1 Simpli�cation of Systems of Equations and InequalitiesSo far we have used the term \semi-uni�cation" as if it was a single problem while actually it is param-eterized by the ranked alphabet over which terms range. In this subsection we show that our usage isjusti�ed in that every SEI over any alphabet can be reduced to an equivalent (see below) SEI over thealphabet A2 = (ffg; ff 7! 2g) that contains only a single binary functor. In chapter 5 we shall see thatthis is the \minimal" possible alphabet, since no nonlinear alphabet can encode enough information toadmit the same kind of reduction. To make these reductions e�ective and e�cient we shall assume thatin�nite ranked alphabets have functors encoded by the binary numerals.De�nition 9 (Equivalent systems of equations and inequalities)Let S and S0 be SEI's, possibly over di�erent alphabets. S and S0 are equivalent if1. S is semi-uni�able if and only if S0 is semi-uni�able, and2. S is uniformly semi-uni�able if and only if S0 is uniformly semi-uni�able, and3. S is uni�able if and only if S0 is uni�able.Replacement of Functors by ConstantsLet A[] be an alphabet that has exactly one functor for any given arity k � 0. We shall always write[M1; . . . ;Mk] for the term built up fromM1; . . . ;Mk the unique k-ary functor in A[]. We shall address thecollection of all these constructors as the list functor since we may view [. . .] as a single functor that has38



no arity requirements. W.l.o.g., we may always assume that A[] is disjoint5 from any other alphabet wemay consider. Let A be any ranked alphabet, and let Ac be the alphabet that consists of A[] and all thefunctors from A, but such that every functor from A has its arity changed to 0. De�ne the transformationfunction �c : T (A; V )! T (Ac; V ),�c(x) = x; if x 2 V�c(f(M1; . . . ;Mn)) = [f; [�c(M1); . . . ; �c(Mn)]]; otherwiseThe transformation �c is obviously well-de�ned and can be extended to SEI's. We have the followinglemma.Lemma 6 For all S 2 �(A; V ), S and �c(S) are equivalent.The translation of f5(f2(x1); x2) via �c returns [f5; [[f2; [x1]]; x2]]. It is easy to see that �c can beimplemented by a one-way �nite state transducer (1FSM-reduction).Elimination of ConstantsSince we have assumed that the constants in Ac are encoded over the binary (unranked) alphabet f0; 1g,we can represent any constant by a list over 0 and 1.Let Ac be as above, and let A01 = (f0; 1g; f0 7! 0; 1 7! 0g) [A[], and de�ne�01(x) = x; x 2 V�01(f) = [b1; . . . ; bk]; f is encoded by b1 . . .bk 2 f0; 1g��01([M1; . . . ;Mn]) = [�2(M1); . . . ; �2(Mn)]Again, �01 can be canonically extended to SEI's over Ac. The correctness of this transformation isguaranteed by the next lemma.Lemma 7 For all SEI's S 2 �(Ac; V ), S and �01(S) are equivalent.The encoding of [f5; [[f2; [x1]]; x2]] via �01 is [[1; 0; 1]; [[[1; 0]; [x1]]; x2]]. Again, this translation can beimplemented by a one-way �nite state machine.Elimination of List ConstructorSo far all reductions were 1FSM-reductions. In [37] we presented a 1FSM-reduction of A01 into the set ofpure (let- and �x-free) �-expressions that translated uni�ability of SEI's into CH-typability. Of course,this reduction is very sensitive to the particular representation of terms, SEI's and �-expressions, but it isinteresting to note that this translation is a purely \lexical" process with respect to the standard \string"representation of terms and �-expressions that we have assumed throughout. Roughly, the only placewhere \parsing" is necessary in the following steps is in eliminating the list constructor. Even this parsingis \harmless" in that it can be performed by a log-space bounded transformation.6 The transformationbelow is inspired | in fact a direct transliteration | of the encoding into the �-calculus that we used in[37].Let A01 be as above. Recall that A2 is the alphabet with only one functor, which is binary. Let x0be a variable in V , and let i : V ! V be an injective map whose range does not contain x0. De�ne �2 asfollows.5One can think of ranked alphabets as sets whose elements carry an attribute. In this sense we will often treat rankedalphabets simply as sets.6Context-free languages are in general not known to be contained in DLOG [2].39



�2(x) = i(x); if x 2 V�2(0) = f(x0; f(x0; x0))�2(1) = f(x0; f(x0; f(x0; x0)))�2([]) = f(x0; x0)�2([M1; . . . ;Mn]) = f(f(�2(M1); N ); x0)if �2([M2; . . . ;Mn]) = f(N; x0)The di�erent encodings of 0; 1 and [] indicate why this reduction works: functor \clashes" (failure dueto di�erent functors) in uni�cation or semi-uni�cation instances are encoded by so-called \occurs" checks(see chapter 6). No two of the encodings of 0; 1; [] can unify or semi-unify. The x0 in the �rst argumentposition of all encodings requires that any quotient substitution map x0 to x0, and the second argumentposition would force an instantiation of x0 were it to succeed, which is impossible (this is akin to the\adjoining" trick in the reduction of typability to semi-uni�cation).7 Lists of one length can never beuni�ed or semi-uni�ed with lists of another length (or 0 and 1) for essentially the same reason, only thistime the x0 that forces quotient substitutions to map x0 to x0 is in the second argument position (for noparticular reason but to maintain the analogy to the above-mentioned translation into the �-calculus).Since x0 occurs also | deeply nested | in the �rst argument of the encodings of lists, semi-uni�cation oflists of di�erent length could only succeed if a quotient substitution maps a nonvariable term containingx0 to x0, which is manifestly impossible, or if it maps x0 to a nonvariable term containing x0, which isalso impossible since x0 is \�xed" in the second argument. These considerations lead to the followinglemma.Lemma 8 For all SEI's S 2 �(A01; V ), S and �2(S) are equivalent.For lemmas 6, 7, and 8 we may assume, by proposition 21 in chapter 3, that any given SEI S is in\normal form"; that is, it has only one equation and one inequality per inequality group. The proofs thenproceed by induction on the number of inequalities and within each inequality by structural inductionon terms.Theorem 9 Semi-uni�ability, uniform semi-uni�ability, and uni�ability over any ranked alphabet Aare log-space reducible to semi-uni�ability, uniform semi-uni�ability, and uni�ability, respectively, overalphabet A2.Proof:By lemmas 6, 7, and 8, and the de�nition of equivalence of SEI's.Henceforth we shall assume that, w.l.o.g., our ranked alphabet over which terms are formed is A2,the minimal nonlinear alphabet that contains only one functor, f , which is binary.4.2.2 Reduction of Term Equations to the Hindley CalculusTerms over A2 (or even A[]) can be encoded in the familiar way in which lists are usually represented inthe pure �-calculus. We will show that this encoding is in fact a log-space reduction of uni�ability to thetypability problem in the Hindley Calculus (with only pure �-expressions), which we will also call thesimple typability problem.7Of course, this argument remains valid if we substitute any term whatsoever for x0 (but the same one for everyoccurrence of x0). 40



�-representation of TermsWe shall assume, w.l.o.g., that the set V of variables we have used in terms is identical to the set,also denoted by V , of variables that can occur in �-expressions. Let also x0 be a distinguished elementof V , and i : V ! V an injective mapping whose range does not contain x0. De�ne the mapping�� : T (A2; V )! � as follows. ��(x) = i(x); if x 2 V��(f(M1;M2)) = �x0:x0��(M1)��(M2)We shall abbreviate �x0:x0e1e2 to [e1; e2]. Generally, the expression �x0:x0e1 . . .ek will be written[e1; . . . ; ek]. Instead of ��(M ) we may also write �M . We let x0 be a \reserved" variable that cannotoccur in any term, whence we may assume that i is the identity function.The map �� not only gives us an encoding of terms as �-expressions, but also in the form of the typesof these �-expressions in CH, DM, MM, and FMM: there is no di�erence as to which typing system wechoose since the encodings are only pure �-expressions, and for pure �-expressions the typing rules in ourtype calculi are identical. To encode a term equationM = N as a pure �-expression all we have to do nowis to \force" the types of the M and N to be equal. This is easily achieved by applying �-bound variable,g, to both M and N . Since we can assume that a nontrivial uni�ability problem instance consists of onlyone equation (see proposition 21 in chapter 3) we can thus extend �� to a map �� : �(A2; V )! � by��(M = N ) = �g:[g �M; g �N ] where g 62 FV ( �M ) [ FV ( �N ) [ fx0g:For convenience' sake (and by abuse of notation) we will simply write �M = �N for �g:[g �M; g �N ] (whichis already an abbreviation).CorrectnessIt is easy to see that �� can be computed in logarithmic space. To complete the reduction from uni�abilityto simple typability, it remains to be shown that �� is indeed a problem reduction; more precisely, wewill show that for all M;N 2 T (A2; V ), it holds that the SEI (M = N ) is solvable if and only if there isa typing for the �-expression �~x: �M = �N derivable in the Hindley Calculus where ~x = FV ( �M) [FV ( �N )Again, as in the �rst half of this chapter, any sequence ~x may also be viewed as a set.There are many possible proofs of correctness. For example, we can try to show that the principaltypes of �M and �N are uni�able if and only if M;N are uni�able. This is quite apparently true, but itis technically rather messy to prove since there are in general many more type variables in the principaltypes of �M and �N than there are variables in M and N . For this reason we take an approach in whichwe get rid of these extra type variables by \normalizing" principal types.As a proviso to the following discussion let us note that �~x:( �M = �N ) is a closed �-expression, and itis simply typable if and only if f~x : ~�g � �M = �N : � 0 is derivable where ~� is a sequence of monotypes and� 0 is also a monotype.8 For this reason we shall only work with monotype environments A here; that is,A(x) 2M for all x 2 domA.Uni�ability Implies Typability First we show that if a pair of terms is uni�able then the �-representation of this uni�ability instance is simply typable.De�ne the canonical type mapping � that maps type environments and terms to monotypes as follows.� (A; x) = A(x); x 2 V� (A; [M1; . . . ;Mk]) = (� (A;M1)! . . .! � (A;Mk)! �0)! �08The notation f~x : ~�g is an obvious short-hand. 41



Here �0 denotes a �xed type variable. Once more, we abbreviate (�1 ! . . . ! �k ! �0) ! �0 to[�1; . . . ; �k]. The following proposition is easy to prove by structural induction over terms.Proposition 9 Let A;A0 be type environments, and M;N1; . . . ; Nk terms whose variables are containedin the domain of A.1. � (A;M ) is well-de�ned and unique.2. If A is injective then � is injective with respect to its second argument; i.e., � (A;N1) = � (A;N2)implies N1 = N2.3. The typing A � �M : � (A;M ) is derivable.4. If fx1; . . . ; xng is the domain of A then A = fx1 : � (A; x1); . . . ; xn : � (A; xn)gGiven a substitution � : V ! T (A2; V ) on terms (not type expressions) we de�ne �(A), the applicationof � to a type environment A = fx1 : �1; . . . ; xn : �ng, as follows.�(A) = fx1 : � (A; �(x1)); . . . ; xn : � (A; �(xn))g:Note that according to proposition 9, part 4, �(A) = A for all A where � denotes the identity substi-tution.Lemma 10 For all terms M , type environments A, and term substitutions �, whenever dom A �FV ( �M ) [FV ( �N ), then � (A; �(M )) = � (�(A);M ).Proof:We prove this lemma by structural induction on M .9� (Base case) If M is a variable, xi, then� (�(A);M ) = � (�(A); xi)= �(A)(xi)= � (A; �(xi)) (by de�nition of �(A))= � (A; �(M ))� (Inductive case) If M = [N1; . . . ; Nk] for some terms N1; . . . ; Nk, then� (�(A);M ) = � (�(A); [N1; . . . ; Nk])= [� (�(A); N1); . . . ; � (�(A); Nk)]= [� (A; �(N1)); . . . ; � (A; �(Nk))](ind. hyp.)= � (A; [�(N1); . . . ; �(Nk)])= � (A; �([N1; . . . ; Nk]))= � (A; �(M ))This completes the proof.Lemma 11 For all M;N 2 T (A2; V ), if M and N are uni�able then �~x:( �M = �N ) is simply typable(typable in the Hindley Calculus).9It is actually more like a \proof by notation". 42



Proof: By assumption of the lemma there is a uni�er � of M;N ; i.e., �(M ) = �(N ). LetA be a type environment whose domain contains su�ciently many variables (that is, at leastall variables in FV ( �M )[FV ( �N )). By proposition 9, part 3, both �(A) � �(M ) : � (�(A);M )and �(A) � �(N ) : � (�(A); N ) are derivable typings. According to lemma 10 and by the factthat � is a uni�er we have � (�(A);M ) = � (A; �(M )) = � (A; �(N )) = � (�(A); N ). Call thistype � 0. Consequently, for any �0 2 TV ,A0fg : � 0 ! �0g � [g �M; g �N ] : [�0; �0]and A0 � ( �M = �N ) : � 0 ! [�0; �0]are derivable typings, the latter of which shows that �~x:( �M = �N ) is simply typable.Typability Implies Uni�ability We now proceed to prove that if �~x:( �M = �N ), for given terms Mand N , is typable then M and N are uni�able.Some preliminary results on the normalization of typings are helpful in facilitating a translation oftypes to terms and from typings to substitutions. The normalization function � on types is de�ned asfollows. �(� ) = �; if � = � and � 2 TV�(� ) = [�(�1); . . . ; �(�n)]; if � = (�1 ! . . .! �n ! � 0)! � 0for some �1; . . . ; �n; � 0�(� ) = �0; otherwiseProposition 12 1. � is well-de�ned and unique.2. For any set of type expressions �1; . . . ; �k there is an injective type environment A and termsN1; . . . ; Nk such that �(�i) = � (A;Ni) for all i such that 1 � i � k.The mapping � can be extended to type environments in the standard way: �(A) = fx1 :�(�1); . . . ; xn : �(�n)g if A = fx1 : �1; . . . ; xn : �ng.Lemma 13 For any derivable typing A � �M : � , the typing �(A) � �M : �(� ) is also derivable, and�(� ) = � (�(A);M ).Proof: This can be shown by simple induction on the structure of M .Lemma 14 For all M;N 2 T (A2; V ), if �~x:( �M = �N ) is simply typable then M and N are uni�able.Proof: By assumption, there is a derivable typing A � ( �M = �N ) : � . By the de�nition of�� this expands to A � �g:�x0:(x0(g �M )(g �N )) : �:Since the typing rules of the Hindley Calculus are syntax-directed, we can conclude, by \back-wards reasoning", that there are type expressions � 0; �2; �3 such that � = (� 0 ! �2) ! (�2 !�2 ! �3)! �3 and, with A0 = Afg : � 0 ! �2; f : �2 ! �2 ! �3g, both43



A0 � �M : � 0and A0 � �N : � 0are derivable. Let us de�ne A00 = �(A0) and � 00 = �(� 0). By lemma 13, the typingsA00 � �M : � 00and A00 � �N : � 00are both derivable. If A00 = fx1 : � 001 ; . . . ; xk : � 00k g, proposition 12, part 2, implies thatthere are terms M;N1; . . . ; Nk and an injective type environment A0 such that � (A0;M ) =� 00; � (A0; N1) = � 001 ; . . . ; � (A0; Nk) = � 00k . If we de�ne � = fx1 ! N1; . . . ; xk ! Nkg, theprevious two typings can be rephrased as�(A0) �M : � (�(A0);M )and fx1 : � (A0; �(x1)); . . . ; xk : � (A0; �(xk))g � �M : � (A00;M )Also by lemma 13 we can conclude � (�(A0);M ) = � (A00;M ) = � (�(A0); N ). Finally, thisyields � (A0; �(M )) = � (A0; �(N )) by lemma 10 and, since A0 is injective, by proposition 9,part 2, �(M ) = �(N ). Consequently, M and N are uni�able.Theorem 10 For all M;N 2 T (A2; V ), M and N are uni�able if and only if �~x:( �M = �N ) is simplytypable.Proof: Lemma 11 shows one direction, lemma 14 the other.Corollary 15 Simple typability (typability in the Hindley Calculus) is P-complete under log-space reduc-tions.Proof:Since simple typability is log-space reducible to uni�cation, it is in P. By theorem 10 the resultfollows from the fact that uni�cation is P-complete [25].44



4.2.3 Reduction of Uniform Semi-Uni�cationTo gain an intuition into the more complicated reduction of general (nonuniform) semi-uni�cation probleminstances to the Flat Mycroft Calculus we shall consider a special case here that yields an interestingcharacterization of uniform semi-uni�cation in terms of a restricted version of the Flat Mycroft Calculus.Let 1FMM (\Flat Milner-Mycroft Calculus with at most one occurrence of the �x-bound variable")denote MM restricted to expressions of the form �xy:e where e is a pure �-expression containing at mostone free occurrence of y. By extending the �-encodings of terms we can also encode inequalities betweenterms. For this we need the polymorphic typing rule (FIX-P), though, and consequently we shall assumethe (Flat) Mycroft Calculus when we talk about typability in the rest of this chapter.The consistent labeling formulation for MM already gives an indication of how term inequalities canbe captured in the constraints associated with a �x-binding. Note that the type for y in �xy:e in somesense \comes from" the type of e since they have to be equal. Now if we can \force" e to have thetype of the �-encoding �M of M and if we can \hide" (in the sense that it does not a�ect the type of e)somewhere in e the �-encoding y = �N , then the y in y = �N is bound to have the same type as �N , but bythe typing rules for �x the occurrence of y must also be a substitution instance of the type of e. In otherwords, we will have encoded the single term inequality M � N as an instance of the 1FMM typabilityproblem. Since M and N , and consequently �M and �N contain in general a lot of free variables we haveto be a little bit more careful than this. To make sure that di�erent occurrences of a free variable x,say, in M have the same type everywhere (which corresponds to a semi-uni�er uniformly applying thesame substitution to all occurrences of a variable), the variables in �M and �N have to be �-bound someplace, as was the case for encodings of equations (for the same reason, by the way). The �-bindings forthese variables cannot go outside of the whole expression, as in �~x:�xy:e, since | now we are in MM |this would mean that the �x-binding is in the scope of the �-bindings, and essentially no type variablein the type of e could be instantiated. Consequently the place where the �-bindings have to go is justafter the �x-binding: �x y:�~x:e. This in turn complicates the encoding of the equation y = �N above,but fortunately everything works out.Theorem 11 Uniform semi-uni�ability and 1FMM-typability are log-space equivalent.Proof:An inspection of the reduction of MM-typability to semi-uni�cation shows that the instancesof 1FMM are reduced to instances of uniform semi-uni�ability. Conversely, consider a singleinequality M � N and the �-expression�x y:�~x:K �M(�~z:(y~z) = �N );which is clearly an instance of 1FMM-typability. Here ~x again is the sequence of all freevariables in �M and �N in any order, and ~z is a sequence of variables with the same lengthas ~x , but completely disjoint from it. K denotes the term �x:�y:x. Since �M and �N can becomputed in logarithmic space, this expression can clearly be computed in logarithmic spacefrom M � N . The correctness of this reduction automatically falls out the general case ofreducing nonuniform semi-uni�cation to FMM-typability, which is shown towards the end ofthis chapter.Corollary 16 1FMM-typability is P-complete under log-space reductions.Proof:Kapur et al. [54] give a complicated algorithm for deciding uniform semi-uni�ability in poly-nomial time (see chapter 6 for more information on their algorithm). Since uni�cation is asubcase of uniform semi-uni�cation this implies the theorem.45



This corollary shows that, theoretically, uniform semi-uni�cation is no harder than uni�cation, al-though, in practice there is a big di�erence: The polynomial-time algorithm in [54] is very complicatedand executes in a polynomial of some higher degree whereas uni�cation has a theoretically and practicallyvery fast algorithm, namely the equivalence class merging algorithm with delayed occurs checking andthe union/�nd data structure (see, e.g., [1, section 6.7]) which seems to be continuously rediscovered (see,e.g., [107]). A theoretically faster, but less practical algorithm is the linear time decision algorithm of[89] and [72].4.2.4 Reduction of Semi-Uni�cationWe have seen how a single inequality can be encoded in the Flat Mycroft Calculus, even under therestriction that a �x-bound variabe may only occur once. Intuitively, it is clear how to proceed from hereto encode a whole system of equations and inequalities:1. Encode every inequality individually as a recursive de�nition and view the collection of all suchrecursive de�nitions as a single mutually recursive de�nition,2. encode the mutually recursive de�nition as a single recursive de�nition in a \standard" way,3. and along the way be careful about �-binding the free variables in the given SEI and do not forgetto add encodings for the equations.The following technical proposition is used later in the proof of correctness of the reduction outlinedabove. We make use of another abbreviation: For �xed k > 0, �i = �z1 . . .zk:zi is the i-th projectionfunction for 1 � i � k.Proposition 17 Let X = CH, DM, MM, FMM. Let ~� = [�1; . . . ; �k].X ` A � e : ~� ,X ` A � e�i : �i; i 2 f1; . . . ; kgX ` A � [e1; . . . ; ek] : ~� ,X ` A � ei : �i; i 2 f1; . . . ; kg(9� 0) A � e1 = e2 : � 0 ,(9� 00)A � e1 : � 00 and A � e2 : � 00Theorem 12 Semi-uni�cation is log-space reducible to typability in the Flat Mycroft Calculus.Proof:Without loss of generality we may assume that A = A2. As noted in chapter 2 it is su�cientto show that any SEI S = (M0 = N0;M1 � N1; . . . ;Mk � Nk) is reducible to FMM. Let~x = x1 . . .xm where x1; . . . ; xm are all the distinct variables occurring in S; let ~z = z1 . . .zmbe m distinct variables not occurring in S.Now consider �(S) = �xy:�~x:K[ �M1; . . . ; �Mk];[ �M0 = �N0; �~z:(y~z�1 = �N1); . . . ; �~z:(y~z�k = �Nk)]where K = �x:�y:x, as usual. �(S) can clearly be constructed in logarithmic space. We willshow that S has a solution if and only if �(S) is typable in the Flat Mycroft Calculus.46



Lemma 18 There is a type � such thatFMM ` fg � �x y:�~x:K[ �M1; . . . ; �Mk];[ �M0 = �N0; �~z:(y~z�1 = �N1); . . . ; �~z:(y~z�k = �Nk)] : �if and only if there are monotypes ~� = �1 . . . �k; �M0 ; �M1; . . . ; �Mk ; �N0 ; �N1 ; . . . ; �Nk such thatf~x : ~�g � �Mi : �Mif~x : ~�g � �Ni : �Ni�M0 = �N0�Mi � �Ni ; i 2 f1; . . . ; kgProof: fg � �x y:�~x:K[ �M1; . . . ; �Mk];[ �M0 = �N0; �~z:(y~z�1 = �N1); . . . ; �~z:(y~z�k = �Nk)] : �is derivable for some � if and only if there is a �y with type variables ~� = �1 . . .�n such that� is a substitution instance of �y andfy : 8~�:�yg � �~x:[. . .]�1 : �yis derivable in FMM. This, in turn, is derivable if and only if there are ~� = �1 ! . . . ! �kand �M such that �y = ~� ! �M andfy : 8~�:~� ! �M ; ~x : ~�g � [. . .]�1 : �Mare derivable. According to proposition 17, this is the case if and only iffy : 8~�:~� ! �M ; ~x : ~�g � [M1; . . . ;Mk] : �Mandfy : 8~�:~� ! �M ; ~x : ~�g � [�~z:(y~z�1 = �N1); . . . ; �~z:(y~z�k = �Nk)] : �=for some type �=. Again, by proposition 17, this holds if and only if �M = (�M1 ! . . . !�Mk ! �0)! �0 andfy : 8~�:~� ! �M ; ~x : ~�g �Mi : �Mi ; i 2 f1; . . . ; kg;fy : 8~�:~� ! �M ; ~x : ~� ; ~z : ~� (i)g � y~z�i : �Ni ; i 2 f1; . . . ; kg; andfy : 8~�:~� ! �M ; ~x : ~� ; ~z : ~� (i)g � Ni : �Nifor some types �M1 ; . . . ; �Mk; �N1 ; . . . ; �Nk and suitable types ~� (i) = � (i)1 . . .� (i)m . Note that,w.l.o.g., fy : 8~�:~� ! �M ; ~x : ~� ; ~z : ~� (i)g � y~z�i : �Ni ; i 2 f1; . . . ; kgholds if and only if 47



fy : 8~�:~� ! �M ; ~x : ~�; ~z : ~� (i)g � y : ~� (i) ! (�1 ! . . .�k ! �i)! �NiSince the type of any occurrence of y must be a substitution instance of the type of y in thetype assumption, it follows that �Ni must be a type instance of �Mi . It is easy to check thatthis is also su�cient. Since neither Mi nor Ni contain y or any of the z's, for any i, we cansummarize that a necessary and su�cient condition forfg � �x y:�~x:K[ �M1; . . . ; �Mk];[ �M0 = �N0; �~z:(y~z�1 = �N1); . . . ; �~z:(y~z�k = �Nk)] : �to be FMM-typable is that for some ~� = �1 . . .�k and for some monotypes�M0 ; �M1 ; . . . ; �Mk ; �N0 ; �N1 ; . . . ; �Nk we havef~x : ~�g � �Mi : �Mi ; 0 � i � kf~x : ~�g � �Ni : �Ni ; 0 � i � k�M0 = �N0�Mi = �Ni ; 1 � i � kProof: (Proof of theorem continued)With this lemma it is su�cient to show that whenever there is a solution of S then the aboveconstraints can be satis�ed, and vice versa.()) Assume there is a solution � of S. Let A0 be a type environment that maps everyvariable in ~x into a distinct type variable. (Any other type environment that is injectiveon ~x will also do.) Now de�ne �Mi = � (A; �(Mi)) for 0 � i � k where � is the canonicaltype mapping from section 4.2.2, and let �i = �(A0)(xi). We have�(A0) � �Mi : � (�(A0);Mi)�(A0) � �Ni : � (�(A0); Ni)By lemma 10, we have � (�(A0);Mi) = � (A0; �(Mi)) and � (�(A0); Ni) = � (A0; �(Ni)).Since � is a semi-uni�er of S it furthermore follows for every i that there is a �i suchthat �i(�(Mi)) = �(Ni). It is easy to show that the canonical type mapping � above ismonotonic (with respect to term subsumption) in its second argument.(() Recall the function � : M ! M , which normalizes type expressions. Given types asrequired such that f~x : ~�g � �Mi : �Mi ; 0 � i � kf~x : ~�g � �Ni : �Ni ; 0 � i � k�M0 = �N0�Mi = �Ni ; 1 � i � kby lemma 12 we know thatf~x : �(~�)g � �Mi : �(�Mi); 0 � i � kf~x : �(~�)g � �Ni : �(�Ni); 0 � i � kare also derivable. Following the proof of lemma 14, we can de�ne a substitution �(on terms). In the previous step we saw that � is monotonic in its second argument.This argument can be strengthened to show, for injective A, M1 � M2 , � (A;M1) �� (A;M2). 48



This completes the proof of the theoremCorollary 19 The following three problems are polynomial-time equivalent:1. Typability in the Mycroft Calculus;2. (nonuniform) semi-uni�ability;3. typability in the Flat Mycroft Calculus.Proof:The steps (1) ) (2) and (2) ) (3) are proved in theorems 8 and 12; (3) ) (1) is trivial sinceFMM-typability instances are a subclass of MM-typability instances.This corollary stands in contradiction to a statement by Mycroft who suggests prohibiting nestedpolymorphically typed �x-de�nitions \due to the exponential cost of analysing nested �x de�nitions"[85]. Indeed nesting does not make things any worse than they already are in a single �x de�nition.Corollary 20 1. The Milner Calculus is polynomial-time reducible to the Flat Mycroft Calculus.2. The Flat Mycroft Calculus is PSPACE-hard.Proof:1. By theorem 8 the Milner Calculus is polynomial-time reducible to semi-uni�cation, whichin turn is polynomial-time reducible to the Flat Mycroft Calculus by theorem 12.2. By (1) and the PSPACE-hardness result of Kanellakis and Mitchell [53] for the MilnerCalculus.
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4.3 Type Inference in B and Semi-Uni�cationThe programming language B [75] (now called ABC) has a polymorphic typing rule for recursive de�ni-tions and relies on type inference to determine the type correctness of programs. In contrast, Hope [8]also has a polymorphic typing rule for recursively de�ned functions, but mandates that their types beexplicitly declared.Even though there is no type inference system that speci�es \logically" type correctness in B, it is clearfrom algorithmAA in [74] that the type computed in a recursive de�nition is the principal type in a \Flat"Milner-Mycroft style typing system. In fact, AA can be viewed as a variant of Mycroft's semi-algorithmfor computing principal types in the Milner-Mycroft Calculus [85]. AA is provably nonterminating,and Meertens proceeds to re�ne it by adding a criterion reminiscent of our extended occurs check, butactually of much broader applicability, that guarantees termination of the resulting algorithm. Meertensargued that the absence of higher-order functions, nesting, and recursive types in B permitted uniformtermination of his type inference algorithm.Higher-order functions and their typing requirements usually create syntactic and semantic problemsdue to the fact that they are nonmonotonic in their domain types. This is of signi�cance in the SecondOrder �-calculus, but not in the Milner-Mycroft Calculus (since argument types cannot be required to bepolymorphic). In the previous sections we have seen that nesting of de�nitions does not greatly changebasic questions of type inference. This suggests that the type inference problem in B is actually nosimpler than type inference in the Flat Mycroft Calculus and the complete Milner-Mycroft Calculus, incontrast to Meertens' general considerations. Indeed we shall show that semi-uni�cation can be reducedto type inference for a small subset of B, which substantiates that neither higher-order functions nornested de�nitions greatly in
uence the type inference problem. Since B has a syntactically simpler typesystem than MM the converse reduction is immediate. This implies that Meertens' uniformly terminatingalgorithm either proves decidability of semi-uni�cation or it is not correct. In fact we shall show thatMeertens' algorithm errs on the safe side. There are cases where the algorithm 
ags type-incorrectnesswhile in fact there is a derivable typing for it (and AA would compute it).In subsection 4.3.1 we introduce Pure B and its typing system. In subsection 4.3.2 we show thattype inference in B and semi-uni�cation are polynomial time equivalent. We also explain Meertens'termination criterion in terms of a criterion for our semi-uni�cation algorithm (without extended occurscheck) and give an example, both as a semi-uni�cation problem and as a Pure B program, that showswhere that criterion errs.4.3.1 Pure BPure B is only a minute subset of B, yet big enough to capture the power of the polymorphic typing rulefor recursive de�nitions. Pure B programs are given by the following grammar.p ::= HOW'TO xOF x0 : cc ::= xOF e j cc j PUT e in ee ::= x j (e; e)where x ranges over a prede�ned lexical category of identi�ers. Even though the semantics of a language,as we have seen, is not all necessary to explain B's typing discipline, it helps to get an intuition forit. HOW'TO x OF x0 : c de�nes a procedure x with formal (variable) parameter x0. The body of theprocedure is the command c. A command is either the application of a procedure to an expression, xe, ora sequence of commands. An expression is either a variable or a pair of expressions. The PUT commandcopies its �rst argument to the second argument by pattern matching. This is all we need in Pure B toencode semi-uni�cation. B, of course, has more complicated control structures and data types that make50



Let A range over type environments; x over variables; e; e0 over �-expressions; t over type variables; �; � 0over monotypes; �; �0 over polytypes. The following are type inference axiom and rule schemes for PureB. Name Axiom/rule(TAUTD) Afx : �g � x : �(TAUTP) Afx : 8~t:� ! unitg � x : � [~�=~t]! unit(PUT) A � e : �A � e0 : �A � PUT e IN e0(PAIR) A � e : �A � e0 : � 0A � (e; e0) : (�; � 0)(APPL) A � x : � ! unitA � e : �A � xOF e(SEQ) A � cA � c0A � cc0(PROG) Afx : 8~�:� ! unitg � cAfx : 8~�:� ! unitg � x0 : �� HOW'TOxOF x0 : cTable 4.4: Type inference axioms and rules for Pure Bit usable in practice.The type expressions in Pure B are de�ned by� ::= t j (�; � 0)� ::= � ! unit j 8t:�Once again, we shall say type expressions derivable from � are monotypes, and type expressionsderivable from � are polytypes. The type expression � ! unit denotes the type of procedures whoseargument is of type � . Note that procedures are strictly �rst-order, since they can only take inputs whosetypes are built up from type variables and pairing and that only procedures can be polymorphic.10 Thetyping rules of Pure B are given in Table 4.4.A Pure B program p is typable if � p is derivable in the type inference system for Pure B.10This is, in general, an inessential restriction since polymorphic \data" such as \nil" in Pascal can be treated as nullarypolymorphic functions. 51



4.3.2 Equivalence of Pure B and Semi-Uni�cationRecall the reduction of semi-uni�cation to the Flat Milner-Mycroft Calculus. To facilitate the encodingof a term inequality in Pure B we need a representation of �rst-order terms by Pure B expressions whosetypes correspond to these terms, and an encoding of equations between the types representing terms (thePUT command will do). Term subsumption inequalities can be represented by the polymorphic typingrule for Pure B procedures. Indeed these are all the ingredients we need, and they are readily availablein the type system for Pure B.Consider, as usual, �rst-order terms over the ranked alphabet A2. De�ne the encoding function� : T (A2; V )! E, where E denotes the Pure B expressions, as follows.�(x) = x; ifx 2 V�(f(M;N )) = (�(M ); �(N ); otherwiseWe shall denote �(M ) simply by �M . Given a term inequalityM � N the Pure B programHOW'TO p OF x:PUT x in �Mp OF �Nwhere x and p are identi�ers not occurring in M or N , is typable if and only ifM � N is solvable. Moregenerally, the programHOW'TO p OF x:PUT x IN ( �M1; . . . ; �Mk)PUT �M0 IN �N0p OF ( �N1; y(2)1 ; . . . ; y(k)1 ). . .p OF (y(1)i ; . . . ; y(i�1)i ; �Ni; y(i+1)i ; . . . ; y(k)i ). . .p OF (y(1)k ; . . . ; y(k�1)k ; �Nk)with p, x, and additional Pure B variables y(j)i ; i 6= j not occurring in any of the Mi or Ni, is typable ifand only if the SEI S = (M0 = N0;M1 � N1; . . . ;Mk � Nk) is solvable.Theorem 13 Typability in Pure B and semi-uni�cation are polynomial-time equivalent.Proof:If we choose the encodings described above then the reductions can be easily adapted fromthe general reductions from MM to semi-uni�cation, and from semi-uni�cation to FMM.Meertens' non-terminating algorithm AA computes the principal type for Pure B in the sense that itcomputes a type expression � for the procedure p de�ned in HOW'TO p OF x: c such that this de�nitionis typable and for any other type derivation the type of p, �0, will be such that � v �0 in the genericinstance preordering of chapter 2.Instead of explaining algorithm AA and the re�nement that results in a uniformly terminating algo-rithm we shall translate the termination criterion for AA into a termination criterion for our algorithmA and explain its e�ects in terms of semi-uni�cation. For this, we assume the reader is familiar with52



the material in chapter 6. The independent sources of every arrow graph in an execution of algorithmA are nodes that are already present in the \initial" arrow graph that represents a given SEI; i.e., theindependent sources of any node are \original" nodes. Meertens' \second circularity check" [74, p. 272]can be translated into a circularity check for algorithm A as follows. For any arrow graph Gi in anexecution (G1; . . . ; Gi; . . .) of algorithm A, let us de�ne a directed graph CVi = (N;Ei) where N is theset of original nodes (i.e., the nodes in G1) and (n; n0) 2 Ei if and only if there are nodes m;m0 in Gisuch that n is a source of m, n0 is a source of m0 and m is a parent of m0. If, for some Gi, the digraph CVicontains a proper cycle (i.e., nodes n1; . . . ; nk; k � 2; such that n1 = nk; (ni; ni+1) 2 Ei for 1 � i � k� 1,and the nodes n1; . . . ; nk�1 are pairwise distinct), then terminate the execution and signal unsolvability.Clearly, this criterion subsumes our extended occurs check since every time the occurs check is applicableand reduction to 2 takes place, this circularity check is also applicable and unsolvability | reduction to2 | is indicated.This algorithm is sound in the sense that whenever it produces a normal arrow graph that is not2, the input SEI is solvable. Furthermore, by analogy with Meertens' proof of termination, algorithmA with the extended occurs check replaced by the above circularity check is uniformly terminating.Unfortunately, though, the circularity check is too restrictive, and the resultant algorithm is incomplete:there are solvable SEI's that \trigger" the circularity check. A simple example is the SEIS = (g(x) = y; g(z) � x; g(z) � y)where g is a unary functor.11 It is clearly solvable, the substitution � = fx 7! g(z0); y 7! g(g(z0))g beinga most general semi-uni�er, yet, since z is source of both z0 and g(z0) in this semi-uni�er, the CV -graphcontains a proper loop from (the node containing) z to z itself.This SEI can be translated into a Pure B program via the encoding above and submitted for typechecking by the B type inference system. According to the typing discipline described in [74] and partiallyformalized by the typing rules for Pure B in Table 4.4, the resulting program should be considered typecorrect, but the type inference algorithm with the \second circularity check" should 
ag a type error. Atpresent we have not recon�rmed this with the locally available B interpreter.
11Recall from chapter 4, section 4.2 that we can claim the existence of a functor of any arity in any nonlinear alphabet.53



Chapter 5Algebraic Properties ofSemi-Uni�ersIn chapter 4 we saw that semi-uni�cation characterizes type inference both in the Mycroft Calculus andthe Flat Mycroft Calculus. Since semi-uni�cation has a simpler de�nitional structure than any of thetyping problems we will shift our attention in designing algorithms to semi-uni�cation. This is justi�edsince every algorithm for semi-uni�cation yields a type inference algorithm, and vice versa. Since SEI'shave potentially many solutions it is not a priori clear which one of the solutions an algorithm shouldcompute. Naturally we expect to �nd an analog of the principal typing property for semi-uni�cation:that every solvable SEI has a most general semi-uni�er that is unique in some sense. In this chapter weshall see in which sense there are indeed unique most general semi-uni�ers | and in which there are not.A correct treatment of the algebraic structure of semi-uni�ers | solutions of term inequalities |is trickier than is apparent at �rst sight. This is evidenced by technically incorrect treatments andstatements in the literature [88,15]. In this chapter we present some results on the algebraic structure ofsemi-uni�ers. Our main goal is to convince the reader that, in the same fashion in which strong equivalenceclasses of idempotent substitutions (see below for de�nitions) characterize the solutions of term equationsand vice versa (see theorem 17), the weak equivalence classes of all substitutions characterize the solutionsof term inequalities and vice versa (see theorem 18). In particular, we cannot replace \strong" by \weak"in this statement. Two substitutions �1 and �2 are strongly equivalent if there are substitutions � and �0such that � ��0 = �, where � denotes the identity substitution, and � � � = �0. Strong equivalence is thepreferred formalization of the common phrase \equivalent up to renaming of variables" [14,63]. We willshow that, unlike term equations, term inequalities do not have most general solutions that are uniquemodulo strong equivalence. A natural, weaker notion of equivalence, however, admits unique most generalsolutions and, more generally, induces a complete lattice onto the set of all solutions of term inequalities.5.1 Generality of SubstitutionsHenceforth let W denote an arbitrary, but �xed subset of V .De�nition 10 (Generality, W -equivalence, strong equivalence)The preordering �W of generality on S! over W is de�ned by�1 �W �2 , (9� 2 S!) (� � �) jW= �2 jW :54



The equivalence relation �=W on S! over W is de�ned by�1 �=W �2 , �1 �W �2 ^ �2 �W �1:for all �1; �2 2 S!. We write �1 <W �2 if �1 �W �2, but �1 6�=W �2. For any � 2 S!, [�]W denotes the�=W -equivalence class of � in S! . The equivalence relation �=W is called W -equivalence; if W = V , it iscalled strong equivalence.If �1 �W �2 we say that �1 is at least as general as �2 on W . E. g., for �1 = fx 7! f(x)g; �2 = fx 7!f(y)g;W � V � fyg, the substitution �1 is at least as general as �2 on V , but �2 is only at least asgeneral as �1 on W , not on V . Consequently, �1 and �2 are W -equivalent, but not strongly equivalent.For M � N there is a unique most general substitution �, called the quotient substitution of N over Msuch that �(M ) = N . We shall denote � by N=M .Solutions of SEI's (semi-uni�ers and uni�ers) are closed with respect to \reasonable" substitutionequivalences. More precisely we haveProposition 21 If V (S) � W � V then for any �1 and �2 such that �1 �=W �2 we have1. �1 2U(S) , �2 2U(S)2. �1 2USU(S) , �2 2USU(S)3. �1 2 SU(S), �2 2 SU(S)Thus the solutions of any SEI S are closed with respect to equivalence relation �=W as long as Wcontains at least all variables occurring in S, and every uni�er/uniform semi-uni�er/semi-uni�er canviewed as (a representative) of a whole equivalence class of solutions.As in the case of terms, the preordering �W induces a partial order on S!=�=W = f[�]W j � 2 S!g,denoted also by �W . Since the de�nitions of term subsumption (T
;�) and of generality of substitutions(S! ;�W ) appear analogous we can ask whether an analog of theorem 4 holds for substitutions. Theanswer to this question is three quarters positive, one quarter negative: the analog of theorem 4, part 1,holds (see theorem 14), but the analog of part 2 holds ifW is co-in�nite (with respect to V ) (see theorem16) or A is linear (see theorem 15). These results are presented below.Eder proved that (S!;�V ) is Noetherian [26, corollary 2.19]. Although it is not an immediate conse-quence that (S! ;�W ) is Noetherian where W is any subset of V , Eder's proof can be easily adapted totake care of this case, too.Theorem 14 (T!=�=W ;�W ) is Noetherian for any W � V .Proof: See [26,45,46].As already indicated the analog of theorem 4, part 2 holds if A is linear.Theorem 15 If A is linear then (S!=�=W ;�W ) is a complete lattice.Here and later we shall make use of Huet's anti-uni�cation algorithm [46,63]. The recursive algorithmmscai on T � T is de�ned recursively in Figure 5.1.It is easy to show that mscai(M;N ) computes a most speci�c common anti-instance [63, theorem5.8]. 55



Let � be a bijection between T � T and V .mscai(M;N ) =8<: f(mscai(M1; N1); . . . ;mscai(Mk; Nk));ifM = f(M1; . . . ;Mk); N = f(N1; . . . ; Nk)�(M;N ); otherwiseFigure 5.1: Anti-uni�cation algorithmProof: (Proof of theorem)In view of theorem 14 it is su�cient to show that (S!=�=W ;�W ) is a lower semi-lattice. Weshall only show this here for W = V , which is the most interesting case anyway.For a �nite set of variablesX the notation ~X shall denote a term with a \new" jXj-ary functorwhose arguments are the distinct elements of X in some order determined by X. For �niteX, for example, �( ~X)= ~X is another way of writing �jX .Let �1; �2 be two proper substitutions. We will �rst construct a substitution � and then showthat � is a lower bound and that any other lower bound is at least as general as �.De�ne Z = dom�1[dom�2; X = fx 2 Z : �1(x) = �2(x)g; Y = fx 2 Z : �1(x) 6= �2(x)g, andlet �M =mscai(�1(~Y ); �2(~Y )). Since A is linear we have for the variables in the range of �1(or �2) under X, V 0 = V (�1(X)), that jV 0j � jXj and consequently, with V 00 = (X [Y )�V 0,that jV 00j � jY j. Thus there is �M 0 such that �M 0 �= �M and V (M 0) � V 00. Now we canconstruct � as �(x) = � �1(x); x 2 X( �M 0=~Y )(x) otherwiseNotice that �(~Z) � �1(~Z) and thus �1 = �1(~Z)=�(~Z) is well-de�ned. Furthermore, dom�1 �Z. Since �1 � � = �1 this shows that � is a lower bound of �1 with respect to �V . Similarly� is a lower bound of �2.To see that � is a greatest (most speci�c) lower bound consider another lower bound �0 of�1; �2. De�ne Z 0 = Z [ dom �0. It is easy to see that �( ~Z 0) is a most speci�c common anti-instance of �1( ~Z 0) and �2( ~Z 0). Consequently � = �( ~Z 0)=�0( ~Z0) is well-de�ned. Furthermorewe have, for x 2 X, �0(x) = �(x) or V (�0(x)) � Z 0, and, for x 2 Z 0 �X, it is always the casethat V (�0(x)) � Z 0 since otherwise the domain of either �1 or �2 would have to contain anelement from outside Z 0 (being that �0 is a lower bound of both of them by assumption); butthis cannot be as Z 0 contains the domains of both �1 and �2 by construction. This, in turn,implies that dom � � Z 0 and thus � � �0 = �, which is to say �0 �V �.For nonlinear A this structure theorem fails in a major way if W is co-�nite: S!=�=W is neither alower nor an upper semi-lattice under the partial order �W if jV �W j <1. This shall be proved in thefollowing two propositions.Proposition 22 For nonlinear A, if W is co-�nite, jV �W j < 1, then there is a pair of substitutions�1; �2 2 S with two minimal upper bounds �1; �2 2 S with respect to �W such that �1 6�=W �2.Proof: Eder [26] shows that the pair of substitutions56



fx 7! f(x; f(y; z)); y 7! f(x; f(y; z)); z 7! f(x; f(y; z))gand fx 7! f(f(x; y); z); y 7! f(f(x; y); z); z 7! f(f(x; y); z)ghas an in�nite set of minimal upper bounds, but no least upper bound with respect to �V .A simple generalization of Eder's pair will do the trick. Let W be a co-�nite set.Without loss of generality we can assume that V � W = fw1; . . . ; wng for some nand that fx1; . . . ; xn+1; y1; . . . ; yn+1; z1; . . . ; zn+1g is a subset of W . Now with �i =fxi 7! f(xi; f(yi; zi)); yi 7! f(xi; f(yi; zi)); zi 7! f(xi; f(yi; zi))g and �i = fxi 7!f(f(xi ; yi); zi); yi 7! f(f(xi ; yi); zi); zi 7! f(f(xi ; yi); zi)g consider the substitutions� = [i2f1;...;n+1g�iand � = [i2f1;...;n+1g�i.1The minimal upper bounds of � and � are the substitutions[i2f1;...;n+1g fxi 7! f(f(si ; ti); f(ui; vi));yi 7! f(f(si ; ti); f(ui; vi));zi 7! f(f(si ; ti); f(ui; vi))gfor pairwise distinct variables W 0 = fs1; t1; u1; v1; . . . ; sn+1; tn+1; un+1; vn+1g. Consider onesuch minimal upper bound, say �1. Simple counting shows that there must be some variablew 2W 0 such thatw 62 fw1; . . . ; wn; x1; . . . ; xn+1; y1; . . . ; yn+1; z1; . . . ; zn+1g:Thus w is in W . If we consider another minimal upper bound, �2, with range variablesV (�2(fx1; . . . ; xn+1; y1; . . . ; yn+1; z1; . . . ; zn+1g))disjoint from V (�1(fx1; . . . ; xn+1; y1; . . . ; yn+1; z1; . . . ; zn+1g));then it is clear that �1 6�W �2 because w 62 V (�2(dom (�2))).1More formally, � = �1 � . . . � �n+1 and � = �1 � . . . � �n+1 . Since the order of composition is insigni�cant the informalset union operation on the canonical representations of the �i's and �i's is well-de�ned.57



This shows that (S!=�=W ;�W ) is not an upper semi-lattice for jV �W j <1. We can also show thatit fails to be a lower semi-lattice.Proposition 23 For nonlinear A, if W is co-�nite, jV �W j < 1, then there is a pair of substitutions�1; �2 2 S with two maximal lower bounds �1; �2 2 S with respect to �W such that �1 6�=W �2.Proof:We shall only treat the case W = V . The general case is a generalization analogous to theprevious proof.Let y1; . . . ; y4; z1; . . . ; z4 be eight pairwise distinct variables and let f be an arbitrary functorwith arity 2.2 Consider �1 = fx1 7! f(f(y1 ; y2); f(y3; y4));x2 7! f(f(y1; y2); f(y3; y4));x3 7! f(f(y1; y2); f(y3; y4))gand �2 = fx1 7! f(f(z1 ; z2); f(z3; z4));x2 7! f(f(z1 ; z2); f(z3; z4));x3 7! f(f(z1 ; z2); f(z3; z4))g:Both �1 = fx1 7! f(x1; f(x2; x3));x2 7! f(x1; f(x2; x3));x3 7! f(x1; f(x2; x3))gand �2 = fx1 7! f(f(x1; x2); x3);x2 7! f(f(x1; x2); x3);x3 7! f(f(x1; x2); x3)gare maximal lower bounds since, at �rst sight maybe somewhat unexpectedly,fx1; x2; x3 7! f(f(v1; v2); f(v3; v4))gdoes not form a lower bound of �1 or �2 for any variables v1; . . . ; v4. Clearly, �1 and �2 arenot equivalent under �=V .2Note that there must be at least one functor with arity at least 2 since we assume that (F; a) is nonlinear in this section;w. l. o. g. we can assume that F contains a functor with arity exactly 2.58



The reason for this \misbehavior" of (S!=�=W ;�W ) for co-�nite W is due to the fact that we cannot\hide" enough variables from \consideration" under �W if there is not enough \room" in V �W . Forsubsets W of V that leave \enough" variables hidden in V �W | for co-in�nite W 's | the partial orders(S!=�=W ;�W ) have indeed a lattice structure. The proof of this is a consequence of the more generaltheorem 18 proved in section 5.2.Theorem 16 For nonlinear A the following statements are equivalent.� (S!=�=W ;�W ) is a complete lattice.� W is co-in�nite; that is, jV �W j =1.Henceforth we shall deal almost exclusively with nonlinear alphabets. As we have already seen thetheory of substitutions and (semi-)uni�ers is very di�erent for linear and nonlinear alphabets. In fact, thecase of term inequalities over linear alphabets is algebraically and computationally much simpler thanfor nonlinear alphabets. It is treated in [15] under the name pre�x inequalities.5.2 The Structure of Semi-Uni�ersIt is often quoted that most general uni�ers are unique \up to renaming of variables". As pointed out in[63] there are several distinct notions of what this innocuous-looking little phrase can be taken to mean.The most commonly used notion is strong equivalence (i.e., equivalence modulo �=V ). While di�erentnotions lead to a slightly di�erent structure of uni�ers for a given system of equations, they all admit theexistence of most general uni�ers, though most general uni�ers with respect to one notion (e.g., [113])are not necessarily most general with respect to another equivalence.The fact that there are most general uni�ers under any of the di�erent notions of renaming may haveprompted Chou to write that, similarly, \it is evident" that the most general semi-uni�er of an SEI isunique modulo strong equivalence, if it exists at all [15, page 11]. The breakdown in the analogy of thestructure of T=�= and S=�=V (see theorem 16 and the discussion before it), however, already suggests thatthis claim may not be true in general, and, indeed, it is incorrect.3 A weaker notion of equivalence (see,e.g. [113, chapter 4]), however, admits the existence of most general semi-uni�ers and an equivalent tothe main structure theorem for uni�ers.5.2.1 Strong EquivalenceStrong equivalence, �=V , corresponds to renaming of substitutions by composition of permutation substi-tutions; i.e., by substitutions � for which there is ��1 such that ����1 = ��1�� = �. Two substitutions�1 and �2 are strongly equivalent if and only if there is such a permutation substitution � such that� � �1 = �2. Strong equivalence has attracted a lot of attention because of its close connection toidempotent substitutions, which in turn are strongly related to systems of equations.In this subsection the terms \minimal" and \most general" always refer to �V .Strong Equivalence and Uni�ersWe recapitulate the most important result on the structure of uni�ers modulo strong equivalence from[26] (see also [63]). Note that every SEI has a minimal uni�er .4 This follows immediately from theorem3We feel tempted to say that, in view of theorem16, uniqueness of most general uni�ers with respect to strong equivalenceis a \lucky coincidence"; or, less dramatically, a very speci�c property of uni�cation that cannot simply be \transferred"to other problems; or, in more neutral terms, an outgrowth of the fact that the theory of uni�ers can be viewed as arepresentation theory for idempotent substitutions, which indeed form a lattice with respect to �V [26, theorem 4.9].4A uni�er � of an SEI S is minimal if for every other uni�er �0 of S it holds that �0 � � ) � � �0.59



14. We call a minimal uni�er � of S a most general uni�er of S if for all uni�ers � of S there is asubstitution � such that � � � = �.A substitution � is idempotent if it satis�es � � � = �. The set of proper idempotent substitutions isdenoted by IS(A; V ) (or just IS), and the set of all idempotent substitutions is denoted by IS!(A; V ) (orsimply IS!). The signi�cance of idempotent substitutions and their relation to uni�cation is summarizedin the main structure theorem of systems of equations.Theorem 17 1. Every system of equations S has a most general uni�er that is idempotent, and forevery idempotent substitution � there is a system of equations S0 such that � is a most generaluni�er of S0 (with respect to �V ).2. ((IS! \U(S))=�=V ;�V ) is a complete lattice for every system of equations S.Proof: By re�nement of the proof of theorem 4.9 in [26].Since there are substitutions that are not strongly equivalent to any idempotent substitution, we haveas a consequence of theorem 17 that there are substitutions in S that are not most general uni�ers. Forexample, fz1 7! f(z1); . . . ; zn 7! f(zn)g is not strongly equivalent to any idempotent substitution.Part 1 of theorem 17 expresses not only that every system of equations has a most general uni�er,but that there is always an idempotent most general substitution. An instance of the theorem is Eder'soriginal structure theorem for idempotent substitutions.Corollary 24 (IS!=�=V ;�V ) is a complete lattice.Proof: Consider S = () in theorem 17.Strong Equivalence and Semi-Uni�ersThe set of idempotent uni�ers of any system of equations forms a lattice. The fact that every system ofequations has an idempotent most general uni�er justi�es in some sense the restriction of considerationto idempotent substitutions and uni�ers, as is done from the outset in [104].In this subsection we show that idempotent substitutions and strong equivalence fail to capture thestructure of semi-uni�ers in a major way; namely,1. for any SEI S neither U(S) nor USU(S) nor SU(S) induce a lower or upper semi-lattice (under�V ).2. there are systems of equations and inequalities that have a most general semi-uni�er, but no idem-potent one;3. there are systems of equations and inequalities with no most general semi-uni�er;Proposition 25 For nonlinear A neither (U(S)=�=V ;�V ) nor (USU(S)=�=V ;�V ) nor (SU(S)=�=V ;�V )forms a lower or upper semi-lattice for any SEI S.Proof: Almost directly from the proofs of propositions 22 and 23.Proposition 26 For nonlinear A there is an in�nite family of SEI's S1; . . . ; Si; . . . such that, for alli 2 N , Si has uniform and nonuniform minimal semi-uni�ers �i1 and �i2, but �i1 6�=V �i2.60



Proof:Consider Si = (f(x1; . . . ; xi) � y). The substitutions�i1 = fy 7! f(u1; . . . ; ui)gand �i2 = fy 7! f(v1; . . . ; vi)gare minimal semi-uni�ers of Si since only for � = fg we have � <V �i1 or � <V �i2 and fgis not a semi-uni�er of Si. But there is no substitution � 2 S such that � � �i1 = �i2 or� � �i2 = �i1.Proposition 27 There is an in�nite family of SEI's S1; . . . ; Si; . . . such that, for all i 2 N , Si has amost general uniform and nonuniform semi-uni�er, but no idempotent one.Proof:Consider Si = (f(y1) � z1; . . . ; f(yi) � zi). The substitution�i = fz1 7! f(z1); . . . ; zi 7! f(zi)gand its �=V -equivalent substitutions are the only most general uniform and nonuniform uni�ersof Si. As we remarked earlier there is no idempotent substitution amongst them.The reason why S!;U(S);USU(S);SU(S) fail to be lattices under �V are intuitively rather patho-logical and cast some doubt on the appropriateness of choosing strong equivalence as the \proper" notionof renaming on substitutions for semi-uni�cation.5.2.2 Weak EquivalenceIn this section we de�ne an equivalence relation on substitutions relative to systems of equations andinequalities that is properly weaker than strong equivalence. We will show that this relation, weakequivalence, ties general substitutions and systems of equations and inequalities together just as strongequivalence ties idempotent substitutions and systems of equations together (theorem 17).De�nition 11 (Weak equivalence)Substitutions �1 and �2 are called weakly equivalent with respect to SEI S (or simply S-equivalent)if �1 �=V (S) �2.A k-ary context C[] is a term with k \holes" in it such that C[M1; . . . ;Mk] is the (complete) termwith the terms M1; . . . ;Mk in place of the holes in C[]. More formally, a k-ary context is a termC[] 2 T (A; V [MV ) where MV is a k-element set fy1; . . . ; ykg of meta-variables disjoint from V and F .For subsitution � : V [MV 7! T (A; V ); � = fy1 7!M1; . . . ; yk 7! Mkg the result of applying � to C isdenoted by C[M1; . . . ;Mk].Recall that (T
=�=;�) is a complete lattice with ^ and _ denoting the in�mum and supremumoperator, respectively.Lemma 28 There is an operation ^ : T � T 7! T such that61



1. [M ^N ] = [M ]^ [N ] for all M;N 2 T .2. C[M1; . . . ;Mk]^C[M 01; . . . ;M 0k] = C[M1^M 01; . . . ;Mk^M 0k] for all k, k-ary contexts C, and termsM1; . . . ;Mk and M 01; . . . ;M 0k.Proof:1. Consider the anti-uni�cation algorithm in Figure 5.1 and de�ne M ^N =mscai(M;N ).(See [46]; see also [63].)2. The de�nition of ^ has the property f(M )^ f(N ) = f(M ^N ) for every functor f . Theresult follows by structural induction on C[].For every operation that satis�es lemma 28, part 1, the following proposition holds.Proposition 29 For all terms M1;M2; N1; N2 2 T such that M1 � M2 and N1 � N2 it holds thatM1 ^N1 �M2 ^N2.For any SEI S, we call a (uniform) semi-uni�er � of S a most general (uniform) semi-uni�er of S iffor all (uniform) semi-uni�ers � of S there is a substitution � such that (� � �) jV (S)= � jV (S). Similarly,from now on a uni�er of S will be called most general if it is minimumwith respect to �V (S) instead of�V as in the previous section.Now we are ready to prove the main theorem of this section.Theorem 18 1. Every system of equations and inequalities S has a most general (uniform) semi-uni�er, and for every substitution � there is a system of equations and inequalities S0 such that �is a most general (uniform) semi-uni�er of S.2. (SU(S)=�=V (S) ;�V (S)) (as well as (USU(S)=�=V (S) ;�V (S)) and U(S)=�=V (S)) is a complete latticefor every system of equations and inequalities S.As an immediate consequence we haveCorollary 30 Every solvable SEI S has a most general idempotent semi-uni�er.Proof: (Proof of corollary)Take a most general semi-uni�er � of S. If V (S) = fx1; . . . ; xng de�ne �0 = fx1 7!x01; . . . ; xn 7! x0ng � � where x01; . . . ; x0n are pairwise distinct variables not occurring in S.Then �0 is idempotent and a most general semi-uni�er of S.The theorem can be strengthened and still holds if we replace �=V (S) (weak equivalence) and �V (S)by �=W and �W , respectively, where W is any co-in�nite subset of V containing V (S). This strengthenedversion of theorem 18, part 2, implies theorem 16 (let S = ()).Proof: (Proof of theorem)For part 2, since every complete semi-lattice is automatically a complete lattice and sinceevery Noetherian lower semi-lattice is a complete lower semi-lattice, it is su�cient to showthat (SU(S)=�=V (S) ;�V (S)) is a lower semi-lattice.Let �1 and �2 be semi-uni�ers of S. Let x1; . . . ; xk be the set V (S) of variables occurringin S. Denote �1(xi) by Mi and �2(xi) by Ni for 1 � i � k. Now de�ne � = fx1 7!M1 ^N1; . . . ; xk 7!Mk ^Nkg with ^ de�ned as in lemma 28.62



First we show that � is a semi-uni�er of S. Without loss of generality (see proof of proposition1) we can assume that S consists of one equation and n inequalities. There are contextsC0; C1; . . . ; Cn and C 00; C 01; . . . ; C 0n such that S is equal to� C0[x1; . . . ; xk] = C 00[x1; . . . ; xk] 	 (equation)8<: C1[x1; . . . ; xk] � C 01[x1; . . . ; xk]. . .Cn[x1; . . . ; xk] � C 0n[x1; . . . ; xk] 9=; (inequalities)By assumption both �1 and �2 are semi-uni�ers of S, and soC0[M1; . . . ;Mk] = C 00[M1; . . . ;Mk]C1[M1; . . . ;Mk] � C 01[M1; . . . ;Mk]. . .Cn[M1; . . . ;Mk] � C 0n[M1; . . . ;Mk]holds as well as C0[N1; . . . ; Nk] = C 00[N1; . . . ; Nk]C1[N1; . . . ; Nk] � C 01[N1; . . . ; Nk]. . .Cn[N1; . . . ; Nk] � C 0n[N1; . . . ; Nk]By proposition 29 this implies thatC0[M1; . . . ;Mk]^C0[N1; . . . ; Nk] = C 00[M1; . . . ;Mk]^C 00[N1; . . . ; Nk]C1[M1; . . . ;Mk]^C1[N1; . . . ; Nk] � C 01[M1; . . . ;Mk]^C 01[N1; . . . ; Nk]. . .Cn[M1; . . . ;Mk]^Cn[N1; . . . ; Nk] � C 0n[M1; . . . ;Mk]^C 0n[N1; . . . ; Nk]holds, and by lemma 28, part 2, we conclude thatC0[M1 ^N1; . . . ;Mk ^Nk] = C 00[M1 ^N1; . . . ;Mk ^Nk]C1[M1 ^N1; . . . ;Mk ^Nk] � C 01[M1 ^N1; . . . ;Mk ^Nk]. . .Cn[M1 ^N1; . . . ;Mk ^Nk] � C 0n[M1 ^N1; . . . ;Mk ^Nk]holds true. This, in turn, shows that � is a semi-uni�er of S.We now show that any other semi-uni�er �0 that is a lower bound of both �1 and �2 isalso a lower bound of �. De�ne �0(xi) = Li for 1 � i � k. Since �0 is a lower boundof �1 (with respect to �V (S)) it holds that [L1; . . . ; Lk] � [M1; . . . ;Mk] for some arbitraryfunctor [. . .] written in bracket-notation; similarly, [L1; . . . ; Lk] � [N1; . . . ; Nk]. Consequently,[L1; . . . ; Lk] � [M1; . . . ;Mk] ^ [N1; . . . ; Nk] and, by lemma 28, part 2, we have [L1; . . . ; Lk] �63



[M1 ^ N1; . . . ;Mk ^ Nk]; i.e., there is a substitution � such that �([L1; . . . ; Lk] = [M1 ^N1; . . . ;Mk ^ Nk]. But this immediately implies �(�0(xi)) = �(xi) for 1 � i � k, and thus�0 �V (S) �.Part 2 implies one half of part 1, that every system of equations and inequalities has a mostgeneral semi-uni�er. Conversely, let � be an arbitrary substitution. If � = ! then clearly� is a most general semi-uni�er of ff(x) = xg. If � = fx1 7! M1; . . . ; xk 7! Mkg let� = fx1 7! x01; . . . ; xk 7! x0kg where x01; . . . ; x0k are pairwise distinct variables disjoint fromx1; . . . ; xk. Now de�ne S = f�(M1) � x1; . . . ; �(Mk) � xkg. Clearly, � is a most generalsemi-uni�er of S.There are more constructive proofs of the uniqueness of most general semi-uni�ers modulo weakequivalence, but they do not yield the powerful structure theorem 18. The algorithmic speci�cations(functional, rewriting, and graph-theoretic) for computing most general semi-uni�ers in chapter 6, forexample, can be turned independently into proofs of the existence of most general semi-uni�ers. In facttheir proofs of correctness constitute alternative proofs, although additional care is necessary since thespeci�cations may not be uniformly terminating.5.3 The Structure of Typings and Typing DerivationsIt is interesting that the main structure theorem for semi-uni�ers, theorem 18, yields a \simultaneous"proof of the principal typing property of CH, DM, MM, and FMM via the reduction in theorem 8 ofchapter 4. Something even stronger can be said about typings and their derivations in the syntax-orientedversions of our type disciplines since the reduction in theorem 8 translates every typing derivation into asolution of the corresponding semi-uni�cation problem instance.Consider a substitution on monotypes, S : TV ! M . S can be applied to a polytype � by simulta-neously replacing only the free variables in � all the while renaming bound type variables in � to avoidcapture of (necessarily free) type variables from S. Such a substitution can thus be extended to typeassignments, S(A)(x) = S(A(x)); x 2 dom A, to typings, S(A � e : �) = S(A) � e : S(�) and towhole derivation trees. We can also extend the generic instance preordering on polytypes of chapter 2,�1 v �2, to type assignments by A v A0 , (8x 2 domA) A(x) v A0(x). Finally, we de�ne the relation(A � e : �) � (A0 � e0 : �0): it holds if and only if there is a substitution S such that1. S(A) v A0,2. e = e0,3. S(�) v �0.Finally for two proof trees (in a �xed typing calculus), P and P 0, we de�ne P � P 0 if P and P 0 arestructurally isomorphic and there is a substitution S such that (A � e : �) � (A0 � e0 : �0) holds forevery corresponding pair of typings (A � e : �) 2 P and (A0 � e0 : �0) 2 P 0. Clearly � de�nes a preorderthat induces canonically a partial order, also denoted by �.Corollary 31 Let X = CH, DM, MM, or FMM, and let X' denote the syntax-oriented version of X. Forany expression e 2 � that is X-typable,1. the set of derivable typings for e in X, respectively X', forms a complete lattice w.r.t. the partialorder � on typings;2. the set of all proof trees for e in X' forms a complete lattice w.r.t. the partial order � on prooftrees. 64



Proof: Because of theorem 5 part (2) implies part (1). An inspection of the proofs oftheorems 6 and 7 reveals that proof trees for e and solutions of the canonical system ofequations and inequalities SEI(e) are in a one-one correspondence and the composition ofthe two reductions is strongly monotonic in the sense that if P and P 0 are derivations for eand S and S0 are the corresponding semi-uni�ers of SEI(e) then P � P 0 , S � S0.The �rst part of this corollary implies that there is a least typing A � e : � for every typable e. Thiscan be read as a generalized principal typing property since it is not relative to a �xed type assignment[23]. The second part may have practical applications in an incremental compiler: it should be quitepractical to maintain the principal type information with any well-de�ned program fragment and performa \meet"-operation with new type information once it is available. The corollary certi�es that this isalways possible (see also [74]).
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Chapter 6Algorithmic Speci�cation of MostGeneral Semi-Uni�ersIn chapter 4 we showed that semi-uni�cation is at the heart of polymorphic type inference in the MycroftCalculus. In chapter 5 we saw that every system of equations and inequalities (SEI) has a most generalsemi-uni�er, which is unique up to weak equivalence. In this chapter we address the problem of computingmost general semi-uni�ers. It appears natural to expect that in order to solve the decision problem ofsemi-uni�ability it is essentially necessary to compute most general semi-uni�ers since they represent theleast commitment to substitution decisions. It is interesting then to see that Kapur et al. achieve apolynomial-time algorithm for uniform semi-uni�cation by exploiting a property that makes it possibleto \abandon" most general (uniform) semi-uni�ers and compute a more speci�c semi-uni�er. This ispossible because the more speci�c semi-uni�er is guaranteed to exist if and only if the most general semi-uni�er exists, which is the case if and only if there is any (uniform) semi-uni�er at all. This property doesnot hold for two or more inequalities, and hence computing most general semi-uni�ers seems the bestapproach for obtaining a correct decision algorithm for semi-uni�cation. The functional problem of semi-uni�cation | computing a most general semi-uni�er | is of independent importance in its application intype inference. In ML, for example, a program that is submitted for type checking is annotated with typeinformation, its principal type. We would also like to have complete type information for all the programfragments making up the whole program. This amounts to computing the most general semi-uni�er of theSEI encoding the typing constraints of the program and printing it out as an annotation of the program.We present three algorithmic speci�cations for computing the most general semi-uni�er of an SEI inthis chapter. The �rst one is a functional speci�cation that is proved partially correct by �xed pointinduction. The second one is an SEI-rewriting speci�cation whose partial correctness follows from asoundness and completeness theorem that shows that the class of solutions is invariant under rewritings.The third speci�cation is a graph-theoretic version of the SEI-rewriting speci�cation. Its encoding of SEI'sby arrow graphs, which are term graphs with some additional structure, not only saves execution time andspace over the SEI-rewriting formulation, it also seems more appropriate for analyzing its terminationproperties since all these speci�cations make use of a basically \nonlocal" failure criterion called theextended occurs check. These three speci�cations can be viewed as manifestations (or implementations)of one abstract algorithm. We conjecture that this algorithm is uniformly terminating, and that thussemi-uni�cation and the Mycroft Calculus are decidable.We have been implicitly suggesting that it is acceptable to talk about type inference and semi-uni�cation interchangeably. This informality may be unwarranted if the reduction of type inference tosemi-uni�cation, as in chapter 4, needs to be done \o�-line", as a proper preprocessing step to semi-66



uni�cation, since this would be very undesirable in an interactive environment. Fortunately, it is quiteeasy to see that this reduction can be done \on-line", just as lexical, syntax, and semantic analysis incompilers can usually be \jammed" to a large degree. This enables compilers to operate in interactiveand incrementable environments. Since a \direct" syntax-oriented type inference algorithm, based onalgorithm A, is quite easy to obtain, yet raises a di�erent set of issues that are more practical thanthose addressed in this thesis, we shall refrain from delving into details and only present algorithmicspeci�cations for semi-uni�cation.6.1 Functional Speci�cationWe now provide a functional speci�cation of a most general semi-uni�er of an SEI S, which we provepartially correct. W.l.o.g. we may assume that SEI's have at most one equation and at most oneinequality per inequality group and that the SEI's are over alphabet A2. We start with some de�nitionsand notational conventions used later.De�nition 12 1. A k-dimensional constraint mapping R is a sequence (R1; . . . ; Rk) of �nite mapsfrom V to T that are unde�ned almost everywhere.1 The domainD(Ri) of Ri is the set of variablesx for which Ri(x) is de�ned.2 A component of a constraint mapping can be applied to a term � 2 Tby recursively applying it to the subterms of � as long as it is de�ned for every variable occurringin � ; otherwise, the result is unde�ned.2. Let R = (R1; . . . ; Rk) and R0 = (R01; . . . ; R0k) be constraint mappings; let �1; �2 2 T be terms. Asubstitution U is an R-compatible semi-uni�er in the i-th dimension (R-compatible uni�er) of �1and �2 via R0 if 3(a) R0i(U (�1)) = U (�2)(respectively, U (�1) = U (�2))(b) (8j 2 f1; . . . ; kg)(8x 2 D(Rj))R0j(U (x)) = U (Rj(x))In the mutually recursive function speci�cations V (Figure 6.1) and U (Figure 6.2) we use quitestandard notational conventions from both ALGOL-like and functional languages. Some notations arespeci�c to our applications domain, though. Rifx : �2g means the same thing for constraint mappings asit does for type environments: it denotes the constraint mapping identical to R with the only (possible)di�erence that Rifx : �2g(x) is �2 no matter whether Ri(x) is de�ned or unde�ned. The function \new"takes two arguments, a term �1 and a set of variables �. It returns a term � 01 that is obtained from �1by replacing all variables in �1 with variables not in �; for convenience, it also returns the set of newvariables thus introduced.4 The operator � denotes functional composition.The function V takes �ve arguments: a set of variables �, an index i between 1 and k, a k-dimensionalconstraint mapping R, and two terms �1 and �2. U takes the same arguments except for the index. Bothfunctions return a substitution and a (new) constraint mapping. In both cases the �rst argument, �, isonly there for technical reasons to facilitate a \true" functional speci�cation (and the correctness proofof the following lemma). For all practical purposes, a LISP-like \gensym" function used inside of thefunction \new" would be su�cient (and preferable). For simplicity both V and U are formulated for thefunctors f and c with arities 2 and 0, respectively.Without going into too much detail we interpret the de�nitions of V and U as the least �xed pointsover suitable 
at domains or, more prosaically, by any one of a number of computation rules (c. f. [71]).1Recall that T = T (A2; V ).2Note the di�erence between the domain of a substitution, which is de�ned everywhere, and a component of a constraintmapping, which is unde�ned almost everywhere.3The order of �1 and �2 is signi�cant for the de�nition of R-compatible semi-uni�ers, but not for uni�ers.4Any function with these properties will do in place of \new". In fact, \new" encapsulates the nondeterminism of theproblem (most general semi-uni�ers are only unique up to weak equivalence) in this deterministic speci�cation.67



V (�; i; R; �1; �2) =if �1 = x (variable) thenif Ri(x) is unde�ned then(fg; Rifx : �2g)else U (�; R;Ri(x); �2)�elseif �2 = y (variable) thenif (9v 2 R�(y))�1 contains v thenERROR: occurs-checkelse let (� 01;�0) = new(�; �1) inlet (U1; R1) = V (� [�0; i; R; �1; � 01) inlet (U2; R2) = U (U1(�); R1; U1(y); U1(� 01)) in(U2 � U1; R2)�elseif �1 = �2 = c (constant) then(fg; R)elseif �1 = f(�1;  1); �2 = f(�2;  2) thenlet (U1; R1) = V (�; i; R; �1; �2) inlet (U2; R2) = V (U1(�); i; R1; U1( 1); U1( 2)) in(U2 � U1; R2)else ERROR: functor clash�R�(y) =the least X j fyg � X and(8x 2 X)(8i 2 f1; 2; . . .kg)Ri(x) is a variable) Ri(x) 2 XFigure 6.1: Functional speci�cation of V68



U (�; R; �1; �2) =let (�1; �2) =if �2 = y (variable) then(�2; �1)else (�1; �2) inif �1 = x (variable) thenif x = �2 then(fg; R)elseif �2 contains x thenERROR: occurs-checkelse (Ut; Rt) := (fx : �2g; fx : �2g(R));for i = 1 to k doif Ri(x) is de�ned then(Ut0 ; Rt0) := V (Ut(�); i; Rt; Ut(�2); Ut(Ri(x)));(Ut; Rt) := (Ut0 � Ut; Rt0);�rof;(Ut; Rt)elseif �1 = �2 = c (constant) then(fg; R)elseif �1 = f(�1;  1); �2 = f(�2;  2) thenlet (U1; R1) = U (�; R; �1; �2) inlet (U2; R2) = U (U1(�); R1; U1( 1); U1( 2)) in(U2 � U1; R2)else ERROR: functor clash� Figure 6.2: Almost-functional speci�cation of U69



W (S) = (Assume S = (�0 = � 00; �1 � � 01; . . . ; �k � � 0k))(Ut; Rt) := (fg; (fg; . . . ; fg| {z }ktimes ));(Ut; Rt) := U (vars(S;Rt; �0; � 00);for i = 1 to k do(Ut0 ; Rt0) := V (Ut(�); i; Rt; �i; � 0i);(Ut; Rt) := (Ut0 � Ut; Rt0);rof;return Ut;Figure 6.3: Pseudo-functional speci�cation of most general semi-uni�erLemma 32 Let �1; �2 2 T be terms. Let � be a recursive subset of V containing all variables occurringin �1 and �2 such that V � � is in�nite. Let R be a constraint mapping.1. If V (�; i; R; �1; �2) terminates with an error, then there is no R-compatible semi-uni�er in the i-th dimension of �1 and �2. If (U 0; R0) = V (�; i; R; �1; �2) terminates without error, then U 0 is a�-maximal R-compatible semi-uni�er in the i-th dimension (via R0) of �1 and �2; that is,(a) R0i(U 0(�1)) = U 0(�2)(b) (8i 2 f1; . . . ; kg)(8x 2 D(Ri))R0i(U (x)) = U (Ri(x))(c) For any R-compatible semi-uni�er T in the i-th dimension of �1 and �2 there is a substitutionS such that (8x 2 �)S(U 0(x)) = T (x)2. If U (�; R; �1; �2) terminates with an error, then there is no R-compatible uni�er of �1 and �2. If(U 0; R0) = U (�; R; �1; �2) terminates without error, then U 0 is a �-maximal R-compatible uni�er(via R0) of �1 and �2; that is,(a) U 0(�1) = U 0(�2)(b) (8i 2 f1; . . . ; kg)(8x 2 D(Ri))R0i(U (x)) = U (Ri(x))(c) For any R-compatible uni�er T of �1 and �2 there is a substitution S such that (8x 2�)S(U 0(x)) = T (x)The proof of this lemma is by simultaneous computational induction over the de�nitions of V andU . Its details are truly tedious, but they are available as a manuscript [35]. The constraint mapping Rpassed as an argument to V and U encodes the inequational constraints encountered during the courseof the computation. Any further substitution has to be compatible with these constraints in the sensethat they must preserve these inequational constraints. This \preservation" of constraints is captured inthe notion of R-compatible semi-uni�ers and uni�ers. The lemma states that V and U return the mostgeneral semi-uni�ers and uni�ers, respectively, that are compatible with the input constraints R. Fromthis lemma we obtain immediately a routine W (see �gure 6.3) that computes a most general semi-uni�erfor every \normal form" SEI S with at most one equation and one inequality per inequality group.Theorem 19 Let S be a system of equations and inequalities consisting of singleton sets only.If W (S) does not terminate or terminates with an error then S has no solution. If U 0 = W (S)terminates without error then U 0 is a most general semi-uni�er of S.70



This speci�cation has already appeared in [38]. We have also implemented it in SETL [108] and testedit on several examples.6.2 SEI-Rewriting Speci�cationsIn this section we present basic, implementable rewriting speci�cations for most general semi-uni�ers. The�rst is a natural and straightforward extension of the rewriting speci�cation for most general uni�ers from[39], which was expounded by Martelli and Montanari and used as the starting point for the developmentof e�cient uni�cation algorithms [72]. This system is in general, though, nonterminating. The secondrewriting speci�cation re�nes the �rst one by adding an \extended" occurs check. It is conjectured to beuniformly terminating.6.2.1 The Naive Rewriting Speci�cationThe �rst speci�cation, given in Figure 6.4 is straightforward, and similar versions can be found in theliterature (e.g., [15]). This rewriting system preserves semi-uni�ers in a sense that we shall make precisebelow.De�nition 13 Let ) be a reduction relation on systems of equations and inequalities.1. The relation ) is sound if for every S; S0 such that S ) S0 and for every semi-uni�er �0 of S0there is a semi-uni�er � of S such that � jV (S)= �0 jV (S) (and thus � �=V (S) �0).2. The relation ) is complete if for every S; S0 such that S ) S0 and for every semi-uni�er � of Sthere is a semi-uni�er �0 of S0 such that � jV (S)= �0 jV (S) (and thus � �=V (S) �0).Informally speaking, soundness expresses that a reduction step does not add semi-uni�ers, and com-pleteness means that no semi-uni�ers are lost in a reduction step.Proposition 33 The reduction relation de�ned by the naive rewriting system (in Figure 6.4) is soundand complete.Proof: Induction on the number of rewriting steps.Any SEI S is in normal form with respect to a reduction relation) if there is no S0 such that S ) S0.If an SEI is in normal form with respect to the naive rewriting system or the canonical rewriting systembelow it is easy to extract a most general semi-uni�er from it.Proposition 34 Let S be a system of equations and inequalities in normal form with respect to thereduction relation de�ned by the naive (canonical) rewriting system in Figure 6.4.If S = fx1 =M1; . . . ; xk =Mk; y1 � N1; . . . ; yl � Nlg then the substitution � = fx1 7!M1; . . . ; xk 7!Mkg is a most general idempotent semi-uni�er of S.Proof: By inspection.To determine a most general semi-uni�er of an SEI S we can apply the naive rewriting system to itand if it terminates in a normal form S0 we can extract a most general semi-uni�er of S0. If S0 = 2 thenS is unsolvable; otherwise there is a most general semi-uni�er �0 of S0 according to proposition 34. As aresult of proposition 33 the restriction �0 jV (S) (or �0 itself) is a most general semi-uni�er of S.71



Given an SEI S with k sets of inequalities we initially tag all the inequality symbols with distinct\colors" 1; . . . ; k to indicate to which group of inequalities they belong. This is done by superscriptsof the inequality symbol; e.g., �(1) Then nondeterministically choose an equation or inequality andtake a rewriting action depending on its form.a1. f(M1; . . . ;Mk) = f(N1; . . . ; Nk):Replace by the equations M1 = N1; . . . ;Mk =Mk.2. f(M1; . . . ;Mk) = g(N1; . . . ; Nl) where f and g are distinct functors:Replace current SEI by 2 (functor clash).3. f(M1; . . . ;Mk) = x:Replace by x = f(M1; . . . ;Mm).4. x = f(M1; . . . ;Mk) where x occurs in at least one of M1; . . . ;Mk:Replace current SEI by 2 (occurs check).5. x =M where x does not occur in M , but occurs in another equation or inequality:Replace x by M in all other equations or inequalities.6. x = x:Delete it.7. f(M1; . . . ;Mk) �(i) f(N1; . . . ; Nk):Replace by inequalities M1 �(i) N1; . . . ;Mk �(i) Mk.8. x �(i) M and x �(i) N :Delete one of the two inequalities and add the equation M = N .9. f(M1; . . . ;Mk) �(i) x:Add the equation x = f(x01; . . . ; x0k) where x01; . . . ; x0k are new variables not occurring anywhereelse.aWithout loss of generality we restrict ourselves to the minimal nonlinear alphabetA = (f;ff 7! 2g). Recall that2 denotes the canonical unsolvable SEI.Figure 6.4: Naive rewriting speci�cation72



(9.1) f(M1; . . . ;Mk) �(i0) x and there are variables x0; . . . ; xn such that x = x0, xi �(ji) xi+1 areinequalities in the current SEI for 0 � i � n� 1 and some colors i1; . . . ; in�1, and there existsan i such that xn occurs in Mi:Replace current SEI by 2 (extended occurs check).(9.2) f(M1; . . . ;Mk) �(i0) x and there is no sequence of variables x0; . . . ; xn such that x = x0,xi �(ji) xi+1 are inequalities in the current SEI for 0 � i � n�1 and some colors j1; . . . ; jn�1,and xn occurs in some Mi:Add the equation x = f(x01; . . . ; x0k) where x01; . . . ; x0k are new variables not occurring anywhereelse. Figure 6.5: Extended occurs check6.2.2 The Canonical Rewriting Speci�cationThere are systems of equations and inequalities for which there is no �nite rewriting derivation in thenaive rewriting system; that is, no sequence of rewriting steps such that after a �nite number of steps nomore rewritings are possible. Consider, for example, the system S0 = ff(x; g(y)) � f(y; x)g. It is easyto see that there is always at least one rule applicable.The main reason for nontermination is that the last inequality rule, rule (9), introduces new variablesevery time it is executed. Replacing it with the deceivingly pleasing rule [97]f(M1; . . . ;Mk) � x:Add the equation x = f(M1; . . . ;Mk).indeed eliminates the nontermination problem of rewriting derivations, but also its completeness. To seethis, consider, for example, the system S1 = (f(g(y); g(y)) � f(x; g(g(y)))). There is a derivation thatwould lead us to claim, incorrectly, that S1 has no semi-uni�ers.If we reconsider system S0 it is easy to see that it is unsolvable. This is due to the fact that theinequalities g(y) � xx � yare not uniformly or nonuniformly solvable. If we denote the length of a term M by jM j, then anysolution M1 for x and M2 for y would have to satisfy the numeric inequalities jM1j � jM2j and jM1j �jg(M2)j � jM2j + 1, which is clearly impossible. We can catch this case by re�ning rule (9) with an\extended" occurs check. More precisely, let us call the rewriting system with rule (9) replaced by therules in Figure 6.5 the canonical rewriting system.Proposition 35 The reduction relation de�ned by the rewriting system in Figure 6.4 with rule (9) re-placed by the rules (9.1) and (9.2) from Figure 6.5 is sound and complete.Proof: See discussion of system S0.For any reduction relation)with a notion of normal form, an e�ective (one-step) normalizing strategyis a polynomial-time computable function F such that if F (S) = S then S is a normal form and, otherwise,if F (S) = S0 then S ) S0; and furthermore, if S �) S0, S0 a normal form, then Fn(S) = Fn+1(S) forsome n 2 N .Even though there are still in�nite rewriting derivations possible in the canonical rewriting system weconjecture that there is an e�ective normalizing strategy for the canonical rewriting system.73



Conjecture 1 There exists an e�ective normalizing strategy for the canonical rewriting system such thatthe strategy admits only �nite rewriting derivations.In fact we believe that any strategy that executes rule (9.2) only if there are no other rules applicablesatis�es this conjecture (see chapter 7).An immediate consequence of this conjecture is the decidability of semi-uni�cation.Conjecture 2 The set of all solvable systems of equations and inequalities is decidable.6.3 Graph Rewriting Speci�cationIt is probably easier to analyze the extended occurs check in both the functional speci�cation and theSEI-rewriting speci�cation in a graph-theoretic setting since it is a (syntactically) nonlocal condition.This formulation is a good starting point for both the analysis of termination properties, for practicalimplementations, and for optimizations for subcases of general semi-uni�cation, such as uniform semi-uni�cation.6.3.1 Arrow graphsRecall that term graphs are (nonunique) representations for sets of terms. Arrow graphs are term graphswith additional structure to represent SEI's.De�nition 14 A (k-colored) arrow graph G is a sextuple (N;NF ; E; L;A;�) where jGj = (N;NF ; E; L)is a term graph (over A2), A = (A1; . . . ; Ak) is a k-tuple, Ai � N �N , for 1 � i � k; the elements of Aiare called arrows; and � is an equivalence relation on N .We can think of an arrow in A as colored by 1; . . . ; k indicating to which Ai it belongs. We may writem i! n for (m;n) 2 Ai whenever A and Ai are understood from the context.An arrow graph representation of SEI S = (M0 = N0;M1 � N1; . . . ;Mk . . .Nk) is a an arrow graphG whose underlying term graph, jGj, represents all the terms occurring in S; G contains arrows mi i! niif [mi] =Mi; [ni] = Ni for 1 � i � k; and � in G is the smallest equivalence relation containing m0 � n0if [m0] = M0; [n0] = N0. In other words, the colored arrows encode inequalities, and the equivalencerelation encodes equations.Let A = A2 be the usual ranked alphabet.De�nition 15 An interpretation I of an arrow graph G = (N;NF ; L;E;A;�) is a mapping of nodes to�rst-order terms (with variables) over the ranked alphabet A. I is valid if there exist quotient substitutionsR1; . . . ; Rk such that1. (8n 2 NF ; n1; n2 2 N ) L(n) = f;E(n) = (n1; n2)) I(n) = f(I(n1); I(n2));2. (8n; n0 2 N ) n � n0 ) I(n) = I(n0);3. (8n; n0 2 N; 1 � i � k) n i! n0 ) Ri(I(n)) = I(n0).It is easy to see that an SEI S has a semi-uni�er if and only if G, an arrow graph representation ofS, has a valid interpretation. 74



Let G = (N;NF ; E; L;A;�). Apply the following rules (depicted also in Figure 6.7)until convergence:1. If there exist nodes m and n labeled with a functor f and with children m1;m2and n1; n2, respectively, such that m � n then merge the equivalence classes ofm1 and n1 and of m2 and n2.2. If there exist nodes m and n labeled with a functor f and with children m1;m2and n1; n2, respectively, such that m i! n then place arrows m1 i! n1 andm2 i! n2.3. If there exist nodes m1, m2, n1, and n2 such that(a) m1 � n1, m1 i! m2 and n1 i! n2 then merge the equivalence classes of m2and n2;(b) m1 � n1, m1 i! m2 and m2 � n2 then place an arrow n1 i! n2.4. (a) (Extended occurs check) If there is an path consisting of arrows of any color(arrow path) from n1 to n2 and n2 is a proper descendant of n1, then reduceto the improper arrow graph 2.(b) If the extended occurs check is not applicable and there exist nodes m andn such that m is labeled with functor f and has children m1;m2, n is notequivalent to a functor labeled node, and there is an arrow m i! n thencreate new nodes n0; n01; n02 (each initially in their own equivalence class)and label n0 with functor f , label n01 and n02 with new variables x0 andx00, respectively; make n01; n02 the children of n0; and merge the equivalenceclasses of n and n0.Figure 6.6: Algorithm A6.3.2 Algorithm AAlgorithm A in Figure 6.6 applies the closure rules depicted in Figure 6.7, repeatedly rewriting the initialarrow graph representation of an SEI S until the arrow graph does not change any more.An equivalence relation on the nodes of a term graph can be interpreted as a substitution relative to asystem of (equivalence class) representatives as long as the equivalence relation is a structural equivalence,i.e., satis�es closure rule 1 and does not trigger rule 4a. This correspondence has been widely used ingraph-theoretic formulations of uni�cation algorithms (c. f. [89]), and we will refrain from making itprecise here.Proposition 36 Let G be an arrow graph representation of SEI S. If algorithm A (Figure 6.6) terminateson input G with an arrow graph G0 6= 2, then the resulting equivalence relation represents a most generalsemi-uni�er of S. If G0 = 2 then S is unsolvable.Proof:Every graph rewriting step corresponds to SEI rewriting steps in the canonical rewritingsystem in Figure 6.4 with the extended occurs check rules from Figure 6.5 replacing rule(9) on the terms represented by the term graph jGj, and vice versa. By proposition 35 thecanonical SEI-rewriting system computes a most general semi-uni�er.75
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In contrast to Mycroft's original type inference algorithm for the Mycroft Calculus there are noknown inputs that lead to nontermination of algorithm A. Nonetheless it is currently unknown whetheralgorithm A terminates uniformly or whether there is any uniformly terminating algorithm for semi-uni�ability at all. Since we conjecture that both questions have an a�rmative answer, we believe thatkey to the establishment of this result is an in-depth investigation of the deep structure of sequences ofarrow graphs that arise from the (nondeterministic) execution of algorithm A. For this reason we call asequence G = (G1; . . . ; Gi; . . . ; ) of arrow graphs an execution (of algorithm A) if every component in thesequence is derived from its predecessor by one of the rewriting rules in Figure 6.6, respectively Figure6.7. Some elementary approaches and preliminary results are reported in chapter 7.6.4 Arithmetic Compression for Uniform Semi-Uni�cationFor uniform semi-uni�cation we will show that it is possible to establish decidability. In fact algorithmA (Figure 6.6) terminates uniformly for every input in exponential time and space if the initial arrowgraph is only 1-colored (see below). By a form of \arithmetic" compression it is possible to computemost general uniform semi-uni�ers in polynomial space, as shown in this chapter. The decidability ofuniform semi-uni�cation has also been discovered by Pudl�ak [96]. If it is only desired to decide uniformsemi-uni�ability it is possible to simplify the algorithm and run it in polynomial time by a result of Kapuret al. [54].6.4.1 An exponential time algorithm for uniform semi-uni�cationIt can be shown that algorithm A terminates in exponential time for uniform semi-uni�cation under adeterministic rewriting strategy we shall describe below. It is inspired by normalized executions, in whichrule 4 of algorithm A is only executed when none of the other rules are applicable. What permits arelatively simple termination proof (and the exponential upper bound) is that, for arrow graphs of onecolor, for every node without an outarrow there can be at most one \new" node created by execution ofrule 4. This property does not hold for arrow graphs with two or more colors.Proposition 37 The algorithm \solve" in Figure 6.8 is an exponential-time uniform semi-uni�cationalgorithm.Proof:Let us say a discrepancy in an arrow graph is a node where rule 4 can be applied; i.e., it isa functor node n with an outarrow to variable node n0 that is not equivalent to any functornode. We associate with every arrow graph G of one color the triple (ew=o; w; e), called thecharacteristic of G, where1. ew=o is the number of equivalence classes in G that has no node with an outarrow (i.e.,for no node n in the equivalence class is there an arrow n 1! n0 for any n0);2. w is the number of equivalence classes that contain only variable nodes at least one ofwhich is reachable from a discrepancy via an arrow path (discrepancy weight);3. e is the number of equivalence classes.These triples are lexicographically well-ordered.The procedure \solve" in Figure 6.8 implements a speci�c strategy for applying the closurerules of algorithm A. In particular, rules 1 and 3, which merge equivalence classes, are alwaysapplied exhaustively after any of the other steps as a \normalization" step. Furthermore, when77



rule 4 is applicable at some discrepancy n then it is clear that it can be applied recursivelyat every descendant of n after execution of rule 2 at node n, until the variable leaves of nare reached; this is accomplished by the procedure \copy". Since every new node created bycopy(n) is not a descendant of n, it is easy to see that an invocation of copy(n) creates k newnodes, if n has k descendants (descendant equivalence classes) with no outarrow at the timecopy(n) is called.Let us call exhaustive application of rules 1 and 3 a normalization step. We call merging anequivalence class with an outarrow and an equivalence class without an outarrow a skewedmerge.Now note that the exhaustive application of rules 1 and 3, if applicable at least once, decreasesthe number of equivalence classes at least by one. Furthermore, if normalization contains askewed merge, then the discrepancy weight, w, may be increased, but the number of equiva-lence classes without an outarrow, ew=o, is decreased by at least one. If normalization containsno skewed merge, the number of equivalence classes reachable from any discrepancy does notincrease and, consequently, the discrepancy weight does not increase, either. In all cases thetotal number of equivalence classes does not increase.Application of rule 2 with subsequent normalization leads to consideration of two cases: eitherthe tail of the new arrow propagated has already an outarrow, or it does not. In the �rstcase, clearly ew=o is decreased by one. In the second case e is properly decreased, and thereare two possibilities to consider depending on whether the normalization contains a skewedmerge. If a skewed merge occurs, ew=o is properly decreased. If no skewed merge occurs, itcan be seen that the discrepancy weight is not increased.Finally, a discrepancy n is minimal if there is no discrepancy n0, a sequence of nodes n1; . . . ; nksuch that n0 = n1; n = nk and ni 1! ni+1 or ni is a child of ni+1 for 1 � i � k � 1 with theadditional constraint that there is a j such that nj is a child of nj+1 (see chapter 7). If thereis a discrepancy, but no minimal one, then reduction to 2 is performed, since this correspondsto a \preemptive" application of the extended occurs check. If a minimal discrepancy exists,then rule 4b is applicable at a minimal discrepancy (there may be several minimal discrepan-cies). Instead of applying rule 4b only once algorithm \solve" applies routine \copy", which isan exhaustive application of rule 4b to the original discrepancy and, recursively, all its descen-dants, facilitated by intermediate applications of rule 2 and 3. Application of \copy" to thechildren of a minimal discrepancy terminates in time O(ew=o) and decreases the discrepancyweight by one. Although e is properly increased, ew=o is not.5This shows that every iteration through the loop strictly decreases the characteristic of therewritten arrow graph. Consequently the procedure solve terminates uniformly. Furthermore,since w is bounded by e, and e is only increased by execution of \copy", it can be seen thate at most doubles every time ew=o decreases by one. Clearly every iteration of the loop in\solve" is executed in polynomial time with respect to the size (number of nodes) of the arrowgraph before the iteration. This shows that solve(G) terminates in exponential time; i.e., intime O(2cnk), for some c; k, where n is the number of nodes in G.5The fact that ew=o is not increased by application of \copy" is at heart of why this termination proof works for uniformsemi-uni�cation, but not for general semi-uni�cation. 78



Recall the closure rules of algorithm A, Figure 6.6, also depicted in Figure 6.7.solve(G) =repeatapply rules 1 and 3 exhaustively;if rule 2 is applicable thenapply it (once);else if rule 4 is applicable thenif there is a minimal discrepancy n then(L(n) = f;E(n) = (n1; n2))create a new functor node n0, L(n0) = f ,with children copy(n1) and copy(n2);place an arrow from n to n0;else reduce to 2 (extended occurs check);end ifend ifuntil no more rules are applicable;copy(n) =if n has an outarrow to some node n0 thenreturn n0;else if n is equivalent to a functor node n0,L(n0) = f;E(n0) = (n01; n02) thencreate new functor node n00, L(n00) = f;with children copy(n01) and copy(n02);return n00;else create new variable node n0, L(n0) = x0, where x0 is a new variable;return n0;end if Figure 6.8: Exponential-time uniform semi-uni�cation algorithm79



Let G = (N;NF ; L;E;C) be an interaction graph. G is normal if it satis�es the following closurerules.1. For n; n1; n2; n0; n01; n02 2 N such that E(n) = (n1; n2); E(m) = (m1;m2), if (l; l0) 2 C(n; n0)then (l; l0) 2 C(n1; n01) and (l; l0) 2 C(n2; n02).2. For n1; n2; n3; n4 2 N , if (l01; l10) 2 C(n0; n1); (l23; l32) 2 C(n2; n3); (l02; l20) 2 C(n0; n2)then (l10 + (l02 � l01); l32 + (l20 � l23)) 2 C(n1; n3)if the di�erences above are nonnegative.3. If (l; l0) 2 C(n; n0) then (l0; l) 2 C(n0; n).4. (0; 0) 2 C(n; n).5. If (l; l0) 2 C(n; n0) then (l + 1; l0 + 1) 2 C(n; n0).Figure 6.9: Consistency rules for uniform semi-uni�cation6.4.2 Interaction GraphsNotice that a 1-colored arrow graph G will be transformed by algorithm A into a possibly exponentiallybigger arrow graph with many \new" nodes (introduced by rule 4 in Figure 6.6). Let us call the nodesthat are in the input graph G \original" nodes and all other nodes that are added by A \new" nodes.If we consider all arrow paths in the \evolved" graph after a number of graph rewriting steps it can beseen from the closure rules that almost all the relevant information about arrow paths in an executionof algorithm A can be computed from other information about arrow paths. For the most part, it issu�cient to consider only arrow paths from original nodes to original nodes. Since there may be arrowgraphs from two original nodes to a common new node we have to consider, more generally, all thepossible ways in which arrow graphs from two original nodes \merge" together, if at all. Consequently itis not necessary to explicitly construct new nodes, only all relevant information about arrow paths frompairs of original nodes. Since we assume only 1-colored graphs the arrow paths in question are completelycharacterizable by their starting point, end point and their length. Since the length can be stored in spaceO(logn) where n is the length itself, this representation of arrow paths yields a space compression dueto this \arithmetization" of arrow paths. Indeed we can thus devise an algorithm that computes a mostgeneral uniform semi-uni�er in polynomial space. The details are below.De�nition 16 (Interaction graph)An interaction graph (of degree 1) is a term graph over A2 with an additional consistency mappingC : N � N ! 2N�N . A normal interaction graph is an interaction graph whose consistency sets satisfythe rules in Figure 6.9.An interaction graph representation of an SEI S is very similar to an arrow graph representation (foruniform semi-uni�cation problems). In particular, both inequalities and equations can be encoded in asingle consistency mapping. Speci�cally, an interaction graph representation of S = (M0 = N0;M1 � N1)is an interaction graph G whose underlying term graph, jGj, represents all the terms occurring in S; andthe consistency mapping in G is the smallest C such that (0; 0) 2 C(m0; n0); (1; 0) 2 C(m1; n1) if[mi] =Mi; [ni] = Ni; 0 � i � 1.Let A = A2 be the usual ranked alphabet.De�nition 17 An interpretation I of an interaction graph G = (N;NF ; L;E;C) is a mapping of nodesto �rst-order terms (with variables) over the ranked alphabet A. I is valid if there is a quotient substitution80



R such that1. (8n 2 NF ; n1; n2 2 N ) L(n) = f;E(n) = (n1; n2)) I(n) = f(I(n1); I(n2));2. (8n; n0 2 N; l; l0 2 N ) (l; l0) 2 C(n; n0)) Rl(I(n)) = Rl0 (I(n0)).It is clear that for every interaction graph G with consistency mapping C there is a unique smallestnormal interaction graph �G with the same term graph as G and a consistency mapping �C that containsC. It is also easy to check that I is a valid interpretation for G if and only if I is a valid interpretationfor �G, and SEI S has a uniform semi-uni�er if and only if an interaction graph representation G of S hasa valid interpretation.Now, a somewhat more complicated analog of the extended occurs check of algorithm A, applied to anormal interaction graph �G, determines whether there is a valid interpretation for �G and, consequently,whether the SEI that �G represents has a uniform semi-uni�er.For n0 2 NF ; n; n01; n02 2 N;E(n0) = (n01; n02) we say (n01; l0) (respectively (n02; l0) is a direct left (right)descendant of (n; l) with respect to C if (l; l0) 2 C(n; n0). The transitive closure of this relation de�nesproper descendancy, and the re
exive-transitive closure de�nes descendancy.Theorem 20 Let G be an interaction graph representing an SEI S over A2, and let �G be the smallestnormal interaction graph containing G, where the consistency mapping in �G is �C. Then S is uniformlysemi-uni�able if and only if for no n 2 N and l; d 2 N , (n; l+ d) is a proper descendant of (n; l) in �C.Proof:First we shall prove that if there is n 2 N and l 2 N such that (n; l) is a proper descendant of(n; 0) in �C, then �G has no valid interpretation. Assume I is a valid interpretation with quotientsubstitution R. If (n0; l0) is a direct descendant of (n; l) in �C, then jRl0(I(n0))j < jRl(I(n))j,and, by induction, this holds also if (n0; l0) is a proper descendant of (n; l) in �C. If (n; l+d) is aproper descendant of (n; l) this means that jRd(Rl(I(n)))j < jRl(I(n))j; but this is manifestlyimpossible since applying a substitution to a term cannot make the (tree) size of a termsmaller. Consequently there cannot be a valid interpretation for �G.Conversely, if there is no (n; l + d) that is a proper descendant of (n; l), then we can de�ne avalid interpretation for �G. Assume all variables in V are totally ordered in some fashion. Wemay assume that the underlying term graph of �G has exactly one node labeled x for everyvariable x occurring in S. Thus the ordering on variables extends uniquely to nodes. We canalso extend it lexicographically to node-number pairs, where the ordering on numbers is thestandard arithmetic ordering.Consider the function I de�ned in Figure 6.10. It is routine to check that I(n) = I(n; 0)de�nes a well-de�ned valid interpretation since the closure properties of the consistency rulesguarantee that the de�nition is well-de�ned, and the recursion must terminate if there is no(n; l) that has (n; l + d); d � 0; as a proper descendant.6.4.3 A polynomial space algorithm for uniform semi-uni�cationThe consistency mapping in an interaction graph maps pairs of nodes to in�nite sets. In order to transformthe closure rules for interaction graphs into an algorithm it is necessary to �nd a �nite representationand e�ective means of manipulating it. We can consider a given set C(n; n0) and \close" it with respectto the consistency rules in the \trivial" term graph consisting only of nodes n and n0 (and no edgesor other nodes). In this sense every set of pairs of nonnegative numbers generates, independent of anyterm graph, a unique smallest set of pairs of numbers that are closed with respect to the consistency81



I(n, l) =if (n; l) has no proper descendant then(n is variable labeled)let (n0; l0) be the least (n00; l00) such that(n00; l00) � (n; l);return y(l00 ) (where L(n) = y)else let (m0; l0); (m00; l00) be direct left,respectively right, descendants of (n; l);return f(I(m0 ; l0); I(m00; l00))end if Figure 6.10: Interaction graph interpretationLet C � N � N . C is consistently closed if the following closure rules are satis�ed.1. If (l1; l2); (l3; l2); (l3; l4) 2 C then (l1; l4) 2 C.2. If (l; l0) 2 C then (l + d; l0 + d) 2 C; d � 0;.Figure 6.11: Consistently closed relationsrules. We shall show that every such closed set can be represented by at most two pairs of numbers, andthe consistency rules that involve the structure of a given term graph, namely rule 1 and rule 2 can beencoded by e�ective operations on such pairs of numbers. The details are below.A binary relation C on the natural numbers is consistently closed if the closure rules in Figure 6.11are satis�ed.For consistently closed relations we have the following proposition.Proposition 38 Let C be a consistently closed relation, and let l1; l2; d; d0 2 N ; d0 � d > 0. Then1. (l1; l2); (l1 + d; l2) 2 C ) (l1; l2 + d) 2 C and (l1; l2); (l1; l2 + d) 2 C ) (l1 + d; l2) 2 C;2. (l1; l2); (l1; l2 + d); (l1; l2 + d0) 2 C ) (l1; l2 + (d0 � d)) 2 C;3. (l1; l2); (l1; l2 + d); (l1; l2 + d0) 2 C ) (l1; l2 + gcd(d; d0)) 2 C.Proof:1. If (l1; l2); (l1+d; l2) 2 C, then (l1+d; l2+d) 2 C by rule 2 of the de�nition of consistentlyclosed relations (Figure 6.11), and, by rule 1, (l1; l2 + d). The other case is symmetric.2. If (l1; l2); (l1; l2 + d); (l1; l2 + d0) 2 C, then (l1 + (d0 � d); l2 + d+ (d0 � d)) = (l1 + (d0 �d); l2 + d0) 2 C by rule 2. Since (l1 + (d0 � d); l2 + d0); (l1; l2 + d0); (l1; l2) 2 C we have(l1 + (d0 � d); l2) 2 C by rule 1. The result follows by case 1 above.82



3. Note that, by induction on Euler's gcd-algorithm, if for any property P (d) over thenatural numbers we have (8d; d0 2 N ; d0 � d) P (d) and P (d0) ) P (d0 � d) then it alsoholds that P (d)and P (d0) ) P (gcd(d; d0)). If we let P (d) � (l1; l2 + d) 2 C, then theresult follows from case 2.The signi�cance of consistently closed relations is summarized in the following proposition.Proposition 39 Let �G be a normal interaction graph with consistency mapping �C. Then �C(n; n0) isconsistently closed for all nodes n; n0.Proof:Closure property 2 is established by simple induction on d and rule 5 in the consistency rulesfor normal interaction graphs (Figure 6.9).Property 1 is a special case of rule 2 in Figure 6.9. Consider �C(n; n0). If (l1; l2); (l3; l2); (l3; l4) 2�C(n; n0), then (l2; l3) 2 �C(n0; n) by rule 3 of Figure 6.9. With n0 = n0; n1 = n; n2 = n; n3 =n0; l10 = l1; l01 = l02 = l2; l20 = l23 = l3; l32 = l4 it follows by rule 2 that (l10; l32) = (l1; l4) 2�C(n; n0).Drawing on terminology from algebra, we shall say a relation B spans a consistently closed C if thesmallest consistently closed relation containing B is C; we shall denote this by hBi = C. If no set withcardinality smaller than B spans C, then B is a basis of C. A set B is independent if no proper subsetof B is a basis.The following theorem is at the heart of our uniform semi-uni�cation algorithm.Theorem 21 1. Every consistently closed relation C has a basis of cardinality at most 2; i.e., thereexist l1; l2; l01; l02 2 N such that h(l1; l2); (l01; l02)i = C.62. For every consistently closed relation C there exist unique l; l0; c 2 N ; k � �c such that C =h(l; l0); (l + k; l0 + k + c)i.Proof:Part 1 follows immediately from part 2, of course.Let C be consistently closed relation. If C is empty, then the empty set is a basis of C, andwe are done. Otherwise, let l0 be the smallest number with (l00; l0) 2 C for some l00, and letl be the smallest l such that (l; l0) 2 C. If h(l; l0)i = C, we are done. Otherwise, let c bethe smallest positive number such that (l + k00; l0 + k00 + c) 2 C for some (possibly negative)integer k00. Let k be the smallest k such that (l + k; l0 + k + c) 2 C. Note that k > �c byde�nition of l0 and l. Clearly, h(l; l0); (l + k; l + k + c)i � C.We shall now show that h(l; l0); (l + k; l + k + c)i � C. Let (l1; l2) be any pair in C. Thereexist unique integers k0; c0 such that (l1; l2) = (l + k0; l0 + k0 + c0). There are three cases toconsider: c0 = 0; c0 > 0; and c0 < 0.c0 = 0: If c0 = 0, then it must be that k0 � 0. But then (l1; l2) 2 h(l; l0)i (by rule 2 ofconsistently closed relations) and (l1; l2) � h(l; l0); (l + k; l0 + k + c)i.c0 > 0: By construction of l0 and l it must be that k0 > �c0. Consequently (k+c)+(k0+c0) >0; c+ (k0 + c0) > 0; c0 + (k + c) > 0. By rule 2 for consistently closed relations we canconclude that (l+(k+c)+(k0+c0); l0+(k+c)+(k0+c0)); (l+k+c+(k0+c0); l0+k+c+(k0+6As is conventional, we shall elide the set former brackets in �nite bases.83



c0)+ c); (l+k0+ c0+(k+ c); l0+k0+ c0+(k+ c)+ c0) 2 C. From the previous propositionwe have (l + (k + c) + (k0 + c0); gcd(c; c0)) 2 C. By de�nition of c this implies thatc � gcd(c; c0) and thus c0 = ic for some i 2 N . With the looping rule we can show that(l+k0; l0+k0+c0+c) 2 C and, consequently, (l+k0; l0+k0+c) 2 C. This shows that k0 � kby de�nition of k. And furthermore, since (l+ k0; l0+ k0+ c0) = (l+ k+ d; l0+ k+ d+ ic)for some d; i 2 N this shows that (l + k0; l0 + k0 + c0) 2 h(l; l0); (l + k; l0 + k + c)i.c0 < 0: This case can be reduced to the case c0 > 0, since, by the previous proposition, ifk � 0 then f(l; l0); (l + k + c; l0 + k)g is also in h(l; l0); (l + k; l0 + k + c)i; if k < 0 then(l+ k; l0+ c+ k); (l+ k+ (�(c+ k))+ c; l0+ c+ k+ (�(c+ k))) is another way of writing(l + k; l0 + c+ k); (l; l0) that is of the symmetric form with the \looping factor" c in the�rst component.We can use this �nite representation to construct a polynomial-space algorithm for computing mostgeneral uniform semi-uni�ers as follows. Let G be an interaction graph representation of SEI S withconsistency mapping C. Add pairs (0; 0) into C(n; n) for every node n. Maintain at most two numberpairs per node pair. If the set of node pairs B is associated with (n; n0), whose left children are m andm0, respectively, then take the number pairs B0 associated with (m;m0) and compute a new basis B00 ofhB [ B0i and associate it with (m;m0), replacing B0. This corresponds to \executing" rule 1 of Figure6.9. A similar trick can be applied for rule 2. Since the remaining rules are independent of the structureof G, they are already taken care of by the fact that the number pairs associated with node pairs areinterpreted as bases of consistently closed relations. The critical part that remains to be shown is howB00 is calculated from B and B0.For three pairs (l1; l2); (l01; l02); (l001 ; l002 ) it is easy to check whether one of them is in the span of theother two. The only interesting case that has to be treated is if this is not the case. Then, w.l.o.g.,B = f(l1; l2); (l1 + k; l2 + k + c); (l1 + k0; l2 + k0 + c0g where l1; l2; c; c0 > 0; k > �c; k0 > �c0.Proposition 40 Let B = f(l1; l2); (l1 + k; l2 + k + c); (l1 + k0; l2 + k0 + c0)g where l1; l2; c; c0 > 0; k ��c; k0 � �c0.Then B0 = f(l1; l2); (l1 + k00; l2 + k00 + c00)g, with k00 = minfk; k0g; c00 = gcd(c; c0), is a basis of hBi.Proof:It is su�cient to show that hB0i = hBi. This is analogous to the proof of theorem 21.This proposition shows that it is possible to compute a basis of a consistently closed relation spannedby three number pairs; of course, this construction can be applied repeatedly to calculate the basis of any�nite set of number pairs. We shall denote the basis B above of hB0i by b(B0). We can now translatethe closure rules of Figure 6.9 to operations on bases of consistently closed relations and arrive at thefollowing theorem.Theorem 22 There is an algorithm A1 that computes the most general uniform semi-uni�er (in a suit-able representation) of any SEI S 2 �(A2; V ) in polynomial space.Proof:Construct an initial interaction graph G for S. Apply the rewriting steps in algorithm A1in Figure 6.12 to G0 until convergence. The biggest number occurring in any consistencyset during its execution is bounded by 22m2 , where m is the number of nodes in G0 (whichdoes not change). This can be shown by observing that the rewrite rules guarantee thatnumbers only decrease unless the cardinality of some C(n; n0) is increased, in which case thebiggest number can be at most doubled in the rewritten interaction graph. An increase of84



cardinality of one of these sets can happen at most 2m2 times. This shows that A1 uses atmost polynomial space during the �rst stage. The second stage | checking for a violationof the descendancy check | is a backtracking algorithm that also uses at most polynomialspace. Consequently, algorithm A1 executes in polynomial space.We believe that the �rst stage of algorithm A1 can be further improved to run in polynomial time,although we cannot see how to speed up the second stage without simplifying the interaction graph fromthe �rst stage further by normalizing it with respect the \inverse" rule below, which has been proposedby Kapur et al. [54] to arrive at a polynomial-time decision algorithm for uniform semi-uni�cation.Note that our algorithm permits us to extract a most general uniform semi-uni�er by \running" theinterpretation \program" I in the proof of theorem 20.The inverse of rule 3, speci�cally\If there exist nodes m1, m2, n1, and n2 such that m2 � n2, m1 i! m2 and n1 i! n2 thenmerge the equivalence classes of m1 and n1,"is sound, but not complete in our sense. It appears to preserve semi-uni�ability in the uniform case (oneinequality), even though it does not preserve semi-uni�abilty for two or more inequalities and thus is notcorrect for nonuniform semi-uni�cation. Now arithmetization of algorithm A', which consists of A andthe new \inverse" rule above, yields a polynomial-time algorithm.Theorem 23 Uniform semi-uni�ability is polynomial-time decidable.Proof: See [54].
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(First stage) Apply the following operations to G0 until G0 does not change any more.1. For n; n1; n2; n0; n01; n02 2 N such that E(n) = (n1; n2); E(m) = (m1;m2),C(n1; n01) := b(C(n1; n01) [C(n; n0))C(n2; n02) := b(C(n2; n02) [C(n; n0))2. For n1; n2; n3; n4 2 N , if (l01; l10) 2 C(n0; n1); (l23; l32) 2 C(n2; n3); (l02; l20) 2C(n0; n2),if d is the smallest natural number such that l02 + d � l01 and l20 + d � l23, thenC(n1; n3) := b(C(n1; n3) [ f(l10 + (l02 + d� l01); l32 + (l20 + d� l23))g).3. C(n0; n) := b(C(n0; n)[C�1(n; n0))where C�1(n; n0) = f(l2; l1); (l02; l01)g if C(n; n0) = f(l1; l2); (l01; l02)g.(Second stage) Execute check(n; 0), with an initially empty stack, for all nodes n and seewhether an error is signaled. If so, the normal interaction graph after the �rst stage hasno valid interpretation; if not, it has a valid interpretation.check(n; l) =if there is (n; l0) in stack thenif C(n; n) 6= f(0; 0)g or l0 � l thensignal error and terminate;else return;end ifelse if there is (n0; l0) such that (l; l0) 2 C(n; n0) andL(n0) = f;E(n0) = (n01; n02) thenpush (n; l) onto stack;check(n01; l0);check(n02; l0);pop (n; l) o� stack;else return;end ifend if Figure 6.12: Algorithm A186



Chapter 7Decidability: ElementaryCombinatorial Properties andApproachesSemi-uni�cation is, at present, not known to be decidable. There have been several attempts at provingits decidability (or decidability of one of the problems we have shown to be polynomial-time equivalent),but they all failed. In this chapter we introduce graph-theoretic notions that may simplify the analysisof the combinatorial properties of semi-uni�cation and eventually lead to a proof of decidability. Semi-uni�cation is widely believed to be decidable; in fact, we conjecture that algorithm A is uniformlyterminating. In the �rst section of this chapter, we present a \normalization" of executions of algorithmA that may be helpful in getting good insight into this problem. In the second section we present ageneralization of executions of algorithm A, called graph developments, that are simpler in the sense thatthey abstract from the speci�c e�ect of the rules that a�ect the equivalence relation in arrow graphs.Our feeling is that this generalized problem is still decidable and may indeed prove easier to solve thanthe more involved structure of executions of algorithm A.7.1 Normalized ExecutionsThe satis�ability problem for arrow graphs is the problem of deciding whether there is a valid interpretationfor a given arrow graph. Since arrow graph representations can be constructed e�ciently from SEI's it isclear that semi-uni�cation is polynomial-time reducible to satis�ability of arrow graphs.A k-colored arrow graph G = (N;NF ; L;E;A;�) over A is downward closed if the following closurerules hold.1. (8m;n 2 NF ;m1;m2; n1; n2 2 N if L(m) = L(n) = f;E(m) = (m1;m2); E(n) = (n1; n2) thenm � n) mi � ni for 1 � i � 2 and m j! n) mi j! ni for 1 � i � 2; 1 � j � k;2. (8m;m0; n; n0 2 N; 1 � j � k) (m � m0;m j! n;m0 j! n0 ) n � n0) and (m j! n;m � m0; n �n0 ) m0 j! n0).It is easy to see that every arrow graph G has a unique smallest downward closure, closure(G), whichis simply the arrow graph reached by repeatedly applying the above closure rules as rewrite rules until87



no longer possible.1Downward closure preserves valid interpretations.Proposition 41 I is a valid interpretation of arrow graph G if and only if I is a valid interpretation ofclosure(G).We can factor out the equivalence relation � in downward closed arrow graphs to arrive at an essen-tially equivalent, but simpli�ed, arrow graph. Speci�cally, we de�neG=� = (N=�; NF =�; L=�; E=�; A=�; �)where1. N=� is the set of equivalence classes of �; [n]� denotes the equivalence class of n 2 N ;2. NF =� is the set of equivalence classes that contain some functor node;3. L=�([n]�) = f if L(n0) = f for some n0 � n; otherwise L=�([n]�) = x if x is the least variablecontained in any n0 � n (w.r.t. to a given �xed total order on V );4. E=�([n]�) = ([n01]�; [n02]�) if n � n0 and E(n0) = (n01; n02);5. ([n]�; [n0]�) 2 (A=�)i if and only if (n; n0) 2 Ai for 1 � i � k;6. � is the trivial equivalence relation on N=�;if the following three conditions are satis�ed:1. (8n; n0 2 NF ) n � n0 ) L(n) = L(n0) (no functor clash);2. The extended occurs check (rule 4a in Figure 6.6) is not triggered.If either of these conditions is violated we de�ne G=� = 2 where 2 denotes a �xed arrow graph withno valid interpretation. We call any arrow graph with a trivial equivalence relation (i.e., only the identitypairs (n; n); n 2 N (G); are in the equivalence relation) normalized.Proposition 42 Let G be a downward closed arrow graph with equivalence relation �. Then G=� = 2or 1. G=� is downward closed; and2. G=� is normalized; and3. any valid interpretation of G canonically induces a valid interpretation of G=� and vice versa.Proof:(1) and (2) are trivial. For (3) we can verify that for any valid interpretation I of G, I(n) =I(n0) if n � n0, and consequently I([n]�) is well-de�ned; conversely, a valid interpretation Iof G=� extends to G by simply de�ning I(n) = I([n]�).Given any arrow graph G we denote by �G the normalized, downward closed arrow graph de�ned byclosure(G)=� where � is the equivalence relation in closure(G).1This can be made precise by de�ning arrow graph morphisms and proving uniqueness and minimality by induction onthe depth | with respect to dag edges | of the arrow graph.88



Proposition 43 �G is polynomial-time computable.Proof:A simple adaptation of the union-�nd based uni�cation algorithm [43,1] yields an algorithmthat executes in time O(kn�(n; n)) where � is an extremely slow-growing function (see [115]).We can now de�ne a reduction relation on normalized, downward closed arrow graphs simply byexecuting rule 4b (Figure 6.6) with subsequent exhaustive application of rules 1, 2, 3, and 4a, whichcorresponds to computing �G0 from G0 after G has been transformed into G0 by application of rule 4b atsome discrepancy. We say G reduces to �G0 and write G) �G0.Proposition 44 Let G be an arrow graph, and let G0 be de�ned as above. Denote the nodes of G withN , and the nodes of G0 with N 0. Then for any valid interpretation I of G there is a valid interpretationI0 of G0 such that I 0 jN= I, and, conversely, for every valid interpretation I 0 of G0, I 0 jN is a validinterpretation of G.Proof: ObviousNote that ) de�nes a reduction relation on downward closed, normalized arrow graphs. The pre-vious propositions guarantee that this reduction relation preserves valid interpretations. A sequence(G1; . . . ; Gi; . . .) of downward closed, normalized arrow graphs is a normalized execution if Gi ) Gi+1 fori � 1 and, if it is �nite, its last element is irreducible. We say a downward closed, normalized arrow graphG is solvable if there exists a �nite normalized execution (G1; . . . ; Gk) such that G = G1 and Gk 6= 2.Proposition 45 Semi-uni�cation is polynomial-time reducible to arrow graph solvability.Proof:By the correctness of algorithm A.The reduction relation ) on downward closed, normalized arrow graphs e�ectively \collapses" thecompound e�ect of exhaustive application of rules 1, 2, and 3 in Figure 6.7 of chapter 6. Note alsothat the exhaustive application of these rules can be done very e�ciently since an extended occurs check| which subsumes the ordinary occurs check | is only done once, after rules 1, 2, and 3 are appliedexhaustively. The propositions above follow immediately from the fact that algorithm A is just a graph-theoretic reformulation of the \canonical" SEI-rewriting system for computing most general semi-uni�ersin section 6.2.Our hope is that this reduction relation, maybe in connection with the combinatorial structure inthe following section, is possible starting point for a much deeper understanding of the algebraic andcombinatorial structure of executions of algorithm A that will eventually lead to a proof of uniformtermination of A and, consequently, of decidability of semi-uni�cation.7.2 Graph DevelopmentsInspired by the construction of Kanellakis and Mitchell that shows that ML typing is PSPACE-hard [53]our intuition is that the reduction rules 1 and 3 incorporate the computational \intelligence" of algo-rithm A in that they \steer" the execution whereas rule 4 and, to a lesser degree, rule 2, simply createthe necessary space resources. For this reason we �rst introduce the notion of (arrow) graph develop-ments. Following, we show that every execution of algorithm A induces an arrow graph development,the �niteness of which can be \lifted back" to show that any execution sequence describing A is �nite.89



Let G = (N;NF ; L;E;A) be a graph.a De�ne the reduction relation!r by the following two rules.1. If there exist m;m0;m00; n; n0; n00 2 N such that L(m) = L(n) = f;E(m) = (m0;m00); E(n) =(n0; n00) and m! n, but m0 6! n0 (or m00 6! n00), thenG!r G[A := A [ (m0; n0)](orG!r G[A := A [ (m00; n00)]; respectively):2. (a) If there exist m;n 2 N such that n is a proper descendant of m and there is a (possiblyempty) arrow path from m to n, then G!r 2:(b) if rule 2a above does not apply and there exist m;m0;m00; n 2 N such that L(m) =f;E(m) = (m0;m00); L(n) 2 V , thenG !r G[N := N [ fn0; n00g; L := Lfn 7! f; n0 7! l0; n00 7! l00g;E := Efn 7! (n0; n00)g]:where n0 (or n00) is either an old node, n0 2 N , or a new node, n0 62 N , and if n0 is a newnode then l0 = x0 for a new variable x0, otherwise l0 = L(n0); similar for n00.In all these cases the node m is the hinge of the rule application.aWe shall write n! m for (n;m) 2 A.Figure 7.1: Graph development RulesIn this section we shall consider arrow graphs without an equivalence relation and with arrows of onlyone color; i.e., they consist of a term graph and arrows (all of the same color) only. For convenience'sake we shall simply call them graphs. These graphs can be identi�ed with arrow graphs that have onlya trivial equivalence relation on their nodes. In this sense the notions of descendant, arrow path and soforth carry over from arrow graphs to graphs.We shall now introduce a reduction relation, also denoted by !r, between graphs. It is de�ned bytwo rules given in Figure 7.1. The surface similarity of these rules with arrow graph reduction rules 2and 4 in Figure 6.7 is not coincidental and will be made precise just below.Graphs for which no rule is applicable (in particular 2) are normal graphs.De�nition 18 (Graph development)A graph development is a (possibly in�nite) sequence G = (G1; . . . ; Gi; . . .) of graphs where Gi+1 isderived from Gi by application of one of the rules in Figure 7.1 for all i � 1 and, if G is �nite then thelast component in G is a normal graph.The limit graph limG of a graph development G = (G1; . . . ; Gi; . . .) where Gi = (N i; N iF ; Li; Ei; Ai)is 2 if G is �nite and its last component is 2; otherwise it is de�ned by (N;NF ; L;E;A) whereN = fn : (9i)n 2 N igNF = fn : (9i)n 2 N iF gL(n) = � f; if (9i)Li(n) = fx; otherwise, and Li(n) = x for some i90



E(n) = (n0; n00) if (9i) Ei(n) = (n0; n00):The �rst component, G1, of a graph development G = (G1; . . . ; Gi; . . .) is called the initial graph of G.A node in limG or in any of the graphs in G is an original (or old) node if it occurs in the initial graphof G; otherwise it is a new node.Every execution of algorithm A whose �nal, normal arrow graph is not 2 de�nes a graph developmentin a canonical fashion. Consider the �nal arrow graph G of an execution and its equivalence relation.This equivalence relation can be \factored" out from every arrow graph in the execution leading up toG in almost the same way in which normalized arrow graphs are formed from downward-closed arrowgraphs in section 7.1.Let us now consider graph developments whose limit graph is not 2. For any G = (G1; . . . ; Gi; . . .)we can de�ne an equivalence relation on the nodes in G and a partial order on the resulting equivalencerelations. For limG = (N;NF ; L;E) de�ne n � n0 for n; n0 2 N if n ! n0 (in limG ) or E(n0) = (n; n00)or E(n0) = (n00; n) for some n00 2 N . We can take the re
exive-transitive closure of � and then factorout the equivalence relation �=, n �= n0 , n � . . . � n0and n0 � . . . � n, which de�nes a partial order,also denoted by �, on equivalence classes of �=. The equivalence class containing node n shall be denotedby [n].We call a graph development G fair if for every node in G that becomes a hinge for a rule applicationthe corresponding rule is eventually executed.Proposition 46 Let G be a fair graph development with limG = (N;NF ; L;E) 6= 2, and let � be thepartial order on �=-equivalence classes of N de�ned above.For all nodes n; n0; n00 2 N , if E(n) = (n0; n00) then [n0] < [n] and [n00] < [n].Proof:It is clear by de�nition that [n0] � [n] and [n00] � [n]. We need to show that[n] 6� [n0]. Let us assume [n] � [n0]. By de�nition of � there is a sequence of nodes(n00; n01; n10; n11; . . . ; nk0; nk1); k � 0 such that n00 = n; nk1 = n0 and for 0 � i � k there isa (possibly empty) arrow path from ni0 to ni1 and for 0 � i � k� 1 the node ni1 is a child ofn(i+1)0. Since G is fair we can show by induction on the length of these sequences that thereexists a proper descendant m of nk0 in G such that there is an arrow path from n0(= nk1) tom. Consequently there is an arrow path from nk0 to m. But this means that nk0 must be ahinge for applying the \extended occurs check" rule 2a in a component of G. Since G is fairby assumption this means that the extended occurs check rule is applied at some point in Gand consequently limG = 2. But this is in contradiction to our assumption that the limitgraph is not 2.This proposition shows that proper <-inequalities hold between (the equivalence class) of a child and(the equivalence class of) its parent. This is critically due to the extended occurs check rule, rule 2a, sincethe notion of fairness mandates that every rule that can possibly be executed at some node eventuallyis. In fact it is easy to give a (necessarily in�nite and unfair) graph development in which the resulting(in�nite) limit graph has equivalence classes that contain a child and its parent.This separation of equivalence classes along parent-child edges is crucial in the following lemma. ForG = (N;NF ; L;E;A) and C � N we de�ne EnvG(C) = f(n; n0) 2 A j n 2 Cor n0inCg.Lemma 47 Let G be a fair graph development with limG = (N;NF ; L;E;A) 6= 2 and let G0 =(N 0; N 0F ; L0; E0; A0) be the initial graph of G.For any maximal equivalence class C in limG we have91



1. For all n 2 C, n 2 N 0 and n is not a child in G0 of any node n0 2 N 0.2. EnvlimG(C) = EnvG0(C)Proof:1. By assumption, C is a maximal equivalence class in limG with respect to �. If n 2 Cis not in N 0, then it must have been introduced by rule 2b since this is the only rulethat adds new nodes. But then n would have to be the child of some node n0 in acomponent of G and, consequently, in limG, which, by proposition 46, would contradictthe assumption that the equivalence class, C, of n is maximal in limG. If n were thechild of a node n0 in G0 then, again, C could not be maximal since n would also be achild of n0 in limG.2. By inspection of the graph development rules it is clear that the containmentEnvlim G(C) � EnvG0(C) holds. Assume it is a proper superset. Then a new arrow,with a node n 2 C at its head or at its tail, must have been introduced by rule 1 sincethis is the only rule that introduces new arrows. But this means that n has a parent inlimG and, again, it follows by proposition 46 that C is not maximal contradicting ourassumption.This lemma guarantees that any group of nodes that turns out to be a maximal equivalence classin the limit graph of a fair graph development, all the arrows between them, and all the arrows whosehead is one of these nodes are actually already present in the initial graph of the graph development.We cannot predict which group that will be by looking at the initial graph since rule 2b can wildly pickany old node for a child (thus making that node an element of a nonmaximal equivalence class), butthe lemma guarantees that there exists one, no matter what (literally) unpredictable turns rule 2b takes.Note that we have not proved that the limit graph of a fair graph development actually has maximalequivalence relations.Before we present the main theorem we need another lemma. In a graph G the sources of a node nis de�ned to be the set of all nodes n0 in G such that there is a (possibly empty) arrow path from n0 ton. The independent sources of n are all those sources of n that have only themselves as a source. Notethat every �nite graph development is necessarily fair.Lemma 48 Let G be a �nite graph development with limG 6= 2 and initial graph G0. Then, for anynode n in limG, all independent sources of n are nodes in G0.Proof:This can be shown by (�nite) induction on the index of the component graphs in the graphdevelopment. If we insisted on \normalized" graph developments, in which rule 2b is onlyexecuted when none of the other rules is applicable (which is a good idea anyway since it sim-pli�es the process of looking for hinges for the extended occurs check rule, rule 2a), this wouldindeed be straightforward to prove. Since there is a slight complication in \unnormalized"graph developments, we shall momentarily generalize the notion of a source. In rule 2b wesay there is a \hop" from m0 to n0 and from m00 to n00. A node m in Gj is a phantom sourceof n if there is a sequence of nodes (n0; . . . ; nk) such that m = n0; n = nk; and, for 1 � i � k,there is a hop from ni�1 to ni or ni�1 ! ni in Gj. Independent phantom sources are de�nedanalogously to independent sources. We claim that for all graphs in a graph development theset of independent phantom sources is already contained in the initial graph.The claim holds trivially for the empty pre�x of a given graph development of length n.92



1. If rule 1 is applied to get Gi from Gi�1, let us denote the tail of the new arrow by mand its head by n. The sources of m are added to the sources of every node n0 that nis a source of. Since the independent sources of n0 are then a subset of the independentsources of m and of the independent sources n0 had before the rule application, byinduction we can conclude that the independent sources of n0 are contained in the initialgraph G. (For the other nodes, not a�ected by this rule application, nothing changes.)2. If rule 2b is applied and no new node is introduced the claim remains true trivially. If anew node n is introduced, then there is a hop from a node m already in Gi�1 to n, andthe claim remains true.Since G is a �nite graph development the claim holds true for the �nal graph of G. But, inthe �nal graph, for every hop there is also a corresponding arrow, and consequently, the set ofindependent phantom sources is also the set of independent sources. This proves the lemma.Let us now de�ne the size of a graph, jGj, simply as the number of nodes it contains. (The size of 2is unde�ned.)Lemma 49 For every �nite graph development G with limG 6= 2 and j limGj = s whose initial graphG0 has size jG0j = t > 1 and that has a maximal equivalence class E of size k with a node n 2 Ethat is functor labeled in the initial graph of G there is a graph development G1 with limG1 6= 2 andj limG1j = s � k and the initial graph G01 of G1 has size jG01j = t� k.Proof:Since G is �nite, it is fair, and its limit graph has a maximal equivalence relation C. Now, byassumption there is an equivalence class E with a functor labeled node n. Let us only treatthe case where k = 1; i.e., n is the only node in E. Since n is functor labelled in the initialgraph of G, there are children n0; n00 of n. Now, let N 0 and N 00 be the independent source ofn0, respectively n00 in the limit graph. By lemma 48, all elements of N 0 and N 00 are also inthe initial graph of G. Place arrows from any independent source of n0 to n0 and from everyindependent source of n00 to n00 in the initial graph of G, possibly adding new arrows, anddelete node n along with the edges to its children. This results in a new initial graph graphof size s � 1. Now we can \simulate" G on the smaller initial graph by simply copying thesteps from G do not involve, directly or indirectly, node n and, otherwise, substituting stepsinvolving some of the added arrows whenever node n is involved.If we could establish a (recursive) lower bound (as a function of the size of the limit graph and possiblythe size of the initial graph) on the size of the limit graph of some graph development with an initialgraph that has fewer nodes than the initial graph of any given �nite graph development, even in thecase where all nodes in maximal equivalence classes are variable labeled in the initial graph, then wecould prove, by induction, an upper bound on the size of any limit graph as a function of the size of theinitial graph. This is so since any graph development on an initial graph of size 1 has a limit graph ofsize 1. This would establish decidability of semi-uni�cation since the existence of an in�nite execution ofalgorithm A induces an in�nite graph development.We might be tempted to \loosen" the notion of graph development even more by requiring an constantupper bound on the number of outarrows any node in a graph can have, but allowing arbitrary insertion ofarrows, not only in the case of rule 1. But then it is fairly easy to construct an in�nite graph developmentas long as at least two outarrows are permissible. Since a generalization of executions of algorithm A, asthe notion of graph developments is, is only sensible if it admits a proof of termination by showing thatonly �nite developments are possible this further generalization is useless.93



Chapter 8Implications for ProgrammingLanguage DesignIn this chapter we attempt to shed some light on a somewhat puzzling observation: that polymorphictype inference is theoretically intractable and, as such should be only marginally usable, yet experiencewith declaration-free polymorphic languages bears witness to its practical utility. In section 8.1 we o�ersome general considerations to suggest that the apparent practicality of type inference is not just a luckycoincidence, and in section 8.2 we brie
y formalize some of our considerations.8.1 Theoretical Intractability and Practical Utility of Poly-morphic Type InferenceSome of the results of the previous chapters seem to suggest that polymorphic type inference (as modeledby the Mycroft Calculus) has no place in programming language design. After all, the type inferenceproblem is at least PSPACE-hard, which is already beyond the point of what is conventionally consideredtractable, and likely it is much harder than that: At present even the decidability question is not solved.On the other hand, some theoretical results and preliminary practical experience suggest that thisevaluation may yet be too pessimistic.First of all, the principal typing property of the Mycroft Calculus guarantees a well-de�ned notion ofwhat the typing of a program should be, and this notion can very intuitively be interpreted as the \mostgeneral" typing possible. Even though, at this time, the decidability of both the Mycroft Calculus andthe (implicit) Second Order �-calculus is open, the Mycroft Calculus has the appealing principal typingproperty, which is in contrast to the Second Order �-calculus where no good notion of \principality" fora �-expression is known.Secondly, there is a relatively simple algorithm, algorithm A, for computing principal typings (inthe more general sense of computing typing derivations in the \syntax-oriented" version of the MycroftCalculus) that, due to the principal typing property, does not necessitate any backtracking or othercomplicated control mechanisms. This can be seen as a sign of \implementability" and as a preliminaryindicator that the type inference problem may prove realistically usable since many problem instanceswill admit rapid computation of their principal types.Thirdly, languages such as ML, Miranda, and B have been in use for several years now, and the typechecking phases in these systems have been su�ciently e�cient in actual usage to help promulgate, forabout ten years, the myth that ML type checking is theoretically e�cient in the sense that it was believed94



to have a worst-case polynomial running time of low degree. The fact that B's type inference algorithm isactually incomplete (with respect to B's typing discipline), but that this apparently hadn't been noticed,only corroborates our appraisal that type inference problems encountered in actual programming practiceare of the kind that admit rapid computation of principal types or rapid detection of type errors. Ofcourse, since the polymorphic languages in question are still used rather infrequently, it is too early togive much weight to these empirical observations. We shall attempt to argue, though, that the apparentpracticality of polymorphic type inference in the face of theoretical infeasibility results is not a randomphenomenon.A conventional remedy for eliminating problems with type inference is to mandate explicit, fully typeddeclarations of variables, parameters and other basic syntactic units. Observe, for example, that typechecking in the \explicit" Second Order �-calculus is easy in the sense that there is a fast polynomial timealgorithm for checking the type correctness of a fully typed �-expression. Applying this sort of remedyto the Mycroft Calculus highlights, though, why type checking (with explicit type information embeddedin the program) is no more \practical" than type inference (with no or only optional type information inthe program).The culprit for the theoretical intractability of the Mycroft Calculus (and the Milner Calculus) is thefact that the type information of a program can be extra-ordinarily bigger than the untyped program;in particular, it is at least exponentially bigger [53]. Now, writing a 200-line (untyped) program whoseprincipal type is bigger (measured, for example, in terms of the \tree" size of the �nal arrow graphof the corresponding semi-uni�cation problem1) than the number of atoms in the universe is no moreimpractical than writing the program with this typing information in the �rst place. Even though boththese cases seem to have the same \intuitive" complexity they are treated very di�erently in conventionalcomplexity analysis since the two input sizes are dramatically di�erent.This may be seen as a plea to measure complexity in terms of the sizes of the input program andits computed principal type. This would permit comparison of the e�ciency of di�erent (sound andcomplete) type inference algorithms by comparing their performance on typable inputs, even in the casewhere they don't terminate for some untypable inputs. Yet this is not quite satisfactory in explainingthe apparent practicality of type inference. In particular it does not question the \legitimacy" of a shortprogram that has a typing of inconceivable size.We feel that the formalization of type inference in logical calculi has failed to take the intensionalcharacter of types and typings into account. Types and typings are generally viewed as abstractions of thebehavior of programs and their parts, and, by analogy to types and program behaviors, type descriptionsare meant to be abstractions of the programs themselves. If the complete inferred type information ofa program is exponentially bigger than the (untyped) program itself, we think it unreasonable to saythe type information is an abstract description of the program. Either the type description mechanismis inadequate for capturing the intended abstraction of behavior or the program at hand does not havea suitable abstract description of its behavior. The �rst explanation points toward a problem with thewhole language, an issue that will have to be addressed by language designers. Given a �xed static1Measuring the size of type information in this way can be justi�ed as follows. When admitting | or requiring |explicit type information in programs, this type information is presented by type expressions of the kind we have used, andby no other mechanism that might conceivably encode type information in some other, possibly more compact way. Sincethe \size of the input" is usually counted as the number of symbols in the input (with or without taking bit-complexityinto account), this amounts to determining the size of all explicit typing information in a program as the sum of thestring sizes of the type expressions occurring in it. Since every part of a �nal arrow graph corresponding to (MycroftCalculus) type inference for program e is represented in a type expression occurring in the full typing for e, this full typinginformation is at least as big as the tree size of the �nal arrow graph; i.e., the number of nodes of the �nal arrow graphonce it is \blown up" into a tree (or forest). If the fully typed program can be written with type abbreviations of the sortlettype t = int ! int ! int in . . ., then the type information can be represented in, asymptotically, the same spaceas the size of the �nal arrow graph. But this has the disadvantage that principal types are not necessarily the \smallesttypes", and then determining resource-bounded typability becomes di�cult again.95



typing discipline, however, and its implicit insistence that only behavior that is expressible in it shouldbe considered desirable, the second explanation should be interpreted as saying that the program at handhas no \reasonable" abstract description of its behavior and thus should be considered unacceptable |type-incorrect.Theoretical type inference calculi are motivated by extensional considerations: two descriptions areconsidered completely interchangeable if they denote the same semantic objects, regardless of any \syntac-tic" properties of the descriptions (such as the size). Consequently, the motivation of type descriptionsas syntactic abstractions of programs (and not only program behavior) is lost in the formalization of\practical" type inference by typed �-calculi. If we try to recapture some of this connection by requiringthat a �-expression e only be considered \e�ectively well-typed" whenever it is typable in the sense ofthe Mycroft Calculus and its principal type is at most polynomially bigger than e itself, then it is easyto see that e�ective well-typing is (theoretically) feasible. This is made precise in section 8.2.Unfortunately, this does not explain the signi�cance, if any, of the extended occurs check in algorithmA that we conjecture makes A a uniformly terminating algorithm for semi-uni�cation. If resource boundson the sizes of typings are given we could run A | or Meertens' algorithm AA or Mycroft's algorithm|either until a principal type is found or the resource bounds are exceeded. It appears that, in practice,this check will catch many typing errors early on without exhausting the possibly big resource bounds.As a matter of principle, it seems that the requirement of resource bounds in type systems is a bad idea2,whereas they appear to be a good property of a type system. In other words, it is preferable to devise asyntax-directed type system whose axioms and rules guarantee resource-boundedness instead of explicitlyimposing a global restriction that mandates explicit resource bounds. We think this is a problem worthy ofattention in the type system design arena, but not so much in the area of programming language semantics.After all, static typing disciplines are semantically incomplete anyway (that is, there are programs thatare considered statically type-incorrect even though they would never run into a type-incompatibility atrun-time), and resource-bounded static typing systems are just \a tad more" incomplete.If we consider, in general, (derivable) typings as \witnesses" to the fact that a program is well-typed,then typing problems whose witnesses are required to be polynomial-sized fall into two main complexityclasses: P and NP .3 This is so since we assume that any reasonable typing discipline has a polynomialtime type checking problem for programs that are completely decorated with typing information. Ifwe consider the \typing" problem4 of determining whether there is an assignment of (polynomial-sized)type expressions to function de�nitions in a language with Ada-style overloading, but without explicittype declarations (Ada requires such explicit declarations), it can be shown that this problem is NP -complete [1, exercise 6.25], whereas the resource-bounded polymorphic type inference problem is in P .This lends some technical expression to the intuition that \overload resolution" as above is much harderthan polymorphic type inference; also, in practical terms, since overload resolution requires a backtrackingalgorithm, polymorphic type inference should be expected to fare much better in practice than this liberalsort of overload resolution. Note also that overload resolution has no principal typing property.8.2 Resource-Bounded Polymorphic Type InferenceConsider the type inference system in Table 8.1, which we shall call the explicit Mycroft Calculus.We can de�ne notions of typability and type inference as usual. Typed �-expressions are de�ned bythe grammar e ::= x j �x : �:e j (ee0) j2Imagine error messages of the sort \Well, so far everything was okay, but this type expression here is a little bit toobig."3We make the standard assumption that P 6= NP .4Some people would not consider this overload resolution problem an example of a typing problem.96



Let A range over type environments; x over variables; e; e0 over �-expressions; � over type variables; �; � 0over monotypes; �; �0 over polytypes. The following are type inference axiom and rule schemes.Name Axiom/rule(TAUT) Afx : �g � x : �(GEN) A � e : �(� not free in A)A � e : 8�:�(INST) A � e : 8�:�A � e : �[�=�](ABS) Afx : � 0g � e : �A � �x : � 0:e : � 0 ! �(APPL) A � e : � 0 ! �A � e0 : � 0A � (ee0) : �(LET-P) A � e : �Afx : �g � e0 : �0A � letx : � = ein e0 : �0(FIX-P) Afx : �g � e : �A � �x x : �:e : �Table 8.1: Type inference axioms and rules for explicit Mycroft Calculus
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letx : � = e0 in e j�x x : �:ewhere � ranges over monotypes, and � over polytypes, as usual. For every typed �-expression e thereis a unique underlying untyped �-expression, �e, derived by erasing all mention of types in the typed�-expression (and all colons); e is called a typed version of �e. Clearly, every typed �-expression has aprincipal type in the explicit Mycroft Calculus with respect to a given type assignment. The followingproposition should not come as a surprise.Proposition 50 There is a polynomial time algorithm for computing the principal type of a typed �-expression or indicating untypability.We can now formally de�ne a resource-bounded restriction of the Mycroft Calculus. Let p be a �xedpolynomial of one variable, and let jej be the number of symbols in a typed or untyped �-expression e,and let eMM stand for the explicit Mycroft Calculus. De�neMMp = f�e : 9A; � j eMM ` A � e : � and jej � p(j�ej)gA simple way to think about this set is to recognize that, if A � e : � is derivable in eMM , thenA � �e : � is derivable in MM . The second requirement encodes the fact that MMp considers onlythose untyped �-expressions type-correct that have a typed equivalent whose type information is at mostpolynomially bigger than the untyped �-expression itself.Theorem 24 MMp is polynomial-time decidable.Proof:Execution of rule 4 in algorithmA only makes the tree size of the initial arrow graph properlybigger. Since the other rules cannot reduce the tree size of the arrow graph (note though,that they can reduce the number of equivalence classes in the arrow graph) and they can beexecuted at most polynomiallymany times with respect to the \current" arrow graph withoutforcing application of rule 4, and since the tree size of the arrow graph can be computed in timepolynomial in the number of nodes in the arrow graph, it follows that rule 4 can be appliedat most polynomially many times without exceeding the bound given by p. Consequently,computing the \principal" typed version of a �-expression e can be done in polynomial time,and since every other typed version of e that satis�es the typing rules is at least as big as theprincipal one, this proves the theorem.It would be interesting to see whether this theorem also holds true if (monomorphic) type abbreviationsof the form let type s = � in . . . are allowed.
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