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1 Introduction and Summary

The advent of ML [GMM+78, ?] has sparked the development of program-
ming languages that try to combine the flexibility and conciseness of largely
declaration-free, dynamically typed languages, such as LISP, with the safety
and implementation efficiency of statically typed languages, such as Pascal.
Other languages that also use polymorphic typing rules are SPS [Wan84],
Miranda [Tur86], Haskell. At the heart of these languages is the combina-
tion of a powerful, flexible type system with reliance on, to a large degree,
compile-time type inference. This enables the user to write concise code in
the style of type-free languages, and yet have it checked at compile time for
possible type errors.
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been supported by the ONR under contract numbers N00014-85-K-0413 and N00014-87-
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The success of ML’s type system may be attributed mainly to two fac-
tors. First, for every type correct ML program there is a “canonical” (or
“principal”) way of associating type information with every variable occur-
rence and expression in the program (principal typing property). Second,
there is a practical unification-based type inference algorithm that is sound
and complete with respect to the type system [Mil78]; in particular, it ef-
fectively computes the canonical type information, which could be used for
program documentation and optimization.

There is a significant problem with applying ML’s type system to lan-
guages without nesting of definitions (of functions, procedures or other ob-
jects). It has to do with a peculiarity in the typing rule for recursive defini-
tions in ML: Occurrences of a recursively defined function in ML inside its
definition body can only be used monomorphically (all of them have to have
identically typed arguments and their results are typed identically), whereas
occurrences outside its body can be used polymorphically (with arguments
of different types). Logic programs can be viewed as massive mutually re-
cursive definitions where all the antecedents of the constituent Horn clauses
represent the bodies. As observed in [MO84], an ML-style type system for
a logic programming language eliminates almost all polymorphism since all
occurrences of a predicate in the antecedents are required to have literally
identical types! More generally, languages that do not permit nested scop-
ing of definitions (e.g., Prolog [SS86], SETL [SDDS86], ABC [MP85]1) treat
definitions as generally mutually recursive and suffer the same fate in an
ML-style type system.

For this reason, Meertens [Mee83] and Mycroft

1ABC used to be called B.
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[Myc84] extended ML’s monomorphic typing rule for recursive definitions
to a more general polymorphic typing rule. This extended type inference sys-
tem has already been studied by Wadsworth in the late 70’s [Mac88] and also,
more recently, by Leiß [Lei87], Kfoury et al. [KTU88b, KTU88a, KTU89],
and this author [Hen88]. It permits polymorphic usage of recursively de-
fined functions (or procedures) everywhere and thus “solves” the peculiarity
associated with ML’s recursion typing rule.

We call the formal type inference system associated with ML the Damas-
Milner Calculus and its extension with polymorphic recursion Milner-
Mycroft Calculus. A simpler type system without any polymorphic usage
of variables is the Curry-Hindley Calculus. All three type inference systems
are presented in Appendix A.

Type inference in the Milner-Mycroft Calculus is intimately connected
with semi-unification, an “asymmetric”, generalized form of unification (see
section 2). Definitions of semi-unification, system of inequalities, semi-
unifiers and a powerful characterization theorem connecting type inference
and semi-unification can be found in section 2. Furthermore, in this paper
we present the following new results.

• We show that the set of derivable typings in the Milner-Mycroft Cal-
culus, the Damas-Milner Calculus, and the Curry-Hindley Calculus
form a complete lattice under a natural ordering on typings. This
generalizes the principal typing properties for these type inference
systems proved in [Hin69] (for combinatory logic), [BY79] (for λ-
calculus), [DM82], and [Myc84]. These generalized principal typing
properties follow directly from the connection of type inference with
semi-unification and the following result presented here: For any sys-
tem of inequalities the set of all semi-unifiers forms a complete lattice
(but not a filter) under weak equivalence.2 This result is of indepen-
dent interest as it proves the existence of most general semi-unifiers and
generalizes an unpublished result of Baaz (see references in [Pud88]).

• General semi-unification is not known to be decidable or undecidable3.
We prove that left-linear semi-unification (see section 3) is polynomial-
time decidable by employing a modified dynamic transitive closure
algorithm. This improves a recent exponential upper bound given in
[KTU89]. We briefly treat other special cases of semi-unification.

2This terminology is defined in section 3.
3Kfoury, Tiuryn, and Urzyczyn have recently announced a proof of undecidability

(“types” mailing list, September 25th, 1989)
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• Despite its observed practicality ML typing has been shown to be
PSPACE-hard [KM89]4. To help explain this discrepancy we argue
that “real programs have small types” and show that, under this
premise, type inference is tractable — i.e., polynomial-time decidable
— in the Milner Calculus and in the Milner-Mycroft Calculus. This
lends technical expression to observations made in [KM89] and [Boe89]
and justifies using a potentially prohibitively expensive type checker
in a compiler.

Our results may be interpreted as follows. The Milner-Mycroft Calculus
is a very desirable polymorphic type discipline since it permits polymorphic
usage uniformly inside and outside of recursive definitions (in contrast to
the Milner Calculus), yet it is still “well-behaved” in the sense that it has
a (generalized) principal typing property (in contrast to higher order poly-
morphic extensions based on the Second Order λ-Calculus [Gir71, Rey74]).
Type inference in the type systems under consideration here is a form of
semi-unification, and vice versa5. Whereas not even the decidability of
general semi-unification is known, the rather broad class of left-linear semi-
unification problems can be solved in polyomial time, and under the premise
that programs have “small” types (polynomial in the size of the untyped pro-
gram) semi-unification — and thus type inference — is provably tractable.
Since this holds for the Damas-Milner Calculus and for the Milner-Mycroft
Calculus, our results offer justification, generally, for relying on automatic
type inference in polymorphic programming languages and, specifically, for
using the polymorphic typing rule for recursive definitions instead of ML’s
more restrictive monomorphic rule. An implementation of the polymorphic
typing rule in the type checker of Standard ML of New Jersey is planned for
the near future.

2 Polymorphic Type Inference and
Semi-Unification

For the purpose of studying polymorphic type inference in isolation from
other typing concerns, we shall restrict ourselves to a notationally mini-

4Recently, Kfoury, Tiuryn, and Urzyczyn have announced a proof of DEXPTIME-
completeness for ML typing (types mailing list, September 22nd, 1989).

5The exact connection between polymorphic type inference and semi-unification is
detailed in [Hen89].
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mal programming language. As usual, we define typing displines by infer-
ence systems over typings (see Appendix A). The Curry-Hindley Calculus
permits no definition of polymorphic functions; the Damas-Milner Calcu-
lus corresponds to the type system of (the functional core of) ML; and the
Milner-Mycroft Calculus is the extension of the Damas-Milner Calculus with
a polymorphic typing rule for recursive definitions.

Semi-unification is a problem akin to unification. The preordering ≤
of subsumption on first-order terms is defined by M ≤ N if there exists a
substitution ρ such that ρ(M) = N . A system {M11 = M12, . . . ,Mk1 =
Mk2, N11 ≤ N12, . . . , Nl1 ≤ Nl2} of (term) equations and (term subsump-
tion) inequalities is semi-unifiable if there is a substitution σ such that all
the equalities and subsumption statements σ(M11) = σ(M12), . . . , σ(Mk1) =
σ(Mk2), σ(N11) ≤ σ(N12), . . . , σ(Nl1) ≤ σ(Nl2) hold. The equations are
superfluous since they can be encoded by inequalities.6 Consequently we
shall usually only talk of a system of inequalities or a system of equations.
Polymorphic unification, an extension of ordinary unification recently used
by Kanellakis and Mitchell to prove type checking in ML PSPACE-hard
[KM89], defines a subclass of semi-unification problems.

The significance of semi-unification for polymorphic type inference lies
in the following theorem.

Theorem 1 The following three problems are polynomial-time equivalent:

1. typability in the Milner-Mycroft Calculus;

2. (nonuniform) semi-unifiability;

3. typability in the Milner-Mycroft Calculus restricted to expressions of
the form fix f .e where e is a fix- and let-free λ-expression.

The step (1) → (2) was shown in [Hen88]. Step (2) → (3) was proved
independently in [KTU89] and [Hen89]. Step (3) → (1) is trivial. This
characterization was extended to the Second Order Lambda Calculus of
bounded rank 2 in [KTU89] (for rank-bounded typing see [Lei83]).

In [Hen89] it is also shown that not only the decision problems above
are preserved in the steps (1) → (2) and (2) → (3), but also the algebraic
structure of solutions to these problems. This is exploited in the proof of
the generalized principal typing property in section 3.

6For example, M1 = M2 has a unifier if and only if f(x, x) ≤ f(M1,M2) has a semi-
unifier, where x is a variable not occurring in M1,M2.
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3 New Results

As already indicated in section 1 the new results we report are divided into
three sections:

• Algebraic properties of semi-unification and derivable typings (gener-
alized principal typing properties);

• algorithms for special cases of semi-unification and their computational
complexity;

• type inference for programs with small types.

3.1 Algebraic Properties of Semi-Unification and Principal
Typing Properties

In this subsection we present the main structure theorem for semi-unifiers
and its corollaries, the generalized principal typing properties for the Curry-
Hindley, Damas-Milner, and Milner-Mycroft type inference systems. To em-
phasize some similarities and differences of semi-unification with unification
we also recast some known results on the algebraic structure of unifiers.

It is well-known that unification problems have most general unifiers
that are unique modulo “renaming of variables”. There are, however, several
different equivalence relations on substitutions that formalize what exactly
“renaming of variables” means.[CL73, SS86, LMM87]

A substitution σ1 is at least as general as σ2, written as σ1 ≤ σ2, if there
is a substitution ρ such that ρ ◦ σ1 ≡ σ2; σ1 and σ2 are strongly equivalent,
σ1 ∼= σ2, if σ1 ≤ σ2 and σ2 ≤ σ1. A somewhat “coarser” formalization results
from considering only a subset of variables in the definition of generality
above. Let W be a subset of V , the set of all variables. Substitution σ1
is at least as general as σ2 w. r. t. W , written as σ1 ≤W σ2, if there is
a substitution ρ such that ρ(σ1(x)) = σ2(x) for all x ∈ W ; σ1 and σ2
are weakly equivalent w. r. t. the system of inequalities (or equations) S,
σ1 ∼=V (S) σ2, if σ1 ≤V (S) σ2 and σ2 ≤V (S) σ1 where V (S) is the set of all
variables occurring in S.

The most widely used notion for “renaming of variables” is strong equiv-
alence since it is independent of particular variable sets. It is well-known
that every unification problem (i.e., term equation) that has a unifier at all
has a most general unifier; i.e., there is a unifier σ such that for all unifiers
σ′ we have σ ≤ σ′ (c.f., [LMM87]). Since ≤ is a preorder this implies that
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most general unifiers are unique modulo strong equivalence. Furthermore,
most general unifiers are also unique modulo weak equivalence even though
not every most general unifier modulo weak equivalence is a most general
unifier modulo strong equivalence.

Apparently in analogy to unification it has been stated that systems of
inequalities have most general semi-unifiers that are unique modulo strong
equivalence [Cho86, PM88]. We show that systems of inequalities that have
semi-unifiers at all have most general semi-unifiers modulo weak equivalence,
but, in general, not with respect to strong equivalence.

A substitution σ is idempotent if σ = σ ◦ σ. Henceforth we shall assume
the existence of an “undefined” (idempotent) substitution ω with σ ≤ ω
for all σ. Let us denote the set of all idempotent substitutions, with ω, by
ISω. We can factor out the equivalence relation ∼= (or ∼=W ) from a set Σ of
substitutions by writing Σ/∼= (or Σ/∼=, in which case ≤ (respectively ≤W )
canonically induces a partial order. Finally, for a system of inequalities S
we write SU(S) for the set of all semi-unifiers of S; similarly for a system
of equations S, we write U(S) for the set of unifiers of S.

Theorem 2 (Eder [Ede85])

1. Every system of equations S has a most general unifier that is idem-
potent, and for every idempotent substitution σ there is a system of
equations S′ such that σ is a most general unifier of S′ (with respect
to ≤).

2. ((ISω ∩U(S))/∼=V ,≤V ) is a complete lattice for every system of equa-
tions S.

This theorem fails for semi-unification in a major way. In particular, we
have that, with respect to ≤:

1. for any system of inequalities or equations S neither U(S) nor SU(S)
induce a lower or upper semi-lattice modulo strong equivalence.

2. there are systems of inequalities that have a most general semi-unifier,
but no idempotent one;

3. there are systems of inequalities with no most general semi-unifier.

The break-down of the structure of semi-unifiers under strong equiv-
alence indicates that strong equivalence is too strong a formalization for
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the intuitive notion of “renaming”. By using weak equivalence much of the
structure of unifiers carries over to semi-unifiers. In particular, the following
theorem shows that most general semi-unifiers exist and are unique modulo
weak equivalence.

Theorem 3 1. Every system of inequalities S has a most general semi-
unifier, and for every substitution σ there is a system of inequalities
S′ such that σ is a most general semi-unifier of S.

2. (SU(S)/∼=V (S)
,≤V (S)) is a complete lattice for every system of inequal-

ities S.

The proof is composed of two main parts: First it is shown that ≤W is
Noetherian (see Huet [Hue80]); then a construction is given that shows that
every pair of semi-unifiers has a greatest lower bound semi-unifier. This is
sufficient since every Noetherian lower semi-lattice is a complete lower semi-
lattice, and every complete lower semi-lattice is automatically a complete
lattice.

Apart from the fact that this main structure theorem of semi-unification
holds only for weak equivalence, not strong equivalence, another structural
difference between the lattice of unifiers in Eder’s theorem and the lattice
of semi-unifiers in this theorem should be pointed out: The lattice of uni-
fiers in Eder’s theorem is a filter; that is, it is the set of all (idempotent)
substitutions7 σ′ such that σ ≤ σ′ and σ is a most general unifier. In the
lattice of semi-unifiers of a system of inequalities S in the above theorem, on
the other hand, there may be substitutions σ′ such that σ ≤V (S) σ

′ where σ
is a most general semi-unifier of S, but σ′ is not a semi-unifier of S.8

As a consequence of the connections of semi-unification and polymor-
phic type inference the above structure theorem yields a simultaneous al-
gebraic proof of the principal typing properties of the Hindley Calculus
[Cur69, Hin69, BY79], the Milner Calculus [DM82], and the Milner-Mycroft
Calculus [Myc84]; in fact, the principal typing property can be strengthened
by showing that all derivable typings for a given (typable) expression e form
a complete lattice with respect to a natural ordering on typings.

7viewed as representatives of their strong equivalence classes
8This may be viewed informally as an indication that semi-unification algorithms can

be expected to be structurally more complex than unification algorithms since it is not
enough to encode a “current solution” space by a single substitution after processing part
of the input; additionally the “holes” above the current most general semi-unifier need to
be encoded.
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A substitution S on monotypes can be applied to a polytype σ by si-
multaneously replacing only the free variables in σ while renaming bound
type variables in σ to avoid capture of (necessarily free) type variables from
S. Such a substitution can be extended to type assignments, S(A)(x) =
S(A(x)), x ∈ dom A and to typings, S(A ⊃ e : σ) = S(A) ⊃ e : S(σ). The
notion of a generic instance of a polytype is defined inductively as follows.

1. If σ is a monotype, then σ is a generic instance of itself.

2. If σ is a polytype, σ = ∀t.σ′, τ is a generic instance of σ′, and τ ′ is an
arbitrary monotype then τ [τ ′/t] is a generic instance of σ

The generic instance preordering v on polytypes [DM82] is defined as fol-
lows: σ1 v σ2 whenever every generic instance of σ2 is also a generic in-
stance of σ1. This preordering can be extended to type assignments by
A v A′ ⇔ (∀x ∈ domA) A(x) v A′(x). Finally, we define the relation
(A ⊃ e : σ) ≤ (A′ ⊃ e′ : σ′): it holds if and only if there is a substitution S
such that

1. S(A) v A′,

2. e = e′,

3. S(σ) v σ′.

Clearly ≤ defines a preorder that induces canonically a partial order, also
denoted by ≤. Now we can formulate the following corollary of the main
structure theorem of semi-unification.

Corollary 1 Let X be “Curry-Hindley”, “Damas-Milner”, or “Milner-
Mycroft”. For any expression e that is typable in the X Calculus, the set of
derivable typings for e in X forms a complete lattice under the partial order
≤.

Of course, this corollary is only true if we assume the existence of a
“nonsense” typing ω derivable for every e such that T ≤ ω for all typings
T . This corollary is a consequence of the reductions used in the proof of
the characterization theorem in section 2 and the main structure theorem
of semi-unification above.
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3.2 Computational Complexity of Semi-Unification

Mycroft [Myc84] provided an elegant, but provably nonterminating algo-
rithm for computing principal typings. Meertens [Mee83] described a more
involved incremental type inference algorithm for ABC, which also computes
principal typings and has nonterminating computations. Both Mycroft and
Meertens left the computability of that question and the decidability of the
Milner-Mycroft Calculus open. This question has turned into somewhat
of a fata morgana since several attempts at proving decidability have been
unsuccessful [Mee83, Lei87, KTU88b, Hen87].9 Consequently the focus has
shifted to special cases of semi-unification.

Uniform semi-unification — semi-unification with a single inequality —
was shown to be (exponential-time) decidable independently in [Hen88],
[Pud88], and [KMNS88]. If it is not desired that (a suitable representation
of) most general semi-unifiers is computed, then uniform semi-unification
is polynomial-time decidable [KMNS88]. Semi-unification with only two
variables has recently been shown to be decidable [Lei89], too.

Another interesting class of semi-unification problems is left-linear semi-
unification. An instance of this problem consists of a system of inequalities
in which every term on the left-hand side of an inequality is linear; i.e.,
no variable occurs more than once in it. Kfoury et al. have proved that
left-linear semi-unification is decidable [KTU89]. The running time of their
algorithm is Ω(2n

2
). We improve this result by showing

Theorem 4 Left-linear semi-unification is polynomial-time decidable.

A simple analysis of our algorithm gives a running time of O(n3). The
bottleneck is a dynamic transitive closure computation. It seems likely that
better analysis and exploitation of the specific structure of the graphs over
which the transitive closure is computed may lead to an asymptotic improve-
ment of the running time.10 Note that it can be shown that semi-unification
over any ranked alphabet can be encoded (in logarithmic space) by semi-
unification over the alphabet that has only one binary functor and no other
functors, in particular no constants. These encodings, however, do not pre-
serve left-linearity, and thus it is important to remark that, nonetheless,
our bound applies to left-linear semi-unification problems over any ranked
alphabet. A proof sketch for this theorem can be found in Appendix B.

9As mentioned before, a proof of undecidability of semi-unification has been announced
by Kfoury, Tiuryn, and Urzyczyn.

10This is currently being investigated.
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Some simple “positive” and “negative” results on subclasses of semi-
unification are summarized below. We say a system of inequalities S is

• right-linear, if every right-hand side of S contains at most one occur-
rence of every variable;

• LHS-disjoint, if the left-hand sides of inequalities are pairwise disjoint
w. r. t. their variables.;

• LR-disjoint, if the left-hand side and the right-hand side of each in-
equality is disjoint w. r. t. their variables;

• simply ordered, if there exists a partial order < on the variables oc-
curring in S such that if x occurs in the left-hand side and y on the
right-hand side of one and the same inequality then x < y;

• strongly ordered, if there exists an equivalence relation ∼= on all
the variables in S and a partial order < on the equivalence classes
[x], [y], . . . of ∼= such that

– if x and y occur on the right-hand side of one and the same
inequality then x ∼= y;

– if x occurs on the left-hand side and y on the right-hand side of
one and the same inequality then [x] < [y].

While it may seem at first that disjointness of variables either between
the left-hand sides and the corresponding right-hand sides of inequalities
(LR-disjointness) or between different left-hand sides (LHS-disjointness)
should result in significantly simplifying semi-unification, it is easily shown
that this is not so; similarly, for right-linear and simply ordered systems of
equalities.

Theorem 5 General semi-unification is (log-space) reducible to each of
right-linear, LHS-disjoint, LR-disjoint, and simply ordered semi-unification.

Strongly ordered systems of inequalities on the other hand make it pos-
sible to solve one inequality at a time.

Theorem 6 Strongly ordered semi-unification is decidable in time O(nk)
where n is the total size (e.g., number of symbols) of the input and k is the
number of inequalities in the input.
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3.3 Type Inference for Programs with Small Types

The Damas-Milner Calculus is provably intractable11 [KM89], which is in
contrast to the overall positive practical experience with languages based on
ML’s type rules. We shall attempt to argue that the apparent practicality
of polymorphic type inference in the face of theoretical infeasibility results
is not coincidental.

A conventional remedy for eliminating problems with type inference is
to mandate explicit, fully typed declarations of variables, parameters and
other basic syntactic units. Observe, for example, that type checking in the
“explicit” Second Order λ-calculus is easy in the sense that there is a fast
polynomial time algorithm for checking the type correctness of a fully typed
λ-expression. Applying this sort of remedy to the Milner-Mycroft Calculus
highlights, though, why type checking (with explicit type information em-
bedded in the program) is, in general, no more “practical” from a user’s
point of view than type inference (with no or only optional type informa-
tion in the program). After all, writing a 200-line (untyped) program whose
principal typing is bigger (measured, for example, in terms of the “dag size”
of the principal type) than the number of atoms in the universe can hardly
be considered more impractical than writing the program with this typing
information in the first place! Even though both these cases seem to have the
same “intuitive” complexity they are treated very differently in conventional
complexity analysis since the two input sizes are dramatically different.

The formalization of type inference in logical calculi does not take the
intensional character of types and typings into account. Types and typings
are generally viewed as abstractions of the behavior of programs and their
parts, and — by analogy to types and program behaviors — type descrip-
tions are meant to be abstractions of the (syntactic) programs themselves. If
the complete inferred type information of a program is, in general, exponen-
tially bigger than the (untyped) program itself, we think it unreasonable to
say the type information is an abstract description of the program. Either
the type description mechanism is inadequate for capturing the intended
abstraction of behavior or the program at hand does not have a suitable
abstract description of its behavior. The first explanation points toward a
problem with the whole language, an issue that will have to be addressed by
language designers. Given a fixed static typing discipline, however, and its
implicit insistence that only behavior that is expressible in it should be con-
sidered desirable, the second explanation can be interpreted as saying that

11Intractable is used here in the sense of “being hard for (at least) NP or co-NP”
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the program at hand has no “reasonable” abstract description of its behavior
and thus should be considered unacceptable — type-incorrect. If we require
that a λ-expression e only be considered “effectively well-typed” whenever
it is typable in the sense of the Milner-Mycroft Calculus and its complete
(principal) type information is at most polynomially bigger than e itself,
then we can show that effective well-typing is (theoretically) feasible. The
rationale behind this decision could be formulated, somewhat provocatively,
as “(good) programs have small types”. A similar argument has been sug-
gested by Boehm [Boe89], and the observations about ML programs made
in [KM89] are consistent with our explanation.

Consider the type inference system in Table 3 in Appendix A, which we
shall call the explicit Milner-Mycroft Calculus. The only difference from the
Milner-Mycroft Calculus is that all binding occurrences of variables x must
have an explicit associated type embedded in the λ-expression.

We can define notions of typability and type inference as usual. Typed
λ-expressions are defined by the grammar

e ::= x | λx : τ.e | (ee′) |
let x : σ = e′ in e |
fix x : σ.e

where τ ranges over monotypes, and σ over polytypes. For every typed λ-
expression e there is a unique underlying untyped λ-expression, ē, derived by
erasing all mention of types in the typed λ-expression (and all colons); e is
called a typed version of ē. Clearly, every typed λ-expression has a principal
type in the explicit Milner-Mycroft Calculus with respect to a given type
assignment. We have the following proposition.

Proposition 2 There is a polynomial time algorithm for computing the
principal type of a typed λ-expression or indicating untypability.

We can now formally define a size-bounded restriction of the Mycroft
Calculus. Let p be a fixed polynomial of one variable, and let |e| be the
number of symbols in a typed or untyped λ-expression e, and let eMM
stand for the explicit Mycroft Calculus. Define

MMp = {ē : ∃A, σ | eMM ` A ⊃ e : σ and |e| ≤ p(|ē|)}

A simple way to think about this set is to recognize that, if A ⊃ e : σ
is derivable in eMM , then A ⊃ ē : σ is derivable in MM . The second
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requirement encodes the fact that MMp considers only those untyped λ-
expressions type-correct that have a typed version whose type information
is at most polynomially bigger than the untyped λ-expression itself. This is
not to suggest that such a global property is a good definitional requirement
on type systems – certainly not – but that the size bound is a good property
of a type system for programs. It remains to be seen whether such a type
system can be defined in a syntax-directed fashion.

Even though typability in the Milner-Mycroft Calculus is known to be
intractable, possibly even undecidable, its size-bounded restriction MMp is
tractable.

Theorem 7 MMp is polynomial-time decidable.

This theorem is actually stronger than stated. The upper bound on
the running time is essentially determined by the polynomial p; that is, for
given p there is an algorithm that decides MMp in time O(p). It would be
interesting to see whether this theorem extends to the case where (monomor-
phic/polymorphic) type abbreviations of the form let type s = τ in . . . are
allowed, which are erased when forming ē from an expression e.

If we consider the “typing” problem12 of determining whether there is
an assignment of (polynomial-sized) type expressions to function definitions
in a language with Ada-style overloading, but without explicit type decla-
rations (Ada requires such explicit declarations), it can be shown that this
problem is NP -complete [ASU86, exercise 6.25], whereas the size-bounded
polymorphic type inference problem is in P . This lends technical expression
to the intuition that “overload resolution” as above is much harder than
polymorphic type inference.

A Type Inference Systems

The set Λ of λ-expressions is defined by the following abstract syntax.

e ::= x | λ x.e | (ee′) |
let x = e′ in e |
fix x.e

12Some people would not consider this overload resolution problem an example of a
typing problem.
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The expression fixx.e essentially corresponds to a recursive definition of
x with body e13 The type expressions are formed according to the following
productions.

τ ::= α | τ → τ

σ ::= τ | ∀α.σ

where α ranges over an infinite set TV of type variables, and ∀ is a (type)
variable binding operator. The type expressions M derivable from τ are the
monotypes;14 the type expressions Π derivable from σ are called polytypes.
A type assignment (or type environment) A is a mapping from a finite subset
of V (variables) to Π (polytypes). For given A we define

A{x : σ}(y) =

{
A(y), y 6= x
σ, y = x;

A typing consists of three parts: a type assignment A, an expression
e, and a type expression σ, written as A ⊃ e : σ. The Curry-Hindley
Calculus, Damas-Milner Calculus, and Milner-Mycroft Calculus are type
inference system given axiomatically in tables 1 and 2.

B Proof Sketch

This is a brief sketch of the proof of theorem 4. It is based on showing
that the general-purpose semi-unification algorithm presented in [Hen89,
chapter 6] can be “sped up” for left-linear semi-unification. A direct proof,
not involving the general algorithm, is also possible, but is less intuitive in
our view. In [Hen88] we presented a graph-theoretic algorithm that com-
putes most general semi-unifiers of arbitrary systems of (equations and) in-
equalities. Terms are represented by term graphs, equations by equivalence
relations on the nodes and inequalities by colored “arrows” — additional
directed edges — in the term graph. Every color corresponds to a different
inequality. See Figure 1 to get a general idea about the nature of these
closure rules.

For left-linear systems, it can be shown by induction on arrow graph
rewriting steps that the algorithm never executes any one of the two rules

13This only defines the value, but does not yield a binding to x.
14Note that, in contrast to [Mil78] and [Myc84] our monotypes can contain (necessarily

free) occurrences of type variables.
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Let A range over type environments; x over variables; e, e′ over λ-
expressions; α over type variables; τ, τ ′ over monotypes; σ, σ′ over polytypes.
The following are type inference axiom and rule schemes.

Name Axiom/rule

(TAUT) A{x : σ} ⊃ x : σ

(GEN) A ⊃ e : σ
(α not free in A)

A ⊃ e : ∀α.σ

(INST) A ⊃ e : ∀α.σ
A ⊃ e : σ[τ/α]

(ABS) A{x : τ ′} ⊃ e : τ
A ⊃ λx.e : τ ′ → τ

(APPL) A ⊃ e : τ ′ → τ
A ⊃ e′ : τ ′
A ⊃ (ee′) : τ

(LET-M) A ⊃ e : τ
A{x : τ} ⊃ e′ : σ′
A ⊃ let x = ein e′ : σ′

(LET-P) A ⊃ e : σ
A{x : σ} ⊃ e′ : σ′
A ⊃ let x = ein e′ : σ′

(FIX-M) A{x : τ} ⊃ e : τ
A ⊃ fix x.e : τ

(FIX-P) A{x : σ} ⊃ e : σ
A ⊃ fix x.e : σ

Table 1: Type inference axioms and rules
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Axiom/rule Cur-Hin Dam-Mil Mil-Myc

TAUT
√ √ √

GEN
√ √ √

INST
√ √ √

ABS
√ √ √

APPL
√ √ √

LET-M
√

LET-P
√ √

FIX-M
√ √

FIX-P
√

The mark
√

indicates the corresponding axiom/rule is present in the calculus
in whose column it appears; blank space means it is not included. The Flat
Mycroft Calculus is restricted to λ-expressions with no let-operator and
with only one occurrence of a fix-operator, which must occur at top-level.

Table 2: The Curry-Hindley, Damas-Milner, Milner-Mycroft type inference
calculi

that merge equivalence classes. In other words, no merging takes place at all.
Since the color information is only needed to trigger such merges correctly,
it is superfluous! Consequently, we can compute the transitive closure of
the initial arrows and apply rule 2, which propagates arrows “downwards”
to the children. After each application of rule 2 we recompute the transitive
closure and continue until no more applications of rule 2 are possible. At
this point, we check if the computed (transitive) arrow structure together
with the original term graph is acyclic. If the ranked alphabet is has only
one functor, we are done at this point: If the arrow graph is is acyclic or
all cycles contain only arrows, but no term graph edges, then the original
left-linear system of inequalities has a semi-unifier; otherwise it doesn’t. If
the ranked alphabet is more complicated and allows for possible functor
clashes we check after acyclicity testing whether there is a functor clash.
This can be done by a slightly modified unification algorithm without “oc-
curs” check. Clearly, the computational bottleneck is the dynamic transitive
closure computation. Using any one of well-known dynamic transitive clo-
sure algorithms [?, Yel88], a naive analysis yields an O(n3) running time
where n is the number of symbols in the given semi-unification problem. It
remains to be seen whether this bound can be improved by exploiting the
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Let A range over type environments; x over variables; e, e′ over λ-
expressions; α over type variables; τ, τ ′ over monotypes; σ, σ′ over polytypes.
The following are type inference axiom and rule schemes.

Name Axiom/rule

(TAUT) A{x : σ} ⊃ x : σ

(GEN) A ⊃ e : σ
(α not free in A)

A ⊃ e : ∀α.σ

(INST) A ⊃ e : ∀α.σ
A ⊃ e : σ[τ/α]

(ABS) A{x : τ ′} ⊃ e : τ
A ⊃ λx : τ ′.e : τ ′ → τ

(APPL) A ⊃ e : τ ′ → τ
A ⊃ e′ : τ ′
A ⊃ (ee′) : τ

(LET-P) A ⊃ e : σ
A{x : σ} ⊃ e′ : σ′
A ⊃ let x : σ = ein e′ : σ′

(FIX-P) A{x : σ} ⊃ e : σ
A ⊃ fix x : σ.e : σ

Table 3: Type inference axioms and rules for explicit Milner-Mycroft Cal-
culus
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specific structure of the arrow graphs.
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Figure 1: Closure rules
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