
Computer Science Department

TECHNICAL REPORT

INTERNAL, EXTERNAL, AND PRAGMATIC

INFLUENCES: TECHNICAL PERSPECTIVES IN THE

DEVELOPMENT OF PROGRA-MMING LANGUAGES

by

JACOB T. SCHWARTZ

July 198

Report No. 02

NEW YORK UNIVERSITY

S
I

h

I/O
Department of Computer Science

Courant Institute of Mathematical Sciences

251 MERCER STREET, NEW YORK, NY. 10012

]

Technical Survey No. 2

INTERNAL, EXTERNAL, AND PRAGMATIC

INFLUENCES : TECHNICAL PERSPECTIVES IN THE

DEVELOPMENT OF PROGRAJIMING LANGUAGES

by

JACOB T. SCHWARTZ

July 198

Report No. 02

This report was prepared under Grant No.
N00014-78-C-b639 from the
Office of Naval Research.

^.0

SECURITY CLASSIFICATION OF THIS P4GE ,-l*r»n Da(B Enltred)

REPORT DOCUMENTATION PAGE READ INSTRUCTION'S
BEFORE COMPLETING FORM

I. REPORT SUM3ER 2. GOVT ACCESSION NO 3. RECIPIENT'S CAT ALOG NUMBER

020
4. TITLE (and SublltiB)

Internal, External, and Pragmatic
Influences: Technical Perspectives in
the Development of Programming Languages

5. TYPE OF REPORT 4 PERIOD COVERED

Technical
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfs;

Jacob T.. Schwartz

8. CONTRACT OR GRANT NUMBERrsJ

N00014-78-C-0639

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Courant Institute of Mathematical Sciences
New York University
251 Mercer Street, New York, N.Y. 10012

10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research

12. REPORT DATE
July 1980

13. NUMBER OF PAGES

72
M. MONITORING AGENCY NAME 4 ADDR ESSfi' d'^/eronf Irom Controlling Ollicc)

Department of the Navy
Arlington, Virginia 22217

IS. SECURITY CLASS, (at this report)

unclassified
ISb. DECLASSIFICATION/downgrading

SCHEDULE

16. DISTRIBUTION ST ATEMEN T Co/ f/iis Repori;

Approved for public release; distribution unlimited,

17. DISTRIBUTSON STATEMENT (ol the abstract entered in Block 20, it dlllerent from Report)

none

18. SUPPLEMENTARY NOTES

none

19. KEY WORDS (Continue on reverse side it necessary and identity by btoclf nuTr\ber)

programming methodology
programming languages
high-level programming techniques
specification techniaues

20. ABSTRACT (ContlnuB on reverso side It necessary and Identify by block number)
This paper reviews key issues likely to shape the design and
development of programs and programming languages as efficiency
constraints relax and comoutational power increases. These issues
are;

1) the use of the dictions of mathematics to define operations that car
be used to achieve user-defined desires and expectations concerninc
an intended application;

2) techniques for designina and producinq the expected results: the

DD , JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE ("HTien Data Entered)

use of very-high-level programming languages for prototyp-
ing; the development of application-oriented languages;
the design of applications using standard operations; and
the development of a library of modules which handle sub-
stantial fragments of important applications;

3) a language's usefulness, i.e., its general nature and its
user-oriented features.

Technical Perspectives in the Development of Programming Languages

1. Introduction. External and internal issues in program design .

Integrated circuit technology is evolving continuously

and rapidly toward smaller elementary devices and denser, more

complex functions on each silicon chip. This is bringing a

greatly expanded computational power into being, with rapidly

falling costs. The following stages of development can be

anticipated:

(a) Presently , computers (like the DEC VAX) which provide

large-machine performance (e.g. l-million-instructions-per- second

instruction rate) but at greatly reduced cost (e.g. $300,000 vs.

$1.5 million or more) have become available.

(b) Over the next ten years , machines of this capability

should become available at costs ranging down to $10,000 or less.

(c) Within two decades , these same capabilities should become

available in home computers selling for approximately $1,000.

(d) Various supporting technologies , especially bulk storage

technology (e.g. videodisc), speech generation, and low-cost

printing are also developing rapidly.

The increased computational po-'er that is coning

into being is bound to impact programming technique significantly.

A central possibility here is to use expanding computational

power in radical and aggressive fashion to alleviate the

problems of software production , generally recognized today as

a main obstacle to expanded computer application. In order

to assess the potential for development in this direction,

we shall review various key issues likely to shape the design

and development of programming languages as the efficiency

constraints which have been all-dominating until now relax

progressively. This review is organized around several

main themes:

(i) Ingredients of two fundamental sorts enter into

the composition of a program. Material of the first category

serves to define user desires and expectations concerning an

intended application, for example the nature of expected input,

and of output including output text and graphics, prompts

and warnings, error diagnostics, etc. This material, which

can in fact constitute the overwhelming bulk of a particular

application, is motivated by external considerations having

an intrinsically nonmathematical character. Material of a second,

contrasting category serves to define the toolbox of operations

which can be used to achieve the desired external behavior;

this internal program material has a much more mathematical

character. Depending on the relative weight of program

material belonging to these two categories, a program may

be called externally or internally motivated. In this sense,

much of an optimizing compiler is internally motivated,

whereas by far the greater part of a commercial report genera-

tion program is externally motivated.

We shall see that the dictions of mathematics serve

very adequately to define the internally motivated portions

of a program, and that closely related dictions can be used

to describe the algorithms which allow mathematical operations

to be realized with acceptable efficiency. Beyond this, other

mathematical questions, having to do with verification of algo-

rithm correctness and transformation of programs between

equivalent forms having different levels of efficiency, attach

naturally to the internally motivated aspects of programs.

(ii) No equally satisfactory tools for dealing with

the much more varied externally motivated aspects of programs

are available. However, we shall suggest a variety of

techniques for making it easier to design and produce the

externally motivated portions of a program. These include:

(ii.a) The use of very-high-level languages for system

prototyping, so that users can be exposed to a running system

version for preliminary reaction before a very large system

development expenditure has been incurred. This would allow

functional deficiencies to be caught while it was still

possible to correct them relatively cheaply.

(ii.b) Development of application-oriented languages,

which allow the characteristic problems of an area to be

organized conveniently by making central notions of the area

available as language primitives.

(ii.c) Systematic attempts to design applications using

standardized operations rather than specially tailored opera-

tion sequences.

(ii.d) Development of a library of modules which handle

substantial fragments of important applications, but which

can also be used as building blocks for more complex applica-

tions. Typical modules might be: an on-line editor module,

usable as a general-purpose command-input facility; a

grammar-driven parser capable of generating useful standard-

ized diagnostics for relatively free form input; standardized

graphics modules for display output; etc.

Since various existing languages provide useful

application-oriented features, we also consider the possibility

of linking existing languages together into a multipurpose

'programming language environment'.

(iii) The rate at which the user of a language is able

to progress in developing an application depends not only on

the general nature of the language but also on its user-oriented

features. In the final section of this report we review a variety

of facilities, including portability aids, debugging aids,

and program measurement facilities whose presence or absence

can have a strong pragmatic effect on a language's usefulness.

2 . The algorithmic side of progrartining .

A. Mathematics as a programming language .

The set- theoretic foundations of mathematics involve

remarkably few primitive constructions. We can enumerate

these as follows:

(a) The operators &, v, ->, of prepositional calculus,

and also the quantifiers (Vx), (3 x) of predicate calculus,

together with all the standard rules for manipulating them,

are available. It is also convenient to allow conditional

terms and predicates of the form

if C- then t, elseif C-, then t_ ... else t
1 i 2. 2. n

(b) The equality relation x - y and the membership rela-

tion X e y are available. Equality has all its standard

properties, and in addition we have the

Axiom: u = v (Vx) (x e u »•• x s v) .

(c) We are allowed to write set formers {e: x^,...,x : C},

where e is any expression, C any predicate, and x, ,...,x any

list of variables. This syntactic construct designates the

set of all values that e can take on as Xt,...,x vary over
1 n

all values satisfying the condition C. We therefore have

the

Axiom: z e {e: x^ , . . . , x : C } (3 x^ ... x) (z = e & C) .in in
The expression e and condition C are essentially arbitrary,

except that certain technical restrictions, which prevent

formation of 'paradoxical' sets (e.g. the set of all sets

which are not members of themselves) , must be respected.

(We shall not discuss these restrictions here.)

It is convenient to use {x:C} to abbreviate {x:x:C}.

(d) If f is any function (resp. predicate) symbol which

has never been used before, and e is any expression (resp.

predicate) whose only free variables are x, ,...,x , we canc J 1 ' n '

introduce the equality

f(x^,...,x^) = e (resp. f(x^,...,x^) ** e)

as a definition. (For emphasis, we will generally write such

equalities as f(x^,...,x) ::= e. As a syntactic convenience,

we will also allow functions introduced in this way to be

written as infix or prefix operators, or to be indicated by

use of other convenient syntactic forms, e.g. special brackets.)

Many basic set-theoretic definitions are entirely

straightforward :

{u} : := {y :y=u}

{u,v} ::= {y: y=u V y=v}

: := {y : y 7^ y}

::= 0, 1 ::= {0}, 2 : := {0,1}

<x,y>

u U V

u n V

u \ v :

u c V

pow (u)

= {{0,{x}},{2,{y}}}

= {y: y € u V y S v}

= {y: y e u & y S v}

= {y: y e u & y ^ v}

:« (u V V = 0)

: := {y: y C u}

flu} : := {y: <u,y> € f

}

Rf

Df

f is

f [sj

f-^ :

fog :

hd(u)

t£(u)

Un(s)

(singleton)

(pair)

(nullset)

(zero, one, and two)

(ordered pair)

(union)

(intersection)

(difference)

(inclusion)

(powerset)

(multivalued map applica-
,

,
tion)

(range)

(domain)

= {y: x,y: <x,y> e f}

= {x: x,y: <x,y> e f}

= {<x,y>: x,y: <x,y> e f sxSs} (restriction of map to set)

:= R(f |s) (range of map on set)

= {<y,x>: x,y: <x,y> e f} (inverse mapping)

= {<x,z>: x,y,z : <x,y>ef &<y, z>eg} (functional composition)

= nr|{x-{0} :x:x€u & OEx} (first component of ordered

= rin{x-{2} :x:x€u & 2^x} (second component " ")^

= {x:x,y: x€y & y€ s} (union set)

Under appropriate restrictions, definitions are allowed to

be recursive, i.e. the function symbol appearing on the left

of a definition can also appear on the right. Specifically,

let the definition be

(*) f (x-|^, . . . ,x^) : := r .

Then there must exist some other, already defined function

a(x^,...,x), which we shall call the auxiliary function of

the definition (*), such that every occurrence of f within r

is part of a subexpression

if a(e,,...,e) ^ a(x,,...,x) then else f(e,,...,e) .

Similarly, for recursive predicate definitions

P(x^, . . . ,x^) : :» r ,

we insist that every occurrence of P within r be part of a

predicate subterm

a(e,,...,e^) e a(x , ,x)
-»- P(ew..,,e„) .in in in

It should be understood that only the initial form of a recur-

sive definition is subject to these rules; this initial form

can then be rewritten in any equivalent form for convenience

where desired.

(e) For any predicate P(x^,...,x ,y) whose only free

variables are x^,...,x
, y we can introduce a new function

symbol f of n variables and a defining statement

(Vx^,...,x^) (P(x^, . . . ,x^,f (x^, . . . ,x^))
** (3y) P (x^^ , . . . ,x^,y)).

(f) The necessary assumption that there exists at least one

infinite set is formulated as the

Axiom: (3u) u c un(u) & u 7^ (axiom of infinity).

(g) A special 'choice' operator n which selects a (fixed)

element from each nonnull set is available, together with the

Axiom: ns n s = & (ns esvs = 0) &ri0 = (axiom of choice)

As an indication of the astonishing power of this simple

system, we will now review the basic definitions of various

major areas of mathematics, beginning with

Integer arithmetic (including ordinal arithmetic)

•

The integers are encoded as 2 = {0,1}, 3 = {0,1,2}, etc.,

making it intuitively plain that every integer m has the

properties: n 3 Un(n) and (Vx€n) (Vy^n) (xeyvy€xvx=y) .

This leads to the following definitions:

Elo(s) ::» (Vx^s) (Vy€s) (xeyVyexVx = y)

Ord(s) ::-^ s 2 Un(s) & Eio(s) (s is an ordinal number)

f(x) ::= nf{x} (image element)

earrier(f) ::= {x: x e Df & f(x) f^ O}

Singlevalued(f) : := (Vx € of) f{x} = {f(x)} (singlevalued map)

s X t ::= {<x,y>: x e s & y € t} (Cartesian product)

Maps(s,t) ::= {f: fCs xt&Df=s&Singlevalued (f) } (maps from s to t)

#s ::= n{x: Ord(x) & (3f G Maps(x,s)) (Rf = s) } (cardinality)

A set is a cardinal if #s = s. The product, sum, and differ-

ence of cardinals are defined by:

s * t

s + t

s - t

= #(S X t)

= #({0} X s u {1} X t)

= #(s \ t)

If u„ is any set having the property stated in the axiom of

infinity, then we can put

2 :
:= n{x: x e #pow(u_) & x = Un(x)},

thus defining the set of all nonnegative integers.

Note that the manner in which we have defined the integers

makes every nonnegative integer the set of all smaller

nonnegative integers. We can then put

Seq(f)::= Singlevalued (f) & Df e z_|_ (f is a sequence).

The successor of any cardinal (or ordinal) n is n u {n} and its

predecessor (if any) is Un(n).

As an example of a recursive definition, we shall define

the quantity comb(m,f) that would normally be written

m(... (m(m(f (0) ,f (D) ,f (2)) ...f (#f- D) ,

i.e., the combination of all the components of the sequence f

using the binary operation m. This has the definition

comb(m,f) : := if nseq(f) v #f e {0,1} then f(0)

else m(comb(m,f |Un(Df)) , f(Un(Df))) .

Since Un{n) G n for each n e Z_|_ , we have # (f
|

On(Df)) e#Df

for each sequence f, so that the definition we have offered

is equivalent to a (cltomsier) variant satisfying the strict

syntactic rules for a recursive definition (with auxiliary

function a(m,f) = #f)

.

Having come this far, we can easily go on to define

Signed integers . It is convenient to encode the negative

of an integer n as {{n}}, which leads to the following

definitions:

-n ::= if n e Z & n ?^ then {{n}} else nnn

|n| ::= if n ^ Z then n else -n

n*,m ::= if n e z m e Z then |m|*|n| else -{|m|*|nl)

m-, -,n::= if n e m then m - n else - (n - m)

(signed difference of positive integers)

m+,n ::= if m s z & n e Z then m + n

elseif m e z & n ^ Z then m -,
-,

(-n)

elseif n e z & m ^ Z then n--, -, (-m)

else -
((- m) + (- n)) (signed sum)

m -,n ::= m +, (-n) (signed difference)

in>_n::*»m-nez (comparison)

Z : := Z u {-n: n: n £ Z } (signed integers)

Since the operators *,,+,, -. extend *, +, and -

from Z to Z , we can abbreviate them in the ordinary way as

*, +, and -, relying on our knowledge of the types of their

arguments to disambiguate any ambiguity which this might

cause.

Rational numbers can now be defined in the ordinary way as

sets of equivalent pairs of integers, i.e.:

ratc(n,m) : := {<x,y>: xSZ, yez:x*m = y*n&y7^0}

Rats : := {ratc(n,m): n,m: n ^ Z & m^Z & mT^O)

(the rational numbers)

r *2 s ::= n (rate (n, n2,m,m2) : n, ,n2,m, ,m2:

<n, ,n2> ^ r & <m, ,m2> ^ s)

r "2 s ::= nlratc (n,n2 - "o^^l' "^I'^o^ *

n, ,n2/m^,m2: <n, ,n2> ^ r & <m, ,m2> ^ s)

r +2 s ::= r "2 (rate (0,1) -^ s) (rational sum)

r > 1 — = (3^^ ^ 2+' " ^ 2 +) n 7^ & r = ratc(m,n)

r >^2 s : := r - s >^2 1 "3 (comparison of rationals)

Again, since n -•• ratc(n,l) is a natural 1-1 embedding of

the signed integers into the rationals, we will feel free to

abbreviate ratc(n,l), ^o ' *2 ' '^'2 ' ^^^ ~2 ^^ '^' — '
' ""' ~*

Having thus defined the rational numbers and the operations

upon them, it is easy to go on to define

Real numbers and real arithmetic.

Real numbers are defined as Dedekind cuts:

Reals ::= {x: x C Rats & x ?^ Rats&X7>^0& (Vy€x) (3 zSx) (z<y) &

(Vy,z) (yex&y<_z^zEx)}

u --. V ::= {x - y: X e u & y ^ v} (real subtraction)

float(r)::= {x: x > r} (imbedding of rationals into reals)

0.0 ;= float(O) , 1.0 : := floatd)

u +-, V : := u -, (0.0 -, v)

u

u*3_^v

U * -, V

:= if u c 0.0 then u else 0.0 -^ u

:= {x * y: X e u & y e v} (multiplication of positive
reals)

= ifu'^O.O*»v^0.0 then lu

else - |u|3 *3_^ ^[3

3 *3.1 1^13

(real product)

Note that the ordinary comparison of reals, u >_3 v, is simply

u £ V, and that the greatest lower bound glb(s) of a set of

reals is simply Un(s) . We write u > v for u > v & u 7^ v.

lub(s) ::= 0.0 - glb({0.0 -3 x: x e s})

[a. .b] : := {x: x € Reals &x>_a&b>_x}

(a..b) ::= [a..b] - {a,b}

Again we choose to abbreviate -3 , +3 , *^ , \'^\ -^ as -, + ,*, |u|,
etc.

Continuous functions and integration .

Real_neighborhoods ::= { (x-6 .. x+6): x e 'Reals & fiSReals & 6>0}

Opensubs(s,N) ::={snun(t): tCN)

Real_contin(f) : :* Df £ Reals & f e Maps (Df, Reals)

& (VseReal_neighborhoods)

(f~ [s] e Opensubs(Df, Real_neighborhoods)

)

= {<x, f (x) -g (x) > : x: X e Reals}

= {<x, f (x) *g (x) > : x: X e Reals}

= {<x,r>: x: X e Reals}

= f -^ (const(O.O) -^ g)

= (Vx e Reals) (f (x) > g(x)

)

f -4 g

f *4 g

const (r)

f +4 g

f I4 g

10

Step_contin (Reals) : := {f: Df=Reals & {3s,a){#sez &

Real_contin(f
I
(Reals\ s)) & Rf £ [-a .. a] sCarrier (f)C [-a. .a]) }

Pos_lin_functional (J) :
:•«

(Vfestep_contin (f) ,
gSStep_contin{f

) , cSReals)

(J{f)€Reals & J(f-^g) = J(f)-J(g) & J (const (c) *^f) =c*J(f)

& f ^ g ^ J(f) >_ J(g))

Integral : := ri{J: Pos_lin_functional (J) &

(VaSReals, bSReals) (b>a->-

(J({<x, if xe[a..bj then 1.0 else 0.0>: xrxSReals}) =b-a))

}

This last formula defines the ordinary integral, at least in a

limited version. The theory of integration, and indeed much

of analysis, is concerned with extensions and manipulations

of this and related functionals.

To illustrate the level which has now been reached, we

note that two of the most basic theorems of real analysis can

be stated as follows:

Range Theorem : Real_Contin (f) & a < b ->•

f[La..b]J = [gib f[a..b] .. lub f[a..bj] .

Heine-Borel Theorem : Un(s) =(Reals & (Vx e s) (Opensubs (x, Reals)) &

a < b ^ (^Sq c s) (#Sq e z & Un(sQ) 3 [a .. b])) .

To complete this excursus into analysis, we will now say a few

words about

Complex analysis . Here we define:

Cnos ::= Real x Real

u -^ v::= <hd(u) - hd(v), t£(u) - tJl(v)>

u +^v ::= u -^ (<0.0, 0.0> -^ v)

u *-v ::= <hd(u) * hd(v) - tJl(u) * t£(v),

hd(u) * til(v) + tJl(v) * hd(u)>

u : := <hd(u) , -tJl(u) >

11

|uL ::= n{x: x ^ Reals & x * x = u *^ u}

Comp_neighborhoods : := {{z: | z-u
| ^ < 5}:

u,6: u e Cnos & 6GReals & 6 > 0}

Comp open(s) : := s e Opensubs (Cnos , Comp_neighborhoods)

Comp_contin(f) ::= f e Maps (Df , Cnos)

& (VseComp_neighborhoods) (f [s]e

Opensubs (Df,Comp_neighborhoods)

)

Cdiff(f) ::= Gbmp_contin (f)

& (Vzeof) (3g) (Comp_contin(g) & Dg = Df)

& (V'v€Df)((f (w)-f (z))= (w-z) *5g(w))

(continuously dif ferentiable f\inction)

Analytic (f) ::= Cdiff(f) & Comp_open (Df

)

f'(z) ::= ri{g(z): g: Comp_contin (g) & Dg = Df &

& (Vw€Df) (f (w)-f (z) = (w-z) *5 g(w))}

f ::= {<z, f'(z)>:zeDf}

C_integral (f) ::= <1.0,0.0> *- Integral (hdof) +

<0.0,1.0> *5 Integral (t£°f)

f *, g ::= {<z, f(z) *^ g(z)>: z: z e Df n Dg}
fa -I

Restr(f,a,b) ::= (f|[a..b] u const (<0 . , . 0>) | RealsN [a . .b]

)

Line_integral (f ,g,a,b) ::= C_integral (Restr (f *, g',a,b)) .

We are now in a position to state two of the main theorems of

complex analysis, of which the first, Cauchy's integral theorem,

requires a preliminary definition:

Wullhomotopy (f ,h) ::= Comp_contin (h) & Dh = [0..1] x [0..1]

& (3c) (Vx€ [0. .1]) (f (x)=h(<x,0>) & h(<x,l>) = c

& h(<0,x>) = h(<l,x>))

.

12

Cauchy's Integral Theorem : Analytic (f) & Cdiff(g)

& (3h) (Nullhomotopy (g,h) & Rh c Df)

-> Line_integral (f ,g,0,l) = <0.0,0.0>.

Open Image Theorem ; Analytic (f) -> Comp_open (Rf) .

The set-theoretic techniques whose classical uses have

now received adequate review can be used with equal effective-

ness to handle the combinatorial situations more typical of

computer applications. To illustrate this fact, we shall

simply define the basic notions of the theory'' of

Parsing ;

Ordered_forest(t) :
:**(yxeDt) (Seq(t(x)) & (Vy€ (Dt-{x})) (Rt(x) *Rt(y))) =0

Steps(p) ::= {<p(i), p(i+l)>: i e Un(Dp)}

Descs(t,x) ::= {p(#p-l); p; (Seq(p) & p(0) = X

& Steps(p) C {<u,v>;u,v;ueDt & v€R(t(u))})}

Root{t) ; ;= ri{r: Descs{t, r) £ Dt}

Ordered_tree (t) : :** Ordered_forest (t) & (3r) (Descs { t, r) ^ Dt) .

The fringe of a finite ordered tree is the sequence of

all its 'twig' nodes, taken in their left-to-right order.

We can define this as follows;

f II g ::= f u {<n + #f,g(n)>;n; n e Dg } (concatenation of
sequences)

If ;;= ifnseq(f) then elseif #f=l then f(0)

else (II (f
1
(#f - 1))) n f (#f - 1) (concatenation of

sequence of sequences)
Fringe(t) = if t(Root(t)) = then Root(t) else

i {<n,Fringe(rd(n)) >: n,rd: rd=t | Descs (t, t (Root (t)) (n)

)

& n e D(t(Root(t))) & #rd € #t} .

We represent a context-free grammar, gram, simply as a set of

pairs <r,Jl> where r corresponds to the left-hand side

of a production and S. , which must be a sequence, corresponds

to the right-hand side of the production.

13

Sentences (gram, rootsymbol) : := {m ° Fringe (t): m, t :Ordered_tree (t)

& #t€Z &

(Vxeot) (t(x)7^0 -^ <m(x) , m o (t(x))> e gram

& m(Root(t)) = rootsyrabol) }

Beyond the definitional material presented in the preceding

pages, the essential content of mathematics is a sequence of

proofs of equality, predicate identity, and existence, which

allow set-theoretic terms and predicates to be transformed

from one form to another. These proofs rest upon algorithms,

ideally as flexible and powerful as possible, which allow one

formula to be deduced from a set of other formulae by sequences

of single 'elementary' steps. Variants of these formal mechanisms

reappear in the computer context as tools for algorithm verifi-

cation and transformation, and will be discussed below.

B . From mathematics to algorithms .

To turn the mathematical dictions employed in the preced-

ing section into computer programs, a succession of intermediate

steps is necessary. Basically we must:

(a) eliminate all uses of infinite sets and

(b) eliminate all prohibitively expensive constructions, e.g.

all but very cautious use of the power set operation, as well as

all recursive definitions requiring inordinately many inter-

mediate evaluations to converge.

Once these two steps have been applied to a mathematically

defined function or predicate f, to yield a mathematically equiva-

lent but generally less obvious and perhaps more complex form

of f, we say that an algorithm for f is available. Concerning

the essential work of accumulating and organizing such algo-

rithms, we can make the following remarks:

(i) This work is in full swing. Even omitting numerical

algorithms, well over a thousand significant algorithms have

appeared in the literature, and dozens more are being published

each month.

(ii) We will always be interested in algorithms which are as

efficient as possible, and this will inspire us to derive

14

numerous equivalent algorithms, all calculating the same f.

Some of these may calculate f only in special contexts, e.g.

for arguments satisfying particular restrictions. Others may

be specially adapted to efficient combination with other

algorithms used in the same program, for which purpose the

transformational technique reviewed below may be useful.

(iii) Functions f often appear in program loops, within

which they are calculated repeatedly for argument values which

change only 'slightly' between iterations. For this reason

we are interested not only in algorithms which calculate

f(s) de novo, but also in methods for calculating f(s')

given f (s) together with some useful relationship between

s ' and s

.

The large number of mathematical operations apt to be

of interest for one or another application, the fact that

variant algorithms for use in special contexts need to be

studied, and the fact that we are interested in studying many

useful combinations of algorithms can be expected to generate

a very large algorithmic literature. As noted, this literature,

already substantial, makes many useful mathematical operations

available as primitives out of which applications can be composed.

In its most abstract form, the armory of programming may then

be taken to consist of the fundamental set-theoretic operations

of mathematics, supplemented by the numerous mathematical

operations for which algorithms are available. In the

development of an application, these 'library' operations are

expanded into algorithms that realize them, which are then

further transformed and combined to attain higher efficiency.

The library operations used in this way will often

depend on several variables having different sorts of values,

and for efficiency's sake the algorithms which realize them

will often iterate some .correction or adjustment

until the desired function value has been produced. Definition

of these intermediate corrections may require use of various inter-

mediate quantities. Thus the programmer will typically work with

15

a Cartesian product whose separate axes are spaces of different

sorts, to which he will want to assign mnemonic variable

names rather than numerical indices. Moreover, iteratively

defined sequences, only the final component of which

has any further use, will commonly be employed to express

intermediate constructions. Hence arises the mechanism of

variables, assignments, and while-loops that, together with

the use of acceptably efficient set-theoretic and predicate

expressions, characterizes the description of algorithms in

our view.

Automatic treatment of every step of program development

after the initial definition of a program's function is desir-

able. For this reason, techniques for automatic transformation

of mathematical specifications into algorithms would be of

considerable interest. In general, this problem is equivalent

to and just as intractable as the problem of discovering mathe-

matical proofs automatically. However, just as for .

mathematical proof, semiautomatic treatment of commonly

occurring easy cases may be possible. Interesting heuristics

for this, based on ideas which also find application in the

automatic elaboration oi simple proofs, have been suggested

recently. Although these techniques are still highly

experimental, we will outline a few of them.

(i) Formal integration . Suppose that S is a set and

K(S) is a function of S which is to be evaluated; and suppose

we know a mathematical identity of the form

K(S u T) = K' (K(S) ,T) ,

where K' is easier to evaluate than K, provided that T has

only a few elements. Then the assignment x := K(S) can be

transformed into the loop

X : = K (({)) ;

(forall y € S)

x := K' (x,{y})

;

end forall;

which builds x incrementally. Similarly, a sequence of

assignments x, := K, (S) ; ...; x := K (S) can be transformed into-1-1 n n

16

^1 '^ K^ (())); . . . ; x^ := K^^ {<}));

(forall yes)
x^ := K^{x^,{y}) ; ; x^ := ^^^^j^' ^Y^^ '

end forall;

provided that we have K.(S u t) = k!(K(S),T) for j = l,...,n.

(ii) Use of standardized procedure templates . In some

commonly occurring cases, we can force a logical predicate

to have the value 'true' by applying a simple standard opera-

tion to the data objects appearing in the condition. For

example

:

X e s can be forced 'true' by executing 's := s u {x} '

;

x <_ y can be forced 'true' (if x and y are numbers)

by executing 'if x > y then interchange (x,y) ';

(Vx e s) C(x) can be forced true by executing

(while 3x e s
I

nc(x))

force C(x) to the value ' true '

;

end while;

These rules, and others like them, can be compounded. Thus,

for example, given a map f and a set s we form the transitive

closure of f over s by forcing the condition (Vx^s) f(x) s s

to be true. Applying two of the preceding rules in succes-

sion leads immediately to the standard elementary transitive

closure algorithm

(while 3 X e s
I

f (x) ^ s)

s := s u f (x)

;

end while;

Similarly, given a numeric-valued sequence, f, we sort it by

forcing the condition (Vi e(#f -1)) f(i) <_ f(i+l) to be true.

Again we can apply two of the preceding rules in succession

to obtain the following standard 'bubble sort' algorithm:

(while 3i e (#f-l)|f(i) > f(i+l))

interchange (f (i) , f (i+1))

;

end while;

17

These observations reveal the existence of a class of 'fully

trivial' algorithins derivable iimnediately by elementary trans-

formation of the conditions which their outputs are to

satisfy.

(iii) Incremental set constructions guided by

minimality considerations . In some cases one will want to

construct a set S satisfying a condition which can be written

as F(S) =0, where F is a set-valued function for which a

relationship F(S u T) = F'(F(S),T) is available. In many

such situations, it is useful, in attempting to reduce F(S)

to the null set during an element-by-element construction of S, to

attempt to minimize F(S) at nach stage of the construction of S,

always adding an x such that F(G iJ [x}) is not a superset of

F(S). That is, we will build up S iteratively, always

adding an x such that

{*) (3y e F(S)) (y ^ F(S u {x})) .

Sharir has recently shown that this kind of iterative construc-

tion of an S satisfying F(S) =0 is possible if F satisfies

certain relatively mild monotonicity constraints, and that

under related but more stringent constraints any sequence

of X chosen to satisfy the condition (*) will lead via a

loop of the form

S := 0;

(while (3x ? F(S)) (3 y e f(S)) y ^ F(S u {x}))

S := S U (x);

end while;

to an S such that F(S) =0. A variety of interesting algorithms,

not all of them entirely elementary, turn out to be derivable

in this way.

C. Correctness proofs .

Whenever the mathematical definition D of an operation

is replaced by an algorithm A which is supposed to realize

the same operation, the question arises as to whether A and D

18

are in fact equivalent. Moreover, whenever program text

initially containing separate algorithms A,,...,

A

derived from separate mathematical operations D, ,...,D

is transformed in a manner which combines these algorithms,

the question of whether the transformed text will produce

the same results as the initial program text must be faced. These

are questions which the standard techniques for formal proof

of program correctness are intended to answer. During appli-

cation of these proof techniques, the basic definitions

D . appear as assertions in the algorithmic texts A . , and

one's aim is to formally prove that these assertions are

valid whenever control reaches any point in A . at which sucn an

assertion is imbedded. Generally speaking, a notion of formal

correctness always attaches naturally to any algorithm or program

text which is used to implement a given mathematical operation

or collection of operations at. an enhanced level of effi-

ciency.

No equally fundamental notion of correctness attaches

to the externally motivated aspects of an applications program (which

will be considered in more detail in the following

section of this report) . For example, we cannot expect to

prove, in any formal sense, that the diagnostics issued by a parser

are helpful or nonredundant , etc. (even though certain more limited

statements about these diagnostics may be provable, e.g. the

statement that no diagnostic will be issued at all if the text

T being parsed is a valid sentence of an appropriate formal

language; or even the more sophisticated statement that the

number of diagnostics generated is no larger than the largest

number of contiguous subsections of T which can belong to

no valid sentence) . However, once one has developed an

initial very-high-level form of an externally motivated

applications program and agreed that this program does deliver just

the function that one wishes to specify, one will often

proceed to transform this program to an equivalent but more

efficient form. Hence the question of equivalence between several

19

program variants, which is a question amenable to formal

approaches and to proof, arises even in situations initially

dominated by informal, nonmathematical considerations.

These remarks suggest two lines of initial application

for the formal techniques of program proof. First of all,

one wants to take important operations which admit of very

simple mathematical definition, but whose efficient implemen-

tation requires an intricate algorithm, and to prove the

equivalence of algorithm and definition. In the relatively

undeveloped present state of proof technology, attempts of

this sort will be challenging enough to force numerous improvements

in the techniques of program proof. A second significant

direction suggested by the foregoing considerations is the

development of transformational proof techniques which serve

to relate differing versions of the same program. This is

a valuable approach even for simplifying the proof of a single,

mathematically flavored algorithm; and the above remarks

suggest that it may be the sole method by which proof technology

can be brought to bear on composite, externally motivated

applications programs.

D. User-definable object types .

In natural language, objects are always classified impli-

citly into a variety of semantic 'sorts' or 'cases', and, as

linguists have emphasized , this classification plays an important

organizational role. Similar implicit classifications

play an important role in mathematics, e.g. we can use the

symbol '+' to designate both real addition and matrix addition,

since we may know that x and y in x + y are reals, whereas

A and B in A + B are matrices. Mechanisms of this kind have

been much used in programming languages, where they appear as

declarative systems for object 'typing' and (if the typing

rules are rigid enough to ensure that the type of every object

20

is determinable during compilation) 'strong

typing'. We emphasize that it is useful to provide such

a mechanism of types directly at the mathematical level.

Unless this is done, the only objects directly available in

a very-high-level programming language will be sets, sequences,

and objects such as integers, reals, etc. which have very

straightforward mathematical definitions. Of course,

objects of other kinds can be represented using these basic

types. However, in developing a long program which is most

naturally described as a sequence of manipulations of objects

of a heuristic character not directly described by one of

these fundamental types, it is best to push representational

details into the background, and to think directly in terms

of new kinds of objects and operations upon them. One will

also want to extend the meaning of the language's handiest

syntactic forms, i.e. prefix and infix operators, indexing

f(x), indexed assignment f(x) := y, etc., and use these

syntactic forms to designate operations on new types of

objects. For example, in a program which makes heavy use of

matrices, a + b and a - b should denote matrix sum and differ-

ence, but if a and b are bags this same syntax should denote

bag sum and bag difference.

The generic operator mechanism used for this can be

either static or dynamic. Dynamic mechanisms are more flexible

and raise no union-type problems; static mechanisms have the

advantage of allowing much useful type tracking independent of

actual execution (execution may even be impossible)

.

Nevertheless, dynamically defined type have a

mathematical significance which is as definite as that of

statically defined types. From the dynamic point of view, a

typed object is merely a pair x = <t,v>, where t is the 'type'

of X and v is its 'value'. To apply any infix operator sign

to a pair of typed objects, one makes use of an auxiliary map-

ping mt, which maps every triple consisting of a pair of types

21

t, , t„ and operator sign ® into a pair <t3,m> consisting

of a result type and a map on a pair of subject values.

Then an infix functional combination x^ ® x- is interpreted as

a synonym for the pair

where t^ = hd (mt (hd (x-j^) ,hd (x^) , ®)) and m = t£ (mt (hd (x^) ,hd (X2) ,©)) .

A similar rule can be applied both to monadic operators

written in prefix position and to special operators written

in other syntactic forms, e.g. the syntactic form f{x) can

be regarded simply as a special binary combination of f and x,

having a value and type dependent on the value and type of f

and X in the same way as any other infix operator.

Definitions allowing new meanings to be introduced for

arbitrary infix, prefix, and special operator signs form a

necessary component of such a system of user-definable object

types. Such definitions can have the form:

(la) for unary operators: oplist typename by funationlist;

example: * matrix by transpose;

(lb) for infix operators: typename oplist typename by function-
L "L S i^

*

example: bag (+ ,-) bag by bagsum, bagdiff; *

(Ic) for k-parameter function applications:

typename (typename
J, .,., typename j^) by functionname;

example: matrix (int, int) by matrixcomponent;

(Id) for k-parameter indexed assignments:

typename (typename j, . . . , typename,) : =

typename ,
-J

by functionname^

example: matrix (int , int) := real by matrixassign;

In these definitions, the intended syntax of oplist and

functionlist is as follows:

22

oplist -* operator_sign \ {operator_sign [, operator_sign])

funotionlist ->• functionname \ {funationname [, funationname])

Moreover, in a declaration (la) or (lb) , the oplist and

functionlist are intended to have the same number of elements;

and then the j-th element of the oplist involves the k-th

element in the functionlist. E.g., in example (lb), x+y is

handled as bagsiam(x,y) and x-y as bagdif f (x,y) , assuming

that the values of x and y are bags.

New types can be introduced by declarations of the form

type typelist

;

where the intended syntax of typelist is simply

typelist -^ typename
\ (typename [, typename]) .

Typenames introduced in this way can be used as monadic prefix

operators; the value of type <t,a> is simply the pair

<type ,a> . Of course, the 'initial' or 'base' language with

which one begins will provide a built-in family of object types

and of operators defined on these types.

To illustrate the use of these syntactic mechanisms, we

shall consider their application to a small fragment of algebra,

specifically, the introduction of polynomials as a new object

type. This can be accomplished using the following declarations:

type polynomial ; /* introduces 'polynomial' as a type*/

po lynomial (+,-,*,/) polynomial by

poladd, polsub, poltimes, poldiv; /* introduces algebraic

operations on polynomials */

It then only remains to define the few functions poladd, polsub,

poltimes, and poldiv. Assuming that polynomials are represented

internally as sequences of real coefficients, this can easily be

done as follows:

23

poladd(a,b) : := [if n f D(set a) then 0.0 else (set a) (n)

+ i£ n ? D(set b) then 0.0 else (set b) (n)

:

n: n e (D(set a) u D(set b) ;] ;.

polsub(a,b) ::= [if n f D(set a) then 0.0 else (set a) (n)

- if^ n ^ D(set b) then 0.0 else (set b) (n) :

n: n e (D(set a) u D(set b))] ;

poltimes (a,b) : := [I { (set a) (j) + (set b) (k) : j ,k:

j+k = n & j e D

(

set a) & k ^ D(set b)}: n:

n e (D(set a) + D(set b) - 1)]

;

degree (a) : := Un({n: n G D (set a) & (set a)(n) f^ 0.0});

/* degree of the polynomial a */

leading (a) : := (set a) (degree a); /* leading coefficient of a */

procedure poldiv (a,b) ; /* polynomial division by repeated subtrac-

tion */

quotient := polynomial [O.G; n: n = 0];

/* initialize quotient to zero */

while degree a > degree b>

monad :=

[

polynomial if n e degree a - degree b then 0.0

else leading a / leading b:

n: n e degree a - degree b + 1] ;

a := a - monad b;

quotient := quotient + monad;

end while ;

return quotient ;

end procedure poldiv;

Once these definitions have been given, polynomial

computations can be carried out in their standard mathematical

syntax which, of course, is our aim in this exercise.

24

3 . External issues in program design .

A. Combining algorithms to create applications .

Algorithms (or more precisely mathematical functions

for which algorithms are available) can be used to build

applications, but are not themselves applications. Indeed,

into the composition of any program which is to realize an

application there will enter elements which reflect end-user

aims whose content goes beyond the strictly algorithmic, and

much, even most, of the design of a particular program may

relate directly to this material. Design items of this -

sort typically represent the physical or administrative

structure of real-world systems; the form and sequencing

of expected input and desired output; the reactions, includ-

ing prompts and warnings, expected from interactive systems;

heuristic approaches held likely to manipulate material or

symbolic objects in helpful way^;_ etc.

In programs, as they are ordinarily written, application-

related material of this sort is inextricably intermingled with

code fragments that realize the algorithms being used. However,

sounder design practice would separate these two types of

material more systematically, expressing design intent in

terms of mathematical notions for which algorithms were known

to be available, but at first suppressing all details concern-

ing these algorithms. As an example of this, consider the

problem of diagnosing syntax errors. For this, we can use

the mathematical operations which, given an input string s,

find the largest integer n such that s | n Is the initial portion

(resp. the middle portion) of a well-formed sentence. These

operations, which given a grammar gram and root symbol

rootsymbol , can be defined mathematically by:

longest_start (s) : := Un({n: (3t)(Seq(t) &

(s
I
n) II t e Sentences (gram, rootsymbol)) }

)

longest_contin;is) ;:=Un{longest_start (t, II s) -Dt, : t, :Seq (t]_) }

25

and can also be realized by acceptably efficient algorithins

.

Closely related algorithms can be used to evaluate:

continl(s) ::= {t(l): Seq(t) & longest_start (sB t)

> longest_start (s)

}

contin2(s) ::= Un ({continl (ti s) : t : Seq (t) }) .

In what follows it will also be convenient to use the sequence-

truncarion primitive defined by

s(n..) : := {<m,s(n+m)>: m: mGZ & n+m e Ds}.

Given these essentially mcithematical primitives, we can design

the intended diagnostic application as follows.

(i) It is assumed for sirr.plicity that successive

lines of input are read by an i/o primitive readin and appear

as sequences.

(ii) We repeatedly find the largest part of the currently

available input s which can be a portion (either start or

middle, as appropriate) of a well -formed sequence.

(iii) If this is the whole of the remaining input, we

have nothing to do. Otherwise, we print (an abbreviated

variant of) the set continl(s) (or contin2(s), if more

appropriate) , skip forward a few places in the input string in

order to avoid redundant error messages, and then repeat from

step (ii) as long as any input is available. This leads to

the following definitions and code:

longest (s,erroryet) ::= if erroryet ^ then

longest_contin(s) else longest_start (s)

;

contin(s, erroryet) ::= if erroryet jt then

continl(s) else contin2(s);

erroryet := 0; $ initially no errors

input := 0; $ initially null input sequence

(while (newline := veadin) f^ 0) $ while input still exists

print (newline)

;

$'echo' line

input := input I newline; $ add new line to existing

(while longest (input, erroryet) < #input)
input

print (• ***error*** . one of following symbols required:')

print (contin(s, erroryet)) ; $ print diagnostic

26

input := input (longest (input ,erroryet) +3 ,...)

;

erroryet := erroryet +1; $ cumulate errors

end while;

end while;

We note that most of this code is externally

rather than internally shaped. That is, all but a few details

of this code are motivated by such nonmathematical, application-

determined aims as the intent to generate helpful captions,

print diagnostic messages in immediate proximity to the

source string text point which generates them, etc. It is

also to be noted that the body of text required to express

this intent is comparable to that which suffices to define

the integers or the real numbers, anc. all basic operations

upon them, and that to refine the „ -.elegance or psychological

usefulness of the diagnostics we output, even to a limited

degree, would require measurably more code. The sense in

which design of the parsing application which we have just

sketched goes beyond purely algorithmic issues should

therefore be clear: the motivating aims (such as that of

producing output which is helpful and thorough, but not too

bulky) and assumptions (e.g., the assumption that the user

will read his source text from left to right) that shape the

code correspond to psychological rather than mathematical

facts.

There has developed a large, though largely administrative

literature concerning the important problem of how to come

to terms with these important aspects of application design

before the start of detailed programming. This is the so called

problem of requirements speaification. Concerning the litera-

ture devoted to this problem, the astute observer G. J. Myers

comments: "The purpose of software requirements is to establish

the needs of the user for a particular software product. Little

can be said about the methods for verifying the correctness of

requirements other than that the user is responsible for checking

27

the requirements for completeness and accuracy, and the developer

is responsible for checking for feasibility and understand-

ability. Although no methodology exists for external design,

a valuable principle to follow is the idea of conaeptual

integrity , [i.e.]... the harmony (or lack of harmony) among

the external interfaces of the system. . . The easiest way

not to achieve conceptual harmony is to attempt to produce an

external design with too many people. The magic number seems

to be about two. Depending on the size of the project, one

or two people should have the responsibility for the external

design. ... Who, then, should these select responsible people be?

. . . The process of external design has little or nothing to

do with programming; it is more directly concerned with under-

standing the user's environment, problems, and needs, and the

psychology of man-machine communications. ... Because of its ...

increasing importance in software development, external design

requires some type of specialist. The specialist must understand

all the fields mentioned above, and should also have a

familiarity with all phases of software design and testing to

understand the effects of external design on these phases.

Candidates that come to mind are systems analysts, behavioral

psychologists, operationr.-research specialists, industrial

engineers, and possibly computer scientists (providing their

education includes these areas, which is rarely the case)."

B. Software prototyping tools and application models .

It can be claimed that our inability, as noted by Myers, to

specify requirements adequately is attributable in

significant part to the lack of adequate software prototyping

tools. It would surely be far better to create functioning,

even if highly inefficient, system prototypes with which a

potential user could experiment before work began on any much

more efficient, and expensive, production system. Without this.

28

it is often impossible to say adequately in advance v^hether planned

system features and responses will be found acceptable. The

intended system user is, so to speak, in the position of

a buyer forced to approve the design of a large commercial

building by review of a voluminous written description of its

rooms and fittings, without ever being able to see architect's

renderings or a scale model.

Still worse, in the absence of software tools capable

of handling the algorithmic side of an application in very

abbreviated fashion, there is no way in which the would-be

designer can push algorithmic concerns into the background

in order to concentrate on the external design issues which

may be central to effective treatment of an application.

Although, e.g., the choice of features for an on-line editor,

program maintenance aid, word processing system, industrial

data-gathering application, graphics package, or natural

language query system involves much art, there exists almost

no literature aimed at examining or propagating the principles

of this art, since at present its issues are hopelessly inter-

woven with the very different problem of describing the algorithms

and low-level coding approaches in terms of which these

applications will be realized. Only systematic use of a much

higher level programming approach can remedy this deficiency

and thereby replace the inchoate mass of 'know-how' and anecdote

on which we now rely by organized, transmissible software

engineering knowledge.

Such broad use of very-high-level programming and

software prototyping tools could facilitate dissemination

of the art of application design by examination of particu-

larly successful examples. However, to bring the important,

varied, and vexing problems of externally motivated program

design more adequately under control, design techniques and

tools of considerably more specific character are needed.

One fundamental possibility is to develop special

application-oriented programming languages whose

objects and operations define useful standard

23

approaches to important application areas. A variety of

such languages will be reviewed below. Two other suggestions

can be advanced. The first of these, which also plays a role

in the design of application-oriented programming languages,

is to strive deliberately to use general mathematical

operations rather than tailored special cases of them

in developing prototype applications. This recommendation

is illustrated by the 'diagnosing parser' code fragment

given above, which uses very general parse-related

mathematical functions (longest_start, longest_contin, etc.)

to give a succinct and reasonably acceptable prescription for the

generation of diagnostics. Contrasting with this recommended

practice, ordinary application-oriented code tends to mix

internally and externally motivated program material

inextricably, i.e. output details are allowed to control the

choice of algorithms, and opportunities to generate output

which an algorithm seems to afford are allowed to determine much of

what the end-user sees. The result is often an inartistic

package which meets user requirements only minimally and

which is full of redu>i Irinr., hard to maintain, and inefficient

algorithmic fragments. By separating external application

design from choice and elaboration of internal algorithms

much more cleanly, it shoul'd be possible to treat these two

problems separately, and thus to arrive at more satisfactory

solutions of both of them. (We note that the use of very-high-

level programming tools can also contribute to this design goal..

Part of the reason for the unnecessary use of specially tailored

algorithms in applications development is the difficulty of

making separately developed nonnumerical procedures developed

in languages of the Ada-PL/I-PASCAL level of language reusable.

Indeed, structures which in a very-high-level language would appear

as a handful of sets and maps turn at this level of language

into mazes of subfields and pointers which it is hard to either

learn about or use correctly. Programmers therefore tend

to rework their routines rather than trying to interface to

30

library versions, and in reworking them the temptation to

tailor them to whatever application is being developed

often becomes overwhelming.)

A related suggestion is to use well-designed, relatively

general- purpose application packages as building blocks in

the construction of more complex applications. Consider, for

example, the problem of designing an interactive system into

which formatted commands will be entered to elicit system

responses. As part of the design of such a system, command

input conventions and command decomposition routines always

need to be developed. It may be possible to handle this

command input task by adapting a standard text editor very

slightly. One possible convention is simply to take each

user-supplied line prefixed by a blank as input to be appended

to the end of a file being edited, but also to execute the

line, as a command, unless it ends with an escape character.

Lines not prefixed by blanks could then be regarded as editor

commands, and the editor could also be supplied with a meta-

command which executes a specified range of lines as a command.

If this is done, the editor would also serve to define and

implement command storage and modification facilities which

would be as flexible and successful as the editor itself.

A related illustrative possibility is to handle command

decomposition using a standard grammar-driven parse-and-diagnose

routine which converts the command into a collection of

abstract sets, sequences, and maps convenient for the next

steps of processing. If this is done, the user-oriented

details of recovery from and response to improperly formatted

code can also be inherited from a preexisting package and

need not be reinvented or reimplemented.

These examples illustrate the way in which well-designed,

flexible application modules could be used, alongside of intern-

ally-oriented mathematical operations, as building blocks for

more advanced applications o What is desirable here is an attempt

to develop a library of application-oriented modules which

31

could be used in much the same way as a library of algorithms, but

with the significant difference that the application-oriented

modules would also embody pragmatic solutions to human-

factors related problems.

C. Program transformation .

Once a sequence of mathematically defined operations has

been assembled into a full application, there will intervene a

sequence of transformations whose purpose is to improve the

efficiency of the initial specification without changing any

of its inputs or outputs. Automation of these transformations

is highly desirable, since if they could be reliably automated, pro-

grarmers could work entirely with succinct, very- high- level

program designs, and could avoid involvement with detailed

lower-level program forms whose maintenance tends to be

very expensive. Unfortunately, our ability to automate the

full range of transformations that needs to be applied for this

goal to be reached is still rudimentary. This makes it

likely that the production (though not the design) versions

of programs will continue for a considerable period to require

manual development through a spectrum of languages ranging from

very abstract and mathematical languages at one end to

languages of the PL/I-Ada level at the other. Nevertheless,

work on automatic elaboration of higher level specifications

can have some success and deserves to be pursued.

These transformational techniques have begun to attract

considerable research interest, and by now quite a bit is under-

stood concerning the most commonly occurring and useful trans-

formations. Some of the most important transformational

techniques are:

(a) formal differentiation of programs (Paige, Earley,

Fong, Ullman, and Schwartz)

;

(b) replacement of recursion by iteration

(Darlington, Burstall, Strong, Walker);

(c) replacement of data objects generated only to

support iterations by coroutine-like 'generator'

32

procedures which produce pieces of these

objects as required;

(d) replacement of nondeterministic choice operations,

either by deterministic code sequences which make

satisfactory particular choices, or by more restricted

nondeterministic choice operations, known to be less

likely to choose paths of exploration which will

lead to subsequent failure (which would require

backtracking) (Deak, Sharir) ; and

(e) replacement of some of the data items appearing in

an initial program variant by code fragments which

use other, unreplaced data items to recover the

information which these data items would have carried.

Even though this short list includes many of the most

commonly used high-level program transformations, it is

unlikely that efficient algorithms which depend on these

transformations can be produced automatically. To develop such

programs, considerable user guidance will be necessary. Semi-

automatic application of user-specified transformations,

within the context defined by an interactive program manipula-

tion system, is all that can be expected to become practical

during the next few years. Even program transformation systems

of this relatively limited capacity are substantially more

complex than typical compilers, and will not be trivial to

build. Moreover, it is likely that, until quite advanced

transformational techniques are devised and successfully

implemented, construction of programs by transformation will

remain more expensive than direct manual program construction.

Thus at first the only practical justification for a formal

transformational approach is likely to lie in the fact that it

can easily guarantee the logical equivalence of a series of

program forms (so that, in particular, it can guarantee the

correctness of a final form if the program form with which

transformation begins is known to be correct) . Nevertheless,

33

in spite of these aaveats , it would be quite useful to develop

mechanized program transformation systems, since their design

can be expected to reveal many of the basic pressures which

give programs their typical forms. We note also that the

development of manually steered program transformation

systems prepares for future attempts to design more fully

automatic systems.

As an illustration of the nature of the transformational

techniques that have recently begun to be developed, we will

consider an important and much-studied type of algorithm,

namely a compacting garbage collector. From the abstract point

of view, this algorithm takes as input a map P representing a

storage layout. The domain of P is assumed to be a set of

integers I representing addresses, and P maps each of these

integers I into a finite sequence of integers, representing

the contents of the storage block which begins at I. We make

the following three additional assumptions:

(i) each of the sequences S (storage blocks) constituting

the range of P is of nonzero length;

(ii) each integer in such an S belongs to the domain of P

(i.e., 'is the index of some other storage block'); and

(iii) each integer I in the domain of P is the sum of the

lengths of all preceding storage blocks (i.e., in build-

ing up the storage layout P, storage has been allocated

sequentially)

.

In describing the garbage collection algorithm it will be

convenient to make use of a few additional primitive operations

and notations. The necessary primitives have the definitions:

Hs : := {x: x e Un(s) & (Vy e s) (x 6 y) } (intersection set)

Ef : := if Df = V Df ^ Z_^ then else f(nDf)

+ Z (f I
(Df - nDf)

)

(smm of the values in the range of f)

.

34

Since map definitions of the form

(*) {<x,e>:x:C},

where e is any term and C any predicate expression, occur

frequently, it is useful to allow them to be written in the

convenient abbreviated form

[e:x:C] .

Garbage collection and compaction consist of the

following steps:

STEP 1. Compute the set U of all addresses of active cells

in the domain of the storage map P, i.e. the set of addresses

of cells reachable by a sequence of or more pointers start-

ing from an address in a given 'root set' (which for simplicity

is assumed to contain the single address 0; the reason for this

assumption is that if it contained other addresses, it might

be possible for the corresponding cells to have moved after

compaction so that the new addresses of all root nodes would

also have to be returned from our garbage collector. By forcing

the root set to contain the single address we guarantee that

after compaction, the root will still be located at 0)

.

STEP 2. Calculate a map N which maps each (old address of an)

active cell (i.e. each cell whose address is in U) to its new

address. The new address of an active node b is the sum of

the lengths of all active blocks whose address is smaller

than that of b.

STEP 3. Calculate the new storage layout and assign it to P

.

The new layout consists of a succession of blocks which appear

at their new addresses and contain integers that point to the

same blocks as before, but at their new addresses.

U

N

P

These operations can be programmed in just three lines:

= n {x: x€pow(D(P)) & Oex & (VaSx, cep (a)) (cSx) } ; $step 1

= [Z [#P(c) :c:ceu&c<b] :b:beu]

;

$step 2

= {<N(a), No (p(a)) >:a:aeu} ; $step 3.

35

Having this short program in hand, we can apply a

sequence of correctness-preserving transformations to it:

Step 1 can be expanded into a standard transitive closure

algorithm which builds U incrementally, starting with {0],

and adding addresses to U as long as there exist addresses

in U whose blocks contain pointers to cells whose addresses

are not yet in U. It is easy to show that this procedure yields the

desired U. Step 2 can be expanded into a loop in

preparation for a loop-fusion transformation.

Step 3 can be split into 2 substeps; in the first of

these substeps we can adjust the pointers in the blocks to

point to their new addresses without moving the blocks them-

selves yet. Then the second substep must- move the adjusted

blocks to their new addresses. This splitting prepares

for the fusion of Step 3 with Step 2.

This leads to the following somewhat lengthier variant

of the garbage collector algorithm:

U := 0;

(while (3beU, aep(b)) a ^ U) $ step 1

U := U u {a};

end while;

N := 0;

(forall a € U) $ step 2

N{a) .= Z [#P(c) :c:ceu & c<a];

end forall;

Q := [N° (P (a)) :a:aeu]

;

$ step 3.1

P := {<N{a) ,0(a) > :a:a€u}

;

$ step 3.2

Next the while loop in Step 1 can be changed so that

instead of testing if there exists an element having a

particular property, it defines the set W of all elements

having that property and tests if W 7^ 0. This allows us to

apply formal differentiation, i.e. to maintain the value

of the set W and to update this value incrementally whenever

any of the parameters on which it depends are changed.

36

step 3.1 can be fused into the loop that calculates N

(i.e. into Step 2). This transformation is justified

because the loop computing N does not depend on Q and

the computation of Q does not have any side effects. Once

this is done, the value of Q can be produced incrementally

within the loop into v;hich the calculation of Q has been

placed. The single statement of Step 3.2 can also be

expanded into a loop.

These rather more elaborate transformations bring us to '

the following third version of the garbage collector algorithm.

U:=0; W:={0};
(while W 7^ 0) $ step 1

a := nW; W := W \{a}; U := U U {a};

W := W U {creep (a) &c^U};

end while;

N

Q

R

= 0;

= [0:b:bGU];

= {<P (c) (i) ,<c,i>>:c,i: c^u, ie#p(c)}

(forall a e U) $ R is an auxiliary map which sends each

N(a):= Z[#P(c):ceu& $ 'address' into all of its occurrences

c < a] ; $ step 2, 3.1, and definition of

(forall <b,i>eR{a}) $ the 'memo map' R

Q(b) (i) :=N(a)

;

end forall;

end forall;

P := 0; $ step 3.2

(forall a s u)

P(N(a)) := Q(a) ;

end forall;

These transformations can be continued, and would

lead after just a few more transformational cycles to a fully

fleshed-out and quite efficient garbage collector code.

37

It is also interesting to note that many of the garbage

collector procedures that have appeared in the literature can

be derived from our three-line initial version simply by

varying the transformations applied to it. Thus the trans-

formational approach to program development is both a tool

for algorithm discovery and a way of improving our understand-

ing of program structure by exposing the common root of codes

that at first sight may seem quite unrelated.

D. Application-related language features .

We have noted that most of the code put together to

implement a given application will relate to external require-

ments of the application rather than to internal algorithmic

issues. When this is the case, and once some stable logical

pattern has been found in at least some of the more important

operations typifying an application area, it becomes appropri-

ate to develop a special application -oriented language for

the area. At its best, such a language will define powerful

conceptual tools for attacking the characteristic problems

of the area, so that even unimplemented languages of this kind

can be useful instruments of thought.

Moreover, definition of an adequate semantic framework

for an area makes it possible to compare broad abstract (but

still precise and formal) programming problem solutions with

typical hand-optimized solutions. Once this has been done,

development of analysis/optimization techniques which aim to

bridge the gap between these two styles of solution can

begin.

In approaching any important specialized application

area, it is the task of the language (or 'semantic mechanism')

designer to find a harmonious family of formally well- defined

operations and objects in terms of which its most character-

istic problems can be handled conveniently. These should

include methods for receiving and analyzing inputs in the form

typical for the intended application area; for performing

38

required manipulations and calculations; and for reacting

to and protecting against errors, managing states of partial

information, and generating responses at appropriate times

and in appropriate formats.

In v;ell-established application areas in the physical

sciences and engineering, standard mathematical tools and notions

for handling major problems will often be available,

and then the task of programming language design may simplify

considerably. In less classical areas, discovery of the

right notions around which to organize one's attack on an

application area can be quite challenging, and structures

having no precise analog in classical mathematics will often

be appropriate.

Various successful application-oriented lang-

uages illustrate these points.

(a) Work on languages like Concurrent PASCAL, MODULA,

and Ada has begun to define an adequate semantic framework

for concurrent process and real-time programming, an area

of very special interest in the design of operating and

device-control systems . Software of this type must manage

numerous sensors, effectors, storage devices, and analysis

routines, all running in parallel and subject to real-time

constraints. In the absence of an organizing conceptual

framework embodied in appropriate special-purpose languages,

such software has been notoriously difficult to put

together. The leading ideas of these languages, whose

importance is now generally recognized, are reviewed in a

separate section below.

(b) A few special-purpose languages (e.g. GPSS, SIMULA,

SIMPL) have supported simulation-oriented pseudoparallelism.

This semantic mechanism provides a restricted parallel-process

environment, differing significantly from that required to

describe fully parallel environments of the operating system

type, but adequate to state the causal rules of a simulated

39

universe whose elements interact via events that take place

at successive, discrete intervals of time. Once a model has

been defined by giving a set of rules in such a language,

the model can be run, can generate outputs, and statistics

concerning its internal activity can be collected.

Though still largely undeveloped for this purpose,

languages of this type might be ideal vehicles for prototyping

commercial applications, which in effect create computerized

models of the activities of large firms or other relatively

decentralized organizations that react to externally

generated data stimuli and function by transmitting

messages internally. In a language supporting pseudoparallel

processes, such applications can be created by writing a collec-

tion of short inde^jendent programs, each of which defines the

action of one particular kind of 'clerk' or 'processing station',

that is, the state or file changes triggered by

incoming documents or signals, and the contents and further

destinations within the system of messages generated at such

'processing stations'. Program fragments of this kind could be

quite close to the definitions of operating procedures

which a firm is accustomed to use, so that it ought to be

considerably easier to write programmed descriptions of a

firm's procedures using pseudoparallelism than to create

a business application of standard form, in effect by

serializing a description which is most naturally parallel.

(c) Continuous system simulation languages, such as DYNAMO,

accept ordinary differential equations as input

and are able to set up solution algorithms for these

equations and make the resulting solutions available either in

graphic form or as input to procedures performing further analysis.

Various languages and program packages used for circuit analysis

are related to these continuous simulation languages, but carry

them one step further by making it unnecessary to set up the

differential equations which describe a circuit manually. Instead,

one simply writes a formal description of the circuit as a

40

collection of resistances, compactances, inductances, and active

elements of known characteristics. From these, the differential

equations which describe the circuit are generated automatically.

This same notion, that of a language specialized to

facilitate the description of engineering objects, whose

characteristic equations are then generated automatically, lead-

ing to automatic calculation of object parameters and reactions,

is also fundamental to such mechanical engineering languages as

those described below:

(a) Graphics, animation, and machine-tool control languages

illustrate another major application- oriented theme: direct

description and manipulation of two- and three-dimensional

geometric objects. A full-scale animation language will also

allow direct manipulation of paths and rates of motion, viewing

angles, levels of illumination, and surface color and reflectance.

Machine tool control languages like the widely used APT language

also facilitate the description of curves and surfaces, but also

include mechanisms for automatic translation of these descrip-

tions into cutting-tool paths of motion which will "sculpt" these

surfaces in metal. Related semantic mechanisms play a role in

various experimental robot-manipulator control languages and

software packages.

(b) Various other application -oriented languages, e.g.

string-and-pattern-oriented languages like SNOBOL; languages for

computer controlled typesetting, including the description of

complex mathematical formulae; design automation languages;

lesson writing languages; etc., could be cited. The common attempt

of these languages is, as we have said, to define a semantic

framework encompassing the most typical objects and operations of

the application area to allow the characteristic dictions of the

application area to be used directly as programming language

statements; and to avoid any demand for extensive or expanded

detail where practitioners of the application make use of

implicit understandings or succinct, declaration-like statements.

To reach these goals, familiarity with the intended application

will be required, since different applications may require a

wide variety of different syntactic and semantic approaches.

41

E. Operating system languages .

Languages, like Concurrent PASCAL and MODULA, which are

intended primarily for the description of operating and

real-time device-control systems, have been actively investi-

gated and developed during the last five years. These languages

seem destined to play principal roles in that standardization

of software interfaces on which easy, flexible attachment

of computational nodes to future networks will

depend. For this reason, we will review the basic features

of these languages, and the underlying semantic requirements

which shape these features, at some length in the present

section.

An operating system (or 'parallel process ') language must

be concerned with a much broader range of issues than a

'monoprocess ' language of the conventional type. The principal

issues to be faced are roughly as follows:

(a) Control of multiple processes . Operating and

real-time systems are ultj.mately used to control external

devices which have their own inherent delays and timing

constraints. For this, an en'^'ironment of cooperating

parallel processes, which can be alternately executed,

suspended, and resumed, is appropriate. These processes will

communicate through shared data objects. For this to be

possible, one must ensure that each process using

a shared data object leaves in a consistent internal

state when its manipulations of are complete, so that

processes needing to use subsequently can be sure that they

will find it in a consistent state when they begin to access it.

It is therefore appropriate to associate the code which

manipulates with the object O itself. This approach,

pioneered in the SIMULA language, and subsequently advocated

by Hoare, defines the kind of object to which Hoare has given

the name 'monitor', namely a package of data structures and

42

of routines which have exclusive rights to manipulate these

objects. Once a process has invoked one of these routines,

it gains exclusive rights to modification of the object

and prevents any other process from reading the object;

however, multiple read-only accesses to the object can be

in progress at any one time. This fundamental semantic

requirement can be administered in several ways, e.g. by:

(a) locking the object as soon as an access routine

is invoked, or

(b) recording all object modifications in a process-local

data area until return from the object-associated access

routine ('end of transaction') at which time all updates

are finalized and all other processes currently accessing

the object are pushed back to the start of their access.

Another significant characteristic of operating systems

which operating system languages must reflect follows from the fact

that not all the processes whichi^such a system must accommodate

will cooperate successfully with each other. Since some of

these processes will correspond to user programs in a state

of development, which may be incorrect or even deliberately

malicious, processes written by different authors will be

'mutually suspicious', and will therefore prefer to interact

only via rigorously defined interfaces whose conventions are

rigidly enforced. A well-developed operating system language

must therefore provide mechanisms which determine what system

elements each process is allowed to access and the

manner in which access privileges originate, can be shared, are

made available temporarily or permanently to other processes,

etc. Moreover, an operating system, as distinct from an

ordinary program, must be able to compile and execute

indefinitely many new programs as they are defined by system

users. Operating system languages therefore need to support

dynamic compilation and must include rules that relate

names which occur in newly compiled codes to those which

occur in code co.-npiled earlier.

43

Various other semantic issues with which operating

system languages must deal deserve emphasis:

Resource allocation and recovery . An operating system

needs to ensure that no process gains control of so large a

portion of system resource as to impede continued system

functioning or degrade efficiency. Resources made available

to user-level processes must be fully recoverable, either

when the process terminates normally or when malfunction is

detected, in which case smooth procedures for preemptory

eviction of malfunctioning user processes must be available.

These resource-recovery and eviction mechanisms must be

foolproof and quick-acting.

Process urgency, real-time control, and preemption . The

processes which an operating system manages will always contend

for the limited execution resource which the system makes

available. Thus the system will have to choose a few 'most

urgent' processes for immediate execution, leaving other

processes to wait. However, process urgencies can shift

drastically in response to external signals. For example, a

disk read process which cannot move forward at all during the

lengthy period in which a disk is rotating to a readable

position will suddenly become urgent once an inter-sector

gap arrives under a read/write head. An operating system

language must therefore provide "preemptive message" or

"interrupt" primitives which allow the effective priorities

of process to respond rapidly to external signals. If

high-speed response to external events is to be possible,

the language implementation must avoid expensive internal

linkages, and cannot permit situations to arise in which

urgent processes are blocked by less urgent processes'

occupancy of needed data objects. To improve the efficiency

of the most urgent and/or frequently executed portions of a

concurrent process system most of which is to be written in

an operating system language, two approaches are possible.

44

A familiar technique (unfortunately, the only one which is

presently feasible, given the relatively undeveloped state of

operating system languages) is to allow urgent system

portions to be written in a lower level language (e.g. assembly

language)-. Portions for which this has been done must then

interface to the remainder of the system at the implementation

level of the operating system language, and must appear to the

remainder of the system as built-in routines which conform

to the conventions of the operating system language in all

detectable ways. It is clear that to do this a programmer

needs to know all relevant internal implementation details of

the operating system language. A. more satisfactory approach,

but one beyond the present state of the art, would be to apply

global analyses like those used £n optimizing compilers to

determine which of the internal synchronizations and security

checks of the ordinary language implementation can be omitted

for a given, relatively isolated collection of processes and

data objects. For this to be possible, it is necessary

to submit the whole set of processes and objects comprising

a systems 'urgent core' to an analyzer which could extend its

analysis not only intraprocedurally but also between processes.

Since the processes allowable within such a core must all

necessarily be relatively simple, it is reasonable to expect that

such analysis can be penetrating enough to eliminate much

wasted motion without becoming unduly expensive.

Recovery, reliability, and concurrent use of files . If an

operating system is successful, the files which it stores will

quickly grow to be more valuable than the machine on which the

system executes. This implies that the integrity of those

files must be guaranteed even after physical failure of

the computing hardware, and even after loss of fairly

extensive parts of the storage system, occasioned, e.g.,

by disk head crashes. Moreover, since these files will

contain valuable and often unique information, many applica-

tions will contend for their use. Accordingly, the file design

ideally should allow file query to proceed in parallel with

45

file update, while preserving logical consistency,

and should somehow ensure that no data state

is ever reached which will make recovery impossible if

physical failure suddenly occurs. Finally, concurrent file

use must never lead to irresolvable deadlock.

The preceding list of operating system issues makes it

quite clear that operating system languages deal with a

challenging complex of semantic issues. These

issues generally require centralized solution at the

language or system level, since most of them have to do

with inter-user contention or suspicion, and hence with

problems that no individual system user either wants to be

involved with or can manage by himself. The

recently developed operating system languages have begun to

resolve some aspects of this thicket of problems. One main

contribution to date is Hoare ' s monitor notion, which provides

an attractive basic framework for coordinating access by

multiple processes to shared data objects. (More recently the

Ada language design group has proposed a related mechanism,

the 'rendezvous', whir^h allows more flexible programmed

control over the sequence in v/hich contending processes are

allowed to use a shared data item.

)

We emphasize however that this work serves only to

cast an initial light on a collection of problems which will

require sustained work for decisive solutions to emerge. The

Ada mechanisms, like the simpler Hoare monitor notion which

they generalize, only provide basic synchronization tools,

together with a simple, priority-driven scheduling regime.

However, they do not address any of the other problems

which we have reviewed, i.e. isolation of mutually suspicious

processes, resource control, dynamic recompilation and exten-

sion of portions of a running system, reliability in the

presence of hardware failures, or the problem of providing

flexible, high-concurrency access to large data objects (like

files) , of which several may have to be accessed in

a coordinated way by one or more processes, and in a manner

guaranteed to preserve important global invariants.

46

3. Pragmatic issues .

We conclude our survey by reviewing various pragmatic

language features which implementers of future programming

languages should be encouraged to provide.

A. Aids for measurement of program behavior .

A program's expenditure of time is normally irregularly

distributed, e.g. very little time may be spent in long,

complex sections of code which have received much programmer

attention, while inconspicuous loops performing relatively

trivial character-move or data-buffering operations

can consume substantial fractions of total execution time.

For this reason, a programmer will normally find it difficult

to determine accurately what parts of his program are effi-

ciency critical. Without this information, he can easily

complicate a program unnecessarily in a misguided attempt

to make it more efficient which actually gains only marginal

advantages while overlooking simple changes that can have

much greater efficiency impact. To avoid these pitfalls,

and allow a clear focus on those transformational directions

or changes of language level likely to have real impact,

well-designed measurement utilities, built directly into a

language's compiler and run-time support system, are required.

These utilities should produce information on run-time program

behavior which is then related back to a program's initial

source listing, where it should appear as a set of markings

and numbers which are easy to scan and absorb visually. Infor-

mation of this sort can also be useful in the early stages of

debugging

.

The precise nature of the information generated by a run-

time program measurement system will depend on the level of the

language in which programs to be measured are written. For a

relatively low-level language, the following items will normally

be relevant :

47

(a) fraction of time spent in executing each statement,

(b) division of time between internal and I/O operations,

(c) number of iterations through each loop, and

(d) success/failure ratios for each branch point.

If the program runs in a paging environment, one will also

want to measure:

(e) percent of page faults occurring at each program loca-

tion, and

(f) program or data location accessed by the operation

which causes each page fault.

For very-high-level languages, one will want to measure

a broader range of quantities. Programs in such languages

will ordinarily compile into code one part of which is

directly executed while another part consists of calls to

support library routines. Moreover, such languages will

generally execute in a garbage-collected data environment,

making it necessary to relate the general overhead of garbage

collection back to the program points at which data objects

are being created. Accordingly, for very- high- level languages,

one will want to measure:

(a) the actual distribution of execution time over the

program, allowing for the time actually required to execute

each particular instruction (this time can be highly variable)

;

(b) the number of calls to offline library routines (This

information can be important to a user trying to assess

the adequacy of a data structure design.); and

(c) the places at which space is being allocated,

possibly needlessly. Time required for garbage collection

deserves to be charged against each instruction in proportion to

original allocations of space. Moreover, points of excessive

space allocation can pinpoint failures in copy-elimination

or data-conversion mechanisms.

All the sorts of information alluded to above can be

collected in a fairly uniform way by attaching small groups

of counters to each of the basic blocks of a compiled program,

and by incrementing these counters appropriately. These

48

counters, and the rules for incrementing them, completely

define a system of measurements. At the end of execution,

the counters should be examined and printed out (perhaps

in a bar chart representation) in appropriate relationship

to the source text of the program, which generates them.

The following counts and incrementation rules corres-

pond to the measurements described above.

(i) Block entrance count . Incremented each time a

block of very-high-level source code is entered.

(ii) Block-calls-library count . Each time such a block

is entered, we can set a global present block indiaator

variable PBI to a corresponding value. Then, each time the

library of run-time support routines is called, we increment

BCL(PBI) by 1. The resulting data profile will show the

extent to which sections of very-high-level code need to

call the underlying support library.

(iii) Space allocation profile count . Each time the

space allocator is called to allocate N words of heap space,

we execute SAPC(BPI) = SAPC(PBI) + N. The resulting data

profile will show the extent to which high-level code

sections force the allocation of storage.

(iv) Execution time-consumption profile . When block

PBI is entered, execute ETP(PBI) = ETP(PBI) + K, where K

is the number of instructions comprising the block. When the

run-time support library is entered, we can count the

number of instructions executed. On each return from the

support library, we can increment ETP(PBI) by the total

number of instructions executed since the library was called.

This will generate a profile, related to profile (ii) above,

but showing the ccrrplexity, rather than simply the number, of

support library calls.

49

B. Debugging

Dabugging always starts with evidence that a program error

has occurred somewhere in the history of a run. The problem in

debugging is to work one's way back from the visible symptom to

this program error. What one seeks can be called the error sources

or primal anomalies , which are those wrongly stated operations

or tests whose immediate consequence is the transfozonation of

a collection of reasonable inputs into an output

which is unreasonable in some regard. Of course, the history

of an extensive computation constitutes a vast mass of data,

impossible to survey comprehensively. The debugging process

therefore aims at the exploration of as narrow a path as possible,

with the aim of finding one's way back to one or more primal

anomalies

.

Here it is interesting to compare the two quite different

processes of syntactic and semantic debugging. Even if we

assume that raw program text (carefully desk-checked but never

compiled) may contain as many as 1/10 syntax error per line

on the average, the syntactic debugging of a 1000-line

program normally proceeds routinely and rapidly. The tool that

allov;s this is a compiler with fairly good syntactic debugging

aids, among which the following are particularly desirable:

(a) unambiguous, easy-to- comprehend error messages;

(b) suppression of spurious error messages generated

by prior errors; and

(c) a diagnostic capability which does not decay during

the parsing of a lengthy, error-rich text.

50

• These capabilities lie well within the present state of the

art of parsing. If a compiler with these capabilities is

available, the normal syntactic history of a 1000-line text

initially containing 100 errors would ordinarily be something

like the following:

Compilation 1 : 125 error messages generated, of which 75

are genuine; 75 errors corrected, of which 10 are corrected

wrongly.

Compilation 2 : 70 error messages of which 30 are genuine;

30 errors corrected, of which 5 are wrongly corrected.

Compilation 3 : 20 error messages of which 7 are valid;

7 errors corrected, of which 1 is corrected wrongly.

Compilation 4 : 10 error messages, of which 4 are genuine.

All 4 errors successfully corrected.

Compilation 5 : No errors.

In an interactive system providing rapid turn-around,

this need not take more than a few hours. Note the important

role played by the ability to uncover multiple faults during

a single run.

Next consider the process of semantic (i .e .' logical ' or

'execution') debugging of the same program. Here we make the

more favorable assumption that, owing to careful desk-

checking and to the elimination of some logical errors during

syntax checking, only 50 errors are present in the original 1000-line

program. Now the typical iteration is approximately as follov/s.

(a) The program runs and bombs. Assxaming that a miscellany

of print statements was included for debugging purposes, the

programmer then forms an idea of what has happened (e.g. certain

code never reached, wrong argument values passed to certain

procedures, unreasonable values detected for certain variables).

(b) This evidence, analyzed,
, v/ill in favorable cases

point the finger of suspicion at certain narrow program sections.

However, in unfavorable cases, the available evidence may be

51

quite ambiguous, and may simply lead the programmer to generate

considerably more extensive traces and dumps. Three typical

cases can be noted.

(b.i) Within a region of code described as suspicious,

at least one visibly incorrect instruction might be spotted

and corrected.

(b.ii) A program region containing the error may be correctly

described, but no specific error located. In this case, one

more run, with denser tracing in the error region, can locate

the anomaly.

(b.iii) The program region first suspected may in fact

contain no error. In this case denser tracing will simply

confirm the good behavior of the suspected region, after

which reconsideration may lead to suspicion being cast, this

time more correctly, on some other region.

Accordingly, the follov/inq are reasonably typical sequences
of steps in uncovering a logical error.

Step 1;

Step 2;

Step 3

Alternatively:

Step 1:

Step 2

Step 3

Step 4

Suspect region R, insert traces.

Locate and fix bug.

Correct syntax error in step 2. (Bug is now fixed)

Suspect region R, insert traces.

Region R ok, suspect region R', insert new traces.

Correct syntax error in step 2, obtain new traces.

Locate and fix bug from new traces.

Overall it can be hard to fix more than 1/3 bugs per run, as

compared to the estimated average of 25 bugs fixed per run in

our hypothetical account of syntactic debugging. Thus 150 runs,

which might represent as many as 10 days work, can be required

to fix the 50 logical bugs which might very typically be praspnt

in a new, 1000-line program.

52

To alleviate this vexing but ail-too familiar situation,

we must aim to transfer as much of the debugging as possible

from the execution phase to the more productive compilation

phase, increase the probability of finding at least one logic

bug per run (if any is present) , and make it possible to

find more than one bug per run. The following considerations

are directed toward this end.

(i) Global analyses capable of detecting program

anomalies such as uninitialized variables, unused computations

and type errors should be applied routinely during compila-

tion, and the results of these analyses should be used to generate

diagnostics.

(ii) It is well worth increasing the redundancy of

program text in ways likely to expose errors during compilation.

A primary technique here is declaration of variable types

and of the types of input and object arguments which each

operator will expect and produce. (If this information is used

only for error detection, and not to steer compilation or

execution in any other way, then inherently ambiguous cases

can be handled simply by declaring particular variables to have

ambiguous 'union' types. This will sidestep the ambiguity, with

some small loss of diagnostic precision, but without creating

any further complications.) Every subroutine and operation

should then indicate the type of inputs which it expects

and the type of output which it produces.

(iii) It is best that programs should not run for long

after they have begun to generate erroneous quantities, since

the longer they run the more remote the primal anomalies will

become. Two techniques can be used for this:

(iiia) Data items should be dynamically type-tagged,

and each type-error should lead to the generation of diagnostic

information.

(iiib) A program being debugged should be thickly larded

with dynamically checked assertions. If this is well done,

the probability that a logical error will lead to quick blowup

should be quite large.

53

(iv) Enough information to make it possible to trace

back to a primal anomaly should be dumped routinely upon

program blowup. What seems desirable is to dump the last

value assigned to each variable X by every statement that

modifies X. If this is done, a primal anomaly will only be

hidden if the instructions I which constitute it generate an

erroneous result R, pass R along as inputs to the instructions

which will eventually (and probably soon) develop an error

symptom from R, following which I is some how reexecuted,

this time producing a correct-looking result which hides

the erroneous character of I. Such tricky situations are

of course possible, but unlikely.

To generate such a comprehensive dump of last values

assigned, we can proceed as follows. As a program P runs, a

count can be kept of the number of times each basic

block within it is executed. If and when P fails, these

counts will be available. The program can then be executed

again in 'debug mode' and these counts decremented as

execution proceeds. Each time a count reaches zero we know

that we are entering a block for the last time. Wherever

this happens, we can pvitrh the block into an alternate mode

in which variables are printed each time they are modified

(along with an indication of the statement which is affecting

the modification} . The cost of this is only a doubling of

the normal execution time of an erroneous run, which is prob-

ably a smaller cost than would be incurred by the less

systematic process of ordinary debugging.

On failure it is also appropriate to dump an indication

of routines currently invoked, with the values of their para-

meters, and of control-flow history. This history can consist

of a statement of all branches recently taken, with an indication

of the number of times taken if a given branch is taken

repeatedly in the same way.

Next we turn to the quejjtion of how to discover

more than one bug per run. The simolest technique is to

generate diagnostic information whenever an error (e.g.
54

a dynamic type fault or a violated assertion) is detected,

but to let a run proceed until some error limit is exceeded.

Especially in the early phases of debugging, errors will

tend to be independent, so that this approach will generally

reveal multiple independent faults.

Another more sophisticated approach to discovery of

more than one anomaly per test run is worth suggesting.

Ordinarily, quite a few features of programs are generated

by an implicit optimizing process of ' set- theoretic strength

reduction' or 'formal differentiation' discussed earlier in

this report. This optimization introduces variables x which

carry the values of expressions e(y,,...,y) that would

otherwise have to be calculated repeatedly, but makes it

necessary to update the value of x whenever yT'**''yn ^^^

modified, a requirement that can easily lead to error

either because an update operation is forgotten or because

it is wrongly expressed. In this situation, there will

naturally arise assertions of the form

ASSERT: x = expn (y-i / • • • /Yj^) •

We can then change the syntax of such assertions to

ASSERT: x := expn (y-|,...,y) ,

and agree that assertions having this latter form which fail

will generate appropriate dumps but assign expn to x and

continue execution. In many cases, this will allow defective

programs to continue correct execution, up to the point at

which one or more additional anomalies are uncovered. To

generate the necessary dumps without increasing execution

costs significantly, an execution count technique generaliz-

ing that outlined above can be used.

55

C . Linking software systems .

The growing size of fast memories and the availability

of new large virtual memories suggest that it may soon be

feasible to develop ambitious software systems which incor-

porate many separately developed programming languages and

applications packages and combine their facilities. Thus,

for example, we can imagine a combined SETL/SNOBOL/LISP/APL

MACSYMA/EISPAK/ . . . system for combined symbolic and effi-

cient numerical processing. In the following paragraph we

will sketch a technique for organizing the interfaces neces-

sary for the development of such large hybrid systems.

Note that the systems mentioned here not onlv incorporate a

wealth of carefully designed algorithms but also embody

important human factors designs which can aid the programmer

greatly in dealing with particular mathematical and

applications areas.

We observe, to begin with, that only data structures common

or nearly common to two such software systems can readily be

communicated • between them. E.g., we can easily communi-

cate strings, real numbers, integers, and arrays of integers

and/or reals between SETL, FORTRAN, APL, and SNOBOL, but

cannot expect SNOBOL to digest the internal complications

of SETL sets, or SETL to handle SNOBOL patterns. Nevertheless,

the rudimentary data objects listed in the preceding sentence

can be expected to have nearly identical representations in :

most language implementations; moreover, minor discrepancies

in the representation of these relatively standard objects,

e.g. array headers differing in detail, can easily be

compensated for by small routines belonging to the software

interface between languages.

Confining our attention therefore to rudimentary data

objects, what we want is for a procedure written in any of

the languages of a hybrid system to be able to call procedures

written in any of the other languages, passing and receiving

simple data objects with common representations. We shall also

56

make the simplifying assumption that every one of our

intercommunicating software systems operates in its own memory

subarea, and that all these subareas can be loaded together

in a common (virtual) memory.

Our aim is to define a simple semantic primitive which

can support the necessary intersystem linkages without either

making any restrictive assumptions about the manner in which

the individual systems have been implemented or requiring any

type of system support not apt to be present in most general

operating systems. Even though a fair range of complications

need to be faced, we can outline a scheme which, suitably

implemented, would suffice to interconnect a wide variety of

separately developed software environments. To this end, we

can proceed as follows. In each of the software subsystems

S,,S2,... that is to be linked, provide a standardized

'interface' or 'gate' procedure

(*) GATE(N,R,X^,Y^,X2,Y2, . ..) ,

either of a variable number N of parameters, if the subsystem

in question allows this, or of some large fixed number K of

parameters of which only N will be used on any particular

call. Accordingly, when procedure P, belonging to the

software subsystem S, wishes to call a procedure P- belonging

to a different software subsystem S2 / we can proceed as

follows

.

(i) P, can call the GATE, available to it, indicating

the number N of parameters that are being passed, and passing

these parameters as ¥,,¥2,... . The parameter R is intended

to identify both the routine ?„ that is being called and the

subsystem S2 to which P2 belongs. The auxiliary parameters

X,,X2,... serve to identify the type and size of the corres-

ponding parameters Y^ ,Y^, . . . (if these types and sizes are not

directly indicated in the data objects Y, ,¥2,... themselves,

as, e.g., they would not be if S, is a FORTRAN software domain)

and to control the manner of transmission and conversion

from the values of ¥,,¥2,... available on the 'sending' side

S, to the corresponding values seen on the 'receiving' side S2.

The following forms of conversion will be typical.

57

(i) In the very simplest case, no nontrivial conversion

is required: the address (or value) of a given Y. can be

passed directly to the 'receiving' side 32-

(ii) A value Y. may carry a descriptive header on the

'sending' side S-, which is not needed on the 'receiving' side S2.

In such a case, it may be sufficient to add to the address of Y.

an offset which bypasses this header, and pass the adjusted

address to S^.

(iii) Conversely, the value Y. may lack a header H which

is necessary on the 'receiving' side S-. In this case, it

may be sufficient for the receiving GATE- procedure

to build H in a detached location which GATE- can allocate,

putting a pointer to the actual position of Y . in H and then pass-

ing along a pointer to the position of H.

(iv) If either the value of Y . is shared on the 'sending'

side S, and S^ expects arguments to be transmitted by reference

and modified in place, or if S- expects Y. to begin with a

header not present on the S, side, it will be necessary for the

'sending' side GATE, to copy Y. into an area Y '. which GATE,

is able to allocate, pass the copy Y. to the 'receiving' side

GATE- , and then copy or return the address of Y*. after it has

been modified by the 'receiving' side as the result of the inter-

system call from S, to S^.

Note that the param.eters (N,R,X, , Y, , . . .) of the GATE-j^

call can be set up by an auxiliary routine R, available

on the calling side S, , to which only those parameters Y, , . . ^Y

that are actually used need be passed. This routine is,

in effect, a sending-side representative of the receiving-side

routine R2 which is to be called. Of course, the code of R,

must reflect knowledge of the parameter conversions required,

as determined by the semantics of both the S, and the S2

languages; however, R, can be written in the S, language

alone.

58

When first received within S2, a call via GATE- to a

routine RR belonging to the subsystem S_ can be passed

along to an auxiliary 'receiver' routine P„ , having a standard

name known to GATE- , but otherwise written entirely in the S-

language. P- can examine the second, procedure-designating

parameter R of the GATE- call (see (*) above), and using it can

determine the identity of RR. Then, after RR returns to P, P can

call GATE, again, but in a manner that indicates that a return

from a prior call to GATE-, rather than a new call originating •

within Spjis required. These conventions require a GATE to

handle four types of calls:

(i.a) calls originating in the same software subsystem

S as the GATE, and representing invocations of routines

belonging to some other subsystem;.

(i.b) calls originating in S, and representing returns

to the subsystem from which S was called;

(ii.a) calls originating outside S, representing invoca-

tions of routines within S; and

(ii.b) calls originating outside S, representing returns

to routines within S.

The GATE must distinguish between these four forms of

calls, and handle them as follows. GATE calls of type (i.a) must

trigger any appropriate sending-side conversions, possibly

including value copying and the building of headers (or 'dope-

vectors') as indicated above, together with recursive stacking of

return addresses and of any parameters passed by value. GATE

calls of type (ii.b) must trigger any necessary data reconver-

sions, and must pop control and parameter return address

from the stack on which they have been saved , also returning

parameters that have been transmitted by value for delayed

value return. GATE calls (i.b) return control, along with

any parameter values transmitted by value, to the subsystem

from which the call originated. GATE calls (ii.a) must stack the

identifier of the subsystem in which the call originates, along

with the addresses of parameters to be returned by value.

59

Note therefore that most of the work of interpreting the

conversion control parameters X. of a call (*) must be

performed within the GATE routines themselves.

The intersystem linkage scheme which we have outlined

requires only minor modification of the software systems

which are to be linked. The minimum modification is to furnish

each system S . with a procedure having the list of parameters

specified for a GATE, which simply passes these parameters

along to an external procedure named GATE.. The necessary

GATE procedures can then be written separately in an

appropriate low-level language.- although, of course, their author

must understand all relevant details of the manner in which

the data items to be passed are stored in each of the separate

systems to be linked, and also all the conversions and

parameter-transmission actions to be triggered by allowed

values of the parameters X. of (-). An experiment to see how

successfully such an isolated (if nontrivial) software package

could be written (e.g. to link SNOBOL, SETL, FORTRAN, and LISP)

would be worthwhile.

60

D. Software portability.

In the technological period now drawing to an end, it

was often considered necessary to write large portions of

software systems in assembly language in order to meet speed

and memory constraints. Now, however, these constraints are

relaxing, and software portability, which is radically

sacrificed by the use of assembly language, is becoming

considerably more important than the relatively marginal

gains ordinarily achieved by use of assembly language.

Several quite successful portable systems have by now been

developed, and fairly consistent experience with these systems

suggests the following overall conclusions.

(a) Portability is obtained by writing all other

software in a portable language, which should ordinarily

be either a relatively low-level 'systems implementation

language' (something on the order of Ada, or of a severely

restricted PL/I, or a modified PASCAL) , or should be a

pseudo-assembly language , i.e. an assembly language for a

hypothetical machine which can easily be translated into the

actual assembly language of a wide variety of existing

machines .

(b) The first approach (use of a systems implementation

language) seems preferable if a wide variety of compatible

systems, rather than a single portable system, is to be

created. If this approach is used, the compiler for the

system implementation language should be written in the language

itself, and should be provided with at least two kinds of code

generator back ends. The first kind of code generator should

produce some single, well- designed, highly transportable

pseudo-assembly language code; the second class of code

generator should produce true assembly language code, much

more carefully tailored to the various machines to which the

system will be ported. The reason why it is desirable to

produce both pseudo-assembly code and true assembly; code for

various machines is as follows. Pseudo-assembly code can

61

generally be ported to a new machine by writing a simple,

unoptimized translator which, given a machine M, maps each

pseudo-assembly instruction into a corresponding code

sequence for the machine M. If the pseudo-assembly language

is well designed, this translator can normally be written

and made operational in less than four man-weeks. Direct

generation of code for a particular target machine will

generally produce mere efficient code, allowing execution

speeds somewhat less than double those ordinarily achieved

by translation of a pseudo-assembly language. However,

development of a high-quality direct code generator, even

for a systems-writing language designed with transportability

in mjnd, is a more complex process, often requiring about

six months. During this six-month development period it

can be quite inconvenient to have to cross-compile repeatedly

from another machine to the target machine M. It is much

more convenient to make the transportable language system

available on M as rapidly as possible, even at some modest

loss of efficiency, and then to carry out the remainder of

the development on M itself.

(c) If a system implementation language is used, the

portable compiler provided for it should include an optimizer

S'Ubphase capable of applying all standard global optimizations

(e.g., redundant expression elimination, code motion, constant

propagation, dead code elimination, and operator strength

reduction) and of packing quantities into a parametrized

collection of standard-length registers. This will make it

possible to compile high quality code, often performing within

a factor of two or better of assembly code, for a

variety of machines.

(d) All other applications and software systems,

including compilers and run-time systems for very-high-

level languages, should then be written in the basic

portable language. The components needed to implement a

very-high-level language system will normally be as follows.

(i) Parsing and semantic analysis routines which analyze

62

very-high-level source text and transform it into inter-

mediate text, which is essentially a sequence of instructions

for an 'extended machine' in which all the fundamental

operations of the very-high-level language are available as

priir.itives . These routines do not differ significantly from

those used in any other compiler; they can and should be written

directly in the transportable systems-writing language.

(ii) Global optimization routines. These routines take

the intermediate code sequences just mentioned and use informa-

tion concerning the primitives occurring in these code sequences

to deduce attributes of the data objects which these

sequences will generate. Once these attributes are known,

more efficient code sequences producing equivalent outputs

can generally be deduced. The necessary optimization routines may

differ in detail, but not in general flavor, from those used

in connection with compilers for lower level languages, and

should also be written directly in the transportable systems-

writing language.

(iii) Code generators, which produce either directly

interpretable symbolic instruction sequences, or true

assembly language macro-sequences ' equivalent to these

symbolic instruction sequences. These generators should

also be written in the transportable systems

language. Careful design will generally make it possible to

use a single appropriately parametrized code generator to

produce assembler macros for a variety of machines. It is

therefore possible to make this component of the high-level

language system transportable also, and largely machine-independent,

(iv) A support library, consisting of routines which

implement the more complex operations of the very-high-level

language. This library can also be written in the transportable

systems language. To move the library to a new machine, it

will only be necessary to redefine the field layouts within

the low-level data structures used to represent the objects

of the very -high -level language.

63

(v) Assembler macro-text defining each of the macros

emitted by the code generators (cf. (iii) above). This final

system component is the only one which is machine dependent.

But this component is small, and should generally amount to

no more than a very few thousand lines of assembler code.

To summarize, we can say that the approach outlined

in the preceding paragraphs makes it possible to transport

major high-level language systems, which may involve tens of

thousands of lines, between machines without having to produce

more than a few thousand lines of assembly code for each new

machine to which the system is to be ported.

64

Bibliography

A general view of the programming process having many

points of contact with that presented in this paper are

found in:

M. Hammer [1979] Application Oriented Software Research ,

and also

M. Hammer & G. Ruth [1979J Automating the Software Development

Process

,

both in: Research Directions in Software Technology

(P. Wegner, ed.) MIT Press, Cambridge, Mass.

The use of mathematical notations and operations as the

basis for a programming language has been explored by the

designers of SETL, APL, and more recently in PROLOG and the CIP

transformable language being developed at the Technical Univer-

sity of Munich. See:

R.B.K. Dewar, A. Grand, S-C Liu, E. Schonberg, and J. T. Schwartz

[1979] Programming by Refinement^ as Exemplified by the SETL

Representation Sublanguage T.O.P.L.A. S. , v. 1, pp. 27-49,

J. T. Schwartz [1973] On Programming : An Interim Report on the

SETL Projecto Installment. I: Generalities ^ Installment II: The

SETL Language and Examples of its Use. Lecture Notes ,

Computer Sci. Dept. , New York Univ.

A similar range of questions is discussed and a variety of

possible approaches are outlined in:

B. Liskov and V. Berzins [1979] An Appraisal of Program

Specifications , xni Research Directions in Software Technology,

(P. Wegner, ed.) MIT Press, Cambridge, Mass.

Recently, the possibility of using predicate logic directly

as a very-high-level programming language has been suggested. See:

M. H. van Eamden and R. A. Kowalski [1976] The Semantics of

Predicate Logic as a Programming Language , J. ACM v. 23,

pp. 733-742.

65

R. A. Kowalski [1974] Predicate Logic as a Programming

Language. Proc. IFIP Congress 74, North Holland Publ. Co.,

Amsterdam, pp. 569-574.

R. A. Kowalski 11979] Algorithm = Logic + Control. C.A.C.M.,

V. 22, pp. 424-436.

F. Bauer, et al . [1977] Notes on the Project CIP: Outline of

a Transformation System. Tech. Rept. TUM-7729, Tech. Univ.

Miinchen, Inst, fiir Informatik.

F. Bauer, et al . [1978] Towards a Wide Spectrum Language

to Support Program Specification and Program Development

^

SIGPLAN Notices, v. 13, no. 12.

Transformational derivation of programs has been studied

by many authors during the past few years. See in particular:

R. Paige [1979] Expression Continuity and the Formal

Differentiation of Algorithms . Thesis, New York University.

R. M. Burstall and J. Darlington [1976] A System which Auto-

matically Improves Programs . Acta Informatica, v. 6, pp. 41-60,

R. M. Burstall and J. Darlington [1977] A Transformation

System for Developing Recursive Programs . J. A. CM., v. 24,

pp. 44-67.

D. F. Kibler, et al . [1977] Program Manipulation via an

Efficient Production System, SIGPLAN Notices, v. 12.

D. B. Loveman [1977J Program Improvement by Source to Source

Transformation^ J. A. CM., v. 24, pp. 121-145.

T. Standish, et al . [1976] The Irvine Program Transformation

Catalogue. Tech. Rept., Dept. of Information and Computer

Science, U. C Irvine.

M. A. Auslander and M. R. Strong [1978] Systematic Recursion

Removal. C.A.C.M., v. 21, pp. 127-134.

H. Partsch & P. Pepper [1976J A Family of Rules for Recursion

Removal Related to the 'Tower of Hanoi' Problem.

Tech. Rept. 7612, Techn. Univ. Miinchen, Inst, fiir Informatik.

66

B. Wegbreit [1976] Goal-direated Program Transformation.

IEEE Trans, on Software Engineering, v. SE-2, pp. 69-80.

S. Gerhart [1975] Correctness-preserving Program Transforma-

tions. Tech. Kept. CS-1975-4, Duke Univ., Durham, N.C.

(See also the previously cited work of Bauer et al .

)

Various interesting (though fragmentary) attempts at

automatic construction of programs will be found in:

P. D. Summers [1977] A Methodology for LISP Program

Construction from Examples. J=AcC.M. v. 24, pp. 161-175.

M. Sintzoff [1978] Inventing Program Construction Rules,

in: Proc. IFIP Conf. on Constructing Quality Software,

North Holland Publ

.

N. Dershowitz and Z. Manna [1977] The Evolution of Programs:

Automatic Program Modification. I.E.E.E. Trans, on Software

Engineering, v. SE-3, pp. 377-385.

M. Sharir [1980] Algorithm Construction by Formal Differenti-

ation, to appear in: Mathematics and Computers with Applica-

tions .

A brief survey of the major techniques for formal proof

of program correctness and an assessment of the potential for

progress in this field is found in:

J. Schwartz [1979] A Survey of Program Proof Technology

,

Tech. Kept. 1, Dept. of Computer Science, Courant Inst. Math,

Sci., New York Univ.

67

Facilities for user definition of object types related

to, but not quite as abstract as those sketched in Section 2.c

of the present report, are provided in the Algol 68, CLU,

ALPHARD, and Ada languages. See later references for Ada,

also:

A. van Wijngaarden, et al. [1975] Revised Report on the

Algorithmic Language Algol 68, Acta Informatica, v. 5, pp. 1-236.

B. H. Liskov and S. N. Zilles [1974] Programming with Abstract

Data Types. SIGPLAN Notices, v. 9, no. 4, pp. 50-59.

B. Liskov, and S. Zilles [1975J Specification Techniques

for Data Abstractions . IEEE Trans. Software Engineering,

v. 1, pp. 7-19.

B. Liskov, A. Snyder, R. Atkinson [1977] Abstraction

Mechanisms in CLU. CACM, v. 20, pp. 564-576.

W. Wulf, R. L. London, and M. Shaw [1976] An Introduction

to the Construction and Verification of ALPHARD Programs.

IEEE Trans. Software Eng. , v. 2, pp. 253-265.

The literature on 'external' or 'user-oriented' program-

ming issues is voluminous, but largely impressionistic.

A brief but broad survey of application-oriented program-

ming languages is found in the Programming Languages chapter

of the recent COSERS report:

B. Arden, ed. [1980] COSERS: The Computer Science and Engineer-

ing Research Study, v. I, II. MIT Press, Cambridge, Mass.

68

The following papers describe two unusual programming

languages with particularly strong applications orientations:

M. M. Zloof [1975] Query -by -Exam-pie. Proc. 1975 Nat.

Computer Conf., AFIPS Press, Montvale, N. J., v. 44, pp. 431-438,

M. M. Zloof and S. P. de Yong [1977J System for Business

Automation (SBA) Programming Language . C.A.C.M. v. 20,

pp. 385-396.

An unusually perceptive account of user-oriented software

design problems in the specialized area of numerical software

is found in:

J. R. Rice [1979] Software for Numerical Computation , in:

Research Directions in Software Methodology (P. Wegner, ed.)

MIT Press, Cambridge, Mass.

An interesting proposal for a language emphasizing

pseudoparallelism as a programming technique is found in :

C.A.R. Hoare [1978] Communicating Sequential Processes,

C.A.C.M., V. 21, pp. 666-676,

A particularly perceptive account of other important

pragmatic issues arising in externally motivated applications

programs is found in :

G. J. Meyers [1976] Software Reliability ; Principles and

Practices John Wiley & Sons, Publ . , New York.

See also:

J. Aron [1974] The Program Development Process.

Addison Wesley Publ., Reading, Mass.

J. E. Bingham and G.W.P. Davies [1972] A Handbook of

Systems Analy sis . Kalstead Publ., New York.

J. D. Dougar and R. W. Knapp [1974] Systems Analysis Techniques.

John Wiley and Sons Publishers, New York.

J. Martin [1973] Design of Man-Computer Dialogues

.

Prentice-Hall Publ., Englewood Cliffs, New Jersey.

69

L. A. Belady and M. M. Lehman [1976] A Model of Large

Program Development . IBM Systems Journal v. 15,

pp. 225-252.

F. P. Brooks [1975] The Mythical Man-Month : Essays on

Software Engineering . Addison-Wesley Publ . , Reading, Mass.

For another account of this area and a survey and

extensive bibliography of various systems and approaches

competitive with the suggestions advanced in the present

paper, see:

B. Boehm [1979] Software Engineering : R d D Trends and Defense

Needs, in: Research Directions in Software Technology

(P. Wegner, ed.) MIT Press, Cambridge, Mass.; also

C. L. McGowan and R. C. McHenry [1979] Software Management

^

in: Research Directions in Software Technology

(P. Wegner, ed.), pp. 207-253.

An interesting discussion of the pragmatically important

program maintenance problem is found in:

L. Belady and M. Lehman [1971] Programming System Dynamics

,

or the Metadynamias of Systems in Maintenance and Growth^

IBM Res. Rept. RC354b, Yorktown Heights, N.Y.

L. Belady and M. Lehman [1979] The Characteristics of

Large Systems, in: Research Directions in Software Technology

(P. Wegner, ed.) pp. 106-131.

Concurrent process languages have been studied very

actively during the last five years. See:

P. Brinch-Hansen [1973J Concurrent Programming Concepts

,

ACM Computing Surveys, v. 5, pp. 223-245.

P. Brinch-Hansen [1975] The Programming Language Concurrent

PASCAL. IEEE Transactions on Software Engineering, v. 1,

pp. 199-207.

P. Brinch-Hansen [1977] The Architecture of Concurrent Programs

.

Prentice-Hall Publ., Englewood Cliffs, N.J.

70

C.A.R. Hoare [1974] Monitors : An Operating System Structuring

Concept. C.A.C.M., V. 17, pp. 549-557.

N. Wirth [1977] MODULA, a Language for Modular Multiprogram-

ming , Software Practice and Experience, v. 7, pp. 37-66.

P. Shaw [1978] GYVE, a Programming Language for Protection

and Control in a Concurrent Processing Environment , v. I, II.

Thesis, New York Univ.

Concurrent processing features have of course been

incorporated in the new DoD Ada Language. See Chapter 9 of:

Preliminary Ada Reference Manual, Special Number of SIGPLAN

Notices, V. 14, no. 6 [1979]. v^,
--

An interesting account of the special problems connected

with data-base oriented operating systems is found in:

J. Gray [1978] Notes on Data Base Operating Systems,

in: Operating Systems, an Advanced Course. Springer-Verlag,

New York.

The recent literature contains numerous accounts of

successfully transported software systems:

C. 0. Grosse-Lindermann and H. H. Nagel [1976] Postlude to

a PASCAL-compiler Bootstrap on a DEC System/ 10

.

Software Practice and Experience, v. 6, pp. 29-42.

0. Lecarme and M. C. Peysolle [1978] Self-compiling

Compilers : an Appraisal of their Implementation and Portability

,

Software Practice and Experience, v. 8, pp. 149-170.

R. Miller [1978] UNIX — a Portable Operating System?

Operating Systems Review, v. 12, pp. 32-37.

M. C. Newsey, P. C. Pode , and W. M. Waite [1972] Abstract

Machine Modeling to Produce Portable Software — A Review

and Evaluation. Software Practice and Experience, v. 2,

pp. 107-136.

71

C. R. Snow [1978] An Exercise in the Transportation of an

Operating System. Software Practice and Experience, v. 2,

pp. 41-50.

T. Stuart [1976] Adapting Large Systems to Small Machines

.

SIGPLAN Notices, v. 11, pp. 144-150.

The SPITBOL compiler is a particularly successful trans-

portable system; see:

R.B.K. Dewar and A. P. HcCann [1977] MACRO SPITBOL — A

SN0B0L4 Compiler . Software Practice and Experience, v. 7,

pp. 95-113.

Our remarks on program testing cover just one aspect of

the very important question of program testing.

For recent accounts of issues in this area, see:

J. B. Goodenough [1979] A Survey of Program Testing Issues,

in: Research Directions in Software Technology (P. Wegner, ed.)

MIT Press, Cambridge, Mass., pp. 316-340

W. C. Hetzel (ed.) [1973] Program Test Methods, Prentice-Hall

Publ . , Englewo'od Cliffs, N. J.

R. de Millo, R. Lipton and F. Sayward [1978] Program Muta-

tion: a Method of Determining Test Data Adequacy , Preprint,

Yale Univ., New Haven, Conn.

72

Distribution List for Contract No. N0Q014-78-G-0639

Defense Documentation Center
Cameron Station
Alexandria, VA 22314 12 copies

Office of Naval Research
Arlington, VA 22217

Information Systems Program (437) 2 copies
Code 2 00 1 copy
Code 455 1 copy
Code 4 58 1 copy

Office of Naval Research 1 copy
Branch Office, Boston
Bldg. 114, Section D
666 Summer Street
Boston, :4A 02210

Office of Naval Research -1 copy
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

Office of Naval Research 1 copy
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory 6 copies
Technical Information Division, Code 2627
Washington, D. C. 20 37 5

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of the Marine Corps (Code RD-1)
Washington, D. C. 20380

Naval Ocean Systems Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, CA 92152

I4r. E. H. Gleissner 1 copy

Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, MD 20084

Captain Grace M. Hopper (008) 1 copy

Naval Data Automation Command
Washington Navy Yard
Building 166
Washington, D. C. 20374

Dr. Serafino Amoroso ,.. 1 copy

CENTACS
Attn: DRDCO-TCS-BG
Fort Monmouth, NJ 077 3

Defense Advanced Research Projects Agency 3 copies

Attn: Program Management/MIS
1400 Wilson Boulevard
Arlington, VA 22209

Director, National Security Agency ^ copy

Attn: R53, Mr. Click
Fort G. G. Meade, MD 2 0755

This book may be kept

A fine

FOURTEEN DAYS
wiU be charged for each day the book i. kept overtime.

^ NYU c .

2

Comp. sci. Dept.
TR-020
Schwartz
Internal, external, and .,

NYU •

Com^^^Sci. Dept.

AUTHOR

Schwartz
TITLE

Internal, external, anc
DATE DUE BORROWERS NAME

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012

