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1 . Introduction

This paper describes several general-purpose data-flow

analysis algorithms that have been designed and implemented for

the SETL optimizer. These algorithms include interval analysis,

interprocedural and intraprocedural 'forward' and 'backward' data-

flow analysis for ' bitvectoring ' problems and code motion. Most

of these algorithms use new techniques which improve their

performance significantly as compared with traditional methods.

Although these algorithms reflect the special SETL semantic

environment, they do so only to a limited extent, and can there-

fore support a variety of optimizations for most programming

languages and systems. In the SETL optimizer they support about

half a dozen optimizations, including classical ones, such as

redundant expressions elimination, live variables analysis, and

reaching definitions analysis, and also including some special

SETL optimizations, such as copy elimination and copy motion

and elimination of data-conversions.

Our algorithms operate on an intermediate-level representation

of the program to be analysed, in which code is partitioned

into basic blocks organized as a flow-graph (see next section

for a detailed summary of terminology and notations) . In pre-

paring to apply these algorithms, we first perform a simple

analysis of the interprocedural call pattern of the program to

be optimized. This builds up data-structures which are used

later in interprocedural data-flow analysis. Then the interval

structure of each subprocedure is analyzed, using a variant of

an algorithm of Tarjan, which produces a rather compact interval

representation. Our variant of Tarjan 's algorithm also handles

irreducible flow graphs in a simple and efficient manner, and

prepares for later code motion algorithms.

After these preliminary analyses have been carried out,

four interval-based data-flow algorithms for problems of the

'bitvectoring' type become applicable.
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These algorithms solve 'forward' problems (such as available

expressions analysis), and 'backward' problems (such as live

variables analysis), either intraprocedurally or interprocedurally

,

The ' forward ' algorithms also support code motion. The structure

of the interprocedural algorithms reflects the call-by-value

semantics of SETL, and would therefore have to be modified for

languages allowing parameters passed by reference. However, our

interprocedural approach is simple, efficient, and yields sharp

results. Attractive bounds on its performance can be proved.

This paper is organized as follows: Section 2 introduces

relevant notations and terminology. Section 3 describes our

interval analysis algorithm and intraprocedural 'forward'

data-flow algorithm. Section 4 presents the interprocedural

'forward' data-flow algorithm and analyzes its performance.

'Backward' data-flow algorithms are discussed in section 5

(in the intraprocedural case) and 5 (in the interprocedural case)

.

Section 7 describes a code motion algorithm as an extension of

the forward data-flow algorithms described earlier. Section 8

discusses some possible extensions of bitvectoring data-flow

problems, estimates their complexity and assesses the feasibility

of adapting our methods for these extended frameworks . Section

9 describes the application of the general algorithms described

in previous sections to specific data-flow problems in the

SETL optimizer.

SETL code for the various algorithms described in this

paper is given in Appendix A. (The actual SETL optimizer is

written in SETL, and this code is extracted from it.)
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2. Terminology and Notations

In this section we outline the basic notations and terminology

to be used in this paper. More information concerning standard

terminology can be found e.g. in [He] and [AU]

.

The program to be analyzed is assiimed to have been translated

into intermediate-level code, which is partitioned into extended

basic blocks , which are single-entry multi-exit code sequences

(containing no internal branches) . For purposes of interprocedural

analysis, we assiime that each procedure call instruction const-

itutes a single-instruction basic block. Moreover, in the

interprocedural case, each procedure p is assumed to have a unique

entry block , denoted by r , and a unique exit block, denoted by

e which is also assumed to be a single-instruction block.
p '

Optionally, p may also contain a stop block , denoted by s ,

which terminates execution completely when entered (whereas the

exit block returns to the point from which p has been called)

.

We also assume that p's entry block r is not contained in
p

any loop within p. We assume that program execution always

starts at a unique procedure, called the main program and denoted

as main , which is not recursive.

In SETL, procedure parameters are passed by value. Value

transmission between actual arguments and formal parameters

at a procedure call is assumed to be represented in the inter-

mediate-level code by explicit assignment-like argument-passing

instructions which occur before and after each call . In the

initial form of our algorithms, we treat these special assign-

ments as ordinary assignments, independent of the relevant

procedure call, and so ignore some of the tricky issues connected

with parameter-passing, such as recursive stacking and unstacking.

(Some ammendments to this approach are discussed in section 4.)

This allows us to work with a program model in which procedures

are parameterless , and in which procedures communicate only

via global variables. As in SETL, we disallow procedure variables.
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To begin our analysis, we create a flow-graph G for

each procedure p in the program being analyzed. G is a rooted

directed graph whose nodes are the basic blocks of p, whose

root is r , and whose edges are of the form (m,n) where m,n
P

are basic blocks in p, and either n follows m immediately in

the code, or else m contains a branch instruction to (the

start of ) n. We assiime that each node in G is reachable from

its root. The flow graph G for the whole program is then simply

taken to be the union of the flow graphs of all its procedures.

The call graph CG of the program is another rooted

directed graph whose nodes are the program's procedures, whose

root is the main program main , and whose edges are of the form

(p.q) where p,q are procedures and p contains a call to q.

Again we assume for simplicity that each node in CG is reachable

from its root. Note that CG is acyclic iff the program being

analyzed is non-recursive.

For any directed graph G and a depth-first spanning tree

T for G, we define the loop-connectedness parameter d = d(G,T)

of G with respect to T as the maximal number of back-edges

(relative to T) lying along an acyclic path in G. Some properties

of this parameter are discussed in [He]; see also [KU],

Our next step is to apply interval analysis . Here, we

analyze the loop-structure of each procedure flow graph G . An interval

1 with a given entry node in such a graph is required to be a

single-entry strongly-connected set of nodes of G , having that
ir

node as its entry node. This definition differs in a

significant detail from the more standard Allen-Cocke definition

of an interval [Al, ] and also from the definition of an interval

used by Tarjan [Ta]. We build intervals by a technique due

to Tarjan, which detects intervals from innermost to outermost,

and reduces each such interval to a new single basic block.

As it proceeds, our interval analysis algorithm also classifies

each interval as being proper (meaning that it is an interval

in the classical sense, i.e. has the property that each internal

cycle within it contains the entry node) or else improper .
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in which case it is an irreducible subgraph.

The preceding remarks outline our approach to control-flow,

and we now turn to consider data-flow. In this paper we consider

only data-flow problems of the bitvectorinq class, which are the

simplest data-flow problems that arise in global program

optimization. Such data-flow problems are described by a data-

flow framework (L,F) (cf . [He] , [AU] ) , for which there exists a

finite set E such that L = 2 and for each f e F there exist two

subsets A- ^ B_ of E such that for each x e L

f(x) = (A^ n x) u B^.

Heuristically, elements of L represent (Boolean) attribute values

(such as availability of expressions, live status of variables,

etc.), to be computed at certain program points, and elements of

F represent transformations of these values effected by program

execution. The special structure of the maps belonging to F allows

each f in F to be represented compactly as an element (A^ ,B_) of LxL,

and allows functional application, composition and meet (re-

presented as set intersection, see (c) below) to be performed

rapidly, using bit-vector and and or operations.

The following facts are standard:

(a) f(x A y) = f(x) A f(y), for each x,y e L and f e F

( distributivity );

2
(b) f = f, for each f e F ( idempotency );

(c) For each f, g e F, let g»f denote the functional composition

of g and f, and g A f denote the functional (pointwise)

meet of these maps. Then

(A B ) = (A HA UB , A nB UB )g«f'g«f gf ggf q

(A ,^ , B .J = (A n A^ B r^Bj ,gAf ' gAf g f ' g f
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so that F is closed under these functional operations.

(d) The identity map id on L also belongs to F and we have

(^id' ^id) = (^' ^^

For the sake of convenience we extend the framework (L, F)

,

by introducing a special new and largest element f2 e L, denoting

an undefined data value, and a new function f„ eF, denoting

an undefined flow, which maps L into {^} . All other functions f

are extended so that f(fi) - Q. (interpreting elements of L as

predicates on the program states, Q. corresponds to the predicate

false ; f„ describes the effect of executing an ' abort' statement .

)

Data-flow analysis problems can be either ' forward' analyses

(like available expressions analysis) , in which attributes are

computed by tracing execution flow in a forward direction, from

program (or subprocedure) entry up to any given program point,

or 'backward' analyses (like live-variables analysis), in which

attributes are computed by tracing execution flow in a backward

direction, from program (or subprocedure) exits back to any

given program point. Also, each analysis can either be performed

intraprocedurally , i.e. separately for each procedure, to gather

information about the behavior of its local variables, or inter-

procedurall

v

. In interprocedural analysis a program is analyzed

as a whole, to gather information about glpbal variables and

procedure parameters. This paper describes algorithms for all

combinations of these classes of data-flow analyses.

Consider first intraprocedural forward analysis . Suppose

that we are given a flow-graph G of some procedure p. Knowing

the semantics of the operations within each basic block, we can

associate a data-flow map f , x e F with each edge (m,n) e G .

*- (m, n; P
This map describes the change in data as control advances from

the start of m, through m, to the start of n. (Note that we

assume here that the effect of each procedure call within p is

already known, which is the case, e.g., if our analysis
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deals only with local variables of p, which are unaffected by-

such a call.) The data-flow problem we wish to solve can be

formulated in terms of these functions. Specifically, for each

node n in p, let x e L denote the data-value at entry to the

basic block n, and let x e L denote (worst-case) attribute
o

information assumed at entry to p. Then we need to solve the

following standard set of data-flow equations:

X = X
r o
P

(2.1)
X = A if, . (x ) : (m,n) £ G } for each node n 7^ r in p,n (m, n) m p P

or, more precisely, to compute the maximal fixpoint of these

equations

.

A variety of algorithms for obtaining this fixpoint are

known (cf . [He], [AU] for a survey) . In this paper we use an

interval-based el Imination algorithm, which is described in

section 3, and which resembles other such algorithms (such as

in [AC], for example), but differs from them in significant

details such as the way in which irreducible flow graphs are

handled.

Similar equations which relate data at each node to data

at its successors rather than its predecessors can be used to

describe intraprocedural backward analysis. However, certain

significant differences between backward and forward analysis

require careful formulation and treatment. Section 5 discusses

these issues and describes an intraprocedural interval-based

elimination algorithm for the solution of backward data-flow

problems

.

The next kind of analysis that we consider is interprocedural

forward analysis . Two main difficulties must be overcome in

adapting the intraprocedural approach sketched above to the

interprocedural case. First, we cannot assign data-flow maps
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a priori to edges (m,n), where m is a call block, since initially

the effect of call blocks is not known. Also, we have to de-

termine an attribute value x at entry to each procedure p.

In the intraprocedural case x is generally chosen to re-

flect worst-case assumptions -^ concerning data at entry to

p, but to retain accuracy in the interprocedural case we will

only want to make such assumptions at entry to the main program.

The problems just noted are analyzed systematically from

a theoretical point of view in [SP, section 3]. There, the

preceding data-flow equations (2.1) are reformulated as equations

involving data-flow functions <^ , where, for each node n in a

procedure p (j) denotes the effect, on the attributes we wish

to calculate, of the advance of control from entry to p to the

start of n along all interprocedurally valid and balanced paths

(i.e. execution paths in which each procedure call is properly

terminated) . These equations are

(2.2)

where

(J)
= id

^r —
P

*n
= ^ ^^(m,n) ° *m =

^"^' "^ ^ ^p^' " ^ ^p ^^ P

(f , V , if m is not a call block
(m,n)

I

(J) , if m is a call block calling procedure q,

It is shown in [SP] that a (maximal fixpoint) solution of

these equations exists if L is finite (which is the case for

bitvectoring frameworks) , and can be found by methods similar

to those available in the intraprocedural case. It is also

shown there that this solution coincides with a 'meet over all

paths' solution. [SP] discusses an iterative technique for

finding that solution; in section 4 we will present a
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more efficient interval-based elimination technique. It should

be emphasized again that elimination techniques are most appropriate

for bitvectoring frameworks, in which functional compositions

and meets are almost as easy and fast to perform as functional

applications.

Once the solution of (2.2) has been found, we can compute data

at procedure entries by solving the following data-flow equations

(where x denotes data at entry to the procedure p, and where

X € L ^ denotes attributes to be assumed at the start of
o

execution; see [SP, Equations 3-3]):

(2.3)

X = x
r omam

x = A {(1) (x ) : c is a call to q from p}
r c r
q P

An iterative solution technique for these equations is

discussed in section 4. Finally, applying the maps (j)^^ to the

entry data x yields data at entry to any program basic block.

^P
A similar approach can be used for interprocedural backward

analysis . Specifically, for each basic block n let ^^ denote

the data-flow map describing the effect on the attributes that

we wish to compute of the advance of control from the start of

n to the exit e of the procedure p containing n, along execution

paths in which each procedure call is properly terminated, but

including also incomplete paths which terminate at some

stop block. These maps satisfy the following equations (where

X G L denotes worst-case attributes assumed at program exits)

:

o

(2.4)

Tb = X (a constant map) , for each p ;

s o
P

}b = id^ , for each p ;

'^e —

L

P

^ = A {h, . ° ^ : (m,n) G G }, for all other m in pm (m,n; n p
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where

(m,n)

f , X , if m is not a call block
(m, n)

. i(j , if m is a call block calling procedure q .

Solution methods for these equations, as well as formulation and

solution methods for equations analogous to (2.3), are discussed

in section 6.

3. A Modified Interval Analysis Technique

In this section we sketch a modified approach to interval

analysis, based primarily on Tarjan's interval analysis technique

[Ta], but pragmatically adapted. This approach also handles

irreducible flow graphs in a reasonably simple and efficient

manner.

The classic interval analysis technique of Allen and

Cocke (cf . [AC]) , builds up a sequence of derived graphs for a

given flow graph. Each such graph results from the previous one

by simultaneously reducing all first-order intervals to single

nodes. This has various disadvantages, e.g. the nodes in one

derived graph, even if unaffected by the reduction of this

graph, are duplicated in the next derived graph.

Moreover, in this traditional approach, intervals are

not required to be strongly connected, which creates extra

complications for code motion, where normally we only wish to jnove

code lying in the strongly-connected part of an interval I out of I

A third potential disadvantage lies in the handling of

irreducible flow graphs, which requires special 'node-splitting'

mechanisms (see [He]).

A different and potentially more efficient approach to

interval analysis which relieves some of these objections.
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has been suggested by Tarjan [Ta], and will be followed and

adapted here. The relevant theory is suppressed in our

description. It can be found in [Ta]; additional exposition

of this theory can be found in [SS], whose notation we shall

closely follow. A formal SETL code for our interval analysis

algorithm is given in Appendix A.

Let G = G be a given (intraprocedural) flow-graph having

an entry node r, and let T be a depth-first spanning tree for G.

We assume for simplicity that r is not a target of a back

edge with respect to T. Among other objects, our algorithm will

compute a map ' intof ' which maps each node in a (strongly-

connected) interval to the interval itself. Each interval will be re-

presented by a new flow-graph node, logically placed in G and

T 'just before' the first node of the interval (see below for

more details) . A crude sketch of our interval analysis algorithm

is as follows:

(1) Initialize intof to the null map. Mark all nodes as

'proper' (meaning, heuristically, that they are not (as yet)

heads of multiple-entry loops). Also initialize a set ' proper-ints

'

to the null set and a tuple 'intervals' to the null tuple.

(2) Iterate in reverse preorder (of the tree T) through all

nodes which are back-edge targets.

(3) For each such node x compute the set

00

reachunder (x) = {intof (y) : x can be reached from y along

a path not going through x whose

final edge is a back edge}
00 .M V

where intof (y) = z if J k >_ such that intof (y) = z and

intof (z) is undefined.

(4) If the root node r belongs to reachunder (x) , then x belongs

to a multiple entry loop. Mark x as 'improper' and return to

step (2) to process the next back-edge target.
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(5) If r ^ reachunder (x) , then x is the head of the single-entry

loop I (x) = reachunder (x) u{x} . If reachunder (x) contains no

improper nodes, then I (x) is the maximal strongly-connected

interval (in the classical sense) with head x. Otherwise I (x)

is a single-entry irreducible flow subgraph.

(6) Having computed I (x) in (5) we reduce it to a single new

node, a representative of which is inserted at a place 'just

before' x in G and T. We set intof (y) := I (x) for all y € I (x)

.

New edges resulting from this graph modification are classified

into three categories: real edges , of the form (u, I (x) ) , which

replace edges (u,x) 6 g, where u ^ I(x); an additional real

edge (I(x),x); and virtual edges of the form (I (x) , v) , where

3 u e I (x) such that (u,v) e g and v ^ I (x) . After its

formation I (x) is added to a set 'intervals' and is placed in

a set 'proper-ints ' iff it is a proper (reducible) interval.

Once this is done, we return to step (2) to process the next

back-edge target.

(7) When the iteration at step (2) terminates, all remaining

nodes, i.e. nodes x for which intof (x) is still undefined, are

nodes not contained within any single-entry loop. Let G'

denote the graph resulting from all the reductions that have

been carried out. If any node in G ' is marked 'improper' then

G'is an irreducible flow graph; if not then G' is a DAG (directed

acyclic graph) . In either case we set intof (y) = r for all y e G'

(i.e. regard G'as an interval, logically identified with its

head, the entry node r) . Here no modified or additional edges

need be created. G' (r) is added to 'intervals' (and will be

refered to as the outermost interval ) . If acyclic, G' is also

placed in 'proper-ints'.

Finally, we walk the tree T again, in reverse postorder,

to construct a map ' int-nodes
'

, which sends each interval I (proper

or improper) to the tuple of all its nodes in reverse post-

order, which constitutes an interval order among nodes of

proper intervals. The output of our algorithm thus consists

-13-



of the following objects:

intof - maps each node to the interval containing it,

intervals - the sequence of all intervals in reverse preorder.

(Note that this order is inner-to-outer;

i.e. in this order each interval precedes all intervals

containing it.)

int-nodes - maps each interval to the sequence of all its nodes

in reverse postorder,

proper-ints - the set of all proper (reducible) intervals,

vedqes - the set of all additional virtual edges, representing flow

in some derived graph of the given flow graph.

Remarks : (1) Tarjan's original algorithm makes no distinction

between intervals and their heads. We have chosen to make this

distinction for two main reasons: (a) If x is an interval head,

and there exists an edge (x,u) e G such that u ^ I (x) , we wish

to distinguish between the flow from x to u effected just by

that edge, and the flow from x through I (x) , to u. It is con-

venient to do so by introducing I (x) as a separate flow-graph

node, which we shall sometimes call the preheader of x. (b) In

applying code motion, the entry to an interval I (x) becomes a

program point logically different from the entry to its head

x, since code will be moved out of the interval loop and in-

serted between these two points, which makes the above dis-

tinction essential. For these reasons we represent intervals

as additional flow-graph nodes.

Our treatment of irreducible flow graphs has the following

useful features: (a) Irreducibilities are 'localized'- That

is, if they are contained within some single-entry loop I, then

their effects need be considered only within I . This still

allows us to move code out of I. (The same idea of localizing

'bad' flow also plays a role in Rosen's data flow analysis technique

[Ro^].) (b) In any subsequent data-flow analysis step, single

entry loops I containing irreducibilities must be analyzed

-14-



using iterative techniques. The reverse postorder of nodes

serves this purpose quite well. Indeed, according to Hecht

and Ullman [HU], no more than d + 1 iterations through the nodes

of I are needed for iterative calculation of the relevant flow

maps to stabilize, where d is the loop-connectedness parameter

of I (cf. [HU], for more details; similar arginrents are used

in section 4 below to estimate the efficiency of our interprocedural

analysis techniques)

.

Next we describe the application of the data-structures

computed by the above interval analysis in solving data-flow

problems of the bit-vectoring class. In this section we consider

only intraprocedural forward data-flow analysis. The correspond-

ing interprocedural and/or 'backward' analyses are studied in

detail in the following sections. Much of the following

description is standard (cf . for example [AC]) ; the novel features

of our algorithm mainly reflect our somewhat nonstandard re-

presentation of intervals.

We assume that we are given an intraprocedural flow graph

G , modified by the above interval analysis, plus the various

output objects computed by that analysis. In addition, we assiime

that a preliminary pass through the procedure p (or program)

being analyzed has computed a data-flow map f („ j^)
^ F as de-

scribed in section 2 for each non-virtual edge (m, n) G G .

Let X e L denote the information to be assumed at the procedure
o

entry point.

Data-flow analysis then consists of the following phases.
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(1) Elimination Phase

In this phase we iterate through the intervals of the

procedure in their reverse preorder (i.e. from inner to outer).

In processing an interval I we compute two kinds of new data-flow

maps: (a) For each outgoing virtual edge (I,v) we compute a

map f ,^ , representing the data-flow from the entry to I (i.e.

the entry to its preheader) , through I, to the entry to the

successor node v. (b) For each node u S i we compute an

auxiliary data-flow map, denoted as f , which represents the

data-flow from the entry to the head x of I, along paths contained

in. I, to the entry to u.

To compute these maps, we iterate through the nodes of I

in their interval order (i.e. their relative reverse postorder,

or the order in which they appear in int_nodes (I) ) . For each

node u visited in this manner, we apply the following formula;

(3.1)

^n = ^ ^^(.r .,^° f,, = (^'^^ ^ G^ ^^^ w 6 I}, if U 7^ X,u ^w, u; w p

^^ = lA ^ ^^^^(w,x)° ^w '• ^^'^^ ^ ^p ^^^ ^ ^ ^^^
•

Note that the condition w e i is required to make sure that the

edge (w, u) (or (w,x)) is an internal edge of I. For example, w

may be an inner interval, so that the edge (w,u) is a virtual edge,

resulting from a real edge (w',u), where w' is a node within w.

In this case u has two predecessors w, w' , and the test w € I

selects only the first one, as desired.

If I is a proper interval, then it is well known that two

iterations through the nodes of I are sufficient for the auxiliary

maps {f^ : u e i} to stabilize, and one iteration is sufficient

for the outermost interval (since it is acyclic in this case) .

If I is improper, then we iterate till information stabilizes

and test explicitly for convergence. However, by [HU], the

number of iterations required to reach convergence is bounded
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by d + 1, where d is the loop-connectedness parameter of I.

Moreover d is obviously bounded by the number of targets of

back edges in I, which, by steps (4) -(6) of our interval analysis

algorithm, is equal, if I is an inner interval, to 1 + the number

of heads of multiple-entry loops within I but not within a

subinterval of I . If we denote this number by M, then at most

M + 2 iterations through the nodes of I are required for the

stabilization of the above maps. Heuristically, this implies

that, in the worst case, not more than one additional iteration

is required for each 'source' of irreducibility within I. The

same argument obviously also applies to the outermost interval.

After computing the auxiliary maps f in the above manner,

we compute the data-flow map f ,
^
defined above for each

virtual successor v of I, using the formula

(3.2) f
(^^^^

= A {f (^^^)0 V ^(I,x) •• - ^ ^ ^"<^ ("'"^ ^
^P^

Note that we could also define and compute the auxiliary maps

f in a way which includes the flow through the preheader of I,

which would simplify the above formula slightly. Our main reason

for not doing so is that we may wish to perform code motion into

the preheader of I, and that such motion does not affect the maps

f as we have defined them, but would change them if they also

reflected flow through the preheader. We refer the reader to

section 7, in which these issues are discussed in greater detail.

However, if code motion is not integrated with the analysis

which we are now describing, then we can as well include the

flow through the preheader in the computation of f^, which

allows us to replace id by f,^ . in Equations (3.1), and

to rewrite Equations (3.2) as

(3.2-) f(^^^^ = A (f(^^^)» f, • - ^ I and (u,v) e g^}
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(2) Propagation Phase • .

In this phase we iterate through the intervals of the

procedure in their preorder (from outer-to-inner) , propagating

data from interval entries to interval nodes, using the auxiliary
maps f computed in the previous phase.

We begin by initializing the solution map x of our data-flow

problem; this is done by putting x = x . (Here r is therp o p
procedure entry, and also represents the 'outermost interval' of

the procedure.) Whenever we come to process an interval I, we will

already have computed attribute data x at its entry. If h

denotes the head of I, then x^ = f , , (x ) represents attribute

data known at entry to the loop of I. Hence, for each u G I,

x^ = f^ (x ) is the data attribute state at the entry to u.

Proceeding in this manner we compute the value of x at entry to

each basic block, which completes the intraprocedural solution

of the data-flow problem. (If the flow through the preheader

of I is already recorded in the auxiliary maps f , then there
y^ /v U

is no need to compute x^, and we have x = f (x^) for each
I u u I

node u e I .

)

It is useful to estimate the time complexity of the above

algorithm, which turns out to be rather favorable.

We define the following quantities:

N, , , = number of basic blocks in the flow graph

N. = number of intervals

^irred ~ number of multiple-entry loops

: . ^ , = number of virtual edges
virtual

E^^ = number of internal edges in all intervals (i.e. edges

whose source and target belong to the same interval)

E . = niomber of edges going out of an interval.

Also, for each interval I, we put
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N_ = number of nodes in I

M_ = number of multiple-entry loops in I

E = number of internal edges in I

.

We can then compute the time required by the above algorithm

as follows: Suppose that each bit-vector operation (and, or)

takes one unit of time. Then it is easily seen (cf. section 2

for details) that functional application takes 2 time units;

functional meet takes 2 time units, and functional composition

takes 4 time units. If we assume that the analysis to be per-

formed involves no code motion, then the application of the

modified Equations (3 . 1) will require at most

^ (6 Ej - 2 Nj + 2) (Mj + 2 - 5^^)

I

time units, where the summation is over all intervals I (note

that the number of elementary meet operations required to take

a meet over a set S is |s| - 1). Similarly, Equations (3.2')

will require

6 E . - 2 E . . ,

out virtual

time units and the modified propagation phase will require

y 2 N^ = 2 (N,, , + N. . - 1) time units.
^-^ I blocks ints
I

For example, if the procedure flow graph is reducible, then the

total number of time units required by the algorithm is at most

'' ^in - ^(N^locks + ^ints " ^^^' ^ints " ^ E^ + 2 N^ - 2

^ ^ ^out - ' ^virtual ^ ^ i%^^^y,s + ^ints " ^^

= 12 E.^ + 6 E^^^ - 2 E^.^^^^, - 6 E^ - 2 N^^^^^^^ + 2 N.^^^+ 2 N^
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4 . Interprocedural Forward Data-flow Analysis

In this section we describe our technique for interprocedural

forward data-flow analysis. We will also analyze its performance

and efficiency in terms of the call graph structure of the

program being analyzed, and will discuss various possible im-

provements and extensions of our approach.

We remind the reader that our model of a procedural program

is one in which procedures are parameterless (or more generally,

in which parameters are called by value) . Thus the aim of our

interprocedural analysis is to determine the properties of global

variables. The model we use evades certain difficult problems

such as analysis of 'aliasing' that would arise in the presence

of reference parameters (cf. [ROp]), but in the semantic en-

vironment which we assume our algorithm yields sharp in-

terprocedural data-flow information.

The algorithm to be presented below is based on a prior

study of interprocedural analysis by Sharir & Pnueli [SP], and

is in fact merely a simple and efficient implementation of the

'functional approach' described in [SP] (see also section 2).

However, we justify this algorithm by some new theoretical

results concerning interprocedural flow, which are detailed below.

Our interprocedural algorithm is quite similar to the

intraprocedural data-flow algorithm given in the previous section.

The description given below will emphasize the modifications

and extensions of the previous algorithm needed for interpro-

cedural analysis.

In general terms, the interprocedural algorithm consists

of the following phases:

(a) Initialization . In this phase we compute data-propagation

maps f, . for all non virtual edges (m, n) G G such that m
\ ill / II /

is not a call block. If m is a call block then the effect

of flow through m is not known a priori, and the determination
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of that effect is in fact one of the major goals of our analysis;

for such m , f , \ is initially left undefined (or rather is
' (m,n) ^

set to f „ to indicate undefined flow)

.

(b) Call-graph Analysis . This phase is independent of the

particular interprocedural bit-vector data-flow problem in question,

and so should be performed once prior to any solution of such

a problem. In this phase we analyze the structure of the program's

call graph CG, as follows: We first construct a depth-first

spanning tree T for CG , then find all strongly-connected components

S-| , S„, . . . , S, of CG arranged in reverse postorder (with respect

to T) of their roots. We also arrange the nodes within each S.

in their reverse postorder. For this purpose, we use an efficient

new algorithm, differing from known algorithms for constructing

strongly-connected components of a directed graph (cf. [AHU,

section 5.7]) so as to list components in both external and

internal reverse postorder. This algorithm is presented in

Appendix A. In addition, for each strongly-connected component

S., we estimate the loop-connectedness parameter d.5 d(S.,T). Actually,

since efficient computation of d. may not be possible in

general, we make do by overestimating it; our estimate

for d. is simply the number of back-edge target nodes (with respect

to T) in S., which will be denoted as d!. Obviously d;^ > d.
i' 1 -'1—1

and d' = d. if S. consists of a single node. Note that a typical111
call graph can be expected either to be acyclic (for non-recursive

programs) , or at worst to contain several simple-loops, each

corresponding to some simply-recursive procedure. Thus, for

such call graphs each component S. will indeed consist only

of a single node p, and accordingly d. = dT = if p is non-

recursive, d. = dT = 1 if p is recursive.11 ^

(c) Elimination Phase : In this phase we iterate through the

program procedures in the following order: First we iterate

once through the strongly connected components of CG in their
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postorder (i.e. in the order S, , S, _-,..., S^ ) , and for each such

component S . we iterate through its procedures in their relative

postorder at most 2 dT + 1 times. Each procedure p visited in

this iteration is subjected to an interval-baced elimination

pass, quite similar to the elimination phase of the intrapro-

cedural algorithm given in the previous section, but preceded

by the following resetting of flow maps for call blocks : For

each call block c and its (unique) successor v, we compute the

associated data-flow map f , » (which is not yet available^ (c,v) ^

from the initialization phase (a) ) using the formula

(4.1) f, . = t() , where q is the procedure called
(c,v) e ^ ^

q

by c. Note that if ^ is still undefined (e.g. if q has
^q

not yet been processed) , then it is taken to be t^.

While computing these maps, we also do the following two

things to speed up the algorithm:

(i) If p is being reprocessed (as will happen if p is recursive)

,

and for each call block c and its successor " \ .: p. :- , k has
(c,v;

not changed from its value in the last processing of p, then

obviously there is no need to process p again, since the analysis

results will not have changed. If processing of all procedures

in S. has stabilized in this manner, then the processing of

S. has converged, and we go on to analyze the next component S. ^.

(ii) Even if full convergence as in (i) has not yet been

achieved in p, we can still bypass a considerable part of the

reprocessing of p by noting that for a given interval I in p,

it is pointless to re-analyze I if no call-block flow-maps

^(c v) ' ^°^ ^ ^ node in I or in a subinterval of I, have

changed since the last processing of p. Skipping the repro-

cessing of such intervals will speed up repeated processings

of a procedure substantially.
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Later in this section we will show that the elimination

phase computes the correct values of the auxiliary maps f and

the extended-flow maps f ,^ ^ . (Note also that in the^ (I,v)
interprocedural case these maps will account for flow along

interprocedurally valid balanced paths only; compare this to

the v/ay in which the maps cf) are defined in section 2.)

Remarks : (1) We do not compute the maps (j) defined

in section 2 explicitly; however, they can be easily constructed

from the maps actually computed, as will be demonstrated below.

Nevertheless, the maps cj) which are needed in the call-block

maps resetting subphase, "^ are actually available, since
(J)

= f ,

because e always lies in the outermost interval of the
q

procedure q.

(2) If the program to be analyzed is nonrecursive, then all

the procedures are processed just once in their postorder.

It is easy to check that this order constitutes an 'inverse

invocation order' in the terminology of [Alp].

(d) Calculation of Data at Procedure Entries . This phase

establishes data-values at procedure entries by solving equations

(2.3). We convert these equations to data-flow equations for

the call graph CG, by defining the map

(4.2) q, . = Aid) : c is a call from p to q}
^(p,q) c

for each edge (p,q) G CG, so that equations (2.3) reduce to

the fo:

to p) :

the following equations (where z denotes x , the data at entry
p r

(4.3)

z ^ Xmain o

z = A{g- , (z ) : (q,p) e cg}, for each p 7^ main
P (q/P) q
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However, before attempting to solve these equations, we

first have to compute the maps
(f)

appearing in (4.2), which

are not immediately available from phase (c) . For this we use

the formula

(4.4) 4, = f f . . . o f^k, ,

c c 1(c) I (c)

k+

1

where 1(c) - intof(c), the interval containing c, and where I (c)

is the outermost interval of the procedure p containing c.

(Of course, (4.4) is applicable to any block c.) To justify (4 . 4 ) , we

observe that any (interprocedurally valid and balanced) path from

r to c can be decomposed as the concatenation of paths, the

first of which leads from r to (the entry of) I (c) , through
k+1 P

nodes of I (c) = r , the second of which leads from the entry

to I (c) through nodes of I (c) to the entry to I (c) and so

on. (Of course, this justification still depends on the (still

unproven) assertion that final value of the auxiliary maps f

computed in phase (c) correctly represent the effect of the

corresponding flows; this assertion will be proven later in

this section.)

Since in most cases the program's call graph will be

quite simple (and in any case its size can be expected to be

much smaller than the sizes of the flow graphs analyzed in the

previous phase), solution of equations (4.3) will generally be

easy. To get this solution, we use the following iterative

approach: We iterate once over the strongly-connected components

S^ of the call graph in their relative reverse postorder, and

for each such S^ we iterate over its procedures in their relative

reverse postorder, applying (4.3) till data stabilizes at their

entries, but no more than d" + 1 times. That this number of

iterations is sufficient can be shown using arguments similar

to those in [HU] . In fact, this iteration technique is applicable

to the solution of similar data-flow equations for any flow graph,

and is a trivial, but significant improvement of the Hecht-Ullman

iteration method [HU] . It is also a special case of Kennedy's

node-listing technique [Ke]

.

-24-



(e) Data-propagation . This is the simple final phase of our

algorithm. Here, using the entry information provided by phase

(d) and the auxiliary maps of phase (c) , we propagate data to

each node in the program flow graph. This is done precisely as

in the propagation phase of the intraprocedural algorithm given

in the previous section, only here we begin the propagation by

setting x = z for each procedure p. This propagation completes
^p P

our analysis

.

We now turn to analyze the performance of the elimination

phase (c) of our algorithm, and to justify its correctness.

We will investigate the behavior of phase (c) for arbitrary

orders of iteration through the program's procedures, and will

show that our iteration order is also particularly efficient.

Let us first introduce some notations. Let p be a procedure

and n a node in p. Using the notations of [SP], we define

IVP (r n) as the set of all interprocedurally valid balanced
o p,

' ^ '^

execution paths (i.e. interprocedural paths in which, procedure

calls and returns are executed in a proper sequence, i.e.,

each return matches the last uncompleted call and all calls are

subsequently completed) leading from r to n . For each path

TT e IVP (r ,n) we define CS(7t) as the set of all calling sequencesop; —
materialized during the execution of it, each such calling

sequence being the invocation-order sequence of all procedures

invoked and not yet completed, as some initial subpath tt' of fr

is executed. Note the obvious one-one correspondence between

calling sequences and paths (without their initial node) in

the call graph CG.

Suppose now that our elimination phase (c) iterates

through the program procedures in some arbitrary order p^, p„,...,Pj^,

(where repetition is allowed) , and attains convergence.

The general results of [SP] ensure convergence provided that

sufficiently many iterations are applied, because every

' bitvectoring ' data-flow framework has a finite semilattice L.
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Let p, be the k-th procedure processed in the assumed
korder. For any node n in the program, let

(f)
denote the value

of cf) (given by (4.4)) immediately after p, had been processed.

It follows by standard arguments that this processing of p,

will yield the fixpoint solution of equations (2.2), for the

nodes of p, , provided that each procedure q called from p,

is assumed to have the data-flow effect described by the

map ())

The significance of calling sequences is seen from the

following observation. As shown in [SP, section 3], for each

procedure p and each node n in p the final value

of the maps <i>^ satisfies

(4.5) (P^ = A{f^: TT G IVPQ(r ,n) }

Let TT G IVP (r , n) . At what point in phase (c) can we beop Jr r-

sure that f has already been included in the meet which defines

the current value of d) ? A sufficient condition is given in
^n ^

the following lemma:

Lemma 4.1 : Suppose that phase (c) has already processed procedures

p,,P2,...,p, in order and is now analyzing Pv.i = P- If the

reverse sequence of each calling sequence in CS(tt) is a sub-

sequence of p^ ,
p_, . . . ,

p, , then, at the end of the current processing
k+1of p we have f > di^

TT — ^n

Proof : It follows from a remark made above that when we have

finished processing p we will have

(4.6)
(})J^^^

= A{f* : TT e IVP^(r , n) }

*
where f is defined as follows: consider it as a path lying

wholly in p, paying no attention to the flow within invoked

subprocedures . Suppose that when mapped in this way tt becomes

( r ' s^, S2, . . . , s
.
,n) . We then put
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(4.7)
IT

= h
(s ,n)

^^j-l'^j^
h
(s^,S2) (rp,s^)

where

(4.7')
(m,n)

± , , , if- m is not a call block
(m, n)

4 , if m is a call to a procedure q

Oar proof now proceeds by induction on k. If k = 0, then no

TT satisfying the assumptions of the lemma can contain procedure

calls. For such it we have f = f , and the assertion of the

lemma follows immediately from (4.6).

Next suppose that the lemma is true up to and including

some k >^ 0, and let it be a path satisfying the assumptions of

the lemma. Suppose that it, restricted to p, has the form

(r , S-, s„,...,s., n) as above. Then the actual path tt is
P -^ ^ J

equal to tt-,
|

|
fr^ ] |

. . .
|

|
tt . - , where for each i <_ j + 1

(s. i,s.), if s. 1 IS not a call block
1-1 1 1-177.=

J

the subpath of tt corresponding to the execution
, of the procedure called at s._, ,if s._, is a call

block.

By the induction hypothesis we have h,
\ 1. ^-n ' i^l-'-J"*"!/

^^i-l'^i' i

so that f_ < f ; thus (j)^"^ < f * < f by (4.6). This proves
IT — IT n — TT TT

the lemma, Q.E.D,

One immediate corollary of this lemma is that if the call

graph of the program is non-recursive (i.e. acyclic) then it is

sufficient to process each procedure once if processing is in inverse

invocation order , to ensure stabilization of interprocedural attributes

Indeed, if this order of processing is used then at the time p

is processed, all procedure!!, which can be called from p either

directly or indirectly wi'^l already have been processed. Thus
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for each node n in p and each tt e ivp (r ^n) , tt satisties the•^ o p '

conditions of the preceeding lemina. Consequently, when finished

with processing of p we will have <^ <_ f , so that by using

(4.5) it follows easily that the value of tf) at the end of proces-

sing is already equal to the desired value of this map.

This observation is essentially due to Allen [Alp].

Suppose next that the call graph is recursive (cyclic)

.

In this case paths in the call graph (and hence also calling

sequences) can be arbitrarily long, so that it is infeasible

to apply lemma 4.1 to all paths tt in order to determine when

stabilization must occur.

However, in this case we can r^ake use of the common device

of looking for a relatively small subset of the set of all

relevant paths tt which has the property that it is sufficient

to trace the flow through these paths to obtain the desired

data-flow quantities. Kennedy's node listing algorithm [Ke],

Kam and Ullman's study of the Hecht-Ullman algorithm [KU] and

Sharir and Pnueli ' s study of another interprocedural data-flow

technique [SP, section 5] all employ this technique.

Using the special properties of bit-vector data-flow

frameworks, we will now show the existence of an appropriate

•exhaustive' subset of paths. Each bit-vector data-flow frame-

work (L,F) is 1-related in the terminology of [SP, section 5]

that is, (suppressing the extension of L by ^) L can be decomposed
E

as {0,1} for some (finite) set E, and each f s F admits a

decomposition (f ) ^^ such that for each x e L, (f(x))^ = f (x )

,

Ot^ E Ot DC

and each f ig either constant (0 or 1) or the identity id

on {0,1}. This implies that for each execution path tt = (n^ , n^ . • . , n, )

and each a e e either f^ > = id for all i < k, or else

there exists an index s < k such that f , \ is constant
(n , n ^)

and f^^ ^ , = id for all i > s. ^ ^ In the first
(^i'"i+l) —

case f^ = id and in the second f°' = f'^ ^ Thus f^
TT — ^ ('^s'''^s+l^-

""

depends on at most one point along tt .
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It is helpful to attach the following heuristic inter-

pretation to the above observation: Consider some specific

component a s e of our bit vector. Then each flow effect can

be considered to be either an 'event' (corresponding to f = 1), or

an 'anti-event' (f^' = 0); in the absence of any event or anti-event,we have

'transparency' {f°' = id). For example, in available expressions

analysis, each a G E is an expression whose availability is to

be analyzed. An 'event' is a generation of a, an 'anti-event'

is a kill of a, and a transparent flow is one in which a is

neither generated nor killed. The flow effect of a path it thus

depends on the last non-transparent edge effect in tt (if any) ;

if this is an event, then tt is said to create an event , and

if this is an anti-event, tt is said to create an anti-event ;

otherwise tt is transparent . In forward-intersection data flow

problems, we wish to determine for each node n whether all paths

leading to n create an event, whereas in forward-union problems

(where lattice-meet is set union rather than intersection)

,

we wish to determine whether there exists at least one event-

creating path leading to n.

Lemma 4.2 : Let (L,F) be a bit vector data-flow framework as

above. Then for each a e E, procedure p, node n in p and path

TT e ivp (r ,n) there exists another path tt' g IVP (r , n) (whichop op
passes only through nodes of tt) such that

(i) <, = f?

(ii) Every calling sequence in CS(7t'') is the concatenation

of two sequences, neither of which contains any procedure more

than once

.

Proof ; We can assume that tt does not satisfy (ii) for other-

wise we can simply take tt
' = tt . Let us first describe our proof

heuristically . Suppose that tt is event-creating, and that this

event occurs in some node m (possibly in another procedure)

.
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Then, instead of tracing the flow of tt we can go (through nodes

of TT ) in the shortest possible way to m and then in the shortest

possible way back to n. However, the fact that we insist on

interprocedural validity may add extra constraints on the above

path-shortening process. (Note that in intraprocedural analysis

the absence of such constraints simplifies the situation con-

siderably. For example, the initial part of the new path need

not even trace nodes of tt, but can be any shortest acyclic path from r

to m. Moreover, interprocedurally the terminal part of the new

path must consist of nodes of tt, to ensure transparency along

the path after the event has occurred, but in the intraprocedural

case can be chosen to be acyclic.)

To make this idea more precise, let tt = (rp= n]^ ,n2 ,n3 , . . . ,n]^ ,n

and let s < k be the largest index such that f? ^ )
^^ constant

^"s'"s+l^
(the last event or anti-event along tt) . If there is no such

index, s is undefined. Suppose that some calling sequence

corresponding to some initial subpath tt. of tt contains a procedure

q twice. Then we cari shorten tt as follows. tt- contains two

different calls c^ , c« to q where neither call is completed in

TT (though both are completed in tt later on) . Let tt' be the

path obtained if we execute tt up to c^, then execute q in the

same way that tt does from the second time q is invoked till the

corresponding return, but then return to the block following

c^ instead of returning to the block following c^: and finally

follow TT from there as if the first invocation of q has been

completed. Obviously tt' G IVP (r ,n) and tt' is shorter than tt .

If TT transparent, then obviously tt' is also transparent and

we can keep shortening tt' in this manner till (ii) is also

satisfied, and, in fact, till all calling sequences in CS(tt')

contain each procedure at most once.

If TT is non-transparent, then we can carry out the above

shortening process as long as n is not deleted (that is, n^

is neither in the subpath of tt from c, to c^, nor in the subpath

P
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between the corresponding returns from q) . Suppose that we have

shortened tt in this manner as much as possible to obtain tt^

ex ct

which still contains n . Obviously f ,
= f , and we claim

that tt' satisfies (ii) . Indeed, if not, then there exists a

calling sequence materializing during the execution of tt' which

is not the concatenation of two sequences none of which contains

a procedure more than once. Let T be that calling sequence,

and let T, be the largest initial subsequence of T in which

no procedure appears more than once. Then we can write

T = T^ II [pi II T where p appears also in T- . Now either p

appears also in T„, or else some other procedure q appears

twice in T„. In the first case we have three calls c^, C2, c^

to p along tt', none of which has been completed when the next

one is made, and in the second case we have four calls c^, C2, c^, c.

along tt', where c,,c„ are calls to p, c^, c. are calls to q,

and where none of these calls has been completed when the next

one is made. Then it is clear that we can apply the above

shortening process to tt', using in the first case either the

calls c^ , Cy or the calls c^, c^, and in the second case either

the calls c^, c^ or the calls c^, c^, to obtain a shorter path

which still contains n . This contradicts the definition of tt'
s

and it follows therefore that tt' satisfies (ii) . Q.E.D.

Remark : The above argument is very similar to that used in

Lemma 5.3 and theorem 5.5 of [SP].

Corollory 4.3 ; Let (L,F) be a bitvector data-flow framework.

Then, for each procedure p and each node n in p, we have

(4.8) * = A{f : TT e ivp (r ,n) such that each
^n TT op'

calling sequence in CS(Tr) is the concatenation

of two sequence none of which contains a

procedure more than once}
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Proof : By lemma 4.2, for each a e £ we have

ACf" : IT e IVP (r ,n)} = ACf" : tt as in the right-hand side
° P ^

of (4.9)}

and the lemma follows immediately from (4.5). Q.E.D.

Lemma 4.1 and corollory 4.3 can now be combined to deduce

the following 'node listing' principle:

Definition : A doubled node listing for the call graph of a

program is a sequence S of procedures having the property that

each path in the call graph which is a concatenation of two

acyclic paths (excluding its initial node) is a subsequence of S.

Theorem 4.9 : Let S be any doubled node listing for the call

graph, and suppose that phase (c) of our basic algorithm is

performed by processing procedures in the reverse of their order

in S. Then, at the end of one iteration through S, the algorithm

will converge and all data-flow maps will have their final

desired value.

Proof : Immediate from lemma 4.1 corollory 4.3 and the correspondence

between call graph paths and calling sequences. Q.E.D.

Note however, that phase (c) does not compute the maps cj)

directly, but instead computes auxiliary maps f for each flow

graph node n. It is a simple matter to extend lemma 4.1 and

corollary 4.3 to handle such maps as well, and we leave this as

an exercise to the reader. As a by-product of such argximents,

one can also prove (4.4) rigorously.

In view of the preceding theorem, analysis of the elimination

phase of our algorithm reduces to showing that the iteration

order actually used in this phase does constitute a doubled

node listing for the program's call graph. The order in which

procedures are processed during elimination is the reverse

order of the tuple

(4.9) S = Z (2dr + 1)*S.
i=l ^
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of procedures where the procedures within each strongly connected

component S . of the call graph are arranged in their reverse tree

postorder, and where summation corresponds to tuple concatenation

while multiplication by an integer represents tuple replication.

To show that this S is indeed a doubled node-listing for the

call graph, we proceed as follows:

Lemma 4.5 : Let it be a path in CG, Then tt can be decomposed

as TT. II TT . ... II TT . where each tt . consists only of nodes12m J

of S. and where l<ii < i.^...< i < k.
1 .

— 1 2 m —
J

Proof : Suppose the contrary. Let S. , S. ...S. be the sequence
^1 ^2 ^m

of strongly connected components of CG through which tt passes

in this order; for each j _< m let tt . be the part of tt that

lies within S. . Then for at least -' one j < m we have i. > i . . , .

1. J J+l

By the strong connectivity of the components S . it follows that

there exists a path tt_ from the root p of S . to the root q of

S. . Since i. > i.,,, p has a lower postorder index than q

in-" trie depth-first spanning tree T which establishes the order

of the strong components S . . Thus either q is an ancestor of

p in this tree or else q is to the right of p. In the first

case the existence of the path tt implies that p and q must

belong to the same strongly connected component. The second

case is impossible since the edge connecting tt . to tt. would

be a left-to right cross edge. This contradiction proves our lemma

<

Q.E.D.

Theorem 4.6 ; The S of (4.9) above is a doubled node listing for

the call graph.

Proof : Let tt be a path in the call graph which (ignoring its

initial node) is a concatenation of two acyclic paths tt^ and tt" .
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Decompose tt as in the previous lemma. That lemma implies that

it is sufficient to prove that each tt . is a subsequence of

(2 dT +1) * S. . Hence we can assume with no loss of

generality that tt is a path in S. for some i £ k. Since both

tt' and tt" are acyclic, it follows from the definition of d.

that tt contains no more than 2 d. back edges. The nodes of S.
1 ^ 1

are ordered in S . in such a way that the only edges from a

node to a previously listed node are back edges with respect

to T. Hence any part of tt between two subsequent back edges

is a subsequence of S. and it follows that tt is a subsequence

of (2 d^ + 1) * S^, and therefore also of (2 d .' + 1)*S^. Q.E.D.

Remark : This result is analogous to Hecht and Ullman's

bound [HU] on the number of iterations required for their

(intraprocedural) data-flow algorithm to converge, and also with

the bound on iterations through interval nodes given in section

3, and a similar bound for backward problems to be given in the

next section. The difference between Hecht and Ullman's bound

(d + 1) and our bound (2 d + 1) reflects additional interprocedural

constraints on execution paths that do not allow us to shorten

paths as much as is possible in the intraprocedural case.

We shall now show that the bound 2 d + 1 cannot be improved

in general . Consider a strongly connected component S consisting

of a single recursive procedure p. Here d = 1 and the above

results indicate that p may have to be processed 3 times. Indeed,

the following example shows that processing p only twice may

fail to produce the desired maps values.
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Example 1 :

procedure p

= a*b

;, : call p y

c^:

\

;= 1

Cj^-. call p

e : return
P

Consider analysis of the availability of the single expression

b, To detect that (|> ,
= (i.e. that a * b may be killed

.+

during the corresponding flow) , we need to trace flow along the

path

IT = (r_, c^, r , c^, r^.
P' ^P' ^2' ^p' '^l'P -L P-

and this can be done only by processing p three times. At the

end of a first iteration we will have cj) id, and
'I' + ~ ^o
^1

as only the middle path can be traced during that iteration.

During the second iteration we will have ({> + = i/ since the
1

effect of the call c, is taken as ()) as obtained from the
^ ^P

last iteration, i.e. id; but at the ^end of this iteration we

will arrive at the correct value cf)
= 0^ by propagating through

the right-hand path containing c^. ^ Using this value during the

third iteration over p will then yield the correct value for ^ ^..

^1
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Example 2 : Consider the call graph

mam
V

±L. R

which has the following depth-first spanning tree

main

\ /
''

'

Here there are two strongly connected components

S-^ = [main] d =

so that

S^ = [P, Q, R] ^2 " ^

S = [main, P,Q, R, P, Q, R, P,Q,R, P,Q,R,P,Q,R1

Suppose that the procedures in question have the following internal

form.

Q.

r
Q

c, : call Q C2 : call R c^: call P c . : call R c^

V^

R

•R

i
: '^call

i

Q

'R
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where x denotes a kill of a*b, and v;here no other node in these

routines affects a*b. Then to deduce that A = we have to
^R ~

trace the following path

= (
+ + +

n {r^,c^,rQ,c^,rp,x, c^, r^, c^^.r^, c^, r^, e^, c^, e^, c^, e^, c^, e^,

+ + s

^3'^Q'^5'^R^

during which the calling sequence (Q, P, R, Q, P) materializes.

It is easy to see that if we process procedures in the reverse

order of S, then we will arrive at the correct value for i

^R

only during our fifth iteration over R. Indeed, the following

table shows the flow effect through each procedure computed as

this procedure is processed:

Z:



of parameters we must replace (}> in this assignment by another

map which reflects both the binding of actual arguments to formal

parameters and the stacking and unstacking of parameters in

recursive cases. This new map may not belong to F, so that the

performance analysis which we have given for the elimination

phase (c) may no longer be valid, and extra iterations may be

required to ensure convergence. Moreover, we have ass\amed that

during the entry-data phase (d) data does not change between

a point of call to a procedure q and its entry. This need not

be true if q has parameters, and thus equations (4.2) and (4.3)

have to be modified by replacing each map 4) by another map

which also takes the pre-call action at c into account (e.g.

the transmission of input arguments to input parameters)

.

These maps may again not be of the bitvectoring type, which

means that here too the iteration bounds that we have given

may no longer be correct and extra iterations may be required.

Of course, one can compromise by assuming (as we did in

section 2) that value-passage between actual arguments and formal

parameters at a procedure call c is made explicit in the code

by assignment-like statements before and after the call, which

are then analyzed as regular assignments independent of c itself.

This approach, while safe, can lead to some loss of accuracy,

as it ignores some details of parameter passage. Nevertheless,

this approach allows the algorithm we have described to be

used without modification and the same efficient iteration

bounds still apply.

The situation becomes considerably more complicated when

parameters passed by reference are allowed. To retain accuracy

in this case, our algorithm must be substantially modified,

to take the possibility of 'aliasing' (cf. [Ro], [Ba] into

account) . We have ignored this problem as it does not arise

in optimizing SETL. However, it seems likely that a variant

of our method, preceded by some kind of aliasing analysis

(such as that described in [Ba])can be applied in this case.

However, it will probably be hard to avoid some loss of accuracy.
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5 . Intraprocedural Backward Data-flow Analysis

In this section we describe an approach to intraprocedural

backward data-flow problems which we extend to the interprocedural

case in the next section.

In backward data-flow analysis information is propagated

in the reverse direction of control flow, from program exits

backward. Such an analysis aims to determine at each program

point n what might (or must) occur after control has reached n.

Backward analysis is used for various purposes, e.g. to compute

the live-dead status of program variables ([He],[AU]), and also

in conjuction with a forward analysis in order to determine

safety and profitability of certain optimizations (see section

9 for a list of the analyses of this kind used in the SETL

optimizer)

.

One can always view backward data-flow analysis as a

forward analysis applied to inverse flow-graph. But if this

device is used, the relevant program structures, such as the

interval structure, may become unfavorable. Indeed, the inverse

flow-graph is in general not reducible, and even basic blocks

may have multiple entries in that graph. Also, reachability

in the reverse graph is not guaranteed a priori. All this implies

that the most appropriate treatment of backward analysis will

tend to differ considerably from that of forward analysis as

described in sections 3 and 4.

In approaching the design of a 'backward' analyzer, a

first problem encountered is: where should data-values be

computed? An off-hand answer might be: at node exits. Each

such exit is associated with an arc (m, n) £ G, where n is a

successor of m. (Note that m may contain more than one exit

to n, but in our model all these exits are identified, since

we do not allow multiple edges between graph nodes.) In such

an approach, we would want to compute a data-value ^fm n)
^ '^

for each (m,n) e G, representing information known upon exit(s)

from m to n. Given an edge (n,k) e o, let f
(^ k)

^ ^ denote
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the data-flow map representing the effect of reverse flow through

n from its exit(s) to k back to its entry. Then we can write a stand-

ard set of (intraprocedural) data-flow equations for the values z , ,^ ^ (m,n)

as follows (where x denotes the null data-state that we assume

of program exits):

z , , = X. , if n is a program
^^'""^ ° exit

(5.1)
^^^^

z , ,=A{f, ^^(Z/ i,\)= (n,k)eG}, otherwise.
(m,n) (n,k) (n,k)

It is easily seen that the maximal fixpoint solution of (5.1)

has the property that for each (m,n) e G, z, x is independent
•^ ^ -• ( m , n

)

of m and depends only on n (since what is known upon exit from m

to n is precisely what is known at entry to n)

.

Therefore

equations (5.1) are equivalent to the following equations, where

for each graph node n, x denotes data known at entry to n:

(5.2)

X = X , if n is a program exit,

X = A {f , , ,
(x ) : (n,k) e G}, otherwise

n (n,k) k

In what follows, we will solve equations (5.2) rather than (5.1),

Note that by computing data per node rather than per edge we

also save a considerable amount of space.

We will now describe an interval-based technique for the

solution of equations (5.2) for analyses of the bitvectoring

class. This technique is similar in overall design to the

technique for forward problems described in Section 3, although

significant differences between the two do exist.

As in the forward case, we assume that a preliminary pass

through the program code has computed, for each nonvirtual edge

(m,n) e G a data-flow map f , , G F as defined above. To
(m,n)

analyze a single procedure p intraprocedurally , our technique

proceeds through the following phases:
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(1) Elimination phase

In this phase we iterate through the intervals of p in their

reverse preorder (innermost to outermost) . For each such interval

I we compute two kinds of data-flow maps: (i) For each

successor v of I we compute a map f , , describing the effect

of flow through I to the entry of v. (ii) For each node u G I

and each successor v of I we compute an auxiliary map f , .

describing the effect of flow from the start of u, through I,

to entry to v.

Since equations (5.2) propagate information from successors

of a given node back to that node, it follows that in computing

the above maps functional composition should be taken in

reverse-flow direction. More precisely, the following formulae

should be applied in backward analysis:

for auxiliary maps; For each successor v of I, first set

f , , == id, and then use the formulae
(v,v) —

(5.3) f , , = A if , s ° f , ^ : (u,w) G G and (wSl or w=v) \(u,v)
I

(u,w) (w,v) 'j

for each u s I.

for extended- flow maps;

^^•^^ ^(I,v) " ^(I,h) ° ^(h,v)

for each successor v of I (where h is the head of I)

.

Equations (5.3) can be solved by iterating through

the nodes of I in reverse interval order (i.e. in postorder)

.

If I is a proper interval, then three iterations through its

nodes are required to guarantee convergence of the solution.

The reason why an extra iteration (as compared with the

forward case) may be required is that, in order to record

an event (or anti-event) in f , , for some u s i and v a
(u,v)

successor of I, flow has to be traced backward from v to the

node w at which this event occurs along an acyclic path,
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and then from w to u along another acyclic path. It is easily

seen that, for any interval I, this tracing may require up to

2d + 1 reverse iterations through the nodes of I, where d is

the loop-connectedness parameter of I, so that for proper

intervals (for which d = 1) three iterations might be needed.

(As an example consider the following interval I:

In this example, to record an event at node w in f , ,^ (u,v)
one has to trace at least the path (u,h,w,h,x, v) which loops

back to the head h twice and therefore three iterations are

really required.

)

In much the same way as in the analysis of the forward case,

the above argument implies that for each source of irreduci-

bility imbedded within an improper interval I, two extra

iterations through the nodes of I may be required. Even though

this doubles the number of extra iterations required to handle

imbedded irreducibilities as compared with the forward

case, the degradation of algorithm performance will still

be very mild.

As to the outermost interval I of p, one reverse iteration

through the nodes of I is sufficient if I is proper, and two

additional iterations are required per each imbedded source of

irreducibility . This interval is treated in a somewhat

different manner than the other intervals, as it does not

have any successors, so that auxiliary maps cannot be defined

for its nodes in the same way as for nodes of inner intervals.
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To adjust for this slight difference, we regard the exit block e

and the stop block s as 'successors' of I, which requires us
P /s ^

to compute the auxiliary maps f , , , f , , for each node

u e I. P P

(2 ) Second elimination phase .

This phase appears only in the solution of backward problems

and does not correspond to any phase of the forward algorithms.

Our aim in this phase is to compute a second kind of auxiliary

map defined as follows: For each node u in the procedure p

being analyzed, we compute a map fe , describing the effect

of reverse flow from the exit(s) of p back to (the start of) u.

These maps are essentially the maps ij), described in Section 2

for interprocedural purposes, and are analogous to the maps cf)

that we compute inplicitly in the elimination phase of the

forward analysis, but here we prefer to compute them explicitly,

since no simple formula analogous to (4.4) exists for direct

construction of these maps. (Note, however, that it is only

in the interprocedural case that such a computation has to be

carried out separately from data propagation. However we

separate these two phases even in the intraprocedural case to

make our intraprocedural and interprocedural approaches agree.

See the next section for more details.)

Computation of the maps fe proceeds as follows: We iterate

through the intervals of p in their preorder (from outermost to

innermost). Consider first the outermost interval I. For each

u s I we can compute

(5.5) fe = f , N A (f , N (x^) )

cr ir

i.e. take the meet of the map f , > with the constant map

f , , (x„). (We treat return and '^stop blocks differently
(u,s )

'^

mainl^ for interprocedural reasons, since interprocedurally

the data-state known at e is usually different from the null
P

value x- , which is assumed at program exits. Note that e is

not a program exit, whereas s is.)

-4 3-



Next suppose that our iteration has come to process an

inner interval I . Then for each u g I we compute

(5.6) fe = A {f , ,
o fe : V a successor of 1}

Note that any interval containing a successor v of I (i.e.

intof(v)) must be an ancestor interval of I, i.e. intof (v)

= intof (I) for some k >_ 1 , so that fe will already have

been computed for all successors v of I when we apply (5.6)

to nodes of I.

(A small technical problem arises in connection with

endless loops. Suppose that L is such a loop, i.e. a strongly-

connected program region with no successors. While such loops

do not create any problems in forward analysis, since they are

reachable from the program (or procedure) entry, they are

somewhat problematical in backward analysis, since such loops

cannot reach any program exit, and so no information can be

propagated to them. Noting that such loops can only appear

in the outermost interval, either as a single node (interval)

if it is single entry, or as an (irreducible) collection of nodes

otherwise, we can solve this technical problem by adding

an edge (x,s ) for each node x in the outermost interval which
ir

does not reach e or s . Assuming this to have been done,
P P

the fe maps will then be properly defined at each node of

the procedure. )

(3) Propagation phase :

This final phase of backward analysis is relatively trivial

in view of the preparation for it accomplished during the second

elimination phase. Let x e l be the data-state known at return
P

from a procedure p. (In the intraprocedural case x will be

the standard null data state x ; in interprocedural analysis,

x will differ from one procedure to another in the manner

described in the next section.) For each node u in p, we

compute X , the data-state at the start of u, using the simple

formula
(5.7) X = fe (x )u up
which completes our intraprocedural backward analysis.
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6. Interprocedural backward data-flow analysis

In this section we extend the intraprocedural algorithm

described in the previous section to the interprocedural case.

The required modifications are rather similar to those used

for interprocedural forward problems in Section 4, and we

will mainly point out the differences between these two

techniques. More details are provided in Sections 2 and 4.

Our algorithm consists of the following phases:

(a) Call graph analysis: here we perform exactly the same

analysis as is described in Section 4. (As already noted,

call graph analysis should be carried out once at the begin-

ning of optimization, prior to any other interprocedural

data-flow analysis.)

(b) Initialization : This phase associates data-flow maps

f , N of the analysis with each nonvirtual edge (m,n) s G
(m,n) ^

such that m is not a call block.

(c) Interprocedural elimination phase : In this phase we

iterate through the procedures of the program in the same order

as is described in Section 4. Each procedure p visited in this

iteration is subjected to an elimination pass quite similar to

that described in Section 5, which involves adjustment of

data-flow maps for call blocks and tests for convergence as

in Section 4. Note, however, that in backward analysis the

data-flow map iJj describing the effect of flow through a

procedure q is " computed as

(^•1) ^ = ^r ,e )
^ (^r ,s )(^o)^

q q q "5 q

where x. is the assiimed null data-state at program exits (compare

with (5.5)).

The theoretical bounds on algorithm performance derived

in Section 4 apply in this case also. The necessary theorems

and proofs are analogous to those given in Section 4, for which
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reason we omit them.

(d) Second intraprocedural elimination phase : This is performed

for all routines in the program being analyzed, and within each

routine uses exactly the technique described in Section 5.

(e) Computation of data at procedure exits: This interpro-

cedural phase is very similar to the phase which calculates

entry-data in forward analysis (cf. Section 4). For each

procedure p, let z = x denote the data state at exit (return)
P ^p

from p. If p is the main program, then (since we assume that

the main program is nonrecursive) execution terminates when

the exit point of p is reached. Thus we can write the following

set of equations, whose heuristic meaning should be

self-explanatory

:

z . = X-main
(6.2)

z = A {fe (z ) : V follows immediately a call to p in q}
p V q

As in Section 4, it is convenient to transform (6.2) into a data

flow problem for the call-graph, by defining, for each

(p,q) e CG

(6.3) a, N
= A (fe : v follows immediately a call to q in p}

.

'(p,q) " V -^

This transforms (6.2) into

z . = X-
main

(6.4)

"p =
'^ ^5(g,p)(2q): (q,p) ^ CG}

Note that equations (6.4) define a forward data-flow problem

rather than a backward problem for CG. This can be explained

as follows: In the forward case, information is propagated

from the entry of a calling procedure to the entry of a called
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procedure. In the backward case, information is propagated

backward from the exit of a calling procedure to the exit of

a called procedure; but both propagations induce a forward

propagation in the call graph.

The maximal fixpoint solution of (6.4) is found precisely

as in Section 4, using the same iteration order over procedures,

so that the performance bounds described in Section 4 remain

va 1 i d

.

(f) Final propagation phase : This phase is very similar to

the final intraprocedural propagation phase described in Sec-

tion 5. For each procedure p, let z be the data state at its

return point, as computed in phase (e). Then for each node u

in p we compute the data-state x at the start of u as follows:

(6.5) X = fe (z )u up
This completes our analysis.
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7 . Code motion

In this section we describe a technique for performing

code motion as part of a data-flow analysis. The technique

is surprisingly simple and straightforward, but

it rests on heuristic assumptions concerning the safety and

profitability of motion which are quite adequate for SETL,

but may not be generally applicable.

That code motion and data-flow analysis are closely

related can be seen by considering the typical case of

available expressions analysis. In this analysis a 'T-event' is

a computation of an expression T, and a corresponding

'anti-event' is a re-definition of a variable on which T

depends. In tnis analysis we determine for each program point

n the expressions T which have the property that every path

leading from program entry (or procedure entry) to n contains

an event for T which is not followed by an anti-event. If T

is such an expression, then a computation of

T at n is redundant and can be eliminated. In more

general cases this recomputation may not be unconditionally

redundant, but may become so if we insert another earlier event

for T at a point having lower execution frequency. When this is

the case it may be profitable to insert a preceding event (i.e.

computation) , thereby eliminating the need to compute T at n

and reducing the total n\amber of computations of T. This code

transformation is known as code motion even though, strictly

speaking, nothing is really moved. (See [AU] , [Sc] , [MR] , [MFS]

for various code motion algorithms.)

Abstracting from this example, we say that a (forward)

data-flow analysis of the bitvectoring class is amenable to code

motion if it has the property that whenever an event occurs

at a program point n and any path from the program entry to

n contains a similar event not followed by a corresponding

anti-event, then the event at n is redundant and the actual

operation (s) which realize this event can be eliminated without

changing the overall program behavior. Among the data-flow

analyses amenable to code motion we may mention:
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(a) Copy optimization, in which an event occurs whenever we

create an unshared value for an object (either by copying the

object or by computing a new value for it) and where any

operation causing the value of the object to be shared is

viewed as the corresponding anti-event. (Note, however, that

in this case, only value copying events can be redundant.)

(b) Conversion optimization. This analysis appears (e.g. in

the SETL optimizer) when program objects can be given more

than one data-representation, making it necessary to

determine where conversions (or checks) between different

representations must be inserted. In this analysis an event

(for a specific variable V and a specific representation R)

corresponds to the conversion of V to the representation R or

to the assignment of a value having that representation to V;

and each conversion of V to any representation other than R

as well as each assignment to V of a value having representa-

tion different from R counts as an anti-event for V and R

(see Section 9 for more details).

Any code motion (or, more correctly, code insertion)

involves the two preconditions of profitability and safety.

It is profitable to insert code at some program point if this

insertion will make other code redundant and decrease expected

(or, using a stricter criterion, absolute) execution time.

It is safe to insert code at a program point if insertion

cannot cause program abort except in cases where the original

program vrould have also aborted. We refer the reader to [AU]

,

[Sc] or [MFS] for a discussion of various possible criteria

ensuring safety and implying profitability. In what follows

we will simplify our presentation by ignoring the issue of

safety, and simply assume that any code insertion which we

may want to make is safe. (In SETL this assumption can be

guaranteed by executing the optimized program in a special

run-time error mode.) However, we note that the following
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discussion generalizes easily to cases in v;hich safety must

be enforced, though in such cases it will usually be necessary

either to perform an additional backward data-flow analysis

to assess the safety of code insertion, or to restrict code

insertion to cases in which safety is assured a priori, e.g.

only allow code insertion at entries to loops (intervals)

which must be executed at least once, and which are such

that every path through such a loop contains the calculation

which we wish to insert at loop entry.

As to profitability, we will attempt to insert code only

at interval preheaders , and will assume that it is profitable

to insert code at entry to an interval I if there exists at

least one corresponding event in I which this insertion makes

redundant. Of course, such code insertion can increase

execution time rather than decrease it in certain unlikely

cases, e.g. if the eliminated calculation is bypassed

when I is executed. However, if we assume that, on the average,

all code within I is executed at least once whenever I is

entered, then our profitability criterion is seen to be quite

reasonable.

To facilitate code motion we shall compute one additional

data object, a map z. Initially, z maps each basic

block n to the set z of all T such that n contains a T-event
n

which becomes redundant if the same T-event is available at

entry to n but not otherwise. (For basic blocks these are

precisely the T for which there exists an upward-exposed T-event

in n, i.e. a T-event not preceded by any T-anti-event .

)

By extending the map z to intervals we will be able to determine

the code which should be inserted at each interval entry.

(Note that since intervals are identified with their own

preheaders, the map values z , where I is a (preheader of an)

interval, are also known initially, but only reflect flow through

the preheader itself.)
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Consider the elimination phase of the forward data-flow

analysis algorithm described in Section 3. Let E be the

underlying universal set for the analysis, i.e. the set of all

elements over which bit-vectors are taken. Let I be an

innermost interval (i.e. an interval not containing any

subinterval) . Then, for each node n e I we reason as follows

(where the auxiliary maps f reflect only flow through the

loop of I but not through its prehader; see Section 3)

:

(a) f (E) is the set of all elements T such that if a T-event
n

is available at entry to the loop of I it remains available

at entry to n .

(b) f (0) is the set of all elements T such that the T-event

is unconditionally available at entry to n even if it is

unavailable at entry to the loop of I

.

(c) Hence, f (E) - f (0) is the set of all T whose events
n n

are available at entry to n if and only if they are available

at entry to the loop of I.

(d) Therefore, [f (E) - f ( 0) ] A z is the set of all T such

that n contains a T-event which becomes redundant if and

only if such an event is made available at entry to the

loop of I.

(e) This implies that if we define

insert(I) = V {[f (E) - f (0)] A z^ : n G 1}
n n n

(where V denotes set union).

Then insert (I) is the set of all T such that I contains a

T-event which becomes redundant if T is made available at

entry to the loop of I but not otherwise. According to our

profitability criterion, this is the set of all computations

to be inserted at entry to the loop of I (i.e. at the end

of the preheader of I) .

In order to be able to repeat these arguments for intervals

I containing and contained in other intervals, we must define

the map values z appropriately. For each interval I we wish z^.

to be the set of all T sucn that I contains a T-event which becomes
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redundant if a T-event is inserted at entry to I but not

otherwise. (These are very sinilar to the weakly potentially

redundant expressions discussed in [MFS].) By an argument

similar to (d) above it can be easily seen that this is

accomplished by modifying the value z attached to the preheader

of I as follows:

z^ ^ Zj V {[f^j ^j
(E) - f^j

h)^*^^^ ^ insert(I)}

(where h is the interval head, and as usual I is identified with

its own preheader). If the preheader of I is empty, this last

expression reduces to insert(I).

By carrying this process iteratively for all intervals from

innermost to outermost, we can compute insert (I) for all

intervals I (with the exception of the outermost interval J, for

which code motion is pointless since J does not represent

a loop) . The necessary processing can be incorporated either in

the elimination phase of the data-flow algorithm, or in a separate

pass just after the elimination phase (see also a remark below)

.

A similar approach to code motion has been devised in [MFS]

,

The value insert (I) defines the code to be inserted at

entry to the loop of I. However, some of this code may be

redundant (either unconditionally, or because of code motion

out of some interval containing I) at its nominal point of

insertion. With this in mind, we delay actual code insertion

(motion) till the propagation phase of our algorithm. In

this phase we iterate over intervals from outermost to innermost.

When processing an interval I during this phase we will already

have computed the attribute data x known at its entry. This

allows us to compute

x^ = f ,-r , V (x^) (h is the head of I)
I (I ,h) I

to obtain data known at the end of the preheader of I (i.e. the

program point at which code moved out of I ought to be inserted.

We can then compute
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(a) insert (I) -<- insert (I) - x-j.

(b) X -t- X + insert(I)

This gives us i) a modified descriptor insert (I ) defining the code

that actually has to be inserted into the preheader of I, and

ii) modified attribute data x at entry to the loop of I, which

takes the newly inserted code into account. (Note that we

assume here that the only effect of the newly created code

on our analysis is to make computations available and that

no other elements (bits) are affected by it.) After computing

X we then use it to propagate attribute data to nodes of I.

This completes the description of our code motion algorithm.

However, several related issues still deserve comment. Note

first that if I is an interval, then availability of the

computations inserted at the preheader of I is exploited only in

propagating data to nodes of I, but not to update any

flow-maps describing flow through intervals containing I.

Suppose, for example, that we process the following code:

(1)



intraprocedural analysis, and even in interprocedural analysis

of recursion-free programs, in which each interval is processed

precisely once in the elimination phase, we could improve the

results of the analysis by incorporating the 'insert' informa-

tion into the flow maps. This can be done simply as follows:

Let I be an interval with head h. Once I has been processed,

we could put

f. *- [E, insert (I)]
ins

F -«- f of
^(I,h) ^ins ^(I,h)

and then use this modified f , , . to compute the flow maps for

all virtual edges going out of I. However, this improvement

is probably only marginal.

A related problem is that of interprocedural aode motion.

Here new and interesting possibilities which deserve further

study arise. In particular, the techniques we have described

can be used to move code out of a routine. Consider, for

example, the following code:

(while . . .

)

proc p;

call p a * b

end while; end proc;

Here, if we insert a * b at entry to the while loop

(and provided of course that a and b are globals , or are made

into globals) , then a * b becomes redundant in p. Interprocedioral motion

can be accomplished while processing the calling routine (and

after p has been processed) , by assigning z to z , where c
rp c

is the call block containing the call to p, and r is the entry

to the procedure p (identified with the outermost interval of p)

.

This will make a * b 'upward-exposed' in c, from which it

can then be further moved to the preheader of the while loop.

However, if p is also called from other points at which

motion of a * b is not feasible, then insertion of a * b at
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entry to the while loop win not make a * b redundant in p.

Two approaches to this situation are possible: (i) We can

make call blocks targets for code motion. That is, if c is

a call block, then we can require all computations in z to be

inserted at entry to c, unless already available there.

This approach is capable of moving code out of a procedure

to all call points to the procedure, and even of moving some

of this code further away. (ii) We can attempt interprocedural

code motion only in situations where it is possible to test

for availability of a computation at run time and skip

recomputation if it is already available. This is the case

for the SETL oopy optimization , where dynamic test of

a 1-bit reference count is possible. In this case motion

of a copy operation out of p to the entry to the while loop

shown in the above example can eliminate the need to copy

inside p when p is called from within that while loop, even

though copying within p may still be required if p is called

from other points.

Either of these approaches must be used with caution

for recursive procedures, since in a recursive cycle of calls

it becomes much more difficult to assess the profitability of

code motion between procedures

.
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8 . Pit-Matrix Data Flow Problems

The 'bitvectoring' analyses that we have considered in the

preceeding pages are the simplest of those which belong to the

general class of flow analyses introduced by Kildall [Kl]. Their
defining property is that they deal with boolean attributes
that do not interact; i.e., each program statement that effects

an attribute either sets it or drops it. This special property

is essential to the very efficient interprocedural analytic

techniques which we have outlined. However, interest exists in

many other, less entirely trivial analyses, and it is useful to

review the simplest of these and comment on the efficiency with

which they can be carried out.

An important class of optimizations lying just beyond the elementary

bitvectoring class is that in which variable attributes are still

boolean, but in which the effect of code can either be to set,

drop, or transfer an attribute. As an example, consider a

hypothetical language in which assignments can transfer pointers,

and suppose that we wish to determine all variable occurences at

which a given pointer or a member of some well-defined class of

pointers can appear. In this situation it is natural to work

with the attribute ' can-be-pointer ' . Some assignments (e.g. of

non-pointer constants) will clearly kill this attribute, while

others (e.g., of explicit pointers) will set the attribute; but

the interesting new fact is that various assignment operators,

including simple assignments

a := b

will transfer the 'can-be-pointer' attribute from b to a . To

take this into account the effect of program flow must be described,

not by a pair of bitvector coefficients as before, but by a linear

boolean mapping f(x) = Ax + b. Here A is not a bitvector of
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length n (where n is the number of variable occurences entering

into the analysis) , but an n x n boolean matrix. This makes

map composition much slower than the bitvector operations on

which we could rely in the preceding sections. Moreover, an

elimination approach like that which we have described becomes

infeasible, because of the large amount of data that would

have to be stored to keep coefficient matrices A available at

many program points. Thus, if we admit even this minimal

complication of the situation in which a bitvectoring approach

is possible, analysis immediately becomes much more difficult,

even though the form of the equations defining the analysis

changes very little.

It is also worth noting that many more iterations may

become necessary to attain convergence in this case than are

necessary in the bitvectoring case. For example, consider

the following code:

label: x, := x„;

^2 •" ^3'

n-2 n-1'

X , : = x ;n-1 n

X := pointer;
n ^

go to label;

This loop must be iterated n times for the pointer value

assigned to x to propagate to x, . The situation that confronts

us here resembles the problem of forming the transitive closure

of a boolean vector under a general boolean matrix. Of course,

even in this case we can generally expect to propagate a single

boolean attribute to all relevant parts of a program in time

roughly proportional to program length by proceeding along

chains of 'nearest occurrences' of a single variable. However,
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each attribute would have to be traced separately since no

effective algorithm allowing parallel analysis of a whole group

of attributes is known in this case. It should be noted that

these inefficiencies result from the dependence between different

attributes that we have assumed. If independence of attribute

propagation in an analysis is ass\amed, even non-boolean attributes

could be analyzed by elimination techniques like those described

in earlier sections, with only relatively mild degradation of

performance (see [RO, ] for example)

.

Overall, we come to the pessimistic conclusion that to

carry out program analysis effectively by presently known

algorithmic techniques it is necessary either to confine one-

self to analyses which can be forced into a bitvectoring mold

(or, more generally, which deal with independent simple attributes)

;

to analyse for relatively small numbers of more interdependent

boolean attributes; or to work with attributes for which a

crude iterative technique converges more rapidly than worst-

case theoretical arguments would lead one to expect.
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9

.

Applications of the General Algorithms in The SETL Optimizer

In this section we will describe the specific bit-vector

data-flow problems arising in SETL optimization which are

solved using the general-purpose package of algorithms de-

scribed in sections 3-7

.

I. Available Expressions Analysis . This well-known analysis

is performed as follows. With each well-defined expression e

having no side effects we associate a variable v which is
e

used to store the value of e whenever e is computed. A re-

dundant computation of e can then be characterized by the property

that the value of v at a point of computation of e is always

egual to the result of computing e, so that instead of computing

e we can simply fetch and use the value of v . (The value of

a non-redundant computation of e may then have to be stored in

V if this value will be used at some subsequent redundant

computation of e. We can determine whether such a store is

necessary either by a live-dead analysis, or more simply by

using a modified use-definition chaining map (see below).)

Available expressions analysis is performed as follows.

As an analysis framework we use the lattice L = 2^, where E is

the set of all well-defined expressions having no side effects.

Meet in L is taken to be set intersection. Each x e L denotes

a set of expressions available at some program point n, i.e.

expressions e having the property that along every execution

path leading from the program (or procedure) entry to n, e

has been computed ('generated') with no subsequent modification

of the variables on which e depends (i.e. no 'kill' of e)

.

The set F of data-propagation maps of the analysis consists

of functions f : L -> L having the form

f (x) = (thru n x) u gen^, x e L
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where thru^ e l is the set of all expressions e, which, if

available at the start of the flow described by f, are also

available at the end of that flow, and where aen_ € l is the

set of all expressions which are unconditionally available at

the end of that flow.

We invoke the algorithms described in sections 3,4 and

7 to perform redundancy analysis (which is a forward analysis)

and code motion. Note that the interprocedural part of the

analysis only needs to deal with expressions which depend on

at least one global variable; all 'strictly local' expressions

are analyzed separately, each within its own procedure.

For code motion we apply the algorithm of section 7 as

it stands, ignoring the issue of safety altogether. This is

possible since SETL will execute programs in a special run-time

error mode for which erroneous computations do not cause

program abort, but rather yield a special 'error' value.

Once generated, error values will propagate through other

computations as long as they are not used in branch instructions,

in which case the program does abort. It is easily seen that

this treatment of errors allows us to insert computations

safely at any program point

.

The solution map x generated by our algorithms defines

the set of expressions available at entry to each basic block n.

An additional scan through all blocks will then detect redundant

computations and eliminate them, and also insert movable code

into interval preheaders

.

II. Modified Use-definition Chaining Calculation . In this

analysis, which prepares data-structures used in later optimizer

phases, we compute a variant of the well-known use-definition

map (cf. [Al]), which we denote as 'bfrom', and which is

defined so that for each use vo of a variable V, bfrom{vo} is

the set of all other occurrences (definitions and uses) of V
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from which vo can be reached along a path clear of all other

occurrences of V. The classical use-definition map is actually

the transitive closure of bfrom, but we use bfrom instead since

we expect this to speed-up subsequent attribute-flow analyses

(mainly type analysis) , and because the bfrom map is more

suitable than the use-definition map for various other optimizations

(such as dead-code elimination)

.

To calculate the bfrom map, we perform a reaching occurrences

analysis. In this analysis, for each basic block n we compute

the set X of all variable occurrences vo which can reach the
n

start of n, i.e. for which there exists a path leading from

vo to the start of n which is clear of any other occurrence

of the same variable. This is a forward analysis which uses

the semilattice L = 2 , where E is the set of all occurrences

of relevant program variables. (Again global variables have to be

analyzed interprocedurally, whereas local variables are analyzed

intraprocedurally, each within its own routine.) The meet in L

is set union.

The space F of data-propagation maps consists of functions
f : L ^ L having the form

f (x) = (thru- n x) u reaching, x G l

where thru s l is the set of all variable occurrences vo for

which there exists a path through the flow described by f

which is either free of any occurrences of the associated

variable V, or else contains vo as the last occurrence of V,

and where reachin_ e l is the set of all variable occurrences

vo for which there exists a path through the flow of f which

contains vo as the last occurrence of V.

After analysis is carried out using the algorithms

from section 3 and 4 (code motion is obviously meaningless

for this analysis) the computation of bfrom is completed by

a straightforward scan through all basic blocks.
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III. Copy Opbiinization . SETL is a value language, but for

efficiency its value semantics is implemented using pointers.

This usually requires values to be copied before being modified

if they are shared by (i.e. pointed to by) several variables.

In our implementation of SETL, a certain part of excess value

copying is suppressed by 1-bit reference counts, known as

'share-bits', attached to each variable. The share bit of a

value is set whenever a value is shared (which can happen in

consequence of an assignment, imbedding or retrieval operation),

and is dropped whenever a variable is assigned a newly created

value. This mechanism, though crude, does suppress most re-

dundant copy operations at run-time. To improve program

performance still further, the SETL optimizer includes a

copy optimization phase whose goals are as follows: (a) To

detect potentially destructive value uses at which copies will

never be required and eliminate the dynamic testing of the

share bit; (b) To detect cases at which a copy will always be

required at a use, suppress sh?re bit testing, and emit

an unconditional copy instruction just before that use, (c) To

suppress setting of share-bits that are never going to be tested

(either because there occur no subsequent destructive uses of a

particular value, or because subsequent dynamic tests of a

share-bit have been eliminated by (a) and (b) above) ; (d) To

move copy instructions out of loops

.

To achieve these goals we proceed as follows. First we

perform available unshared values analysis . In this forward

analysis we compute, for each basic block n, the set ' unshared (n)

of all variables whose value is definitely unshared at entry

to n; in addition we use the code motion algorithm to move copy

operations out of loops. The framework for this analysis

involves a lattice L = 2 , where E is the set of all relevant

program variables and where lattice meet in L is set inter-

section; also a space F of data-propagation maps, where each

f e F has the form

-62-



f (x) = (thru n x) u newin^, x e L.
IT j_

Here thru, is the set of all V G E such that each path through

the flow of f is either free of any set/drop of the share-bit

of V or contains a drop of that share-bit not followed by any

setting of it, and newin^ is the set of all ve E such that each

path through the flow of f contains a drop of the share-bit

of V not followed by any setting of that bit.

In addition, to facilitate code motion, for each basic

block n we compute the set exposed (n) of all V s E such that

n contains a potentially destructive use of V not preceded by a

set or drop of the share-bit of V.

This analysis is performed using the algorithms of sections

3, 4 and 7, and allows us to carry out the optimizations (a)

and (d) mentioned above.

To accomplish goal (b) we perform a dual forward analysis,

called available shared values analysis , in which for each

basic block n we compute the set ' shared (n) ' of all relevant

variables whose value is definitely shared at entry to n.

This analysis is performed in exactly the same way as the

preceding analysis (but without code motion) , simply by reversing

the roles of share-bit drops and settings. For each remaining

copy operation C this analysis determines whether C is

conditional (involving share-bit testing), or unconditional,

(i.e. whether the value copied by C is definitely shared); if

C is unconditional, dynamic share-bit testing is suppressed.

Finally, to accomplish goal (c) , we perform a backward

analysis which, for each program point, computes the set of

all variables V whose share-bit value at that point reaches

a point where it is tested alo:ig a path free of any operation

which sets/drops that bit. For each share-bit setting S

this analysis determines whether S is really required, and

suppresses S if the bit S sets is not going to be tested subse-
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quently. This last analysis can be viewed as a special case

of live-variables analysis of the kind described in part V of

this section, and is performed using essentially the same

method as outlined there.

IV. Conversion Optimization . This analysis is required as a

final step in our type-analysis and data-representation selection

phases. Since SETL is dynamically typed, variable values can

acquire more than one data-type or representation during program

execution. Consider for example the case in which during

execution a variable V acquires values having data-representation

R, and also values having the representation R„. Without

optimization, this will require the compiler to treat V as

having a rather general data representation, and consequently

to emit somewhat inefficient code, both because (i) instructions

manipulating V will have to be less specific (e.g. off-line

general addition vs. the much more efficient in-line integer

addition) , and because (ii) data-type checks and conversions

may be required, prior to instructions manipulating V.

The optimizer can eliminate some of these inefficiencies

by associating a data-representation with each variable occurrence

in the program being analyzed, and then splitting each variable

V into a series of variables V , V , . . . , having representations
^1 ^2

R, , Rp,..., respectively, where R, , R^,..., are more specific

representations computed for the occurrences of V, and where

all these variables share a common 'cell' in storage. Then

each occurrence of V having computed representation R can be

replaced by an occurrence of the 'split-variable' V . This

technique enables generation of more specific, and therefore

more efficient instructions to manipulate V. However, it will

also give rise to situations in which two different variables

V , V_, split from the same variable V are linked in dataRj R2

flow (e.g. V is defined and V is then used) . In such cases
^1 ^2
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we must make sure that the value of V at the second use does

indeed have the required representation R^ . If unable to guarantee

this assertion at compile time, we must insert an explicit

data-type check/conversion of V to R„ preceding the second use.

This is accomplished by our conversion optimization phase.

To accomplish this task we perform a bitvectoring data-

flow analysis called 'available conversions' analysis which,

for each basic block n determines the set x of all split
n -^

variables V which are 'available' at the start of n, i.e.

whether each execution path leading to the start of n contains

an occurrence of V which is not followed by any other occurrence

of V. In conjunction with this analysis we use the code motion

algorithm to move data-type checks and conversions out of loops.

This analysis uses the following framework. The lattice

L used is 2 , where E is the set of all relevant split-variables,

and where meet in L is set intersection. (We make the same

separation between global and local variables as in reaching

occurrences analysis.) The space F of data-flow maps used

consists of functions f: L ^ L having the form

f (x) = (x n thru ) u gen_, x e L

where thru, G L is the set of all split-variables V which, if
t K

available at the start of the flow described by f, will also be

available at the end of that flow. That is, each path through

the flow of f must either be free of any occurrences of V, or

else the last occurrence of V along that path must have the

representation R (i.e. must be an occurrence of V^)

.

Moreover, gen_ g L is the set of all split-variables

V which are unconditionally available at the end of the flow

described by f, i.e. V e gen_ if each path through the flow

corresponding to f contains an occurrence of V not followed

by any other occurrence of v.
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In applying our 'forward' algorithms to this framework,

we have to consider the safety of conversion motion (insertion).

Unlike insertion of ordinary computations, insertion of a

conversion to a representation R can be unsafe (i.e. may cause a

new program abort). As an example, consider the following code.

read ( V) ;

(while . . .)

if C then

V := V + [x];

end if;

end while;

print fv)

;

Here, the code motion algorithm of section 7 would suggest moving

V , out of the while loop (i.e. would insert a conversion

of V to tuple form at the loop preheader) . However, as read V

might be an integer, and the condition C might be a type test to skip

the concatenation operation in this case. With these suppositions the

original program would not have aborted, but the modified program

will abort.

It is therefore necessary to perform a preliminary safety

analysis before applying the code motion algorithm. This is a

backward-union bitvectoring analysis, which for the start of

each basic block n, determines the set y of all split-variables
-'n ^

V which can safely occur at that point, i.e. calculates those

V for which all paths forward from the start of n onward
K.

either lead to a use of some V (with no intervening
^1

occurrences of V) , where R, is either equivalent or more general

than the representation R (so that conversion of V to V will

always succeed) , or else leads to a program exit, or to a re-

definition of V (with no intervening occurrences of V) . The

framework for this safety analysis is constructed similarly

to the framework of the available conversions analysis.
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Having determined the sets y , we can handle safety of

code motion as follows: Let V be a split-variable that we

wish to insert at (the end of) a preheader of a loop having

entry node n. Then it is safe to insert V at that point if

every variable V^ split from V and belonging to y has a
Hi n

representation which is either equivalent to or more specific

than R.

Note also that, in conversion motion as in expression motion,

the changes resulting from the insertion of conversions at an

interval's preheader I need not be propagated globally to flows

in intervals containing I. Such propagation is required only

if it could be necessary to perform a conversion that would have

been unnecessary in the original program, or if propagation would

prevent additional conversion motion that would have been

possible in the original program. However, it follows from the

special nature of our code motion algorithm that these cases

cannot occur. The proof is not difficult, but somewhat lengthy

and technical, and is omitted.

Conversion optimization uses a linear scan of the code

in which we compute the sets availconv(I) of all split-variables

available just before an instruction I. If I uses some split-

variable V which does not belong to availconv (I ) , a run-time check

or conversion into the V form is required before I, and is

inserted there; otherwise no such conversion is required.

Additionally this third step inserts conversions at loop preheaders

in a manner controlled by the result of the code motion phase.
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Note that our algorithm does not allow us to produce the

most specific diagnostic messages when an error occurs. Indeed,

forward analysis only tells us whether or not a conversion

is required at a given point P, but does not calculate the data

representations possible for a variable at P. To gather this

additional information, our forward analysis would have to be

replaced or augmented by a forward-union analysis, in which

we calculated all possible split variables V which can reach

a particular program point. Such analysis (quite similar to

reaching occurrences analysis) would provide this extra information.

In the SETL optimizer such diagnostic messages are not required

at this step, as they are produced during the type-analysis

phase. However, if one wished to adapt the techniques that

we have sketched to other kinds of code motion and elimination

(e.g. elimination and motion of range checks), such extra

analysis might be appropriate.

V. Live-Dead Analysis

This classical analysis ([He],[AU]) establishes the

live/dead status of variables. A variable V is said to be

live at a program point n if there exists a path leading from

n to some use of V which is free of any other occurrence of V

(implying that the current value of V may be used subsequently,

and so cannot be destroyed or discarded) ; otherwise V is said

to be dead at n.

Live-dead analysis has many well-known applications,

such as (a) Register allocation during code generation, since

only live variables need be put in registers, (b) Dead code

elimination, since operations whose output is dead upon their

completion cah be eliminated, (c) Static storage allocation opti-

mization, and (d) Various peephole optimizations such as re-

placement of the sequence 'T := exp; A := T; ' by ' A : = exp;

'

provided that T is dead at the end of that sequence.
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Live variable calculation is a backward-union analysis,

and is performed straightforwardly using the algorithms of

sections 5 and 6. The framework used involves the lattice L = 2
,

where E is the set of all relevant program variables, and where

lattice meet is set-union. Each propagation map f acting on L

has the form

f (x) = (thru n x) ^ livein^, x e L

where 'thru,' is the set of all variables V G E for which there

exists a path through the flow of f which is either free of any

occurrence of V or else contains a use of V not preceded by any

other occurrence of V, and where 'livein-' is the set of all

V 6 E for which there exists a path through the flow of f which

contains a use of V not preceded by any other occurrence of V.

The output of live-dead analysis is a map 'liveat',

mapping each basic block n to a set liveat (n) of all variables

live at the start of n. These sets can then be propagated

(backward) through basic blocks to establish variable liveness

at any required program point.
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APPENDIX A : SETL Code for the Data-Flow Algorithms

The code has beeri t;st»J on i variety of tsst opograiss. The
data-flow package has been us?d for available expression analysis*
reaching occurrences analysis arid liwe-dead analysis, (^ote hDHswer
that the code below does not coitaii the preparatory phase of
data-flow analysis in which tie initial set of the analysis data-
flow maps is computed* nor do3S it show either the actual ini/3Cition
of the general data-flow algo''ithiis described in this paper or the
concluding phase which utilizes the results of the analysis performed.
All these phases vary suost ant

i

ally from one analysis t3 another*
and are therefore left out,)

The code given here is jlightt^ modified f-ou the Driginal
optimizer code. The modifications are generally character-set changes*
documentation upgrades and onissions of certain code segments which
deal with details particjlar to the 3£TL intermedial* code
representation.
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MODULE SETL_0PTIMI7ER - I !^r :Rtf AL_i\ N ALTSISJ

s This module contains the iit?ri/al analysis algorithm described
$ in SECTION 3.

$ Flow graph analysis producss two maps which serve as input to the
S interval analysis:

$ 1. CESSOR: The successor map for basic stocks

$ 2. PRED: The oredecjssor map for basic blocks

$ Interval analysis produces five maps:

$ 1. intof:
$

$ 2. INTS:
$

$

$

A map from sach njde to the iiterval immediatsly
containing it*

Maps each rautine to a tuple of all Its intervals
in reverse jrjord^r. Mote that Iterating over
INTS(ROIJT) is equivalent to iterating from innermost
to outermost interval.

$ 5. INT_NODES: A ?nap sending eaci iiterwal iito a tjjls cantaining
$

S

s

the nodes of the interval In reverse postorder.
Iterating oi/er INT_NOO£S(I> is equivalent to iterating
forward dv?- tti? iod?3 in I«

$ 4. PROPER INTS: The set of ppor>er (reducible) intervals.

$ 5. VEOGES:
$

$

$

s

The set of jIL /irtjal edges jddei to the flo4 graph
during interval aialysis. A virtual edge is an edge
having the form (I» \l ) * where I is an Interval
and Visa laJs ojtside I whi:h is a succsssor of
some node in I.

$ All these variables are assjmed to be globally accessible in the
$ SETL optimizer. AdditloniL jlJDal variables that are accessed in

$ this module are:

$ routs:

$ rentry:

$ rexit:

t rstop:

s routof:

Set of all rojtines in the program being analyzed*

Maps each routine to its entry alock.

Maps each rojtins to its exit Creturn) olock.

Maps each routine to its stop blocks if it exists.

Maps each basic block to the rojtine containing it
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$ The module contains three arincipal routines:

% 1. FIND intervals: It?rat;s 3#er MDUTS* caLlinj ottier PDjtlnes

$ 2. get_graph:

$

s

Builds a flow graph for a routine. Code for this
rajtii; is onittsd* sine? it is Ijrgel/ trivial
and caitains many details special to the SETL
language.

$ 3. FIND_INTS: Finds the interv/als of a flow ;5raph,

% The following variablss ar? jsed gloDally during interval analysis:

VAR
NODENOt
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PROC FIND_INTERWALS;

$ This routine Iterates 3i#er all ttis rsutlnes In a 3ETL Drograi
$ finding the Interval grapli for each routine.

$ Initialize all output objects
INTOF := INTS := >/EDGE5 := 'RD^E^.INTS := INT_N0DE3 := Of
CESSOR := PRED := c>;

(FORALL R IN R0UT5)
GET_GRAPH(R);
FIND_INTS(R);

END forall;

PRINK*
PRINK •

PRINTC*
I N T E R V A L A N A L Y S I S»);

PRINK MNTS =•» INTS) i

PRINT( 'INT.NODES =», IVr_M3)E5);
PRINT(»PR0PER_INTS =• t 'ioPER.I NT S )

J

PRINT(«VEDGES =» VEDGEIS);
PRINTCINTOF =», IMTOF);
PRINT( 'CESSOR =», CESSOR);
PRINK'PRED =«tPRED);

END PROC FIND_INT-:RV^L3;
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PROC FIND INTS(R);

This routine calculates th? intervals of an 1 nt raproc edural flow
graph corresponding to a ^iwsn routine R.

FIND_INTS is called once tj aracess each procedure »R».
it produces five maps:

1. intof:

2. INTS:

3. INT nodes:

4, VEDGES:

A map from Jach node to its interval.

A map sendiig each routine 'R* Into a tuple
contalTing th; int^r/als of * \* ii re/erse arjorder*
Note that iterating backward (forward) through
INTS(R) is ?qji/alent to iterating from outemost
to inn?Pio» t ( irii;r SOS t to out?ruost) interval*

The outermost iiterval Is not really an internal
at all. Instead it contains all nodes not contained
in other iiter^als. It is acyrlic in the reducible
case.

A map sendiig eaci Interval iito a tujle C3itaining
the nodes of the interval in reverse postorder.
Iterating over INT_NOO£S(I) is equivalent to iterating
forward ove- the nodes in I.

The set of all edges which ars part of some higher
order graph.

$ 5. PROPER_INTS: A set of all proper (reducible) intervals.

$ STEP i: Calculate the f3ll>i*iig 33j?:ts:
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S The following macro t?sts far tr?? d?scendar»:y •

macro is_desc(x, y);
(nodenocy) <= mode«jd(x) ano 1m00£n0(x) <= modemo(y ) noiscsc y ) )

enom;

OFST(R); * Constrjct 3 death-first spanning tree.

$ Construct the set BAC<I>Jtf jf all r?t/;rse oack edg?s
BACKINV Z= I CY, XJ IN PREO ST ROUTOFCY) = R ANO IS_DESC(Xt Y)>;

$ Construct the tuple TARS3IVK of all sack edgs target nodes» arranged
$ in reverse preorder.

TARGBACK := CNODES(I): I := >t MOOESf » N03ES-1 ..• 1 ST
NODES(I) /= OM *M0 \I3D-:5{I) IM OOMAIN BACKINVDi

$ STEP 2

$ At this point 'TARGBACK* CDntains all potential interval heads in
$ reverse preorder. We Itsrat? svsr X in TARGBACK daing three things:

$ 1. Build the set 'IMPROPE^S* of sjch nodes X which are heads of
$ multiple-entry loopst aid tius ar? 'sourcss of ir redJC i 3l L i t

/•

.

» 2. For each X find
% graph In which
S interval has be
$ a single node -

$ not passing thr
S node which is i

$ then X is a hea
$ MMPROPERS*. Ot

S and thus is an
$ REACHUNOER * IM
$ intervalf and w

$ improper interv

the set 'REA
each alrsadf
en logic a L Ly

its target 3

ough X t4i3se

ot 3 ds5:;il3
d of a ID Jlt 10
herwise X is

int ^rv^L i ;a J

PROPERS = t>»
e add it to •

al.

CHUNOER* of nodes (in the reduced
processed prober or improper
•sqj3Shed*» i.e. identified with
l3Ck) which r?ach X along a path
final edge is a back edge. If any
nt of X belonjs ta 'REACHUMDER**
le-entry loopt and we add X to

a head of a single-entry loopt
in 3 jr sense; i f

then that interval is a proper
PROPER INTS»; otherwise it is an

$ 3. If X is an interval head then:

$ a. Create a new target jLjcc *TiK'»
$ b. Add TBX to »INTS(R)« and set I NT_NODES( T8X) to CI.
S c. For all Y in REACHU«^5ER» set IMTOF(Y) : = T3X
$ d. Update the flo4 graai t3 si3i# the insertion of TBX.

ROOT := RENTRY(R);

INTS(R) := c d;

(FORALL X IN TARGBACK)
REACHUNOER := CX};
NEWREACHUNOER := € INTO" .LIM

5 INTOF .LIM Y is the largest interval
$ contains Y (see below for details).

Y ; Y IM 3ACKINl/CX>> - tX> t

constructed so far whicli
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(WHILE NEUREACHUNDER /= C>)
Y FROM NEWREACHJNDE^;
REACHUNOER UITH fS $ G?t a new sL-meit of •^EACHJNDER*

IF NOT IS_OESC(Y» X) THEN S We have a mult ipLe-entry Loop
improf»:rs Win <;

QUIT while; $ Exit the while loop
ELSE

newrea:hund:r *:-

(C info- .lim ? : z in pr:d{:y>} - keachjnder);
END if;

END while;

if X in impropers HEN CONTINUE forall; end;

S Here X is an interval hsai,

TBx := get_targ(x>;
$ The GET_TARG routine creat?s a new basic block* initially containing
$ only a Label and an jncondi t ioial fjmp to X. Code for this routine
$ is omi tted here

•

$ Insert TBX in proper otace in the treet and initialize its attributes
NODENO(TBX) '.- N03:N0(<>-L;
nodes(nodeno{T3X)) := nx;
posTNO(TBx) := PosrMO{X)+i;
posTNODES(pasTNO(T3<) ) := nx;

$ Note that there is no need to coupute NOESCS(TBX)» as this value will
$ not be used later.

INT_NODES{TBX) := Ili

* TBX represents the interval with head X.

INTSCR) WITH TBX;

$ Check if TBX is proper

IF REACHUNOER » IM'^a^Ei^S - f> THEN
PROPER_INTS Win TBX;

END if;

$ Map each node in REACHJNDE^ to its cjntaininj interval T3X
(FORALL Y IN REACHUNOER) INTOF(Y) := TBX; ENO;

$ Update the flow graph to acc3Jit for tie ins;rtiDn of T3X into it.

$ This involves the following actions;

$ 1. Add an edge CTBXjXi to the graph.
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% 2. Replace all edges entering the interval tirough 'X* by edges
$ entering TBXt and chang? th? corrs spending branch instructions
$ In the program cod;.

$ 3. For each edge CUtV] leai/lng the interval »*hoss head is X» add
$ a •virtual* edge CTSXttf] t a ti? graph* Tils ejgs is aided to
$ »VEDGES».

UPDATE(X, TBX» ^El A: H UMilR) ;

END forall;

$ Build the outeriBost •1nterrfal»» Identified bf the ent r/ node •ROOT*.

INTS(R) WITH root;
INT_NODES(RO0T) := Hi
PR0PER_INTS with root; $ ^oat Kill be removed from this set If

i actjall/ Improjer

$ Iterate over the nodes In revirs? aostorder» adding each nod? to
$ INT_NODES. If a node has its iit^rval head indefined put It In the
$ outermost Interval.

(FOR I := « P0STN03ES, tf P0STN30ES- 1 ... I)

X := POSTNODES(I) ;

IF X = OM THEN CONT FOR i; EMO;

HO := INTOF(X);
IF HD = OM THEM

HD := INTOF(X) := root;
IF X IN IH3R3P£<S THl^

proper_int3 LESS ^oot;
END if;

end if;

int_nodeschdi iiiTH x;

end for;

eno proc find ints;
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PROC UPDATE(Xt TBXt I^D3E5);

$ This routine updates the flow graph to show the Insertion of
$ the target block •T8X». It; irgunents are;

$ x: The Interval head
$ TBX: The target olock
$ IMODES: The nodes In the 1ater»/al

$ In this code* only manipulation jf the flow ^raph is shown* code
i manipulating inoiwidual Instructions within slocks is omitted.

CESSOR{TBX> WITH x;
PRED{X> UITH T3X;

$ fJext we iterate over all tis oreJ?:?ssors of X wtiich are r»ot in

$ the interval modifying ths CIS50R and PR£D maps as we go.

(FORALL Y IN PREDCX> ST Y '^DTI^ IMOOES CT3X>)

CESSORfY} LESS X;

CESSORCY> UITH TBX;

PRED<X> LESS Y;

pred{;tbx> UITH y;

END forall;

$ Find all edges which leave the interval and add a virtual edge
$ from TBX for each such edj?.

(FORALL U IN INODESt i IN CISJO^CUl
ST Y NOTIN INODES and INTOF(Y) /= U)

CEssoRCTBx} uirn y;

PREDtY} UITH TBx;

VEDGES UITH CTBX, Y];
END forall;

END PROC update;
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PROC DFST(R);

$ This routine builds th? dsjth first spanning tre? for a rautine
$ »R», We initialize counters for the v/arlous node indices and then
$ call •DFSTl* to do the recjrsive tree walk.

NOOENO := c>;
posTNO := o;
NDESCS := €>;
NODES := Lli
POSTNODES := Lli
SEEN := c>;
NPRE :- NPOST z= d;
DFSTKRENTRYCR));

END PROC DFST;
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PROC OFSTKX);

$ This routine builds the death first spanning subtree rooted at the
$ node 'X*.

NOOENO(X) := (NPRE := 2); $ Note the use of even indices only
ND£scs(X) :- o;

NODES(NPRE) := x;

SEEN WITH X;

(FORALL Y IN CESSO^tX} 57 f NOm SEEN)
DFSTKY) ;

NOESCS(X) := (NOE3C5(r) * 2);
$ Each node is counted js t«*J i? sc^idait s t to latch the Jsaje if
S only even Indices in NODEND and POSTNO.

END forall;

posTNO(x) := (NPOST := 2);
posTNODES(NPosT) := x;

END PROC DFSTi;
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OP .LIM(Ft X);

$ This operator finds a t/alj; »r» such that Y = Ft = l^ ... -(<))))
$ and F(Y) = OM.

$ Note that unlike Tarjan's sriginal approach je omit oath
$ compression* tree balancing* etc. for the sate of simplicity*
$ though these could easily tj aideJ.

Y := x;
(WHILE F(Y) /= OM) f - { Y ) ; -: ^ 3

;

RETURN Y;

END OP .lim;
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MODULE SETL_OPTIHIZER - AT4Fu OU_SOL V£R;

$ This module contains a parkag? of j^neral DJPDOse
S routines to solve bit vector data flow proolems either
$ Int raprocedurally or inter procedural ly. We can distinguish
$ between four basic tifpes of ;jch analyses* according to

$ ttie character of the desired analysis:

S FORWARD - Data is to be Drooagate^d in the direction of

$ the floKt frDii jricedjr; entries fori*ard.

$ BACKWARD
$

$ MEET
$
$

$

Data is to be proaagated in the reverse
direction of t i ? floi** from exits backward.

Whenever two 3 a t hs converge (for forward analysis)
or diverge (for packward analysis) take the meet (set
intersection) if data values prDpagated alorig tiese
pat hs.

$ JOIN As in MEET» except that the join (set union) of the
cor res poTdiia iata viIj»3 is to je taken.

$ Typical examples areZ expression availability analysis
$ is a forward - meet analirsisi unconditional exposure
$ of expressions (also known as 'very busy* expressions
$ analysis) is a backward - meet analysis; reaching
$ definitions analysis is a forward - join analysis* and
S live variables analysis is a packward - joii analysis.

$ As noted in chapters 5 aid i* forward and oackward analyses
$ require substantially diffjreit L93ic« so that each of then
% Is executed In a different suDpackage; howei/er* the
S difference between meet aid join problems tjrns out to
* be rather minor* so tiat t ^ sy oath can be handled p|r

$ the same (forward or backward) package* using a switch
$ to indicate whether a particjlar analysis is of meet or
$ Join type.

$ This module exports the fillowing procedures:

$ C5RAPH_ANALYSIS

$

Call g'apti anaL/sis routiie* to pe called
once before solving any data flow proolera
inter pr PC ed J ra I ly.

S INTERPR0C_FWD_ANALYSIS - Call t fi i s to solve i nt e r pr PC ed J r al

$ forward data flow analyses.

$ I1\ITRAPR0C_FWD_ANALYSIS - :alL this to solve 1 nt rapr oc ed J r al

$ forward data flow analysis for a given
$ procedure.
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$ INTERPROC_BACK_ANALysIS - CaLL this to solve i nt erproceduraL
$ backward data flow analysis

$ IMTRAPROC_BACK_ANALYSIS - P^rfoms i n t rapro:edLir a I aackiiard
t analysis for 3 jiven procedure.

$ This package assjmes the folloMlng jlobal oijects to be
$ aval table

:

$ CGRAPH - The program call graph* represented as a set
$ of edges; an ;dg? (>t3) is in C3RAPH iff :> i s a

$ procedure which contains a call to the procedure Q.

% ROUTS - Set of all program arocedures (1«e. all nodes
$ ofthecallji-aji).

$ SYM_MAIN - Main-program identifier (i.e. tie entry node of the
$ call gra3h).

$ ROUTOF - Maps each black ta the procedure containing it.

$ RENTRY - Maps each procedure to its entry block.

$ REXIT - maps each procedure to its exit (return) block.

$ RSTOP - Haps each procedure to its stop block» if any.

$ CALLSIN - Maps each procedure to the set of all call blocks
$ in it.

S CALLPROC - Maps eaci caLL jLjcc t3 the proredur? it calls.

$ CESSOR - The program flow graph* as a union of the flow
$ graphs of all aroceiures. An edge ( *< » ^) is ii

$ CESSOR iff either M contains a oranch to N» or else
$ M is a call olock aid M is the 3lock immediately
$ following ^. The nodes of the flow graph are either
S basic blocks ar derived intervals (which are
$ represented by their target blocks)* in which case
* an edge (I^T* 1/ ) in -ISSOR can indicate the possibility
$ of a transfer of control from the interval INT to a

$ successor V of some node in INT. These edges are called
$ virtual edges (as aDoveJ see th? interval
S analysis package for more details).

$ PRED - The inverse iiaa of CESSOR.

$ INTS - Maps each oroiedjre to the tupl; of its intervals
S in reverse prsorder (relative to a depth first
$ spanning tree of its flow graph).



$ INT_NODES - Maps each interval to the sequerice of its nodes
$ in 1nter»/aL order (i.e»» revers? postorder).

$ PROPER_INTS - The set of all oroper internals (those which do

S not contain irredjcible nucleii).

t INTOF - Maps each fix jraai T3ie to th? intjrval containing
S it.

% VEDGES - Set of all i/irtjal sijss (see tie descriptlofi of

% CESSOR above).

$ In addition this modjle jje; the folloMing g lobal-wi thln-
$ the-module waria3lest ths first three of which are used
S to transmit flags and analirsis constants between imer routines*
$ while the rest are ojilt ay a recursive depth-first search
S procedure during call-graph analysisf and are used later in that
$ ana lysis •

VAR
lOt $

ZEROt »

MEET_FLAGt «

SEEN* $

CNPREt »

CNPOSTt »

NOOENO* S

POSTNOt S

NOESCS; %

Identity flow map
Null data state
T^J: if »e?t analysis; otherwise FALSE
Procedjres already in 0F5T of cgraph
Cjrrent preorder index It 0F3T
;jpr;it jJit 3r ii'- index in 0F5r
preorder numbering map
postorder numbering map
Hom of d?3ceidaits map
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PROC CGRAPH_ANALYSIS;

$ This procedure performs tlie call qraph analirsis needed for

$ our interprocedural data fla-* aialysis sol>/;r. It campjtss
$ the following objects:

$ CG_SCCS - A tuple of (roats of the) stroTgly connected
$ componeTts jf z^rai^t arranged in reverse postsrder.

$ SCC_NODES - Maps each (root of a) strongly connected corapoient
$ ~ into a tupl? containing its nodes In reverse
$ postord»r«

$ SCC_D - Maps each (root of a) strongly connected component
$ S into an estinate 3f its looo-int ; rcoinsct sdnsss

$ parameter Dt defined as the maKiraal number of back

$ edges along any acyclic path in S (iie do not attempt to
S obtain that 3r?cis» i/alue* but rather use a crjde
$ upper bound for iti naisely the nurooer of back
S edge targets contained in S«)

$ Begin by calling a standard depth first spanning tree
$ routinet which will compute the following o3jects:

$ NODENO - Preorder node njBDerinj m33.
$ POSTNO - Postorder node numbering map.
$ NOESCS - Number of descendants map.

CDFSTO ;

S Tree-descendancy macrot identical to the ons used for 1nter/al
$ analysis*

MACRO IS_DESC(Pt Q) « 1 Test whether P is a descendant of Q

{nodeno(p) >= ^odevdca) afo noo£no(pi <- '^ooemo (q) ndescsc q))

endh;

$ Next compute some auxiliary oojscts:

INVERSE := CCP» Q] : Ea» ?1 IM CS<APH>; i Inverse call graph
INVPOSTNODES := CC «R0UTS*1-M . P] : N := P0STNO(P)>;

$ Procedures in their reverse postorder
BACKINV := tCPt Q3 IN I\H^:^5E ST IS_D£SC(3t P>>;

$ Set of all inverse back edges
TARGBACK := DOMAIN BAC<IMtf; t Back edge targets

CG_SCCS := CD; S Ss; abav?
SCC_NODES := SCC_D := U i S See above

SCCROOT := C>; $ strongly connected compDnent root map
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$ Iterate through the procedjrss* lootc ing for strongly
% connected components*

IFOR I := 1 ... »INVP0SrN30£3)
P := INVPOSTNOOES(I) ;

IF SCCROOT(P) = OM FHiM t W? hawe a lew root of a 3.C.C.
sccROOKP) := p;

CG_SCCS UITH P; $ P corresponds to the new component
scc_N0DiSC3) :- :>];
IF P IN TARGBA2< THIN $ This is a non-trivial S.C.C.

NEUNODES := BAC<I\«i/C'> - CP};
% Ne< T3J?s ta 3e added to ti? S.C.C.

scc_0(P) := i;

$ develop cojit of la. of backedge targets in the S.C.C.
(UHILE NEyNDDES /= C>)

Q FROM NEUN30ES;
SCCROOT(Q) :- P; % Mark Q as belonging to the SCO
IF 3 IN TA^^GB/VCK THEN SCC_D(P) •:= i; ENO;
NEJNOOES := CR IN INVERSEfQ} ST

IS_0E3C(Rf =) AND SCCROOT(R) = 0M>;
ENO while;

ELSE $ J? have a trivial S.C.C.
sc:_D(^) :- o;

END if;

ELSE $ P belongs to 3 3CC alreadif scannei
SCC_N00ES(3::^D3T{5)) JIH p;

END if;
ENO for;

PRINT(» •);
PRINT( • CALL G^A^H
PRINT(» •);
PRINT(»CG_SCCS =»t CG_3CCi);
PRINT( »SCC_NODES =»f SCC NODES);
PRINT(»SCC_D =•» SCC_0);~
END PROC CGRAPH ANAL\rSI5;

A NAL Y SI S»);



- 89 -

PROC cdfst;

$ This routine builds the de3th first spanning tree of the call
$ graph. We Initialize count?rs for the varlojs node nuraberingi
$ and then call •CDFSTl* to Jo the recursive tree walk.

NOOENO := NDESCS := POSFNO
SEEN := {>;
CNPRE := CNPosT := o;

CDFSTKSYM MAIN)J

= c>;

END PROC cdfst;
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PROC CDFSTKP);

$ This routine builds th? djjti first spanning tres startirjg nith
$ node »P». This routine differs in v/arious details from the depth
$ first spanning routlns us?J for Interval analysis.

NODENocp) :- (CNPRE := d:
NDESCS(P) := o;

SEEN WITH P;

(FORALL Q IN CGRAPHfP) ST Q NOTIN SEEN)
CDFSTICQ);
NDESCS(P) := (NOE5C5(a) Hi

END forall;

posTNO(P) := (CNPDST : = d;

END PROC CDFSTl

:
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PROC INTERPROC_FUD_ANAL)fSIS(RU F, WR SOLN, ID_PRM, ZERO_P^Mt
MEEr_FLAG_PRM» Mo7e_C0OE»
RU EXPOSEDt WR INSERT);

$ Note declarations of •reaJ-writ?* parameters C*^W*> and •write-only*
$ parameters {•WR«),

$ This is the master routia? to perform a specific data flow
$ analysis i nt erproc ed jraL L y • Its parim^ters are:

$ F - Maps each edge (Mf ^) in the flow graph to a compact
$ representat i 01 of its d 1 1 a -ar apagat ioi maa F(^<tN)«
$ initially this information has to be arovided only
$ for basic blocks (ojt not for call blocks); the
$ first phase of the aialysis will fill
$ in additional entries. Each F(M«N) is represented
$ as a pair CAt B] In L x L» sjch that for each X in L

$ F(HtN)CX) = X*A «• 3i 3tJ \ contains 3 (this latter
S condition ensures tiat th:? representation is uniquet
$ and also simplifies some fjnctional manipulations).

$ SOLN- The solution i/;ctop fir ti; aialysis. 30LN naps eacfi

$ flow graph node to the data found to oe known at its
$ entry.

S The next three parameters are transmitted internally between
$ subprocedures by assigning th^m to global wariaalesi as they
$ are constant per analysis* Th? : orrssoonding glooals arsZ

$ ID - The identity map r eor esent at 1 on. ID = CU» OJ» where
$ U is the universal set ov?r which bit^ectors are taken
% in this analysis (?.g. set of all program expressionst
S set of all variables etc.)

S ZERO - The initial data t/alj?» i.e. flow data assumed at ths main
$ program entry.

$ HEET_FLAG - A flag iidicating whether the analysis is a meet
S analysis or a join analysis.

$ AUX_F - These are auxiliary propagation maps. For each flow
$ graph node Uf ftJX_-(U) denotes the effect of propagation
$ from the entry to It t**? interval containing Jt through
S It to the entry of U.

J MOVE_CODE - A flag indicating tnat code motion is regjir?d.
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initially ttie set of compj tat ions (corresponding
el;fl?it5 (3it>)) jxposed it t fi e start of ;ach
N (i.e. comauted with no 3rior kill in N). The

ter ptias? of ojr analysis attaches an •EXPDSEO*
ch iiter/al ar^c-ssed. EXP3SEDCI} is the set of all
T for which there exists a computation of T

interval I wfiich jould becDme redundant if and
ecan? 3i»aila3le at the entry to (the target block
f h3wewert that th? logical place at which
s movaol? out of an interval I should be inserted
of the target jlack of I* -ather than its start,
t target block is nonempty then EXPOSEOtI}
present those nowaale compj tat i ons. "or this
rovide tie parameter •INSERT* Jfiici gives the
of aova3le code.

$ IfJSERT - This output paraieter ^ill map eaci interval into
$ the set of all coma Jt at i ons movaole out of its loopt
$ which are to be inserted at the end of the target
$ block of the interval. The actual ins?rtl3ri should be
% performed by the callinj procedure.

$ Our analysis procedures iiake frequent use of the folloi*ing
$ ooerators (which could a? also written as macros* if it were
S not for the convenience of the infix notation that we prefer
% to use):

$ .COMP
$ .MEETJOIN
% .HJV
$ .OF

Functional conoosition
Functional meet or join» depending on MEET_FLAG
Meet or join jf lattice values
Functional apolication

$ All these operators have eleientary set expressions* see oelow
$ for details.

Note also that these operators must be prepared to
undefined flow values* which ^ill be represented
oy a special constant •FD1»; for exaraplet
G .COMP FOM - FOM
(concatenation of
still undef i ned)
G .MEETJOIN FOM =

(a join or a meet

.COMP i = F3M;
an undefined flow with a defined

FOM .MEETJOIN
of an Jidefin;

G = S.
d flow Mi th

handle

3ne is

a defined floi*

yields the defined flow.)

% another special constant
$ state in L.

•X0»1» is jsed to denote the undefined data
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$ Transfer constant p^^3ffl^t;^s to 3lo3als

ID := id_prm;
ZERO := zero_prm;
1EET_FLA6 := M: ET_- LA3_'Ri;

$ The master procedure consists of the foLLouIng three phases:

$ Interpr ocedura I elimination ptiase

AUX_F := INTERPROC_FUO_iHM[NAT£(F);

$ If code motion is reqjir?! thsn oerforra an idditional
S phase* computing the set> 9f aovatil? code.

IF MOVE_CODl THEN
INSERT := c>;
(FORALL P IN ROUTS)

PR0PAGATE_£XP0SE:3(Pf F, AJX_Ft EXPOSED* INSERT);
END FORALL P;

END if;

$ Find data at procedure entries

ENT_INF := ENTRY_INFOCFt AJX_Ft INSERT);

$ Final propagation phase

SOLN := {> ; $ Iiitiiliz? th? solution
(FORALL P IN ROUTS)

FWD_PROPAGATE_I^(»t "t *J<_-t SOLN» EMT.Ii^FCP),
H0t/E_C00E*~IN3ERT);

END forall;

return;

end proc interproc fwd analysis;
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PROC INTERPROC_FWO_ELIMI NATKRW F);

$ This is the driver rautii; for tfie first int erprocedural
$ inner-to-outer interwaL piss. Procedures are analyzed in
$ the folloMing order: we process the strongl/ connected
$ components of the call graph in their postorderJ for each
$ sjch component, we iteratj tirojgh its procedures in their
S postorderf no more than 2*0»l times, where D is the loop-
$ interconnec tedness parameter of the component.

AUX_F := {:>; $ initialize ajxiliary maps

$ Iterate through the S.C.C.s of cgraph
(FOR I := »CG_SCCS, »CS_5CCi-l ... 1)

sec := CG_SCCS(I); $ get a 3.C.C.
SCC_PROCS := S::_M3)I5( 3C:) ; $ Procs in that s.c.c.
FLOU FLAG := • - I RST_I NTIR» ; $ First processing of SCC

(FOR J := I 2 • SCC 0(5CC) 1 UMFIL PROC CONVERGi)

PROC_CONVERGE := T^JEi

(FOR K := l»SCC_?R3CS, »SCC_PR0CS-1 ... 1)

p := scc_p^3C5(K);
PR0C_C0NVER5E :=

INrRAP<D:_-WD_E:LI'1IMATE(P, AUX_F, F, FL0U_FLAG>
AND »^oc_con\/erge;

$ The INTRAPR0C_FUD_ELIMINATE routine analyzes Pi its fourth parameter
$ indicates whether the analirsis is first-time i nt erpr ocedural , second
$ -time interprocedura L ar i i tr jor oc

e

Jural » it retjrns a flag to
$ indicate whether information in P has stabilized.

END FOR KS

FL0W_FLA6 ;= •3:C0M3_I^TER •; $ Additional passes thru SCC

END FOR j;

END FOR I

;

RETURN AUX_F;
END PROC INTERPROC FUO ELIMINATE".
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PROC intraproc_fwd_:lim[ N\r:(>» ^u aux_f» rw Ft FLoy.FLAo;

$ This routine performs an i nt rap- ocedural elimination phase
$ for the procedure P» usiaj interval analysis* The fourth parameter
$ indicates whether this DJtii? las jeen invoked by the
S i nt rapr ocedural solver or ay the int erprocedural solver» ani

$ in the second caset Kheth^r tliis is the first time ' is

$ being processed or not.

$ In this pass we iterate ttirough the procedure's intervals
$ in an inner-to -outer ord?r (i.;. ii revers? pr?order of th?ir

S heads in a DFST of the flaw graph of P). For each interval
$ I processed in this manner we compute a set of data-propagation
$ maps of the form Fdt J)» wiere

$ (I) If U is in ! then this map is an auxiliary map (which will
$ be denoted as AUX_F{j)» I 3»iig imolicit in this case) which
$ represents the propagatiai effeit as controL advancjs froi
$ the start of I» thru I« to the start of u;

$ (2) If U is not in If th?i J is a successor of some node ii I.

% Here the map F(It U) represents the propagation effect as control
$ advances from the start of I* through I« to the start of u;

$ in this case F(I» U) is nesde:! for the processing of th»

$ intervals containing I, Note that CIt U] is a virtual edge
$ in our flow graph; thus the elimination phase extends the
$ map F so as to be defined alsa an virtual eJges.

$ Any interval I processed in this routine is either a proper
$ strongly connected interval* or* if it contains •improper*
$ nodes (i.e. nucleii o1 i p- e die i > i Li t y ) * is a single-entry
$ strongly connected subgraph. In the first case we only have to

$ iterate thru the nodes of I twice* out in the second case till

$ convergence.

$ The outermost •interval* is eitner a single entry acyclic
S graph (if it does not contain irreducible nucleii)* or a

% general single-entry graoi otherwise. For this *interval* we
$ iterate either once in the first case* or till convergence
$ ot her wise.

$ If the present routine is to oe used for interprocedural analysis*
$ we first reset the propagation maps for call blocks in P. If none of

i these maps have changed f - a ii the Last processing of =>

»

$ then obviously analysis of P has staoilized and we can return
$ immediately. Moreover* intervals need be re-processed if and only
$ if they contain a call oLjcIc 4h3;e local effect nas changed*
$ or* recursively* contain an interval whose local effects
$ have changed. In terms of the 'INTOF* tree* we only have to
$ re-analy/e intervals l/ii3 aLanj sotie path from the
$ root to a call block whose local effect has changed. This
$ can make reprocessing of a orocedure considerably
$ faster than initial arocessinj.
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IF FLOU_FLAG = 'SECONO,! >J FER • THEM
$ Process only intervals caitaiiiig calls witi nei« effect

NEED.PROCESS := C};
ELSE

S Process all Intervals
NEED_PROCESS := { IMTT : INFT IN INTS(P)>;

END if;

IF FLOU_FLAG /= 'iNrRA' THEM
$ Interprocedural analysis.

(FORALL C IN :*LLSI^{P}»

V := CESSOR(C); $ The block fslloriing the call
PI := CALLPROCO; » C calls PI
EPl := REXIKPI); $ Tie return »lock of ^i,

% (Note here that If this r3iitiie is uodified to include parameter-
$ oassing assignments as Dart of call blockst in the manner suggested
$ in a concluding remark ii SECTION 4f then oie miyht manioLilite
$ AUX_F(EP1)» which defines the local effect of executing Plf to get
% F(CtV)» rather than just assign the first map to the second onei as
i is done below).

IF FCCC, V]) /= AJX_F(EP1) THEN

$ Update flow function far :aLL
F([C» V3) :- IF AJX_F(EP1) - DM THEN FOM

ELSE AJX_-(£P1) E^O;

$ Interval containing call ust o; arDcessed
NEED_PROCE33 WITH INTOF(C>;

END if;
END FORALL c;

S If no intervals need be processed then information has
$ stabilized and no re-3P oc js ; i ig it ^ need 0? done.

IF NEED_PROCESS = O THEN RETURN TRUE; END;

END if;

P_INTS := INTS(P); $ Intervals of P in reverse preorder
OUTINT := P_INTS(I»P_INTS) ; $ Outermost literval

(FORALL INTT := P_INrS<<) ST IHTT IN NEEO.PROCESS

)

NEED_PROCESS WITH I MTOF ( I>JT T) ; $ Process containing interval
NODES := INT_N33ES( I ^JTT) ; i M3des of INTT in interval order

HEAD := NODES(l); $ Interval head
AUX FCHEAD) := ID. $ Initialize AUX - of HEAD to the identity
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$ Note here that the edge [IfJTTf HEAD] is a rsal edge in the
$ flow graph* so that F{II>irr» HEAl)]) will ha/e been 3re-compjted in
$ an initialization phas?* iLji3 rfitfi the flo4 lass for all other
$ real edgest and is therefore av/ailaole here.

$ Three cases are now aossisle:
$ (1) INTT is proper* out not outermost; then iterate twice.
$ (2) INTT is proper* and is outermost; then iterate once.
$ (3) INTT is improper; iterats indefinitely CI numaer of

S nodes is an adequate jpper bound) until convergence.
$ (Note that we do not iiake use of the better upper bound on
$ the number of iterations discussed in SiCTIQM 3).

CONV_CONTROL := INTT NOTIN PR0PER_INT3;
$ Test for convergence only in this case

N_ITER := S >4axinal lunjer of iterations
IF INTT NOTIN P=(OPER_INTS THEN »NDOES + 1

ELSEIF INTT = DJTIMI THEM 1 ELSE > ENDt

$ If improper interval* initialize AUX_F of all non-head nodes
$ to 'FOM*. This is because we cainot guarantee in this case that
$ when propagating data to i i>de .litiin INTT* all its prsdecjssors
$ (within INTT) have already been processed* so that we have to
$ prepare for the case where some of these predecessors still
$ have undefined auxiliary jata-flow aaps.

IF CONV_CONTROL THEM
(FOR J := 2 ... »\I30E5)

AU)(_F(N0OE5( J)i := foh;
END for;

END if;
$ Iterate through lodes of INTT.

(FOR D := 1 ... N_irER JNTIL CONVRGO)

coNVRGO := :oNi/_:DMrROL;

$ Iterate thru nodes of INTT* other than HEA3

(FOR J := 2 ... tfMDDES)

NO := NODES(J);
FTEMP := .^lEETJDIM/

CF(CPND*NDD) .COM^ AUX_F(»NO) : »M0 IN PREDCNDl
ST INTOF(PNO) = IMTT>;

PR I NT ( »AJX_r( SMO* •) =»*FTEMP) ;

CONVRGD := CDNtf^Gl AND (FTEM^ = AJX_F(MD))S
AUX_F(ND) := FTEMP;

END FOR j;

i Test if processing of INTT tias terminated
IF D = N ITER 3^ ZdHMRGD THEN QUIT FOR O; END;
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$ Re-compute AUX_FCHEAO), tsking oack edges into accojnt
FTEHP := .MEETJDIl^/ CFCP^JOt HEAD]) .COMP AUX_F(P^D) C

>IM3 IS >^t.O{HEAO} Sr INTOF(PNO) = INTFi;
% Note that 3 meet/join ov/er an empty set yielJs OH

ftemp := if ftiip = 01 them aux_f(heao)
els: aj<_-(he\d) •meetjoI'^ ftem-^ eno;

if (mot conv_control hem
CONVRGD := (AJX_F(HEA3> = FFEIP);

ENO if;

AUX_F(HEAD)
END FOR D;

= -TE*!?;

$ Compute FCCINTT* V])» nhere V is a successor of some node ^t

$ INTT; note that this loo3 wiLL oe null for the
$ outermost inter>/al«

(FORALL V IN VEDGESC I 'MT F })

FTEMP := .MEETJDIM/ i=lL?\lt Vl) .:OHP Ai;X_F(PV) :

>rf I'M '^EDCV} ST IsrOF(PV) = intt>;
F(CINTT, WJ) := FTEMP .COMP FtLINTT, HEAOJ);

END FORALL V:

END FORALL INTT;

RETURN false; i Xo iidicate id conwerg«ice«

END PROC intraproc fud -iliminate;
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PROC PROPAGAT£_EXPOSED('» RU "t AUX_Ff Ry EXPOSEOt RU INS.RT);

S This procedure perfiris 31 I iier-to-outer pass o\ier all
$ Intervals to determine the computations which might be mowed
$ out of the loop of each intert/al I* As explained above*
$ these computations are not i?c253arily thos! exaossd in i;

$ hencet we build up both ssts •E)(^OSEO» and 'INSERT*
$ simultaneously*

$ In this analyslSfl th* set sf consuta tions movabl? out of the
$ loop of I Is obtained by taking all computations T with
$ the property that there exists a node ND in I such that
t T is exposed in NO aid iJ awailajLa at the start of ND iff
$ it is available at the eni of the target olock of I.

$ The movable code is alMa^s assunsd to be a3>end?d to tti?

$ end of the target black of the interval* to avoid any possible
S conflict with code that is already Dresent In the target block.
$ However* this appending takes placs physically aily at the ;nd

S of the elimination phase. Thus* we do not attempt to make
$ use of the fact that these expressions are potentially
$ available at the head of I i i Jadating any flow function.
$ This approach is necessary to ensure convergence of our algorithms
$ in cases of recursive cycles of int erprocedural flow.

P_INTS := INTS(P); i Iiter>ral5 3f P in reverse preorder

% First extend F to indicate null flow from the entry block to

$ itself. Since the outermost iiterval has no target block*
$ and is therefore identified with its head* this trick unifies
$ the treatment of that interval with the treatment of inner
$ intervals* as shown oelow.

OUTINT := P_INTS(»P_INTS);
FCCOUTINT* OUTINTl) := ID;

(FORALL INTT := P_INTS(<))

NODES := INT_NOOES(INTT)

;

HEAD := NOJESd);

$ In computing EXPOSEDC INTT> * >ie must reckon rfith the fact
$ that the target olock of IMFF (also denoted by II>iTT)

$ might be non-empty* dje t> jrior cod* motioi. This can lean that
$ (a) F(CINTT* HEADJ) is not the identity* and Cb) EXPOSEDt INTT>
$ (where INTT is treated as a aasic olock) is not null
S initially.
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$ We proceed as folLo.4s: first find all exposjd CDUoutat 1 ons in

$ the loop of INTTf assuming the target block of INTT to be njll.

$ These are the computations nov/aole out of the loop of IMTT.

INSERTfINTr> :- •/ [:<^OS^OCNO> *

(AUX_F(MD){1) - AUX_F(NO) (2)) : ND IN N03ES};

S Next find the new set of comojtations which are still exposed
$ at the entry to the t3rg3t >Idcc of INTT.

FTARG := F(CINTT» ^-:A[)J);

EXPFROMENTRY := IV3:<rClNrr> • (FTAR3(l) - FTi\R3(2));

$ Add these computations to those exposed in the target block
EXPOSEDtlNTT} := EX ' 3 3E JCI N F T } EXPF ^OMENTRY ;

end forall intt;

return;

END PROC PR0PAGATE_EXP03E3;
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PROC ENTRY_INFO(F, AUX_F, IMSERD;

i This function calculates 3ij retjns a mapalng iitiici sends
$ each procedure P into the flo** information available at entry
$ to P. It is called (only in t^ie int e rprocedjral case) just
$ before Me begin the final j jt ?r-t o-i nne r propagation ohase.

$ First Me construct a maa •C&F* assigning to each edge (Pt Q)

$ of the call graph a dat a- j r oa aga t i an raap» d?scriiing the
$ propagation effect as control advances from the entry of P

$ to the entry of Q via any call to Q from P.

CGF := c>;
(FORALL CP»Q] IN CSRAPH) CG=^(lP,Q]) := FO»i; El^O;

(FORALL Q I- CALL'OC(3>) * -or all calls Mithin all procedures

P := ROUTOF(C); t [P» Q1 is an edge of the call graah

$ Compute the local effect as ;ontrol advances from the entry
$ of P to C.

FTEMP := AUX_F(C);

(INIT lU := INTDFO; J4I_£ IJ /= RENFRYCf))

HIU := INT_N0DE5(IJ) (I) ; S head of lU
$ Add the effect of code mo^ed out of lU

FINS := CID(1}» INSERrtlJH;
FTEMP := FTEMP .COM!* FI^JS .COMP F(CIU, HIJ3)

.COM3 AUX_F(IJ);

lu := iNTOFdU);

end;

cgf(cp» q3) := cgfc't i j) .meetjoin ftemp;

END FORALL Q;

$ Next Me iterate throjgh tie :alL graph in 'invocation order»f i.e.
$ process the strongly connected components in reverse postorder
$ and the set of procedures within each strongly connected
$ component in reverse aostarder also,

ENT_INF := CCP» TOHl : ' IN ROJrs>; S Initialize solution
£NT_INF<SYH_MAIN) := Z.\3',

CGRINV := CCP, QJ : CQf P] IN CG^APH>;
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(FOR I := 2 ••• »CS_SCC3) i ^ick S.C.C.'s 1i re/ers? ^05to^d^^.

$ Note that we assume here that t^e main program is non-recurs i ve?
( so that the first st r^ngl f -cd in;c t ? d compon?nt of the call
$ graph consists of the main program only. Thjs we can skip itt
$ for the entry value of the tain program is already assumed
$ known*

sec := CG_sccs(i);
SCC_PROCS :- S::_I\J3)-:5C 3C:) ; % Procs in s:c in rev. postorder

(FOR N := 1 ... sc:_o(s:c) i until :onvrgo)

coNVRGD := trj:;

CFORALL P := SC:_PR3CS(K))

TEMP := .Hj;< CCG-(Ca, pD) .Or tNT_iN-(a) :

a iM CG^iNrfC^}}

;

$ Test for convergence
coNWRGO := :DMy/^G3 a:^3 (TEHp = ;nt_inf(P)) ;

ENT_INF(») := TEM';

END FORALL Pi

END FOR N;

END FOR i;

RETURN ENT_INF;
END PROC ENTRY INFO;
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PROC FWD_PROPAGATE_IN(Pt RU F, AUX_F, RW SOLNt ENT.VAL.
M0VE_C0OEt RU INSERT);

% This procedure performs ) jt ?r-to-1 nns r propaqatlon for a

$ routine Pt using the 'Int erwaL-ef f ec t • flow functions AUX_F
$ to modify the soljt1>n bjd •33L\J*. The parameter EMT_»/AL
$ gives the flow Inforsatlai assui^d (or known) at procedure
$ entry.

$ If code motion Is reqj1r;Jt tiei t\M computations in INSERTCI}
$ are assumed to be ava1lai)Le at the end of the target block
$ of an Interval I (but only for the purpose of propagation
$ inside I). In additi3Tf c juajtat i ons in IiMSERTCI} already
S available at exit from the target block of I are removed fram
% INSERTCI>.

$ Note that movable coiipjt3ti9n3 are assumed to as sjch that the
$ insertion of any of them iiill not •kill* any others.

SOLN(RENTRYCP)) := EMT.rf^L'i

P_INTS := INTSCP); t Irjtervals of ^ in reverse preorder

S Extend F to indicate null flow from the entry block to
$ Itself. Since the ojtsrmut iit^rval has no targfft 3lock«
$ and is therefore Identified with its head* this trick unifies
$ the treatment of that interval with the treatment of inner
$ intervals* as shown 3?larf.

OUTINT := P_INTS(»P_INTS);
FCCOUTINTf OUTINTJ) := 13;

(FOR K := «P_INTSt »P_I'4TS-1 ••• I)

INTT := P_INTS(<) ;

NODES := INT_NODES(INTT) ; S lodes of INTT

SOLNl := SOLN(INTT); $ Oata value at entry to INTT
$ Convert SOLNl to the data attriiute value at the end af the target
$ block of INTT.

$ Propagate through the tarjst alock of INTT; if IMTT = OJTINT* the
S trick noted above will males the following statemsnt a no-op.

SOLNl :~ FCCINTT* N33ES(1)3) .OF SOLNl

;

S If code motion is also r;qjir;dt tl»?n updat; INSERTCINTT>
$ and add it to SOLNl.

IF MOVE_CODE AMD IMTT /= 3JTINT THEN
INSERTCINTT} := I »JS ERTC I MTT} - SO.Ni;
SOLNl '.- SOLNl * IMSERT{:iNTT>;

END if;
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S Now propagate attributes to the nodes of INFT

(FORALL U IN NDDES)
SOLN{U) := AJX_-(J) .OF SDLNi;

END FORALL Ut

END for;

return;
END PROC FUO PR0PA3ATE IM;
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PROC INTRAPROC_FWD_ANALTSIS(Pt RW F, WR SDLNf IO_PRMf ZER3_PRH»
Mr:£r_FLAG_PRM, MOWE_CODE»
Rd IXPOSEOt A\ INSIRT);

$ This is the master routine to p?rforr» a specific data flow
$ analysis int raproced jrallir for a giwen routine •*» within which
S Local variables are j^nalf zsd»

$ For more details and commsnts arid description of parameters see the
$ corresponding i nt erpr oc edjr aL analyser*

ID := id_prm;
MEET_FLAG := MlET_FLAG_^R«J

Aux_F := o ;

FLAG := INTRAPROC_FUO_ELIMIMArE(Pf AUX_FtF» 'INTRAn ;

$ The return value of that Dpjcidirs is not Jjed i •» tliis :3se

IF MOVE_CODE THEN
INSERT := c>

;

PROPAGATE.EXPOSEOC. Ft AJK_F» EXPOSEDf INSERT);
END if;

SOLN := {>;
FUD_PROPAGATE_IN(Pt Ft AJ<_-f 30LNf ZERO_>RMf MOVE_COD£» INSERT);

return;
END PROC INTRAPROC "WD ^^ALIfSIs;
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PROC INTERPROC BACK .ANMf5I3{<W Ft UR 30L^»
MEET FLAG PRM)

;

ID PRMt ZERO >RMt

$ This Is the master rajtiri; fyr jjrfsriBing a saecifi:
$ interprocedural backward data flow analysis. See the
$ cor respono ing forward rojtlne for g?neral comments and
$ description of paramjt»rs. ^e''e 4? comment jnly an differences
$ between the forward and backward algorithmsi which are as follows:

$ a* Functional composition mjst oe computed in reverse order,

S b« The auxiliary maps jsed in backward analysis are defined as
$ follows: Let I be an interwali J a node in £ and V a node ojtside
$ I which is a successor of a nod? in I. Then AUX_"{CJ« VD)
$ is defined to be the prooigation effect experienced as control
$ advances from the start of Jt through I» to the start of V.

$ To compute this »ap requirss itirating throjgh I in reverse
$ interval order three times (if I is proper) or till convergence
S otherwise.

$ Since the outermost iitervaL of i procedure P has no
$ successors* we regard the olocks REXITCP) aid RSTOP(P)
$ as its successors* •hiddei* Inside that interval.
$ this is needed to enaole js to record the effect
$ of the flow through the ojtermost interval in a manner
S similar to that used for inner intervals.

c. In backward analysis 4S perform an extra step after the
elimination phase. In this step we compute an additional set
•FEXIT* of auxiliary «ao5. -op ?a:1 node U in » FEXir(U)
represents the propagation effect of the flow from the start
of U to the return block of combined witfi that of flow from
the start of U to tie stoo oloct of P.

$ d. In our backward analysis code motion issjes are completely
S ignored.

$ e. The technical proolera concerning endless loops discussed in
t SECTION 5 is assumed to oe resolved by preliminary processing
$ of the flow graph* in the manner suggested there.

$ Transfer constant parraeters to glooals

ID := id_prm;
ZERO := zero_prh;
MEET FLAG := MEET FLAG 'Ri;
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$ This master procedure consists of the folLoriIng four phases;

* Interprocedural elliiTatian 3i3??
AUX_F := INTERPR0C_8AC<_ELIinArE(F) ;

* Compute auxiliary FE<IT maas.
FEXIT := {};
{FORALL P IN ROUTS)

INTRA_AUX_ELI»1I^Ar£('t ', !\UX_F, FEXID;
END FORALL Pi

% Find data at procedure exits
EX_INF := EXIT_INF3(-» \JK_-t "EXIT);

$ Final propagation phase
SOLN := <>; $ InitiUUe ths solution
(FORALL P IM ROJTS)

BACK_PROPAGATE_IN(P, FEXIT, SOLN, EX_INF(P));
END forall;

return;

end proc interproc bac< a!«4ly5is;
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PROC INTERPR0C_aA[:<_iLI1I^HrE(^ J -);

$ This Is the driver rojt Ins for the i nterprocedural first
$ Inner-to-outer interi/aL sass. Procedures an analyzed in
$ the folloMing order: 'tis d-dc?5s th» stronglf comect?d
$ components of the call graph In their postorder; thent for
$ such componentf we iterat? throjgh its procedures in their
$ postorder« no more tian ?»3*l tines* where D is the Iood-
$ int erconnectedness parameter af the componeit.

AUX_F := CJ; S initialize auxiliary maps
F_P := C>; $ Pro3333tl>i eff?:t thru pro:edures

each

$ Iterate through the S.C.C.s of C3^A»H
(FOR I := »CG sees* KC3 3:35-1 ... 1)

sec := CG_SCCS(I); t set a s.c.c.
SCC_PROCS := SCC_I^3DE5{ SCO ; $ Procs in that S.C.C.
FLOW_FLAG := '"IRSF IMFE^*; % First processing of SCC

(FOR J := 1 2 » SCC O(SCC) 1 UMTIL PROC CONVERGE)

PROC_CONVERGE Z- TRJEi

(FOR K := »SCC_'R3C5, »SCC_PR0C3-1 ... I)

p := s:c_p^3:s(<);
PROC_C0NVERiE :=

INTRAPR3C_8AC<_ELIMINAT£(^t AUX_F,F,F_P»FL3W_FLAG)
»^D ^ro:_:3mv:rge;

% This routine analyzes P. its fifth parameter indicates whether
$ the analysis is first-tine int erprocedural» second-time
$ i nterprocedural or i ntraD* o:? du'* aL . it retj*ns a flag to
$ indicate whether information has stabilized in P.

END FOR K;

FLOy_FLAG := •3E:C0N3_IMTER»; $ Additional passes thru SCC

END FOR j;

END FOR i;

RETURN AUX_F;

END PROC interproc.back.elihimate;
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IF FLOU_FLAG /= 'I^rRA* FHill

S Int erprocedural analysis.

(FORALL C IN CALLSIMO)

V := CESSORCO; $ rhe block following the call
PI := CALLPROCO; * C calls PI

% (Note that if this rajtii? is ijclifisd to liclud?
$ pararaeter-passing asslgnraents as part of call blockst in the
S manner mentioned above* then one might manipulate F_P(P1)«
$ the local effect of ;xecjting 'If to get F<IC»V])» rather tian
$ just assign F_P(P1) to FC:c» 7])t as is done below).

IF F(CC» \ll} f- -_'(PI) T^EN

$ Update flow function for call
f(cc. wd := if f_'(p1) = oh then pom

-:ls£ -_p(=»i) end;

$ Interval containing call »ust be processed
NEED_P^0CES5 yiTH IIMrOF(C)J

END if;

END FORALL C;

$ If no intervals leed ae 3-9c?3s;i tlien information has
% stabilized and no re-processing of ' need be done.

IF NEED_PROCESS = C> HEN RETJRN TRUIt END;

END if;

P_INTS := INTS(P); S Intervals of P in re/erse preorder
OUTINT := P_INrS(tt?_INr5) ; $ outermost interval
VEDGES{OUTINT> := CREXITCP)}; $ 'Successors* of OUTINT
IF (SP := RSTOPCP)) /= 3M H£"4

VEDGESCOUTINT} rilTH S?;
END if;

(FORALL INTT := P_IMTS{<) 31 IMTT IN NEEO.PROCiSS)

NEED_PROCESS WITH I MTOF ( I'J TT) ; $ Process containing interval
NODES := INT_NODES( INTT) ; % Nodes of INTT in interval order
HEAD := NODESd); \ Iiterval head

$ Get successor nodes
CESORS := VEDSISCIMrTl;
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S Initialize AUX_F for successor lodes
$ subsequent code cons i der a j l)^.

This trick simplifies

(FORALL V IN CESORS)
AUX_F(CV» Vl) :=

END FORALL VJ

lOi

$ Three cases are now possi3le:
$ (l) INTT is proper* DJt ut 3Jt?mi5t; thei iterat? thr?; tines.
$ (2) INTT is proper» and is outermost; then iterate once.
$ (3) INTT is improper; iterate iide f i ni

t

ely (I 2»numDer of
$ nodes is an adequate JQo^r 30jrij) until coni/srg?nce» (H?re»
$ againf a better bouid can be used; cf. SECTION S).

CONV_CONTROL := INTT >J3riM PR3PER_INT3;
* Test for conwergsnc? siL^ for iiDTDDer intervals.

IF INTT NOTIN
ELSEIF INTT = 3JTIMT

of iterations thrj nodes at INTTN_ITER := $ Maximal lumber
^^D^I^.I-JTS THEN 1 •• 2 » »NDO

THE-^ 1 ELSE 5 END;

(FORALL NO IN NDOESi
AUX_F{CNO» I/]) :

END forall;

\l IN CCSDRS ST ND /= M

)

FDM; $ Initialise ajxiliary maps

$ Iterate through nodes of MTT.
(FOR D := 1 ... N_irER JNTIL CONVRGO)

CONURGD := C0NV_C0r4TRDL;

$ Iterate thru nodes af INTT \t r?«/erse inter/al ard?-.
(FOR J := »nooe:s» w'^odes-i ... i)

NO := ^33ES(J>;

(FORALL V IM CESORS ST V /= N3)

% Since the •successors* of the ojtermost intsrval are nodes
$ of that Interval* we may i a v? ND = i/ . In this case
$ It would be erroneouss to comoute A1JX_F(CN0» \/]) (which has
$ already been set to 10) Jjinq tie following 'prooagation
$ from successors* for-nula* so w? just skip sjch cases.

FTEHP := .MEETJOIN/
{:F(:M3, SM3]) .COMP AJX_F(CSN3* V]) I

SND IN CESSOR{NO> ST
IMT3F(SN0) - INTT OR SNiD = Mil
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$ Note that flow graph edges (virtjal or real) are either
$ edges within an interi/al» linking trfo nodes in the same
$ interval* or edges gairig >jt yf an interwaLt or edges g3ir»g

$ into an interval (these Last ed^Jes are edges from (a target
$ block of) an interval to its head. It is this third kind of
$ edge that we wish to a\iaii >r33j^3ting throjgh in ttie aoove
$ formula. •INTOF(SND) = IMTT» tests for internal edges
$ and »SND = V» tests f3r ojtgoing edges whos? target is W.

IF FFEM' = OH THEN FTEHP := FOMi END!
CO^iVRGO := CONtfRGD ANO

(-TIM^ = 4UX_F(CMDt VD);
AJ<_F(: M0» \ii} := FTEMp;

END FORALL \l i

END FOR j;

END FOR D;

$ (Note that no special handling af I>lTr»s head is required.)

$ Except for the outermost intervalf compute - ILIHTJ t VJ)t wh?re V

$ is a successor of some node in INTT.

IF INTT /= OUTINT HEM
$ F(CINTT, W]) is trivially calculated in this case; we also
$ remove the dummy AUK_F(Ii/» »/]) entries.

(FORALL V IN CESORS)
FTEMP := F(:iMTr»iEA33) .COMP AUX_F (C HEAD, V 3)

;

F([iNTr.k/]) := -nip;
AUX_F(CVt »/]) := 3M; j To remDVe this entry from AUX_F

END FORALL W;

END if;

END FORALL INTTi

$ Compute F_P(P)
F_P(P) := AUX_F(i:HEAOt <E<ir(')]); S head - RENTRy(p)

IF RSTOP(P) /= OM THEN $ If P contains a stoo blockt calculate
$ Dropagatijn effect to that jIocIc and coB^in?
S it with •normal* flow effect.

FZERO := AUX_F(C4£i\3t RSTD'(P)]) .OF ?lR0;
F_P(P) := F_P(') .>iEErJ3IM CFZEROt FZIROi;

$ Note that a constant function C is represented oy CC, C]

END if;

VEDGESCOUTINTl := €>; $ Remove artificial edges added earlier
RETURN false; $ To indicate no convergence

END PROC INTRAPROC BACK ELIMIMATE;
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PROC INTRA_AUX_t:LI^IMAr :('» F, !VJX_Ft RU "EXIT);

S This procedure performs an additional int raar oceduraL
$ eliminationt during which w? computet for each node H in Pf

$ a map FEXIT(N) represent i i g tie effect of flow fr3'B tie
$ start of N up to an exit of ?•

P_INTS := INTS(P);
OUTINT := P_INTS(B?_INr5);
EP := REXiT(P);
sp := RSTOP(P);

$ First process nodes of OUTINT

OUTNOOES := INT_ND0ESC3JTl!^r );

(FORALL NO := OUTNODES(I))

FEXIT(NO) := AUX_F(:igD. E^D); t Get the effect of flo-i to EP

IF SP /= OM THEN $ If th?r» is also i stop

FZERO := ajx_f(i:nd» SP]) .OF zero;
FTEMP :- I- -z:o = X3H THEN FOH :lse :

-

z:ro»fze.<31 end;
FEXIT(ND) := FEXIT(ND) .MEETJOIN ^TEMP;

END if;

END FORALL NO;

% Next process all remaining intert/als in out er-to- inner order
(FOR J := »P_INTS-I» »^_IMT5-> ... 1)

INTT := P_INTS(J);
CESORS := VEDSESCl^TT};

NODES := INT_N0DES{INTT);
(FORALL NO := N0DE3(<))

FEXIT(ND) := •MIETJOI'^ /

CAJX_F(:ND, VD) .COMP FEXIT(V) : V IN CES3RS};

END FORALL ND;

END FOR j;

return;

end proc intra aux eliminate;
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PROC EXIT_INFOCF, MJK_-, "KID;

$ This function calculates arid retjrns a mapping which sends
$ each procedure P into th? flow information available at exit
$ from P. It is callej io^lf ii ti? i i terproc jdural case) Just
$ before we begin the final out er-to-i nner propagation phase*

$ First we construct a maa »:5-» assijning* t> eaci sdgs (Pf 3)

$ of the call graph* a data-aropaga ti on map describing the
$ propagation effect as control returns from the exit of Q to P
$ after any call in P to Q» a r»d then advances ta the sxit of >•

CGF := t>;
(FORALL CP.Q] IN CG<A'^) c3-(:>,ai) := Fo>4; emd;

(FORALL Q := CALL»^OC(C>) $ For all calls within all procedures

P := ROUTOFCO; $ CP» QJ is an edge of the call gra^h
CI := CESSORO; % Cl is the block inmediately after C

CGF(CP« Q]) := CSFCP* 33) .MEETJOIN -EXIT(Cl);

$ Mote that since we are d?aling with a backward anal/sis* we
t want to propagate data frjw tt»e exit of the calling procedure P

$ to the exit of the called procedure Q. This direction of
$ propagation* however* makjs our 3ro3lem a forward problem
$ for the call gra^h.

END FORALL Q*

$ Next we iterate throjgh tie call graph in • i nvoc a t

1

di 3rd?r»» i.e.
$ process the strongly connected components in reverse postorder
$ and the set of procedures withiri each strongly connected
$ component in revers? 30st>rd?r also.

EX_INF := { CPt XOMJ : P IN ROJrs }; $ Iiitiallze solution
EX_INF{SYM_MAI^) := 'I^d;
C6RINV := tCP* Q] : C9* P] IN CGRAPH>;

(FOR I := 2 ... »CG SCC5) S Pick S.C.C.»s in reverse postorder

sec := cG_sccs(i);
sec PROCS := sec NODESOC:); S Procs in sec in rev. Postorder
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(FOR N := 1 ... 5CC_D(5:C) 1 UNTIL :ONV^GD)

coNVRGD := TRu:;

(FORALL P := S::_P^OCi(K))

TEMP := .MJU/ CCG-(CQ. P]) .0- EX.INFO) :

$ Test for convergence
CONVRGD := COMVRGJ ANO (TEMP = EX_INF(P));
Ex_iN-(^) :: t:>4p;

END FORALL Pi

END FOR N;

END FOR i;

RETURN EX_INF;

END PROC EXIT INFO;
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PROC BACK_PROPAGATE_IN(=»t FEXITt RW SOLNt EX_VAL);

$ This procedure performs s j t er-t 3- i ner back oro33G|3t 1 on fDP
$ a routine P» using the 'FEXIT* information. £X_\/AL is the flow
$ information assumed (or ki0i«n) at the procedure retjrn olockf
* where •ZERO* is always asjJBsi it tie stop >lock of P (3jt this
$ assumption has already b?er» jsed in calculating the FEXIT maps).

CFORALL INTT IM INTiOt J l^i I ^f _NODES(I \l TT )

)

SOLNCU) := FEXIT(U) .OF EX_VA_ ;

END forall;

return;

END PROC BACK PROP^SATI I M;
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PROC INTRAPROC BAC< ANALrSIi(^» \J Ft WR >OLN» IO_PRM, ZERO_PRM,
MEET_FLAG_PRM)

;

$ This is the master PDJtii? to pjrfarm a sps:ific Dackward data flow
$ analysis int raprocedjralljr for a routine P t^hose local
$ variables are to be analyzed. For more details* comments* and
$ description of parautirs s;? ti; c arresponi ing i nt erproc ?djral
$ analyser,

10 := ID_PRMi
ZERO := zero_prm;
MEET_FLAG := ME ET_FLAG_'RH:

AUx_F := F_p := {};

FLAG := INTRAPROC.BACK.ELIMINAT^CP* AJX_F, F, F_Pf 'INrRA');
$ Flag is not used in this rase

FExiT := o;
INTRA AUX ELIMINATE(P» "» AJX F, FEXIT)*,

soLN := C};
BACK_PROPAGATE_IN(P, FEKiTt S3LI^f ZERO);

$ Note that in the i nt rapro: edjral case the last two procedures
* can be combined to fam a single pracedure almost identical
$ with •INTRA_AUX_ELIMINATE» except that this procedure computes the
S 'SOLN* map directly instead of the 'FEXIT* aaps.

return;

end proc intraproc bac< ft'^alysis;
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$ Here are the operators which uanipjlate the data propagatioi maps
$ aid data states.

OP .COMPCet F)t * Fjnctional composition G of F

RETURN
IF F = FOM OR S = FDM THEM FOM
ELSE CF(1) * G(l) 3(2). "(2) * G(l) G(2)D
end;

end op .comp;

OP •MEETJOINO. F)i % -jirtional meet o- joIt
RETURN

IF F = FOM THEM S

ELSEIF G = FOM THEM F

ELSEIF MEET_FLAG THIN C-Cl) • G(l)i F(2) • G(2)3
ELSE CF(1) + G(l), F(2) • 3(2)]
end;

END OP .meetjoin;

OP .MJV(X» Y); $ Msfft jr ioii Df tattle; elsaents
RETURN

IF X = XOH THEM Y

ELSEIF Y = XOM THEM <

ELSEIF MEET_FLAG TH:M X * Y

ELSE X Y

end;
end op .mjv;

OP •OF(F» X); S -unctionaL aopLlcatlon
return if x = xom or f = fom then xom

else f(i)*x f(2)
end;

END OP .of;

end module setl optimi?:^ - oivta-^ou solv:r;
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